Nothing Special   »   [go: up one dir, main page]

WO2021095112A1 - ガス検知装置、画像処理制御方法および画像処理制御プログラム - Google Patents

ガス検知装置、画像処理制御方法および画像処理制御プログラム Download PDF

Info

Publication number
WO2021095112A1
WO2021095112A1 PCT/JP2019/044254 JP2019044254W WO2021095112A1 WO 2021095112 A1 WO2021095112 A1 WO 2021095112A1 JP 2019044254 W JP2019044254 W JP 2019044254W WO 2021095112 A1 WO2021095112 A1 WO 2021095112A1
Authority
WO
WIPO (PCT)
Prior art keywords
image processing
image
gas
unit
infrared
Prior art date
Application number
PCT/JP2019/044254
Other languages
English (en)
French (fr)
Inventor
昭洋 鈴木
基広 浅野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to PCT/JP2019/044254 priority Critical patent/WO2021095112A1/ja
Publication of WO2021095112A1 publication Critical patent/WO2021095112A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to a gas detection device, an image processing control method, and an image processing control program.
  • a gas detection device that detects a gas leak in a monitored target (for example, a gas production facility) by using an infrared camera that is sensitive to the wavelength band of light absorbed by the gas to be inspected (for example, methane) has been known. Has been done.
  • a gas detection device that detects a gas leak in a monitored target (for example, a gas production facility) by using an infrared camera that is sensitive to the wavelength band of light absorbed by the gas to be inspected (for example, methane) has been known.
  • the infrared camera that is sensitive to the wavelength band of light absorbed by the gas to be inspected (for example, methane)
  • the change in the image is visualized as the presence of gas, and the detection accuracy of gas leak is improved.
  • the technology to make it is proposed. In this technique, since the displayed image is a difference image and contains a lot of noise, the inspector needs considerable skill to confirm the accurate position, size, etc. of the gas leak from the difference image.
  • the frequency of the time-series pixel data at the same position is lower than that of the first frequency component data indicating the temperature change due to the leaked gas, and the temperature change of the background to be monitored is indicated.
  • the gas candidate image is extracted by performing a process of removing the frequency component data of No. 2 from the image data showing the infrared image.
  • Patent Document 1 has a high ability to detect leaked gas, and has an excellent ability to detect a slight gas leak even if the person is not an expert.
  • the infrared camera is used, for example, because the inspector holds the infrared camera in his hand. When it vibrates, it becomes difficult to arrange the pixels at the same position in time series, and the gas detection ability tends to decrease. Therefore, it is necessary for the inspector to take an infrared image after firmly fixing the infrared camera to a tripod or the like instead of holding the infrared camera in his hand.
  • An object of the present invention is to provide a gas detection device, an image processing control method, and an image processing control program capable of efficiently inspecting a gas leak.
  • the gas detection device is a gas detection device that detects the detection target gas by performing image processing on a plurality of infrared images captured at a plurality of different times by the image pickup device.
  • a first image processing unit that executes a first image processing capable of detecting the detection target gas, and a first image processing unit.
  • a second image processing unit that executes a second image processing capable of detecting the detection target gas with higher accuracy than the first image processing, and a second image processing unit.
  • a control unit that controls the first and second image processing units so as to selectively execute the first or second image processing, and a control unit. To be equipped.
  • the image processing control method is This is an image processing control method in a gas detection device that detects a gas to be detected by performing image processing on a plurality of infrared images captured at a plurality of times different by the image pickup device. While executing the first image processing capable of detecting the detection target gas, when the gas detection device is fixed, the detection target gas can be detected with higher accuracy than the first image processing. 2 Controls to execute image processing.
  • the image processing control program according to the present invention is An image processing control program applied to a computer that controls a gas detection device that detects a gas to be detected by performing image processing on a plurality of infrared images captured at a plurality of different times depending on the image pickup device.
  • a gas detection device that detects a gas to be detected by performing image processing on a plurality of infrared images captured at a plurality of different times depending on the image pickup device.
  • the detection target gas can be detected with higher accuracy than the first image processing. 2
  • gas leaks can be inspected efficiently.
  • FIG. 1 is a block diagram showing a functional configuration of the gas detection system 10 according to the present embodiment.
  • the gas detection system 10 includes a portable imaging device 100 and an inspection device 120 (functioning as the "gas detection device" of the present invention).
  • the imaging device 100 and the inspection device 120 are connected by a communication cable (not shown).
  • the image pickup device 100 may be connected to the inspection device 120 via wireless communication, or the image pickup device 100 and the inspection device 120 may be integrated. Further, the image pickup apparatus 100 may be connected to the inspection apparatus 120 via a network such as the Internet.
  • the image pickup device 100 is, for example, a portable camera device that captures an inspection area including a gas production facility (tank, plant, etc.) to be monitored and generates infrared image data of the inspection area.
  • a gas production facility such as tank, plant, etc.
  • the imaging device 100 includes an infrared imaging unit 102, a visible imaging unit 104, and a fixed detection unit 106.
  • the image pickup apparatus 100 includes, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, and a working memory such as a RAM (Random Access Memory). , And has a communication circuit.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the infrared imaging unit 102 includes a first optical system (not shown), a first optical filter (not shown), an infrared sensor (not shown), and the like.
  • the first optical system forms an image of infrared rays incident from an inspection area (subject) including a gas production facility (tank, plant, etc.) to be monitored on an infrared sensor.
  • the first optical filter is a bandpass filter or the like arranged on the optical path connecting the first optical system and the infrared sensor.
  • the first optical filter allows only infrared rays included in a predetermined wavelength band to pass among the infrared rays that have passed through the first optical system.
  • the passing wavelength band of the first optical filter is substantially set to the absorption wavelength band of the gas to be detected. For example, when the passing wavelength band is set to a medium wavelength range of 3.2 to 3.4 ⁇ m, methane gas or the like can be detected.
  • the infrared sensor is, for example, a quantum image sensor using indium antimonide (InSb), which receives infrared rays and generates infrared image data.
  • InSb indium antimonide
