WO2021097967A1 - 一种空调器 - Google Patents
一种空调器 Download PDFInfo
- Publication number
- WO2021097967A1 WO2021097967A1 PCT/CN2019/125182 CN2019125182W WO2021097967A1 WO 2021097967 A1 WO2021097967 A1 WO 2021097967A1 CN 2019125182 W CN2019125182 W CN 2019125182W WO 2021097967 A1 WO2021097967 A1 WO 2021097967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- cavity
- header
- flat tube
- flow
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 215
- 238000005192 partition Methods 0.000 claims description 51
- 238000004891 communication Methods 0.000 claims description 22
- 238000003780 insertion Methods 0.000 claims description 12
- 230000037431 insertion Effects 0.000 claims description 11
- 238000007664 blowing Methods 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 74
- 230000008569 process Effects 0.000 description 71
- 239000007788 liquid Substances 0.000 description 46
- 239000012071 phase Substances 0.000 description 40
- 238000009826 distribution Methods 0.000 description 29
- 238000000926 separation method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 18
- 239000007791 liquid phase Substances 0.000 description 18
- 238000009827 uniform distribution Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000003437 trachea Anatomy 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0068—Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/027—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
- F28F9/0275—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0278—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/028—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
Definitions
- This application relates to the technical field of refrigeration equipment, and in particular to an air conditioner with uniform refrigerant flow.
- the heat pump type air conditioner is a kind of heating and cooling air conditioner that is often used.
- the air conditioner cools indoors and dissipates heat outdoors.
- heating in winter the direction is opposite to that in summer, that is, indoor heating and outdoor cooling.
- the air conditioner exchanges heat and cold between different environments through a heat pump.
- outdoor air, surface water, ground water, etc. are low-temperature heat sources, while indoor air is a high-temperature heat source.
- the role of heat pump air conditioning is to transfer heat from the outdoor environment to the indoor environment.
- microchannel heat exchangers Compared with finned tube heat exchangers, microchannel heat exchangers have significant advantages in terms of material cost, refrigerant charge, and heat flux density, which is in line with the development trend of energy-saving and environmentally friendly heat exchangers.
- the microchannel heat exchanger includes flat tubes, fins, headers, end caps and other components.
- the manifold of the multi-process micro-channel heat exchanger is also inserted with a partition plate, and the partition plate divides the collector pipe into a plurality of independent cavities, and each manifold cavity is connected with a certain number of flat tubes.
- the microchannel heat exchanger When the microchannel heat exchanger is used as an evaporator, when the gas-liquid two-phase refrigerant enters multiple flat tubes from the manifold cavity, due to the difference in the density and viscosity of the gas and liquid phases, the flowing refrigerant tends to be in gravity and viscosity. Separation occurs under the action of force, resulting in uneven refrigerant entering multiple flat tubes.
- the non-uniform refrigerant not only deteriorates the heat exchange efficiency, but also causes fluctuations in the refrigeration system. Therefore, it is an important issue to realize the uniform distribution of two-phase refrigerant in different flat tubes in the same process.
- this application proposes an air conditioner in which the refrigerant flow in different microchannels in the same flat tube and in different flat tubes in the same process is more uniform on the heat exchanger, and the heat exchange effect of the air conditioner is improved.
- An air conditioner comprising: a heat exchange circuit for heat exchange between indoor and outdoor, the heat exchange circuit is provided with a heat exchanger, the heat exchanger has an upward flow and a downward flow; the heat exchanger It includes: a flat tube with a plurality of microchannels in it for circulating refrigerant; a second header, which is connected to the flat tube in the downward flow process, for circulating the refrigerant; and a third header Tube, connected with the flat tube in the upward flow, used to circulate the refrigerant; connecting pipe, connected to the second header and the third header, used to circulate the refrigerant
- the second header includes: a cavity portion connected with the connecting pipe for circulating the refrigerant; a channel portion, one end of which is in communication with the cavity portion, and the other end with the flat tube The communication is used to circulate the refrigerant; the turbulence part is provided in the cavity part and is used to disturb the flow of the refrigerant in the cavity part.
- a plurality of the channel parts are formed in the second header and arranged evenly at intervals. One end of each channel part is in communication with the cavity part, and the other end is connected with the cavity part.
- the flat tubes are connected.
- the channel portion has a bent portion, a side of the channel portion close to the cavity portion is perpendicular to the cavity portion, and the channel portion is close to a side of the flat tube. The side is parallel to the flat tube.
- an insertion part is provided on the side wall of the second header, the insertion part communicates with the channel part, and the flat tube is inserted into the insertion part.
- the spoiler is a partition structure provided in the cavity, the partition structure extends in a direction parallel to the inflow direction of the refrigerant, and the partition structure is The inner walls of the cavity portion all have a certain gap.
- the connecting pipe is connected to a side of the cavity part away from the air supply direction.
- the spoiler is at least two partitioned structures arranged in the cavity portion at intervals, and the partitioned structure is along a direction parallel to the inflow direction of the refrigerant. Extending, a plurality of the partition structures are symmetrically distributed with respect to the position where the refrigerant flows into the cavity portion.
- the second header has at least one; the third header is provided with a plurality of third partitions, and the plurality of third partitions connect the third collector
- the internal space of the flow tube is divided into a plurality of independent third chambers, one of the third chambers is simultaneously connected to a part of the flat tube in the upward flow and a part of the flat tube in the downward flow ,
- the number of the remaining third chambers is the same as the number of the second headers, and each of the remaining third chambers is in one-to-one correspondence with each of the second headers through the connecting pipe .
- one end of the connecting pipe is connected to the lower end of the third chamber, and the other end is connected to the lower end of the second header.
- the number of the flat tubes connected to the third chamber is less than the number of the flat tubes connected to the third chamber.
- the number of the flat tubes communicated with the second header.
- the heat exchanger When the heat exchanger is used as an evaporator, when the gas-liquid two-phase refrigerant enters the second header from the third header through the connecting pipe, the gas-liquid two-phase refrigerant enters the cavity first.
- the greater the refrigerant flow the more the cooling
- the more obvious the uneven distribution of the refrigerant the low pressure will be generated at the inflow end of the refrigerant, and a high pressure area and a low pressure area will be formed in the cavity.
- the spoiler can effectively avoid the flow blind zone caused by the vortex in the cavity, and the spoiler is opposite to the air.
- the flow path of the refrigerant in the cavity is disturbed to promote the mixing of the refrigerant in the high pressure zone and the low pressure zone in the cavity.
- the refrigerant circulates in the cavity.
- the refrigerant circulation path formed by the spoiler can automatically adapt to the refrigerant flow.
- the change of, and then the refrigerant entering the different channel parts can be evenly distributed, and the refrigerant flow in the different microchannels in the same flat tube and the different flat tubes in the same process can be realized uniformly.
- Figure 1 is a schematic diagram of a prior art air conditioner
- FIG. 2 is a schematic structural diagram of Embodiment 1 of the heat exchanger of this application.
- Figure 3 is an enlarged view of part A in Figure 2;
- Fig. 4 is a top view of a separator according to an embodiment of the heat exchanger of this application.
- FIG. 5 is a schematic diagram of the internal structure of a separator according to the first embodiment of the heat exchanger of this application;
- Figure 6 is a cross-sectional view along the line A-A in Figure 5;
- Figure 7 is a cross-sectional view taken along line B-B in Figure 5;
- FIG. 8 is a schematic structural diagram of Embodiment 2 of the heat exchanger of this application.
- Fig. 9 is a structural diagram 1 of the second header of the second embodiment of the heat exchanger of this application.
- Fig. 10 is a second structural schematic diagram of the second header of the second embodiment of the heat exchanger of this application (the side plate is omitted);
- FIG. 11 is a top view of the second header of the second embodiment of the heat exchanger of this application.
- Figure 12 is a cross-sectional view along the line C-C in Figure 11;
- Figure 13 is a cross-sectional view taken along the line D-D in Figure 11;
- 15 is a schematic structural diagram of the second structure of the second header in the second embodiment of the heat exchanger of this application.
- 16 is a schematic structural diagram of the third structure of the second header in the second embodiment of the heat exchanger of this application.
- Fig. 17 is a schematic structural diagram 1 of Embodiment 3 of the heat exchanger of this application (evaporation working condition);
- Fig. 18 is a schematic structural diagram 2 of Embodiment 3 of the heat exchanger of this application (condensing working condition);
- FIG. 19 is a schematic diagram of the actual installation structure of the third embodiment of the heat exchanger of this application.
- Fig. 20 is a structural schematic diagram 1 of an intermediate header of embodiment 3 of the heat exchanger of this application;
- FIG. 21 is a schematic diagram 2 of the structure of the intermediate header from another perspective of Embodiment 3 of the heat exchanger of this application;
- Fig. 22 is a schematic structural diagram of a flat tube connected with an intermediate header of a heat exchanger according to the third embodiment of the application;
- FIG. 23 is a top view of the middle header of Embodiment 3 of the heat exchanger of this application.
- FIG. 24 is a top view of another structure of the intermediate header in Embodiment 3 of the heat exchanger of this application.
- Figure 25 is a cross-sectional view taken along the line H1-H1 in Figure 23;
- Figure 26 is a cross-sectional view taken along the line H2-H2 in Figure 23;
- Fig. 27 is a cross-sectional view taken along the line H3-H3 in Fig. 23.
- 02-Second header 021-cavity part, 022-channel part, 023-spoiler part, 024-inner wall, 025-insertion part, 026-bend part;
- 06- separator 061- separator cavity, 062- first baffle, 063- second baffle, 064- gap, 065- refrigerant flow port;
- 07-Branch pipe group 071-Branch pipe, 0711-First pipe, 0712-Second pipe, 072-Branch;
- 08- Dispensing pipe group 081- Dispensing main pipe
- connection should be understood in a broad sense, unless otherwise clearly specified and limited. For example, it can be a fixed connection or a detachable connection. Connect, or connect in one piece.
- connection should be understood in a broad sense, unless otherwise clearly specified and limited. For example, it can be a fixed connection or a detachable connection. Connect, or connect in one piece.
- connection should be understood in a broad sense, unless otherwise clearly specified and limited. For example, it can be a fixed connection or a detachable connection. Connect, or connect in one piece.
- connection can be a fixed connection or a detachable connection. Connect, or connect in one piece.
- specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
- specific features, structures, materials, or characteristics can be combined in any one or more embodiments or examples in a suitable manner.
- first”, “second”, “third”, and “fourth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined as “first”, “second”, “third”, and “fourth” may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise specified, “plurality” means two or more.
- the heat pump includes: an evaporator 1, a compressor 2, a condenser 3, an expansion valve 4 and a four-way reversing valve C.
- the specific working process of the heat pump heating is as follows: First, the low-pressure two-phase refrigerant (a mixture of liquid phase refrigerant and gas phase refrigerant) in the evaporator 1 absorbs heat from the low temperature environment; it is compressed into high temperature after being sucked in by the compressor 2.
- the low-pressure two-phase refrigerant a mixture of liquid phase refrigerant and gas phase refrigerant
- the heat exchanger described herein includes the evaporator 1 and the condenser 3 described above.
- the heat pump air conditioner uses the four-way reversing valve C to change the operating mode.
