Nothing Special   »   [go: up one dir, main page]

WO2021001953A1 - 熱交換器及び冷凍サイクル装置 - Google Patents

熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2021001953A1
WO2021001953A1 PCT/JP2019/026420 JP2019026420W WO2021001953A1 WO 2021001953 A1 WO2021001953 A1 WO 2021001953A1 JP 2019026420 W JP2019026420 W JP 2019026420W WO 2021001953 A1 WO2021001953 A1 WO 2021001953A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
fin
transfer tube
heat exchange
Prior art date
Application number
PCT/JP2019/026420
Other languages
English (en)
French (fr)
Inventor
暁 八柳
前田 剛志
石橋 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19936201.3A priority Critical patent/EP3995775B1/en
Priority to PCT/JP2019/026420 priority patent/WO2021001953A1/ja
Priority to CN201980097972.8A priority patent/CN114041037B/zh
Priority to JP2021529622A priority patent/JP7166458B2/ja
Publication of WO2021001953A1 publication Critical patent/WO2021001953A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle apparatus provided with the heat exchanger, and particularly to a structure of fins connected to a heat transfer tube.
  • a heat exchange module having fin-shaped fins formed at the end in the ventilation direction of a heat transfer tube has been provided for the purpose of achieving both heat transfer performance under dry and wet conditions of the heat exchanger and defrosting property.
  • a heat exchanger in which the heat exchange modules are arranged at intervals from each other is known (see, for example, Patent Document 1).
  • such a heat exchanger By arranging such a heat exchanger so that the direction of the pipe axis coincides with the direction of gravity, there is no resistor that hinders the sliding of condensed water or frost-melted water, so drainage is fast. That is, such a heat exchanger can reduce the liquid film thickness under wet conditions, and can quickly discharge the frost-melted water in the defrosting operation. Further, in such a heat exchanger, the heat transfer tube diameter is reduced and the heat exchange modules are arranged at high density, or the contact area between the refrigerant and the heat transfer tube is expanded by forming the inside into a multi-hole structure. The heat transfer performance can be improved. Therefore, such a heat exchanger can achieve both heat transfer performance under dry and wet conditions and defrosting property.
  • the dead water area generated downstream of the heat transfer tube is arranged so that the fins on the downstream side cover the dead water area.
  • the flow velocity is low and the heat transfer coefficient between the fins and air is low.
  • the present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a heat exchanger and a refrigeration cycle device capable of improving the heat transfer coefficient between fins and air.
  • the heat exchanger according to the present invention has a plurality of heat exchange modules arranged in parallel in the first direction at intervals from each other, and a plurality of end portions of the plurality of heat exchange modules in the second direction intersecting the first direction.
  • a header connected to a heat exchange module is provided, and a plurality of heat exchange modules include a heat transfer tube extending in a second direction and a heat transfer tube in a third direction intersecting a plane parallel to the first direction and the second direction.
  • a fin extending from a side edge portion in a third direction is provided, and the fin is formed with a plurality of convex portions projecting in the first direction on the surface, and the plurality of convex portions are formed in the second direction and the third direction, respectively. It is formed so as to form a surface having an inclination angle with respect to the relative.
  • the refrigeration cycle apparatus according to the present invention is provided with the heat exchanger according to the present invention.
  • the heat exchanger is formed so that a plurality of convex portions form a surface having an inclination angle with respect to the second direction and the third direction, respectively.
  • the air flow is agitated by the collision of the air flow with the surfaces inclined with respect to the second direction and the third direction. Therefore, in the heat exchanger, air also flows into the surface of the fins on the downstream side of the heat transfer tube, and the flow velocity of air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • FIG. 5 is a cross-sectional view schematically showing a cross section taken along line AA of the heat exchange module shown in FIG.
  • FIG. 5 is an enlarged view of a heat exchange module constituting the heat exchanger according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a cross section taken along line BB of the fin shown in FIG. FIG.
  • FIG. 5 is a cross-sectional view schematically showing a cross section taken along line CC of the fin shown in FIG. It is an enlarged view of the fin of the heat exchange module shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the DD line cross-sectional position of the fin shown in FIG. 8 is a cross-sectional view schematically showing the configuration of the EE line cross section of the fins shown in FIGS. 8 and 9.
  • FIG. 5 is an enlarged view of a heat exchange module of a modified example constituting the heat exchanger according to the first embodiment. It is an enlarged view of the heat exchange module which constitutes the heat exchanger which concerns on Embodiment 2.
  • FIG. 5 is an enlarged view of a heat exchange module of a modified example constituting the heat exchanger according to the first embodiment. It is an enlarged view of the heat exchange module which constitutes the heat exchanger which concerns on Embodiment 2.
  • FIG. 5 is a cross-sectional view schematically showing a cross section of fins of a heat exchange module constituting the heat exchanger according to the fifth embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a cross section of fins of a heat exchange module constituting the heat exchanger according to the sixth embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a cross section of a heat exchange module fin of another example constituting the heat exchanger according to the sixth embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a cross section of fins of a heat exchange module constituting the heat exchanger according to the seventh embodiment.
  • FIG. 5 is an enlarged view of a heat exchange module constituting the heat exchanger according to the eighth embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a cross section taken along line FF of the fin shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a GG line cross section of the fin shown in FIG.
  • FIG. 5 is an enlarged view of a heat exchange module constituting the heat exchanger according to the ninth embodiment.
  • FIG. 6 is a cross-sectional view schematically showing a cross section of the fin shown in FIG. 22 along the line HH.
  • FIG. 2 is a cross-sectional view schematically showing a cross section of the fin shown in FIG. 22 along the line I-I.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration of a refrigeration cycle device 100 provided with a heat exchanger 50 according to the first embodiment.
  • the arrow indicated by the dotted line indicates the direction in which the refrigerant flows in the refrigerant circuit 110 during the cooling operation
  • the arrow indicated by the solid line indicates the direction in which the refrigerant flows during the heating operation. ..
  • the refrigeration cycle apparatus 100 provided with the heat exchanger 50 will be described with reference to FIG.
  • the air conditioner is illustrated as the refrigerating cycle device 100, but the refrigerating cycle device 100 is, for example, refrigerating a refrigerator or a freezer, a vending machine, an air conditioner, a refrigerating device, a water heater, or the like. Used for applications or air conditioning applications.
  • the illustrated refrigerant circuit 110 is an example, and the configuration of circuit elements and the like is not limited to the contents described in the embodiment, and can be appropriately changed within the scope of the technique according to the embodiment. ..
  • the refrigerating cycle device 100 has a refrigerant circuit 110 in which a compressor 101, a flow path switching device 102, an indoor heat exchanger 103, a decompression device 104, and an outdoor heat exchanger 105 are cyclically connected via a refrigerant pipe. ..
  • a heat exchanger 50 which will be described later, is used for at least one of the outdoor heat exchanger 105 and the indoor heat exchanger 103.
  • the refrigeration cycle device 100 has an outdoor unit 106 and an indoor unit 107.
  • the outdoor unit 106 includes a compressor 101, a flow path switching device 102, an outdoor heat exchanger 105 and a decompression device 104, and an outdoor blower 108 that supplies outdoor air to the outdoor heat exchanger 105.
  • the indoor unit 107 includes an indoor heat exchanger 103 and an indoor blower 109 that supplies air to the indoor heat exchanger 103.
  • the outdoor unit 106 and the indoor unit 107 are connected to each other via two extension pipes 111 and 112 which are a part of the refrigerant pipe.
  • the compressor 101 is a fluid machine that compresses and discharges the sucked refrigerant.
  • the flow path switching device 102 is, for example, a four-way valve, and is a device that switches the flow path of the refrigerant between the cooling operation and the heating operation by controlling the control device (not shown).
  • the indoor heat exchanger 103 is a heat exchanger that exchanges heat between the refrigerant circulating inside and the indoor air supplied by the indoor blower 109.
  • the indoor heat exchanger 103 functions as a condenser during the heating operation and as an evaporator during the cooling operation.
  • the pressure reducing device 104 is, for example, an expansion valve, which is a device for reducing the pressure of the refrigerant.
  • an electronic expansion valve whose opening degree is adjusted by the control of the control device can be used.
  • the outdoor heat exchanger 105 is a heat exchanger that exchanges heat between the refrigerant circulating inside and the air supplied by the outdoor blower 108.
  • the outdoor heat exchanger 105 functions as an evaporator during the heating operation and as a condenser during the cooling operation.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 105 and evaporates by heat exchange with the air supplied by the outdoor blower 108.
  • the evaporated refrigerant becomes a low-pressure gas state and is sucked into the compressor 101.
  • the refrigerant flowing through the refrigerant circuit 110 flows in the opposite direction to that during the heating operation. That is, during the cooling operation of the refrigeration cycle device 100, the high-pressure and high-temperature gas-state refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 105 via the flow path switching device 102 and is supplied by the outdoor blower 108. It exchanges heat with the air and condenses.
  • the condensed refrigerant is in a high-pressure liquid state, flows out of the outdoor heat exchanger 105, and is in a low-pressure gas-liquid two-phase state by the vacuum distillation device 104.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 103 and evaporates by heat exchange with the air supplied by the indoor blower 109.
  • the evaporated refrigerant becomes a low-pressure gas state and is sucked into the compressor 101.
  • FIG. 2 is a perspective view schematically showing the configuration of the heat exchanger 50 according to the first embodiment.
  • FIG. 3 is a conceptual diagram of the heat exchanger 50 according to the first embodiment as viewed from the side.
  • the heat exchanger 50 according to the first embodiment will be described with reference to FIGS. 2 to 3.
  • the X-axis direction shown in the figure indicates the first direction
  • the Y-axis direction indicates the second direction
  • the Z-axis direction indicates the third direction.
  • the heat exchanger 50 has a plurality of headers 70 and a plurality of heat exchange modules 10 connected between the plurality of headers 70.
  • the header 70 is connected to the ends of the plurality of heat exchange modules 10 in the stretching direction.
  • the header 70 is formed so as to extend along the arrangement direction of the plurality of heat exchange modules 10.
  • the header 70 functions as a fluid distribution mechanism in the heat exchanger 50 that distributes the refrigerant flowing into the heat exchanger 50 to the plurality of heat exchange modules 10.
  • the header 70 also functions as a fluid merging mechanism in the heat exchanger 50, in which the refrigerant flowing out of the heat exchanger 50 flows out of the plurality of heat exchange modules 10 and merges.
  • the header 70 has a first header 71 and a second header 72.
  • One of the first header 71 and the second header 72 functions as a fluid distribution mechanism, and the other functions as a fluid merging mechanism.
  • the first header 71 is connected to one end of each of the plurality of heat exchange modules 10 in the stretching direction
  • the second header 72 is connected to the other end of each of the plurality of heat exchange modules 10 in the stretching direction. .. That is, the first header 71 and the second header 72 are attached to both ends of the plurality of heat exchange modules 10 in the stretching direction. That is, the header 70 is connected to the plurality of heat exchange modules 10 at the ends of the plurality of heat exchange modules 10 in the second direction (Y-axis direction) intersecting the first direction (X-axis direction).
  • first header 71 and the second header 72 are attached to both ends of the heat transfer tubes 20 constituting the plurality of heat exchange modules 10 in the extending direction.
  • the first header 71 and the second header 72 are connected to the heat transfer tube 20 of the heat exchange module 10 so that the inside of the header 70 and the inside of the conduit of the heat transfer tube 20 communicate with each other.
  • the header 70 shown in FIGS. 2 and 3 is formed in a rectangular parallelepiped shape so as to form a longitudinal direction along the arrangement direction of the plurality of heat exchange modules 10.
  • the shape of the header 70 is not limited to the rectangular parallelepiped shape, and may be another shape such as a cylindrical shape.
  • the first header 71 is formed with an inflow port (not shown) for the refrigerant flowing into the first header 71, or an outflow port (not shown) for the refrigerant flowing out from the first header 71.
  • the second header 72 is formed with an inlet (not shown) of the refrigerant flowing into the second header 72, or an outlet of the refrigerant flowing out of the second header 72 (not shown). Is formed.
  • FIG. 4 is a cross-sectional view schematically showing a cross section taken along line AA of the heat exchange module 10 shown in FIG.
  • the heat exchange module 10 exchanges heat between the air flowing along the heat exchange module 10 and the refrigerant flowing in the heat exchange module 10.
  • the plurality of heat exchange modules 10 are arranged in parallel in the first direction (X-axis direction) at intervals from each other.
  • the plurality of heat exchange modules 10 are arranged at predetermined intervals P along the longitudinal direction (X-axis direction) of the header 70.
  • the heat exchange module 10 has a heat transfer tube 20 extending in the second direction (Y-axis direction).
  • the heat exchange module 10 has a first side edge portion of a heat transfer tube 20 in a third direction (Z-axis direction) that intersects a plane parallel to the first direction (X-axis direction) and the second direction (Y-axis direction). It has fins 30 extending in a third direction (Z-axis direction) from 20a and a second side edge portion 20b.
  • Each of the plurality of heat transfer tubes 20 allows the refrigerant to flow inside.
  • Each of the plurality of heat transfer tubes 20 extends between the first header 71 and the second header 72.
  • Each of the plurality of heat transfer tubes 20 is arranged at intervals from each other, and is parallel to the axial direction which is the extending direction of the header 70.
  • the plurality of heat transfer tubes 20 are arranged so as to face each other.
  • a gap serving as an air flow path is formed between two adjacent heat transfer tubes 20 among the plurality of heat transfer tubes 20.
  • the arrangement direction of the plurality of heat transfer tubes 20 which is the first direction is the horizontal direction.
  • the arrangement direction of the plurality of heat transfer tubes 20 which is the first direction is not limited to the horizontal direction, and may be a vertical direction or a direction inclined with respect to the vertical direction.
  • the extending direction of the plurality of heat transfer tubes 20 is the vertical direction.
  • the extending direction of the plurality of heat transfer tubes 20 is not limited to the vertical direction, and may be a horizontal direction or a direction inclined with respect to the vertical direction.
  • the heat transfer tubes 20 adjacent to each other among the plurality of heat transfer tubes 20 are not connected to each other by the heat transfer promoting member.
  • the heat transfer promoting member is, for example, a plate fin, a corrugated fin, or the like.
  • the heat exchanger 50 functions as an evaporator of the refrigeration cycle device 100
  • the refrigerant flows inside the heat transfer tubes 20 from one end to the other end in the extension direction of the heat transfer tubes 20.
  • the heat exchanger 50 functions as a condenser of the refrigeration cycle device 100
  • the refrigerant flows inside the heat transfer tubes 20 from the other end in the extending direction of the heat transfer tubes 20 toward one end. It flows.
  • the heat transfer tube 20 is a flat tube having a rectangular cross-sectional shape.
  • the shape of the heat transfer tube 20 is not limited, and may be, for example, a flat tube having a flat cross-sectional shape in one direction such as an oval shape.