  • Such an infrared imaging unit 102 is in a state of being synchronized with the visible imaging unit 104 (that is, a range corresponding to the range represented by the visible image captured by the visible imaging unit 104), for example, a gas production facility to be monitored.
  • the inspection area including the inspection region is imaged, and the infrared image data corresponding to the captured infrared image is sequentially transmitted to the inspection device 120.
  • the infrared image data generated by the infrared imaging unit 102 is a still image or a moving image. Such infrared image data shows the temperature distribution in the inspection area.
  • the visible imaging unit 104 includes a second optical system (not shown), a second optical filter (not shown), a visible light sensor (not shown), and the like.
  • the second optical system forms an image of visible light incident from the inspection area to be a subject on the visible light sensor.
  • the second optical filter is an infrared cut filter or the like arranged on the optical path connecting the second optical system and the visible light sensor.
  • the infrared cut filter cuts infrared rays from the light that has passed through the second optical system.
  • the visible light sensor is, for example, a CMOS image sensor that receives visible light of black and white BW or visible light of color RGB to generate visible image data.
  • Such a visible imaging unit 104 images an inspection region and images the inspection region in a state synchronized with the infrared imaging unit 102 (that is, a range corresponding to the range represented by the infrared image captured by the infrared imaging unit 102).
  • the visible image data corresponding to the visible image is sequentially transmitted to the inspection device 120.
  • the visible image data generated by the visible imaging unit 104 is a still image or a moving image.
  • the fixed detection unit 106 detects whether or not the image pickup device 100 is fixed to, for example, a tripod in order to keep the posture of the image pickup device 100 constant. Then, the fixed detection unit 106 sequentially transmits the detection result as to whether or not it is in the fixed state to the inspection device 120.
  • a fixing hole (not shown) for inserting into a tripod and fixing the image pickup device 100 to the tripod is provided at the bottom of the housing of the image pickup apparatus 100.
  • a tripod switch (not shown) that is pushed by being inserted into a tripod is provided above the fixing hole.
  • the fixed detection unit 106 detects that the image pickup device 100 is in the fixed state when the tripod switch is pressed, while the image pickup device 100 is not in the fixed state when the tripod switch is not pressed. Detect that.
  • the fixed detection unit 106 detects the posture of the image pickup device 100 based on the output of an acceleration sensor (not shown) provided inside the image pickup device 100, and the image pickup device 100 is fixed to, for example, a tripod. It may be detected whether or not it is. In this case, the fixed detection unit 106 detects that the image pickup device 100 is in a fixed state when the attitude change of the image pickup apparatus 100 is small, while the image pickup apparatus 100 detects that the image pickup apparatus 100 is in a fixed state when the attitude change of the image pickup apparatus 100 is large. Detects that it is not in a fixed state.
  • the inspection device 120 visualizes the gas generated in the inspection area (hereinafter, also referred to as “detection target gas”) by using the received information (infrared image data, visible image data) from the image pickup device 100.
  • detection target gas gas generated in the inspection area
  • Such an inspection device 120 is a mobile terminal such as a tablet terminal, a smartphone, a laptop terminal, or a wearable terminal that is communication-connected to the image pickup device 100.
  • the inspection device 120 includes a first image processing unit 122, a second image processing unit 124, a control unit 126, a display control unit 128, a display unit 130, and an input reception unit 132.
  • the control unit 126 also functions as the "determination unit" of the present invention.
  • the inspection device 120 is, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, and a working memory such as a RAM (Random Access Memory). , And has a communication circuit.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the first image processing unit 122 sequentially receives the infrared image data of the inspection region transmitted from the infrared imaging unit 102, and under the control of the control unit 126, a plurality of infrared images captured at a plurality of different times.
  • the detection target gas is detected by performing the first image processing on the image.
  • the first image processing unit 122 performs image processing for generating a difference image showing a difference between a plurality of infrared images as the first image processing, and controls the generated difference image as the first image. Output to unit 126.
  • the first image processing unit 122 sets the difference between the infrared image corresponding to the infrared image data received this time and the infrared image corresponding to the infrared image data received a predetermined number of times before (for example, The difference between the infrared image in the Nth frame and the infrared image in the N-2th frame) is taken to generate a difference image.
  • the second image processing unit 124 sequentially receives the infrared image data of the inspection region transmitted from the infrared imaging unit 102, and under the control of the control unit 126, a plurality of infrared images captured at a plurality of different times.
  • the detection target gas is detected by performing the second image processing on the image.
  • the second image processing unit 124 performs image processing on pixel data in which pixels at the same position are arranged in time series in a plurality of infrared images as the second image processing, and the second image The image obtained by the processing is output as a second image.
  • the second image processing unit 124 has a lower frequency than the first frequency component data indicating the temperature change due to the leaked detection target gas with respect to the time series pixel data at the same position, and the background of the monitoring target.
  • the gas image indicating the detection target gas is detected.
  • processing is performed to remove the third frequency component data, which has a higher frequency than the first frequency component data indicating the temperature change due to the leaked detection target gas and indicates high frequency noise, from the infrared image data indicating the infrared image. It is preferable (for further details, see Patent Document 1 above).
  • the second image processing is an image processing capable of detecting the detection target gas with higher accuracy than the first image processing.
  • the second image processing unit 124 has a specific color on the visible image corresponding to the visible image data of the inspection region transmitted from the visible imaging unit 104, in which the portion corresponding to the detection portion of the gas image by the second image processing is used.
  • the gas to be detected is visualized by adding (for example, red color).
  • the second image processing unit 124 outputs the visible image after visualizing the detection target gas on the visible image to the control unit 126 as the third image.
