WO2021008331A1 - 热泵机组 - Google Patents
热泵机组 Download PDFInfo
- Publication number
- WO2021008331A1 WO2021008331A1 PCT/CN2020/098504 CN2020098504W WO2021008331A1 WO 2021008331 A1 WO2021008331 A1 WO 2021008331A1 CN 2020098504 W CN2020098504 W CN 2020098504W WO 2021008331 A1 WO2021008331 A1 WO 2021008331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- pump unit
- liquid injection
- heat pump
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
- F25B1/047—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
Definitions
- the invention belongs to the field of heat exchange technology, and specifically provides a heat pump unit.
- the heat pump unit is equipped with a two-stage compression system, that is, two compressors of a low-pressure stage compressor and a high-pressure stage compressor work together to ensure the compression function.
- this field needs a new heat pump unit to solve the above problems.
- the heat pump unit includes a main circulation loop and a liquid injection pipeline connected to the main circulation loop; wherein the main circulation loop is provided with a compressor, a first heat exchanger, a throttling component and a second Two heat exchangers, in the heating mode, the first heat exchanger is used as an evaporator, the second heat exchanger is used as a condenser, and the throttling member is arranged between the first heat exchanger and the Between the second heat exchangers, one end of the liquid injection pipeline is connected to the compressor, and the other end of the liquid injection pipeline is connected between the first heat exchanger and the throttle member, So that the cooled heat exchange medium can be introduced into the compressor.
- the liquid injection pipeline includes a first liquid injection pipeline, and one end of the compressor close to the motor of the compressor is provided with a first connection hole, and the first injection The liquid pipeline is connected to the compressor through the first connecting hole.
- a first electronic expansion valve is provided on the first liquid injection pipeline.
- the liquid injection pipeline includes a second liquid injection pipeline, a second connecting hole is provided in the middle of the compressor, and the second liquid injection pipeline passes through the second liquid injection pipeline.
- the connecting hole is connected to the compressor.
- a second electronic expansion valve is provided on the second liquid injection pipeline.
- the liquid injection pipeline includes a first liquid injection pipeline and a second liquid injection pipeline, and a first connection is provided at one end of the compressor close to the motor of the compressor. Hole, the first liquid injection pipeline is connected to the compressor through the first connection hole; a second connection hole is provided in the middle of the compressor, and the second liquid injection pipeline passes through the second The connecting hole is connected to the compressor.
- a first electronic expansion valve is provided on the first liquid injection pipeline, and a second electronic expansion valve is provided on the second liquid injection pipeline.
- the compressor is a single-stage screw compressor.
- the first heat exchanger is a finned heat exchanger.
- the second heat exchanger is a shell and tube heat exchanger.
- the heat pump unit of the present invention includes a main circulation loop and a liquid injection pipeline connected to the main circulation loop; A compressor, a first heat exchanger, a throttling member and a second heat exchanger are provided in communication with each other.
- the first heat exchanger is used as an evaporator
- the second heat exchanger is used as a condenser
- the throttling member is arranged between the first heat exchanger and the second heat exchanger, one end of the liquid injection pipeline is connected to the compressor, and the other of the liquid injection pipeline One end is connected between the first heat exchanger and the throttling member, so that the cooled heat exchange medium can be introduced into the compressor when needed, thereby effectively reducing the motor temperature and Exhaust temperature, so that the heat pump unit can work stably at a low ring temperature and high pressure ratio, and at the same time, the evaporation temperature range of the compressor can be expanded, so that the applicable ambient temperature range of the heat pump unit can be expanded, Furthermore, while effectively ensuring that the heat pump unit can work stably under the conditions of low ring temperature and large pressure ratio, the production cost of the heat pump unit can also be effectively saved.
- the liquid injection pipeline includes a first liquid injection pipeline, one end of the compressor close to the motor of the compressor is provided with a first connection hole, and the first liquid injection pipeline passes through the first connection hole.
- a connecting hole is connected to the compressor, so that the heat pump unit can inject the cooled heat exchange medium to the vicinity of the motor of the compressor through the first liquid injection pipe, because the motor of the compressor It is the most likely to generate heat among all parts of the compressor. Therefore, the heat pump unit can greatly reduce the motor temperature of the compressor by injecting the cooled heat exchange medium to the motor, so that the heat pump unit can be lowered Work stably at ambient temperature.
- a first electronic expansion valve is provided on the first liquid injection pipeline, and the heat pump unit can control the on-off condition of the first liquid injection pipeline by controlling the opening of the first electronic expansion valve.
- the flow of the heat exchange medium in the first liquid injection pipe so as to accurately control the liquid injection volume of the first liquid injection pipe, thereby effectively improving the degree of intelligence of the heat pump unit.
- the liquid injection pipeline includes a second liquid injection pipeline, a second connection hole is provided in the middle of the compressor, and the second liquid injection pipeline communicates with the compressor through the second connection hole.
- the heat pump unit can inject the cooled heat exchange medium into the working chamber of the compressor through the second liquid injection pipe, so as to effectively reduce the exhaust temperature of the compressor, so that The heat pump unit can work stably at a lower ambient temperature.
- a second electronic expansion valve is provided on the second liquid injection pipeline, and the heat pump unit can control the on-off condition of the second liquid injection pipeline by controlling the opening of the second electronic expansion valve. The flow condition of the heat exchange medium in the second liquid injection pipe, so as to precisely control the liquid injection volume of the second liquid injection pipe, thereby effectively improving the degree of intelligence of the heat pump unit.
