Nothing Special   »   [go: up one dir, main page]

WO2019155571A1 - 熱交換器および冷凍サイクル装置 - Google Patents

熱交換器および冷凍サイクル装置 Download PDF

Info

Publication number
WO2019155571A1
WO2019155571A1 PCT/JP2018/004402 JP2018004402W WO2019155571A1 WO 2019155571 A1 WO2019155571 A1 WO 2019155571A1 JP 2018004402 W JP2018004402 W JP 2018004402W WO 2019155571 A1 WO2019155571 A1 WO 2019155571A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
refrigerant
pipe
heat
Prior art date
Application number
PCT/JP2018/004402
Other languages
English (en)
French (fr)
Inventor
加藤 央平
翼 丹田
中村 伸
龍一 永田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019570216A priority Critical patent/JPWO2019155571A1/ja
Priority to PCT/JP2018/004402 priority patent/WO2019155571A1/ja
Publication of WO2019155571A1 publication Critical patent/WO2019155571A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Definitions

  • the present invention relates to a heat exchanger in which a refrigerant exchanges heat with air, and a refrigeration cycle apparatus having a heat exchanger.
  • a heat exchanger As a conventional heat exchanger, a heat exchanger is known in which the length of the path from the inflow of refrigerant to the outflow is increased (see, for example, Patent Document 1).
  • the leeward heat exchange unit and the leeward heat exchange unit are divided into a plurality of upper and lower flow paths and a plurality of lower flow paths.
  • the flow direction of the refrigerant is opposite to the path.
  • the first leeward header collecting pipe is provided with a plurality of connection pipes that connect the plurality of upper flow paths and the lower flow paths of the leeward heat exchange unit.
  • the refrigerant flows into the plurality of flow paths on the upper side of the upwind heat exchange unit, and then the second upwind header collecting pipe And flows into the plurality of flow paths on the upper side of the leeward heat exchange unit via the second leeward header collecting pipe. Subsequently, when the refrigerant flows into the first leeward header collecting pipe, the refrigerant flows into the plurality of flow paths below the leeward heat exchange unit via the plurality of connection pipes. Thereafter, the refrigerant flows into the plurality of flow paths below the upwind heat exchange unit via the second leeward header collecting pipe and the second upwind header collecting pipe.
  • the present invention has been made in order to solve the above-described problems, and provides a heat exchanger and a refrigeration cycle apparatus in which an increase in size is suppressed.
  • the heat exchanger includes a plurality of first fins arranged along one direction, and a plurality of first heat transfer tubes fixed to the plurality of first fins and having ends connected on one side.
  • the length of the first straight pipe is longer than the first straight pipe among the plurality of first heat transfer pipes, and the connecting member that connects the ends of the second straight pipe with each other.
  • the first header connected to the other end and the second length that is longer in the one direction than the second straight tube
  • a second header connected to the other end of the first header, and the connecting member has ends of the plurality of first fins and the plurality of second fins than the first header and the second header. It is located on the side close to the end of the.
  • the refrigeration cycle apparatus includes the above heat exchanger, a compressor that compresses and discharges the refrigerant, a throttle device that expands the refrigerant, and a load side on which the refrigerant exchanges heat with air in the air-conditioning target space. And a heat exchanger.
  • connection member that switches the refrigerant flow direction to the opposite direction is located closer to the end portions of the plurality of first fins and the end portions of the plurality of second fins than the first header and the second header. Therefore, it can suppress that a heat exchanger becomes large.
  • FIG. 4 is a side perspective view illustrating a configuration example of a header pipe illustrated in FIG. 3. It is a top view of the heat exchanger shown in FIG. It is a figure which shows the flow of the refrigerant
  • FIG. 4 is a schematic top view of the connection member shown in FIG. 3. It is an external appearance perspective view which shows the example of 1 structure of the heat exchanger of Embodiment 2 of this invention. It is a figure which shows the state of a refrigerant
  • FIG. 12 It is a schematic diagram for demonstrating the flow of a refrigerant
  • FIG. 20 is a top perspective view illustrating a configuration example of the header mechanism illustrated in FIG. 19. It is sectional drawing of line segment AA shown in FIG. It is a schematic diagram for demonstrating the flow of a refrigerant
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of a refrigeration cycle apparatus including a heat exchanger according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 1 includes a heat source side unit 2 and a load side unit 3.
  • the heat source side unit 2 includes a compressor 4, a flow path switching device 5, a heat exchanger 6, an expansion device 7, a heat source side blower 10, and a control device 13.
  • the load side unit 3 includes a load side heat exchanger 11 and a load side blower 12.
  • the compressor 4, the heat exchanger 6, the expansion device 7, and the load side heat exchanger 11 are connected by a refrigerant pipe, and a refrigerant circuit 15 in which the refrigerant circulates is configured.
  • the compressor 4 compresses and discharges the refrigerant circulating in the refrigerant circuit 15.
  • the compressor 4 is a compressor such as a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor.
  • the flow path switching device 5 is provided on the discharge side of the compressor 4.
  • the flow path switching device 5 switches the flow of the refrigerant according to the operation mode of the heating operation and the cooling operation. Specifically, the flow path switching device 5 switches the flow path so as to connect the compressor 4 and the heat exchanger 6 during the cooling operation, and connects the compressor 4 and the load side heat exchanger 11 during the heating operation. Switch the flow path to do so.
  • the flow path switching device 5 is, for example, a four-way valve.
  • the heat exchanger 6 functions as an evaporator during heating operation and functions as a condenser during cooling operation.
  • the heat exchanger 6 functions as an evaporator
  • the low-temperature and low-pressure liquid refrigerant flowing out of the expansion device 7 and the air supplied from the heat source side blower 10 exchange heat in the heat exchanger 6. Or the two-phase refrigerant evaporates.
  • the heat exchanger 6 functions as a condenser
  • the heat exchanger 6 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 4 and the air supplied from the heat source-side blower 10, and the high-temperature and high-pressure Gas refrigerant condenses.
  • the configuration of the heat exchanger 6 will be described later in detail.
  • the expansion device 7 expands the refrigerant that has flowed out of the heat exchanger 6 or the load-side heat exchanger 11 to reduce the pressure.
  • the expansion device 7 is, for example, an electric expansion valve that can adjust the flow rate of the refrigerant.
  • the expansion device 7 is not limited to an electric expansion valve, and may be a mechanical expansion valve that employs a diaphragm as a pressure receiving portion, or a device such as a capillary tube.
  • the heat source side blower 10 is attached to the heat exchanger 6.
  • the heat source side blower 10 supplies air to the heat exchanger 6 by rotating.
  • the heat source side blower 10 is a fan such as a propeller fan and a turbo fan, for example.
  • the condensation capacity and evaporation capacity of the heat exchanger 6 are adjusted by the number of rotations of the heat source side blower 10.
  • the control device 13 has a memory (not shown) for storing a program and a CPU (Central Processing Unit) (not shown) for executing processing according to the program.
  • the control device 13 is, for example, a microcomputer.
  • the control device 13 is communicatively connected to the compressor 4, the flow path switching device 5, the expansion device 7, the heat source side blower 10, the load side blower 12, and various sensors not shown.
  • the control device 13 includes a compressor 4, a flow switching device 5, a throttle device 7, according to the operation instruction from the user, measured values of various sensors not shown in the figure, and the required cooling capacity and heating capacity.
  • the heat source side blower 10 and the load side blower 12 are controlled.
  • the control device 13 controls the drive frequency of the compressor 4 and the opening degree of the expansion device 7 according to the required cooling capacity and heating capacity.
  • the control apparatus 13 controls the rotation speed of the heat-source side air blower 10 and the load side air blower 12 according to required cooling capability and heating capability.
  • the control device 13 controls switching of the flow path switching device 5 according to the operation mode.
  • the load side heat exchanger 11 functions as a condenser during heating operation and functions as an evaporator during cooling operation.
  • the load-side heat exchanger 11 functions as a condenser
  • the high-temperature and high-pressure refrigerant discharged from the compressor 4 and the air supplied from the load-side blower 12 exchange heat in the load-side heat exchanger 11, resulting in a high temperature.
  • High-pressure gas refrigerant condenses.
  • the load-side heat exchanger 11 functions as an evaporator
  • the load-side heat exchanger 11 exchanges heat between the low-temperature and low-pressure refrigerant flowing out from the expansion device 7 and the air supplied from the load-side fan 12.
  • the low-temperature and low-pressure liquid refrigerant or two-phase refrigerant evaporates.
  • the load-side heat exchanger 11 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, and a plate It is a heat exchanger such as a heat exchanger.
  • the load side heat exchanger 11 is a heat exchanger that performs heat exchange between air and a refrigerant. The condensing capacity and the evaporating capacity of the load side heat exchanger 11 are adjusted by the rotational speed of the load side fan 12.
  • the load side blower 12 is attached to the load side heat exchanger 11.
  • the load-side fan 12 supplies air to the load-side heat exchanger 11 by rotating.
  • the load-side blower 12 is a fan such as a propeller fan, a cross flow fan, a sirocco fan, and a turbo fan, for example.
  • this Embodiment 1 demonstrates the case where the control apparatus 13 is provided in the heat source side unit 2, the installation place of the control apparatus 13 is not restricted to the heat source side unit 2.
  • the control device 13 may be provided in the load side unit 3.
  • the expansion device 7 may be provided in the load side unit 3.
  • FIG. 1 shows a configuration in which one load side unit 3 and one heat source side unit 2 are connected, but the number and connection configuration of the heat source side unit 2 and the load side unit 3 are shown in FIG. Not limited to cases.
  • the refrigeration cycle apparatus 1 may have a plurality of heat source side units 2 and a plurality of load side units 3.
  • a plurality of heat source side units 2 and a plurality of load side units 3 may be connected in parallel or in series, or a plurality of load side units 3 may be connected in parallel or in series to one heat source side unit 2. Good.
  • the gas refrigerant discharged from the compressor 4 flows into the heat exchanger 6 via the flow path switching device 5.
  • the refrigerant that has flowed into the heat exchanger 6 is condensed by exchanging heat with air in the heat exchanger 6 and flows out of the heat exchanger 6 as a low-temperature and high-pressure liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger 6 becomes a low-temperature and low-pressure liquid refrigerant by the expansion device 7.
  • the liquid refrigerant flows into the load side heat exchanger 11.
  • the refrigerant that has flowed into the load-side heat exchanger 11 evaporates by exchanging heat with air in the load-side heat exchanger 11, and flows out of the load-side heat exchanger 11 as a low-temperature and low-pressure gas refrigerant.
  • the refrigerant absorbs heat from the air in the air-conditioning target space, whereby the air in the air-conditioning target space is cooled.
  • the refrigerant that has flowed out of the load side heat exchanger 11 is sucked into the compressor 4 via the flow path switching device 5. While the refrigeration cycle apparatus 1 is performing the cooling operation, the refrigerant discharged from the compressor 4 sequentially flows through the heat exchanger 6, the expansion device 7, and the load side heat exchanger 11, and is then sucked into the compressor 4. The cycle up to is repeated.
  • FIG. 2 is a diagram illustrating a refrigerant flow when the refrigeration cycle apparatus illustrated in FIG. 1 performs a heating operation.
  • the flow direction of the refrigerant in the refrigerant circuit 15 is indicated by an arrow.
  • the control device 13 switches the flow path of the flow path switching device 5 so that the refrigerant discharged from the compressor 4 flows into the load-side heat exchanger 11.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 4, so that the high-temperature and high-pressure gas refrigerant is discharged from the compressor 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 4 flows into the load-side heat exchanger 11 via the flow path switching device 5.
  • the refrigerant that has flowed into the load-side heat exchanger 11 is condensed by exchanging heat with air in the load-side heat exchanger 11, and becomes a high-temperature and high-pressure liquid refrigerant that flows out of the load-side heat exchanger 11.
  • the air in the air-conditioning target space is warmed by releasing heat from the refrigerant to the air in the air-conditioning target space.
  • the liquid refrigerant flows into the heat exchanger 6.
  • the refrigerant that has flowed into the heat exchanger 6 evaporates by exchanging heat with air in the heat exchanger 6 and flows out of the heat exchanger 6 as a low-temperature and low-pressure gas refrigerant.
  • the refrigerant that has flowed out of the heat exchanger 6 is sucked into the compressor 4 via the flow path switching device 5.
  • the refrigerant discharged from the compressor 4 flows through the load side heat exchanger 11, the expansion device 7 and the heat exchanger 6 in order, and is then sucked into the compressor 4.
  • the cycle up to is repeated.
  • FIG. 3 is an external perspective view showing a configuration example of the heat exchanger shown in FIG.
  • FIG. 4 is a side view of the heat exchanger shown in FIG.
  • the heat exchanger 6 includes a first heat exchange part 21 a, a second heat exchange part 21 b, a connection member 40, a second header 50 and a first header 60.
  • the arrow shown in FIG. 3 shows the ventilation direction which is a distribution direction of the air supplied from the heat source side air blower 10.
  • FIG. 3 shows that the first heat exchanging part 21a is arranged on the windward side and the second heat exchanging part 21b is arranged on the leeward side.
  • the first heat exchange section 21a includes a plurality of first fins 22a, a plurality of first heat transfer tubes fixed to the plurality of first fins 22a, and a header tube 70a.
  • the plurality of first heat transfer tubes include a first straight tube 23a and a first long tube 24a.
  • the first long tube 24a is longer in the Y-axis arrow direction than the first straight tube 23a.
  • the header pipe 70a connects the ends of the first straight pipe 23a and the first long pipe 24a on one side (in the Y-axis arrow direction). Of the two ends of the first long pipe 24 a, one end is connected to the header pipe 70 a and the other end is directly connected to the first header 60.
  • the first heat exchange unit 21 a includes eight sets of first straight pipes 23 a and first long pipes 24 a.
  • the second heat exchange unit 21b includes a plurality of second fins 22b, a plurality of second heat transfer tubes fixed to the plurality of second fins 22b, and a header tube 70b.
  • the plurality of second heat transfer tubes include a second straight tube 23b and a second long tube 24b.
  • the second long tube 24b is longer in the Y-axis arrow direction than the second straight tube 23b.
  • the header pipe 70b connects the ends of the second straight pipe 23b and the second long pipe 24b on one side (Y-axis arrow direction). Of the two ends of the second long tube 24 b, one end is connected to the header tube 70 b and the other end is directly connected to the second header 50.
  • the second heat exchange unit 21 b includes eight sets of second straight pipes 23 b and second long pipes 24 b.