  • the heat transfer tube 20 has a pair of first side edge portions 20a and a second side edge portion 20b, and a pair of flat surfaces 20c and flat surfaces 20d.
  • the first side edge portion 20a is formed so as to be flat between one end portion of the flat surface 20c and one end portion of the flat surface 20d.
  • the second side edge portion 20b is formed so as to be flat between the other end portion of the flat surface 20c and the other end portion of the flat surface 20d.
  • the first side edge portion 20a and the second side edge portion 20b are not limited to the shape thereof, and are, for example, convex outward between the end portion of the flat surface 20c and the end portion of the flat surface 20d. It may be formed so as to become.
  • the first side edge portion 20a is a side edge portion arranged on the windward side, that is, on the front edge side in the flow of air passing through the heat exchanger 50.
  • the second side edge portion 20b is a side edge portion arranged on the leeward side, that is, on the trailing edge side in the flow of air passing through the heat exchanger 50.
  • the direction perpendicular to the extending direction of the heat transfer tube 20 and along the flat surface 20c and the flat surface 20d may be referred to as the semimajor axis direction of the heat transfer tube 20.
  • the long axis direction of the heat transfer tube 20 is the vertical direction
  • the short axis direction is the horizontal direction.
  • the major axis direction of the heat transfer tube 20 is the third direction.
  • the heat transfer tube 20 is formed with a plurality of refrigerant passages 22 arranged between the first side edge portion 20a and the second side edge portion 20b along the long axis direction.
  • the heat transfer tube 20 is a flat perforated tube in which a plurality of refrigerant passages 22 through which the refrigerant flows are arranged in the air flow direction.
  • Each of the plurality of refrigerant passages 22 is formed so as to extend in parallel with the second direction, which is the extending direction of the heat transfer tube 20.
  • Each of the partition walls 23 between the adjacent refrigerant passages 22 is continuous to both ends in the extending direction of the heat transfer tube 20.
  • the cross-sectional shape and the number of formed refrigerant passages 22 are not limited to the illustrated embodiment, and may be formed in various shapes such as a circular shape or a triangular shape, and may be formed by one or a plurality of formed numbers. Also good.
  • the fin 30 protrudes from the end of the heat transfer tube 20 in the long axis direction.
  • the fin 30 is a plate-shaped portion provided so as to project from the first side edge portion 20a and the second side edge portion 20b and extend in the major axis direction of each of the plurality of heat transfer tubes 20.
  • the fin 30 extends in the long axis direction of the heat transfer tube 20, but is not limited to this form.
  • the fins 30 may be formed in a state of being tilted at a predetermined angle in the arrangement direction of the plurality of heat transfer tubes 20 with respect to the major axis direction.
  • the fin 30 may be formed by joining with the heat transfer tube 20, or may be integrally molded with the heat transfer tube 20.
  • each of the plurality of heat transfer tubes 20 is not connected to the heat transfer tubes 20 arranged adjacent to each other via the fins 30.
  • FIG. 5 is an enlarged view of the heat exchange module 10 constituting the heat exchanger 50 according to the first embodiment.
  • the arrow shown in FIG. 5 represents the airflow FL.
  • FIG. 5 is a perspective view of a part of the heat exchange module 10, and a part of the heat exchange module 10 is not shown.
  • the configuration of the fin 30 will be described in more detail with reference to FIG.
  • a plurality of convex portions 40 projecting in the first direction (X-axis direction) are formed on the surface of the fin 30.
  • the convex portion 40 is formed so as to project in a quadrangular pyramid shape.
  • the shape of the convex portion 40 is not limited to the shape of a quadrangular pyramid.
  • the convex portion 40 may be formed in a hemispherical shape.
  • the convex portion 40 is formed so that one surface in the first direction (X-axis direction) is projected and the other surface is recessed.
  • the convex portions 40 are formed in parallel in the second direction (Y-axis direction) and in parallel in the third direction (Z-axis direction).
  • the plurality of convex portions 40 are formed so that the ridge lines 41 are continuous in the third direction.
  • the plurality of convex portions 40 have a first convex portion 40a projecting from one surface and a second convex portion 40b projecting from the other surface in the first direction (X-axis direction).
  • the first convex portion 40a is formed in parallel in the second direction (Y-axis direction) and in parallel in the third direction (Z-axis direction).
  • the second convex portion 40b is formed in parallel in the second direction (Y-axis direction) and in parallel in the third direction (Z-axis direction).
  • the plurality of first convex portions 40a are formed so that the ridge line 41 is continuous in the third direction (Z-axis direction).
  • the plurality of second convex portions 40b are formed so that the ridge line 41 is continuous in the third direction (Z-axis direction).
  • the plurality of first convex portions 40a and the plurality of second convex portions 40b are formed alternately in a direction oblique to a second direction (Y-axis direction) and a third direction (Z-axis direction).
  • FIG. 6 is a cross-sectional view schematically showing the BB line cross section of the fin 30 shown in FIG.
  • the BB line cross section is a cross section of the fin 30 when viewed from the second direction (Y-axis direction) when the fin 30 is cut along the third direction (Z-axis direction).
  • FIG. 6 is a cross-sectional view of a part of the heat exchange module 10, and a part of the heat exchange module 10 is not shown.
  • each of the plurality of first convex portions 40a of the fins 30 is formed so as to form an inclined surface 42 having an inclination angle ⁇ with respect to the third direction (Z-axis direction).
  • the inclined surface 42 is a surface on the side of the convex portion 40 located in the protruding direction, and is an inclined surface facing upstream with respect to the flow direction of the air flow.
  • FIG. 7 is a cross-sectional view schematically showing the CC line cross section of the fin 30 shown in FIG.
  • the CC line cross section is a cross section of the fin 30 when viewed from the third direction (Z-axis direction) when the fin 30 is cut along the second direction (Y-axis direction).
  • FIG. 7 is a cross-sectional view of a part of the heat exchange module 10, and a part of the heat exchange module 10 is not shown.
  • each of the plurality of first convex portions 40a of the fins 30 is formed so as to form an inclined surface 43 having an inclination angle ⁇ with respect to the second direction (Y-axis direction).
  • FIG. 8 is an enlarged view of the fins 30 of the heat exchange module 10 shown in FIG.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the DD line cross-sectional position of the fin 30 shown in FIG.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of the EE line cross section of the fin 30 shown in FIGS. 8 and 9.
  • the arrows shown in FIGS. 8 to 9 represent the airflow FL.
  • 9 and 10 are cross-sectional views of a part of the heat exchange module 10, and a part of the heat exchange module 10 is not shown.
  • the airflow FL passes between the plurality of heat exchange modules 10. As shown in FIG.
  • the airflow FL when the airflow FL collides with the first convex portion 40a formed on the fins 30, the airflow FL does not flow linearly but flows in a vortex. More specifically, the airflow FL collides with the inclined surface 42 of the first convex portion 40a shown in FIG. 6 to form a vortex rotating in the third direction (Z-axis direction) as shown in FIG. The airflow FL forming this vortex generates a high-speed flow HL that flows at high speed toward the recessed portion HA between the first convex portions 40a. Further, the airflow FL collides with the inclined surface 43 of the first convex portion 40a shown in FIG. 7, and forms a vortex rotating in the second direction (Y-axis direction) as shown in FIG. Therefore, the first convex portion 40a of the fin 30 forms a vortex that rotates in the second direction and the third direction with respect to the air flow FL, and agitates the air flow.
  • the plurality of convex portions 40 are formed so as to form surfaces having inclination angles with respect to the second direction (Y-axis direction) and the third direction (Z-axis direction), respectively.
  • the air flow is agitated by the collision of the air flow with the surfaces inclined in the second direction (Y-axis direction) and the third direction (Z-axis direction). Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • each of the plurality of first convex portions 40a is formed in a quadrangular pyramid shape, and the ridge line 41 of the first convex portion 40a is formed so as to be continuous in the third direction (Z-axis direction). Therefore, in the heat exchanger 50, the airflow FL in which the vortex is formed tends to flow in the third direction (Z-axis direction) along the peak-shaped portion formed by the ridgeline 41 as a whole.
  • the fin 30 has a plurality of convex portions 40 on the surface. Therefore, the surface area of the fin 30 can be increased as compared with the case where the convex portion 40 is not formed. As a result, the heat exchanger 50 can increase the efficiency of heat exchange between the refrigerant and air.
  • FIG. 11 is an enlarged view of the heat exchange module 1010I of a modified example constituting the heat exchanger 50 according to the first embodiment. Note that FIG. 11 is a perspective view of a part of the heat exchange module 10I, and a part of the heat exchange module 10I is not shown. As shown in FIG. 11, the heat transfer tube 120 of the heat exchange module 10 may be a circular tube instead of the flat tube described above. The fins 30 are provided so as to extend in the radial direction of the heat transfer tube 120 which is a circular tube.
  • FIG. 12 is an enlarged view of the heat exchange module 10A constituting the heat exchanger 50 according to the second embodiment.
  • the arrow shown in FIG. 12 represents the airflow FL.
  • FIG. 13 is a perspective view of a part of the heat exchange module 10A, and the illustration of a part of the heat exchange module 10A is omitted. Further, the components having the same functions and functions as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the heat exchange module 10A constituting the heat exchanger 50 according to the second embodiment has a different fin 30 configuration from the heat exchange module 10 constituting the heat exchanger 50 according to the first embodiment. More specifically, the configuration of the convex portion 140 of the heat exchange module 10A is different from the configuration of the convex portion 40 of the heat exchange module 10. The configuration of the convex portion 140 provided on the fin 30 will be described in more detail with reference to FIG.
  • the heat exchange module 10A has fins 30 provided on both sides of the heat transfer tube 20 with the heat transfer tube 20 interposed therebetween in the third direction (Z-axis direction).
  • a plurality of convex portions 140 protruding in the first direction (X-axis direction) are formed on the surface of the fin 30.
  • the convex portion 140 is formed in a columnar shape so as to extend along the plane of the fin 30.
  • the convex portion 140 shown in FIG. 12 is formed in a pentagonal columnar shape, but the shape of the convex portion 140 is not limited to the shape.
  • the convex portion 140 may be formed in a columnar shape whose side surface extends along the plane of the fin 30, and may be formed in a semi-cylindrical shape, for example.
  • the convex portion 140 is formed in parallel in the second direction (Y-axis direction) and in parallel in the third direction (Z-axis direction).
  • the number of convex portions 140 formed in the third direction (Z-axis direction) is two. It is not limited to, and may be one or three or more. Since it is preferable that there are many starting points for forming the vortex of the airflow FL described above, it is desirable that the number of convex portions 140 formed in the third direction (Z-axis direction) is large. Similarly, in FIG.
  • each fin 30 convex portions 140 are formed in the second direction (Y-axis direction), but the number of convex portions 140 formed in the second direction (Y-axis direction) is large. , Not limited to twelve. Since it is preferable that there are many starting points for forming the vortex of the airflow FL described above, it is desirable that the number of convex portions 140 formed in the second direction (Y-axis direction) is large.
  • the direction D1 in which the longitudinal direction of the convex portion 140 extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D1 in which the longitudinal direction of the convex portion 140 extends is inclined with respect to the third direction (Z-axis direction).
  • the direction D1 in which the longitudinal direction of the plurality of convex portions 140 extends extends in the same direction.
  • the convex portion 140 is formed in a columnar shape and is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends, and is formed so as to form the inclined surface 42 and the inclined surface 43 described above.
  • the direction D1 is the direction in which the longitudinal direction of the convex portion 140 extends, but the direction D1 may be the direction in which the ridge line formed by the top of the convex portion 140 extends.
  • each of the plurality of convex portions 140 is formed so as to form a surface having an inclination angle with respect to the third direction (Z-axis direction).
  • the air flow is agitated by the collision of the air flow with the surfaces inclined in the second direction (Y-axis direction) and the third direction (Z-axis direction). Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • the fin 30 has a plurality of convex portions 140 on the surface. Therefore, the surface area of the fin 30 can be increased as compared with the case where the convex portion 140 is not formed. As a result, the heat exchanger 50 can increase the efficiency of heat exchange between the refrigerant and air.
  • FIG. 13 is an enlarged view of the heat exchange module 10B constituting the heat exchanger 50 according to the third embodiment.
  • the white arrows shown in FIG. 13 represent the airflow FL.
  • FIG. 13 is a perspective view of a part of the heat exchange module 10B, and a part of the heat exchange module 10B is not shown. Further, the components having the same functions and functions as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the heat exchange module 10B constituting the heat exchanger 50 according to the third embodiment has a different fin 30 configuration from the heat exchange module 10A constituting the heat exchanger 50 according to the second embodiment. More specifically, the heat exchange module 10B has a convex portion 240 configuration different from that of the heat exchange module 10A convex portion 140. The configuration of the convex portion 240 provided on the fin 30 will be described in more detail with reference to FIG.
  • the heat exchange module 10B has fins 30 provided on both sides of the heat transfer tube 20 with the heat transfer tube 20 interposed therebetween in the third direction (Z-axis direction).
  • a plurality of convex portions 240 protruding in the first direction (X-axis direction) are formed on the surface of the fin 30.
  • the convex portion 240 is formed in a columnar shape so as to extend in the longitudinal direction along the plane of the fin 30.
  • the convex portion 240 shown in FIG. 13 is formed in a pentagonal columnar shape, but the shape of the convex portion 240 is not limited to the shape.
  • the convex portion 240 may be formed in a columnar shape so as to extend in the longitudinal direction along the plane of the fin 30, and may be formed in a semi-cylindrical shape, for example.
  • the convex portion 240 is formed in parallel in the second direction (Y-axis direction) and in parallel in the third direction (Z-axis direction).
  • the number of convex portions 240 formed in the third direction (Z-axis direction) is two. It is not limited to, and may be one or three or more. Since it is preferable that there are many starting points for forming the vortex of the airflow FL described above, it is desirable that the number of convex portions 240 formed in the third direction (Z-axis direction) is large. Similarly, in FIG.
  • the fin 30 of the heat exchange module 10B has a first fin 30a and a second fin 30b.
  • the first fin 30a is provided so as to extend from the first side edge portion 20a of the heat transfer tube 20 in the third direction (Z-axis direction), and the second fin 30b is provided from the second side edge portion 20b in the third direction. It is provided so as to extend in the (Z-axis direction).
  • the first fin 30a is a fin 30 located on the upstream side of the airflow FL with respect to the heat transfer tube 20
  • the second fin 30b is a fin 30 located on the downstream side of the airflow FL with respect to the heat transfer tube 20.
  • the direction D1 in which the longitudinal direction of the convex portion 240 provided on the first fin 30a extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D1 in which the longitudinal direction of the convex portion 240 extends is inclined with respect to the third direction (Z-axis direction).
  • the directions D1 in which the plurality of convex portions 240 provided in the first fin 30a extend in the longitudinal direction extend in the same direction.