- Fig. 1 is a schematic diagram of the overall structure of a preferred embodiment of the heat pump unit of the present invention.
- the terms “upper”, “lower”, “left”, “right”, “front”, “rear”, “inner”, “outer”, etc. indicate directions or positions The term of relationship is based on the direction or position relationship shown in the drawings, which is only for ease of description, and does not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as Restrictions on the invention.
- the terms “first”, “second”, and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
- the heat pump unit of the present invention includes a main circulation loop, and a first liquid injection pipeline and a second liquid injection pipeline that are connected to the main circulation loop.
- the heat exchange medium is introduced into the single-stage screw compressor 1 in order to reduce the operating range of the evaporation temperature of the single-stage screw compressor 1.
- the compressor described in the preferred embodiment is a single-stage screw compressor
- the first heat exchanger is a fin heat exchanger
- the second heat exchanger is a shell and tube heat exchanger.
- the technical personnel can obviously set the specific types of the compressor, the first heat exchanger and the second heat exchanger according to actual use requirements, and the technical personnel can also set their own Set the specific structure of the heat pump unit.
- the throttle member described in the preferred embodiment is an expansion valve
- the skilled person can obviously also set the type of the throttle member according to actual usage requirements.
- the heat pump unit described in this preferred embodiment is provided with a first liquid injection pipe and a second liquid injection pipe at the same time; however, the heat pump unit can obviously also be provided with only the first liquid injection pipe.
- the second liquid injection pipeline and the present invention does not impose any restrictions on the specific structure of the first liquid injection pipeline and the second liquid injection pipeline, as long as the first liquid injection pipeline and the All the second liquid injection pipelines can introduce the cooled heat exchange medium into the single-stage screw compressor 1.
- one end of the single-stage screw compressor 1 close to the motor of the single-stage screw compressor 1 is provided with a first connecting hole (not shown in the figure), and the first liquid injection pipeline passes through the first connecting hole. It is communicated with the inside of the single-stage screw compressor 1 so that the cooled heat exchange medium can be introduced into the single-stage screw compressor 1.
- a first liquid injection electronic expansion valve 15 is provided on the first liquid injection pipeline, and the heat pump unit can control the opening of the first liquid injection electronic expansion valve 15 so that the heat pump unit can operate according to different working conditions.
- the single-stage screw compressor 1 needs to inject the liquid according to the amount of liquid required.
- the opening of the first liquid-injecting electronic expansion valve 15 is increased to make the single-stage screw compress
- the evaporation temperature of the unit 1 can be reduced to around -40°C, so that the heat pump unit can still work stably in an ultra-low temperature environment of around -30°C.
- the right end of the first liquid injection pipeline described in this preferred embodiment is connected between the expansion valve 8 and the economizer throttle valve 13, the right end of the first liquid injection pipeline is obviously It can also be connected to other positions, as long as the position is between the fin heat exchanger 4 and the expansion valve 8, so that the heat pump unit can introduce the cooled heat exchange medium into the unit through the first spray pipe.
- Stage screw compressor 1 is sufficient.
- the heat pump unit can also cooperate with the second liquid injection line to further reduce the single-stage screw compressor 1.
- the evaporation temperature of the compressor 1 specifically, a second connecting hole (not shown in the figure) is provided in the middle of the single-stage screw compressor 1, and the second liquid injection pipeline passes through the second connecting hole and the single-stage The inside of the screw compressor 1 is communicated so that the cooled heat exchange medium can be introduced into the single-stage screw compressor 1.
- the second liquid injection pipeline is provided with a second liquid injection electronic expansion valve 16, and the heat pump unit can control the opening degree of the second liquid injection electronic expansion valve 16, so that the heat pump unit can operate according to different working conditions.
- the single-stage screw compressor 1 needs to inject the liquid according to the amount of liquid required. For example, under the condition of low ring temperature and high pressure ratio, the opening of the second liquid-injecting electronic expansion valve 16 is increased to make the single-stage screw compress The evaporation temperature of the unit 1 can be reduced to around -40°C, so that the heat pump unit can still work stably in an ultra-low temperature environment of around -30°C.
- the right end of the second liquid injection pipeline described in this preferred embodiment is connected between the expansion valve 8 and the economizer throttle valve 13
- the right end of the second liquid injection pipeline is obviously It can also be connected to other positions, as long as the position is between the fin heat exchanger 4 and the expansion valve 8, so that the heat pump unit can introduce the cooled heat exchange medium into the unit through the second spray pipe.
- Stage screw compressor 1 is sufficient.
- the heat pump unit of the present invention adopts a two-stage liquid spraying method, and an electronic expansion valve is arranged on the liquid spraying pipeline to accurately control the spraying amount of the liquid spraying pipeline, so as to effectively ensure that the liquid spraying pipeline can spray liquid on demand. Avoid that the injection volume of the liquid injection pipeline is too large, which may easily cause the unit to run off or the injection volume is too small, which may easily lead to problems such as high temperature warning of the unit, thereby effectively ensuring that the heat pump unit can operate at a low temperature and a large pressure ratio. Under stable operation, in order to maximize the reliability of the heat pump unit. In addition, it should be noted that the present invention does not impose any restrictions on the operation mode of the heat pump unit.
- the technician can set the operation mode of the heat pump unit according to actual use requirements, as long as the structure of the heat pump unit is consistent with the present invention.