  • the connecting member 40 includes a joint 41a coupled to the first straight pipe 23a, a joint 41b coupled to the second straight pipe 23b, and a U-shaped pipe 42 connecting the joints 41a and 41b.
  • the joint 41a is connected to the end of the two ends of the first straight pipe 23a opposite to the end connected to the header pipe 70a (the direction opposite to the Y-axis arrow). Yes.
  • the joint 41b is connected to the end opposite to the end connected to the header pipe 70b, out of the two ends of the second straight pipe 23b.
  • the U-shaped tube 42 is a circular tube having a circular cross section.
  • the connection member 40 may have a configuration in which the joints 41a and 41b and the U-shaped tube 42 are integrated.
  • the connecting member 40 may connect the first straight pipe 23a and the second straight pipe 23b in parallel to the horizontal plane (XY coordinate plane), but as shown in FIG. 3, along a plane inclined with respect to the horizontal plane. You may connect. That is, the connecting member 40 may connect the first straight pipe 23a and the second straight pipe 23b along a plane that intersects the vertical direction (Z-axis arrow direction).
  • the first heat exchange part 21a has eight sets of first straight pipes 23a and first long pipes 24a
  • the second heat exchange part 21b has eight sets of second straight pipes 23b and Although the configuration having the second long pipe 24b is shown, the number of sets is not limited to eight.
  • the heat transfer tubes of the first straight tube 23a and the first long tube 24a and the second straight tube 23b and the second long tube 24b will be described as flat tubes. Not exclusively.
  • the material of the first fin 22a, the second fin 22b, and the flat tube is, for example, aluminum.
  • the second header 50 and the first header 60 serve as a distributor for distributing and collecting the refrigerant.
  • the second header 50 serves as a refrigerant inlet of the heat exchanger 6 when the heat exchanger 6 functions as a condenser, and serves as a refrigerant outlet of the heat exchanger 6 when the heat exchanger 6 functions as an evaporator.
  • the second header 50 has a connection pipe 51 connected to the flow path switching device 5.
  • the second header 50 is directly connected to the plurality of second long tubes 24b.
  • the second header 50 distributes the gas refrigerant flowing from the discharge port of the compressor 4 through the flow path switching device 5 to the plurality of second long tubes 24b when the refrigeration cycle apparatus 1 performs the cooling operation.
  • the second header 50 joins the refrigerant flowing out from the plurality of second long pipes 24b, and sucks the joined refrigerant into the compressor 4 via the flow path switching device 5. Spill into the mouth.
  • the material of the second header 50 is the same material as the second long tube 24b.
  • the material of the second header 50 is, for example, aluminum.
  • the first header 60 is a refrigerant inlet of the heat exchanger 6 when the heat exchanger 6 functions as an evaporator, and a refrigerant outlet of the heat exchanger 6 when the heat exchanger 6 functions as a condenser.
  • the first header 60 has a connection pipe 61 connected to the expansion device 7.
  • the first header 60 is directly connected to the plurality of first long tubes 24a.
  • the first header 60 joins the refrigerant flowing out from the plurality of first long pipes 24a, and flows the combined refrigerant out to the expansion device 7.
  • the first header 60 distributes the refrigerant flowing from the expansion device 7 to the plurality of first long tubes 24a when the refrigeration cycle apparatus 1 performs the heating operation.
  • the material of the first header 60 is the same material as the first long tube 24a.
  • the material of the first header 60 is, for example, aluminum.
  • the brazing process of the second header 50 and the plurality of second long tubes 24b, and the first header can be performed at a time.
  • FIG. 5 is a side perspective view showing a configuration example of the header pipe shown in FIG. Since the header tubes 70a and 70b have the same configuration, the configuration of the header tube 70a will be described here.
  • the header pipe 70a shown in FIG. 5 has a cylindrical structure provided with a space for adjusting the direction in which the refrigerant flows.
  • the shape of the header tube 70a is not limited to a cylindrical shape, and may be a rectangular parallelepiped shape.
  • a plurality of partition walls 71 are provided at equal intervals in the vertical direction (Z-axis arrow direction) for partitioning a space provided therein into a plurality of sections.
  • the ends of the first straight pipe 23a and the first long pipe 24a are connected to each other in a plurality of sections partitioned by the partition wall 71.
  • the material of the header pipe 70a is the same material as the first straight pipe 23a and the first long pipe 24a.
  • the material of the header pipe 70b is the same material as the second straight pipe 23b and the second long pipe 24b.
  • the material of the header tubes 70a and 70b is, for example, aluminum.
  • the refrigerant flow path in the heat exchanger 6 will be described.
  • one of the two ends of the first long pipe 24a is connected to the first header 60, and the other end is connected to the first straight pipe via the header pipe 70a. It is connected to the tube 23a.
  • the first straight pipe 23a is connected to the connection member 40 on the side opposite to the header pipe 70a.
  • the connection member 40 is connected to the second straight pipe 23b on the side opposite to the first straight pipe 23a.
  • the second straight pipe 23b has one end connected to the connection member 40 and the other end connected to the second long pipe 24b via the header pipe 70b.
  • the second long pipe 24b is connected to the second header 50 on the side opposite to the header pipe 70b.
  • FIG. 6 is a top view of the heat exchanger shown in FIG.
  • the length from the connecting member between the first straight pipe 23a and the header pipe 70a to the connecting member between the first straight pipe 23a and the joint 41b is L1.
  • the length from the connecting member between the first long tube 24a and the header tube 70a to the connecting member between the first long tube 24a and the first header 60 is L2.
  • the length L1 is shorter than the length L2. This length relationship is the same for the second straight pipe 23b and the second long pipe 24b.
  • connection position between the first straight pipe 23a and the joint 41a is closer to the plurality of first fins 22a than the connection position between the first long pipe 24a and the first header 60.
  • connection position between the second straight pipe 23 b and the joint 41 b is closer to the plurality of second fins 22 b than the connection position between the second long pipe 24 b and the second header 50.
  • a U-shaped tube 42 can be provided in the space between the joints 41 a and 41 b and the second header 50 and the first header 60.
  • FIG. 7 is a diagram illustrating the flow of the refrigerant in the heat exchanger during the cooling operation.
  • the first header 60 and the second header 50 are not shown in the figure.
  • the uppermost second straight pipe 23b and the second long pipe 24b are shown in the drawing, and the other second straight pipe 23b and the second long pipe 24b are not shown in the drawing.
  • the direction in which the refrigerant flows is indicated by a solid line arrow.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 4 flows into the second header 50 through the connection pipe 51 shown in FIG.
  • the refrigerant flowing into the second header 50 is divided into a plurality of second long pipes 24b.
  • the refrigerant flowing into the uppermost second long pipe 24 b is indicated by a solid line arrow.
  • the refrigerant flowing into the second long pipe 24b flows in the Y-axis arrow direction and reaches the header pipe 70b.
  • the refrigerant flows into the second straight pipe 23b via the header pipe 70b.
  • the refrigerant flows through the second straight pipe 23b in the direction opposite to the Y-axis arrow and reaches the connecting member 40.
  • the refrigerant flows into the first straight pipe 23a via the connection member 40.
  • the refrigerant flows through the first straight pipe 23a in the direction of the Y-axis arrow and reaches the header pipe 70a.
  • the refrigerant flows into the first long pipe 24a via the header pipe 70a.
  • the refrigerant flows through the first long pipe 24 a in the direction opposite to the Y-axis arrow and reaches the first header 60.
  • the refrigerant flows into the first header 60 shown in FIG. 3 from the plurality of first long tubes 24a.
  • the refrigerant merged in the first header 60 flows out from the heat exchanger 6 via the connection pipe 61.
  • FIG. 8 is a diagram illustrating the flow of the refrigerant in the heat exchanger during the heating operation.
  • the first header 60 and the second header 50 are not shown in the figure.
  • the uppermost second straight pipe 23b and the second long pipe 24b are shown in the figure, and the other second straight pipe 23b and the second long pipe 24b are not shown in the figure.
  • the direction in which the refrigerant flows is indicated by a solid line arrow.
  • the refrigerant that has flowed into the first header 60 is divided into a plurality of first long pipes 24a.
  • the refrigerant flowing into the uppermost first long tube 24a is indicated by a solid line arrow.
  • the refrigerant flowing into the first long pipe 24a flows in the Y-axis arrow direction and reaches the header pipe 70a.
  • the refrigerant flows into the first straight pipe 23a via the header pipe 70a.
  • the refrigerant flows through the first straight pipe 23 a in the direction opposite to the Y-axis arrow and reaches the connection member 40.
  • the refrigerant flows into the second straight pipe 23b via the connection member 40.
  • the refrigerant flows through the second straight pipe 23b in the Y-axis arrow direction and reaches the header pipe 70b.
  • the refrigerant flows into the second long pipe 24b via the header pipe 70b.
  • the refrigerant flows through the second long pipe 24b in the direction opposite to the Y-axis arrow and reaches the second header 50.
  • the refrigerant flows into the second header 50 shown in FIG. 3 from the plurality of second long tubes 24b.
  • the refrigerant merged at the second header 50 flows out from the heat exchanger 6 via the connection pipe 51.
  • the refrigerant reciprocates the heat exchanger 6 in the Y-axis arrow direction twice. Therefore, in the heat exchanger 6, the refrigerant can sufficiently exchange heat with the outdoor air.
  • FIG. 9 is a schematic diagram for explaining the difference between the case where the first heat transfer tube shown in FIG. 1 is a flat tube and the case where it is a circular tube.
  • the case where the two heat transfer tubes adjacent in the vertical direction are the first straight tube 23a and the first long tube 24a will be described.
  • the cross-sectional area of the flat tube shown in FIG. 9 and the cross-sectional area of the circular tube are the same.
  • the center positions of the cross sections of the heat transfer tubes of the first straight tube 23a of the flat tube and the first straight tube 23a of the circular tube with respect to the vertical direction (Z-axis arrow direction).
  • the center positions of the cross sections of the heat transfer tubes of the flat first tube 24a and the circular first tube 24a are made to coincide with the vertical direction.
  • the value affecting the equation (1) is the passage area A.
  • the distance in the vertical direction between the first straight pipe 23a and the first long pipe 24a the distance in the case of a flat pipe is Hf
  • the distance in the case of a circular pipe is Hc. It is clear from FIG. 9 that distance Hf> distance Hc.
  • the length W in the Y-axis arrow direction of the first straight pipe 23a and the first long pipe 24a is set to the same value for both the flat pipe and the circular pipe.
  • the ventilation speed in the case of a flat tube is vf
  • the ventilation speed in the case of a circular pipe is vc.
  • the ventilation resistance ⁇ Pf the ventilation resistance ⁇ Pc, from the relationship between the ventilation speeds vf and vc and the equation (1).
  • the flat tube has lower ventilation resistance than the circular tube.
  • the heat transfer tube is a flat tube
  • the number of radiating fins can be increased until the ventilation resistance is the same as that of the circular tube.
  • the heat transfer performance is improved in the case of a flat tube than in the case of a circular tube.
  • FIG. 10 is a cross-sectional view illustrating a configuration example when the first heat transfer tube illustrated in FIG. 3 is a flat tube.
  • FIG. 10 shows an example in which the first straight pipe 23a is a flat pipe.
  • the first straight pipe 23a has a plurality of flow paths pd1 to pd6 parallel to the refrigerant flow direction.
  • the number of flow paths is six will be described, the number of flow paths is not limited to six.
  • FIG. 10 is a schematic top view of the connecting member shown in FIG.
  • the heat exchange efficiency of the refrigerant flowing through the windward flow path pd6 is the highest, and the leeward It is considered that the heat exchange efficiency of the refrigerant flowing through the flow path pd1 on the side becomes the lowest.
  • the temperature of the refrigerant flowing through the flow path pd6 is the lowest, and the temperature of the refrigerant flowing through the flow path pd1 is the highest.
  • the first embodiment even if there is a temperature variation among the refrigerants divided into the plurality of flow paths pd1 to pd6, as shown in FIG. After that, it flows through a single U-shaped pipe 42. Therefore, while the refrigerant flows through the U-shaped tube 42, the temperature difference between the refrigerants is reduced, and the temperature of the refrigerant becomes uniform.
  • the connecting member 40 is closer to the ends of the plurality of first fins 22a and the ends of the plurality of second fins 22b than the first header 60 and the second header 50. It is what is located.
  • the first long tube 24a is directly connected to the first header 60
  • the second long tube 24b is directly connected to the second header 50.
  • the length of the first straight pipe 23a is shorter than the first long pipe 24a
  • the length of the second straight pipe 23b is shorter than the second long pipe 24b.
  • a connecting member 40 can be provided.
  • the length of the first straight pipe 23a is made longer than that of the first long pipe 24a
  • the length of the second straight pipe 23b is made longer than that of the second long pipe 24b, and each pipe is passed through the distributor.
  • a configuration in which the refrigerant flow direction is switched to the opposite direction may be provided outside the distributor.
  • the length of the first straight pipe 23a is longer than that of the first long pipe 24a by the length until it passes through the distributor and goes outside.
  • the length of the second straight pipe 23b is longer than that of the second long pipe 24b by the length from the distributor through to the outside.
  • the configuration in which the refrigerant flow direction is switched to the opposite direction is provided not on the outside of the distributor but on the side closer to the center of the heat exchanger 6 than the distributor. Therefore, not only can the length of the refrigerant flow path in the heat exchanger 6 be ensured, but also the heat exchanger 6 can be prevented from increasing in the Y-axis arrow direction shown in FIG.
  • the path length can be freely changed depending on how many combinations of the first straight pipe 23a, the connecting member 40, and the second straight pipe 23b are provided in the vertical direction (Z-axis arrow direction). Therefore, the degree of freedom in path design is improved.
  • Embodiment 2 has an improved heat exchange function as compared with the heat exchanger according to the first embodiment.
  • detailed description of the same configuration as that of the first embodiment is omitted.
  • FIG. 12 is an external perspective view showing a configuration example of a heat exchanger according to Embodiment 2 of the present invention.
  • the first heat exchanging portion 21a paying attention to the two sets of the first straight pipe 23a and the first long pipe 24a adjacent in the vertical direction (Z-axis arrow direction), the two first long pipes 24a are adjacent in the vertical direction.
  • the second heat exchange part 21b similarly to the first heat exchange part 21a, attention is paid to two pairs of second straight pipes 23b and second long pipes 24b adjacent in the vertical direction. 24b are arranged adjacent to each other in the vertical direction.
  • the first straight pipe 23a whose length in the Y-axis direction is shorter than the first long pipe 24a is also arranged adjacent to the other first straight pipe 23a in the vertical direction.