  • the convex portion 240 provided on the first fin 30a is formed in a columnar shape and is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends, and is formed so as to form the inclined surface 42 and the inclined surface 43 described above. ing.
  • the direction D1 is the direction in which the longitudinal direction of the convex portion 240 extends, but the direction D1 may be the direction in which the ridge line formed by the top of the convex portion 240 extends.
  • the direction D2 in which the longitudinal direction of the convex portion 240 provided on the second fin 30b extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D2 in which the longitudinal direction of the convex portion 240 extends is inclined with respect to the third direction (Z-axis direction).
  • the directions D2 in which the plurality of convex portions 240 provided in the second fin 30b extend in the longitudinal direction extend in the same direction, respectively.
  • the convex portion 240 provided on the second fin 30b is formed in a columnar shape and is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends, and is formed so as to form the inclined surface 42 and the inclined surface 43 described above. ing.
  • the direction D2 is the direction in which the longitudinal direction of the convex portion 240 extends, but for example, the direction D2 may be the direction in which the ridge line formed by the top of the convex portion 240 extends.
  • the end portion located on the heat transfer tube 20 side is referred to as the first end portion 240a
  • the end portion located on the side opposite to the heat transfer tube 20 is referred to as the second end portion 240b.
  • the fins 30 are formed so that the first end portion 240a of the convex portion 240 provided on the first fin 30a and the second fin 30b is located on one end portion T1 side of the heat transfer tube 20.
  • the fins 30 are formed so that the second end 240b of the convex portion 240 provided on the first fin 30a and the second fin 30b is located on the other end T2 side of the heat transfer tube 20.
  • the direction D1 in which the convex portion 240 provided on the first fin 30a extends in the longitudinal direction and the direction D2 in which the convex portion 240 provided on the second fin 30b extends in the longitudinal direction are the third. It is formed so as to be tilted at a different angle with respect to the direction (Z-axis direction). That is, the fins 30 are provided on both sides of the heat transfer tube 20 with the heat transfer tube 20 interposed therebetween in the third direction (Z-axis direction). Then, the fins 30 have a direction D1 in which the longitudinal direction of the convex portion 240 provided on the fin 30 arranged on one side extends and a longitudinal direction of the convex portion 240 provided on the fin 30 arranged on the other side. Is formed so that the extending direction D2 is inclined in a direction different from the third direction (Z-axis direction).
  • the direction D1 in which the convex portion 240 provided on the first fin 30a extends in the longitudinal direction and the direction D2 in which the convex portion 240 provided on the second fin 30b extends in the longitudinal direction are the heat transfer tubes. It is tilted symmetrically around 20. That is, in the heat exchange module 10, the inclination of the direction D1 with respect to the third direction (Z-axis direction) and the inclination of the direction D2 with respect to the third direction (Z-axis direction) are symmetrical with respect to the heat transfer tube 20. It is formed.
  • the direction D1 in which the convex portion 240 provided in the first fin 30a extends in the longitudinal direction and the direction D2 in which the convex portion 240 provided in the second fin 30b extends in the longitudinal direction are symmetrical with respect to the heat transfer tube 20. It is not limited to the configuration that leans toward.
  • the fins 30 are provided on both sides of the heat transfer tube 20 with the heat transfer tube 20 interposed therebetween in the third direction (Z-axis direction). Then, the direction D1 in which the longitudinal direction of the convex portion 240 provided on the fin 30 arranged on one side extends and the direction D2 in which the longitudinal direction of the convex portion 240 provided on the fin 30 arranged on the other side extends. And are formed so as to be inclined in different directions with respect to the third direction (Z-axis direction). Therefore, in the heat exchanger 50, the inclination direction of the convex portion 240 is different between the upstream side and the downstream side of the air flow with respect to the heat transfer tube 20, and the air flow is further agitated. Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • the fins 30 are provided on both sides of the heat transfer tube 20 in the direction D1 in which the longitudinal direction of the convex portion 240 provided on the fins 30 arranged on one side extends and the fins 30 arranged on the other side.
  • the convex portion 240 is formed so that the direction D2 in which the longitudinal direction extends is symmetrical with respect to the heat transfer tube 20. Therefore, in the heat exchanger 50, the inclination direction of the convex portion 240 is different between the upstream side and the downstream side of the air flow with respect to the heat transfer tube 20, and the air flow is further agitated. Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • each of the plurality of convex portions 240 is formed so as to form a surface having an inclination angle with respect to the third direction (Z-axis direction).
  • the air flow is agitated by the collision of the air flow with the surfaces inclined in the second direction (Y-axis direction) and the third direction (Z-axis direction). Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • the fin 30 has a plurality of convex portions 240 on the surface. Therefore, the surface area of the fin 30 can be increased as compared with the case where the convex portion 240 is not formed. As a result, the heat exchanger 50 can increase the efficiency of heat exchange between the refrigerant and air.
  • FIG. 14 is an enlarged view of the heat exchange module 10C constituting the heat exchanger 50 according to the fourth embodiment.
  • the white arrows shown in FIG. 14 represent the airflow FL.
  • FIG. 14 is a perspective view of a part of the heat exchange module 10C, and the illustration of a part of the heat exchange module 10C is omitted. Further, the components having the same functions and functions as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the heat exchange module 10C constituting the heat exchanger 50 according to the fourth embodiment has a different fin 30 configuration from the heat exchange module 10A constituting the heat exchanger 50 according to the second embodiment. More specifically, the heat exchange module 10C has a convex portion 340 configuration different from that of the heat exchange module 10A convex portion 140. The configuration of the convex portion 340 provided on the fin 30 will be described in more detail with reference to FIG.
  • the heat exchange module 10C has fins 30 provided on both sides of the heat transfer tube 20 with the heat transfer tube 20 interposed therebetween in the third direction (Z-axis direction).
  • a plurality of convex portions 340 protruding in the first direction (X-axis direction) are formed on the surface of the fin 30.
  • the convex portion 340 is formed in a columnar shape so as to extend along the plane of the fin 30.
  • the convex portion 340 shown in FIG. 14 is formed in a pentagonal columnar shape, but the shape of the convex portion 340 is not limited to the shape.
  • the convex portion 340 may be formed in a columnar shape so as to extend along the plane of the fin 30, and may be formed in a semi-cylindrical shape, for example.
  • the convex portion 340 has a first convex portion 341 and a second convex portion 342.
  • the first convex portion 341 and the second convex portion 342 are formed so as to be spaced apart from each other in the second direction (Y-axis direction).
  • the end portion located on the heat transfer tube 20 side is referred to as the first end portion 340a
  • the end portion located on the side opposite to the heat transfer tube 20 is referred to as the second end portion 340b.
  • the fin 30 is formed so that the first end portion 340a of the first convex portion 341 is located on the one end portion T1 side of the heat transfer tube 20. Further, the fin 30 is formed so that the second end portion 340b of the first convex portion 341 is located on the other end portion T2 side of the heat transfer tube 20.
  • the direction D1 in which the longitudinal direction of the first convex portion 341 extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D1 in which the longitudinal direction of the first convex portion 341 extends is inclined with respect to the third direction (Z-axis direction).
  • the directions D1 in which the plurality of first convex portions 341 provided on the fin 30 extend in the longitudinal direction extend in the same direction.
  • the first convex portion 341 is formed in a columnar shape and is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends, and is formed so as to form the inclined surface 42 and the inclined surface 43 described above.
  • the direction D2 in which the longitudinal direction of the first convex portion 341 extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D2 in which the longitudinal direction of the first convex portion 341 extends is inclined with respect to the third direction (Z-axis direction).
  • the directions D2 in which the plurality of first convex portions 341 provided on the fin 30 extend in the longitudinal direction extend in the same direction.
  • the fin 30 is formed so that the first end portion 340a of the second convex portion 342 is located on the other end portion T2 side of the heat transfer tube 20. Further, the fin 30 is formed so that the second end portion 340b of the second convex portion 342 is located on the one end portion T1 side of the heat transfer tube 20.
  • the direction D2 in which the longitudinal direction of the second convex portion 342 extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D2 in which the longitudinal direction of the second convex portion 342 extends is inclined with respect to the third direction (Z-axis direction).
  • the directions D2 in which the plurality of second convex portions 342 provided on the fin 30 extend in the longitudinal direction extend in the same direction.
  • the second convex portion 342 is formed in a columnar shape and is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends, and is formed so as to form the inclined surface 42 and the inclined surface 43 described above.
  • the direction D1 in which the longitudinal direction of the second convex portion 342 extends is inclined with respect to the direction in which the longitudinal direction of the heat transfer tube 20 extends.
  • the direction D1 in which the longitudinal direction of the second convex portion 342 extends is inclined with respect to the third direction (Z-axis direction).
  • the directions D1 in which the plurality of second convex portions 342 provided on the fin 30 extend in the longitudinal direction extend in the same direction.
  • the first convex portion 341 is formed in parallel with the third direction (Z-axis direction). Further, in the convex portion 340, the second convex portion 342 is formed in parallel with the third direction (Z-axis direction). Further, the convex portion 340 is formed by continuously arranging the first convex portion 341 and the second convex portion 342 alternately in the second direction (Y-axis direction).
  • the convex portions 340 have different inclinations with respect to the third direction (Z-axis direction), and the first convex portions formed at intervals from each other in the second direction (Y-axis direction). It has a portion 341 and a second convex portion 342. Then, the convex portion 340 is angled at regular intervals in the second direction (Y-axis direction) by the combination of the first convex portion 341 and the second convex portion 342 having different inclinations, and is folded back each time. It is formed in a linear shape that bends in the opposite direction. That is, the convex portion 340 is formed in a sawtooth shape or a wavy line shape in the second direction (Y-axis direction).
  • the convex portions 340 have different inclinations with respect to the third direction (Z-axis direction), and the first convex portion 341 and the second convex portion formed at intervals from each other in the second direction (Y-axis direction). It has 342 and. Then, the convex portion 340 is angled at regular intervals in the second direction (Y-axis direction) by the combination of the first convex portion 341 and the second convex portion 342, and is folded back in the opposite direction each time. It is formed in a bent linear shape.
  • a wall having a narrow width is formed in the third direction (Z-axis direction) in which the air flow flows, the air flowing in the third direction (Z-axis direction) easily collides with each other, and the air flow further. Is agitated. Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • each of the plurality of convex portions 340 is formed so as to form a surface having an inclination angle with respect to the third direction (Z-axis direction).
  • the air flow is agitated by the collision of the airflow with the surfaces inclined in the second direction (Y-axis direction) and the third direction (Z-axis direction). Therefore, in the heat exchanger 50, air also flows into the surface of the fin 30 on the downstream side of the heat transfer tube 20, and the flow velocity of the air in the vicinity of the surface increases, so that the heat transfer coefficient is improved.
  • the fin 30 has a plurality of convex portions 340 on the surface. Therefore, the surface area of the fin 30 can be increased as compared with the case where the convex portion 340 is not formed. As a result, the heat exchanger 50 can increase the efficiency of heat exchange between the refrigerant and air.
  • FIG. 15 is a cross-sectional view schematically showing a cross section of fins 30 of the heat exchange module 10D constituting the heat exchanger 50 according to the fifth embodiment.
  • the cross section shown in FIG. 15 is a schematic view of the BB line cross section of the fin 30 shown in FIG.
  • FIG. 15 is a cross-sectional view of a part of the heat exchange module 10D, and the illustration of a part of the heat exchange module 10D is omitted.
  • the convex portion 40 shown on the fin 30 is an example, and any one of the convex portion 40 described above and the convex portion 440 described later is applied to the configuration described as the convex portion 40.
  • components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the heat exchanger 50 includes a heat exchange module 10D having a heat transfer tube 20 and fins 30.
  • the root portion 31 of the fin 30 which is the base for the heat transfer tube 20 is first with respect to the central portion 21 of the thickness of the heat transfer tube 20 in the first direction (X-axis direction).
  • the plurality of convex portions 40 are arranged so as to be biased toward the protruding side.
  • the root portion 31 of the fin 30 is arranged so as to be biased toward the protruding side of the convex portion 40 in the first direction (X-axis direction) with respect to the central portion 21 of the thickness of the heat transfer tube 20 in the first direction (X-axis direction).
  • the area of the fin 30 exposed from the dead water area DA becomes large. Therefore, in the heat exchanger 50, the airflow easily collides with the surface of the convex portion 40 of the fin 30 in the heat exchange module 10D.
  • the flow velocity of air in the vicinity of the surface of the fin 30 is increased, so that the heat transfer coefficient is improved.
  • the heat exchange module 10D of the heat exchanger 50 since the air flow sufficiently collides with the surface of the fin 30, the height of the required convex portion 40 can be reduced, and the moldability is improved.
  • FIG. 16 is a cross-sectional view schematically showing a cross section of fins 30 of the heat exchange module 10E constituting the heat exchanger 50 according to the sixth embodiment.
  • FIG. 17 is a cross-sectional view schematically showing a cross section of fins 30 of another example heat exchange module 10E constituting the heat exchanger 50 according to the sixth embodiment.
  • the cross sections shown in FIGS. 16 and 17 are schematic views of the BB line cross sections of the fins 30 shown in FIG. 16 and 17 are cross-sectional views of a part of the heat exchange module 10E, and a part of the heat exchange module 10E is not shown.
  • the white arrows shown in FIGS. 16 and 17 represent the airflow FL.
  • the convex portion 40 shown on the fin 30 is an example, and any one of the convex portion 40 described above and the convex portion 440 described later is applied to the configuration described as the convex portion 40.
  • components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the heat exchanger 50 includes a heat exchange module 10E having a heat transfer tube 20 and fins 30.
  • the top 45 of at least one of the plurality of convex portions 40 is arranged outside the heat transfer tube 20 in the first direction (X-axis direction). It is configured as follows.
  • the top portion 45 is a portion of the convex portion 40 located at the tip in the protruding direction.
  • the second fin 30b is a fin 30 located on the downstream side of the airflow FL with respect to the heat transfer tube 20.
  • the top 45 of at least one convex portion 40 located downstream of the heat transfer tube 20 is outside the width WT of the heat transfer tube 20 in the first direction (X-axis direction). It is arranged so that it is easily exposed to the air.
  • the root portion 31 of the fin 30 is arranged at the position of the central portion 21 of the thickness of the heat transfer tube 20 in the first direction (X-axis direction). May be good.
  • the root portion 31 of the fin 30 is relative to the central portion 21 of the thickness of the heat transfer tube 20 in the first direction (X-axis direction).
  • the plurality of convex portions 40 may be arranged so as to be biased toward the protruding side.
  • the top 45 of at least one of the plurality of convex portions 40 is arranged outside the heat transfer tube 20 in the first direction (X-axis direction). It is configured as follows.
  • the heat exchange module 10E of the heat exchanger 50 By having the heat exchange module 10E of the heat exchanger 50, the airflow easily collides with the second fin 30b downstream of the heat transfer tube 20, and a stronger vortex flow of the airflow can be generated.