- the heat pump unit can control the injection volume of each liquid injection pipeline by detecting the discharge temperature of the single-stage screw compressor 1 or the temperature of the motor; when the discharge of the single-stage screw compressor 1 When the temperature or the motor temperature is higher than the preset value, the opening of the liquid injection electronic expansion valve is controlled to control the discharge temperature of the single-stage screw compressor 1 and the motor temperature, so as to effectively ensure that the heat pump unit can spray on demand Liquid, thereby effectively ensuring the operating range of the heat pump unit.
- the circulation process of the heat exchange medium in the heat pump unit is: single-stage screw compressor 1 ⁇ oil separator 2 ⁇ four Pass valve 3 ⁇ fin heat exchanger 4 ⁇ fifth check valve 20 ⁇ second filter 21 ⁇ economizer 7 ⁇ expansion valve 8 ⁇ second check valve 17 ⁇ accumulator 9 ⁇ shell and tube heat exchange Device 10 ⁇ four-way valve 3 ⁇ gas-liquid separator 11 ⁇ single-stage screw compressor 1.
- the fin heat exchanger 4 When the heat pump unit is operating in the cooling mode, the fin heat exchanger 4 is used as a condenser, the shell and tube heat exchanger 10 is used as an evaporator, and the heat exchange medium in the heat pump unit passes through the single-stage screw compressor 1 It becomes high-pressure gas.
- the high-pressure gas passes through the oil separator 2 to separate the lubricating oil and then enters the fin heat exchanger 4 through the four-way valve 3.
- the heat exchange medium releases heat to the air in the fin heat exchanger 4 Among them, the fan 22 can accelerate the heat exchange speed; then, the heat exchange medium flows through the fifth one-way valve 20 and the second filter 21, then passes through the economizer 7 to achieve subcooling, and then passes through the expansion valve 8 after throttling through the storage
- the liquid vessel 9 enters the shell and tube heat exchanger 10, where the heat exchange medium can exchange heat with the carrier refrigerant, transfer the cold energy to the carrier refrigerant, and continuously carry out circulating cooling.
- the refrigerant enters the room after being cooled, and finally cools the room through the indoor coil.
- the circulation process of the heat exchange medium in the heat pump unit is: single-stage screw compressor 1 ⁇ oil separator 2 ⁇ Four-way valve 3 ⁇ shell and tube heat exchanger 10 ⁇ accumulator 9 ⁇ fourth check valve 19 ⁇ second filter 21 ⁇ economizer 7 ⁇ expansion valve 8 ⁇ third check valve 18 ⁇ fin exchange Heater 4 ⁇ Four-way valve 3 ⁇ Gas-liquid separator 11 ⁇ Single-stage screw compressor 1.
- the fin heat exchanger 4 is used as an evaporator
- the shell and tube heat exchanger 10 is used as a condenser
- the heat exchange medium in the heat pump unit is passed through a single-stage screw compressor 1 becomes high-pressure gas
- the high-pressure gas passes through the oil separator 2 to separate the lubricating oil and then enters the shell and tube heat exchanger 10 through the four-way valve 3.
- the heat exchange medium transfers the heat to the shell and tube heat exchanger 10
- the heat exchange medium flows through the accumulator 9 through the fourth one-way valve 19 and the second filter 21, then through the economizer 7 to achieve subcooling, and then through the expansion valve 8 throttling into the fin type In the heat exchanger 4, the refrigerant absorbs heat from the low temperature environment in the finned heat exchanger 4, and continuously circulates heating. Finally, the refrigerant is heated and enters the room, and the room is heated by the indoor coil.
- the heat pump unit when it is operating in the defrost mode, can open the defrost solenoid valve 12 to remove the heat exchange medium in the fin heat exchanger 4 Introduce into the accumulator 9, and then close the defrost solenoid valve 12; then, switch the four-way valve 3 to achieve reverse circulation of the heat exchange medium to achieve defrosting, so that the gas and liquid from the fin heat exchanger 4
- the amount of liquid heat exchange medium in the separator 11 is greatly reduced, thereby effectively reducing the risk of suction and liquid in the single-stage screw compressor 1, thereby effectively improving the reliability of the heat pump unit.
- the present invention stores the excess heat exchange medium by setting the accumulator 9.
- the required circulation of the heat exchange medium in the system is different.
- the circulation of heat exchange medium is large, and the accumulator 9 can store the difference between the two heat exchange media, so as to effectively avoid the excessive heat exchange medium in the heating operation of the heat pump unit.
- the shell and tube heat exchanger 10 affects the heat exchange of the unit.
- the heat exchange medium in the accumulator 9 can all flow out through the bottom, so that the accumulator 9 becomes an empty tank without storing refrigerant.
- the heat exchange medium injection quantity required for the cooling operation of the heat pump unit is effectively guaranteed.
- the heat pump unit is in heating operation, because the accumulator 9 is arranged after the expansion valve 8, the excess heat exchange medium enters the accumulator 9, thereby effectively ensuring the best heat exchange effect of the shell and tube heat exchanger 10 , Thereby effectively improving the reliability of the heat pump unit.
- the present invention is also provided with an oil return system, the heat exchange medium enters the oil separator 2 after being compressed by the single-stage screw compressor 1, and the discharged gas contains a small amount of lubricating oil, and the gas passes through the oil separator 2.