  • the second straight pipe 23b is also arranged adjacent to the other second straight pipe 23b in the vertical direction.
  • the height H1 is such that the two second long tubes 24b have one connecting member 40 in between. It is wider than the height when sandwiched.
  • the heights of the two first long tubes 24a sandwiching the two connecting members 40 adjacent in the vertical direction are also equal to the height H1.
  • connection member 40 In the manufacturing process of the heat exchanger 6a, when attaching the connection member 40 to the first straight pipe 23a and the second straight pipe 23b, the operator can easily attach the connection member 40 because the height H1 is wide. Therefore, the work efficiency of connecting member attachment is improved.
  • FIG. 13 is a diagram illustrating the state of the refrigerant when the heat exchanger illustrated in FIG. 12 functions as a condenser.
  • the heat exchanger 6 shown in FIG. 3 be a comparative example.
  • FIG. 14 is a schematic diagram for explaining the flow of refrigerant in the heat exchanger of the comparative example.
  • FIG. 15 is a schematic diagram for explaining the flow of the refrigerant in the heat exchanger shown in FIG.
  • FIG. 13 shows changes in the air temperature Tair and the refrigerant temperature Tre in the path from the refrigerant inlet Pin to the refrigerant outlet Pout in the heat exchanger 6a.
  • the refrigerant inlet Pin corresponds to the second header 50
  • the refrigerant outlet Pout corresponds to the first header 60.
  • the refrigerant flows into the heat exchanger 6a from the refrigerant inlet Pin in the superheated gas state STg
  • the heat is dissipated to the air and the temperature is lowered to a gas-liquid two-phase state STlg.
  • the refrigerant is supercooled to be in the liquid state ST1, and flows out from the refrigerant outlet Pout.
  • the first straight pipe 23a and the first long pipe 24a are adjacent in the vertical direction, and the second straight pipe 23b and the second long pipe 24b are also adjacent in the vertical direction. It is a configuration that fits.
  • a high-temperature refrigerant flows through the second long pipe 24b, and a medium-temperature refrigerant flows through the second straight pipe 23b.
  • Thermal interference occurs between the refrigerants due to the temperature difference of the refrigerant flowing through the heat transfer tubes of the second straight pipe 23b and the second long pipe 24b adjacent in the vertical direction.
  • the first heat exchanging portion 21a When attention is paid to the first heat exchanging portion 21a, a medium-temperature refrigerant flows through the first straight pipe 23a, and a low-temperature refrigerant flows through the first long pipe 24a. Therefore, thermal interference occurs between the refrigerants due to the temperature difference of the refrigerant flowing through the heat transfer tubes of the first straight pipe 23a and the first long pipe 24a adjacent in the vertical direction. These heat interferences reduce the heat exchanger performance.
  • the two first long tubes 24a are adjacent in the vertical direction, and the two second long tubes 24b are adjacent in the vertical direction.
  • two second long tubes 24b through which a high-temperature refrigerant flows are adjacent to each other in the vertical direction.
  • the two first long pipes 24a through which the low-temperature refrigerant flows are adjacent to each other in the vertical direction. Since the two heat transfer tubes in which the refrigerant having a relatively close temperature flows are adjacent to each other in the vertical direction, heat exchange loss due to thermal interference is reduced. As a result, a decrease in heat exchanger performance is suppressed.
  • the first straight pipe 23a, the first long pipe 24a, the second straight pipe 23b, and the second long pipe 24b may be circular pipes, but have the advantage of being a flat pipe.
  • the case of the first long tube 24a will be described.
  • FIG. 16 is a diagram for explaining the case where the first heat transfer tube shown in FIG. 12 is a circular tube and a flat tube.
  • a distance Hbf1 is defined when the first long tube 24a is a flat tube.
  • the distance Hb when the first long tube 24a is a circular tube is defined as a distance Hbc1.
  • the distance Hbf1 is larger than the distance Hbc1.
  • the working efficiency of the flat tube having the distance Hbf1 that is greater than the distance Hbc1 is higher than that of the circular tube.
  • two first long tubes 24a are adjacent in the vertical direction
  • two second long tubes 24b are adjacent in the vertical direction.
  • this Embodiment 2 when a refrigerant
  • Embodiment 3 In the heat exchanger of the third embodiment, a hairpin structure is used instead of the header pipe as means for switching the refrigerant flow direction to the opposite direction.
  • a hairpin structure is used instead of the header pipe as means for switching the refrigerant flow direction to the opposite direction.
  • detailed description of the same configuration as that of the first embodiment is omitted.
  • the description is based on the heat exchanger 6 described in the first embodiment.
  • the heat exchanger described in the second embodiment may be applied to the third embodiment. .
  • FIG. 17 is an external perspective view showing a configuration example of the heat exchanger according to the third embodiment of the present invention.
  • the 1st heat exchange part 21a has the 1st hairpin part 25a which connects the edge parts of a pair of 1st straight pipe 23a and the 1st long tube 24a.
  • the first heat exchange part 21a is provided with the same number of first hairpin parts 25a as the number of pairs of the first straight pipes 23a and the first long pipes 24a.
  • the 2nd heat exchange part 21b has the 2nd hairpin part 25b which connects the edge parts of a pair of 2nd straight pipe 23b and the 2nd long tube 24b.
  • the second heat exchange part 21b is provided with the same number of second hairpin parts 25b as the number of pairs of the second straight pipes 23b and the second long pipes 24b.
  • FIG. 18 is an enlarged view of a main part including the hairpin part shown in FIG.
  • the second straight pipe 23b is connected to the second long pipe 24b via the second hairpin portion 25b on the side opposite to the second header 50 shown in FIG.
  • the second hairpin portion 25b has a shape in which the letter U is laid down when viewed from the X-axis arrow direction.
  • the straight heat transfer tube is bent in a U shape at the second hairpin portion 25b, whereby a second straight tube 23b, a second hairpin portion 25b, and a second long tube 24b are configured as shown in FIG. Since the structure of the 1st hairpin part 25a is the same as that of the 2nd hairpin part 25b, the detailed description is abbreviate
  • first hairpin portion 25a and the second hairpin portion 25b have been described as being bent in the vertical direction (Z-axis arrow direction), but may be bent in the horizontal direction.
  • the heat exchanger 6b has a hairpin structure that is provided on the opposite side of the refrigerant inlet and outlet and switches the refrigerant flow direction in the opposite direction.
  • the volume of the hairpin structure is smaller than the volume of the header tube, the amount of refrigerant necessary for the refrigeration cycle apparatus 1 can be reduced.
  • the header tube becomes unnecessary, the number of parts of the heat exchanger 6 can be reduced, and the manufacturing cost can be reduced.
  • Embodiment 4 FIG.
  • the heat exchanger according to the fourth embodiment is configured such that the heat exchanger performance can be switched according to the state of the refrigerant.
  • detailed description of the same configuration as that of the first embodiment is omitted.
  • the heat exchanger will be described in the case of the configuration including the heat exchanger 6a described in the third embodiment.
  • the heat exchanger described in the first and second embodiments is the same as that of the present embodiment. You may apply to form 4.
  • FIG. 19 is a schematic external view showing a configuration example of a heat exchanger according to Embodiment 4 of the present invention.
  • the heat exchanger 6c includes a third header 82a, a fourth header 82b, and a header mechanism 80 in addition to the first heat exchange unit 21a, the second heat exchange unit 21b, the first header 60, and the second header 50.
  • the first heat exchanging portion 21a includes a plurality of third heat transfer tubes 91a that are orthogonal to the plurality of first fins 22a in addition to the first straight tube 23a and the first long tube 24a.
  • the second heat exchanging portion 21b includes a plurality of fourth heat transfer tubes 91b perpendicular to the plurality of second fins 22b in addition to the second straight tube 23b and the second long tube 24b.
  • FIG. 19 shows a case where six pairs of third heat transfer tubes 91a and fourth heat transfer tubes 91b are provided, but the number of sets is not limited to six.
  • each heat transfer tube of the plurality of third heat transfer tubes 91a one of the two ends is connected to the header mechanism 80, and the other end is connected to the third header 82a.
  • each heat transfer tube of the plurality of fourth heat transfer tubes 91b one of the two ends is connected to the header mechanism 80, and the other end is connected to the fourth header 82b.
  • a connection pipe 52 that connects the fourth header 82b and the second header 50 is provided in the heat exchanger 6c.
  • FIG. 20 is a top perspective view showing a configuration example of the header mechanism shown in FIG. 21 is a cross-sectional view taken along line AA shown in FIG.
  • the header mechanism 80 has header pipes 81a and 81b and a connecting portion 83 that connects the header pipes 81a and 81b.
  • a plurality of partition walls 92 for partitioning a space provided therein into a plurality of sections are provided at equal intervals in the vertical direction (Z-axis arrow direction).
  • the end of the third heat transfer pipe 91a is connected to each of a plurality of sections partitioned by the partition wall 92.
  • the end of the fourth heat transfer pipe 91b is connected to each of a plurality of sections partitioned by the partition wall 92.
  • the refrigerant can flow between the third heat transfer tube 91a and the fourth heat transfer tube 91b in each of the six sets of the third heat transfer tube 91a and the fourth heat transfer tube 91b.
  • the material of the header pipe 81a is the same material as the third heat transfer pipe 91a.
  • the material of the header pipe 81b is the same material as the fourth heat transfer pipe 91b.
  • the material of the header tubes 81a and 81b and the connection portion 83 is, for example, aluminum.
  • the brazing process between the header mechanism 80 and these heat transfer tubes can be performed at a time. Since the third header 82a has the same configuration as the first header 60 and the fourth header 82b has the same configuration as the second header 50, detailed description thereof will be omitted.
  • the upper side in the vertical direction (Z-axis arrow direction) from the broken line DL is referred to as an upper heat exchange part
  • the lower side from the broken line DL is referred to as a lower heat exchange part.
  • the lower heat exchange unit has the same configuration as that of the heat exchanger 6 described in the first embodiment.
  • the third heat transfer tube 91a is directly connected to the third header 82a
  • the fourth heat transfer tube 91b is directly connected to the fourth header 82b.
  • the first long pipe 24a is directly connected to the first header 60
  • the second long pipe 24b is directly connected to the second header 50
  • the pipes 23 b are not connected to any header, but are connected to each other via the connection member 40.
  • the connecting member 40 is provided in the space generated by the difference in length. ing. Therefore, the 1st header 60 and the 3rd header 82a can be made into the same position with respect to the Y-axis arrow direction.
  • the 2nd header 50 and the 4th header 82b can be made into the same position with respect to the Y-axis arrow direction. As a result, it can suppress that the heat exchanger 6c becomes large.
  • FIG. 22 is a schematic diagram for explaining the flow of the refrigerant in the heat exchanger shown in FIG.
  • the refrigerant flowing through the refrigerant circuit 15 flows into the first header 60
  • the refrigerant is divided into two first long pipes 24a.
  • the refrigerant that has flowed into the first long pipe 24a flows into the first straight pipe 23a via the first hairpin portion 25a.
  • the refrigerant flows into the second straight pipe 23b via the first straight pipe 23a and the connecting member 40.
  • the refrigerant flows into the second long tube 24b from the second straight tube 23b through the second hairpin portion 25b.
  • the refrigerant that has flowed out of the two second long pipes 24 b flows into the fourth header 82 b shown in FIG. 19 via the second header 50 and the connection pipe 52.
  • the refrigerant is branched from the fourth header 82b to the six fourth heat transfer tubes 91b.
  • the refrigerant flowing into the fourth heat transfer tube 91b flows into the third heat transfer tube 91a via the header mechanism 80.
  • the refrigerant flowing through the six third heat transfer tubes 91a merges at the third header 82a and then flows out of the heat exchanger 6c.
  • the refrigerant that has flowed into the heat exchanger 6c is divided into two in the lower heat exchange part, reciprocates twice in the direction of the Y-axis arrow, and then is divided into six in the upper heat exchange part. Make one round trip in the direction.
  • the refrigerant flowing into the heat exchanger 6c circulates through the lower exchanger having a long one-pass distance, so that the heat transfer performance when the heat exchanger 6c functions as a condenser can be enhanced.
  • the heat exchanger 6c functions as an evaporator
  • the refrigerant flowing into the heat exchanger 6c has a high wetness, so that pressure loss can be suppressed even if the path is long, and deterioration of the evaporator performance can be suppressed.
  • the refrigerant flowing into the heat exchanger 6c is a gas-liquid two-phase refrigerant with high pressure loss and high dryness
  • the refrigerant flows through the heat transfer tube in the direction opposite to the path described with reference to FIG. . That is, the refrigerant that has flowed into the heat exchanger 6c is divided into six in the upper heat exchanging part, reciprocates once in the Y-axis arrow direction, and then is divided into two in the lower heat exchange part, and 2 in the Y-axis arrow direction. Make a round trip.
  • the refrigerant flowing into the heat exchanger 6c has a short path distance, it circulates through the upper exchanger having a large number of distributions, so that an increase in pressure loss is suppressed.
  • the heat exchanger 6c of the fourth embodiment includes a third heat transfer tube 91a and a fourth heat transfer tube 91b with a short path, a first straight tube 23a and a first long tube 24a with a long path, and a second straight tube 23b and a second heat transfer tube 91b.
  • a path can be configured corresponding to the state of the refrigerant flowing into the heat exchanger 6c.
  • the horizontal position of the distributor of the upper heat exchange unit and the distributor of the lower heat exchange unit coincide with each other, an increase in the size of the heat exchanger 6c is suppressed.
  • the horizontal positions of the distributors of the heat exchange units of the upper heat exchange unit and the lower heat exchange unit coincide with each other, work efficiency is improved in the manufacturing process of the heat exchanger 6c.
  • 1 refrigeration cycle device 2 heat source side unit, 3 load side unit, 4 compressor, 5 flow path switching device, 6, 6a to 6c heat exchanger, 7 expansion device, 10 heat source side blower, 11 load side heat exchanger, 12 load side blower, 13 control device, 15 refrigerant circuit, 21a first heat exchange part, 21b second heat exchange part, 22a first fin, 22b second fin, 23a first straight pipe, 23b second straight pipe, 24a 1st long pipe, 24b 2nd long pipe, 25a 1st hairpin part, 25b 2nd hairpin part, 40 connecting member, 41a, 41b joint, 42 U-shaped pipe, 50 2nd header, 51, 52 connecting pipe, 60th 1 header, 61 connection piping, 70a, 70b header pipe, 71 partition, 80 header mechanism, 81a, 81b header pipe, 82a third header, 2b fourth header, 83 connecting portion, 91a third heat transfer pipe, 91b fourth heat transfer pipe, 92 partition wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器は、複数の第1フィンと、複数の第1フィンに固定され、一方側で端部同士が接続された複数の第1伝熱管とを含む第1熱交換部と、複数の第2フィンと、複数の第2フィンに固定され、一方側で端部同士が接続された複数の第2伝熱管とを含み、第1熱交換部に対して送風方向に配置された第2熱交換部と、複数の第1伝熱管のうち第1直管と複数の第2伝熱管のうち第2直管との端部同士を他方側で接続する接続部材と、複数の第1伝熱管のうち、第1直管よりも長さが長い第1長管の他方側の端部と接続される第1ヘッダと、複数の第2伝熱管のうち、第2直管よりも長さが長い第2長管の他方側の端部と接続される第2ヘッダとを有し、接続部材が第1ヘッダおよび第2ヘッダよりも複数の第1フィンの端部および複数の第2フィンの端部に近い側に位置しているものである。