- the indoor heat exchanger is used as the evaporator 1
- the outdoor heat exchanger is used as the condenser 3.
- the indoor air is cooled down through the surface of the evaporator 1 to achieve the purpose of lowering the indoor temperature, and the heat is transported to the outside through the condenser 3.
- the position of the valve block of the four-way reversing valve C is changed to change the flow direction of the refrigerant.
- the refrigerant absorbs the heat in the environment through the outdoor heat exchanger and releases heat to the indoor environment. The purpose of heating.
- the evaporator 1 is a device that outputs cold energy. Its function is to evaporate the refrigerant liquid flowing in through the expansion valve 4 to absorb the heat of the object to be cooled to achieve the purpose of refrigeration.
- the condenser 3 is a device that outputs heat. The heat absorbed from the evaporator 1 and the heat converted by the work consumed by the compressor 2 are taken away by the cooling medium in the condenser 3 to achieve the purpose of heating.
- the evaporator 1 and the condenser 3 are important parts of heat exchange in the air conditioning heat pump unit, and their performance will directly affect the performance of the entire system.
- the air conditioner includes a heat exchange circuit for heat exchange between indoors and outdoors, so as to realize the adjustment of the indoor temperature by the air conditioner.
- the heat exchange circuit can use the heat exchange principle shown in Figure 1 of the prior art, that is, the heat exchange circuit includes an evaporator 1, a compressor 2, a condenser 3, an expansion valve 4, and a four-way reversing valve C.
- the evaporator The phase change process of refrigerant in 1 and condenser 3 is opposite, and evaporator 1 and condenser 3 are collectively referred to as heat exchangers.
- One of the objectives of the present application is to improve the structure of the heat exchanger, improve the balanced distribution of refrigerant in the heat exchanger, improve the heat exchange effect of the heat exchanger, and thereby improve the overall heat exchange effect of the air conditioner.
- the heat exchanger includes a number of equidistantly arranged flat tubes 11 and fins 10.
- a plurality of microchannels for circulating refrigerant are formed in the flat tubes 11, and the fins 10 are arranged between two adjacent flat tubes 11 Meanwhile, the flow direction of the air flowing through the fin 10 and the flow direction of the refrigerant flowing through the flat tube 11 are perpendicular to each other, and the heat/cold amount released by the refrigerant in the flat tube 11 is taken away by the heat dissipation fin 10 and the air flow.
- the flat tube 11 samples porous micro-channel aluminum alloy, and the fin 10 is an aluminum alloy with a brazing composite layer on the surface, which is light in weight and high in heat exchange efficiency.
- Figures 2 to 7 are used to illustrate the structure of the first embodiment of the heat exchanger.
- the heat exchanger has a first process and a second process, and the flow direction of the refrigerant in the two processes is opposite, as shown in Figure 2
- the heat exchanger is used as an evaporator, the flow direction of the refrigerant in the flat tube 11.
- the heat exchanger also includes a first header 01 and a fourth header 04.
- the first header 01 is arranged at one end of the heat exchanger and communicates with one end of the flat tube 11, and the fourth header 04 is arranged at the heat exchanger.
- the other end of the heat exchanger is in communication with the other end of the flat tube 11.
- An upper chamber 011 and a lower chamber 012 for circulating refrigerant are formed in the first header 01.
- the upper chamber 011 is connected to the flat tube 11 in the second process, and the lower chamber 012 is connected to the first process.
- the flat tube 11 is connected.
- the heat exchanger also includes a separator 06, a gas pipe group 07, and a liquid pipe group 08.
- the separator 06 is used to separate gas-phase refrigerant and liquid-phase refrigerant.
- the gas distribution pipe group 07 is connected between the separator 06 and the lower chamber 012, and is used to circulate gas-phase refrigerant.
- the liquid separation tube group 08 is connected between the separator 06 and the lower chamber 012, and is used for circulating liquid phase refrigerant.
- the gas-liquid two-phase refrigerant passes through the separator 06 for effective separation before entering the lower chamber 012.
- the gas-phase refrigerant enters the lower chamber 012 through the manifold 07, and the liquid-phase refrigerant passes through the separator 06.
- the liquid distribution pipe group 08 enters the lower chamber 012, which fundamentally avoids the interaction and separation of the two-phase refrigerant in the flow process, thereby ensuring the quality and flow rate of the gas and liquid refrigerants entering the lower chamber 012 It is approximately equal, so that there is no gas-liquid separation of the refrigerant in the lower chamber 012, thereby improving the uniformity of the refrigerant distribution in the flat tube 11.
- the separator 06 has a separator cavity 061 formed inside the separator 06, the side wall of the separator 06 is provided with a refrigerant circulation port 065, the refrigerant circulation port 065 and the separator cavity
- the cavity 061 is in communication, and the refrigerant flows into the separator cavity 061 through the refrigerant circulation port 065.
- the air distribution pipe group 07 includes a gas distribution main pipe 071 and a plurality of water gas branch pipes 072 connected with the gas distribution main pipe 071, the gas distribution main pipe 071 extends into the separator cavity 061, the air distribution branch pipe 072 along the horizontal
- the gas-phase refrigerant in the separator cavity 061 flows out from the gas distribution main pipe 071, and then enters the lower chamber 012 through a plurality of gas distribution branch pipes 072, so that each of the gas-phase refrigerants in the lower chamber 012
- the flow of gas-phase refrigerant is uniform.
- the gas distribution main pipe 071 includes a first gas distribution main pipe 0711 and a second gas distribution main pipe 0712 that are connected to each other.
- the first gas distribution main pipe 0711 is in communication with the separator cavity 061
- the first gas distribution main pipe 0711 is in communication with the separator cavity 061.
- a gas distribution main pipe 0711 extends upwards from the separator cavity 061 for a certain distance and then communicates with the second gas distribution main pipe 0712 through an arc-shaped part.
- the second gas distribution main pipe 0712 extends downwards, and a plurality of gas distribution branch pipes 072 runs along the second branch pipe.
- the gas main pipe 0712 is arranged equidistantly in the height direction, and the gas-phase refrigerant is divided from top to bottom along the second gas-dividing main pipe 0712 into the multiple gas branch pipes 072 to improve the uniform distribution of the gas-phase refrigerant.
- the gas phase refrigerant tends to flow to the upper part of the separator cavity 061.
- one end of the first gas distribution main pipe 0711 is located near the top of the separator cavity 61 to facilitate the upper gas phase The inflow of refrigerant.
- the dispensing tube group 08 includes a dispensing main pipe 081 and a plurality of dispensing branch pipes (not shown) connected to the dispensing main pipe.
- the dispensing main pipe 081 extends into the separator cavity 61, and the dispensing main pipe 081 extends into the cavity 61 of the separator.
- the liquid branch pipe 081 extends in the horizontal direction and communicates with the lower chamber 012.
- the liquid phase refrigerant in the separator cavity 061 flows out of the liquid separation main pipe 081, and then enters the lower chamber 012 through a plurality of liquid separation branch pipes to make the lower chamber 012
- the flow rate of the liquid phase refrigerant in each place in the chamber 012 is uniform.
- the liquid separation main pipe 081 includes a first liquid separation main pipe and a second liquid separation main pipe connected, the first liquid separation main pipe is in communication with the separator cavity 061, and the first liquid separation main pipe is emptied from the separator.
- the cavity 061 extends upward for a certain distance and communicates with the second liquid separation main pipe through an arc-shaped part.
- the second liquid separation main pipe extends downwards.
- a plurality of liquid separation branch pipes 082 are arranged equidistantly along the height direction of the second liquid separation main pipe. The refrigerant diverges from top to bottom along the second liquid separation main pipe and enters the multiple liquid separation branch pipes to improve the uniform distribution of the liquid phase refrigerant.
- one end of the first liquid separation main pipe is close to the bottom of the separator cavity 061 and has a certain distance so that In the lower part of the liquid phase refrigerant inflow.
- the refrigerant separated by the gas manifold 07 and the liquid manifold 08 enters the lower chamber 012 from top to bottom and then splits into the flat tube 11. Compared with the traditional bottom-up split method, the refrigerant can be suppressed. The influence of gravity and the resulting separation phenomenon in the upward diversion process.
- the separator cavity 061 is provided with a first baffle 062, which is located below the end of the first gas distribution main pipe 0711 and has a certain distance from the end of the first gas distribution main pipe 0711.
- the first baffle 0662 can improve the separation efficiency of the gas-liquid two-phase refrigerant in the upward process, and can prevent the liquid-phase refrigerant from entering the first gas separation main pipe 0711 under the action of inertia.
- a second baffle 063 is also provided in the separator cavity 061, and the first baffle 062 and the second baffle 063 are provided with separate liquid separation main pipes.
- the first baffle 062 and the second baffle 063 are provided with separate liquid separation main pipes.
- the lower chamber 012 is provided with a plurality of equally spaced first partitions 014, the plurality of first partitions 014 divide the lower chamber 012 into a plurality of small chambers 013, each small chamber 013 is connected with the same number of flat tubes 11, and each small chamber 013 is connected with a gas branch pipe 072 and a liquid branch pipe.
- the flow of refrigerant entering each small chamber 013 is uniform, and the same flow of refrigerant is again It is evenly distributed into the same number of flat tubes 11, so that the flow rate of the refrigerant in each flat tube 11 is uniform.
- 10 small chambers 013 are formed in the lower chamber 012, and two flat tubes 11 are connected in each small chamber 013.
- the number of small chambers 013 and the number of flat tubes 11 in each small chamber 013 can be flexibly set according to actual conditions, and this embodiment does not make specific restrictions.
- the fourth header 04 is formed with a chamber M1, a chamber M2, a chamber M3, a chamber M4, and a chamber M1, a chamber M2, a chamber M3, and a chamber M4, which are independent of each other.
- the cavity M5, the cavity M1 and the cavity M5 are connected through the first connecting pipe 091, the cavity M2 and the cavity M4 are connected through the second connecting pipe 092, the refrigerant flowing into the cavity M1 passes through the first
- the connecting pipe 091 enters the chamber M5, the refrigerant flowing into the chamber M2 enters the chamber M4 through the second connecting pipe 092, and the refrigerant entering the chamber M3 flows upward and enters the flat tube 11 in the second process. .
- the interior of the lower chamber 012 and the fourth header 04 adopts a compartment design to ensure that the pressure loss and local pressure loss in the process from entering the first header 01 to leaving the first header 01 are equal. Ensure that the heat exchanger as a whole has better distribution uniformity.
- the specific volume and flow rate gradually increase, the degree of gas-liquid mixing increases, and the separation uniformity improves.
- the number of tubes should be gradually reduced; on the contrary, when the two-phase refrigerant condenses and exchanges heat in the flat tube, the specific volume and flow rate gradually decrease, and the gas and liquid tend to separate.
- the number of flat tubes in the direction of the agent flow should gradually increase. Therefore, in this embodiment, when the heat exchanger is used as an evaporator, the number of flat tubes 11 connected to the chamber M1 is less than the number of flat tubes 11 connected to the chamber M5, and the number of flat tubes 11 connected to the chamber M2 is less than that of the chamber M2.