  • the second image processing unit 124 is a portion corresponding to the detection portion of the gas image by the second image processing on the infrared image corresponding to the infrared image data of the inspection region transmitted from the infrared imaging unit 102.
  • a specific color for example, red
  • the second image processing unit 124 outputs the infrared image after visualizing the detection target gas on the infrared image to the control unit 126 as the fourth image.
  • the display control unit 128 controls the display unit 130 so as to display various images under the control of the control unit 126.
  • the display unit 130 is, for example, a display constituting the inspection device 120.
  • a liquid crystal display, an organic EL display, or the like can be used.
  • the display is a flat panel display with a touch panel.
  • the display unit 130 displays various images for performing a gas inspection by being visually recognized by a user (for example, an inspector) based on a display signal from the display control unit 128.
  • the input receiving unit 132 receives various inputs (information input, instruction input) by the user via an operation unit (touch panel) (not shown).
  • the control unit 126 controls the first and second image processing units 122 and 124 so as to selectively execute the first or second image processing.
  • the control unit 126 controls the first image processing unit 122 to execute the first image processing and controls the display control unit 128 before the user is instructed to start the substantive inspection of the gas leak.
  • the pre-inspection screen 200 shown in the above is displayed on the display unit 130.
  • the pre-inspection screen 200 is a display screen when a user performs a pre-inspection of a gas leak, and has a display area 202 and a start button 204 for instructing the start of a substantive inspection of the gas leak (
  • the software key the visible image 210 corresponding to the visible image data transmitted from the visible imaging unit 104, the infrared image 212 corresponding to the infrared image data transmitted from the infrared imaging unit 102, and the first image processing.
  • the first image 214 (difference image) output from the unit 122 is included.
  • the user can give an instruction to enlarge any one of the visible image 210, the infrared image 212, and the first image 214 and display it in the display area 202 via the input receiving unit 132.
  • the first image 214 is selected (check mark display) according to the user's instruction, and the first image 214 is enlarged and displayed in the display area 202.
  • the user can confirm the presence or absence of the gas leak 206 by referring to the first image 214 displayed in the display area 202 even if the image pickup device 100 is not fixed to the tripod. it can.
  • the user moves to the next work site and inspects the gas leak.
  • the user fixes the image pickup device 100 to the tripod when it can be confirmed that there is a gas leak by referring to the first image 214 displayed in the display area 202. Then, the user presses the start button 204 via the input receiving unit 132 to start the substantive inspection of the gas leak.
  • control unit 126 controls the second image processing unit 124 to execute the second image processing, and also controls the display control unit 128 to control FIG.
  • the inspection screen 300 shown in 1 and 4 is displayed on the display unit 130.
  • the inspection screen 300 is a display screen when the user performs a substantive inspection of a gas leak.
  • the inspection screen 300 includes a display area 302, an end button 304 (software key) for instructing the end of the substantive inspection of gas leakage, and a visible image 310 corresponding to the visible image data transmitted from the visible imaging unit 104.
  • the infrared image 312 corresponding to the infrared image data transmitted from the infrared imaging unit 102, and the second image 314, the third image 316, and the fourth image 318 output from the second image processing unit 124 are included. ..
  • the user gives an instruction to enlarge any one of the visible image 310, the infrared image 312, the second image 314, the third image 316, and the fourth image 318 and display them in the display area 302 via the input receiving unit 132. be able to.
  • the second image 314 is selected (check mark display) according to the user's instruction, and the second image 314 is enlarged and displayed in the display area 302.
  • the user can confirm the exact position, size, etc. of the gas leak 306 by referring to the second image 314 displayed in the display area 302.
  • the third image 316 (the image after visualizing the detection target gas on the visible image) is selected (check mark display) according to the user's instruction, and the third image 316 is enlarged to display the display area 302. It is displayed in.
  • the user can clarify the exact position, size, etc. of the gas leak 306 as compared with the case of referring to the second image 314. You can check.
  • the control unit 126 ends the display of the inspection screen 300 and causes the display unit 130 to display the pre-inspection screen 200 (see FIG. 2).
  • the user then moves to the next work site to pre-inspect for gas leaks.
  • the inspection device 120 in the present embodiment is detected by performing image processing on a plurality of infrared images captured at a plurality of times different by the image pickup device 100. It is a gas detection device that detects gas.
  • the inspection device 120 includes a first image processing unit 122 that executes a first image processing capable of detecting the detection target gas even when the image pickup device 100 is not fixed, and an image pickup device.
  • the second image processing unit 124 that executes the second image processing capable of detecting the detection target gas with higher accuracy than the first image processing, and the first or second image processing It includes a control unit 126 that controls the first and second image processing units 122 and 124 so as to selectively execute the images.
  • the presence or absence of gas leakage is confirmed in advance from (first image 214).
  • the user moves to the next work site.
  • the user can execute the second image processing executed with the image pickup apparatus 100 fixed (second image 314, third image 316, and first). 4 Confirm the exact position, size, etc. of the gas leak 306 from the image 318).
  • the image pickup apparatus 100 may be fixed and the exact position, size, etc. of the gas leak 306 may be confirmed.
  • the time and effort for fixing the image pickup device 100 and the occurrence of time loss can be suppressed, and the gas leak can be inspected efficiently.
  • control unit 126 selectively executes the first or second image processing in response to a user's instruction (pressing the start button 204 and the end button 304) has been described.
  • the present invention is not limited to this.
  • the control unit 126 determines whether or not the image pickup device 100 is in a fixed state based on the detection result of the fixed detection unit 106, and determines that the image pickup device 100 is not in a fixed state.
  • the second image processing may be executed.
  • the control unit 126 determines that the imaging device 100 is fixed based on the detection result of the fixed detection unit 106, and the pre-inspection screen 200. Is terminated, and the inspection screen 300 is displayed.
  • Gas detection system 100 Imaging device 102 Infrared imaging unit 104 Visible imaging unit 106 Fixed detection unit 120 Inspection device 122 1st image processing unit 124 2nd image processing unit 126 Control unit 128 Display control unit 130 Display unit 132 Input reception unit