  • the flow velocity of air in the vicinity of the surface of the fins 30 located downstream of the air flow with respect to the heat transfer tube 20 increases, so that the heat transfer coefficient is further improved.
  • FIG. 18 is a cross-sectional view schematically showing a cross section of fins 30 of the heat exchange module 10F constituting the heat exchanger 50 according to the seventh embodiment.
  • the cross section shown in FIG. 18 is a schematic view of the BB line cross section of the fin 30 shown in FIG.
  • FIG. 18 is a cross-sectional view of a part of the heat exchange module 10F, and the illustration of a part of the heat exchange module 10F is omitted.
  • the white arrows shown in FIG. 18 represent the airflow FL.
  • the convex portion 40 shown on the fin 30 is an example, and any one of the convex portion 40 described above and the convex portion 440 described later is applied to the configuration described as the convex portion 40.
  • components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the heat exchanger 50 includes a heat exchange module 10F having a heat transfer tube 20 and fins 30. Fins 30 of the heat exchange module 10F of the heat exchanger 50 are provided on both sides of the heat transfer tube 20 with the heat transfer tube 20 interposed therebetween in the third direction (Z-axis direction). Then, all of the plurality of convex portions 40 provided on the fins 30 arranged on one side are arranged in the width WT of the heat transfer tube 20 in the first direction (X-axis direction).
  • the first fin 30a is a fin 30 located on the upstream side of the airflow FL with respect to the heat transfer tube 20, and the second fin 30b is located on the downstream side of the airflow FL with respect to the heat transfer tube 20.
  • Fin 30 Each of the plurality of heat exchange modules 10F has a plurality of convex portions 40 provided on the first fin 30a arranged on the other side of the second fin 30b in the first direction (X-axis direction). Is arranged in the width WT of the heat transfer tube 20 in the above.
  • the top 45 of the convex portion 40 located upstream of the heat transfer tube 20 is arranged inside the width WT of the heat transfer tube 20 in the first direction (X-axis direction) from the heat transfer tube. Is also configured so that it is not easily exposed to the air.
  • FIG. 19 is an enlarged view of the heat exchange module 10G constituting the heat exchanger 50 according to the eighth embodiment.
  • FIG. 20 is a cross-sectional view schematically showing the FF line cross section of the fin 30 shown in FIG.
  • FIG. 21 is a cross-sectional view schematically showing the GG line cross section of the fin 30 shown in FIG.
  • FIG. 19 is a perspective view of a part of the heat exchange module 10G, and the illustration of a part of the heat exchange module 10G is omitted.
  • 20 and 21 are cross-sectional views of a part of the heat exchange module 10G, and a part of the heat exchange module 10G is not shown.
  • the white arrows shown in FIGS. 19 to 21 represent the airflow FL.
  • the convex portion 40 shown on the fin 30 is an example, and any one of the convex portion 40 described above and the convex portion 440 described later is applied to the configuration described as the convex portion 40.
  • components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the heat exchanger 50 includes a heat exchange module 10G having a heat transfer tube 20 and fins 30.
  • the heat exchange module 10G of the heat exchanger 50 has a flat portion 36 configured such that the surfaces of both ends of the fins 30 along the second direction (Y-axis direction) or the third direction (Z-axis direction) are flat.
  • the heat exchange module 10G of the heat exchanger 50 has a first flat portion 35 configured such that the surfaces of both end portions of the fin 30 along the second direction (Y-axis direction) are flat. ..
  • the first flat portion 35 is formed at the edge portion of the fin 30, and is formed along the second direction (Y-axis direction).
  • the heat exchange module 10G of the heat exchanger 50 has a second flat portion 37 configured so that the surfaces of both end portions of the fin 30 along the third direction (Z-axis direction) are flat.
  • the second flat portion 37 is formed at the edge portion of the fin 30, and is formed along the third direction (Z-axis direction).
  • the heat exchange module 10G of the heat exchanger 50 has a flat portion 36 configured such that the surfaces of both ends of the fins 30 along the second direction (Y-axis direction) or the third direction (Z-axis direction) are flat. Have. Since the heat exchange module 10G of the heat exchanger 50 has the flat portion 36, it is possible to secure a holding portion as a reference surface when forming the uneven shape of the convex portion 40. Since the heat exchange module 10G of the heat exchanger 50 has a flat portion 36 as a holding portion, wear of the molding machine can be suppressed and the manufacturing cost can be reduced.
  • FIG. 22 is an enlarged view of the heat exchange module 10H constituting the heat exchanger 50 according to the ninth embodiment. Note that FIG. 22 is a perspective view of a part of the heat exchange module 10H, and a part of the heat exchange module 10H is not shown. The white arrow shown in FIG. 22 represents the airflow FL.
  • components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • a plurality of convex portions 440 protruding in the first direction (X-axis direction) are formed on the surface of the fin 30.
  • the convex portion 440 has a triangular pyramid shape, and projects so as to form a side surface 441 of the triangular pyramid.
  • the convex portion 440 is formed so that the side surface 441 of the triangular pyramid faces the upstream side of the airflow FL. That is, the convex portion 440 is formed so that the apex 442 side is located on the upstream side of the air flow.
  • the convex portion 440 is formed so that the side side 443 located on the tip end side in the first direction (X-axis direction) is along the third direction (Z-axis direction).
  • the shape of the convex portion 440 described above is an example, and the shape of the convex portion 440 is not limited to the shape.
  • the convex portion 440 may be formed in another shape such as a pyramidal shape, a conical shape, or a hemispherical shape.
  • the convex portion 440 is formed in parallel with the second direction (Y-axis direction).
  • the rows of convex portions 440 parallel in the second direction (Y-axis direction) are formed in parallel in the third direction (Z-axis direction).
  • the odd-numbered columns and the even-numbered columns are arranged so as to be offset from each other in the second direction (Y-axis direction).
  • the convex portion 440 in the rear row is formed so as to be located between the convex portions 440 in the front row.
  • FIG. 23 is a cross-sectional view schematically showing the OH line cross section of the fin 30 shown in FIG.
  • the HH line cross section is a cross section of the fin 30 when viewed from the second direction (Y-axis direction) when the fin 30 is cut along the third direction (Z-axis direction).
  • FIG. 23 is a cross-sectional view of a part of the heat exchange module 10H, and the illustration of a part of the heat exchange module 10H is omitted.
  • the plurality of convex portions 440 of the fins 30 are formed so as to form an inclined surface 46 having an inclination angle ⁇ with respect to the third direction (Z-axis direction).
  • the inclined surface 46 is a surface on the side of the convex portion 440 that is located in the protruding direction, and is an inclined surface that faces upstream with respect to the flow direction of the airflow FL. That is, the inclined surface 46 is a surface on the side of the convex portion 440 located in the protruding direction, and is not a surface on the tip end side of the fin 30 but a surface on the root portion 31 side on which the heat transfer tube 20 is arranged.
  • FIG. 24 is a cross-sectional view schematically showing the I-I line cross section of the fin 30 shown in FIG. 22.
  • the I-I line cross section is a cross section of the fin 30 when viewed from the third direction (Z-axis direction) when the fin 30 is cut along the second direction (Y-axis direction).
  • FIG. 24 is a cross-sectional view of a part of the heat exchange module 10H, and the illustration of a part of the heat exchange module 10H is omitted.
  • the plurality of convex portions 440 of the fins 30 are formed so as to form an inclined surface 47 having an inclination angle ⁇ with respect to the second direction (Y-axis direction).
  • the angle formed by the plurality of convex portions 440 with respect to the third direction (Z-axis direction) is defined as the inclination angle ⁇
  • the angle formed with respect to the second direction (Y-axis direction) is the inclination angle ⁇ .
  • it is formed so that the tilt angle ⁇ ⁇ tilt angle ⁇ . That is, each of the plurality of convex portions 440 is formed so that the inclination angle ⁇ is smaller than the inclination angle ⁇ .
  • the plurality of convex portions 440 are formed so that the inclination angle ⁇ ⁇ inclination angle ⁇ .
  • the heat exchange module 10H of the heat exchanger 50 forms a convex portion 440 at a high density along the second direction (Y-axis direction) in the configuration, and bends the airflow angle in the third direction (Z-axis direction). Can be made smaller. Therefore, the heat exchanger 50 can improve the balance between the heat transfer performance and the ventilation resistance, and can improve the heat exchanger performance.
  • the refrigeration cycle device 100 described above includes the heat exchanger according to any one of the first to third embodiments. Therefore, in the refrigeration cycle apparatus 100, the same effect as that of any one of the first and second embodiments can be obtained. Therefore, the refrigeration cycle device 100 can improve the energy efficiency of the air conditioning system by mounting a heat exchanger having high heat transfer performance.
  • each of the above embodiments 1 to 9 can be implemented in combination with each other. Further, the configuration shown in the above embodiment is an example, and can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.
  • 10 heat exchange module 10A heat exchange module, 10B heat exchange module, 10C heat exchange module, 10D heat exchange module, 10E heat exchange module, 10F heat exchange module, 10G heat exchange module, 10H heat exchange module, 10I heat exchange module, 20 heat transfer tube, 20a 1st side edge, 20b 2nd side edge, 20c flat surface, 20d flat surface, 21 central part, 22 refrigerant passage, 23 partition wall, 30 fins, 30a 1st fin, 30b 2nd fin , 31 root part, 35 first flat part, 36 flat part, 37 second flat part, 40 convex part, 40a first convex part, 40b second convex part, 41 ridgeline, 42 inclined surface, 43 inclined surface, 45 top , 46 inclined surface, 47 inclined surface, 50 heat exchanger, 70 header, 71 first header, 72 second header, 100 refrigeration cycle device, 101 compressor, 102 flow path switching device, 103 indoor heat exchanger, 104 decompression Equipment, 105 outdoor heat exchanger, 106 outdoor unit, 107 indoor unit, 108 outdoor blower

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器は、互いに間隔をあけて第1方向に並列される複数の熱交換モジュールと、第1方向に交差する第2方向における複数の熱交換モジュールの端部で、複数の熱交換モジュールに接続されたヘッダと、を備え、複数の熱交換モジュールは、第2方向に延びる伝熱管と、第1方向及び第2方向に平行な面に交差する第3方向の伝熱管の側縁部から第3方向に延びるフィンと、を備え、フィンは、表面に第1方向に突出した複数の凸部が形成されており、複数の凸部はそれぞれ、第2方向及び第3方向に対して傾斜角度を有する面を構成するように形成されているものである。

Description

熱交換器及び冷凍サイクル装置
 本発明は、熱交換器及び当該熱交換器を備えた冷凍サイクル装置に関し、特に伝熱管に接続されたフィンの構造に関するものである。
 従来、熱交換器の乾き条件及び濡れ条件での伝熱性能と、除霜性との両立を目的に、伝熱管の通風方向端部にヒレ状のフィンを形成した熱交換モジュールを有し、当該熱交換モジュールを互いに間隔を開けて配列させた熱交換器が知られている(例えば、特許文献1参照)。
 このような熱交換器は、管軸方向を重力方向と一致するよう配置することで、凝縮水あるいは霜融解水の滑落を阻害する抵抗体がなくなるため、排水が速い。すなわち、このような熱交換器は、濡れ条件での液膜厚さを薄くでき、除霜運転では迅速に霜融解水を排出できる。また、このような熱交換器は、伝熱管径を小さくして高密度に熱交換モジュールを配置し、あるいは、内部を多穴構造として冷媒と伝熱管との接触面積を拡大することで、伝熱性能を高めることができる。したがって、このような熱交換器は、乾き条件及び濡れ条件での伝熱性能と、除霜性とを両立することができる。
特開2008-202896号公報
 しかしながら、上記した従来の熱交換器では、熱交換器を通過する空気の通風方向において、伝熱管の下流で生じる死水域に、下流側のフィンが被るよう配置されるため、フィン表面近傍の空気の流速が低く、フィンと空気との間の熱伝達率が低いという課題がある。
 本発明は、上述のような課題を解決するためのものであり、フィンと空気との熱伝達率を向上させることができる熱交換器及び冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、互いに間隔をあけて第1方向に並列される複数の熱交換モジュールと、第1方向に交差する第2方向における複数の熱交換モジュールの端部で、複数の熱交換モジュールに接続されたヘッダと、を備え、複数の熱交換モジュールは、第2方向に延びる伝熱管と、第1方向及び第2方向に平行な面に交差する第3方向の伝熱管の側縁部から第3方向に延びるフィンと、を備え、フィンは、表面に第1方向に突出した複数の凸部が形成されており、複数の凸部はそれぞれ、第2方向及び第3方向に対して傾斜角度を有する面を構成するように形成されているものである。
 本発明に係る冷凍サイクル装置は、本発明に係る熱交換器を備えたものである。
 本発明によれば、熱交換器は、複数の凸部がそれぞれ、第2方向及び第3方向に対して傾斜角度を有する面を構成するように形成されている。熱交換器は、第2方向と第3方向に対して傾斜する面に気流が衝突することで、空気の流れが撹拌される。そのため、熱交換器は、伝熱管の下流側のフィンの表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
実施の形態1に係る熱交換器を備えた冷凍サイクル装置の構成を示す冷媒回路図である。 実施の形態1に係る熱交換器の構成を概略的に示す斜視図である。 実施の形態1に係る熱交換器を側面から見た概念図である。 図3に示す熱交換モジュールのA-A線断面を概略的に示した断面図である。 実施の形態1に係る熱交換器を構成する熱交換モジュールの拡大図である。 図5に示すフィンのB-B線断面を概略的に示した断面図である。 図5に示すフィンのC-C線断面を概略的に示した断面図である。 図5に示す熱交換モジュールのフィンの拡大図である。 図8に示すフィンのD-D線断面位置の構成を概略的に示した断面図である。 図8及び図9に示すフィンのE-E線断面の構成を概略的に示した断面図である。 実施の形態1に係る熱交換器を構成する変形例の熱交換モジュールの拡大図である。 実施の形態2に係る熱交換器を構成する熱交換モジュールの拡大図である。 実施の形態3に係る熱交換器を構成する熱交換モジュールの拡大図である。 実施の形態4に係る熱交換器を構成する熱交換モジュールの拡大図である。 実施の形態5に係る熱交換器を構成する熱交換モジュールのフィンの断面を概略的に示した断面図である。 実施の形態6に係る熱交換器を構成する熱交換モジュールのフィンの断面を概略的に示した断面図である。 実施の形態6に係る熱交換器を構成する他の例の熱交換モジュールフィンの断面を概略的に示した断面図である。 実施の形態7に係る熱交換器を構成する熱交換モジュールのフィンの断面を概略的に示した断面図である。 実施の形態8に係る熱交換器を構成する熱交換モジュールの拡大図である。 図19に示すフィンのF-F線断面を概略的に示した断面図である。 図19に示すフィンのG-G線断面を概略的に示した断面図である。 実施の形態9に係る熱交換器を構成する熱交換モジュールの拡大図である。 図22に示すフィンのH-H線断面を概略的に示した断面図である。 図22に示すフィンのI-I線断面を概略的に示した断面図である。
 以下、実施の形態1に係る熱交換器50について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。明細書中において、各構成部材同士の位置関係、各構成部材の延伸方向、及び各構成部材の配列方向は、原則として、熱交換器50が使用可能な状態に設置されたときのものである。
実施の形態1.