- the number of flat tubes 11 connected to the chamber M4. When the heat exchanger is used as an evaporator, the number of flat tubes 11 flowing into the chamber M3 is greater than the number of flat tubes 11 flowing out of the chamber M3.
- one end of the first connecting pipe 091 is connected to the lower end of the chamber M1, so that the liquid phase refrigerant in the lower part of the chamber M1 can flow into the first connecting pipe 091; the other end of the first connecting pipe 091 Connected to the upper end of the cavity M5, the refrigerant in the first connecting pipe 091 flows into the cavity M5 from top to bottom, and the uniformity of the refrigerant flow in the flat tube 11 communicating with the cavity M5 is improved by gravity.
- one end of the second connecting pipe 092 is connected to the lower end of the chamber M2, facilitating the flow of liquid phase refrigerant in the lower part of the chamber M2 into the second connecting pipe 092; the other end of the second connecting pipe 092 is connected to the lower end of the chamber M4 At the upper end, the refrigerant in the second connecting pipe 092 flows from top to bottom into the chamber M4, and the uniformity of the refrigerant flow in the flat tube 11 communicating with the chamber M4 is improved by gravity.
- the heat exchanger further includes a trachea group 12, the trachea group 12 includes a plurality of tracheal branch circuits 121, and the plurality of tracheal branch circuits 121 are all connected to the upper chamber 011, and the refrigeration in the upper chamber 011
- the agent flows out after being collected from a plurality of tracheal branch pipes 121.
- the refrigerant when the heat exchanger is used as an evaporator, the refrigerant enters the separator 06 from the refrigerant flow port 065, and the gas-phase refrigerant enters the lower chamber 012 of the first header 01 through the gas manifold group 07, and the liquid
- the phase refrigerant enters the lower chamber 012 of the first header 01 through the liquid dividing tube group 08, and then the gas-liquid two-phase refrigerant enters the multiple flat tubes 11 in the first process at the same time, and then passes through the first connecting pipe 091, the second connecting pipe 092, and the fourth header 04 enter the plurality of flat tubes 11 in the second process, and finally flow out from the tracheal group 12 through the upper chamber 011 of the first header 01.
- the flow direction of the refrigerant in the heat exchanger is opposite to that when used as an evaporator, which will not be repeated here.
- the heat exchanger has an upward flow and a downward flow.
- the upward flow and the downward flow are for the flow direction of the refrigerant, which is only for the convenience of the description of the technical solution.
- the first The process is called the uplink process
- the second process is called the downlink process.
- the technical solution is described by taking the heat exchanger having the first process and the second process as an example.
- the first process is the upstream process
- the second process is the downstream process.
- the first process and the second process are connected through the second header 02 and the third header 03.
- the second header 02 is connected to the flat tube 11 in the second process
- the third header At the same time, it is connected with the flat tube 11 in the first process and part of the flat tube 11 in the second process, and the second header 02 and the third header 03 are connected through the connecting pipe 09.
- the second header 02 includes a cavity portion 021, a channel portion 022, and a spoiler portion 023.
- the cavity portion 021 is in communication with the connecting pipe 09, and one end of the channel portion 022 is in communication with the cavity portion 021.
- the other end of the channel part 022 is in communication with the flat tube 11 in the second process, and the turbulence part 023 is provided in the cavity part 021 for disturbing the flow path of the refrigerant in the cavity part 021 to promote the cavity part 021
- the refrigerant in the inner high pressure zone is mixed with the low pressure zone.
- the refrigerant in the flat tube 11 of the first process enters the second header 02 through the third header 03 and the connecting pipe 09.
- the gas-liquid two-phase refrigerant first Into the cavity part 021, the larger the refrigerant flow, the more obvious the uneven distribution of the refrigerant, the low pressure will be generated at the inflow end of the refrigerant, and then a high pressure area and a low pressure area will be formed in the cavity part 021, and the spoiler 023 can be effective
- the turbulence part 023 disturbs the flow path of the refrigerant in the cavity part 021, and promotes the mixing of the refrigerant in the high pressure zone and the low pressure zone in the cavity part 021.
- the refrigerant circulation path formed by the spoiler part 023 can automatically adapt to the change of the refrigerant flow, so that the refrigerant entering the different passage parts 022 can be evenly distributed, realizing the same flat tube 11
- the refrigerant flow in the different microchannels and the different flat tubes 11 in the same process is uniform.
- the second header 02 includes a header main body, the inside of the header main body is formed by a plurality of spaced inner walls 024 to form a plurality of channel parts 022, the plurality of channel parts 022 are evenly spaced, and the current collection
- a cavity portion 021 is formed at the bottom of the tube body
- a plurality of flat tubes 11 are connected to the side wall of the main body of the header
- a connecting tube 09 and a channel part 022 are connected to the other side wall of the header body opposite to the flat tube.
- One end is connected to the cavity part 021, and the other end of the channel part 022 is connected to the flat tube 11.
- FIG. 10 in order to easily show the internal structure of the main body of the header, one side wall thereof is hidden and not shown.
- the main body of the collecting pipe has a square structure, and the channel portion 022 formed by a plurality of inner wall surfaces has a flat structure.
- the main body of the collecting pipe may have a cylindrical structure, an elliptical column structure, etc., but this embodiment does not Make specific restrictions.
- the plurality of channel portions 022 are arranged at even intervals, so that the refrigerant in the cavity portion 021 can evenly flow into the different channel portions 022, thereby ensuring that the refrigerant flow in the flat tube 11 communicating with each channel portion 022 is uniform.
- the channel portion 022 has a bent portion 026.
- the side of the channel portion 022 close to the cavity portion 021 is perpendicular to the cavity portion 021, and the side of the channel portion 022 close to the flat tube 11 is parallel to the flat tube 11, which facilitates the refrigerant in the cavity portion. 021 and the channel part 022, and between the flat tube 11 and the channel part 022.
- the channel part 022 may be a flow channel with other structures, such as a flow channel with a circular arc surface.
- the number of channel turns back and the surface roughness of the channel part can be changed.
- An insertion part 025 is provided on the side wall of the main body of the header, the insertion part 025 is in communication with the channel part 022, and the flat tube 11 is inserted in the insertion part 025 to realize the communication between the flat tube 11 and the channel part 022.
- the number of flat tubes 11 that can be connected to each second header 02 can be flexibly set according to actual conditions.
- the number of flat tubes 11 that can be connected to each second header 02 is 1-20.
- FIG. 12 is a cross-sectional view along the CC line in FIG. 11, and FIG. 13 is a cross-sectional view along the line DD in FIG.
- the inflow direction extends in a parallel direction, and the partition structure is incompletely partitioned, that is, there is a certain gap between the partition structure and the surrounding inner wall of the cavity portion 021.
- the arrow in Figure 14 shows the flow direction of the refrigerant.
- the refrigerant flows into the cavity 021 from the connecting pipe 09, and a part of the refrigerant flows directly upwards and directly enters the channel section.
- another part of the refrigerant bypasses the spoiler 023 and enters the cavity part 021 on the side away from the refrigerant inlet (that is, the left part in the orientation shown in Figure 14).
- the refrigerant circulation flow path formed in the cavity portion 021 is beneficial to improve the uniform distribution of the refrigerant in the cavity portion 021, so that the refrigerant entering the different channel portions 022 is uniform, and the refrigerant in the different flat tubes The refrigerant is uniform.
- the uneven distribution of the refrigerant is more obvious.
- the effect of this solution on the uniform distribution of the refrigerant is more significant.
- the circulation circuit of the refrigerant automatically adapts to the change of the external refrigerant flow rate. , Improve the uniform distribution of refrigerant.
- the channel part 022 has a flat structure, the flat structure exactly matches the structure of the flat tube 11, and the uniform distribution of the refrigerant in the channel part 022 is also beneficial to improve the refrigeration entering the different microchannels in the same flat tube 11. Agent uniformity.
- the connecting pipe 023 is preferably provided on the side of the cavity portion 021 away from the air supply direction, which is beneficial to improve the heat dissipation efficiency.
- Figures 15 and 16 show two other deformation structures of the spoiler 023.
- the refrigerant performance is further improved. Distribute the effect evenly.
- the spoiler 023 is two partitioned structures arranged at intervals.
- the partitioned structure is the same as the partitioned structure shown in FIG. 14, but the arrangement is different.
- the two spoilers 023 are in the cavity 021 It is symmetrically distributed with respect to the position where the refrigerant flows into the cavity part 021.
- the refrigerant flowing into the cavity part 021 first enters between the two spoilers 023, and then divides into two paths.
- the flow part 023 forms a circulation loop.
- the spoiler 023 is a three-spaced partition structure.
- the partition structure is the same as the partition structure shown in FIG. 14, but the arrangement is different.
- the three spoilers 023 are in the cavity 021. It is symmetrically distributed with respect to the position where the refrigerant flows into the cavity portion 021, and the spoiler portion 023 located in the middle is directly opposite to the connecting pipe 09.
- the refrigerant flowing into the cavity part 021 is divided into two paths, one way flows along the gap between the left spoiler 023 and the middle spoiler 023, and forms a circulation loop around the left spoiler 023, and the other is along the It flows through the gap between the right spoiler 023 and the middle spoiler 023, and forms a circulation loop around the right spoiler 023.
- the second header 02 has at least one, and the third header 03 is provided with a plurality of third partitions 031, and the plurality of third partitions 031 separate the internal space of the third header 03 Into a plurality of independent third chambers 032, one of the third chambers 032 is simultaneously connected to part of the flat tube 11 in the upward flow (first flow) and part of the flat tube 11 in the downward flow (second flow), and the rest
- the number of the third chamber 031 is the same as the number of the second header 02, and each of the remaining third chambers 031 is in one-to-one correspondence with each second header 02 through the connecting pipe 09.
- the second header 02 has two, the third header 03 is provided with three third partitions 031, and the third partition 031 divides the third header 03 into three independent
- the third chamber 032 is marked as N1, N2, N3 in turn.
- the second header 02 located above communicates with the third chamber N1 through the first connecting pipe 091, and the second header 02 located below is connected to the third chamber N1.
- the three chambers N2 are connected through the second connecting pipe 092, and the third chamber N3 is connected to the partial flat tube 11 in the first process and the partial flat tube 11 in the second process at the same time.
- the cooperation of the plurality of third chambers 032 and the plurality of second headers 02 is beneficial to further improve the uniform distribution of the refrigerant.
- One end of the first connecting pipe 091 is connected to the lower end of the third chamber N1, so that the liquid phase refrigerant in the third chamber N1 can flow into the first connecting pipe 091, and the other end of the first connecting pipe 091 is connected to the second set
- the lower end of the flow tube 02 is in communication with the cavity portion 021, so that the gas-liquid two-phase refrigerant can be evenly distributed through the second header 02.
- one end of the second connecting pipe 092 is connected to the lower end of the third chamber N2, facilitating the liquid phase refrigerant in the third chamber N2 to flow into the second connecting pipe 092, and the other end of the second connecting pipe 092 is connected to
- the lower end of the second header 02 is in communication with the cavity portion 021, so that the gas-liquid two-phase refrigerant can be evenly distributed through the second header 02.