Description

熱交換器および冷凍サイクル装置
 本発明は、冷媒が空気と熱交換する熱交換器、および熱交換器を有する冷凍サイクル装置に関する。
 従来の熱交換器として、冷媒が流入してから流出するまでのパスの長さを長くした熱交換器が知られている(例えば、特許文献1参照)。特許文献1に開示された熱交換器において、風下熱交換ユニットおよび風上熱交換ユニットは、複数の流路が上下に2つに分類され、上側の複数の流路と下側の複数の流路とは冷媒の流通方向が反対方向になっている。そして、第1風下ヘッダ集合管には、風下熱交換ユニットの上側の複数の流路と下側の複数の流路とを接続する複数の接続用配管が設けられている。
 特許文献1に開示された熱交換器において、熱交換器が凝縮器として機能する場合、冷媒は、風上熱交換ユニットの上側の複数の流路に流入した後、第2風上ヘッダ集合管および第2風下ヘッダ集合管を経由して、風下熱交換ユニットの上側の複数の流路に流入する。続いて、冷媒は、第1風下ヘッダ集合管に流入すると、複数の接続用配管を経由して、風下熱交換ユニットの下側の複数の流路に流入する。その後、冷媒は、第2風下ヘッダ集合管および第2風上ヘッダ集合管を経由して、風上熱交換ユニットの下側の複数の流路に流入する。
特許第5679084号公報
 特許文献1の熱交換器では、冷媒の流通方向を反対方向に切り替える複数の接続用配管が第1風下ヘッダ集合管の外側に設けられているため、熱交換器が大きくなってしまう。
 本発明は、上記のような課題を解決するためになされたもので、大型化を抑制した熱交換器および冷凍サイクル装置を提供するものである。
 本発明に係る熱交換器は、一方向に沿って配置された複数の第1フィンと、前記複数の第1フィンに固定され、一方側で端部同士が接続された複数の第1伝熱管とを含む第1熱交換部と、前記一方向に沿って配置された複数の第2フィンと、前記複数の第2フィンに固定され、一方側で端部同士が接続された複数の第2伝熱管とを含み、前記第1熱交換部に対して送風方向に配置された第2熱交換部と、前記複数の第1伝熱管のうち第1直管と前記複数の第2伝熱管のうち第2直管との端部同士を他方側で接続する接続部材と、前記複数の第1伝熱管のうち、前記第1直管よりも前記一方向の長さが長い第1長管の他方側の端部と接続される第1ヘッダと、前記複数の第2伝熱管のうち、前記第2直管よりも前記一方向の長さが長い第2長管の他方側の端部と接続される第2ヘッダと、を有し、前記接続部材が前記第1ヘッダおよび前記第2ヘッダよりも前記複数の第1フィンの端部および前記複数の第2フィンの端部に近い側に位置しているものである。
 本発明に係る冷凍サイクル装置は、上記の熱交換器と、冷媒を圧縮して吐出する圧縮機と、前記冷媒を膨張させる絞り装置と、前記冷媒が空調対象空間の空気と熱交換する負荷側熱交換器と、を有するものである。
 本発明によれば、冷媒の流通方向を反対方向に切り替える接続部材が第1ヘッダおよび第2ヘッダよりも複数の第1フィンの端部および複数の第2フィンの端部に近い側に位置しているため、熱交換器が大きくなることを抑制することができる。
本発明の実施の形態1の熱交換器を含む冷凍サイクル装置の一構成例を示す冷媒回路図である。 図1に示した冷凍サイクル装置が暖房運転を行う場合の冷媒の流れを示す図である。 図1に示した熱交換器の一構成例を示す外観斜視図である。 図3に示した熱交換器の側面図である。 図3に示したヘッダ管の構成例を示す側面透視図である。 図3に示した熱交換器の上面図である。 冷房運転時の熱交換器における冷媒の流れを示す図である。 暖房運転時の熱交換器における冷媒の流れを示す図である。 図1に示した第1伝熱管が扁平管である場合と円管である場合との違いを説明するための模式図である。 図3に示した第1伝熱管が扁平管である場合の構成例を示す断面図である。 図3に示した接続部材の上面模式図である。 本発明の実施の形態2の熱交換器の一構成例を示す外観斜視図である。 図12に示した熱交換器が凝縮器として機能する場合の冷媒の状態を示す図である。 比較例の熱交換器について、冷媒の流れを説明するための模式図である。 図12に示した熱交換器について、冷媒の流れを説明するための模式図である。 図12に示した第1伝熱管が円管の場合と扁平管の場合とを比較して説明する図である。 本発明の実施の形態3の熱交換器の一構成例を示す外観斜視図である。 図17に示したヘアピン部を含む要部の拡大図である。 本発明の実施の形態4の熱交換器の一構成例を示す外観模式図である。 図19に示したヘッダ機構の構成例を示す上面透視図である。 図20に示した線分AAの断面図である。 図19に示した熱交換器について、冷媒の流れを説明するための模式図である。
実施の形態1.
 本実施の形態1の熱交換器を適用した冷凍サイクル装置の構成を説明する。図1は、本発明の実施の形態1の熱交換器を含む冷凍サイクル装置の一構成例を示す冷媒回路図である。冷凍サイクル装置1は、熱源側ユニット2と、負荷側ユニット3とを有する。熱源側ユニット2は、圧縮機4と、流路切替装置5と、熱交換器6と、絞り装置7と、熱源側送風機10と、制御装置13とを有する。負荷側ユニット3は、負荷側熱交換器11と、負荷側送風機12とを有する。圧縮機4、熱交換器6、絞り装置7および負荷側熱交換器11が冷媒配管で接続され、冷媒が循環する冷媒回路15が構成される。
 圧縮機4は、冷媒回路15を循環する冷媒を圧縮して吐出する。圧縮機4は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機および往復圧縮機等の圧縮機である。流路切替装置5は、圧縮機4の吐出側に設けられている。流路切替装置5は、暖房運転および冷房運転の運転モードにしたがって、冷媒の流れを切り替える。具体的には、流路切替装置5は、冷房運転時には圧縮機4と熱交換器6とを接続するように流路を切り替え、暖房運転時には圧縮機4と負荷側熱交換器11とを接続するように流路を切り替える。流路切替装置5は、例えば、四方弁である。
 熱交換器6は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。熱交換器6が蒸発器として機能する場合、熱交換器6において、絞り装置7から流出された低温低圧の冷媒と熱源側送風機10から供給される空気とが熱交換し、低温低圧の液冷媒または二相冷媒が蒸発する。一方、熱交換器6が凝縮器として機能する場合、熱交換器6において、圧縮機4から吐出された高温高圧の冷媒と熱源側送風機10から供給される空気とが熱交換し、高温高圧のガス冷媒が凝縮する。熱交換器6の構成については、後で詳細に説明する。
 絞り装置7は、熱交換器6または負荷側熱交換器11から流出した冷媒を膨張させて減圧する。絞り装置7は、例えば、冷媒の流量を調整できる電動膨張弁である。絞り装置7は、電動膨張弁に限らず、受圧部にダイアフラムを採用した機械式膨張弁、または、キャピラリーチューブ等の機器であってもよい。
 熱源側送風機10は、熱交換器6に付設されている。熱源側送風機10は、回転することで熱交換器6に空気を供給する。熱源側送風機10は、例えば、プロペラファンおよびターボファン等のファンである。熱源側送風機10の回転数によって熱交換器6の凝縮能力および蒸発能力が調整される。
 制御装置13は、プログラムを記憶するメモリ(不図示)と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)(不図示)とを有する。制御装置13は、例えば、マイクロコンピュータである。制御装置13は、圧縮機4、流路切替装置5、絞り装置7、熱源側送風機10、負荷側送風機12および図に示さない各種センサと通信接続される。
 制御装置13は、ユーザからの運転指示と、図に示さない各種センサの測定値と、必要とする冷房能力および暖房能力とに応じて、圧縮機4、流路切替装置5、絞り装置7、熱源側送風機10および負荷側送風機12の各機器を制御する。具体的には、制御装置13は、必要な冷房能力および暖房能力に応じて、圧縮機4の駆動周波数および絞り装置7の開度を制御する。また、制御装置13は、必要な冷房能力および暖房能力に応じて、熱源側送風機10および負荷側送風機12の回転数を制御する。制御装置13は、運転モードに応じて流路切替装置5の切り替えを制御する。
 負荷側熱交換器11は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。負荷側熱交換器11が凝縮器として機能する場合、負荷側熱交換器11において、圧縮機4から吐出された高温高圧の冷媒と負荷側送風機12から供給される空気とが熱交換し、高温高圧のガス冷媒が凝縮する。一方、負荷側熱交換器11が蒸発器として機能する場合、負荷側熱交換器11において、絞り装置7から流出された低温低圧の冷媒と負荷側送風機12から供給される空気とが熱交換し、低温低圧の液冷媒または二相冷媒が蒸発する。
 負荷側熱交換器11は、例えば、フィン・アンド・チューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器およびプレート熱交換器等の熱交換器である。本実施の形態1では、負荷側熱交換器11は、空気と冷媒とで熱交換を行う熱交換器である。負荷側送風機12の回転数によって負荷側熱交換器11の凝縮能力および蒸発能力が調整される。
 負荷側送風機12は、負荷側熱交換器11に付設されている。負荷側送風機12は、回転することで負荷側熱交換器11に空気を供給する。負荷側送風機12は、例えば、プロペラファン、クロスフローファン、シロッコファンおよびターボファン等のファンである。
 なお、本実施の形態1では、制御装置13が熱源側ユニット2に設けられている場合で説明するが、制御装置13の設置場所は熱源側ユニット2に限らない。例えば、制御装置13が負荷側ユニット3に設けられていてもよい。また、絞り装置7が熱源側ユニット2に設けられている場合で説明するが、絞り装置7は負荷側ユニット3に設けられていてもよい。
 図1では、1台の負荷側ユニット3と1台の熱源側ユニット2とが接続された構成を示しているが、熱源側ユニット2および負荷側ユニット3の台数および接続構成は図1に示す場合に限らない。冷凍サイクル装置1は、複数の熱源側ユニット2と複数の負荷側ユニット3とを有していてもよい。複数の熱源側ユニット2と複数の負荷側ユニット3とが並列または直列に接続されていてもよく、1台の熱源側ユニット2に複数の負荷側ユニット3が並列または直列に接続されていてもよい。
 ここで、冷凍サイクル装置1の運転モードにおける冷媒の流れを説明する。
 [冷房運転]
 図1を参照して、冷凍サイクル装置1が冷房運転を行う場合の冷媒の流れを説明する。図1には、冷媒回路15において冷媒の流通方向を矢印で示す。冷凍サイクル装置1が冷房運転を行う場合、制御装置13は、圧縮機4から吐出される冷媒が熱交換器6に流入するように、流路切替装置5の流路を切り替える。低温低圧の冷媒が圧縮機4によって圧縮されることで、高温高圧のガス冷媒が圧縮機4から吐出される。圧縮機4から吐出されたガス冷媒は、流路切替装置5を経由して、熱交換器6に流入する。熱交換器6に流入した冷媒は、熱交換器6において、空気と熱交換することで凝縮し、低温高圧の液冷媒となって熱交換器6から流出する。
 熱交換器6から流出した液冷媒は、絞り装置7によって低温低圧の液冷媒になる。液冷媒は、負荷側熱交換器11に流入する。負荷側熱交換器11に流入した冷媒は、負荷側熱交換器11において、空気と熱交換することで蒸発し、低温低圧のガス冷媒となって負荷側熱交換器11から流出する。負荷側熱交換器11において、冷媒が空調対象空間の空気から吸熱することで、空調対象空間の空気が冷却される。負荷側熱交換器11から流出した冷媒は、流路切替装置5を介して圧縮機4に吸入される。冷凍サイクル装置1が冷房運転を行っている間、圧縮機4から吐出する冷媒が、熱交換器6、絞り装置7および負荷側熱交換器11を順に流通した後、圧縮機4に吸引されるまでのサイクルが繰り返される。