- the lubricating oil is separated and returned to the single-stage screw compressor 1 through the bottom, while the gaseous heat exchange medium is discharged through the upper end of the oil separator 2, and then enters the four-way valve 3, and the separated lubricating oil passes through the first
- a filter 6 enters the single-stage screw compressor 1 through the oil return solenoid valve 14, thereby effectively reducing the risk of oil shortage in the single-stage screw compressor 1, thereby effectively improving the reliability of the unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
本发明属于换热技术领域,具体提供一种热泵机组。本发明旨在解决现有热泵机组为了能够在低环温大压比下稳定工作所采用的方式不佳的问题。为此,本发明的热泵机组包括主循环回路以及与主循环回路相连通的喷液管路,主循环回路上设置有彼此连通的压缩机、第一换热器、节流构件和第二换热器,在制热模式下,第一换热器用作蒸发器,第二换热器用作冷凝器,节流构件设置在第一换热器与第二换热器之间,喷液管路的一端与压缩机相连,喷液管路的另一端连接至第一换热器与节流构件之间,以使冷却后的换热介质能够被引入压缩机中,以便有效降低压缩机的蒸发温度,进而在保证热泵机组能够在低环温大压比下稳定工作的同时,还能够有效节省成本。
Description
本发明属于换热技术领域,具体提供一种热泵机组。
随着人们生活水平的不断提高,人们对生活环境也提出了越来越高的要求。为了维持舒适的环境温度,空调设备已经成为人们生活中必不可少的一种设备。具体地,现有大功率空调设备大多使用的是热泵机组,为了有效保证热泵机组能够在低环温大压比的条件下稳定工作,现有热泵机组通常采用以下两种方式:一种方式是为热泵机组配置双级压缩系统,即采用低压级压缩机和高压级压缩机两台压缩机配合工作以保证压缩功能,但是,这种方式中需要配合使用的零部件较多,因而其具有成本较高、控制复杂以及可靠性差的问题;另一种方式则是为热泵机组配置单机双级压缩机,即在同一个压缩机中进行两级压缩以保证压缩功能,但是,由于现有单机双级压缩机的内部结构十分复杂,因而其又会导致热泵机组产生占用空间大、成本高以及故障率高等缺点。
相应地,本领域需要一种新的热泵机组来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有热泵机组为了能够在低环温大压比的条件下稳定工作所采用的方式不佳的问题,本发明提供了一种新的热泵机组,该热泵机组包括主循环回路以及与所述主循环回路相连通的喷液管路;其中,所述主循环回路上设置有彼此连通的压缩机、第一换热器、节流构件和第二换热器,在制热模式下,所述第一换热器用作蒸发器,所述第二换热器用作冷凝器,所述节流构件设置在所述第一换热器与所述第二换热器之间,所述喷液管路的一端与所述压缩机相连,所述喷液管路的另一端连接至所述第一换热器与所述节流构件之间,以使冷却后的换热介质能够被引入所述压缩机中。
在上述热泵机组的优选技术方案中,所述喷液管路包括第一喷液管路,所述压缩机的靠近所述压缩机的电机的一端设置有第一连接孔,所述第一喷液管路通过所述第一连接孔与所述压缩机相连。
在上述热泵机组的优选技术方案中,所述第一喷液管路上设置有第一电子膨胀阀。
在上述热泵机组的优选技术方案中,所述喷液管路包括第二喷液管路,所述压缩机的中部设置有第二连接孔,所述第二喷液管路通过所述第二连接孔与所述压缩机相连。
在上述热泵机组的优选技术方案中,所述第二喷液管路上设置有第二电子膨胀阀。
在上述热泵机组的优选技术方案中,所述喷液管路包括第一喷液管路和第二喷液管路,所述压缩机的靠近所述压缩机的电机的一端设置有第一连接孔,所述第一喷液管路通过所述第一连接孔与所述压缩机相连;所述压缩机的中部设置有第二连接孔,所述第二喷液管路通过所述第二连接孔与所述压缩机相连。
在上述热泵机组的优选技术方案中,所述第一喷液管路上设置有第一电子膨胀阀,所述第二喷液管路上设置有第二电子膨胀阀。
在上述热泵机组的优选技术方案中,所述压缩机为单级螺杆压缩机。
在上述热泵机组的优选技术方案中,所述第一换热器为翅片式换热器。
在上述热泵机组的优选技术方案中,所述第二换热器为壳管式换热器。
本领域技术人员能够理解的是,在本发明的优选技术方案中,本发明的热泵机组包括主循环回路以及与所述主循环回路相连通的喷液管路;其中,所述主循环回路上设置有彼此连通的压缩机、第一换热器、节流构件和第二换热器,在制热模式下,所述第一换热器用作蒸发器,所述第二换热器用作冷凝器,所述节流构件设置在所述第一换热器与所述第二换热器之间,所述喷液管路的一端与所述压缩机相连,所述喷液管路的另一端连接至所述第一换热器与所述节流构件之间,以使冷却后的换热介质能够在需要时被引入所述压缩机中,从而有效降低所 述压缩机的电机温度和排气温度,以便所述热泵机组能够在低环温大压比下稳定工作,同时使得所述压缩机的蒸发温度的范围得以扩大,以使所述热泵机组所适用的环境温度范围得以扩大,进而在有效保证所述热泵机组能够在低环温大压比的条件下稳定工作的同时,还能够有效节省所述热泵机组的生产成本。