- the number of flat tubes connected to the third chamber 032 is less than the number of flat tubes 11 connected to the second header 02.
- the number of flat tubes connected to the third chamber N1 is less than the number of flat tubes connected to the second header 02
- the number of flat tubes connected to the third chamber N2 is less than the number of flat tubes connected to the second header 02
- the number of flat tubes in the first process connected to the third chamber N3 is smaller than the number of flat tubes in the second process connected to the third chamber N3. The reason for this design is the same as the reason for the design of the multi-layer separator of the fourth header 04 in the first embodiment, and will not be repeated here.
- a plurality of heat exchangers can be connected side by side.
- One of the purposes of the third embodiment is to improve the uniform distribution of refrigerant between two adjacent heat exchangers, so as to improve the overall The heat transfer uniformity of the heat exchanger components.
- the heat exchanger includes a plurality of heat exchange parts 13, the plurality of heat exchange parts 13 are arranged side by side in communication, and the flat tubes 11 on two adjacent heat exchangers 13 are connected through an intermediate header 05.
- the arrow in Figure 17 indicates the direction of refrigerant flow when the heat exchanger is in the evaporating condition
- the arrow in Figure 18 indicates the direction of refrigerant flow when the heat exchanger is in the condensing condition
- Figure 19 is the actual installation of multiple heat exchange parts Schematic diagram after the structure.
- the technical solution is explained by taking the heat exchanger having two heat exchange parts 13 as an example.
- the two heat exchange parts 13 are defined as the first row heat exchange part 131 and the second row heat exchange part 132.
- One row of heat exchange portions 131 is located in the downwind area of the air supply direction
- the second row of heat exchange portions 132 is located in the upwind area of the air supply direction.
- the first row of heat exchange portions 131 and the second row of heat exchange portions 132 each include a number of equidistant rows.
- the two heat exchange parts are connected through an intermediate header 05.
- the heat exchanger includes a first process, a second process, a third process, and a fourth process.
- the first and fourth processes are located in the first row of heat exchange parts
- the second process and the third process are located on the second row of heat exchange section 132, and the flat tubes provided in the first process are connected with the flat tubes provided in the second process through the intermediate header 05, and
- the flat tube in the third process is communicated with the flat tube in the fourth process through an intermediate header 05.
- the arrangement of one end of the first row of heat exchange parts 131 can refer to the structure arrangement of the first embodiment shown in FIG. 2, which will not be repeated here.
- the arrangement of one end of the second row of heat exchange parts 132 can refer to the structure arrangement of the second embodiment shown in FIG. 8, which will not be repeated here.
- the refrigerant enters the lower chamber 012 of the first header 01 through the separator 06, the gas manifold group 07, and the liquid manifold group 08, and then flows through the first header 01 in turn.
- the first process, the intermediate header 05, the second process enter the third header 03, and then enter the second header 02 through the first connecting pipe 091 and the second connecting pipe 092, and then flow through the third process,
- the middle header 05 and the fourth flow enter the upper chamber 011 of the first header 01, and finally flow out from the trachea group 12.
- the refrigerant enters the upper chamber 011 of the first header 01 through the gas tube group 12, and then flows through the fourth process, the intermediate header 05, and the third process in sequence.
- Enter the second header 02 then enter the third header 03 through the first connecting pipe 091 and the second connecting pipe 092, and then flow through the second process, the intermediate header 05, and the first process to enter the first In the lower chamber 012 of the header 01, it finally flows out through the gas pipe group 07, the liquid pipe group 08, and the separator 06.
- the number of flat tubes in the first, second, third, and fourth processes gradually increases, that is, the number of flat tubes in the fourth process is greater than
- the number of flat tubes in the third process is greater than the number of flat tubes in the second process
- the number of flat tubes in the second process is greater than the number of flat tubes in the first process.
- FIG. 27 shows a schematic diagram of the structure of a single sub-cavity 051
- FIG. 21 is a view viewed from the Q direction of FIG. 20.
- each sub-cavity 051 includes a first cavity 052, a second cavity 053, a third cavity 054, a first circulation portion 055, and a second circulation portion 056, the first cavity 052 and Part of the flat tubes on the first row of heat exchange part 131 are connected, the second cavity 053 is connected with part of the flat tubes on the second row of heat exchange part 132, the third cavity 054 is connected with the first cavity 052, the first circulation The portion 055 is located below the third cavity 054 and is used to communicate the second cavity 053 and the third cavity 054, and the second circulation portion 056 is located above the second cavity 052 and is used to communicate the first cavity 052 and the third cavity 052.
- the refrigerant When the heat exchanger is used as an evaporator, the refrigerant first enters the first cavity 052, and most of the refrigerant in the first cavity 052 will flow into the third cavity 054, and enter the gas and liquid components in the third cavity 054.
- the phase refrigerant tends to separate under the action of gravity and the uniformity becomes worse.
- the refrigerant in the third cavity 054 enters the second cavity 053 through the first circulation part 055 below, because the flow rate of the gas phase refrigerant is higher than that of the liquid phase.
- the speed of the refrigerant decreases from bottom to top in the second cavity 053.
- the flow of the flat tube refrigerant at the vortex is relatively small, and the second circulation part 056 will make the refrigerant flow.
- the extra refrigerant in the upward process is introduced into the first cavity 052, mixed with the high-speed refrigerant in the first cavity 052, and participates in the distribution process of the next cycle, so as to further improve the uniform distribution of the refrigerant, thereby increasing The heat exchange effect of the air conditioner.
- the caliber of the first circulation part 055 is preferably larger than the caliber of the flat tube 11 so that the refrigerant in the third cavity 054 can smoothly enter the second cavity 053 through the first circulation part 055.
- the side wall of the first cavity 052 is provided with a plurality of first mounting parts 058 for mounting the flat tube 11, and the side wall of the second cavity 053 is provided with a plurality of second mounting parts 059 for mounting the flat tube 11,
- the first mounting portion 058 and the second mounting portion 059 are located on the same side of the sub-cavity 051. In this way, the first row of heat exchange portions 131 and the second row of heat exchange portions 132 are connected through the middle header 05, and can be arranged side by side.
- the structure is more compact, which is conducive to reducing the volume of the entire heat exchanger.
- the first mounting portion 058 and the second mounting portion 059 may be insertion holes provided on the side wall of the sub-cavity 051, and the flat tube 11 can be directly inserted into the insertion hole, which is convenient for installation and reliable in structure.
- the number of the first mounting part 058 and the second mounting part 059 are the same, so that the number of flat tubes connected to the first cavity 052 is the same as the number of flat tubes connected to the second cavity 053, so as to improve the uniformity of the refrigerant in the flat tubes of different processes .
- the sub-cavity 051 is provided with a first partition plate 0511, a second partition plate 0512, and a third partition plate 0513, which pass through the first partition plate 0511 and the second partition plate 0512. , And the third partition plate 0513 divide the interior of the sub-cavity 051 into a first cavity 052, a second cavity 053, and a third cavity 054.
- the second partition plate 0512 is preferably in the same plane as the third partition plate 0513, and the first partition plate 0511 is preferably perpendicular to the second partition plate 0512 and the third partition plate 0513 to facilitate the formation of a second partition plate with equal volume.
- a cavity 052 and a second cavity 053 in order to achieve uniform distribution of refrigerant.
- the first partition plate 0511 is provided between the first cavity 052 and the second cavity 053, the second circulation part 056 is provided on the upper part of the first partition plate 0511, the second The partition plate 0512 is arranged between the first cavity 052 and the third cavity 054, the second partition plate 0512 is provided with a plurality of third circulation parts 057 for the refrigerant to circulate, and the third partition plate 0513 is arranged at Between the second cavity 053 and the third cavity 054, the first circulation portion 055 is provided at the lower portion of the third partition plate 0513.
- the heat exchanger When the heat exchanger is used as an evaporator, most of the refrigerant flowing into the first cavity 052 through multiple flat tubes enters the third cavity 054 through the third circulation part 057, and the refrigerant in the third cavity 054 passes through the bottom
- the first circulation portion 055 of the third cavity 055 enters the second cavity 053, and the first circulation portion 055 is set below, so that the gas-phase refrigerant above the third cavity 054 flows downwards through the first circulation portion 055.
- the lower liquid phase refrigerant is mixed, and then enters the second cavity 053 through the acceleration effect of the first circulation part 055, and flows from bottom to top into the flat tube communicating with the second cavity 053 to realize a gas-liquid two-phase refrigerant Uniform distribution in the flat tube.
- the speed of the refrigerant decreases in the bottom-up flow process of the second cavity 053.
- the upper part of the second cavity 053 forms a vortex.
- the flat tube refrigerant flow at the vortex is relatively small, and the second circulation part 056 located above reduces
- the extra refrigerant in the refrigerant upward process is introduced into the first cavity 052, mixed with the high-speed refrigerant in the first cavity 052, and participates in the distribution process of the next cycle, thereby further improving the uniform distribution of the refrigerant , Thereby improving the heat exchange effect of the air conditioner.
- the number of the third circulation portion 057 is preferably the same as the number of the flat tubes communicating with the first cavity 052, and the end of the flat tube located in the first cavity 052 and the third circulation portion 057 have a certain distance and are positive.
- the third circulation part 057 most of the refrigerant sprayed from the flat tube can be injected into the third cavity 054.
- the sub-cavity 051 shown in FIG. 20 to FIG. 23 has a rectangular structure.
- the third cavity 054 may be D-shaped, O-shaped, and other structures, which are not specifically limited in this embodiment. As shown in FIG. 24, the third cavity 054 is D-shaped.