 [暖房運転]
 次に、冷凍サイクル装置1が暖房運転を行う場合の冷媒の流れを説明する。図2は、図1に示した冷凍サイクル装置が暖房運転を行う場合の冷媒の流れを示す図である。図2には、冷媒回路15において冷媒の流通方向を矢印で示す。冷凍サイクル装置1が暖房運転を行う場合、制御装置13は、圧縮機4から吐出される冷媒が負荷側熱交換器11に流入するように、流路切替装置5の流路を切り替える。
 低温低圧の冷媒が圧縮機4によって圧縮されることで、高温高圧のガス冷媒が圧縮機4から吐出される。圧縮機4から吐出された高温高圧のガス冷媒は、流路切替装置5を経由して、負荷側熱交換器11に流入する。負荷側熱交換器11に流入した冷媒は、負荷側熱交換器11において、空気と熱交換することで凝縮され、高温高圧の液冷媒となって負荷側熱交換器11から流出する。負荷側熱交換器11において、冷媒から空調対象空間の空気に放熱することで、空調対象空間の空気が暖められる。
 負荷側熱交換器11から流出した高温高圧の液冷媒は、絞り装置7によって低温低圧の液冷媒になる。液冷媒は、熱交換器6に流入する。熱交換器6に流入した冷媒は、熱交換器6において、空気と熱交換することで蒸発し、低温低圧のガス冷媒となって熱交換器6から流出する。熱交換器6から流出した冷媒は、流路切替装置5を介して圧縮機4に吸入される。冷凍サイクル装置1が暖房運転を行っている間、圧縮機4から吐出される冷媒が、負荷側熱交換器11、絞り装置7および熱交換器6を順に流通した後、圧縮機4に吸引されるまでのサイクルが繰り返される。
 [熱交換器6の構成]
 次に、図1に示した熱交換器6の構成を説明する。図3は、図1に示した熱交換器の一構成例を示す外観斜視図である。図4は、図3に示した熱交換器の側面図である。図3に示すように、熱交換器6は、第1熱交換部21a、第2熱交換部21b、接続部材40、第2ヘッダ50および第1ヘッダ60を有する。図3に示す矢印は、熱源側送風機10から供給される空気の流通方向である送風方向を示す。図3は、第1熱交換部21aが風上に配置され、第2熱交換部21bが風下に配置されていることを示す。
 第1熱交換部21aは、複数の第1フィン22aと、複数の第1フィン22aに固定された複数の第1伝熱管と、ヘッダ管70aとを有する。複数の第1伝熱管は、第1直管23aおよび第1長管24aを有する。第1長管24aは、Y軸矢印方向の長さが第1直管23aよりも長い。ヘッダ管70aは第1直管23aおよび第1長管24aの端部同士を一方側(Y軸矢印方向)で接続する。第1長管24aの2つの端部のうち、一方の端部がヘッダ管70aと接続され、他方の端部が直接に第1ヘッダ60と接続されている。図3に示す構成例では、第1熱交換部21aは、8組の第1直管23aおよび第1長管24aを有する。
 第2熱交換部21bは、複数の第2フィン22bと、複数の第2フィン22bに固定された複数の第2伝熱管と、ヘッダ管70bとを有する。複数の第2伝熱管は、第2直管23bおよび第2長管24bを有する。第2長管24bは、Y軸矢印方向の長さが第2直管23bよりも長い。ヘッダ管70bは第2直管23bおよび第2長管24bの端部同士を一方側(Y軸矢印方向)で接続する。第2長管24bの2つの端部のうち、一方の端部がヘッダ管70bと接続され、他方の端部が直接に第2ヘッダ50と接続されている。図3に示す構成例では、第2熱交換部21bは、8組の第2直管23bおよび第2長管24bを有する。
 接続部材40は、第1直管23aと結合されたジョイント41aと、第2直管23bと結合されたジョイント41bと、ジョイント41aおよび41bを接続するU字管42とを有する。具体的には、ジョイント41aは、第1直管23aの2つの端部のうち、ヘッダ管70aと接続される端部とは反対側(Y軸矢印の反対方向)の端部と接続されている。ジョイント41bは、第2直管23bの2つの端部のうち、ヘッダ管70bと接続される端部とは反対側の端部と接続されている。U字管42は、断面が円形状の円管である。接続部材40は、ジョイント41aおよび41bとU字管42とが一体になった構成であってもよい。
 接続部材40は、第1直管23aおよび第2直管23bを水平面(XY座標面)に平行に接続してもよいが、図3に示すように、水平面に対して傾いた面に沿って接続してもよい。つまり、接続部材40は、垂直方向(Z軸矢印方向)と交差する面に沿って第1直管23aおよび第2直管23bを接続してもよい。
 なお、図3および図4は、第1熱交換部21aが8組の第1直管23aおよび第1長管24aを有し、第2熱交換部21bが8組の第2直管23bおよび第2長管24bを有する構成を示しているが、組の数は8組に限らない。また、本実施の形態1では、第1直管23aおよび第1長管24aと第2直管23bおよび第2長管24bとの各伝熱管が扁平管の場合で説明するが、扁平管に限らない。第1フィン22a、第2フィン22bおよび扁平管の材質は、例えば、アルミニウムである。
 第2ヘッダ50および第1ヘッダ60は冷媒を分配および収集する分配器の役目を果たす。第2ヘッダ50は、熱交換器6が凝縮器として機能する場合に熱交換器6の冷媒入口となり、熱交換器6が蒸発器として機能する場合に熱交換器6の冷媒出口となる。第2ヘッダ50は、流路切替装置5と接続される接続配管51を有する。第2ヘッダ50は複数の第2長管24bと直接に接続されている。第2ヘッダ50は、冷凍サイクル装置1が冷房運転を行う際、圧縮機4の吐出口から流路切替装置5を介して流入するガス冷媒を複数の第2長管24bに分配する。第2ヘッダ50は、冷凍サイクル装置1が暖房運転を行う際、複数の第2長管24bから流出する冷媒を合流させ、合流させた冷媒を流路切替装置5を介して圧縮機4の吸入口に流出する。第2ヘッダ50の材質は第2長管24bと同じ材質である。第2ヘッダ50の材質は、例えば、アルミニウムである。
 第1ヘッダ60は、熱交換器6が蒸発器として機能する場合に熱交換器6の冷媒入口となり、熱交換器6が凝縮器として機能する場合に熱交換器6の冷媒出口となる。第1ヘッダ60は、絞り装置7と接続される接続配管61を有する。第1ヘッダ60は複数の第1長管24aと直接に接続されている。第1ヘッダ60は、冷凍サイクル装置1が冷房運転を行う際、複数の第1長管24aから流出する冷媒を合流させ、合流させた冷媒を絞り装置7に流出する。第1ヘッダ60は、冷凍サイクル装置1が暖房運転を行う際、絞り装置7から流入する冷媒を複数の第1長管24aに分配する。第1ヘッダ60の材質は第1長管24aと同じ材質である。第1ヘッダ60の材質は、例えば、アルミニウムである。
 第2ヘッダ50、第1ヘッダ60、第1長管24aおよび第2長管24bの材質が全て同じ場合、第2ヘッダ50と複数の第2長管24bとのろう付け処理と、第1ヘッダ60と複数の第1長管24aとのろう付け処理とを一度で行うことができる。
 図5は、図3に示したヘッダ管の構成例を示す側面透視図である。ヘッダ管70aおよび70bは同様な構成であるため、ここでは、ヘッダ管70aの構成について説明する。図5に示すヘッダ管70aは、冷媒の流れる方向を調整する空間が設けられた筒状構造である。ヘッダ管70aの形状は、筒状に限らず、直方体形状であってもよい。
 ヘッダ管70aには、内部に設けられた空間を複数の区画に仕切る複数の隔壁71が垂直方向(Z軸矢印方向)に等間隔に設けられている。隔壁71で仕切られた複数の区画毎に第1直管23aおよび第1長管24aの端部同士が接続されている。この構成により、8組の第1直管23aおよび第1長管24aの各組において、第1直管23aと第1長管24aとの間で冷媒が流通することができる。
 ヘッダ管70aの材質は第1直管23aおよび第1長管24aと同じ材質である。ヘッダ管70bの材質は第2直管23bおよび第2長管24bと同じ材質である。ヘッダ管70aおよび70bの材質は、例えば、アルミニウムである。ヘッダ管70aおよび70bと、第1直管23aおよび第1長管24aと、第2直管23bおよび第2長管24bとの材質が全て同じ場合、ヘッダ管70aおよび70bとこれらの伝熱管とのろう付け処理を一度で行うことができる。
 ここで、熱交換器6における冷媒の流路について説明する。図3および図4に示すように、第1長管24aの2つの端部のうち、一方の端部が第1ヘッダ60と接続され、他方の端部がヘッダ管70aを介して第1直管23aと接続されている。第1直管23aは、ヘッダ管70aとは反対側で接続部材40と接続されている。接続部材40は、第1直管23aとは反対側で、第2直管23bと接続されている。第2直管23bは、2つの端部のうち、一方の端部が接続部材40と接続され、他方の端部はヘッダ管70bを介して第2長管24bと接続されている。第2長管24bは、ヘッダ管70bとは反対側で第2ヘッダ50と接続されている。この構成により、熱交換器6に流入する冷媒は、熱交換器6のY軸矢印方向に2往復して熱交換器6から流出する。
 図6は、図3に示した熱交換器の上面図である。一方向(Y軸方向矢印)において、第1直管23aとヘッダ管70aとの接続部材から第1直管23aとジョイント41bとの接続部材までの長さをL1とする。また、一方向(Y軸方向矢印)において、第1長管24aとヘッダ管70aとの接続部材から第1長管24aと第1ヘッダ60との接続部材までの長さをL2とする。図6に示すように、長さL1は長さL2よりも短い。この長さの関係は、第2直管23bおよび第2長管24bについても同様である。
 上述の構成により、第1直管23aとジョイント41aとの接続位置は、第1長管24aと第1ヘッダ60との接続位置よりも複数の第1フィン22aに近い。また、第2直管23bとジョイント41bとの接続位置は、第2長管24bと第2ヘッダ50との接続位置よりも複数の第2フィン22bに近い。その結果、図6に示すように、ジョイント41aおよび41bと第2ヘッダ50および第1ヘッダ60との間のスペースに、U字管42を設けることができる。
 次に、熱交換器6における冷媒の流れを説明する。
[冷房運転]
 冷凍サイクル装置1が冷房運転を行う場合について、熱交換器6の冷媒の流れを、図7を参照して説明する。図7は、冷房運転時の熱交換器における冷媒の流れを示す図である。図7では、第1ヘッダ60および第2ヘッダ50を図に示すことを省略している。また、図7では、最上段の第2直管23bおよび第2長管24bを図に示し、他の第2直管23bおよび第2長管24bを図に示すことを省略している。さらに、図7では、冷媒が流れる方向を実線の矢印で示す。
 圧縮機4から吐出された高温高圧のガス冷媒が、図3に示した接続配管51を介して第2ヘッダ50に流入する。第2ヘッダ50に流入した冷媒は、複数の第2長管24bに分流する。図7では、最上段の第2長管24bに流れ込む冷媒を実線矢印で示している。第2長管24bに流入した冷媒は、Y軸矢印方向に流通してヘッダ管70bに到達する。冷媒は、ヘッダ管70bを経由して第2直管23bに流入する。冷媒は第2直管23bをY軸矢印と反対方向に流通して接続部材40に到達する。冷媒は、接続部材40を経由して第1直管23aに流入する。冷媒は第1直管23aをY軸矢印方向に流通してヘッダ管70aに到達する。冷媒はヘッダ管70aを経由して第1長管24aに流入する。冷媒は第1長管24aをY軸矢印と反対方向に流通して第1ヘッダ60に到達する。複数の第1長管24aから冷媒が図3に示した第1ヘッダ60に流入する。第1ヘッダ60で合流した冷媒は接続配管61を経由して熱交換器6から流出する。