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

効率的にガス漏れを検査することが可能なガス検知装置、画像処理制御方法および画像処理制御プログラムを提供する。ガス検知装置は、撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置であって、検知対象ガスを検知可能な第1画像処理を実行する第1画像処理部と、撮像装置が固定されている状態である場合、第1画像処理よりも検知対象ガスを高精度に検知可能な第2画像処理を実行する第2画像処理部と、第1または第2画像処理を選択的に実行するように第1および第2画像処理部を制御する制御部とを備える。

Description

ガス検知装置、画像処理制御方法および画像処理制御プログラム
 本発明は、ガス検知装置、画像処理制御方法および画像処理制御プログラムに関する。
 従来、検査対象となるガス(例えば、メタン)が吸収する光の波長帯に感度を持つ赤外線カメラを利用して、監視対象(例えば、ガス生産施設)におけるガス漏れを検知するガス検知装置が知られている。しかしながら、監視対象におけるガス漏れの量が少ない場合、検査者は、赤外線カメラにより撮像されたガス漏れの画像を一見したところ判別しにくい。
 そこで、異なる複数の時刻で撮像された複数の赤外画像間の差分を示す差分画像を生成して表示することで、画像の変化をガスの存在として可視化して、ガス漏れの検知精度を向上させる技術が提案されている。この技術では、表示される画像は差分画像でありノイズが多く含まれるため、差分画像からガス漏れの正確な位置、大きさ等を確認するためには、検査者はかなりの熟練を要する。
 また、異なる複数の時刻で監視対象を撮像した複数の赤外画像において同じ位置の画素を時系列に並べた時系列画素データに対して画像処理(信号処理)を行うことで、ガス漏れの正確な位置、大きさ等を検知する技術が提案されている(例えば、特許文献1を参照)。
 特許文献1に記載の技術では、同一位置の時系列画素データに対して、漏れたガスによる温度変化を示す第1の周波数成分データよりも周波数が低く、監視対象の背景の温度変化を示す第2の周波数成分データを、赤外画像を示す画像データから除く処理をすることで、ガス候補像を抽出している。
国際公開第2017/073430号
 特許文献1に記載の技術は、漏れたガスの検知能力が高く、熟練者でなくともわずかなガス漏れを検知することができる優れたガス検知能力を有する。しかし、複数の赤外画像における同一位置の時系列画素データに対して画像処理を行ってガスを検知するため、例えば検査者が赤外線カメラを手で持っていることに起因して当該赤外線カメラが振動した場合、同じ位置の画素を時系列に並べることが困難となり、ガス検知能力が低下しやすい。そこで、検査者が赤外線カメラを手に持つのではなく当該赤外線カメラをしっかりと三脚等に固定した上で赤外画像を撮像する必要がある。
 しかしながら、作業現場では、検査者は何か所もガス漏れを検査する必要があり、そのたびに赤外線カメラを固定するのは手間がかかり時間ロスが発生するため、効率的にガス漏れを検査することが求められる。
 本発明の目的は、効率的にガス漏れを検査することが可能なガス検知装置、画像処理制御方法および画像処理制御プログラムを提供することである。
 本発明に係るガス検知装置は、
 撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置であって、
 前記検知対象ガスを検知可能な第1画像処理を実行する第1画像処理部と、
 前記撮像装置が固定されている状態である場合、前記第1画像処理よりも前記検知対象ガスを高精度に検知可能な第2画像処理を実行する第2画像処理部と、
 前記第1または第2画像処理を選択的に実行するように前記第1および第2画像処理部を制御する制御部と、
 を備える。
 本発明に係る画像処理制御方法は、
 撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置における画像処理制御方法であって、
 前記検知対象ガスを検知可能な第1画像処理を実行する一方、前記ガス検知装置が固定されている状態である場合、前記第1画像処理よりも前記検知対象ガスを高精度に検知可能な第2画像処理を実行する制御を行う。
 本発明に係る画像処理制御プログラムは、
 撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置を制御するコンピューターに適用される画像処理制御プログラムであって、
 前記コンピューターに、
 前記検知対象ガスを検知可能な第1画像処理を実行する一方、前記ガス検知装置が固定されている状態である場合、前記第1画像処理よりも前記検知対象ガスを高精度に検知可能な第2画像処理を実行する制御を行う処理を実行させる。
 本発明によれば、効率的にガス漏れを検査することができる。
本実施の形態におけるガス検知システムの機能構成を示すブロック図である。 検査前画面の表示例を示す図である。 検査中画面の表示例を示す図である。 検査中画面の表示例を示す図である。
 図1は、本実施の形態におけるガス検知システム10の機能構成を示すブロック図である。図1に示すように、ガス検知システム10は、ポータブル型の撮像装置100と、検査装置120(本発明の「ガス検知装置」として機能)とを備える。撮像装置100と検査装置120との間は、通信ケーブル(図示しない)によって接続される。