- the gas-liquid two-phase refrigerant circulates between the first row heat exchange part 131 and the second row heat exchange part 132, no matter whether the upstream refrigerant is evenly divided, it can be passed through the middle header 05. Ensure that the refrigerant entering the next process flat tube achieves dynamic adjustment and uniform distribution.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geometry (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种空调器,换热回路上设有换热器,换热器包括扁管(11)、第二集流管(02)、第三集流管(03)及连接管(09),第二集流管(02)与第三集流管(03)之间通过连接管(09)连通,第二集流管(02)与换热器下行流程内的扁管(11)连通,第三集流管(03)与换热器上行流程内的扁管(11)连通,第二集流管(02)包括空腔部(021)、通道部(022)及扰流部(023),空腔部(021)与连接管(09)连通,通道部(022)的一端与空腔部(021)连通,另一端与扁管(11)连通,扰流部(023)设于空腔部(021)内,其可以有效避免空腔部(021)内因涡流而导致的流动盲区,可以扰动空腔部(021)内制冷剂的流动路径,促使空腔部(021)内高压区与低压区的制冷剂混合,使进入不同通道部(022)内的制冷剂能够均匀分配,实现同一根扁管(11)内的不同微通道、相同流程内的不同扁管(11)内制冷剂流量均匀。
Description
本申请要求在2019年11月20日提交中国专利局、申请号为201911141833.9发明名称为“一种空调器”,的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及制冷设备技术领域,尤其涉及一种制冷剂分流均匀的空调器。
目前,热泵型空调是经常使用的一种冷暖空调。在夏季制冷时,空调在室内制冷,室外散热,而在冬季制热时,方向同夏季相反,即室内制热,室外制冷。空调通过热泵在不同环境之间进行冷热交换。比如在冬季,室外的空气、地面水、地下水等等就是低温热源,而室内空气就是高温热源,热泵式空调制热的作用就是把室外环境的热量输送到室内环境里。
相比翅片管换热器,微通道换热器在材料成本、制冷剂充注量和热流密度等方面具有显著优势,符合换热器节能环保的发展趋势。微通道换热器包括扁管、翅片、集流管、端盖等部件。多流程微通道换热器的集流管内还插设分隔隔板,隔板将集流管分为多个独立的腔,每个集流管腔连通一定数量的扁管。微通道换热器用作蒸发器时,当气液两相制冷剂从集流管腔进入多根扁管时,由于气相和液相的密度与粘度存在差异,流动的制冷剂容易在重力和粘性力作用下发生分离,导致进入多根扁管的制冷剂不均匀。制冷剂不均匀不仅恶化换热效率,而且会引起制冷系统的波动。因此,实现两相制冷剂在同一流程不同扁管内部的均匀分配是一个重要课题。
申请内容
有鉴于此,本申请提出一种空调器,换热器上同一根扁管内的不同微通道、相同流程内的不同扁管内制冷剂流量更加均匀,提高空调器的换热效果。
为达到上述目的,本申请采用如下技术方案:
一种空调器,包括:换热回路,用于进行室内与室外的热量交换,所述换热回路上设有换热器,所述换热器具有上行流程和下行流程;所述换热器包括:扁管,其内具有多个微通道,用于流通制冷剂;第二集流管,与所述下行流程内的所述扁管连通,用于流通所述制冷剂;第三集流管,与所述上行流程内的所述扁管连通,用于流通所述制冷剂;连接管,连通所述第二集流管和所述第三集流管,用于流通所述制冷剂;其中,所述第二集流管包括:空腔部,与所述连接管连通,用于流通所述制冷剂;通道部,一端与所述空腔部连通,另一端与所述扁管连通,用于流通所述制冷剂;扰流部,设于所述空腔部内,用于扰动所述空腔部内的所述制冷剂的流动。
在本申请某些实施例中,所述第二集流管内形成有多个、且均匀间隔布设的所述通道部,每个所述通道部的一端与所述空腔部连通,另一端与所述扁管连通。
在本申请某些实施例中,所述通道部具有折弯部,所述通道部靠近所述空腔部的一侧与所述空腔部垂直,所述通道部靠近所述扁管的一侧与所述扁管平行。
在本申请某些实施例中,所述第二集流管的侧壁上设有插入部,所述插入部与所述通道部连通,所述扁管插设于所述插入部内。
在本申请某些实施例中,所述扰流部为设于所述空腔部内的隔断结构,所 述隔断结构沿与所述制冷剂的流入方向平行的方向延伸,所述隔断结构与所述空腔部的四周内壁均具有一定间隙。
在本申请某些实施例中,所述连接管连通于所述空腔部远离送风方向的一侧。
在本申请某些实施例中,所述扰流部为设于所述空腔部内的至少两个、且间隔设置的隔断结构,所述隔断结构沿与所述制冷剂的流入方向平行的方向延伸,多个所述隔断结构相对于所述制冷剂流入所述空腔部的位置处对称分布。
在本申请某些实施例中,所述第二集流管具有至少一个;所述第三集流管内设有多个第三隔板,多个所述第三隔板将所述第三集流管的内部空间分隔成多个独立的第三腔室,其中一个所述第三腔室同时连通于所述上行流程内的部分所述扁管和所述下行流程内的部分所述扁管,其余所述第三腔室的数量与所述第二集流管的数量相同,其余每个所述第三腔室通过所述连接管与每个所述第二集流管一一对应连通。
在本申请某些实施例中,所述连接管的一端与所述第三腔室的下端连接,另一端与所述第二集流管的下端连接。
在本申请某些实施例中,连通于同一所述连接管两端的所述第三腔室和所述第二集流管中,所述第三腔室连通的所述扁管的数量小于所述第二集流管连通的所述扁管的数量。
本申请的技术方案相对现有技术具有如下技术效果:
换热器用作蒸发器时,气液两相制冷剂由第三集流管经连接管进入第二集流管时,气液两相制冷剂首先进入空腔部内,制冷剂流量越大,制冷剂分布不均越明显,制冷剂的流入端将产生低压,进而在空腔部内形成高压区和低压区, 扰流部可以有效避免空腔部内因涡流而导致的流动盲区,扰流部对空腔部内的制冷剂的流动路径进行扰动,促使空腔部内高压区与低压区的制冷剂混合,制冷剂在空腔部内循环流动,由扰流部形成的制冷剂循环路径可以自动适应制冷剂流量的变化,进而使进入不同通道部内的制冷剂能够均匀分配,实现同一根扁管内的不同微通道、相同流程内的不同扁管内制冷剂流量均匀。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术空调器的原理示意图;
图2为本申请换热器实施例一的结构示意图;
图3为图2中A部放大图;
图4为本申请换热器实施例一分离器的俯视图;
图5为本申请换热器实施例一分离器的内部结构示意图;
图6为图5中A-A向剖视图;
图7为图5中B-B向剖视图;
图8为本申请换热器实施例二的结构示意图;
图9为本申请换热器实施例二第二集流管的结构示意图一;
图10为本申请换热器实施例二第二集流管的结构示意图二(省略侧板);
图11为本申请换热器实施例二第二集流管的俯视图;
图12为图11中C-C向剖视图;
图13为图11中D-D向剖视图;
图14为本申请换热器实施例二第二集流管内部制冷剂流动示意图;
图15为本申请换热器实施例二第二集流管第二种结构形式的结构示意图;
图16为本申请换热器实施例二第二集流管第三种结构形式的结构示意图;
图17为本申请换热器实施例三的结构示意图一(蒸发工况);
图18为本申请换热器实施例三的结构示意图二(冷凝工况);
图19为本申请换热器实施例三的实际安装的结构示意图;
图20为本申请换热器实施例三中间集流管的结构示意图一;
图21为本申请换热器实施例三中间集流管另一视角下的结构示意图二;
图22为本申请换热器实施例三中间集流管连通扁管的结构示意图;
图23为本申请换热器实施例三中间集流管的俯视图;
图24为本申请换热器实施例三中间集流管另一种结构形式的俯视图;
图25为图23中H1-H1向剖视图;
图26为图23中H2-H2向剖视图;
图27为图23中H3-H3向剖视图。
附图标记:
1-蒸发器,2-压缩机,3-冷凝器,4-膨胀阀,5-四通换向阀;
01-第一集流管,011-上腔室,012-下腔室,013-小腔室,014-第一隔板;
02-第二集流管,021-空腔部,022-通道部,023-扰流部,024-内壁,025-插入部,026-折弯部;
03-第三集流管,031-第三隔板,032-第三腔室;
04-第四集流管;
05-中间集流管,051-子腔体,0511-第一分隔板,0512-第二分隔板,0513-第三分隔板,052-第一腔体,053-第二腔体,054-第三腔体,055-第一流通部,056-第二流通部,057-第三流通部,058-第一安装部,059-第二安装部;
06-分离器,061-分离器空腔,062-第一挡板,063-第二挡板,064-间隙,065-制冷剂流通口;
07-分气管组,071-分气主管,0711-第一分气主管,0712-第二分气主管,072-分气支管;
08-分液管组,081-分液主管;
09-连接管,091-第一连接管,092-第二连接管;
10-翅片;
11-扁管;
12-气管组,121-气管支路;
13-换热部,131-第一排换热部,132-第二排换热部。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而 不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
参照图1所示,示出了一种热泵的制热循环原理图。该热泵包括:蒸发器1、压缩机2、冷凝器3、膨胀阀4和四通换向阀C。该热泵制热的具体工作过程为:首先,蒸发器1内低压两相制冷剂(液相制冷剂和气相制冷剂的混合体)从低温环境吸收热量;经压缩机2吸入后被压缩为高温高压的气体制冷剂;然后,高温高压的气体制冷剂在冷凝器3将热能释放给室内环境,同时自身温度降低;最后,经过膨胀阀机构4节流,变为低温低压的两相制冷剂,再次进入蒸发器1,重复上述循环的制热过程。本文所述换热器包括上述蒸发器1和冷凝器3。
热泵空调通过该四通换向阀C来改变工况模式。在夏季制冷工况下,室内换热器作为蒸发器1,室外热交换器作为冷凝器3。室内空气经过蒸发器1表面被冷却降温,达到使室内温度下降的目的,通过冷凝器3将热量输送到室外。冬季供热的时候,转换四通换向阀C阀块的位置,使制冷剂的流向发生转换, 此时,制冷剂通过室外换热器吸收环境中的热量,并向室内环境放热,实现制热的目的。
蒸发器1是输出冷量的设备,它的作用是使经膨胀阀4流入的制冷剂液体蒸发,以吸收被冷却物体的热量,达到制冷的目的。冷凝器3是输出热量的设备,从蒸发器1中吸收的热量连同压缩机2消耗功所转化的热量在冷凝器3中被冷却介质带走,达到制热的目的。蒸发器1和冷凝器3是空调热泵机组中进行热量交换的重要部分,其性能的好坏将会直接影响到整个系统的性能。
本申请公开一种空调器,尤指热泵式空调器,空调器包括换热回路,用于进行室内与室外的热量交换,以实现空调器对室内温度的调节。
换热回路可采用现有技术图1中所示的换热原理,也即,换热回路包括蒸发器1、压缩机2、冷凝器3、膨胀阀4以及四通换向阀C,蒸发器1和冷凝器3内的制冷剂相变过程相反,将蒸发器1和冷凝器3统称为换热器。
本申请的目的之一在于对换热器进行结构改进,提高制冷剂在换热器内的均衡分配,提高换热器的换热效果,进而提高空调器整体的换热效果。
本申请对换热器中制冷剂的流入端、流出端、不同流程之间的连通过渡处、以及并排换热器的连通过渡处均进行了结构改进,以期提高制冷剂的均匀分配。
换热器包括有若干等距排布的扁管11和翅片10,扁管11内形成有多个用于流通制冷剂的微通道,翅片10设于相邻的两个扁管11之间,流经翅片10的空气流动方向与流经扁管11的制冷剂的流动方向相互垂直,通过散热翅片10和空气流带走扁管11内制冷剂释放的热量/冷量。
扁管11采样多孔微通道铝合金,翅片10为表面具有钎焊复合层的铝合金,质量轻、换热效率高。
实施例一