[暖房運転]
 冷凍サイクル装置1が暖房運転を行う場合について、熱交換器6の冷媒の流れを、図8を参照して説明する。図8は、暖房運転時の熱交換器における冷媒の流れを示す図である。図8では、図7と同様に、第1ヘッダ60および第2ヘッダ50を図に示すことを省略している。また、図8についても、最上段の第2直管23bおよび第2長管24bを図に示し、他の第2直管23bおよび第2長管24bを図に示すことを省略している。さらに、図8では、冷媒が流れる方向を実線の矢印で示す。
 絞り装置7から流出した液冷媒または気液二相冷媒が、図3に示した接続配管61を介して第1ヘッダ60に流入する。第1ヘッダ60に流入した冷媒は、複数の第1長管24aに分流する。図8では、最上段の第1長管24aに流れ込む冷媒を実線矢印で示している。第1長管24aに流入した冷媒は、Y軸矢印方向に流通してヘッダ管70aに到達する。冷媒は、ヘッダ管70aを経由して第1直管23aに流入する。冷媒は第1直管23aをY軸矢印と反対方向に流通して接続部材40に到達する。冷媒は、接続部材40を経由して第2直管23bに流入する。冷媒は第2直管23bをY軸矢印方向に流通してヘッダ管70bに到達する。冷媒はヘッダ管70bを経由して第2長管24bに流入する。冷媒は第2長管24bをY軸矢印と反対方向に流通して第2ヘッダ50に到達する。複数の第2長管24bから冷媒が図3に示した第2ヘッダ50に流入する。第2ヘッダ50で合流した冷媒は接続配管51を経由して熱交換器6から流出する。
 冷凍サイクル装置1が冷房運転および暖房運転のいずれの運転モードであっても、冷媒は熱交換器6をY軸矢印方向に2往復する。そのため、熱交換器6において、冷媒は室外空気と十分に熱交換を行うことができる。
 ここで、第1直管23aおよび第1長管24aと第2直管23bおよび第2長管24bとが扁平管である場合の利点を説明する。図9は、図1に示した第1伝熱管が扁平管である場合と円管である場合との違いを説明するための模式図である。ここでは、垂直方向に隣り合う2つの伝熱管が第1直管23aおよび第1長管24aの場合で説明する。
 図9に示す扁平管の断面積と円管の断面積とは同じである。また、比較のために、図9において、垂直方向(Z軸矢印方向)に対して、扁平管の第1直管23aおよび円管の第1直管23aの各伝熱管の断面の中心位置を一致させている。また、垂直方向に対して、扁平管の第1長管24aおよび円管の第1長管24aの各伝熱管の断面の中心位置を一致させている。
 一般的に、風量Q、通過風速v、形状係数Cおよび通過面積Aとすると、2つの伝熱管の間を通り抜ける空気の通風抵抗ΔPは、次式で表される。ただし、v=Q/Aである。
Figure JPOXMLDOC01-appb-M000001
 形状係数Cを一定とすると、式(1)に影響を及ぼす値は通過面積Aである。第1直管23aおよび第1長管24aの間の垂直方向の距離として、扁平管の場合の距離をHfとし、円管の場合の距離をHcとする。距離Hf>距離Hcであることは、図9から明らかである。第1直管23aおよび第1長管24aのY軸矢印方向の長さWは扁平管の場合も円管の場合も同じ値とする。扁平管の場合の通過面積Afは、Af=W×Hfで表される。円管の場合の通過面積Acは、Ac=W×Hcで表される。距離Hf>距離Hcなので、通過面積Af>通過面積Acとなる。
 扁平管の場合の通風速度をvfとし、円管の場合の通風速度をvcとする。扁平管の場合の通風速度vfは、vf=Q/Afと表される。円管の場合の通風速度vcは、vc=Q/Acと表される。通過面積Af>通過面積Acなので、通風速度vf<通風速度vcとなる。扁平管の場合の通風抵抗をΔPfとし、円管の場合の通風抵抗をΔPcとすると、通風速度vfおよびvcの大小関係と式(1)とから、通風抵抗ΔPf<通風抵抗ΔPcとなる。よって、扁平管の方が円管よりも通風抵抗が小さい。伝熱管が扁平管である場合に、通風抵抗が円管の場合と同じになるまで、放熱フィンの枚数を増やすことができる。その結果、扁平管の場合は円管の場合よりも伝熱性能が向上する。
 また、扁平管は、冷媒を複数に分流する複数の流路を有する構成であってもよい。図10は、図3に示した第1伝熱管が扁平管である場合の構成例を示す断面図である。図10は、第1直管23aが扁平管である場合の一例を示す。図10に示すように、第1直管23aは、冷媒の流通方向に平行な複数の流路pd1~pd6を有する。流路の数が6の場合で説明するが、流路の数は6に限定されない。
 本実施の形態1において、伝熱管が図10に示す扁平管である場合の接続部材40の利点を説明する。図11は、図3に示した接続部材の上面模式図である。図10に示すように、第1直管23aに供給される空気の流れる方向がX軸矢印方向と反対方向である場合、風上側の流路pd6を流れる冷媒の熱交換効率が最も高く、風下側の流路pd1を流れる冷媒の熱交換効率が最も低くなると考えられる。つまり、複数の流路pd1~pd6を流れる冷媒のうち、流路pd6を流れる冷媒の温度が最も低く、流路pd1を流れる冷媒の温度が最も高くなる。
 これに対して、本実施の形態1では、複数の流路pd1~pd6に分流する冷媒間に温度のばらつきがあっても、図11に示すように、複数に分流する冷媒はジョイント41aで合流した後、1本の円管のU字管42を流れる。そのため、冷媒がU字管42を流れる間に、冷媒間の温度差が低減し、冷媒の温度が均一になる。
 本実施の形態1の熱交換器6は、接続部材40が第1ヘッダ60および第2ヘッダ50よりも複数の第1フィン22aの端部および複数の第2フィン22bの端部に近い側に位置しているものである。
 本実施の形態1では、第1長管24aは直接に第1ヘッダ60に接続され、第2長管24bは直接に第2ヘッダ50に接続されている。また、第1直管23aの長さが第1長管24aよりも短く、第2直管23bの長さが第2長管24bよりも短い構成である。第1直管23aおよび第1長管24aの長さの差分と第2直管23bおよび第2長管24bの長さの差分とで形成されたスペースに、冷媒の流通方向を反対方向に切り替える接続部材40を設けることができる。比較例として、第1直管23aの長さを第1長管24aよりも長くし、第2直管23bの長さを第2長管24bよりも長くしてそれぞれの配管を分配器に貫通させ、冷媒の流通方向を反対方向に切り替える構成を分配器の外側に設ける場合が考えられる。比較例では、第1直管23aの長さが、分配器を貫通して外側に出るまでの長さだけ、第1長管24aよりも長くなってしまう。第1直管23aと同様に、分配器を貫通して外側に出るまでの長さだけ、第2直管23bの長さが第2長管24bよりも長くなってしまう。また、冷媒の流通方向を反対方向に切り替える構成が分配器の外側に設けられるため、その切り替え構成の分だけ、熱交換器が、図3に示すY軸矢印方向に大きくなってしまう。これに対して、本実施の形態1では、冷媒の流通方向を反対方向に切り替える構成が、分配器の外側ではなく、分配器よりも熱交換器6の中心に近い側に設けられている。そのため、熱交換器6における冷媒流路の長さを確保できるだけでなく、図3に示すY軸矢印方向に熱交換器6が大きくなることを抑制することができる。
 また、本実施の形態1では、第1直管23a、接続部材40および第2直管23bの組み合わせを垂直方向(Z軸矢印方向)にいくつ設けるかによって、パスの長さを自由に変えることができるため、パス設計の自由度が向上する。
実施の形態2.
 本実施の形態2の熱交換器は、実施の形態1の熱交換器よりも、熱交換機能を向上させたものである。本実施の形態2では、実施の形態1と同様な構成についての詳細な説明を省略する。
 本実施の形態2の熱交換器の構成を説明する。図12は、本発明の実施の形態2の熱交換器の一構成例を示す外観斜視図である。第1熱交換部21aにおいて、垂直方向(Z軸矢印方向)に隣り合う2組の第1直管23aおよび第1長管24aに注目すると、2つの第1長管24aが垂直方向に隣り合って配置されている。第2熱交換部21bについても、第1熱交換部21aと同様に、垂直方向に隣り合う2組の一対の第2直管23bおよび第2長管24bに注目すると、2つの第2長管24bが垂直方向に隣り合って配置されている。
 そのため、Y軸方向の長さが第1長管24aよりも短い第1直管23aも他の第1直管23aと垂直方向に隣り合って配置されている。第2直管23bも他の第2直管23bと垂直方向に隣り合って配置されている。垂直方向に隣り合う2つの接続部材40を間に挟む2つの第2長管24bの高さをH1とすると、高さH1は、2つの第2長管24bが1つの接続部材40を間に挟む場合の高さよりも広い。垂直方向に隣り合う2つの接続部材40を間に挟む2つの第1長管24aの高さについても、高さH1と同等である。
 熱交換器6aの製造工程において、作業者は、第1直管23aおよび第2直管23bに接続部材40を取り付ける際、高さH1が広いので、取り付け易い。そのため、接続部材取り付けの作業効率が向上する。
 次に、熱交換器6aの熱交換器性能について説明する。ここでは、熱交換器6aが凝縮器として機能する場合で説明する。図13は、図12に示した熱交換器が凝縮器として機能する場合の冷媒の状態を示す図である。図3に示した熱交換器6を比較例とする。図14は、比較例の熱交換器について、冷媒の流れを説明するための模式図である。図15は、図12に示した熱交換器について、冷媒の流れを説明するための模式図である。
 図13の縦軸は温度を示し、横軸は熱交換器6aの位置を示す。図13は、熱交換器6aに冷媒入口Pinから冷媒出口Poutまでの経路における、空気温度Tairおよび冷媒温度Treの変化を示す。冷媒入口Pinは第2ヘッダ50に相当し、冷媒出口Poutは第1ヘッダ60に相当する。図13に示すように、冷媒は過熱ガス状態STgで冷媒入口Pinから熱交換器6aに流入すると、空気に放熱して温度が低下し、気液二相状態STlgになる。続いて、冷媒は過冷却され液状態STlになり、冷媒出口Poutから流出する。
 図14に示すように、比較例の熱交換器6では、第1直管23aおよび第1長管24aが垂直方向で隣り合い、第2直管23bおよび第2長管24bも垂直方向で隣り合う構成である。第2熱交換部21bに注目すると、第2長管24bに高温の冷媒が流通し、第2直管23bに中温の冷媒が流通する。垂直方向に隣り合う第2直管23bおよび第2長管24bの各伝熱管に流れる冷媒の温度差によって、冷媒間で熱干渉が生じる。また、第1熱交換部21aに注目すると、第1直管23aに中温の冷媒が流通し、第1長管24aに低温の冷媒が流通する。そのため、垂直方向に隣り合う第1直管23aおよび第1長管24aの各伝熱管に流れる冷媒の温度差によって、冷媒間で熱干渉が生じる。これらの熱干渉によって、熱交換器性能が低下してしまう。
 一方、図15に示すように、熱交換器6aでは、2つの第1長管24aが垂直方向で隣り合い、2つの第2長管24bが垂直方向で隣り合う構成である。第2熱交換部21bに注目すると、高温の冷媒が流通する2つの第2長管24bが垂直方向で隣り合っている。また、第1熱交換部21aに注目すると、低温の冷媒が流通する2つの第1長管24aが垂直方向で隣り合っている。比較的温度の近い冷媒が流れる2つの伝熱管が垂直方向で隣り合うことで、熱干渉に起因する熱交換のロスが低減する。その結果、熱交換器性能の低下が抑制される。
 なお、図15を参照して説明した構成と同様に、2つの第1直管23aが垂直方向で隣り合い、2つの第2直管23bが垂直方向で隣り合う構成の場合にも、熱交換のロスが低減する効果が得られる。
 また、本実施の形態2においても、第1直管23aおよび第1長管24aと第2直管23bおよび第2長管24bとは、円管でもよいが、扁平管である場合の利点を説明する。ここでは、第1長管24aの場合で説明する。図16は、図12に示した第1伝熱管が円管の場合と扁平管の場合とを比較して説明する図である。