进一步地,所述喷液管路包括第一喷液管路,所述压缩机的靠近所述压缩机的电机的一端设置有第一连接孔,所述第一喷液管路通过所述第一连接孔与所述压缩机相连,以使所述热泵机组能够通过所述第一喷液管路将冷却后的换热介质喷射到所述压缩机的电机附近,由于所述压缩机的电机是压缩机所有零件中最易发热的,因此,所述热泵机组通过向所述电机喷射冷却后的换热介质能够大幅降低所述压缩机的电机温度,以使所述热泵机组能够在更低环温下稳定工作。此外,所述第一喷液管路上设置有第一电子膨胀阀,所述热泵机组能够通过控制所述第一电子膨胀阀的开度来控制所述第一喷液管路的通断情况以及换热介质在所述第一喷液管路中的流动情况,从而精准掌控所述第一喷液管路的喷液量,进而有效提升所述热泵机组的智能化程度。
进一步地,所述喷液管路包括第二喷液管路,所述压缩机的中部设置有第二连接孔,所述第二喷液管路通过所述第二连接孔与所述压缩机相连,以使所述热泵机组能够通过所述第二喷液管路将冷却后的换热介质喷射到所述压缩机的工作腔中,以便有效降低所述压缩机的排气温度,以使所述热泵机组能够在更低环温下稳定工作。此外,所述第二喷液管路上设置有第二电子膨胀阀,所述热泵机组能够通过控制所述第二电子膨胀阀的开度来控制所述第二喷液管路的通断情况以及换热介质在所述第二喷液管路中的流动情况,从而精准掌控所述第二喷液管路的喷液量,进而有效提升所述热泵机组的智能化程度。
图1是本发明的热泵机组的优选实施例的整体结构示意图。
附图说明:1、单级螺杆压缩机;2、油分离器;3、四通阀;4、翅片式换热器;5、第一单向阀;6、第一过滤器;7、经济器;8、膨胀阀;9、储液器;10、壳管式换热器;11、气液分离器;12、除霜电磁 阀;13、经济器节流阀;14、回油电磁阀;15、第一喷液电子膨胀阀;16、第二喷液电子膨胀阀;17、第二单向阀;18、第三单向阀;19、第四单向阀;20、第五单向阀;21、第二过滤器;22、风机。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“前”、“后”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”等应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
参阅图1,该图是本发明的热泵机组的优选实施例的整体结构示意图。如图1所示,本发明的热泵机组包括主循环回路以及与所述主循环回路相连通的第一喷液管路和第二喷液管路,所述主循环回路上设置有彼此连通的单级螺杆压缩机1、翅片式换热器4、膨胀阀8和壳管式换热器10,所述第一喷液管路和所述第二喷液管路均能够将冷却后的换热介质引入单级螺杆压缩机1中,以便降低单级螺杆压缩机1的蒸发温度的运行范围。本领域技术人员能够理解的是,虽然本优选实施例中所述的压缩机为单级螺杆压缩机、第一换热器为翅片式换热器以及第二换热器为壳管式换热器,但是,技术人员显然可以根据实际使用需求自行设定所述压缩机、所述第一换热器和所述第二换热器的具体类型,并 且技术人员还可以根据实际使用需求自行设定所述热泵机组的具体结构。同时,虽然本优选实施例中所述的节流构件为膨胀阀,但是,技术人员显然还可以根据实际使用需求自行设定所述节流构件的类型。此外,虽然本优选实施例中所述的热泵机组同时设置有第一喷液管路和第二喷液管路;但是,所述热泵机组显然还可以仅设置有所述第一喷液管路或所述第二喷液管路,并且本发明也不对所述第一喷液管路和所述第二喷液管路的具体结构作任何限制,只要所述第一喷液管路和所述第二喷液管路均能够将冷却后的换热介质引入单级螺杆压缩机1中即可。
进一步地,单级螺杆压缩机1的靠近单级螺杆压缩机1的电机的一端设置有第一连接孔(图中未示出),所述第一喷液管路通过所述第一连接孔与单级螺杆压缩机1的内部相连通,以便冷却后的换热介质能够被引入单级螺杆压缩机1中。同时,所述第一喷液管路上设置有第一喷液电子膨胀阀15,所述热泵机组能够控制第一喷液电子膨胀阀15的开度,以便所述热泵机组能够根据不同工况下单级螺杆压缩机1需要的喷液量来按需喷液,例如,在低环温大压比的条件下就增大第一喷液电子膨胀阀15的开度,以使单级螺杆压缩机1的蒸发温度能够被降低至﹣40℃附近,进而使得所述热泵机组在﹣30℃左右的超低温环境下依然能够稳定工作。需要说明的是,虽然本优选实施例中所述的第一喷液管路的右端连接至膨胀阀8与经济器节流阀13之间,但是,所述第一喷液管路的右端显然还可以连接至其他位置,只要该位置在翅片式换热器4与膨胀阀8之间,以使所述热泵机组能够通过所述第一喷液管路将冷却后的换热介质引入单级螺杆压缩机1中即可。
更进一步地,在使用所述第一喷液管路来降低单级螺杆压缩机1的蒸发温度的同时,所述热泵机组还能够配合使用所述第二喷液管路来进一步降低单级螺杆压缩机1的蒸发温度;具体地,单级螺杆压缩机1的中部设置有第二连接孔(图中未示出),所述第二喷液管路通过所述第二连接孔与单级螺杆压缩机1的内部相连通,以便冷却后的换热介质能够被引入单级螺杆压缩机1中。同时,所述第二喷液管路上设置有第二喷液电子膨胀阀16,所述热泵机组能够控制第二喷液电子膨胀阀16的开度,以便所述热泵机组能够根据不同工况下单级螺杆压缩机1需要的喷液量来按需喷液,例如,在低环温大压比的条件下就增大第二喷 液电子膨胀阀16的开度,以使单级螺杆压缩机1的蒸发温度能够被降低至﹣40℃附近,进而使得所述热泵机组在﹣30℃左右的超低温环境下依然能够稳定工作。需要说明的是,虽然本优选实施例中所述的第二喷液管路的右端连接至膨胀阀8与经济器节流阀13之间,但是,所述第二喷液管路的右端显然还可以连接至其他位置,只要该位置在翅片式换热器4与膨胀阀8之间,以使所述热泵机组能够通过所述第二喷液管路将冷却后的换热介质引入单级螺杆压缩机1中即可。