 なお、撮像装置100は、検査装置120と無線通信を介して接続されても良いし、撮像装置100と検査装置120とが一体でも良い。また、撮像装置100は、インターネットなどのネットワークを介して、検査装置120と接続されても良い。
 まず、撮像装置100の構成について説明する。撮像装置100は、例えば、携帯可能なカメラ装置であり、監視対象であるガス生産施設(タンク、プラントなど)を含む検査領域を撮像し、検査領域の赤外線画像データを生成する。
 図1に示すように、撮像装置100は、赤外撮像部102と、可視撮像部104と、固定検出部106とを有する。
 なお、撮像装置100は、図示しないが、例えば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。
 赤外撮像部102は、第一光学系(図示せず)、第一光学フィルター(図示せず)および赤外線センサー(図示せず)などを有する。第一光学系は、監視対象であるガス生産施設(タンク、プラントなど)を含む検査領域(被写体)から入射した赤外線を、赤外線センサーに結像させる。
 第一光学フィルターは、第一光学系と赤外線センサーとを結ぶ光路上に配置されたバンドパスフィルターなどである。第一光学フィルターは、第一光学系を通過した赤外線のうち、所定波長帯に含まれる赤外線のみを通過させる。第一光学フィルターの通過波長帯は、実質的に、被検出ガスの吸収波長帯域に設定される。例えば、通過波長帯を3.2~3.4μmの中波長域にした場合、メタンガスなどを検出することができる。
 赤外線センサーは、例えば、アンチモン化インジウム(InSb)を用いた量子型イメージセンサーであって、赤外線を受光して赤外画像データを生成する。
 このような赤外撮像部102は、可視撮像部104と同期した状態(すなわち可視撮像部104により撮像される可視画像の表す範囲に対応する範囲)で、例えば、監視対象であるガス生産施設を含む検査領域を撮像し、撮像された赤外画像に対応する赤外画像データを検査装置120に順次送信する。赤外撮像部102により生成される赤外画像データは、静止画または動画である。このような赤外画像データは、検査領域の温度分布を示す。
 可視撮像部104は、第二光学系(図示せず)、第二光学フィルター(図示せず)および可視光センサー(図示せず)などを有する。第二光学系は、被写体となる検査領域から入射した可視光を可視光センサーに結像させる。
 第二光学フィルターは、第二光学系と可視光センサーとを結ぶ光路上に配置された赤外線カットフィルターなどである。赤外線カットフィルターは、第二光学系を通過した光から赤外線をカットする。
 可視光センサーは、例えばCMOSイメージセンサーであって、白黒BWの可視光、または、カラーRGBの可視光をそれぞれ受光して可視画像データを生成する。
 このような可視撮像部104は、赤外撮像部102と同期した状態(すなわち赤外撮像部102により撮像される赤外画像の表す範囲に対応する範囲)で、検査領域を撮像し、撮像された可視画像に対応する可視画像データを検査装置120に順次送信する。可視撮像部104により生成される可視画像データは、静止画または動画である。
 固定検出部106は、撮像装置100の姿勢を一定にするため、例えば三脚に撮像装置100が固定されている状態であるか否かについて検出する。そして、固定検出部106は、固定されている状態であるか否かについての検出結果を検査装置120に順次送信する。
 本実施の形態では、撮像装置100の筐体の底部には、三脚に挿し込んで撮像装置100を三脚に固定するための固定穴(図示せず)が設けられている。そして、固定穴の上部には、三脚に挿し込まれることによって押される三脚スイッチ(図示せず)が設けられている。固定検出部106は、三脚スイッチが押された場合、撮像装置100が固定されている状態であることを検出する一方、三脚スイッチが押されていない場合、撮像装置100が固定されている状態でないことを検出する。
 なお、固定検出部106は、撮像装置100の内部に設けられた加速度センサー(図示せず)の出力に基づいて撮像装置100の姿勢を検出し、例えば三脚に撮像装置100が固定されている状態であるか否かについて検出しても良い。この場合、固定検出部106は、撮像装置100の姿勢変化が小さい場合、撮像装置100が固定されている状態であることを検出する一方、撮像装置100の姿勢変化が大きい場合、撮像装置100が固定されている状態でないことを検出する。
 次に、検査装置120の構成について説明する。検査装置120は、撮像装置100からの受信情報(赤外画像データ、可視画像データ)を用いて、検査領域に発生したガス(以下、「検知対象ガス」とも言う)を可視化する。このような検査装置120は、撮像装置100に通信接続されたタブレット端末、スマートフォン、ラップトップ型端末またはウェアラブル端末などの携帯端末である。
 検査装置120は、第1画像処理部122、第2画像処理部124、制御部126、表示制御部128、表示部130および入力受付部132を有する。なお、制御部126は、本発明の「判定部」としても機能する。
 なお、検査装置120は、図示しないが、例えば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。