 垂直方向に隣り合う2つの第1長管24aの距離Hbとして、第1長管24aが扁平管である場合を距離Hbf1とする。また、第1長管24aが円管である場合の距離Hbを距離Hbc1とする。図16に示すように、距離Hbf1は距離Hbc1よりも大きい。熱交換器6aの製造工程において、第1長管24aを第1ヘッダ60に取り付けるための穴を第1ヘッダ60に加工する際、距離Hbが近い場合、2つの穴がつながらないように注意する必要がある。また、第1ヘッダ60に設けた穴に第1長管24aをろう付けする際、距離Hbが近すぎると、2つ目の第1長管24aを穴に挿入してろうを塗布する際、1つ目の第1長管24aが作業の妨げになる。よって、距離Hbが距離Hbc1よりも大きい距離Hbf1の扁平管の方が、円管の場合よりも作業効率が向上する。
 本実施の形態2の熱交換器6aは、2つの第1長管24aが垂直方向で隣り合い、2つの第2長管24bが垂直方向で隣り合うものである。本実施の形態2によれば、冷媒が熱交換器6aを流通する際、垂直方向の熱干渉が抑制され、熱交換器性能の低下を抑制できる。また、熱交換器6aの製造工程において、接続部材40の取り付けの作業効率が向上する。
実施の形態3.
 本実施の形態3の熱交換器は、冷媒の流通方向を反対方向に切り替える手段として、ヘッダ管の代わりに、ヘアピン構造が用いられたものである。本実施の形態3では、実施の形態1と同様な構成についての詳細な説明を省略する。また、本実施の形態3では、実施の形態1で説明した熱交換器6をベースにして説明するが、実施の形態2で説明した熱交換器を本実施の形態3に適用してもよい。
 図17は、本発明の実施の形態3の熱交換器の一構成例を示す外観斜視図である。図17に示すように、第1熱交換部21aは、一対の第1直管23aおよび第1長管24aの端部同士を接続する第1ヘアピン部25aを有する。第1熱交換部21aには、一対の第1直管23aおよび第1長管24aの組の数と同じ数の第1ヘアピン部25aが設けられている。第2熱交換部21bは、一対の第2直管23bおよび第2長管24bの端部同士を接続する第2ヘアピン部25bを有する。第2熱交換部21bには、一対の第2直管23bおよび第2長管24bの組の数と同じ数の第2ヘアピン部25bが設けられている。
 図18は、図17に示したヘアピン部を含む要部の拡大図である。図18に示すように、第2直管23bは、図17に示した第2ヘッダ50とは反対側で、第2ヘアピン部25bを介して第2長管24bと接続されている。第2ヘアピン部25bは、X軸矢印方向から見ると、Uの文字が横になった形状である。直線状の伝熱管が第2ヘアピン部25bでU字状に曲げられることで、図18に示すように、第2直管23b、第2ヘアピン部25bおよび第2長管24bが構成される。第1ヘアピン部25aの構成は、第2ヘアピン部25bと同様なため、その詳細な説明を省略する。
 なお、本実施の形態3では、第1ヘアピン部25aおよび第2ヘアピン部25bは垂直方向(Z軸矢印方向)に曲げられている場合で説明したが、水平方向に曲げられていてもよい。
 本実施の形態3の熱交換器6bは、冷媒の入口および出口の反対側に設けられた、冷媒の流通方向を反対方向に切り替える構成がヘアピン構造である。本実施の形態3では、ヘアピン構造の容積がヘッダ管の容積よりも小さいため、冷凍サイクル装置1に必要な冷媒量を削減できる。また、伝熱管をU字状に曲げてヘアピン構造を形成すれば、ヘッダ管が不要となり、熱交換器6の部品数を少なくすることができ、製造コストを低減できる。
実施の形態4.
 本実施の形態4の熱交換器は、冷媒の状態に応じて熱交換器性能を切り替えられる構成である。本実施の形態4では、実施の形態1と同様な構成についての詳細な説明を省略する。また、本実施の形態4では、熱交換器が実施の形態3で説明した熱交換器6aを含む構成の場合で説明するが、実施の形態1および2で説明した熱交換器を本実施の形態4に適用してもよい。
 本実施の形態4の熱交換器の構成を説明する。図19は、本発明の実施の形態4の熱交換器の一構成例を示す外観模式図である。熱交換器6cは、第1熱交換部21a、第2熱交換部21b、第1ヘッダ60および第2ヘッダ50の他に、第3ヘッダ82a、第4ヘッダ82bおよびヘッダ機構80を有する。第1熱交換部21aは、第1直管23aおよび第1長管24aの他に、複数の第1フィン22aと直行する複数の第3伝熱管91aを有する。第2熱交換部21bは、第2直管23bおよび第2長管24bの他に、複数の第2フィン22bと直行する複数の第4伝熱管91bを有する。図19では、一対の第3伝熱管91aおよび第4伝熱管91bが6組設けられている場合を示すが、組の数は6に限らない。
 複数の第3伝熱管91aの各伝熱管について、2つの端部のうち、一方の端部がヘッダ機構80と接続され、他方の端部が第3ヘッダ82aと接続されている。複数の第4伝熱管91bの各伝熱管について、2つの端部のうち、一方の端部がヘッダ機構80と接続され、他方の端部が第4ヘッダ82bと接続されている。第4ヘッダ82bと第2ヘッダ50とを接続する接続配管52が熱交換器6cに設けられている。
 図20は、図19に示したヘッダ機構の構成例を示す上面透視図である。図21は、図20に示した線分AAの断面図である。図20に示すように、ヘッダ機構80は、ヘッダ管81aおよび81bと、ヘッダ管81aおよび81bを接続する接続部83とを有する。
 図21に示すように、ヘッダ管81aおよび81bには、内部に設けられた空間を複数の区画に仕切る複数の隔壁92が垂直方向(Z軸矢印方向)に等間隔に設けられている。ヘッダ管81aでは、隔壁92で仕切られた複数の区画毎に第3伝熱管91aの端部が接続されている。ヘッダ管81bでは、隔壁92で仕切られた複数の区画毎に第4伝熱管91bの端部が接続されている。
 図20および図21に示すように、ヘッダ管81aおよび81bにおいて、垂直方向の高さが同じ位置で、水平方向(X軸矢印方向)に隣り合う区画同士が接続部83で接続されている。この構成により、6組の第3伝熱管91aおよび第4伝熱管91bの各組において、第3伝熱管91aと第4伝熱管91bとの間で冷媒が流通することができる。
 ヘッダ管81aの材質は第3伝熱管91aと同じ材質である。ヘッダ管81bの材質は第4伝熱管91bと同じ材質である。ヘッダ管81aおよび81b、ならびに接続部83の材質は、例えば、アルミニウムである。ヘッダ機構80、第3伝熱管91aおよび第4伝熱管91bの材質が全て同じ場合、ヘッダ機構80とこれらの伝熱管とのろう付け処理を一度で行うことができる。なお、第3ヘッダ82aは第1ヘッダ60と同様な構成であり、第4ヘッダ82bは第2ヘッダ50と同様な構成であるため、これらの詳細な説明を省略する。
 図19に示した熱交換器6cにおいて、破線DLよりも垂直方向(Z軸矢印方向)の上側を上部熱交換部と称し、破線DLよりも下側を下部熱交換部と称する。下部熱交換部は、実施の形態1で説明した熱交換器6と同様な構成である。上部熱交換部において、第3伝熱管91aが直接に第3ヘッダ82aと接続され、第4伝熱管91bが直接に第4ヘッダ82bと接続されている。下部熱交換部では、第1長管24aが直接に第1ヘッダ60と接続され、第2長管24bが直接に第2ヘッダ50と接続されているが、第1直管23aおよび第2直管23bは、いずれのヘッダとも接続されず、接続部材40を介して相互に接続されている。ただし、第1直管23aおよび第2直管23bの長さは第1長管24aおよび第2長管24bの長さよりも短いため、長さの差分で生じたスペースに接続部材40が設けられている。そのため、Y軸矢印方向に対して、第1ヘッダ60と第3ヘッダ82aとを同じ位置にすることができる。また、Y軸矢印方向に対して、第2ヘッダ50と第4ヘッダ82bとを同じ位置にすることができる。その結果、熱交換器6cが大きくなることを抑制できる。
 次に、熱交換器6cにおける冷媒の流れを説明する。熱交換器6cに流入する冷媒が、圧力損失が小さい低乾き度の気液二相冷媒である場合を説明する。図22は、図19に示した熱交換器について、冷媒の流れを説明するための模式図である。
 図22に示すように、冷媒回路15を流通する冷媒が第1ヘッダ60に流入すると、冷媒は2つの第1長管24aに分流する。第1長管24aに流入した冷媒は、第1ヘアピン部25aを経由して第1直管23aに流入する。続いて、冷媒は、第1直管23aおよび接続部材40を経由して第2直管23bに流入する。冷媒は、第2直管23bから第2ヘアピン部25bを介して第2長管24bに流入する。さらに、2つの第2長管24bから流出した冷媒は、第2ヘッダ50および接続配管52を介して図19に示した第4ヘッダ82bに流入する。
 上部熱交換部において、冷媒は第4ヘッダ82bから6つの第4伝熱管91bに分流する。第4伝熱管91bに流入した冷媒は、ヘッダ機構80を介して第3伝熱管91aに流入する。6つの第3伝熱管91aを流通した冷媒は、第3ヘッダ82aで合流した後、熱交換器6cから流出する。
 このようにして、熱交換器6cに流入した冷媒は、下部熱交換部において2つに分流され、Y軸矢印方向に2往復した後、上部熱交換部で6つに分流され、Y軸矢印方向に1往復する。この場合、熱交換器6cに流入した冷媒が、1つのパスの距離が長い下部交換器を流通することで、熱交換器6cが凝縮器として機能するときの伝熱性能を高めることができる。また、熱交換器6cが蒸発器として機能する場合、熱交換器6cに流入する冷媒は湿り度が高いので、パスが長くても圧力損失を抑制でき、蒸発器性能の低下を抑制できる。
 一方、熱交換器6cに流入する冷媒が圧力損失の大きい高乾き度の気液二相冷媒である場合、冷媒は、図22を参照して説明した経路とは逆方向に伝熱管を流通する。つまり、熱交換器6cに流入した冷媒は、上部熱交換部において6つに分流され、Y軸矢印方向に1往復した後、下部熱交換部で2つに分流され、Y軸矢印方向に2往復する。この場合、熱交換器6cに流入する冷媒は、1つのパスの距離が短いが、分配数の多い上部交換器を流通するので、圧力損失の増加が抑制される。
 本実施の形態4の熱交換器6cは、パスの短い第3伝熱管91aおよび第4伝熱管91bと、パスの長い第1直管23aおよび第1長管24aならびに第2直管23bおよび第2長管24bとが組み合わされたものである。本実施の形態4によれば、熱交換器6cに流入する冷媒の状態に対応してパスを構成することができる。また、上部熱交換部の分配器と下部熱交換部の分配器との水平方向の位置が一致しているので、熱交換器6cが大きくなることが抑制される。さらに、上部熱交換部および下部熱交換部の各熱交換部の分配器の水平方向の位置が一致しているので、熱交換器6cの製造工程において、作業効率が向上する。
 1 冷凍サイクル装置、2 熱源側ユニット、3 負荷側ユニット、4 圧縮機、5 流路切替装置、6、6a~6c 熱交換器、7 絞り装置、10 熱源側送風機、11 負荷側熱交換器、12 負荷側送風機、13 制御装置、15 冷媒回路、21a 第1熱交換部、21b 第2熱交換部、22a 第1フィン、22b 第2フィン、23a 第1直管、23b 第2直管、24a 第1長管、24b 第2長管、25a 第1ヘアピン部、25b 第2ヘアピン部、40 接続部材、41a、41b ジョイント、42 U字管、50 第2ヘッダ、51、52 接続配管、60 第1ヘッダ、61 接続配管、70a、70b ヘッダ管、71 隔壁、80 ヘッダ機構、81a、81b ヘッダ管、82a 第3ヘッダ、82b 第4ヘッダ、83 接続部、91a 第3伝熱管、91b 第4伝熱管、92 隔壁。