本发明的热泵机组采用双级喷液手段,并且通过在喷液管路上设置电子膨胀阀来精确控制喷液管路的喷液量,以便有效保证喷液管路能够按需喷液,从而有效避免喷液管路的喷液量过大而容易导致机组跑油或者喷液量过小而容易导致机组高温预警等问题,进而有效保证所述热泵机组能够在低环温大压比的工况下稳定运行,以便最大程度地提升所述热泵机组的可靠性。此外,还需要说明的是,本发明不对所述热泵机组的运行方式作任何限制,技术人员可以根据实际使用需求自行设定所述热泵机组的运行方式,只要所述热泵机组的结构与本发明相同即属于本发明的保护范围。作为一种优选控制方式,所述热泵机组能够通过检测单级螺杆压缩机1的排气温度或电机温度等来控制各个喷液管路的喷液量;当单级螺杆压缩机1的排气温度或电机温度高于预设值时,控制所述喷液电子膨胀阀的开度大小以控制单级螺杆压缩机1的排气温度和电机温度,以便有效保证所述热泵机组能够按需喷液,进而有效保证所述热泵机组的运行范围。
进一步地,对于上述优选实施例中所述的热泵机组而言,其运行制冷模式时,所述热泵机组中的换热介质的循环流程为:单级螺杆压缩机1→油分离器2→四通阀3→翅片式换热器4→第五单向阀20→第二过滤器21→经济器7→膨胀阀8→第二单向阀17→储液器9→壳管式换热器10→四通阀3→气液分离器11→单级螺杆压缩机1。在所述热泵机组运行制冷模式时,翅片式换热器4用作冷凝器,壳管式换热器10用作蒸发器,所述热泵机组中的换热介质通过单级螺杆压缩机1变为高压气体,高压气体经过油分离器2将润滑油分离后再经过四通阀3进入翅片式换热器4中,换热介质在翅片式换热器4中将热量释放到空气中,其中,风机22能够加快换热速度;接着,换热介质流经第五单向阀20和 第二过滤器21再经过经济器7实现过冷,再通过膨胀阀8节流后经过储液器9进入壳管式换热器10,在壳管式换热器10中换热介质能够同载冷剂进行热交换,将冷量传递到载冷剂中,不断地进行循环制冷,载冷剂被冷却后进入室内,最后通过室内盘管给室内降温。
进一步地,对于上述优选实施例中所述的热泵机组而言,其运行制热模式时,所述热泵机组中的换热介质的循环流程为:单级螺杆压缩机1→油分离器2→四通阀3→壳管式换热器10→储液器9→第四单向阀19→第二过滤器21→经济器7→膨胀阀8→第三单向阀18→翅片式换热器4→四通阀3→气液分离器11→单级螺杆压缩机1。在所述热泵机组运行制热模式时,翅片式换热器4用作蒸发器,壳管式换热器10用作冷凝器,所述热泵机组中的换热介质通过单级螺杆压缩机1变为高压气体,高压气体经过油分离器2将润滑油分离后再经过四通阀3进入壳管式换热器10中,换热介质在壳管式换热器10中将热量传递到载冷剂中,接着,换热介质经过储液器9流经第四单向阀19和第二过滤器21再经过经济器7实现过冷,再通过膨胀阀8节流后进入翅片式换热器4,在翅片式换热器4中制冷剂从低温环境中吸收热量,不断的循环制热,最后载冷剂被加热后进入室内,通过室内盘管给室内升温。
进一步地,对于上述优选实施例中所述的热泵机组而言,其运行除霜模式时,所述热泵机组能够开启除霜电磁阀12,以便将翅片式换热器4中的换热介质引入储液器9中,然后再关闭除霜电磁阀12;接着,再切换四通阀3,以实现换热介质逆循环来实现除霜,以使从翅片式换热器4进入气液分离器11的液态换热介质量大大减少,从而有效降低单级螺杆压缩机1产生吸气带液的风险,进而有效提升所述热泵机组的可靠性。
进一步地,本发明通过设置储液器9来储存多余的换热介质,由于所述热泵机组运行制冷模式和运行制热模式时系统中的所需要使用的换热介质循环量不同,其中,所述热泵机组运行制冷模式时的换热介质循环量较多,储液器9可以储存两者之间换热介质的差量,从而有效避免所述热泵机组制热运行时,过量换热介质处于壳管式换热器10中而影响机组换热。在所述热泵机组制冷运行时,由于储液器9设置在膨胀阀8之后,储液器9内的换热介质能够通过底部全部流出, 以使储液器9成为空罐而不存储冷媒,从而有效保证所述热泵机组制冷运行时所需的换热介质注量。当所述热泵机组制热运行时,由于储液器9设置在膨胀阀8之后,多余的换热介质进入储液器9中,从而有效保证壳管式换热器10的换热效果最佳,进而有效提高所述热泵机组的可靠性。
进一步地,本发明还设置有回油系统,换热介质在经过单级螺杆压缩机1压缩后进入油分离器2,其排出的气体中带有少量润滑油,而气体通过油分离器2后,润滑油被分离出来并通过底部回流至单级螺杆压缩机1中,而气态换热介质则通过油分离器2的上端排出,接着进入四通阀3中,被分离出的润滑油经过第一过滤器6,再通过回油电磁阀14进入单级螺杆压缩机1中,从而有效减小单级螺杆压缩机1缺油的风险,进而有效提升机组可靠性。
至此,已经结合附图描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
Claims (10)
- 一种热泵机组,其特征在于,所述热泵机组包括主循环回路以及与所述主循环回路相连通的喷液管路;其中,所述主循环回路上设置有彼此连通的压缩机、第一换热器、节流构件和第二换热器,在制热模式下,所述第一换热器用作蒸发器,所述第二换热器用作冷凝器,所述节流构件设置在所述第一换热器与所述第二换热器之间,所述喷液管路的一端与所述压缩机相连,所述喷液管路的另一端连接至所述第一换热器与所述节流构件之间,以使冷却后的换热介质能够被引入所述压缩机中。
- 根据权利要求1所述的热泵机组,其特征在于,所述喷液管路包括第一喷液管路,所述压缩机的靠近所述压缩机的电机的一端设置有第一连接孔,所述第一喷液管路通过所述第一连接孔与所述压缩机相连。
- 根据权利要求2所述的热泵机组,其特征在于,所述第一喷液管路上设置有第一电子膨胀阀。
- 根据权利要求1所述的热泵机组,其特征在于,所述喷液管路包括第二喷液管路,所述压缩机的中部设置有第二连接孔,所述第二喷液管路通过所述第二连接孔与所述压缩机相连。
- 根据权利要求4所述的热泵机组,其特征在于,所述第二喷液管路上设置有第二电子膨胀阀。
- 根据权利要求1所述的热泵机组,其特征在于,所述喷液管路包 括第一喷液管路和第二喷液管路,所述压缩机的靠近所述压缩机的电机的一端设置有第一连接孔,所述第一喷液管路通过所述第一连接孔与所述压缩机相连;所述压缩机的中部设置有第二连接孔,所述第二喷液管路通过所述第二连接孔与所述压缩机相连。