 第1画像処理部122は、赤外撮像部102から送信された検査領域の赤外画像データを順次受信し、制御部126の制御を受けて、異なる複数の時刻で撮像された複数の赤外画像に対して第1画像処理を行うことによって検知対象ガスを検知する。本実施の形態では、第1画像処理部122は、複数の赤外画像間の差分を示す差分画像を生成する画像処理を第1画像処理として行い、生成された差分画像を第1画像として制御部126に出力する。具体的には、第1画像処理部122は、今回受信した赤外画像データに対応する赤外画像と、所定回前に受信した赤外画像データに対応する赤外画像との差分(例えば、Nフレーム目の赤外画像と、N-2フレーム目の赤外画像との差分)をとり差分画像を生成する。
 第2画像処理部124は、赤外撮像部102から送信された検査領域の赤外画像データを順次受信し、制御部126の制御を受けて、異なる複数の時刻で撮像された複数の赤外画像に対して第2画像処理を行うことによって検知対象ガスを検知する。本実施の形態では、第2画像処理部124は、複数の赤外画像において同じ位置の画素を時系列に並べた画素データに対して行う画像処理を第2画像処理として行い、当該第2画像処理により得られた画像を第2画像として出力する。具体的には、第2画像処理部124は、同一位置の時系列画素データに対して、漏れた検知対象ガスによる温度変化を示す第1の周波数成分データよりも周波数が低く、監視対象の背景の温度変化を示す第2の周波数成分データを、赤外画像を示す赤外画像データから除く処理をすることで、検知対象ガスを示すガス画像を検知している。さらに、漏れた検知対象ガスによる温度変化を示す第1の周波数成分データよりも周波数が高く、高周波ノイズを示す第3の周波数成分データを、赤外画像を示す赤外画像データから除く処理を行うことが好ましい(さらに詳細には、上記特許文献1を参照)。第2画像処理は、第1画像処理よりも検知対象ガスを高精度に検知可能な画像処理である。
 また、第2画像処理部124は、可視撮像部104から送信された検査領域の可視画像データに対応する可視画像上において、第2画像処理によるガス画像の検知部分に対応する部分に特定の色(例えば、赤色など)を付して、検知対象ガスを可視化する。そして、第2画像処理部124は、可視画像上において検知対象ガスを可視化した後の可視画像を第3画像として制御部126に出力する。
 また、第2画像処理部124は、赤外撮像部102から送信された検査領域の赤外画像データに対応する赤外画像上において、第2画像処理によるガス画像の検知部分に対応する部分に特定の色(例えば、赤色など)を付して、検知対象ガスを可視化する。そして、第2画像処理部124は、赤外画像上において検知対象ガスを可視化した後の赤外画像を第4画像として制御部126に出力する。
 表示制御部128は、制御部126の制御を受けて、各種画像を表示するように表示部130を制御する。
 表示部130は、例えば、検査装置120を構成するディスプレイである。ディスプレイとしては、液晶ディスプレイ、有機ELディスプレイなどを用いることができる。本実施の形態では、ディスプレイは、タッチパネル付きのフラットパネルディスプレイである。
 表示部130は、表示制御部128からの表示信号に基づいて、ユーザー(例えば、検査者)が視認することによりガス検査を行うための各種画像を表示する。
 入力受付部132は、図示しない操作部(タッチパネル)を介してユーザーによる各種の入力(情報入力、指示入力)を受け付ける。
 制御部126は、第1または第2画像処理を選択的に実行するように第1および第2画像処理部122,124を制御する。
 制御部126は、ユーザーによりガス漏れの実体検査の開始が指示される前、第1画像処理部122を制御して第1画像処理を実行させるとともに、表示制御部128を制御して、図2に示す検査前画面200を表示部130に表示させる。
 図2に示すように、検査前画面200は、ユーザーがガス漏れの事前検査を行う際の表示画面であり、表示領域202と、ガス漏れの実体検査の開始指示を行うための開始ボタン204(ソフトウェアキー)と、可視撮像部104から送信された可視画像データに対応する可視画像210と、赤外撮像部102から送信された赤外画像データに対応する赤外画像212と、第1画像処理部122から出力された第1画像214(差分画像)とを含む。
 ユーザーは、入力受付部132を介して、可視画像210、赤外画像212および第1画像214の何れかを拡大して表示領域202に表示させる指示を行うことができる。図2に示す例では、ユーザーの指示により、第1画像214が選択され(レ点表示)、第1画像214が拡大して表示領域202に表示されている。この場合、ユーザーは、撮像装置100が三脚に固定されている状態でなくても、表示領域202に表示されている第1画像214を参照することによって、ガス漏れ206の有無を確認することができる。ユーザーは、表示領域202に表示されている第1画像214を参照してガス漏れの無いことが確認できた場合には、次の作業現場に移動してガス漏れの検査を行う。
 ところで、第1画像214にはノイズが多く含まれるため、第1画像214からガス漏れの正確な位置、大きさ等を確認するためには、ユーザーはかなりの熟練を要する。そこで本実施の形態では、ユーザーは、表示領域202に表示される第1画像214を参照してガス漏れが有ることが確認できた場合には、撮像装置100を三脚に固定する。そして、ユーザーは、入力受付部132を介して、開始ボタン204を押下してガス漏れの実体検査を開始させる。