Claims (6)

  1.  一方向に沿って配置された複数の第1フィンと、前記複数の第1フィンに固定され、一方側で端部同士が接続された複数の第1伝熱管とを含む第1熱交換部と、
     前記一方向に沿って配置された複数の第2フィンと、前記複数の第2フィンに固定され、一方側で端部同士が接続された複数の第2伝熱管とを含み、前記第1熱交換部に対して送風方向に配置された第2熱交換部と、
     前記複数の第1伝熱管のうち第1直管と前記複数の第2伝熱管のうち第2直管との端部同士を他方側で接続する接続部材と、
     前記複数の第1伝熱管のうち、前記第1直管よりも前記一方向の長さが長い第1長管の他方側の端部と接続される第1ヘッダと、
     前記複数の第2伝熱管のうち、前記第2直管よりも前記一方向の長さが長い第2長管の他方側の端部と接続される第2ヘッダと、
    を有し、
     前記接続部材が前記第1ヘッダおよび前記第2ヘッダよりも前記複数の第1フィンの端部および前記複数の第2フィンの端部に近い側に位置している、
     熱交換器。
  2.  前記第1熱交換部において、2つの前記第1長管が前記一方向の垂直方向に隣り合って配置され、
     前記第2熱交換部において、2つの前記第2長管が前記垂直方向に隣り合って配置されている、
     請求項1に記載の熱交換器。
  3.  前記第1熱交換部に設けられ、前記複数の第1フィンに固定される第3伝熱管と、
     前記第2熱交換部に設けられ、前記複数の第2フィンに固定される第4伝熱管と、
     前記第3伝熱管および前記第4伝熱管の端部同士を一方側で接続するヘッダ機構と、
     前記第3伝熱管の他方側の端部と接続される第3ヘッダと、
     前記第4伝熱管の他方側の端部と接続される第4ヘッダと、
     前記第2ヘッダと前記第4ヘッダとを接続する接続配管と、
    をさらに有する、請求項1または2に記載の熱交換器。
  4.  前記一方向の垂直方向に隣り合う前記第1直管および前記第1長管の端部同士を前記一方側で接続する第1ヘアピン部と、
     前記垂直方向に隣り合う前記第2直管および前記第2長管の端部同士を前記一方側で接続する第2ヘアピン部と、をさらに有し、
     前記接続部材は、前記第1直管および前記第2直管の端部同士を前記他方側で、前記垂直方向と交差する面に沿って接続する、
     請求項1~3のいずれか1項に記載の熱交換器。
  5.  前記複数の第1伝熱管および前記複数の第2伝熱管のそれぞれの伝熱管は冷媒の流通方向に平行な複数の流路を有する扁平管であり、
     前記接続部材は断面が円形状の配管を有する、請求項1~4のいずれか1項に記載の熱交換器。
  6.  請求項1~5のいずれか1項に記載の熱交換器と、
     冷媒を圧縮して吐出する圧縮機と、
     前記冷媒を膨張させる絞り装置と、
     前記冷媒が空調対象空間の空気と熱交換する負荷側熱交換器と、
    を有する冷凍サイクル装置。
PCT/JP2018/004402 2018-02-08 2018-02-08 熱交換器および冷凍サイクル装置 WO2019155571A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019570216A JPWO2019155571A1 (ja) 2018-02-08 2018-02-08 熱交換器および冷凍サイクル装置
PCT/JP2018/004402 WO2019155571A1 (ja) 2018-02-08 2018-02-08 熱交換器および冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004402 WO2019155571A1 (ja) 2018-02-08 2018-02-08 熱交換器および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019155571A1 true WO2019155571A1 (ja) 2019-08-15

Family

ID=67548240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004402 WO2019155571A1 (ja) 2018-02-08 2018-02-08 熱交換器および冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JPWO2019155571A1 (ja)
WO (1) WO2019155571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032155A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 熱交換器、冷凍サイクル装置及び熱交換器の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287390A (ja) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp 熱交換器およびこれを用いた空気調和機
JP2010169289A (ja) * 2009-01-21 2010-08-05 Nikkei Nekko Kk 屈曲状熱交換器及びその製造方法
WO2015132963A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 熱交換器及び空気調和機
WO2016092655A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287390A (ja) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp 熱交換器およびこれを用いた空気調和機
JP2010169289A (ja) * 2009-01-21 2010-08-05 Nikkei Nekko Kk 屈曲状熱交換器及びその製造方法
WO2015132963A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 熱交換器及び空気調和機
WO2016092655A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 冷凍サイクル装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032155A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 熱交換器、冷凍サイクル装置及び熱交換器の製造方法

Also Published As

Publication number Publication date
JPWO2019155571A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6180338B2 (ja) 空気調和機
US10591192B2 (en) Heat exchange apparatus and air conditioner using same
WO2013160957A1 (ja) 熱交換器、室内機及び冷凍サイクル装置
WO2007017969A1 (ja) 空気調和機及び空気調和機の製造方法
WO2011005986A2 (en) Multichannel heat exchanger with differing fin spacing
WO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
EP4040084B1 (en) Refrigeration cycle device
EP3276282B1 (en) Heat exchanger and air conditioner
JP6533257B2 (ja) 空気調和機
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置
EP3825628B1 (en) Refrigeration cycle device
JP6987227B2 (ja) 熱交換器及び冷凍サイクル装置
JP7137092B2 (ja) 熱交換器
CN114502887B (zh) 冷冻装置
JP7414845B2 (ja) 冷凍サイクル装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
WO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
WO2023175926A1 (ja) 空気調和装置の室外機および空気調和装置
JP6698196B2 (ja) 空気調和機
JP7566155B2 (ja) 熱交換器及び空気調和装置
WO2023188421A1 (ja) 室外機およびそれを備えた空気調和装置
WO2023281656A1 (ja) 熱交換器および冷凍サイクル装置
JP7146077B2 (ja) 熱交換器及び空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905214

Country of ref document: EP

Kind code of ref document: A1