- 根据权利要求6所述的热泵机组,其特征在于,所述第一喷液管路上设置有第一电子膨胀阀,所述第二喷液管路上设置有第二电子膨胀阀。
- 根据权利要求1至7中任一项所述的热泵机组,其特征在于,所述压缩机为单级螺杆压缩机。
- 根据权利要求1至7中任一项所述的热泵机组,其特征在于,所述第一换热器为翅片式换热器。
- 根据权利要求1至7中任一项所述的热泵机组,其特征在于,所述第二换热器为壳管式换热器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910636724.8A CN112229095A (zh) | 2019-07-15 | 2019-07-15 | 热泵机组 |
CN201910636724.8 | 2019-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021008331A1 true WO2021008331A1 (zh) | 2021-01-21 |
Family
ID=74111142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/098504 WO2021008331A1 (zh) | 2019-07-15 | 2020-06-28 | 热泵机组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112229095A (zh) |
WO (1) | WO2021008331A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418316A (zh) * | 2021-06-08 | 2021-09-21 | 瀚润联合高科技发展(北京)有限公司 | 一种引射增焓水冷却风冷热泵模块机组 |
CN114353384A (zh) * | 2021-12-18 | 2022-04-15 | 青岛海尔空调电子有限公司 | 空气源热泵机组及其控制方法和控制装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202304098U (zh) * | 2011-11-10 | 2012-07-04 | 北京永源热泵有限责任公司 | 超高温水源热泵机组 |
CN203405023U (zh) * | 2013-06-13 | 2014-01-22 | 湖南天地人空调环保工程有限公司 | 一种内切换水源热泵空调机组 |
CN103557633A (zh) * | 2013-11-20 | 2014-02-05 | 四川双亿实业有限公司 | 一种空气源低温三联供热泵热水机组及其实现方法 |
CN103615836A (zh) * | 2013-11-30 | 2014-03-05 | 金国达科技(湖南)有限公司 | 一种螺杆式全热回收风冷热泵空调机组 |
CN205026783U (zh) * | 2015-09-24 | 2016-02-10 | 无锡同方人工环境有限公司 | 一种强热型暖气片供热空气源热泵系统 |
KR101715863B1 (ko) * | 2016-03-07 | 2017-03-14 | 우종걸 | 저온장치에서의 제상시스템 |
CN206330315U (zh) * | 2016-11-22 | 2017-07-14 | 北京永源热泵有限责任公司 | 降膜蓄能热泵机组 |
CN107477916A (zh) * | 2017-08-02 | 2017-12-15 | 珠海格力电器股份有限公司 | 热泵系统及其控制方法 |
CN207081247U (zh) * | 2017-08-02 | 2018-03-09 | 珠海格力电器股份有限公司 | 热泵系统 |
CN108106043A (zh) * | 2017-12-14 | 2018-06-01 | 山东源能源科技开发有限公司 | 一种水源热泵系统 |
CN207831739U (zh) * | 2018-01-31 | 2018-09-07 | 韩军 | 一种用于降低制冷与热泵机组中压缩机排气温度的装置 |
CN210772875U (zh) * | 2019-07-15 | 2020-06-16 | 青岛海尔空调电子有限公司 | 热泵机组 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2360440A1 (de) * | 2010-02-12 | 2011-08-24 | Frigotech Uwe Kolschen, Ideen + Systeme | Wärmepumpe |
CN201757541U (zh) * | 2010-06-25 | 2011-03-09 | 广东芬尼克兹节能设备有限公司 | 冷藏热泵机组 |
CN104344618B (zh) * | 2013-07-30 | 2017-02-08 | 广东美的暖通设备有限公司 | 智能除霜空调系统及其控制方法 |
CN104879940A (zh) * | 2015-05-14 | 2015-09-02 | 珠海格力电器股份有限公司 | 空调系统及其控制方法 |
CN107906777A (zh) * | 2017-10-24 | 2018-04-13 | 青岛海尔空调电子有限公司 | 热泵机组 |
-
2019
- 2019-07-15 CN CN201910636724.8A patent/CN112229095A/zh active Pending
-
2020
- 2020-06-28 WO PCT/CN2020/098504 patent/WO2021008331A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202304098U (zh) * | 2011-11-10 | 2012-07-04 | 北京永源热泵有限责任公司 | 超高温水源热泵机组 |