图2至图7用以说明换热器实施例一的结构,实施例一中,换热器具有第一流程和第二流程,两个流程内制冷剂的流动方向相反,图2所示为换热器用作蒸发器时,扁管11内制冷剂的流动方向。
换热器还包括第一集流管01和第四集流管04,第一集流管01设于换热器的一端、与扁管11的一端连通,第四集流管04设于换热器的另一端、与扁管11的另一端连通。
其中,第一集流管01内形成有用于流通制冷剂的上腔室011和下腔室012,上腔室011与第二流程内的扁管11连通,下腔室012与第一流程内的扁管11连通。
换热器还包括分离器06、分气管组07、以及分液管组08。
其中,分离器06用于分离气相制冷剂和液相制冷剂。
分气管组07连通于分离器06与下腔室012之间,用于流通气相制冷剂。
分液管组08连通于分离器06与下腔室012之间,用于流通液相制冷剂。
换热器用作蒸发器时,气液两相制冷剂在进入下腔室012之前,先通过分离器06进行有效分离,气相制冷剂经分气管组07进入下腔室012,液相制冷剂经分液管组08进入下腔室012,从根本上避免了两相制冷剂在流动过程中的相互作用和相互分离,从而保证进入下腔室012内的气相和液相制冷剂的质量、流量近似相等,使得制冷剂在下腔室012内不存在气液分离的现象,进而提高扁管11内制冷剂的分配均匀性。
分离器06的结构示意图参照图4和图5,分离器06的内部形成有分离器空腔061,分离器06的侧壁上设有制冷剂流通口065,制冷剂流通口065与分离器空腔061连通,制冷剂经制冷剂流通口065流入分离器空腔061内。
参照图3至图5,分气管组07包括分气主管071和与分气主管071连通的多个水分气支管072,分气主管071伸入分离器空腔061内,分气支管072沿水平方向延伸、与下腔室012连通,分离器空腔061内的气相制冷剂从分气主管071流出,而后经多个分气支管072进入下腔室012内,使下腔室012内每一处的气相制冷剂流量均匀。
在本申请某些实施例中,参照图3,分气主管071包括相互连通的第一分气主管0711和第二分气主管0712,第一分气主管0711与分离器空腔061连通,第一分气主管0711从分离器空腔061内向上延伸一段距离后通过弧形部与第二分气主管0712连通,第二分气主管0712向下延伸,多个分气支管072沿第二分气主管0712的高度方向等距设置,气相制冷剂沿第二分气主管0712自上而下地分流进入多个分气支管072内,提高气相制冷剂的均匀分配。
分离器空腔061内,气相制冷剂趋于向分离器空腔061的上部流动,参照图5,将第一分气主管0711的一端设于靠近分离器空腔61的顶部,以便于上部气相制冷剂的流入。
继续参照图3至图5,分液管组08包括分液主管081和与分液主管连通的多个分液支管(未图示),分液主管081伸入分离器空腔61内,分液支管081沿水平方向延伸、与下腔室012连通,分离器空腔061内的液相制冷剂从分液主管081流出,而后经多个分液支管进入下腔室012内,使下腔室012内每一处的液相制冷剂流量均匀。
在本申请某些实施例中,分液主管081包括连通的第一分液主管和第二分液主管,第一分液主管与分离器空腔061连通,第一分液主管从分离器空腔061内向上延伸一段距离后通过弧形部与第二分液主管连通,第二分液主管向下延伸,多个分液支管082沿第二分液主管的高度方向等距设置,液相制冷剂沿第二分液主管自上而下地分流进入多个分液支管内,提高液相制冷剂的均匀分配。
分离器空腔061内,液相制冷剂趋于向分离器空腔061的底部流动,参照图5,将第一分液主管的一端靠近分离器空腔061的底部、且具有一定距离,以便于下部液相制冷剂的流入。
经分气管组07和分液管组08分离后的制冷剂自上而下地进入下腔室012后再分流进入扁管11内,相比传统的自下而上地分流方式,可以抑制制冷剂上行分流过程中重力的影响以及导致的分离现象。
参照图5和图6,分离器空腔061内设有第一挡板062,其位于第一分气主管0711端部的下方、与第一分气主管0711的端部之间具有一定距离,第一挡板0662可以提高气液两相制冷剂上行过程中的分离效率,且可以避免液相制冷剂在惯性作用下进入第一分气主管0711内。
为了进一步提高气液两相制冷剂的分离效率,参照图5和图7,分离器空腔061内还设有第二挡板063,第一挡板062和第二挡板063分设分液主管081的两侧,第二挡板063与分液主管081之间具有一定间隙064,气相制冷剂从该间隙064继续向上流动。
参照图3,下腔室012内设有多个等距间隔设置的第一隔板014,多个第一隔板014将下腔室012分隔成多个小腔室013,每个小腔室013连通有数 量相同的扁管11,每个小腔室013连通有分气支管072和分液支管,如此,使得进入每一个小腔室013内的制冷剂流量均匀,相同流量的制冷剂又被均匀地分配至相同数量的扁管11内,实现每一个扁管11内制冷剂的流量均匀。
本实施例中,下腔室012内形成有10个小腔室013,每一个小腔室013内连通两个扁管11。当然,在其他实施例中,小腔室013的数量和每个小腔室013内扁管11的数量可以根据实际情况灵活设置,本实施例不做具体限制。
本实施例对第四集流管04给出一种具体实施方式,参照图2,第四集流管04内形成有相互独立的腔室M1、腔室M2、腔室M3、腔室M4、以及腔室M5,腔室M1与腔室M5之间通过第一连接管091连通,腔室M2与腔室M4之间通过第二连接管092连通,流入腔室M1中的制冷剂经第一连接管091进入腔室M5中,流入腔室M2中的制冷剂经第二连接管092进入腔室M4中,进入腔室M3中的制冷剂向上流动、进入第二流程内的扁管11内。
下腔室012和第四集流管04的内部采用隔腔设计,确保制冷剂从进入第一集流管01到离开第一集流管01的流程内沿程压力损失和局部压力损失相等,确保换热器整体具有较好的分流均匀性。
在本申请某些实施例中,两相制冷剂在扁管11内沸腾换热时,比容和流速逐渐增加,气液混合程度增加,分离均匀性提高,因此,沿制冷剂流动方向的扁管数应逐渐减少;反之,两相制冷剂在扁管内冷凝换热时,比容和流速逐渐减小,气液趋于分离,为了减少气液两相在空间上的分离,因此,沿制冷剂流动方向的扁管数应逐渐增加。因此,在本实施例中,换热器用作蒸发器时,腔室M1连通的扁管11的数量小于腔室M5连通的扁管11的数量,腔室M2连通的扁管11的数量小于腔室M4连通的扁管11的数量,换热器用作蒸发器 时,流入腔室M3中的扁管11的数量大于流出腔室M3中的扁管11的数量。
在本申请某些实施例中,第一连接管091的一端连接于腔室M1的下端,便于腔室M1下部液相制冷剂的流入第一连接管091内;第一连接管091的另一端连接于腔室M5的上端,第一连接管091内的制冷剂自上而下地流入腔室M5中,利用重力提高与腔室M5连通的扁管11内制冷剂的流量均匀性。
同样的,第二连接管092的一端连接于腔室M2的下端,便于腔室M2下部液相制冷剂的流入第二连接管092内;第二连接管092的另一端连接于腔室M4的上端,第二连接管092内的制冷剂自上而下地流入腔室M4中,利用重力提高与腔室M4连通的扁管11内制冷剂的流量均匀性。
参照图2,实施例一中,换热器还包括气管组12,气管组12包括多个气管支路121,多个气管支路121均与上腔室011连通,上腔室011内的制冷剂从多个气管支管121汇总后流出。
实施例一中,换热器用作蒸发器时,制冷剂从制冷剂流通口065进入分离器06中,气相制冷剂经分气管组07进入第一集流管01的下腔室012内,液相制冷剂经分液管组08进入第一集流管01的下腔室012内,而后气液两相制冷剂同时进入第一流程内的多个扁管11内,然后经第一连接管091、第二连接管092、及第四集流管04进入第二流程内的多个扁管11内,最后经第一集流管01的上腔室011从气管组12流出。
实施例一中,换热器用作冷凝器时,换热器内制冷剂的流动方向与作蒸发器时相反,在此不再赘述。
实施例二
参照图8,换热器具有上行流程和下行流程,上行流程和下行流程是针对制冷剂的流动方向而言,仅是为了便于技术方案的说明,以上述实施例一而言,可将第一流程称为上行流程,将第二流程称为下行流程。
实施例二中,以换热器具有第一流程和第二流程为例对技术方案进行说明,第一流程即为上行流程,第二流程即为下行流程。
第一流程和第二流程之间通过第二集流管02、第三集流管03连通,具体的,第二集流管02与第二流程内的扁管11连通,第三集流管同时与第一流程内的扁管11、及第二流程内的部分扁管11连通,第二集流管02与第三集流管03之间通过连接管09连通。
参照图9至图14,第二集流管02包括空腔部021、通道部022、以及扰流部023,空腔部021与连接管09连通,通道部022的一端与空腔部021连通,通道部022的另一端与第二流程内的扁管11连通,扰流部023设于空腔部021内,用于扰动空腔部021内的制冷剂的流动路径,促使空腔部021内高压区与低压区的制冷剂混合。
具体的,第一流程扁管11内的制冷剂经第三集流管03、连接管09进入第二集流管02,制冷剂进入第二集流管02时,气液两相制冷剂首先进入空腔部021内,制冷剂流量越大,制冷剂分布不均越明显,制冷剂的流入端将产生低压,进而在空腔部021内形成高压区和低压区,扰流部023可以有效避免空腔部021内因涡流而导致的流动盲区,扰流部023对空腔部021内的制冷剂的流动路径进行扰动,促使空腔部021内高压区与低压区的制冷剂混合,制冷剂在空腔部021内循环流动,由扰流部023形成的制冷剂循环路径可以自动适应制冷剂流量的变化,进而使进入不同通道部022内的制冷剂能够均匀分 配,实现同一根扁管11内的不同微通道、相同流程内的不同扁管11内制冷剂流量均匀。
参照图9和图10,第二集流管02包括集流管主体,集流管主体的内部通过多个间隔的内壁024形成多个通道部022,多个通道部022均匀间隔布设,集流管主体内的底部形成空腔部021,集流管主体的侧壁上连接有多个扁管11,集流管主体与扁管相对的另一侧壁上连接有连接管09,通道部022的一端与空腔部021连通,通道部022的另一端与扁管11连通,图10中,为了便于表示集流管主体的内部结构,将其一侧壁隐藏未示出。
实施例二中,集流管主体为方形结构,多个内壁面形成的通道部022为扁平状结构,其他实施例中,集流管主体可以为圆柱结构、椭圆柱结构等,本实施例不做具体限制。
多个通道部022均匀间隔布设,便于空腔部021内的制冷剂能够均匀地流入不同的通道部022内,进而保证与各个通道部022连通的扁管11内制冷剂流量均匀。
通道部022具有折弯部026,通道部022靠近空腔部021的一侧与空腔部021垂直,通道部022靠近扁管11的一侧与扁管11平行,便于制冷剂在空腔部021与通道部022之间、扁管11与通道部022之间的流通。
在其他实施例中,通道部022可以为其他结构形式的流道,比如圆弧面的流道,为了平衡不同通道之间的阻力可以改变通道折返次数、改变通道部的表面粗糙度等。
集流管主体的侧壁上设有插入部025,插入部025与通道部022连通,扁管11插设于插入部025内,实现扁管11与通道部022的连通。
每个第二集流管02能够接出的扁管11的数量可根据实际情况灵活设置,实施例二中,每个第二集流管02可以连接的扁管11数量为1-20。
参照图10至图14,图12为图11中C-C向剖视图,图13为图11中D-D向剖视图,扰流部023为设于空腔部021内的隔断结构,隔断结构沿与制冷剂的流入方向平行的方向延伸,隔断结构为不完全隔断,也即,隔断结构与空腔部021的四周内壁均具有一定间隙。
图14中的箭头所示为制冷剂的流动方向,气液两相制冷剂在换热器内蒸发时,由连接管09流入空腔部021内的制冷剂,一部分直接向上流动直接进入通道部022内,另一部分制冷剂绕过扰流部023进入空腔部021内远离制冷剂流入口的一侧(也即图14所示方位中的左侧部分),此部分制冷剂绕扰流部023流动的同时,其中部分制冷剂会流入通道部022内,剩余部分制冷剂绕过扰流部023后再与新流入的制冷剂混合后进入下一个流动循环。由于制冷剂从连接管09进入空腔部021内时流速较高,空腔部021内制冷剂的进口处压力较低,促使未能够及时流入通道部022内的制冷剂能够绕着扰流部023循环流动,空腔部021内形成的制冷剂循环流路,有利于提高空腔部021内的制冷剂的均匀分配,使进入不同通道部022内的制冷剂均匀,进而使不同扁管内的制冷剂均匀。
在高流量下,制冷剂分布不均更加明显,当制冷剂流量较大时,本方案对制冷剂的均匀分配效果更加显著。因为流量越大,空腔部021制冷剂入口处喷射引起的低压效应愈显著,促使制冷剂绕扰流部023流动的循环回路愈显著,通过制冷剂的循环回路自动适应外部制冷剂流量的变化,提高制冷剂的均匀分配。
由于通道部022为扁平状结构,该扁平状结构与扁管11的结构正好匹配,制冷剂在通道部022内的均匀分配,也有利于提高进入同一根扁管11内不同微通道内的制冷剂均匀性。
参照图11和图14,连接管023优选地设于空腔部021远离送风方向的一侧,有利于提高散热效率。
图15和图16示出了扰流部023的另外两种变形结构形式,通过增加扰流部023的数量以在空腔部021内形成多路回流和多路扰流,进一步提高制冷剂的均匀分配效果。
图15中,扰流部023为两个间隔设置的隔断结构,隔断结构与图14所示的隔断结构相同,只是布置方式不同,图15中,两个扰流部023在空腔部021内相对于制冷剂流入空腔部021的位置处对称分布。流入空腔部021内的制冷剂,先进入两个扰流部023之间,然后分成两路,一路制冷剂绕左侧的扰流部023形成循环回路,另一路制冷剂绕右侧的扰流部023形成循环回路。
图16中,扰流部023为三个间隔设置的隔断结构,隔断结构与图14所示的隔断结构相同,只是布置方式不同,图16中,三个扰流部023在空腔部021内相对于制冷剂流入空腔部021的位置处对称分布,位于中间的扰流部023与连接管09正对。流入空腔部021内的制冷剂分成两路,一路沿着左侧扰流部023与中间扰流部023之间的间隙流动、并绕着左侧扰流部023形成循环回路,另一路沿着右侧扰流部023与中间扰流部023之间的间隙流动、并绕着右侧扰流部023形成循环回路。
返回至图8,第二集流管02具有至少一个,第三集流管03内设有多个第三隔板031,多个第三隔板031将第三集流管03的内部空间分隔成多个独立的 第三腔室032,其中一个第三腔室032同时连通于上行流程(第一流程)内的部分扁管11和下行流程(第二流程)内的部分扁管11,其余第三腔室031的数量与第二集流管02的数量相同,其余每个第三腔室031通过连接管09与每个第二集流管02一一对应连通。
实施例二中,第二集流管02具有两个,第三集流管03内设有三个第三隔板031,第三隔板031将第三集流管03内部分隔成三个独立的第三腔室032,依次标示为N1、N2、N3,其中位于上方的第二集流管02与第三腔室N1通过第一连接管091连通,位于下方的第二集流管02与第三腔室N2通过第二连接管092连通,第三腔室N3同时连通于第一流程内的部分扁管11和第二流程内的部分扁管11。
通过多个第三腔室032与多个第二集流管02的配合,有利于进一步提高制冷剂的均匀分配。
第一连接管091的一端连通于第三腔室N1的下端,便于第三腔室N1中的液相制冷剂流入第一连接管091内,第一连接管091的另一端连通于第二集流管02的下端、与空腔部021连通,便于气液两相制冷剂经过第二集流管02进行均匀分配。
同样的,第二连接管092的一端连通于第三腔室N2的下端,便于第三腔室N2中的液相制冷剂流入第二连接管092内,第二连接管092的另一端连通于第二集流管02的下端、与空腔部021连通,便于气液两相制冷剂经过第二集流管02进行均匀分配。
连通于同一连接管09两端的第三腔室032和第二集流管02中,第三腔室032连通的扁管数量小于第二集流管02连通的扁管11数量。实施例二中,第 三腔室N1连通的扁管数量小于第二集流管02连通的扁管数量,第三腔室N2连通的扁管数量小于第二集流管02连通的扁管数量,第三腔室N3连接的第一流程内的扁管数量小于连接的第二流程内的扁管数量。如此设计的原因与实施例一中第四集流管04的多层隔板设计原因相同,在此不再赘述。
实施例三
为了提高换热器的换热效率,可以将多个换热器并排连通设置,实施例三的目的之一在于提高相邻连通的两个换热器之间的制冷剂均匀分配,以提高整个换热器组件的换热均匀性。
参照图17至图19,换热器包括多个换热部13,多个换热部13并排连通设置,相邻的两个换热器13上的扁管11通过中间集流管05连通。
图17中的箭头表示换热器处于蒸发工况时制冷剂的流动方向,图18中的箭头表示换热器处于冷凝工况时制冷剂的流动方向,图19为多个换热部实际安装后的结构示意图。
实施例三中,以换热器具有两个换热部13为例对技术方案进行阐述,将两个换热部13定义为第一排换热部131和第二排换热部132,第一排换热部131位于送风方向的下风区,第二排换热部132位于送风方向的上风区,第一排换热部131和第二排换热部132均包括若干等距排布的扁管11和翅片10,空气从扁管11和翅片10之间的间隙流过,达到换热的效果。
两个换热部之间通过中间集流管05连通,换热器包括第一流程、第二流程、第三流程、以及第四流程,第一流程和第四流程位于第一排换热部131上,第二流程和第三流程位于第二排换热部132上,设于第一流程内的扁管与设于第 二流程内的扁管之间通过中间集流管05连通,设于第三流程内的扁管与设于第四流程内的扁管之间通过中间集流管05连通。
第一排换热部131的一端的设置可参照图2所示的实施例一的结构设置,在此不再赘述。
第二排换热部132的一端的设置可参照图8所示的实施例二的结构设置,在此不再赘述。
参照图17,换热器处于蒸发工况时,制冷剂经分离器06、分气管组07、分液管组08进入第一集流管01的下腔室012内后,再依次流经第一流程、中间集流管05、第二流程进入第三集流管03,再通过第一连接管091、第二连接管092进入第二集流管02内,而后依次流经第三流程、中间集流管05、第四流程进入第一集流管01的上腔室011,最后从气管组12流出。
参照图18,换热器处于冷凝工况时,制冷剂经气管组12进入第一集流管01的上腔室011后,在依次流经第四流程、中间集流管05、第三流程进入第二集流管02,再通过第一连接管091、第二连接管092进入第三集流管03内,而后依次流经第二流程、中间集流管05、第一流程进入第一集流管01的下腔室012内,最后经分气管组07、分液管组08、分离器06流出。
对于各个流程内扁管的数量而言,第一流程、第二流程、第三流程、以及第四流程内的扁管的数量逐渐增大,也即,第四流程内的扁管的数量大于第三流程内的扁管的数量,第三流程内的扁管的数量大于第二流程内的扁管的数量,第二流程内的扁管的数量大于第一流程内的扁管的数量。
中间集流管05内部通过隔板形成多个、且沿中间集流管05的高度方向布设的子腔体051,多个子腔体051相互独立,每个子腔体051的结构设置相同, 图20至图27所示为单个子腔体051的结构示意图,其中图21为从图20的Q方向观察到的视图。
参照图20至图23,每个子腔体051包括第一腔体052、第二腔体053、第三腔体054、第一流通部055、及第二流通部056,第一腔体052与第一排换热部131上的部分扁管连通,第二腔体053与第二排换热部132上的部分扁管连通,第三腔体054与第一腔体052连通,第一流通部055位于第三腔体054的下方、用于连通第二腔体053和第三腔体054,第二流通部056位于第二腔体052的上方,用于连通第一腔体052和第二腔体053。
换热器用作蒸发器时,制冷剂先进入第一腔体052内,第一腔体052内的大部分制冷剂将流入第三腔体054内,进入第三腔体054内的气液两相制冷剂趋于在重力作用下分离并且均匀度变差,第三腔体054内的制冷剂经下方的第一流通部055进入第二腔体053内,由于气相制冷剂的流速高于液相制冷剂的流速,第三腔体054上方的气相制冷剂向下流经第一流通部055的过程中,必会与下方的液相制冷剂混合,而后将第一流通部055的加速效应进入第二腔体053,并自下而上地流入与第二腔体053连通的扁管内,实现气液两相制冷剂在扁管内的均匀分配。制冷剂在第二腔体053内自下而上的流动过程中速度递减,第二腔体053的上部形成涡流,涡流处扁管制冷剂流量偏小,而第二流通部056将使制冷剂上行过程中多出的制冷剂导入第一腔体052内,与第一腔体052内的高速制冷剂混合,参与下一循环的分配过程,以此来进一步提高制冷剂的均匀分配,进而提高空调器的换热效果。
第一流通部055的口径优选地大于扁管11的口径,以便于第三腔体054内的制冷剂顺利经第一流通部055进入第二腔体053内。
第一腔体052的侧壁上设有用于安装扁管11的多个第一安装部058,第二腔体053的侧壁上设有用于安装扁管11的多个第二安装部059,第一安装部058和第二安装部059位于子腔体051的同侧,这样,第一排换热部131和第二排换热部132经中间集流管05连通后,可以形成前后并排的结构,结构更加紧凑,有利于减小整个换热器的体积。
第一安装部058和第二安装部059可以为设于子腔体051侧壁上的插入孔,扁管11可直接与插入孔插接,便于安装、结构可靠。
第一安装部058和第二安装部059的数量相同,使得第一腔体052连通的扁管数量与第二腔体053连通的扁管数量相同,以提高不同流程扁管内的制冷剂均匀性。
作为一种优选实施方案,子腔体051内设有第一分隔板0511、第二分隔板0512、以及第三分隔板0513,通过第一分隔板0511、第二分隔板0512、及第三分隔板0513将子腔体051内部分隔成第一腔体052、第二腔体053以及第三腔体054。
第二分隔板0512优选地与第三分隔板0513处于同一平面内,第一分隔板0511优选地与第二分隔板0512、第三分隔板0513垂直,便于形成体积相等的第一腔体052和第二腔体053,以便于实现制冷剂的均匀分配。
参照图23、图25至图27,第一分隔板0511设于第一腔体052和第二腔体053之间,第二流通部056设于第一分隔板0511的上部,第二分隔板0512设于第一腔体052和第三腔体054之间,第二分隔板0512上设有多个供制冷剂流通的第三流通部057,第三分隔板0513设于第二腔体053和第三腔体054之间,第一流通部055设于第三分隔板0513的下部。
换热器用作蒸发器时,多根扁管流入第一腔体052内的制冷剂,大部分经第三流通部057进入第三腔体054内,第三腔体054内的制冷剂经下方的第一流通部055进入第二腔体053内,将第一流通部055设于下方,使得第三腔体054上方的气相制冷剂向下流经第一流通部055的过程中,必会与下方的液相制冷剂混合,而后经第一流通部055的加速效应进入第二腔体053,并自下而上地流入与第二腔体053连通的扁管内,实现气液两相制冷剂在扁管内的均匀分配。制冷剂在第二腔体053内自下而上的流动过程中速度递减,第二腔体053的上部形成涡流,涡流处扁管制冷剂流量偏小,而位于上方的第二流通部056将使制冷剂上行过程中多出的制冷剂导入第一腔体052内,与第一腔体052内的高速制冷剂混合,参与下一循环的分配过程,以此来进一步提高制冷剂的均匀分配,进而提高空调器的换热效果。
第三流通部057的数量优选地与第一腔体052连通的扁管的数量相同,位于第一腔体052内的扁管的端部与第三流通部057之间具有一定距离、且正对第三流通部057,便于从扁管内喷射出的制冷剂能够大部分射入第三腔体054内。
此外,图20至图23所示的子腔体051为矩形结构形式,在其他实施例中,第三腔体054可以为D型、O型等其他结构形式,本实施例不做具体限制,如图24所示,第三腔体054为D型。
实施例三中,气液两相制冷剂在第一排换热部131和第二排换热部132之间流通时,无论上游制冷剂分流是否均匀,经过中间集流管05后,都可以确保进入下一个流程扁管内的制冷剂实现动态调节和均匀分配。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的 一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种空调器,包括:换热回路,用于进行室内与室外的热量交换,所述换热回路上设有换热器,所述换热器具有上行流程和下行流程;其特征在于,所述换热器包括:扁管,其内具有多个微通道,用于流通制冷剂;第二集流管,与所述下行流程内的所述扁管连通,用于流通所述制冷剂;第三集流管,与所述上行流程内的所述扁管连通,用于流通所述制冷剂;连接管,连通所述第二集流管和所述第三集流管,用于流通所述制冷剂;其中,所述第二集流管包括:空腔部,与所述连接管连通,用于流通所述制冷剂;通道部,一端与所述空腔部连通,另一端与所述扁管连通,用于流通所述制冷剂;扰流部,设于所述空腔部内,用于扰动所述空腔部内的所述制冷剂的流动。
- 根据权利要求1所述的空调器,其特征在于,所述第二集流管内形成有多个、且均匀间隔布设的所述通道部,每个所述通道部的一端与所述空腔部连通,另一端与所述扁管连通。
- 根据权利要求2所述的空调器,其特征在于,所述通道部具有折弯部,所述通道部靠近所述空腔部的一侧与所述空腔部垂直,所述通道部靠近所述扁管的一侧与所述扁管平行。
- 根据权利要求2所述的空调器,其特征在于,所述第二集流管的侧壁上设有插入部,所述插入部与所述通道部连通,所 述扁管插设于所述插入部内。
- 根据权利要求1所述的空调器,其特征在于,所述扰流部为设于所述空腔部内的隔断结构,所述隔断结构沿与所述制冷剂的流入方向平行的方向延伸,所述隔断结构与所述空腔部的四周内壁均具有一定间隙。
- 根据权利要求5所述的空调器,其特征在于,所述连接管连通于所述空腔部远离送风方向的一侧。
- 根据权利要求1所述的空调器,其特征在于,所述扰流部为设于所述空腔部内的至少两个、且间隔设置的隔断结构,所述隔断结构沿与所述制冷剂的流入方向平行的方向延伸,多个所述隔断结构相对于所述制冷剂流入所述空腔部的位置处对称分布。
- 根据权利要求1至7中任一项所述的空调器,其特征在于,所述第二集流管具有至少一个;所述第三集流管内设有多个第三隔板,多个所述第三隔板将所述第三集流管的内部空间分隔成多个独立的第三腔室,其中一个所述第三腔室同时连通于所述上行流程内的部分所述扁管和所述下行流程内的部分所述扁管,其余所述第三腔室的数量与所述第二集流管的数量相同,其余每个所述第三腔室通过所述连接管与每个所述第二集流管一一对应连通。
- 根据权利要求8所述的空调器,其特征在于,所述连接管的一端与所述第三腔室的下端连接,另一端与所述第二集流管的下端连接。
- 根据权利要求8所述的空调器,其特征在于,连通于同一所述连接管两端的所述第三腔室和所述第二集流管中,所述第三腔室连通的所述扁管的数量小于所述第二集流管连通的所述扁管的数量。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19953343.1A EP4063750B1 (en) | 2019-11-20 | 2019-12-13 | Air conditioner |
US17/748,216 US20220276009A1 (en) | 2019-11-20 | 2022-05-19 | Air conditioner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911141833.9 | 2019-11-20 | ||
CN201911141833.9A CN112824769A (zh) | 2019-11-20 | 2019-11-20 | 一种空调器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/748,216 Continuation US20220276009A1 (en) | 2019-11-20 | 2022-05-19 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021097967A1 true WO2021097967A1 (zh) | 2021-05-27 |
Family
ID=75906947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/125182 WO2021097967A1 (zh) | 2019-11-20 | 2019-12-13 | 一种空调器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220276009A1 (zh) |
EP (1) | EP4063750B1 (zh) |
CN (1) | CN112824769A (zh) |
WO (1) | WO2021097967A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114216166B (zh) * | 2021-11-25 | 2023-04-07 | 青岛海信日立空调系统有限公司 | 一种空调器 |
JP2024098813A (ja) * | 2023-01-11 | 2024-07-24 | パナソニックIpマネジメント株式会社 | 熱交換器、及び室外機 |
CN118565110A (zh) * | 2023-02-28 | 2024-08-30 | 华为技术有限公司 | 换热器、换热系统及终端设备 |
WO2024224637A1 (ja) * | 2023-04-28 | 2024-10-31 | 三菱電機株式会社 | 熱交換器及び冷凍サイクル装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103348212A (zh) * | 2011-01-21 | 2013-10-09 | 大金工业株式会社 | 热交换器及空调装置 |
CN203928496U (zh) * | 2014-03-26 | 2014-11-05 | 广东美的集团芜湖制冷设备有限公司 | 平行流换热器及空调器 |
JP2015055412A (ja) * | 2013-09-11 | 2015-03-23 | ダイキン工業株式会社 | 熱交換器および空気調和機 |
CN105849498A (zh) * | 2013-12-27 | 2016-08-10 | 大金工业株式会社 | 热交换器及空调装置 |
KR20190096170A (ko) * | 2018-02-08 | 2019-08-19 | 엘지전자 주식회사 | 냉장고의 열교환기 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101497347B1 (ko) * | 2007-06-05 | 2015-03-04 | 한라비스테온공조 주식회사 | 열교환기 |
JP5376010B2 (ja) * | 2011-11-22 | 2013-12-25 | ダイキン工業株式会社 | 熱交換器 |
CN104344607B (zh) * | 2013-08-08 | 2018-07-06 | 浙江盾安热工科技有限公司 | 一种换热器 |
JP5754490B2 (ja) * | 2013-09-30 | 2015-07-29 | ダイキン工業株式会社 | 熱交換器および空気調和装置 |
JP5850118B1 (ja) * | 2014-09-30 | 2016-02-03 | ダイキン工業株式会社 | 熱交換器および空気調和装置 |
CN204943973U (zh) * | 2015-09-15 | 2016-01-06 | 珠海格力电器股份有限公司 | 集流管及具有该集流管的微通道换热器和空调系统 |
CN209042811U (zh) * | 2018-08-15 | 2019-06-28 | 浙江盾安热工科技有限公司 | 微通道换热器及其制冷剂分配装置 |
CN210980114U (zh) * | 2019-11-20 | 2020-07-10 | 青岛海信日立空调系统有限公司 | 一种空调器 |
-
2019
- 2019-11-20 CN CN201911141833.9A patent/CN112824769A/zh active Pending
- 2019-12-13 WO PCT/CN2019/125182 patent/WO2021097967A1/zh unknown
- 2019-12-13 EP EP19953343.1A patent/EP4063750B1/en active Active
-
2022
- 2022-05-19 US US17/748,216 patent/US20220276009A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103348212A (zh) * | 2011-01-21 | 2013-10-09 | 大金工业株式会社 | 热交换器及空调装置 |
JP2015055412A (ja) * | 2013-09-11 | 2015-03-23 | ダイキン工業株式会社 | 熱交換器および空気調和機 |
CN105849498A (zh) * | 2013-12-27 | 2016-08-10 | 大金工业株式会社 | 热交换器及空调装置 |
CN203928496U (zh) * | 2014-03-26 | 2014-11-05 | 广东美的集团芜湖制冷设备有限公司 | 平行流换热器及空调器 |
KR20190096170A (ko) * | 2018-02-08 | 2019-08-19 | 엘지전자 주식회사 | 냉장고의 열교환기 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4063750A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4063750B1 (en) | 2024-07-24 |
CN112824769A (zh) | 2021-05-21 |
US20220276009A1 (en) | 2022-09-01 |
EP4063750A4 (en) | 2023-11-15 |
EP4063750A1 (en) | 2022-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021097967A1 (zh) | 一种空调器 | |
CN210980113U (zh) | 一种空调器 | |
EP2853843B1 (en) | A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device | |
CN210980112U (zh) | 一种空调器 | |
CN101963418B (zh) | 用于空调热泵的微通道换热器 | |
US10168083B2 (en) | Refrigeration system and heat exchanger thereof | |
WO2018173356A1 (ja) | 熱交換器、および、それを用いた空気調和機 | |
CN111059802A (zh) | 一种冷凝装置和具有其的空调系统 | |
CN111981604B (zh) | 一种空调器 | |
CN210980114U (zh) | 一种空调器 | |
CN201876019U (zh) | 用于窗式空调的平行流蒸发器 | |
CN111780255A (zh) | 一种空调器 | |
CN112824768A (zh) | 一种空调器 | |
CN211400388U (zh) | 一种冷凝装置和具有其的空调系统 | |
CN111928384B (zh) | 一种空调器 | |
US11629896B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
CN112128853B (zh) | 一种空调器 | |
CN111928386A (zh) | 一种空调器 | |
CN112923443B (zh) | 空调器 | |
CN111928385B (zh) | 一种空调器 | |
CN113606804A (zh) | 一种稳定制冷剂流速增效冷风机 | |
CN108827027B (zh) | 管式换热器及降膜式蒸发器 | |
CN217929275U (zh) | 一种稳定制冷剂流速增效冷风机 | |
CN111829075A (zh) | 一种薄型空调室内换热系统 | |
CN105526740A (zh) | 蒸发器及包含该蒸发器的空调器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953343 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019953343 Country of ref document: EP Effective date: 20220620 |