[冷凍サイクル装置100]
 図1は、実施の形態1に係る熱交換器50を備えた冷凍サイクル装置100の構成を示す冷媒回路図である。なお、図1において、点線で示す矢印は、冷媒回路110において、冷房運転時における冷媒の流れる方向を示すものであり、実線で示す矢印は、暖房運転時における冷媒の流れる方向を示すものである。まず、図1を用いて熱交換器50を備えた冷凍サイクル装置100について説明する。本実施の形態では、冷凍サイクル装置100として空気調和装置を例示しているが、冷凍サイクル装置100は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される。なお、図示した冷媒回路110は一例であって、回路要素の構成等について実施の形態で説明した内容に限定されるものではなく、実施の形態に係る技術の範囲内で適宜変更が可能である。
 冷凍サイクル装置100は、圧縮機101、流路切替装置102、室内熱交換器103、減圧装置104及び室外熱交換器105が冷媒配管を介して環状に接続された冷媒回路110を有している。室外熱交換器105及び室内熱交換器103の少なくとも一方には、後述する熱交換器50が用いられている。冷凍サイクル装置100は、室外機106及び室内機107を有している。室外機106には、圧縮機101、流路切替装置102、室外熱交換器105及び減圧装置104と、室外熱交換器105に室外空気を供給する室外送風機108と、が収容されている。室内機107には、室内熱交換器103と、室内熱交換器103に空気を供給する室内送風機109と、が収容されている。室外機106と室内機107との間は、冷媒配管の一部である2本の延長配管111及び延長配管112を介して接続されている。
 圧縮機101は、吸入した冷媒を圧縮して吐出する流体機械である。流路切替装置102は、例えば四方弁であり、制御装置(図示は省略)の制御により、冷房運転時と暖房運転時とで冷媒の流路を切り替える装置である。
 室内熱交換器103は、内部を流通する冷媒と、室内送風機109により供給される室内空気と、の熱交換を行う熱交換器である。室内熱交換器103は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。
 減圧装置104は、例えば膨張弁であり、冷媒を減圧させる装置である。減圧装置104としては、制御装置の制御により開度が調節される電子膨張弁を用いることができる。
 室外熱交換器105は、内部を流通する冷媒と、室外送風機108により供給される空気と、の熱交換を行う熱交換器である。室外熱交換器105は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。
[冷凍サイクル装置の動作]
 次に、図1を用いて冷凍サイクル装置100の動作の一例について説明する。冷凍サイクル装置100の暖房運転時には、圧縮機101から吐出される高圧高温のガス状態の冷媒は、流路切替装置102を介して室内熱交換器103に流入し、室内送風機109によって供給される空気と熱交換を行い凝縮する。凝縮した冷媒は、高圧の液状態となり、室内熱交換器103から流出し、減圧装置104によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室外熱交換器105に流入し、室外送風機108によって供給される空気との熱交換によって蒸発する。蒸発した冷媒は、低圧のガス状態となり、圧縮機101に吸入される。
 冷凍サイクル装置100の冷房運転時には、冷媒回路110を流れる冷媒は暖房運転時とは逆方向に流れる。すなわち、冷凍サイクル装置100の冷房運転時には、圧縮機101から吐出される高圧高温のガス状態の冷媒は、流路切替装置102を介して室外熱交換器105に流入し、室外送風機108によって供給される空気と熱交換を行い凝縮する。凝縮した冷媒は、高圧の液状態となり、室外熱交換器105から流出し、減圧装置104によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器103に流入し、室内送風機109によって供給される空気との熱交換によって蒸発する。蒸発した冷媒は、低圧のガス状態となり、圧縮機101に吸入される。
[熱交換器50]
 図2は、実施の形態1に係る熱交換器50の構成を概略的に示す斜視図である。図3は、実施の形態1に係る熱交換器50を側面から見た概念図である。図2~図3を用いて、実施の形態1に係る熱交換器50について説明する。なお、図に示すX軸方向は第1方向を示し、Y軸方向は第2方向を示し、Z軸方向は第3方向を示す。
 図3に示すように、熱交換器50は、複数のヘッダ70と、複数のヘッダ70の間に接続された複数の熱交換モジュール10と、を有する。
(ヘッダ70)
 ヘッダ70は、複数の熱交換モジュール10の延伸方向の端部に接続されている。ヘッダ70は、複数の熱交換モジュール10の配列方向に沿って延伸するように形成されている。ヘッダ70は、熱交換器50において、熱交換器50に流入する冷媒を、複数の熱交換モジュール10に分配する流体分配機構として機能する。また、ヘッダ70は、熱交換器50において、熱交換器50から流出する冷媒が、複数の熱交換モジュール10から流出して合流する流体合流機構としても機能する。
 ヘッダ70は、第1ヘッダ71と、第2ヘッダ72とを有する。第1ヘッダ71及び第2ヘッダ72は、一方が流体分配機構として機能し、他方が流体合流機構として機能する。第1ヘッダ71は、複数の熱交換モジュール10のそれぞれの延伸方向の一端に接続されており、第2ヘッダ72は、複数の熱交換モジュール10のそれぞれの延伸方向の他端に接続されている。すなわち、第1ヘッダ71及び第2ヘッダ72は、複数の熱交換モジュール10の延伸方向の両端に取り付けられている。すなわち、ヘッダ70は、第1方向(X軸方向)に交差する第2方向(Y軸方向)における複数の熱交換モジュール10の端部で、複数の熱交換モジュール10に接続されている。より詳細には、第1ヘッダ71及び第2ヘッダ72は、複数の熱交換モジュール10を構成する伝熱管20の延伸方向の両端に取り付けられている。第1ヘッダ71と、第2ヘッダ72とは、ヘッダ70の内部と伝熱管20の管路内とが連通するように、熱交換モジュール10の伝熱管20に接続されている。
 図2及び図3に示すヘッダ70は、複数の熱交換モジュール10の配列方向に沿って長手方向を形成するような直方体状に形成されている。ただし、ヘッダ70の形状は、直方体状に限定されるものではなく、例えば、円筒形状等、他の形状であってもよい。
 第1ヘッダ71には、第1ヘッダ71に流入する冷媒の流入口(図示は省略)が形成されており、あるいは、第1ヘッダ71から流出する冷媒の流出口(図示は省略)が形成されている。同様に、第2ヘッダ72には、第2ヘッダ72に流入する冷媒の流入口(図示は省略)が形成されており、あるいは、第2ヘッダ72から流出する冷媒の流出口(図示は省略)が形成されている。
(熱交換モジュール10)
 図4は、図3に示す熱交換モジュール10のA-A線断面を概略的に示した断面図である。熱交換モジュール10は、熱交換モジュール10に沿って流れる空気と熱交換モジュール10内を流れる冷媒とを熱交換させる。複数の熱交換モジュール10は、互いに間隔をあけて第1方向(X軸方向)に並列されている。複数の熱交換モジュール10は、ヘッダ70の長手方向(X軸方向)に沿って所定の間隔Pで配置されている。熱交換モジュール10は、第2方向(Y軸方向)に延びる伝熱管20を有する。また、熱交換モジュール10は、第1方向(X軸方向)及び第2方向(Y軸方向)に平行な面に交差する第3方向(Z軸方向)の伝熱管20の第1側縁部20a及び第2側縁部20bから第3方向(Z軸方向)に延びるフィン30とを有する。
(伝熱管20)
 複数の伝熱管20のそれぞれは、冷媒を内部に流通させる。複数の伝熱管20のそれぞれは、第1ヘッダ71と第2ヘッダ72との間に延伸している。複数の伝熱管20のそれぞれは、互いに間隔をあけて配列され、ヘッダ70の延伸方向である軸方向に並列している。複数の伝熱管20は、互いに対向するように配置されている。複数の伝熱管20のうち隣り合う2つの伝熱管20の間には、空気の流路となる隙間が形成されている。
 熱交換器50は、第1方向である複数の伝熱管20の配列方向を水平方向としている。ただし、第1方向である複数の伝熱管20の配列方向は、水平方向に限定されるものではなく、鉛直方向であってもよく、鉛直方向に対して傾いた方向であってもよい。同様に、熱交換器50は、複数の伝熱管20の延伸方向を鉛直方向としている。ただし、複数の伝熱管20の延伸方向は、鉛直方向に限定されるものではなく、水平方向であってもよく、鉛直方向に対して傾いた方向であってもよい。
 複数の伝熱管20の中で隣り合う伝熱管20は、互いの伝熱管20同士が伝熱促進部材によって接続されていない。伝熱促進部材とは、例えば、プレートフィン、あるいは、コルゲートフィン等である。
 熱交換器50が冷凍サイクル装置100の蒸発器として機能する場合、複数の伝熱管20のそれぞれでは、伝熱管20の内部を伝熱管20の延伸方向の一端から他端に向かって冷媒が流れる。また、熱交換器50が冷凍サイクル装置100の凝縮器として機能する場合、複数の伝熱管20のそれぞれでは、伝熱管20の内部を伝熱管20の延伸方向の他端から一端に向かって冷媒が流れる。
 図4に示すように、伝熱管20は、矩形の断面形状を有する扁平管である。なお、伝熱管20の形状は限定されるものではなく、例えば、長円形状等の一方向に扁平な断面形状を有する扁平管であってもよい。伝熱管20は、一対の第1側縁部20a及び第2側縁部20bと、一対の平坦面20c及び平坦面20dとを有している。図6に示す断面において、第1側縁部20aは、平坦面20cの一方の端部と平坦面20dの一方の端部との間において平面となるように形成されている。同断面において、第2側縁部20bは、平坦面20cの他方の端部と平坦面20dの他方の端部との間において平面となるように形成されている。なお、第1側縁部20a及び第2側縁部20bは、当該形状に限定されるものではなく、例えば、平坦面20cの端部と平坦面20dの端部との間において外側に凸となるように形成されてもよい。
 第1側縁部20aは、熱交換器50を通過する空気の流れにおいて風上側、すなわち前縁側に配置される側縁部である。第2側縁部20bは、熱交換器50を通過する空気の流れにおいて風下側、すなわち後縁側に配置される側縁部である。以下の説明では、伝熱管20の延伸方向と垂直であってかつ平坦面20c及び平坦面20dに沿う方向を、伝熱管20の長軸方向という場合がある。図4では、伝熱管20の長軸方向は上下方向であり、短軸方向は左右方向である。なお、伝熱管20の長軸方向は、第3方向である。
 伝熱管20には、長軸方向に沿って第1側縁部20aと第2側縁部20bとの間に配列した複数の冷媒通路22が形成されている。伝熱管20は、冷媒の流れる冷媒通路22が空気の流れ方向に複数配列された扁平多孔管である。複数の冷媒通路22のそれぞれは、伝熱管20の延伸方向である第2方向と平行に延びるように形成されている。隣り合う冷媒通路22の間の仕切壁23のそれぞれは、伝熱管20の延伸方向の両端まで連続している。なお、冷媒通路22の断面形状及び形成数は図示した実施形態に限定されず、例えば円形、あるいは、三角形状等、様々な形状で形成されてもよく、1又は複数の形成数で構成されてもよいものとする。
(フィン30)
 フィン30は、伝熱管20の長軸方向の端部から突出している。フィン30は、第1側縁部20a及び第2側縁部20bから突出し複数の伝熱管20のそれぞれの長軸方向に延びるように設けられた板状の部分である。なお、フィン30は、伝熱管20の長軸方向に延びているが、この形態のみに限定されるものではない。例えば、フィン30は、長軸方向に対して複数の伝熱管20の配列方向に所定の角度で傾いた状態に形成されてもよい。フィン30は、伝熱管20と接合させて形成されてもよく、伝熱管20と一体に成形したものでもよい。上述したように、複数の伝熱管20の中で隣り合う伝熱管20は、互いの伝熱管20同士が伝熱促進部材によって接続されていない。そのため、複数の伝熱管20はそれぞれ、フィン30を介して隣りに配置されている伝熱管20と接続されてはいない。
 図5は、実施の形態1に係る熱交換器50を構成する熱交換モジュール10の拡大図である。なお、図5に示す矢印は、気流FLを表している。また、図5は、熱交換モジュール10の一部の斜視図であり、熱交換モジュール10の一部の図示を省略している。図5を用いてフィン30の構成について更に詳細に説明する。フィン30には、表面に第1方向(X軸方向)に突出した複数の凸部40が形成されている。凸部40は、四角錐形状に突出して形成されている。なお、凸部40の形状は、四角錐形状に限定されるものではない。例えば、凸部40は、半球状に形成されてもよい。凸部40は、第1方向(X軸方向)の一方の面が突出しており、他方の面が凹むように形成されている。凸部40は、第2方向(Y軸方向)に並列して形成されていると共に、第3方向(Z軸方向)に並列して形成されている。複数の凸部40は、稜線41が第3方向に連続するように形成されている。
 複数の凸部40は、第1方向(X軸方向)において、一方の表面から突出する第1凸部40aと、他方の表面から突出する第2凸部40bとを有する。第1凸部40aは、第2方向(Y軸方向)に並列して形成されていると共に、第3方向(Z軸方向)に並列して形成されている。同様に、第2凸部40bは、第2方向(Y軸方向)に並列して形成されていると共に、第3方向(Z軸方向)に並列して形成されている。複数の第1凸部40aは、稜線41が第3方向(Z軸方向)に連続するように形成されている。また、複数の第2凸部40bは、稜線41が第3方向(Z軸方向)に連続するように形成されている。複数の第1凸部40aと複数の第2凸部40bは、第2方向(Y軸方向)及び第3方向(Z軸方向)に対する斜めの方向において交互に形成されている。
 図6は、図5に示すフィン30のB-B線断面を概略的に示した断面図である。なお、B-B線断面は、フィン30を第3方向(Z軸方向)に沿って切断した場合に、第2方向(Y軸方向)から見た場合のフィン30の断面である。また、図6は、熱交換モジュール10の一部の断面図であり、熱交換モジュール10の一部の図示を省略している。図6に示すように、フィン30の複数の第1凸部40aはそれぞれ、第3方向(Z軸方向)に対して傾斜角度αを有する傾斜面42を構成するように形成されている。傾斜面42は、凸部40の突出方向に位置する側の面であり、気流の流れ方向に対して、上流側に向いている斜面である。
 図7は、図5に示すフィン30のC-C線断面を概略的に示した断面図である。なお、C-C線断面は、フィン30を第2方向(Y軸方向)に沿って切断した場合に、第3方向(Z軸方向)から見た場合のフィン30の断面である。また、図7は、熱交換モジュール10の一部の断面図であり、熱交換モジュール10の一部の図示を省略している。図7に示すように、フィン30の複数の第1凸部40aはそれぞれ、第2方向(Y軸方向)に対して傾斜角度βを有する傾斜面43を構成するように形成されている。
[熱交換器50の動作例]
 実施の形態1に係る熱交換器50の動作について、熱交換器50が冷凍サイクル装置100の蒸発器として機能する際の動作を例に挙げて説明する。蒸発器として機能する熱交換器50には、減圧装置104で減圧された気液二相冷媒が流入する。この際、冷媒は、熱交換器50の第1ヘッダ71から流入し、複数の伝熱管20の本数と同一のパスに分離される。そして、冷媒は、複数の伝熱管20の冷媒通路22を流通して吸熱及び蒸発し、第2ヘッダ72から流出して冷媒回路110を循環する。
[熱交換器50の効果]
 図8は、図5に示す熱交換モジュール10のフィン30の拡大図である。図9は、図8に示すフィン30のD-D線断面位置の構成を概略的に示した断面図である。図10は、図8及び図9に示すフィン30のE-E線断面の構成を概略的に示した断面図である。なお、図8~図9に示す矢印は、気流FLを表している。また、図9及び図10は、熱交換モジュール10の一部の断面図であり、熱交換モジュール10の一部の図示を省略している。熱交換器50は、複数の熱交換モジュール10の間を気流FLが通過する。熱交換器50は、図8に示すように、フィン30に形成された第1凸部40aに気流FLが衝突することで、気流FLが直線的に流れず、渦を作って流れる。より詳細には、気流FLは、図6に示す第1凸部40aの傾斜面42と衝突することで、図9に示すように第3方向(Z軸方向)に回転する渦を形成する。この渦を形成した気流FLは、第1凸部40aの間の窪み部HAに向かって高速で流れ込む高速流HLを生じさせる。また、気流FLは、図7に示す第1凸部40aの傾斜面43と衝突することで、図10に示すように、第2方向(Y軸方向)に回転する渦を形成する。したがって、フィン30の第1凸部40aは、気流FLに対して、第2方向と第3方向とに回転する渦を形成させ空気の流れを撹拌させる。
 上記に記載のように、複数の凸部40はそれぞれ、第2方向(Y軸方向)及び第3方向(Z軸方向)に対して傾斜角度を有する面を構成するように形成されている。熱交換器50は、第2方向(Y軸方向)と第3方向(Z軸方向)に対して傾斜する面に気流が衝突することで、空気の流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、複数の第1凸部40aはそれぞれ、四角錐状に形成されており、第1凸部40aの稜線41が第3方向(Z軸方向)に連続するように形成されている。そのため、熱交換器50は、渦が形成された気流FLが全体として、稜線41が形成する峰状部分に沿って第3方向(Z軸方向)に流れやすくなる。
 また、フィン30は、表面に複数の凸部40を有する。そのため、フィン30は、凸部40を形成していない場合と比較して表面積を増やすことができる。その結果、熱交換器50は、冷媒と空気との熱交換の効率を上げることができる。
 図11は、実施の形態1に係る熱交換器50を構成する変形例の熱交換モジュール1010Iの拡大図である。なお、図11は、熱交換モジュール10Iの一部の斜視図であり、熱交換モジュール10Iの一部の図示を省略している。図11に示すように、熱交換モジュール10の伝熱管120は、上記で説明した扁平管ではなく円管でもよい。フィン30は、円管である伝熱管120の径方向に延びるように設けられている。
実施の形態2.
 図12は、実施の形態2に係る熱交換器50を構成する熱交換モジュール10Aの拡大図である。なお、図12に示す矢印は、気流FLを表している。図13は、熱交換モジュール10Aの一部の斜視図であり、熱交換モジュール10Aの一部の図示を省略している。また、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。実施の形態2に係る熱交換器50を構成する熱交換モジュール10Aは、実施の形態1に係る熱交換器50を構成する熱交換モジュール10と、フィン30の構成が異なるものである。より具体的には、熱交換モジュール10Aの凸部140の構成は、熱交換モジュール10の凸部40の構成と異なるものである。図12を用いてフィン30に設けられた凸部140の構成について更に詳細に説明する。
 熱交換モジュール10Aは、第3方向(Z軸方向)において、伝熱管20を挟んで伝熱管20の両側に設けられたフィン30を有する。フィン30には、表面に第1方向(X軸方向)に突出した複数の凸部140が形成されている。凸部140は、フィン30の平面に沿って延びるように柱状に形成されている。図12に示す凸部140は、五角柱状に形成されているが、凸部140の形状は、当該形状に限定されるものではない。凸部140は、フィン30の平面に沿って側面が延びる柱状に形成されていればよく、例えば、半円柱状に形成されてもよい。
 凸部140は、第2方向(Y軸方向)に並列して形成されていると共に、第3方向(Z軸方向)に並列して形成されている。図12では、各フィン30において、凸部140は、第3方向(Z軸方向)に2つ形成されているが、第3方向(Z軸方向)における凸部140の形成数は、2つに限定されるものではなく、1つ又は3つ以上であってもよい。なお、上述した気流FLの渦を形成する起点は多い方がよいため、第3方向(Z軸方向)における凸部140の形成数は多い方が望ましい。同様に、図12では、各フィン30において、凸部140は、第2方向(Y軸方向)に12個形成されているが、第2方向(Y軸方向)における凸部140の形成数は、12個に限定されるものではない。なお、上述した気流FLの渦を形成する起点は多い方がよいため、第2方向(Y軸方向)における凸部140の形成数は多い方が望ましい。
 凸部140の長手方向が延びる方向D1は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、凸部140の長手方向が延びる方向D1は、第3方向(Z軸方向)に対して傾いている。複数の凸部140の長手方向が延びる方向D1は、それぞれ同じ方向に延びている。凸部140は、柱状に形成され、伝熱管20の長手方向が延びる方向に対して傾いており、上述した傾斜面42及び傾斜面43を構成するように形成されている。なお、上記の説明では、方向D1は、凸部140の長手方向が延びる方向としたが、例えば、方向D1は、凸部140の頂部によって形成される稜線が延びる方向であってもよい。
[熱交換器50の効果]
 上記に記載のように、複数の凸部140はそれぞれ、第3方向(Z軸方向)に対して傾斜角度を有する面を構成するように形成されている。熱交換器50は、第2方向(Y軸方向)と第3方向(Z軸方向)に対して傾斜する面に気流が衝突することで、空気の流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、フィン30は、表面に複数の凸部140を有する。そのため、フィン30は、凸部140を形成していない場合と比較して表面積を増やすことができる。その結果、熱交換器50は、冷媒と空気との熱交換の効率を上げることができる。
実施の形態3.
 図13は、実施の形態3に係る熱交換器50を構成する熱交換モジュール10Bの拡大図である。なお、図13に示す白抜矢印は、気流FLを表している。また、図13は、熱交換モジュール10Bの一部の斜視図であり、熱交換モジュール10Bの一部の図示を省略している。また、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。実施の形態3に係る熱交換器50を構成する熱交換モジュール10Bは、実施の形態2に係る熱交換器50を構成する熱交換モジュール10Aと、フィン30の構成が異なるものである。より具体的には、熱交換モジュール10Bは凸部240の構成が、熱交換モジュール10Aの凸部140の構成と異なるものである。図13を用いてフィン30に設けられた凸部240の構成について更に詳細に説明する。
 熱交換モジュール10Bは、第3方向(Z軸方向)において、伝熱管20を挟んで伝熱管20の両側に設けられたフィン30を有する。フィン30には、表面に第1方向(X軸方向)に突出した複数の凸部240が形成されている。凸部240は、フィン30の平面に沿って長手方向が延びるように柱状に形成されている。図13に示す凸部240は、五角柱状に形成されているが、凸部240の形状は、当該形状に限定されるものではない。凸部240は、フィン30の平面に沿って長手方向が延びるように柱状に形成されていればよく、例えば、半円柱状に形成されてもよい。
 凸部240は、第2方向(Y軸方向)に並列して形成されていると共に、第3方向(Z軸方向)に並列して形成されている。図13では、各フィン30において、凸部240は、第3方向(Z軸方向)に2つ形成されているが、第3方向(Z軸方向)における凸部240の形成数は、2つに限定されるものではなく、1つ又は3つ以上であってもよい。なお、上述した気流FLの渦を形成する起点は多い方がよいため、第3方向(Z軸方向)における凸部240の形成数は多い方が望ましい。同様に、図13では、各フィン30において、凸部240は、第2方向(Y軸方向)に12個形成されているが、第2方向(Y軸方向)における凸部240の形成数は、12個に限定されるものではない。なお、上述した気流FLの渦を形成する起点は多い方がよいため、第2方向(Y軸方向)における凸部240の形成数は多い方が望ましい。
 熱交換モジュール10Bのフィン30は、第1フィン30aと第2フィン30bとを有する。第1フィン30aは、伝熱管20の第1側縁部20aから第3方向(Z軸方向)に延びるように設けられており、第2フィン30bは、第2側縁部20bから第3方向(Z軸方向)に延びるように設けられている。第1フィン30aは、伝熱管20に対して気流FLの上流側に位置するフィン30であり、第2フィン30bは、伝熱管20に対して気流FLの下流側に位置するフィン30である。
 第1フィン30aに設けられた凸部240の長手方向が延びる方向D1は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、凸部240の長手方向が延びる方向D1は、第3方向(Z軸方向)に対して傾いている。第1フィン30aに設けられた複数の凸部240の長手方向が延びる方向D1は、それぞれ同じ方向に延びている。第1フィン30aに設けられた凸部240は、柱状に形成され、伝熱管20の長手方向が延びる方向に対して傾いており、上述した傾斜面42及び傾斜面43を構成するように形成されている。なお、上記の説明では、方向D1は、凸部240の長手方向が延びる方向としたが、例えば、方向D1は、凸部240の頂部によって形成される稜線が延びる方向であってもよい。
 第2フィン30bに設けられた凸部240の長手方向が延びる方向D2は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、凸部240の長手方向が延びる方向D2は、第3方向(Z軸方向)に対して傾いている。第2フィン30bに設けられた複数の凸部240の長手方向が延びる方向D2は、それぞれ同じ方向に延びている。第2フィン30bに設けられた凸部240は、柱状に形成され、伝熱管20の長手方向が延びる方向に対して傾いており、上述した傾斜面42及び傾斜面43を構成するように形成されている。なお、上記の説明では、方向D2は、凸部240の長手方向が延びる方向としたが、例えば、方向D2は、凸部240の頂部によって形成される稜線が延びる方向であってもよい。
 ここで、凸部240の長手方向が延びる方向において、伝熱管20側に位置する端部を第1端部240aとし、伝熱管20とは反対側に位置する端部を第2端部240bと定義する。フィン30は、第1フィン30a及び第2フィン30bに設けられた凸部240の第1端部240aが、伝熱管20の一方の端部T1側に位置するように形成されている。そして、フィン30は、第1フィン30a及び第2フィン30bに設けられた凸部240の第2端部240bが、伝熱管20の他方の端部T2側に位置するように形成されている。
 図13に示すように、第1フィン30aに設けられた凸部240の長手方向が延びる方向D1と、第2フィン30bに設けられた凸部240の長手方向が延びる方向D2とは、第3方向(Z軸方向)に対して、異なる角度に傾くように形成されている。すなわち、フィン30は、第3方向(Z軸方向)において、伝熱管20を挟んで伝熱管20の両側に設けられている。そして、フィン30は、一方の側に配置されたフィン30に設けられた凸部240の長手方向が延びる方向D1と、他方の側に配置されたフィン30に設けられた凸部240の長手方向が延びる方向D2とが、第3方向(Z軸方向)に対して異なる方向に傾くように形成されている。
 図13に示す態様では、第1フィン30aに設けられた凸部240の長手方向が延びる方向D1と、第2フィン30bに設けられた凸部240の長手方向が延びる方向D2とは、伝熱管20を中心に対称となるように傾いている。すなわち、熱交換モジュール10は、第3方向(Z軸方向)に対する方向D1の傾きと、第3方向(Z軸方向)に対する方向D2の傾きとが、伝熱管20を中心に対称となるように形成されている。なお、第1フィン30aに設けられた凸部240の長手方向が延びる方向D1と、第2フィン30bに設けられた凸部240の長手方向が延びる方向D2とは、伝熱管20を中心に対称に傾く構成に限定されるものではない。
[熱交換器50の効果]
 フィン30は、第3方向(Z軸方向)において伝熱管20を挟んで伝熱管20の両側に設けられている。そして、一方の側に配置されたフィン30に設けられた凸部240の長手方向が延びる方向D1と、他方の側に配置されたフィン30に設けられた凸部240の長手方向が延びる方向D2とが、第3方向(Z軸方向)に対して異なる方向に傾くように形成されている。そのため、熱交換器50は、伝熱管20に対して気流の上流側と下流側で凸部240の傾斜方向が異なり、さらに空気の流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、フィン30は、伝熱管20の両側において、一方の側に配置されたフィン30に設けられた凸部240の長手方向が延びる方向D1と、他方の側に配置されたフィン30に設けられた凸部240の長手方向が延びる方向D2とが、伝熱管20を中心に対称となるように形成されている。そのため、熱交換器50は、伝熱管20に対して気流の上流側と下流側で凸部240の傾斜方向が異なり、さらに空気の流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、複数の凸部240はそれぞれ、第3方向(Z軸方向)に対して傾斜角度を有する面を構成するように形成されている。熱交換器50は、第2方向(Y軸方向)と第3方向(Z軸方向)に対して傾斜する面に気流が衝突することで、空気の流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、フィン30は、表面に複数の凸部240を有する。そのため、フィン30は、凸部240を形成していない場合と比較して表面積を増やすことができる。その結果、熱交換器50は、冷媒と空気との熱交換の効率を上げることができる。
実施の形態4.