CN203405023U (zh) * | 2013-06-13 | 2014-01-22 | 湖南天地人空调环保工程有限公司 | 一种内切换水源热泵空调机组 |
CN103557633A (zh) * | 2013-11-20 | 2014-02-05 | 四川双亿实业有限公司 | 一种空气源低温三联供热泵热水机组及其实现方法 |
CN103615836A (zh) * | 2013-11-30 | 2014-03-05 | 金国达科技(湖南)有限公司 | 一种螺杆式全热回收风冷热泵空调机组 |
CN205026783U (zh) * | 2015-09-24 | 2016-02-10 | 无锡同方人工环境有限公司 | 一种强热型暖气片供热空气源热泵系统 |
KR101715863B1 (ko) * | 2016-03-07 | 2017-03-14 | 우종걸 | 저온장치에서의 제상시스템 |
CN206330315U (zh) * | 2016-11-22 | 2017-07-14 | 北京永源热泵有限责任公司 | 降膜蓄能热泵机组 |
CN107477916A (zh) * | 2017-08-02 | 2017-12-15 | 珠海格力电器股份有限公司 | 热泵系统及其控制方法 |
CN207081247U (zh) * | 2017-08-02 | 2018-03-09 | 珠海格力电器股份有限公司 | 热泵系统 |
CN108106043A (zh) * | 2017-12-14 | 2018-06-01 | 山东源能源科技开发有限公司 | 一种水源热泵系统 |
CN207831739U (zh) * | 2018-01-31 | 2018-09-07 | 韩军 | 一种用于降低制冷与热泵机组中压缩机排气温度的装置 |
CN210772875U (zh) * | 2019-07-15 | 2020-06-16 | 青岛海尔空调电子有限公司 | 热泵机组 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418316A (zh) * | 2021-06-08 | 2021-09-21 | 瀚润联合高科技发展(北京)有限公司 | 一种引射增焓水冷却风冷热泵模块机组 |
CN113418316B (zh) * | 2021-06-08 | 2022-06-21 | 瀚润联合高科技发展(北京)有限公司 | 一种引射增焓水冷却风冷热泵模块机组 |
CN114353384A (zh) * | 2021-12-18 | 2022-04-15 | 青岛海尔空调电子有限公司 | 空气源热泵机组及其控制方法和控制装置 |
CN114353384B (zh) * | 2021-12-18 | 2023-10-20 | 青岛海尔空调电子有限公司 | 空气源热泵机组及其控制方法和控制装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112229095A (zh) | 2021-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102042724A (zh) | 冷媒控制部件、空调制冷系统及冷媒循环控制方法 | |
CN106403373A (zh) | 热泵系统、控制方法及制冷机组 | |
WO2021008331A1 (zh) | 热泵机组 | |
CN208108560U (zh) | 一种氟泵的管路系统 | |
CN204063660U (zh) | 三级压缩复叠循环热泵系统 | |
CN212511506U (zh) | 一种空调室外机和空调设备 | |
CN106482407B (zh) | 一种防止空调压缩机液击的空调系统及其控制方法 | |
CN110926046B (zh) | 一种制冷装置 | |
WO2021057137A1 (zh) | 制冷系统及冷库 | |
CN210772875U (zh) | 热泵机组 | |
CN115143658B (zh) | 一种双工况冷水机组及其控制方法 | |
CN207570149U (zh) | 间接制冷系统 | |
CN111520927B (zh) | 一种复叠制冷系统及叠加复叠制冷系统 | |
CN109442778B (zh) | 空调系统 | |
CN221825648U (zh) | 气液分离器及空调系统 | |
CN207850719U (zh) | 一种空调机组联调工装系统 | |
CN218096666U (zh) | 用于制冷设备的复叠式制冷系统和制冷设备 | |
CN217876540U (zh) | 一种热泵一体机补气系统 | |
CN220489439U (zh) | 一种变频风冷螺杆热泵机组组件 | |
CN112577260B (zh) | 船舶天然气再液化系统 | |
CN216924803U (zh) | 一种制冷系统 | |
CN221172675U (zh) | 一种用于冷库制冷的冷却系统 | |
CN221055345U (zh) | 制冷系统及冷藏设备 | |
CN216844955U (zh) | 风冷模块机组 | |
CN117404823B (zh) | 一种高落差直膨机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20840524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20840524 Country of ref document: EP Kind code of ref document: A1 |