 制御部126は、ユーザーによりガス漏れの実体検査の開始が指示された後、第2画像処理部124を制御して第2画像処理を実行させるとともに、表示制御部128を制御して、図3,4に示す検査中画面300を表示部130に表示させる。
 図3,4に示すように、検査中画面300は、ユーザーがガス漏れの実体検査を行う際の表示画面である。検査中画面300は、表示領域302と、ガス漏れの実体検査の終了指示を行うための終了ボタン304(ソフトウェアキー)と、可視撮像部104から送信された可視画像データに対応する可視画像310と、赤外撮像部102から送信された赤外画像データに対応する赤外画像312と、第2画像処理部124から出力された第2画像314,第3画像316,第4画像318とを含む。
 ユーザーは、入力受付部132を介して、可視画像310、赤外画像312、第2画像314、第3画像316および第4画像318の何れかを拡大して表示領域302に表示させる指示を行うことができる。図3に示す例では、ユーザーの指示により、第2画像314が選択され(レ点表示)、第2画像314が拡大して表示領域302に表示されている。この場合、ユーザーは、表示領域302に表示されている第2画像314を参照することによって、ガス漏れ306の正確な位置、大きさ等を確認することができる。
 図4に示す例では、ユーザーの指示により、第3画像316(可視画像上において検知対象ガスを可視化した後の画像)が選択され(レ点表示)、第3画像316が拡大して表示領域302に表示されている。この場合、ユーザーは、表示領域302に表示されている第3画像316を参照することによって、第2画像314を参照するときと比べてガス漏れ306の正確な位置、大きさ等をより鮮明に確認することができる。
 ユーザーは、ガス漏れの実体検査を終了させる場合、入力受付部132を介して、終了ボタン304を押下する。これにより、制御部126は、検査中画面300の表示を終了させ、検査前画面200(図2を参照)を表示部130に表示させる。その後、ユーザーは、次の作業現場に移動してガス漏れの事前検査を行う。
 以上詳しく説明したように、本実施の形態における検査装置120(ガス検知装置)は、撮像装置100により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置である。具体的には、検査装置120は、撮像装置100が固定されている状態でない場合であっても、検知対象ガスを検知可能な第1画像処理を実行する第1画像処理部122と、撮像装置100が固定されている状態である場合、第1画像処理よりも検知対象ガスを高精度に検知可能な第2画像処理を実行する第2画像処理部124と、第1または第2画像処理を選択的に実行するように第1および第2画像処理部122,124を制御する制御部126とを備える。
 このように構成した本実施の形態によれば、ユーザーは、作業現場において何か所もガス漏れを検査する場合、撮像装置100が固定されていない状態で実行された第1画像処理の実行結果(第1画像214)からガス漏れの有無を事前確認する。そして、ユーザーは、ガス漏れの無いことが確認できた場合には、次の作業現場に移動する。一方、ガス漏れが有ることが確認できた場合には、ユーザーは、撮像装置100を固定されている状態で実行された第2画像処理の実行結果(第2画像314、第3画像316および第4画像318)からガス漏れ306の正確な位置、大きさ等を確認する。
 このように、ガス漏れを検査するたびに撮像装置100を固定する必要はなく、撮像装置100が固定されていない状態で実行された第1画像処理の実行結果から、ガス漏れが有ることが確認できた場合に限り、撮像装置100を固定してガス漏れ306の正確な位置、大きさ等を確認すれば良い。その結果、ガス漏れを検査するたびに撮像装置100を固定する場合と比べて、撮像装置100を固定する手間および時間ロスの発生を抑えて、効率的にガス漏れを検査することができる。
 なお、上記実施の形態では、制御部126が、ユーザーの指示(開始ボタン204,終了ボタン304の押下)に応じて、第1または第2画像処理を選択的に実行させる例について説明したが、本発明はこれに限らない。例えば、制御部126は、固定検出部106の検出結果に基づいて、撮像装置100が固定されている状態であるか否かについて判定し、撮像装置100が固定されている状態でないと判定した場合、第1画像処理を実行させる一方、撮像装置100が固定されている状態であると判定した場合、第2画像処理を実行させても良い。この場合、制御部126は、検査前画面200が表示されている場合、固定検出部106の検出結果に基づいて、撮像装置100が固定されている状態であると判定した場合、検査前画面200の表示を終了させ、検査中画面300を表示させる。
 なお、上記実施の形態では、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 10 ガス検知システム
 100 撮像装置
 102 赤外撮像部
 104 可視撮像部
 106 固定検出部
 120 検査装置
 122 第1画像処理部
 124 第2画像処理部
 126 制御部
 128 表示制御部
 130 表示部
 132 入力受付部