 図14は、実施の形態4に係る熱交換器50を構成する熱交換モジュール10Cの拡大図である。なお、図14に示す白抜矢印は、気流FLを表している。また、図14は、熱交換モジュール10Cの一部の斜視図であり、熱交換モジュール10Cの一部の図示を省略している。また、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。実施の形態4に係る熱交換器50を構成する熱交換モジュール10Cは、実施の形態2に係る熱交換器50を構成する熱交換モジュール10Aと、フィン30の構成が異なるものである。より具体的には、熱交換モジュール10Cは凸部340の構成が、熱交換モジュール10Aの凸部140の構成と異なるものである。図14を用いてフィン30に設けられた凸部340の構成について更に詳細に説明する。
 熱交換モジュール10Cは、第3方向(Z軸方向)において、伝熱管20を挟んで伝熱管20の両側に設けられたフィン30を有する。フィン30には、表面に第1方向(X軸方向)に突出した複数の凸部340が形成されている。凸部340は、フィン30の平面に沿って延びるように柱状に形成されている。図14に示す凸部340は、五角柱状に形成されているが、凸部340の形状は、当該形状に限定されるものではない。凸部340は、フィン30の平面に沿って延びるように柱状に形成されていればよく、例えば、半円柱状に形成されてもよい。
 凸部340は、第1凸部341と、第2凸部342とを有する。第1凸部341と、第2凸部342とは、第2方向(Y軸方向)において互いに間隔を開けて形成されている。ここで、凸部340の長手方向が延びる方向において、伝熱管20側に位置する端部を第1端部340aとし、伝熱管20とは反対側に位置する端部を第2端部340bと定義する。
 フィン30は、第1凸部341の第1端部340aが、伝熱管20の一方の端部T1側に位置するように形成されている。また、フィン30は、第1凸部341の第2端部340bが、伝熱管20の他方の端部T2側に位置するように形成されている。
 第1フィン30aにおいて、第1凸部341の長手方向が延びる方向D1は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、第1フィン30aにおいて、第1凸部341の長手方向が延びる方向D1は、第3方向(Z軸方向)に対して傾いている。第1フィン30aにおいて、フィン30に設けられた複数の第1凸部341の長手方向が延びる方向D1は、それぞれ同じ方向に延びている。第1凸部341は、柱状に形成され、伝熱管20の長手方向が延びる方向に対して傾いており、上述した傾斜面42及び傾斜面43を構成するように形成されている。
 第2フィン30bにおいて、第1凸部341の長手方向が延びる方向D2は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、第2フィン30bにおいて、第1凸部341の長手方向が延びる方向D2は、第3方向(Z軸方向)に対して傾いている。第2フィン30bにおいて、フィン30に設けられた複数の第1凸部341の長手方向が延びる方向D2は、それぞれ同じ方向に延びている。
 フィン30は、第2凸部342の第1端部340aが、伝熱管20の他方の端部T2側に位置するように形成されている。また、フィン30は、第2凸部342の第2端部340bが、伝熱管20の一方の端部T1側に位置するように形成されている。
 第1フィン30aにおいて、第2凸部342の長手方向が延びる方向D2は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、第1フィン30aにおいて、第2凸部342の長手方向が延びる方向D2は、第3方向(Z軸方向)に対して傾いている。第1フィン30aにおいて、フィン30に設けられた複数の第2凸部342の長手方向が延びる方向D2は、それぞれ同じ方向に延びている。第2凸部342は、柱状に形成され、伝熱管20の長手方向が延びる方向に対して傾いており、上述した傾斜面42及び傾斜面43を構成するように形成されている。
 第2フィン30bにおいて、第2凸部342の長手方向が延びる方向D1は、伝熱管20の長手方向が延びる方向に対して傾いている。換言すれば、第2フィン30bにおいて、第2凸部342の長手方向が延びる方向D1は、第3方向(Z軸方向)に対して傾いている。第2フィン30bにおいて、フィン30に設けられた複数の第2凸部342の長手方向が延びる方向D1は、それぞれ同じ方向に延びている。
 凸部340は、第1凸部341が第3方向(Z軸方向)に並列して形成されている。また、凸部340は、第2凸部342が第3方向(Z軸方向)に並列して形成されている。更に、凸部340は、第2方向(Y軸方向)において、連続して第1凸部341と第2凸部342とが交互に配置されて形成されている。
 図14に示すように、凸部340は、第3方向(Z軸方向)に対し互いに異なる傾きを有すると共に、第2方向(Y軸方向)において、互いに間隔を開けて形成された第1凸部341と第2凸部342とを有する。そして、凸部340は、異なる傾きを有する第1凸部341と第2凸部342との組み合わせによって、第2方向(Y軸方向)において、一定の間隔ごとに角度を付け、そのたびに折り返して逆方向へ折れ曲がる線状に形成されている。すなわち、凸部340は、第2方向(Y軸方向)において、鋸歯状、あるいは、波線状に形成されている。なお、上述した気流FLの渦を形成する起点は多い方がよいため、第2方向(Y軸方向)及び第3方向(Z軸方向)における凸部340の形成数は多い方が望ましい。
[熱交換器50の効果]
 凸部340は、第3方向(Z軸方向)に対し互いに異なる傾きを有すると共に、第2方向(Y軸方向)において、互いに間隔を開けて形成された第1凸部341と第2凸部342とを有する。そして、凸部340は、第1凸部341と第2凸部342との組み合わせによって、第2方向(Y軸方向)において、一定の間隔ごとに角度を付け、そのたびに折り返して逆方向へ折れ曲がる線状に形成されている。そのため、凸部340は、気流の流れる第3方向(Z軸方向)において、幅が狭まる壁が形成され、第3方向(Z軸方向)に流れる空気同士が衝突しやすくなり、さらに空気の流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、複数の凸部340はそれぞれ、第3方向(Z軸方向)に対して傾斜角度を有する面を構成するように形成されている。熱交換器50は、第2方向(Y軸方向)と第3方向(Z軸方向)に対して傾斜する面に気流が衝突することで、空気流れが撹拌される。そのため、熱交換器50は、伝熱管20の下流側のフィン30の表面にも空気が流れ込み、表面近傍の空気の流速が増大するため、熱伝達率が向上する。
 また、フィン30は、表面に複数の凸部340を有する。そのため、フィン30は、凸部340を形成していない場合と比較して表面積を増やすことができる。その結果、熱交換器50は、冷媒と空気との熱交換の効率を上げることができる。
実施の形態5.
 図15は、実施の形態5に係る熱交換器50を構成する熱交換モジュール10Dのフィン30の断面を概略的に示した断面図である。なお、図15に示す断面は、図5に示すフィン30のB-B線断面を概略的に示したものである。また、図15は、熱交換モジュール10Dの一部の断面図であり、熱交換モジュール10Dの一部の図示を省略している。また、フィン30に示す凸部40は一例であり、凸部40として説明する構成は、上記に説明した凸部40~後述する凸部440のいずれか1つの構成が適用される。以下の説明において、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 熱交換器50は、伝熱管20と、フィン30とを有する熱交換モジュール10Dを備えている。熱交換器50の熱交換モジュール10Dは、伝熱管20に対する基部となるフィン30の根本部31が、第1方向(X軸方向)における伝熱管20の厚みの中央部21に対して、第1方向(X軸方向)において複数の凸部40の突出側に偏らせて配置されている。
[熱交換器50の効果]
 フィン30の根本部31が、第1方向(X軸方向)における伝熱管20の厚みの中央部21に対して、第1方向(X軸方向)において凸部40の突出側に偏らせて配置されていることで、図15に示すように、死水域DAから露出するフィン30の面積が大きくなる。そのため、熱交換器50は、熱交換モジュール10Dにおいて、フィン30の凸部40の表面に気流が衝突しやすくなる。その結果、熱交換器50は、フィン30の表面の近傍における空気の流速が増大するため、熱伝達率が向上する。また、熱交換器50の熱交換モジュール10Dは、気流がフィン30の表面に十分に衝突するため、必要な凸部40の高さを小さくでき、成形性が向上する。
実施の形態6.
 図16は、実施の形態6に係る熱交換器50を構成する熱交換モジュール10Eのフィン30の断面を概略的に示した断面図である。図17は、実施の形態6に係る熱交換器50を構成する他の例の熱交換モジュール10Eのフィン30の断面を概略的に示した断面図である。なお、図16及び図17に示す断面は、図5に示すフィン30のB-B線断面を概略的に示したものである。また、図16及び図17は、熱交換モジュール10Eの一部の断面図であり、熱交換モジュール10Eの一部の図示を省略している。また、図16及び図17に示す白抜矢印は、気流FLを表している。また、フィン30に示す凸部40は一例であり、凸部40として説明する構成は、上記に説明した凸部40~後述する凸部440のいずれか1つの構成が適用される。以下の説明において、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 熱交換器50は、伝熱管20と、フィン30とを有する熱交換モジュール10Eを備えている。熱交換器50の熱交換モジュール10Eは、複数の凸部40のうち、少なくとも一つの凸部40の頂部45が、第1方向(X軸方向)において、伝熱管20よりも外側に配置されるように構成されている。なお、頂部45は、凸部40において、突出方向の先端に位置する部分である。
 第2フィン30bは、上述したように、伝熱管20に対して気流FLの下流側に位置するフィン30である。熱交換器50の熱交換モジュール10Eは、伝熱管20の下流に位置する少なくとも一つの凸部40の頂部45が、第1方向(X軸方向)において、伝熱管20の幅WTよりも外側に配置されて空気に露出しやすいように構成されている。
 熱交換器50の熱交換モジュール10Eは、図16に示すように、フィン30の根本部31が、第1方向(X軸方向)における伝熱管20の厚みの中央部21の位置に配置されてもよい。あるいは、熱交換器50の熱交換モジュール10Eは、図17に示すように、フィン30の根本部31が、第1方向(X軸方向)における伝熱管20の厚みの中央部21に対して、第1方向(X軸方向)において複数の凸部40の突出側に偏らせて配置されてもよい。
[熱交換器50の効果]
 熱交換器50の熱交換モジュール10Eは、複数の凸部40のうち、少なくとも一つの凸部40の頂部45が、第1方向(X軸方向)において、伝熱管20よりも外側に配置されるように構成されている。熱交換器50の熱交換モジュール10Eは、当該構成を有することで、伝熱管20の下流の第2フィン30bに気流が衝突し易くなり、気流のより強い渦流れを発生させることができる。その結果、熱交換器50は、伝熱管20に対する気流の下流に位置するフィン30の、表面の近傍における空気の流速が増大するため、更に熱伝達率が向上する。
実施の形態7.
 図18は、実施の形態7に係る熱交換器50を構成する熱交換モジュール10Fのフィン30の断面を概略的に示した断面図である。なお、図18に示す断面は、図5に示すフィン30のB-B線断面を概略的に示したものである。また、図18は、熱交換モジュール10Fの一部の断面図であり、熱交換モジュール10Fの一部の図示を省略している。また、図18に示す白抜矢印は、気流FLを表している。また、フィン30に示す凸部40は一例であり、凸部40として説明する構成は、上記に説明した凸部40~後述する凸部440のいずれか1つの構成が適用される。以下の説明において、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 熱交換器50は、伝熱管20と、フィン30とを有する熱交換モジュール10Fを備えている。熱交換器50の熱交換モジュール10Fのフィン30は、第3方向(Z軸方向)において伝熱管20を挟んで伝熱管20の両側に設けられている。そして、一方の側に配置されたフィン30に設けられた複数の凸部40が全て、第1方向(X軸方向)における、伝熱管20の幅WTの中に配置されている。
 上述したように、第1フィン30aは、伝熱管20に対して気流FLの上流側に位置するフィン30であり、第2フィン30bは、伝熱管20に対して気流FLの下流側に位置するフィン30である。そして、複数の熱交換モジュール10Fのそれぞれは、第2フィン30bに対して他方の側に配置されている第1フィン30aに設けられた複数の凸部40が、第1方向(X軸方向)における、伝熱管20の幅WTの中に配置されている。そして、熱交換モジュール10Fは、伝熱管20の上流に位置する凸部40の頂部45が、第1方向(X軸方向)において、伝熱管20の幅WTよりも内側に配置されて伝熱管よりも空気に露出しにくいように構成されている。
[熱交換器50の効果]
 複数の熱交換モジュール10Fは、伝熱管20に対して気流FLの下流側に配置されている第1フィン30aに設けられた複数の凸部40が全て、第1方向(X軸方向)における、伝熱管20の幅WTの中に配置されている。そのため、熱交換器50の複数の熱交換モジュール10Fは、伝熱管20の上流における空気の撹拌を、熱交換モジュール10Fから近い領域で発生させることができる。その結果、熱交換器50の複数の熱交換モジュール10Fは、伝熱管20、あるいは、伝熱管20の下流側に位置する第2フィン30bに気流が流れ込みやすくなり、更に熱伝達率が向上する。
実施の形態8.
 図19は、実施の形態8に係る熱交換器50を構成する熱交換モジュール10Gの拡大図である。図20は、図19に示すフィン30のF-F線断面を概略的に示した断面図である。図21は、図19に示すフィン30のG-G線断面を概略的に示した断面図である。また、図19は、熱交換モジュール10Gの一部の斜視図であり、熱交換モジュール10Gの一部の図示を省略している。また、図20及び図21は、熱交換モジュール10Gの一部の断面図であり、熱交換モジュール10Gの一部の図示を省略している。また、図19~図21に示す白抜矢印は、気流FLを表している。また、フィン30に示す凸部40は一例であり、凸部40として説明する構成は、上記に説明した凸部40~後述する凸部440のいずれか1つの構成が適用される。以下の説明において、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 熱交換器50は、伝熱管20と、フィン30とを有する熱交換モジュール10Gを備えている。熱交換器50の熱交換モジュール10Gは、第2方向(Y軸方向)又は第3方向(Z軸方向)に沿ったフィン30の両端部の表面が、平坦となるよう構成された平坦部36を有する。より詳細には、熱交換器50の熱交換モジュール10Gは、第2方向(Y軸方向)に沿ったフィン30の両端部の表面が、平坦となるよう構成された第1平坦部35を有する。第1平坦部35は、フィン30の縁部に形成されており、第2方向(Y軸方向)に沿って形成されている。または、熱交換器50の熱交換モジュール10Gは、第3方向(Z軸方向)に沿ったフィン30の両端部の表面が、平坦となるよう構成された第2平坦部37を有する。第2平坦部37は、フィン30の縁部に形成されており、第3方向(Z軸方向)に沿って形成されている。
[熱交換器50の効果]
 熱交換器50の熱交換モジュール10Gは、第2方向(Y軸方向)又は第3方向(Z軸方向)に沿ったフィン30の両端部の表面が、平坦となるよう構成された平坦部36を有する。熱交換器50の熱交換モジュール10Gは、平坦部36を有することで、凸部40の凹凸形状を成形する際の基準面としての抑え部を確保することができる。熱交換器50の熱交換モジュール10Gは、抑え部としての平坦部36を有することで成形機の摩耗を抑制し、製造コストを低減することができる。
実施の形態9.
 図22は、実施の形態9に係る熱交換器50を構成する熱交換モジュール10Hの拡大図である。なお、図22は、熱交換モジュール10Hの一部の斜視図であり、熱交換モジュール10Hの一部の図示を省略している。また、図22に示す白抜矢印は、気流FLを表している。以下の説明において、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 フィン30には、表面に第1方向(X軸方向)に突出した複数の凸部440が形成されている。凸部440は、三角錐状であり、三角錐の側面441が形成されるように突出している。凸部440は、三角錐の側面441が気流FLの上流側に面するように形成されている。すなわち、凸部440は、頂点442側が気流の上流側に位置するように形成されている。凸部440は、第1方向(X軸方向)の先端側に位置する側辺443が、第3方向(Z軸方向)に沿うように形成されている。なお、上記に説明した凸部440の形状は一例であり、凸部440の形状は、当該形状に限定されるものではない。例えば、凸部440は、他の角錐状、円錐形状、半球状等他の形状に形成されてもよい。
 凸部440は、第2方向(Y軸方向)に並列して形成されている。第2方向(Y軸方向)に並列した凸部440の列は、第3方向(Z軸方向)に並列して形成されている。この際、奇数列と偶数列とが互いに第2方向(Y軸方向)にずれて配置されている。そして、第3方向(Z軸方向)において、後列の凸部440は、前列の凸部440の間に位置するように形成されている。
 図23は、図22に示すフィン30のH-H線断面を概略的に示した断面図である。なお、H-H線断面は、フィン30を第3方向(Z軸方向)に沿って切断した場合に、第2方向(Y軸方向)から見た場合のフィン30の断面である。また、図23は、熱交換モジュール10Hの一部の断面図であり、熱交換モジュール10Hの一部の図示を省略している。図23に示すように、フィン30の複数の凸部440はそれぞれ、第3方向(Z軸方向)に対して傾斜角度αを有する傾斜面46を構成するように形成されている。傾斜面46は、凸部440の突出方向に位置する側の面であり、気流FLの流れ方向に対して、上流側に向いている斜面である。すなわち、傾斜面46は、凸部440の突出方向に位置する側の面であり、フィン30の先端側ではなく伝熱管20が配置されている根本部31側の面である。
 図24は、図22に示すフィン30のI-I線断面を概略的に示した断面図である。なお、I-I線断面は、フィン30を第2方向(Y軸方向)に沿って切断した場合に、第3方向(Z軸方向)から見た場合のフィン30の断面である。また、図24は、熱交換モジュール10Hの一部の断面図であり、熱交換モジュール10Hの一部の図示を省略している。図24に示すように、フィン30の複数の凸部440はそれぞれ、第2方向(Y軸方向)に対して傾斜角度βを有する傾斜面47を構成するように形成されている。
 複数の凸部440は、上述したように、第3方向(Z軸方向)に対して成す角度を傾斜角度αと定義し、第2方向(Y軸方向)に対して成す角度を傾斜角度βと定義した場合に、傾斜角度α<傾斜角度βとなるよう形成されている。すなわち、複数の凸部440はそれぞれ、傾斜角度αが傾斜角度βよりも小さくなるように形成されている。
[熱交換器50の効果]
 複数の凸部440は、傾斜角度α<傾斜角度βとなるよう形成されている。熱交換器50の熱交換モジュール10Hは、当該構成に第2方向(Y軸方向)に沿って高密度に凸部440を成形しながら、気流の第3方向(Z軸方向)への屈曲角度を小さくすることができる。そのため、熱交換器50は、伝熱性能と通風抵抗のバランスを改善し、熱交換器性能を向上することができる。
[冷凍サイクル装置100の作用効果]
 上記で説明した冷凍サイクル装置100は、実施の形態1~3のいずれかに係る熱交換器を備えたものである。そのため、冷凍サイクル装置100において、実施の形態1~2のいずれかと同様の効果が得られる。そのため、冷凍サイクル装置100は、高伝熱性能の熱交換器を搭載することで、空調システムのエネルギー効率を向上することができる。
 上記の各実施の形態1~9は、互いに組み合わせて実施することが可能である。また、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10 熱交換モジュール、10A 熱交換モジュール、10B 熱交換モジュール、10C 熱交換モジュール、10D 熱交換モジュール、10E 熱交換モジュール、10F 熱交換モジュール、10G 熱交換モジュール、10H 熱交換モジュール、10I 熱交換モジュール、20 伝熱管、20a 第1側縁部、20b 第2側縁部、20c 平坦面、20d 平坦面、21 中央部、22 冷媒通路、23 仕切壁、30 フィン、30a 第1フィン、30b 第2フィン、31 根本部、35 第1平坦部、36 平坦部、37 第2平坦部、40 凸部、40a 第1凸部、40b 第2凸部、41 稜線、42 傾斜面、43 傾斜面、45 頂部、46 傾斜面、47 傾斜面、50 熱交換器、70 ヘッダ、71 第1ヘッダ、72 第2ヘッダ、100 冷凍サイクル装置、101 圧縮機、102 流路切替装置、103 室内熱交換器、104 減圧装置、105 室外熱交換器、106 室外機、107 室内機、108 室外送風機、109 室内送風機、110 冷媒回路、111 延長配管、112 延長配管、120 伝熱管、140 凸部、240 凸部、240a 第1端部、240b 第2端部、340 凸部、340a 第1端部、340b 第2端部、341 第1凸部、342 第2凸部、440 凸部、441 側面、442 頂点、443 側辺。

Claims (13)

  1.  互いに間隔をあけて第1方向に並列される複数の熱交換モジュールと、
     前記第1方向に交差する第2方向における前記複数の熱交換モジュールの端部で、前記複数の熱交換モジュールに接続されたヘッダと、を備え、
     前記複数の熱交換モジュールは、
     前記第2方向に延びる伝熱管と、
     前記第1方向及び前記第2方向に平行な面に交差する第3方向の前記伝熱管の側縁部から前記第3方向に延びるフィンと、
    を備え、
     前記フィンは、
     表面に前記第1方向に突出した複数の凸部が形成されており、
     前記複数の凸部はそれぞれ、
     前記第2方向及び前記第3方向に対して傾斜角度を有する面を構成するように形成されている熱交換器。
  2.  前記複数の凸部はそれぞれ、四角錐状に形成されており、
     前記複数の凸部の側辺が前記第3方向に連続するように形成されている請求項1に記載の熱交換器。
  3.  前記複数の凸部はそれぞれ、前記フィンの平面に沿って延びるように柱状に形成されており、
     前記複数の凸部の長手方向が延びる方向は、
     前記第3方向に対して傾いている請求項1に記載の熱交換器。
  4.  前記複数の凸部は、
     前記第2方向に並列して形成されていると共に、前記第3方向に並列して形成されており、前記第3方向に対して傾く方向が全て同じ方向である請求項3に記載の熱交換器。
  5.  前記フィンは、
     前記第3方向において前記伝熱管を挟んで前記伝熱管の両側に設けられており、
     一方の側に配置された前記フィンに設けられた前記複数の凸部の長手方向が延びる方向と、他方の側に配置された前記フィンに設けられた前記複数の凸部の長手方向が延びる方向とが、前記第3方向に対して異なる方向に傾くように形成されている請求項3に記載の熱交換器。
  6.  前記フィンは、
     一方の側に配置された前記フィンに設けられた前記複数の凸部の長手方向が延びる方向と、他方の側に配置された前記フィンに設けられた前記複数の凸部の長手方向が延びる方向とが、前記伝熱管を中心に対称となるように形成されている請求項5に記載の熱交換器。
  7.  前記複数の凸部は、
     前記第3方向に対して互いに異なる傾きを有すると共に、前記第2方向において互いに間隔を開けて形成された第1凸部と第2凸部とを有し、
     前記第1凸部と前記第2凸部との組み合わせによって、前記第2方向において、一定の間隔ごとに角度を付け、そのたびに折り返して逆方向へ折れ曲がる線状に形成されている請求項3に記載の熱交換器。
  8.  前記フィンは、
     前記伝熱管に対する基部となる前記フィンの根本部が、
     前記第1方向における前記伝熱管の厚みの中央部に対して、前記第1方向において前記複数の凸部の突出側に偏らせて配置されている請求項1~7のいずれか1項に記載の熱交換器。
  9.  前記フィンは、
     前記第3方向において前記伝熱管を挟んで前記伝熱管の両側に設けられており、
     前記複数の熱交換モジュールのそれぞれは、
     一方の側に配置された前記フィンに設けられた前記複数の凸部のうち、少なくとも一つの凸部の頂部が、前記第1方向において、前記伝熱管よりも外側に配置されるように構成されている請求項1~8のいずれか1項に記載の熱交換器。
  10.  前記複数の熱交換モジュールのそれぞれは、
     他方の側に配置された前記フィンに設けられた前記複数の凸部が、前記第1方向における、前記伝熱管の幅の中に配置されている請求項9に記載の熱交換器。
  11.  前記熱交換モジュールは、
     前記第2方向又は前記第3方向に沿った前記フィンの両端部の表面が、平坦となるよう構成された平坦部を有する請求項1~10のいずれか1項に記載の熱交換器。
  12.  前記複数の凸部は、
     前記第3方向に対して成す角度を傾斜角度αと定義し、前記第2方向に対して成す角度を傾斜角度βと定義した場合に、傾斜角度α<傾斜角度βとなるよう形成されている請求項1~11のいずれか1項に記載の熱交換器。
  13.  請求項1~12のいずれか1項に記載の熱交換器を備えた冷凍サイクル装置。
PCT/JP2019/026420 2019-07-03 2019-07-03 熱交換器及び冷凍サイクル装置 WO2021001953A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19936201.3A EP3995775B1 (en) 2019-07-03 2019-07-03 Heat exchanger and refrigeration cycle device
PCT/JP2019/026420 WO2021001953A1 (ja) 2019-07-03 2019-07-03 熱交換器及び冷凍サイクル装置
CN201980097972.8A CN114041037B (zh) 2019-07-03 2019-07-03 热交换器及制冷循环装置
JP2021529622A JP7166458B2 (ja) 2019-07-03 2019-07-03 熱交換器及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026420 WO2021001953A1 (ja) 2019-07-03 2019-07-03 熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2021001953A1 true WO2021001953A1 (ja) 2021-01-07

Family

ID=74101259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026420 WO2021001953A1 (ja) 2019-07-03 2019-07-03 熱交換器及び冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3995775B1 (ja)
JP (1) JP7166458B2 (ja)
CN (1) CN114041037B (ja)
WO (1) WO2021001953A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597419A (zh) * 2022-12-15 2023-01-13 四川大学(Cn) 一种用于航空发动机的预冷器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938256A (ja) * 1973-04-13 1974-04-09
JPS53162945U (ja) * 1977-05-30 1978-12-20
JPS5724880U (ja) * 1980-07-16 1982-02-09
JPS60185884U (ja) * 1984-05-22 1985-12-09 昭和アルミニウム株式会社 熱交換器
JPH07218172A (ja) * 1993-12-09 1995-08-18 Sanden Corp 熱交換器およびその製造方法
JPH09159386A (ja) * 1995-12-13 1997-06-20 Sanden Corp 多管式熱交換器
JP2008202896A (ja) 2007-02-21 2008-09-04 Sharp Corp 熱交換器
JP2015528890A (ja) * 2012-07-27 2015-10-01 ゼネラル・エレクトリック・カンパニイ 空気冷却式のエンジン表面冷却器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614266B2 (ja) * 2004-07-23 2011-01-19 臼井国際産業株式会社 流体攪拌用フィン並びに該フィンを内装した伝熱管および熱交換器または熱交換型ガス冷却装置
JP2007309533A (ja) * 2006-05-16 2007-11-29 Matsushita Electric Ind Co Ltd フィンチューブ熱交換器
EP2653820A4 (en) * 2011-01-21 2015-03-11 Daikin Ind Ltd HEAT EXCHANGERS AND AIR CONDITIONING
US20130206376A1 (en) 2012-02-14 2013-08-15 The University Of Tokyo Heat exchanger, refrigeration cycle device equipped with heat exchanger, or heat energy recovery device
CN110998201B (zh) 2017-08-03 2022-02-11 三菱电机株式会社 热交换器和制冷循环装置
WO2019026240A1 (ja) 2017-08-03 2019-02-07 三菱電機株式会社 熱交換器、及び冷凍サイクル装置
CN208296664U (zh) 2018-05-17 2018-12-28 广东美的制冷设备有限公司 管翅单体和具有其的换热器、空调器
CN209310597U (zh) 2018-12-18 2019-08-27 杭州三花微通道换热器有限公司 换热管及具有该换热管的换热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938256A (ja) * 1973-04-13 1974-04-09
JPS53162945U (ja) * 1977-05-30 1978-12-20
JPS5724880U (ja) * 1980-07-16 1982-02-09
JPS60185884U (ja) * 1984-05-22 1985-12-09 昭和アルミニウム株式会社 熱交換器
JPH07218172A (ja) * 1993-12-09 1995-08-18 Sanden Corp 熱交換器およびその製造方法
JPH09159386A (ja) * 1995-12-13 1997-06-20 Sanden Corp 多管式熱交換器
JP2008202896A (ja) 2007-02-21 2008-09-04 Sharp Corp 熱交換器
JP2015528890A (ja) * 2012-07-27 2015-10-01 ゼネラル・エレクトリック・カンパニイ 空気冷却式のエンジン表面冷却器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597419A (zh) * 2022-12-15 2023-01-13 四川大学(Cn) 一种用于航空发动机的预冷器
CN115597419B (zh) * 2022-12-15 2023-03-28 四川大学 一种用于航空发动机的预冷器

Also Published As

Publication number Publication date
EP3995775B1 (en) 2023-03-08
JP7166458B2 (ja) 2022-11-07
EP3995775A1 (en) 2022-05-11
CN114041037B (zh) 2023-10-13
JPWO2021001953A1 (ja) 2021-11-25
CN114041037A (zh) 2022-02-11
EP3995775A4 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
US10648742B2 (en) Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger
US20110030932A1 (en) Multichannel heat exchanger fins
US20100006276A1 (en) Multichannel Heat Exchanger
JP6897372B2 (ja) 熱交換器
WO2011005986A2 (en) Multichannel heat exchanger with differing fin spacing
US7163052B2 (en) Parallel flow evaporator with non-uniform characteristics
JP6890509B2 (ja) 空気調和機
WO2017208493A1 (ja) 空気調和機
CN110741216B (zh) 热交换器、制冷循环装置及空调机
US20170356700A1 (en) Frost tolerant microchannel heat exchanger
WO2021001953A1 (ja) 熱交換器及び冷凍サイクル装置
EP3524915B1 (en) Refrigeration cycle apparatus
JP7370393B2 (ja) 熱交換器ユニット及び冷凍サイクル装置
JP7493585B2 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
WO2020245982A1 (ja) 熱交換器及び冷凍サイクル装置
WO2019176061A1 (ja) 熱交換器及び冷凍サイクル装置
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置
JP7150157B2 (ja) 熱交換器および冷凍サイクル装置
WO2024089927A1 (ja) 熱交換器およびこの熱交換器を備えた冷凍サイクル装置
JP7496832B2 (ja) 熱交換器、熱交換器ユニット、冷凍サイクル装置、及び熱交換部材の製造方法
KR20150098141A (ko) 열교환기 및 이를 갖는 공기조화기
US20240200838A1 (en) Evaporative condenser
WO2020213079A1 (ja) 熱交換器及び冷凍サイクル装置
WO2024023958A1 (ja) 熱交換器及び冷凍サイクル装置
JP7209821B2 (ja) 熱交換器及び冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019936201

Country of ref document: EP

Effective date: 20220203