Claims (7)

  1.  撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置であって、
     前記検知対象ガスを検知可能な第1画像処理を実行する第1画像処理部と、
     前記撮像装置が固定されている状態である場合、前記第1画像処理よりも前記検知対象ガスを高精度に検知可能な第2画像処理を実行する第2画像処理部と、
     前記第1または第2画像処理を選択的に実行するように前記第1および第2画像処理部を制御する制御部と、
     を備えるガス検知装置。
  2.  前記第1画像処理は、前記複数の赤外画像間の差分を示す差分画像を生成する画像処理であり、
     前記第2画像処理は、前記複数の赤外画像において同じ位置の画素を時系列に並べた画素データに対して行う画像処理である、
     請求項1に記載のガス検知装置。
  3.  前記制御部は、ユーザーの指示に応じて、前記第1または第2画像処理を選択的に実行させる、
     請求項1または2に記載のガス検知装置。
  4.  前記撮像装置が固定されている状態であるか否かについて判定する判定部と、
     前記制御部は、前記撮像装置が固定されている状態でないと判定された場合、前記第1画像処理を実行させる一方、前記撮像装置が固定されている状態であると判定された場合、前記第2画像処理を実行させる、
     請求項1~3の何れか1項に記載のガス検知装置。
  5.  前記赤外画像の表す範囲に対応する範囲について撮像された可視画像上において、前記第2画像処理により検知された前記検知対象ガスを可視化して表示する制御を行う表示制御部を備える、
     請求項1~4の何れか1項に記載のガス検知装置。
  6.  撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置における画像処理制御方法であって、
     前記検知対象ガスを検知可能な第1画像処理を実行する一方、前記ガス検知装置が固定されている状態である場合、前記第1画像処理よりも前記検知対象ガスを高精度に検知可能な第2画像処理を実行する制御を行う、
     画像処理制御方法。
  7.  撮像装置により異なる複数の時刻で撮像された複数の赤外画像に対して画像処理を行うことによって検知対象ガスを検知するガス検知装置を制御するコンピューターに適用される画像処理制御プログラムであって、
     前記コンピューターに、
     前記検知対象ガスを検知可能な第1画像処理を実行する一方、前記ガス検知装置が固定されている状態である場合、前記第1画像処理よりも前記検知対象ガスを高精度に検知可能な第2画像処理を実行する制御を行う処理を実行させる画像処理制御プログラム。
PCT/JP2019/044254 2019-11-12 2019-11-12 ガス検知装置、画像処理制御方法および画像処理制御プログラム WO2021095112A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044254 WO2021095112A1 (ja) 2019-11-12 2019-11-12 ガス検知装置、画像処理制御方法および画像処理制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044254 WO2021095112A1 (ja) 2019-11-12 2019-11-12 ガス検知装置、画像処理制御方法および画像処理制御プログラム

Publications (1)

Publication Number Publication Date
WO2021095112A1 true WO2021095112A1 (ja) 2021-05-20

Family

ID=75911917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044254 WO2021095112A1 (ja) 2019-11-12 2019-11-12 ガス検知装置、画像処理制御方法および画像処理制御プログラム

Country Status (1)

Country Link
WO (1) WO2021095112A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113939A1 (en) * 2011-11-07 2013-05-09 Flir Systems Ab Gas visualization arrangements, devices, and methods
WO2017073430A1 (ja) * 2015-10-29 2017-05-04 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
US20180335380A1 (en) * 2017-05-16 2018-11-22 Fluke Corporation Optical gas imaging systems and methods
GB2567246A (en) * 2017-10-09 2019-04-10 Csir A gas detection system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113939A1 (en) * 2011-11-07 2013-05-09 Flir Systems Ab Gas visualization arrangements, devices, and methods
WO2017073430A1 (ja) * 2015-10-29 2017-05-04 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
US20180335380A1 (en) * 2017-05-16 2018-11-22 Fluke Corporation Optical gas imaging systems and methods
GB2567246A (en) * 2017-10-09 2019-04-10 Csir A gas detection system and method

Similar Documents

Publication Publication Date Title
US20200202505A1 (en) Display panel detection method, apparatus and system
EP3392635B1 (en) Image processing device for gas detection, image processing method for gas detection, image processing program for gas detection, computer-readable recording medium having image processing program for gas detection recorded thereon, and gas detection system
US9551597B2 (en) Measurement system with image capture capabilities
TW201344186A (zh) 熱成像裝置、熱成像方法及熱成像控制系統
JP2017090190A (ja) ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
US11568529B2 (en) Gas detection device that visualizes gas
CN117348014A (zh) 具有扫描和分析能力的便携式声学成像工具
US11197065B2 (en) Gas detection device, information processing device, and program
JP2019219273A (ja) 画像生成装置および画像生成方法
JP2014053795A (ja) 情報処理装置及び情報処理システム
WO2021095112A1 (ja) ガス検知装置、画像処理制御方法および画像処理制御プログラム
WO2018158815A1 (ja) 点検支援装置、点検支援方法および記録媒体
US20180089822A1 (en) Automated diagnostics for device display and camera
US11023771B2 (en) Information processing apparatus, information processing method, and recording medium
WO2022070943A1 (ja) ガス可視化画像処理装置、ガス可視化画像処理方法、および、プログラム
EP3337157A1 (en) System and method for detecting vibrations of a machine using a low frames per second (fps) camera
WO2019058864A1 (ja) ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム
JP4813071B2 (ja) マクロ画像表示システム及びマクロ画像表示方法
JP2018128318A (ja) ガス検知装置
WO2020012864A1 (ja) ガス検出装置、ガス検出方法、およびプログラム
WO2020235165A1 (ja) 検査データ管理システム、検査装置および検査データ送信方法
JP2007170961A (ja) 検査装置及び検査方法
JP2006250721A (ja) 検査装置及び検査方法
KR20070087407A (ko) 평판표시패널의 자동광학검사장치 및 자동광학검사방법
JP2006317366A (ja) ガス漏れ可視化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP