Nothing Special   »   [go: up one dir, main page]

WO2021079919A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2021079919A1
WO2021079919A1 PCT/JP2020/039624 JP2020039624W WO2021079919A1 WO 2021079919 A1 WO2021079919 A1 WO 2021079919A1 JP 2020039624 W JP2020039624 W JP 2020039624W WO 2021079919 A1 WO2021079919 A1 WO 2021079919A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
harmonic component
voltage
inverter circuit
Prior art date
Application number
PCT/JP2020/039624
Other languages
English (en)
French (fr)
Inventor
孝幸 宮島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US17/754,772 priority Critical patent/US12095395B2/en
Priority to CN202080073116.1A priority patent/CN114556767A/zh
Priority to EP20878173.2A priority patent/EP4050788A4/en
Priority to AU2020371391A priority patent/AU2020371391B2/en
Publication of WO2021079919A1 publication Critical patent/WO2021079919A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Definitions

  • This disclosure relates to a power conversion device.
  • Harmonic components such as 5 times component and 7 times component of motor rotation speed (electric angular velocity) may be included in the induced voltage of the motor (see, for example, Patent Document 1).
  • the harmonic component is included in the induced voltage of the motor, the harmonic component is also generated in the input power of the motor, so that the harmonics of the same order as the harmonic component generated in the input power of the motor are generated in the motor. It may occur on the input side of the inverter circuit that supplies power to the power supply.
  • This disclosure proposes a power conversion device capable of reducing harmonics generated on the input side of an inverter circuit.
  • the power converter of the present disclosure is A power conversion device that converts input AC power supplied from an AC power supply into output AC power of a predetermined voltage and frequency.
  • the inverter circuit that supplies the output AC power to the motor and A compensation unit for compensating for harmonics of the input power of the motor is provided.
  • the compensating unit detects a harmonic component generated in synchronization with the rotation speed of the motor in the input power, and from the inverter circuit at the same frequency as the harmonic component so that the harmonic component is reduced. Change the phase of the output alternating voltage.
  • the inverter circuit outputs the harmonic component at the same frequency as the harmonic component generated in the input power of the motor so that the harmonic component generated in the input power of the motor is reduced. Since the phase of the AC voltage is changed, harmonics generated on the input side of the inverter circuit can be reduced.
  • the power converter of the present disclosure is The compensation unit generates a compensation amount that changes at the same frequency as the harmonic component, and changes the phase of the AC voltage at the same frequency as the harmonic component based on the compensation amount.
  • the harmonics generated on the input side of the inverter circuit can be reduced.
  • the power converter of the present disclosure is The compensation unit adjusts the phase of the compensation amount according to the detected harmonic component, and changes the amplitude of the compensation amount according to any one of the rotation speed, torque, and electric power of the motor. ..
  • the compensation unit adjusts the phase of the compensation amount according to the detected harmonic component, and adjusts the amplitude of the compensation amount to the rotation speed, torque, and power of the motor.
  • the harmonics generated on the input side of the inverter circuit can be reduced.
  • the power converter of the present disclosure is The compensation unit adjusts the amplitude of the compensation amount according to the detected harmonic component, and changes the phase of the compensation amount according to any one of the rotation speed, torque, and electric power of the motor. ..
  • the compensation unit adjusts the amplitude of the compensation amount according to the detected harmonic component, and adjusts the phase of the compensation amount according to the detected harmonic component, and adjusts the phase of the compensation amount to the rotation speed, torque, and power of the motor.
  • the power converter of the present disclosure is The compensation unit adjusts the phase and amplitude of the compensation amount according to the detected harmonic component.
  • the compensation unit can reduce the harmonics generated on the input side of the inverter circuit by adjusting the phase and amplitude of the compensation amount according to the detected harmonic components.
  • the power converter of the present disclosure is A converter circuit that rectifies the input AC power and supplies power to the inverter circuit is provided.
  • a capacitor is connected in parallel with the converter circuit between the converter circuit and the inverter circuit.
  • the compensator detects the harmonic component from the voltage across the capacitor.
  • the compensator can reduce the harmonics generated on the input side of the inverter circuit even if the harmonic component is detected from the voltage across the capacitor.
  • the power converter of the present disclosure is
  • the power conversion device includes a converter circuit that rectifies the input AC power and supplies power to the inverter circuit.
  • a reactor is connected between the converter circuit and the AC power supply or the inverter circuit.
  • the compensator detects the harmonic component from the voltage across the reactor.
  • the compensation unit can reduce the harmonics generated on the input side of the inverter circuit even if the harmonic components are detected from the voltages across the reactor.
  • the power converter of the present disclosure is
  • the power conversion device includes a converter circuit that rectifies the input AC power and supplies power to the inverter circuit.
  • a reactor is connected between the converter circuit and the AC power supply or the inverter circuit.
  • the compensator detects the harmonic component from the current flowing through the reactor.
  • the compensation unit can reduce the harmonics generated on the input side of the inverter circuit even if the harmonic component is detected from the current flowing through the reactor.
  • the power converter of the present disclosure is The compensation unit acquires a signal for detecting the harmonic component during a period in which the voltage vector of the inverter circuit does not change.
  • the compensator acquires a signal for detecting the harmonic component during a period in which the voltage vector of the inverter circuit does not change, and thus acquires the signal during a period in which the voltage vector changes.
  • the detection accuracy of the harmonic component is improved as compared with the case of the above.
  • Harmonic components may be included in the induced voltage of the motor.
  • a harmonic component such as a component 6 times the drive frequency of the motor may be generated in the input power of the motor.
  • an inverter circuit that does not have an energy storage element inside such as a condenserless inverter
  • a harmonic component is generated in the input power of the motor, resulting in a harmonic of the same order as the harmonic component generated in the input power of the motor. Waves may also occur in the power on the input side of the inverter circuit.
  • the current on the power supply side includes a harmonic (power supply harmonic) having a frequency of the input power of the motor ⁇ the frequency of the power supply voltage.
  • FIG. 1 is a graph illustrating the harmonics generated on the input side of the power conversion circuit, and the horizontal axis thereof represents the order of the harmonics (multiple of the frequency of the power supply voltage).
  • FIG. 1 illustrates that the 30th and 32nd order power supply harmonics are harmonic components generated in the input power of the motor and exceed the power supply harmonic regulation value.
  • FIG. 2 is a diagram for explaining a first related technique (Japanese Patent Laid-Open No. 2010-98941) for reducing a harmonic component of an input power of a motor.
  • the voltage control rate (also referred to as the modulation rate) of the inverter circuit is added to the compensation amount for reducing the harmonic component of the input power of the motor.
  • the DC component of the voltage control rate it is necessary to reduce the DC component of the voltage control rate so that the compensation amount is not saturated. Since the size of the operating range of the motor (for example, the maximum rotation speed) is proportional to the DC component of the voltage control rate, the operating range of the motor must be lowered as the compensation amount is increased (see FIG. 3).
  • FIG. 4 is a diagram for explaining a second related technique (Japanese Patent Laid-Open No. 2012-165634) for reducing the harmonic component of the input power of the motor.
  • the compensation value (d-axis compensation voltage vd_h and q-axis compensation voltage vq_h) that distorts the motor current is set to the output of the current control unit (command value for controlling the motor current (d-axis voltage command value vd *).
  • the q-axis voltage command value vq *) is superimposed to generate new voltage command values vd'* and vq' *.
  • the voltage control rate also changes. Therefore, as in the first related technology, it is necessary to reduce the DC component of the voltage control factor (the magnitude of the voltage vector consisting of the output (vd *, vq *) of the current control unit) so that the compensation value is not saturated. Therefore, there is no choice but to lower the operating range of the motor (see FIG. 3).
  • FIG. 5 is a diagram for explaining the technique of the present disclosure for reducing the harmonic component of the input power of the motor.
  • a harmonic component generated in synchronization with the rotation speed of the motor is detected in the input power of the motor, and the inverter circuit has the same frequency as the detected harmonic component so that the harmonic component is reduced.
  • the phase of the AC voltage output from is changed.
  • the phase ⁇ of the entire voltage vector is at the same frequency as the detected harmonic component without changing the voltage control factor. Operate to pulsate.
  • phase ⁇ Manipulating the phase ⁇ at the same frequency as the harmonic component of the input power of the motor causes the trajectories of the d-axis voltage and q-axis voltage to transition on the same arc at the same frequency as the harmonic component of the input power of the motor. Is equivalent to that.
  • the AC voltage output from the inverter circuit is the harmonic obtained by adding the drive frequency of the motor to the frequency of the harmonic component of the input power of the motor.
  • the wave component and the harmonic component obtained by subtracting the drive frequency of the motor from the frequency of the harmonic component of the input power of the motor appear with the same amplitude.
  • Equations 1, 2 and 3 show the u-phase AC voltage output from the inverter circuit when the phase ⁇ of the entire voltage vector is pulsated.
  • v u is the u-phase AC voltage (u-phase voltage of the motor) output from the inverter circuit
  • V u is the amplitude of the u-phase voltage
  • ⁇ e is the rotation angle (electric angle) of the rotor of the motor
  • ⁇ ' is the inverter circuit. It represents the difference (voltage phase) between the phase of the AC voltage output from and the rotation angle of the inverter of the motor.
  • (6 ⁇ e + B) represents a compensation amount (hereinafter, also referred to as compensation amount C) for compensating the voltage phase reference value ⁇ in order to compensate for the harmonics of the input power of the motor
  • A is the amplitude of the compensation amount C.
  • B represents the reference phase of the compensation amount C.
  • Equation 3 The amplitude "-(1/2) AV u " in the second term of Equation 3 corresponds to the amplitude of the harmonic component obtained by subtracting the drive frequency of the motor from the frequency of the harmonic component of the input power of the motor.
  • the amplitude "-(1/2) AV u " in the third term of Equation 3 corresponds to the amplitude of the harmonic component obtained by adding the drive frequency of the motor to the frequency of the harmonic component of the input power of the motor.
  • Equations 1, 2 and 3 exemplify the case where the entire voltage vector is pulsated by a sine wave, but the entire voltage vector may be pulsated by another periodic waveform such as a triangular wave or a square wave.
  • the phase of the AC voltage output from the inverter circuit is changed to the same frequency as the harmonic component generated in synchronization with the rotation speed of the motor with the input power of the motor, so that the harmonic generated in the input power of the motor
  • the wave component can be reduced.
  • a permanent magnet type synchronous motor is taken, but other types of motors can also be applied.
  • a higher-order harmonic component such as 12 times or 18 times the drive frequency can also be reduced.
  • v d is the d-axis voltage
  • v q is the q-axis voltage
  • Ra is the winding resistance of the motor armature
  • L d is the d-axis inductance
  • L q is the q-axis inductance
  • id is the d-axis current
  • i q is.
  • omega e is the electrical angular velocity
  • s is the time derivative of the operator of the motor
  • phi d is the d-axis flux
  • phi q is q-axis flux
  • K d6 is the d-axis magnetic flux
  • the amplitude, ⁇ a represents the magnetic flux of the permanent magnet.
  • Equation 4 is transformed into Equation 6.
  • Equation 7 the d-axis voltage v d and the q-axis voltage v q are defined as equations 7 and 8.
  • V a represents the amplitude of the d-axis voltage v d and the q-axis voltage v q.
  • Equation 10 is obtained by solving the current in the simultaneous equations consisting of equations 6 and 9.
  • Equation 11 When determining the input power P in the motor, Equation 11 is obtained.
  • the power P in6 the sixth-order harmonic component is deformable to equation 12 (since the power of the 12-order harmonic component is a small, ignored).
  • FIG. 6 is a diagram illustrating the relationship between the amplitude A and the electric power Pin 6 of the sixth-order harmonic component when the reference phase B is fixed in the equation 12.
  • FIG. 7 is a diagram illustrating the relationship between the reference phase B and the electric power Pin 6 of the sixth-order harmonic component when the amplitude A is fixed in the equation 12.
  • Equation 12 when the condition that the power Pin6 of the sixth-order harmonic component becomes zero is obtained, the amplitude of the cosine component of the first term of Equation 12 is set to zero and the amplitude of the cosine component of the first term of Equation 12 is set to zero as in Equation 13. Let the amplitude of the sine component of the second term be zero. Equation 15 is obtained by solving the simultaneous equations represented by equations 13 and 14 for the amplitude A and the reference phase B.
  • the power Pin6 of the sixth harmonic component is set to zero by adjusting each of the amplitude A and the reference phase B to appropriate values represented by the equation 15. You can also.
  • the technique of the present disclosure detects a harmonic component generated in synchronization with the rotation speed of the motor in the input power of the motor, and at least one of the amplitude A and the reference phase B so that the harmonic is reduced. May be adjusted by using a mountain climbing method or the like according to the detected harmonic component.
  • the sixth-order component of the motor current in the rotating coordinates does not become zero in the manipulated variable that makes the sixth-order harmonic component of the motor input power zero.
  • the motor The sixth component of the input power of can be set to zero.
  • FIG. 10 is a block diagram showing a first configuration example of the power conversion device to which the technique of the present disclosure is applied.
  • the power conversion device 1A shown in FIG. 10 includes a converter circuit 2, a DC link unit 3, an inverter circuit 4, and a control unit 5, and uses input AC power supplied from a three-phase AC power supply 6 at a predetermined voltage and a predetermined frequency. It is converted into the output AC power of the above and supplied to the motor 7.
  • the motor 7 is, for example, a three-phase AC motor for driving a compressor provided in a refrigerant circuit of an air conditioner. More specifically, the motor 7 is a centralized winding motor such as a 4-pole 6-slot or a 6-pole 9-slot. In this motor 7, there is a tendency that many 5th and 7th order components of the fundamental wave are included as harmonic components of the induced voltage. Higher-order (for example, 6th-order) harmonic components caused by this motor voltage distortion (5th and 7th-order harmonic components of the fundamental wave) are the power supply current of the AC power supply 6 and the DC link voltage in the DC link unit 3. It also appears in v dc.
  • the converter circuit 2 is connected to the AC power supply 6 and converts the AC output by the AC power supply 6 into direct current.
  • the converter circuit 2 is, for example, a diode bridge circuit in which a plurality of (six in this example) diodes are connected in a bridge shape. These diodes full-wave rectify the AC voltage of the AC power supply 6 and convert it into a DC voltage.
  • the converter circuit 2 may be a voltage conversion circuit having a circuit type different from that of the diode bridge, as long as it is a circuit that supplies the converted DC power to the inverter circuit 4 via the DC link unit 3.
  • the DC link unit 3 includes a capacitor 3a connected between the converter circuit 2 and the inverter circuit 4.
  • the capacitor 3a is connected in parallel to the output section of the converter circuit 2, and the DC voltage (DC link voltage vdc ) generated across the capacitor 3a is input to the input node of the inverter circuit 4. Further description of the capacitor 3a will be described later.
  • the DC link unit 3 includes a reactor 8 connected between the converter circuit 2 and the inverter circuit 4.
  • the reactor 8 is inserted in series with the DC bus between the output unit of the converter circuit 2 and the input unit of the inverter circuit 4.
  • the input node is connected in parallel to the capacitor 3a of the DC link unit 3, the output of the DC link unit 3 is switched, converted into three-phase alternating current, and supplied to the connected motor 7.
  • the inverter circuit 4 of the present embodiment is configured by bridging a plurality of switching elements. Since the inverter circuit 4 outputs three-phase alternating current to the motor 7, it includes six switching elements. Specifically, the inverter circuit 4 comprises three switching legs connected in parallel to each other, and each switching leg has two switching elements connected in series with each other. In each switching leg, the midpoints of the switching element of the upper arm and the switching element of the lower arm are connected to the coils of each phase of the motor 7, respectively.
  • a freewheeling diode is connected to each switching element in antiparallel.
  • the inverter circuit 4 switches the DC link voltage vdc input from the DC link unit 3 by the on / off operation of these switching elements, converts it into a three-phase AC voltage, and supplies it to the motor 7.
  • the control unit 5 controls this on / off operation.
  • the control unit 5 detects a harmonic component generated in synchronization with the rotation speed of the motor 7 in the input power of the motor 7, and an inverter at the same frequency as the detected harmonic component so that the harmonic component is reduced.
  • the phase of the AC voltage output from the circuit 4 is changed.
  • the control unit 5 controls switching (on / off operation) in the inverter circuit 4 so that the phase of the AC voltage changes in this way.
  • FIG. 11 is a diagram showing a second configuration example of the power conversion device to which the technique of the present disclosure is applied.
  • the description of the same configuration as that of the first configuration example will be omitted by referring to the above description.
  • the power conversion device 1B shown in FIG. 11 includes a converter circuit 2, a DC link unit 3, an inverter circuit 4, and a control unit 5, and receives input AC power supplied from a single-phase AC power supply 6 at a predetermined voltage and a predetermined frequency. It is converted into the output AC power of the above and supplied to the motor 7.
  • the converter circuit 2 is connected to the AC power supply 6 via the reactor 8 and rectifies (converts) the AC output from the AC power supply 6 to direct current.
  • the converter circuit 2 is, for example, a diode bridge circuit in which a plurality of (four in this example) diodes are connected in a bridge shape. These diodes full-wave rectify the AC voltage of the AC power supply 6 and convert it into a DC voltage.
  • the converter circuit 2 may be a voltage conversion circuit having a circuit type different from that of the diode bridge, as long as it is a circuit that supplies the converted DC power to the inverter circuit 4 via the DC link unit 3.
  • the reactor 8 is connected between the AC power supply 6 and the converter circuit 2, and more specifically, the reactor 8 is inserted in series between the AC output side of the AC power supply 6 and the AC input side of the converter circuit 2. There is.
  • the capacitance value of the capacitor 3a while can hardly smoothing the output of the converter circuit 2, a voltage variation corresponding to the ripple voltage (switching frequency f c due to the switching operation of the inverter circuit 4 ) Is set so that it can be suppressed.
  • the capacitor 3a has a capacitance value (for example, about 0.01 times) the capacitance value of a smoothing capacitor (for example, an electrolytic capacitor) used for smoothing the output of the converter circuit 2 in a general power conversion device. It is composed of a small-capacity capacitor (for example, a film capacitor) having several tens to several hundreds of ⁇ F).
  • the DC link voltage vdc has a pulsating component having a frequency six times the frequency of the power supply voltage bin, and in the case of the single-phase AC power supply 6 shown in FIG. has twice the pulsating component of the frequency of the power supply voltage v in.
  • an LC filter composed of the reactor 8 and the capacitor 3a is configured.
  • the resonance frequency f r of the LC filter is N times the frequency of the commercial frequency f in of the AC power supply 6 of the N phase, and to attenuate ripple voltage caused by the switching operation of the inverter circuit 4, the reactor
  • the inductance of 8 and the capacitance value of the capacitor 3a are set.
  • L represents the inductance of the reactor 8 and C represents the capacitance value of the capacitor 3a.
  • the power conversion device is a capacitorless inverter (more specifically, an electrolytic capacitorless inverter) in which the capacitance value of the capacitor 3a of the DC link portion 3 is small as described above, a distortion component (harmonic component) generated in the input power of the motor 7. Harmonics due to the above may flow out to the power supply side. Similarly, even when the power converter is a matrix converter, harmonics due to distortion components generated in the input power of the motor may flow out to the power supply side.
  • the control unit 5 has the phase of the AC voltage output from the inverter circuit 4 at the same frequency as the harmonic component so that the harmonic component generated in synchronization with the rotation speed of the motor 7 is reduced to the input power of the motor 7.
  • FIG. 12 is a block diagram showing a first configuration example of the control unit.
  • the control unit 5A shown in FIG. 12 is an example of the control unit 5.
  • the control unit 5A outputs a gate signal G, which is a control signal for turning on / off each switching element in the inverter circuit 4, to the inverter circuit 4.
  • the control unit 5A includes a motor control unit 11, a compensation unit 20, an adder 13, and a PWM calculation unit 12.
  • the functions of each of these units included in the control unit 5A are realized by operating a processor (for example, a CPU (Central Processing Unit)) by a program readable and stored in a memory.
  • a processor for example, a CPU (Central Processing Unit)
  • the motor control unit 11 generates and outputs a voltage phase reference value ⁇ for controlling the phase of the AC voltage output from the inverter circuit 4 and a voltage control rate K s of the inverter circuit 4.
  • the voltage control factor is also called a modulation factor.
  • the compensation unit 20 compensates for the harmonics of the input power of the motor 7.
  • the compensation unit 20 detects a harmonic component generated in synchronization with the rotation speed of the motor 7 in the input power of the motor 7, and an inverter at the same frequency as the detected harmonic component so that the harmonic component is reduced.
  • the phase of the AC voltage output from the circuit 4 is changed.
  • the compensation unit 20 adjusts the reference phase B of the compensation amount C according to the amplitude a of the detected harmonic component, and adjusts the amplitude A of the compensation amount C to the rotation speed of the motor 7 (electrical angular velocity ⁇ e). ), is changed according to one of the input power P in0 output torque T e and the motor 7 of the motor 7.
  • the compensation unit 20 includes a harmonic component detection unit 21, a reference phase calculation unit 22, an integrator 23, an adder 24, a waveform generation unit 25, an amplitude calculation unit 26, and a multiplier 27.
  • the harmonic component detection unit 21 detects the amplitude a of the harmonic component generated in synchronization with the rotation speed of the motor 7 with the input power of the motor 7 by Fourier transform or the like. Since a harmonic of the same order as the sixth-order harmonic component generated in the input power of the motor is also generated in the power on the input side of the inverter circuit, for example, the harmonic component detection unit 21 is a DC link voltage across the capacitor 3a. From v dc , the amplitude a of the harmonic component generated in the input power of the motor 7 is detected. Alternatively, the harmonic component detection unit 21 may detect the amplitude a of the harmonic component generated in the input power of the motor 7 from the reactor voltage v L at both ends of the reactor 8.
  • the harmonic component detector 21, the reactor current i L flowing through the reactor 8 may detect the amplitude a of the harmonic components generated in the input power of the motor 7.
  • the harmonic component detection unit 21 may actually monitor the input power of the motor 7 and detect the amplitude a of the harmonic component generated in the input power of the motor 7 from the monitor value.
  • the harmonic component detection unit 21 acquires a signal for detecting the amplitude a of the harmonic component during a period in which the voltage vector of the inverter circuit 4 does not change (for example, a period in which a voltage vector having a magnitude of zero is output). .. As a result, the detection accuracy of the amplitude a is improved as compared with the case where the signal for detecting the amplitude a is acquired during the period when the voltage vector changes.
  • the reference phase calculation unit 22 adjusts the reference phase B of the compensation amount C according to the amplitude a of the harmonic component detected by the harmonic component detection unit 21.
  • the reference phase calculation unit 22 uses a mountain climbing method so that the detected amplitude a becomes smaller according to the amplitude a detected by the harmonic component detection unit 21, for example, the reference phase B of the compensation amount C. To adjust.
  • an optimum reference phase B (an example of a target value of the reference phase B) that reduces the amplitude of the harmonic component generated in the input power of the motor 7 can be obtained.
  • the compensation unit 20 generates 6 ⁇ e by integrating the frequency 6 times the rotation speed (electric angular velocity ⁇ e) of the motor 7 with the integrator 23.
  • (6 ⁇ e + B) is obtained by adding the reference phase B calculated by the reference phase calculation unit 22 and the 6 ⁇ e obtained by the integrator 23 by the adder 24.
  • the waveform generation unit 25 generates a sinusoidal sin (6 ⁇ e + B) having a phase (6 ⁇ e + B) synchronized with the rotation speed of the motor 7.
  • 6 ⁇ e + B is obtained by adding the reference phase B calculated by the reference phase calculation unit 22 and the 6 ⁇ e obtained by the integrator 23 by the adder 24.
  • the waveform generation unit 25 generates a sinusoidal sin (6 ⁇ e + B) having a phase (6 ⁇ e + B) synchronized with the rotation speed of the motor 7.
  • the amplitude calculation unit 26 determines the optimum amplitude A from the detected value or the command value of the electric angular velocity ⁇ e based on the correlation between the electric angular velocity ⁇ e and the amplitude A in which the power supply harmonic is equal to or less than the harmonic regulation value. (An example of the target value of amplitude A) is generated.
  • the correlation at which the power supply harmonic is equal to or less than the harmonic regulation value is, for example, a relational rule determined in advance by a test or the like, and is defined by a look-up table or an arithmetic expression.
  • the electrical angular velocity omega e was replaced with the output torque T e and the input power P in0, by using such a correlation, the optimum amplitude A is obtained.
  • the voltage phase reference value ⁇ generated by the motor control unit 11 and the compensation amount C generated by the multiplier 27 are added by the adder 13 to generate the voltage phase ⁇ '.
  • the PWM calculation unit 12 generates three-phase voltage command values of u-phase, v-phase, and w-phase from the voltage control rate K s and the voltage phase ⁇ 'using polar coordinate conversion, inverse park conversion, space vector conversion, and the like. To do.
  • the three-phase voltage command value is a PWM (pulse width modulation) signal.
  • PWM computing unit 12 by adjusting accordingly the amplitude of the voltage command values of three phases to the voltage control rate K s, it may control the magnitude of the AC voltage outputted from the inverter circuit 4.
  • the PWM calculation unit 12 converts the three-phase voltage command value into a gate signal G and outputs it to the inverter circuit 4.
  • the control unit 5A detects the harmonic component caused by the distortion generated in the input power of the motor 7, and the inverter circuit has the same frequency as the harmonic component according to the amplitude a of the detected harmonic component.
  • the phase of the AC voltage output from 4 is fluctuated to reduce its harmonic components.
  • FIG. 13 is a block diagram showing a second configuration example of the control unit. The description of the same configuration as that of the first configuration example will be omitted by referring to the above description.
  • the control unit 5B shown in FIG. 13 is an example of the control unit 5.
  • the control unit 5B includes a compensation unit 30.
  • the compensation unit 30 adjusts the amplitude A of the compensation amount C according to the amplitude a of the detected harmonic component, and sets the reference phase B of the compensation amount C to the rotation speed of the motor 7 (electrical angular velocity ⁇ e). ), is changed according to one of the input power P in0 output torque T e and the motor 7 of the motor 7.
  • the compensation unit 30 includes a harmonic component detection unit 21, a reference phase calculation unit 22, an integrator 23, an adder 24, a waveform generation unit 25, an amplitude calculation unit 26, and a multiplier 27.
  • Reference phase calculator 22 a reference phase B of the compensation amount C, the rotation speed of the motor 7 (electrical angular velocity omega e), according to any one of the input power P in0 output torque T e and the motor 7 of the motor 7 To change.
  • the reference phase calculation unit 22 is, for example, an optimum reference from the detected value or the command value of the electric angular velocity ⁇ e based on the correlation between the electric angular velocity ⁇ e and the amplitude A in which the power supply harmonic is equal to or less than the harmonic regulation value.
  • Generate phase B an example of a target value of reference phase B).
  • the correlation at which the power supply harmonic is equal to or less than the harmonic regulation value is, for example, a relational rule determined in advance by a test or the like, and is defined by a look-up table or an arithmetic expression.
  • the optimum reference phase B is obtained.
  • the amplitude calculation unit 26 adjusts the amplitude A of the compensation amount C according to the amplitude a of the harmonic component detected by the harmonic component detection unit 21. For example, the amplitude calculation unit 26 adjusts the amplitude A of the compensation amount C by using the mountain climbing method so that the detected amplitude a becomes smaller according to the amplitude a detected by the harmonic component detection unit 21. To do. As a result, an optimum amplitude A (an example of a target value of the amplitude A) for reducing the amplitude of the harmonic component generated in the input power of the motor 7 can be obtained.
  • the voltage phase reference value ⁇ generated by the motor control unit 11 and the compensation amount C generated by the multiplier 27 are added by the adder 13 to generate the voltage phase ⁇ '.
  • the control unit 5B detects the harmonic component caused by the distortion generated in the input power of the motor 7, and the inverter circuit has the same frequency as the harmonic component according to the amplitude a of the detected harmonic component.
  • the phase of the AC voltage output from 4 is fluctuated to reduce its harmonic components.
  • FIG. 14 is a block diagram showing a third configuration example of the control unit. The description of the same configuration as that of the third configuration example will be omitted by referring to the above description.
  • the control unit 5C shown in FIG. 14 is an example of the control unit 5.
  • the control unit 5C includes a compensation unit 40.
  • the compensation unit 40 adjusts the amplitude A and the reference phase B of the compensation amount C according to the amplitude a of the detected harmonic component.
  • the compensation unit 30 includes a harmonic component detection unit 21, a reference phase calculation unit 22, an integrator 23, an adder 24, a waveform generation unit 25, an amplitude calculation unit 26, and a multiplier 27.
  • the reference phase calculation unit 22 has the same function as the first configuration example (FIG. 12), and the amplitude calculation unit 26 has the same function as the second configuration example (FIG. 13).
  • the control unit 5C detects a harmonic component caused by distortion generated in the input power of the motor 7, and outputs the harmonic component from the inverter circuit 4 at the same frequency as the harmonic component according to the amplitude a of the detected harmonic component.
  • the phase of the AC voltage is changed to reduce its harmonic components.
  • FIGS. 8 and 9 are diagrams showing an example of the test results when the motor is driven by the actual machine by the technique of the present disclosure, and show the case where the motor is actually driven by the power conversion device having the configuration shown in FIGS. 10 and 12. Shown.
  • the vertical axis represents the power supply harmonics generated on the AC power supply 6 side due to the power Pin 6 of the sixth-order harmonic component of the input power of the motor 7.
  • the power supply harmonics change. Since there are amplitude A and reference phase B in which the amplitudes of the 30th and 32nd order power supply harmonics are substantially zero, the respective amplitudes of the 30th and 32nd order power supply harmonics satisfy the power supply harmonic regulation value. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Rectifiers (AREA)

Abstract

交流電源から供給された入力交流電力を所定の電圧及び周波数の出力交流電力に電力変換する電力変換装置であって、前記出力交流電力をモータに供給するインバータ回路と、前記モータの入力電力の高調波を補償する補償部とを備え、前記補償部は、前記入力電力に前記モータの回転数に同期して発生する高調波成分を検出し、前記高調波成分が低減するように、前記高調波成分と同じ周波数で、前記インバータ回路から出力される交流電圧の位相を変化させる、電力変換装置。

Description

電力変換装置
 本開示は、電力変換装置に関する。
 モータの回転数(電気角速度)の5倍成分や7倍成分などの高調波成分が、モータの誘起電圧に含まれていることがある(例えば、特許文献1参照)。
特開2012-165634号公報
 しかしながら、高調波成分がモータの誘起電圧に含まれていると、モータの入力電力にも高調波成分が発生するので、モータの入力電力に発生する高調波成分と同じ次数の高調波が、モータに電力を供給するインバータ回路の入力側に生じてしまうことがある。
 本開示では、インバータ回路の入力側に生じる高調波を低減可能な電力変換装置を提案する。
 本開示の電力変換装置は、
 交流電源から供給された入力交流電力を所定の電圧及び周波数の出力交流電力に電力変換する電力変換装置であって、
 前記出力交流電力をモータに供給するインバータ回路と、
 前記モータの入力電力の高調波を補償する補償部とを備え、
 前記補償部は、前記入力電力に前記モータの回転数に同期して発生する高調波成分を検出し、前記高調波成分が低減するように、前記高調波成分と同じ周波数で、前記インバータ回路から出力される交流電圧の位相を変化させる。
 本開示の電力変換装置によれば、前記モータの入力電力に発生する高調波成分が低減するように、前記モータの入力電力に発生する高調波成分と同じ周波数で、前記インバータ回路から出力される交流電圧の位相を変化させるので、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記補償部は、前記高調波成分と同じ周波数で変化する補償量を生成し、前記補償量に基づいて前記交流電圧の位相を前記高調波成分と同じ周波数で変化させる。
 本開示の電力変換装置によれば、前記補償量に基づいて前記交流電圧の位相を前記高調波成分と同じ周波数で変化させるので、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記補償部は、前記補償量の位相を、検出した前記高調波成分に応じて調整し、前記補償量の振幅を、前記モータの回転数、トルク及び電力のうちのいずれかに応じて変更する。
 本開示の電力変換装置のように、前記補償部は、前記補償量の位相を、検出した前記高調波成分に応じて調整し、前記補償量の振幅を、前記モータの回転数、トルク及び電力のうちのいずれかに応じて変更すると、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記補償部は、前記補償量の振幅を、検出した前記高調波成分に応じて調整し、前記補償量の位相を、前記モータの回転数、トルク及び電力のうちのいずれかに応じて変更する。
 本開示の電力変換装置のように、前記補償部は、前記補償量の振幅を、検出した前記高調波成分に応じて調整し、前記補償量の位相を、前記モータの回転数、トルク及び電力のうちのいずれかに応じて変更すると、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記補償部は、前記補償量の位相及び振幅を、検出した前記高調波成分に応じて調整する。
 本開示の電力変換装置のように、前記補償部は、前記補償量の位相及び振幅を、検出した前記高調波成分に応じて調整すると、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記入力交流電力を整流し、前記インバータ回路に電力供給するコンバータ回路を備え、
 前記コンバータ回路と前記インバータ回路との間に、前記コンバータ回路と並列にコンデンサが接続され、
 前記補償部は、前記コンデンサの両端の電圧から前記高調波成分を検出する。
 本開示の電力変換装置のように、前記補償部は、前記コンデンサの両端の電圧から前記高調波成分を検出しても、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記電力変換装置は、前記入力交流電力を整流し、前記インバータ回路に電力供給するコンバータ回路を備え、
 前記コンバータ回路と前記交流電源または前記インバータ回路との間にリアクトルが接続され、
 前記補償部は、前記リアクトルの両端の電圧から前記高調波成分を検出する。
 本開示の電力変換装置のように、前記補償部は、前記リアクトルの両端の電圧から前記高調波成分を検出しても、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記電力変換装置は、前記入力交流電力を整流し、前記インバータ回路に電力供給するコンバータ回路を備え、
 前記コンバータ回路と前記交流電源または前記インバータ回路との間にリアクトルが接続され、
 前記補償部は、前記リアクトルに流れる電流から前記高調波成分を検出する。
 本開示の電力変換装置のように、前記補償部は、前記リアクトルに流れる電流から前記高調波成分を検出しても、前記インバータ回路の入力側に生じる高調波を低減できる。
 本開示の電力変換装置は、
 前記補償部は、前記高調波成分を検出するための信号を、前記インバータ回路の電圧ベクトルが変化しない期間に取得する。
 本開示の電力変換装置によれば、前記補償部は、前記高調波成分を検出するための信号を、前記インバータ回路の電圧ベクトルが変化しない期間に取得するので、電圧ベクトルが変化する期間に取得する場合に比べて、前記高調波成分の検出精度が向上する。
インバータ回路の入力側に生じる高調波を例示するグラフである。 モータの入力電力の高調波成分を低減する第1の関連技術を説明するための図である。 電圧制御率の変化によるモータの運転領域の変化を説明するための図である。 モータの入力電力の高調波成分を低減する第2の関連技術を説明するための図である。 モータの入力電力の高調波成分を低減する本開示の技術を説明するための図である。 振幅操作量と6次の高調波成分の電力との関係を例示する図である。 位相操作量と6次の高調波成分の電力との関係を例示する図である。 本開示の技術でモータを実機で駆動したときの試験結果の一例を示す図である。 本開示の技術でモータを実機で駆動したときの試験結果の一例を示す図である。 電力変換装置の第1の構成例を示す図である。 電力変換装置の第2の構成例を示す図である。 制御部の第1の構成例を示す図である。 制御部の第2の構成例を示す図である。 制御部の第3の構成例を示す図である。
 以下、実施形態を説明する。最初に、インバータ回路の入力側に生じる高調波について説明する。
 モータの起磁力やギャップパーミアンスがモータの回転位置によって変化するため、モータの回転数に同期して鎖交磁束が変化し、モータの回転数(電気角速度)の5倍成分や7倍成分などの高調波成分が、モータの誘起電圧に含まれていることがある。これらの高調波成分がモータの誘起電圧に含まれていると、モータの駆動周波数の6倍成分などの高調波成分が、モータの入力電力に生じる場合がある。
 例えば、コンデンサレスインバータのように内部にエネルギー貯蔵要素を持たないインバータ回路を使用すると、モータの入力電力に高調波成分が生じることで、モータの入力電力に発生する高調波成分と同じ次数の高調波がインバータ回路の入力側の電力にも生じる場合がある。この高調波がインバータ回路の入力側に存在する電源に流出すると、電源側の電流に、モータの入力電力の周波数±電源電圧の周波数を有する高調波(電源高調波)が含まれることになる。そのため、モータの入力電力の高調波成分によって発生する各々の電源高調波が、電源高調波規制値以下になるように、モータの入力電力の高調波成分を低減することが求められる。図1は、電力変換回路の入力側に生じる高調波を例示するグラフであり、その横軸は、高調波の次数(電源電圧の周波数の倍数)を表す。図1は、30次と32次の電源高調波が、モータの入力電力に生じる高調波成分であり、電源高調波規制値を超えていることを例示している。
 モータの回転数が高いほど、モータの入力電力の高調波成分によって発生する各々の電源高調波の振幅は大きくなり、電源高調波規制値を超える。そのため、インバータ回路に与える電圧指令値を直接操作することで、モータの入力電力の高調波成分を低減する技術がある。
 図2は、モータの入力電力の高調波成分を低減する第1の関連技術(特開2010-98941号公報)を説明するための図である。第1の関連技術では、インバータ回路の電圧制御率(変調率とも称される)に、モータの入力電力の高調波成分を低減する補償量を足し合わせている。しかしながら、モータの入力電力の高調波成分を低減するには、補償量が飽和しないように電圧制御率の直流成分を下げる必要がある。モータの運転領域(例えば、最高回転数)の大きさは、電圧制御率の直流成分に比例するので、補償量を増やすほど、モータの運転領域を下げざるを得ない(図3参照)。
 図4は、モータの入力電力の高調波成分を低減する第2の関連技術(特開2012-165634号公報)を説明するための図である。第2の関連技術では、モータ電流を歪ませる補償値(d軸補償電圧vd_h及びq軸補償電圧vq_h)を、電流制御部の出力(モータ電流を制御する指令値(d軸電圧指令値vd*及びq軸電圧指令値vq*))に重畳して、新たな電圧指令値vd'*,vq'*を生成している。しかしながら、新たな電圧指令値vd'*,vq'*の大きさが、補償値(d軸補償電圧vd_h及びq軸補償電圧vq_h)の重畳によって変化すると、電圧制御率も変化してしまう。このため、第1の関連技術と同様に、補償値が飽和しないように、電圧制御率の直流成分(電流制御部の出力(vd*, vq*)からなる電圧ベクトルの大きさ)を下げる必要があり、モータの運転領域を下げざるを得ない(図3参照)。
 このように、第1の関連技術及び第2の関連技術では、モータの入力電力の高調波成分の低減とモータの運転領域の確保との間にトレードオフが存在する。本開示の技術によれば、モータの入力電力の高調波成分の低減とモータの運転領域の確保との両立を実現できる。
 図5は、モータの入力電力の高調波成分を低減する本開示の技術を説明するための図である。本開示の技術では、モータの入力電力にモータの回転数に同期して発生する高調波成分を検出し、その高調波成分が低減するように、検出した高調波成分と同じ周波数で、インバータ回路から出力される交流電圧の位相を変化させる。本開示の技術では、図5に示すように、電圧制御率を変化させずに、検出した高調波成分と同じ周波数で、電圧ベクトル全体(d軸電圧とq軸電圧の合成ベクトル)の位相αを脈動させる操作を行う。
 モータの入力電力の高調波成分と同じ周波数で位相αを操作するのは、d軸電圧及びq軸電圧の軌跡を、モータの入力電力の高調波成分と同じ周波数で、同一円弧上で遷移させることと等価である。また、モータの入力電力の高調波成分と同じ周波数で位相αを操作すると、インバータ回路から出力される交流電圧には、モータの入力電力の高調波成分の周波数にモータの駆動周波数を加算した高調波成分と、モータの入力電力の高調波成分の周波数からモータの駆動周波数を減算した高調波成分とが、同じ振幅で現れる。
 例えば、式1,2,3は、電圧ベクトル全体の位相αを脈動させたときのインバータ回路から出力されるu相交流電圧を示す。
Figure JPOXMLDOC01-appb-M000001
 
 vはインバータ回路から出力されるu相交流電圧(モータのu相電圧)、Vはu相電圧の振幅、θはモータの回転子の回転角(電気角)、δ'はインバータ回路から出力される交流電圧の位相とモータの回転子の回転角の差(電圧位相)を表す。Asin(6θ+B)は、モータの入力電力の高調波を補償するため、電圧位相基準値δを補償する補償量(以下、補償量Cとも称する)を表し、Aは補償量Cの振幅、Bは補償量Cの基準位相を表す。
 式1に式2を代入すると、式3が得られる。式3の第2項の振幅"-(1/2)AV"が、モータの入力電力の高調波成分の周波数からモータの駆動周波数を減算した高調波成分の振幅に相当する。式3の第3項の振幅"-(1/2)AV"が、モータの入力電力の高調波成分の周波数にモータの駆動周波数を加算した高調波成分の振幅に相当する。
 式1,2,3は、電圧ベクトル全体を正弦波で脈動させる場合を例示しているが、電圧ベクトル全体を、三角波や矩形波などの他の周期波形で脈動させてもよい。
 次に、インバータ回路から出力される交流電圧の位相を、モータの入力電力にモータの回転数に同期して発生する高調波成分と同じ周波数で変動させることで、モータの入力電力に発生する高調波成分を低減できることを理論的に導出する。例として、永久磁石式の同期モータを取り上げるが、他の種類のモータであっても適用できる。また、説明では、モータの駆動周波数の6倍の高調波成分を低減する場合を例示するが、駆動周波数の12倍や18倍などの高次の高調波成分も低減できる。
 永久磁石式の同期モータの電圧方程式は、式4,5で表される。
Figure JPOXMLDOC01-appb-M000002
 
 vはd軸電圧、vはq軸電圧、Rはモータの電機子の巻線抵抗、Lはd軸インダクタンス、Lはq軸インダクタンス、iはd軸電流、iはq軸電流、ωはモータの電気角速度、sは時間微分の演算子、φはd軸磁束、φはq軸磁束、Kq6はq軸磁束の振幅、Kd6はd軸磁束の振幅、Λは永久磁石の磁束を表す。
 永久磁石式の同期モータでは、高回転数ほど電源高調波の影響が顕著になるので、高回転数ほど電機子の巻線抵抗Rの影響を無視できる。よって、説明の簡単化のため、式4を式6に変形する。
Figure JPOXMLDOC01-appb-M000003
 
 交流電圧の位相を正弦波状に脈動させるため、d軸電圧vとq軸電圧vとを式7,8のように定義する。Vはd軸電圧vとq軸電圧vの振幅を表す。式8を式7に代入して整理すると、式9が得られる。
Figure JPOXMLDOC01-appb-M000004
 
 式6,9からなる連立方程式において、電流について解くと、式10が得られる。
Figure JPOXMLDOC01-appb-M000005
 
 モータの入力電力Pinを求めると、式11が得られる。
Figure JPOXMLDOC01-appb-M000006
 
 式11で表される入力電力Pinのうち、6次の高調波成分の電力Pin6は、式12に変形可能である(12次の高調波成分の電力は微小なので、無視する)。
Figure JPOXMLDOC01-appb-M000007
 
 図6は、式12において、基準位相Bを固定したときの、振幅Aと6次の高調波成分の電力Pin6との関係を例示する図である。図7は、式12において、振幅Aを固定したときの、基準位相Bと6次の高調波成分の電力Pin6との関係を例示する図である。図6,7によれば、補償量Cにおける振幅A及び基準位相Bの各々について、6次の高調波成分の電力Pin6を零に近づける最適値が存在することがわかる。よって、補償量Cにおける振幅Aと基準位相Bの各々を、6次の高調波成分の電力Pin6を零に近づける最適値に調整することで、6次の高調波成分の電力Pin6を低減できる。
 式12において、6次の高調波成分の電力Pin6が零になる条件を求めると、式13のように、式12の第1項の余弦成分の振幅を零とし、且つ、式12の第2項の正弦成分の振幅を零とする。振幅A及び基準位相Bについて式13,14で表される連立方程式を解くと、式15が得られる。
Figure JPOXMLDOC01-appb-M000008
 
 このように、本開示の技術では、振幅Aと基準位相Bの各々を、式15で表される適切な値に調整することで、6次の高調波成分の電力Pin6を零にすることもできる。しかしながら、本開示の技術は、モータの入力電力にモータの回転数に同期して発生する高調波成分を検出し、その高調波が低減するように、振幅Aと基準位相Bとのうち少なくとも一方を、検出した高調波成分に応じて、山登り法等を用いて調整してもよい。
 モータの入力電力の6次の高調波成分を零にする操作量では、回転座標におけるモータ電流の6次成分は零にならない。回転座標におけるモータ電流の6次成分の振幅と位相との少なくとも一方を変化させ、d軸に関する入力電力の6次成分とq軸に関する入力電力とが逆位相になるように調整することで、モータの入力電力の6次成分を零にできる。
 次に、本開示の技術が適用される電力変換装置の構成例について説明する。
 図10は、本開示の技術が適用される電力変換装置の第1の構成例を示すブロック図である。図10に示す電力変換装置1Aは、コンバータ回路2、直流リンク部3、インバータ回路4及び制御部5を備え、三相の交流電源6から供給された入力交流電力を所定の電圧及び所定の周波数の出力交流電力に変換して、モータ7に供給する。
 モータ7は、例えば、三相交流モータであり、空気調和機の冷媒回路に設けられた圧縮機を駆動するためのものである。より具体的には、モータ7は、4極6スロットや6極9スロットなどの集中巻モータである。このモータ7では、誘起電圧の高調波成分として、基本波の5,7次成分が多く含まれる傾向にある。このモータ電圧歪み(基本波の5,7次の高調波成分)を起因とする高次(例えば、6次)の高調波成分は、交流電源6の電源電流や直流リンク部3における直流リンク電圧vdcにも現れる。
 コンバータ回路2は、交流電源6に接続され、交流電源6が出力した交流を直流に変換する。コンバータ回路2は、例えば、複数(この例では、6つ)のダイオードがブリッジ状に結線されたダイオードブリッジ回路である。これらのダイオードは、交流電源6の交流電圧を全波整流して、直流電圧に変換する。コンバータ回路2は、変換後の直流電力を直流リンク部3を介して、インバータ回路4に供給する回路であれば、ダイオードブリッジとは別の回路形式の電圧変換回路でもよい。
 直流リンク部3は、コンバータ回路2とインバータ回路4との間に接続されたコンデンサ3aを備えている。コンデンサ3aは、コンバータ回路2の出力部に並列接続され、コンデンサ3aの両端に生じた直流電圧(直流リンク電圧vdc)がインバータ回路4の入力ノードに入力される。コンデンサ3aの更なる説明については後述する。
 直流リンク部3は、コンバータ回路2とインバータ回路4との間に接続されたリアクトル8を備えている。リアクトル8は、コンバータ回路2の出力部とインバータ回路4の入力部との間の直流母線に直列に挿入されている。
 インバータ回路4は、入力ノードが直流リンク部3のコンデンサ3aに並列に接続され、直流リンク部3の出力をスイッチングして三相交流に変換し、接続されたモータ7に供給する。本実施形態のインバータ回路4は、複数のスイッチング素子がブリッジ結線されて構成されている。このインバータ回路4は、三相交流をモータ7に出力するので、6個のスイッチング素子を備えている。詳しくは、インバータ回路4は、互いに並列接続された3つのスイッチングレグを備え、各スイッチングレグは、互いに直列に接続された2つのスイッチング素子を有する。各スイッチングレグにおいて上アームのスイッチング素子と下アームのスイッチング素子との中点が、それぞれモータ7の各相のコイルに接続されている。また、各スイッチング素子には、還流ダイオードが逆並列に接続されている。インバータ回路4は、これらのスイッチング素子のオンオフ動作によって、直流リンク部3から入力された直流リンク電圧vdcをスイッチングして三相交流電圧に変換し、モータ7へ供給する。なお、このオンオフ動作の制御は、制御部5が行う。
 制御部5は、モータ7の入力電力にモータ7の回転数に同期して発生する高調波成分を検出し、その高調波成分が低減するように、検出した高調波成分と同じ周波数で、インバータ回路4から出力される交流電圧の位相を変化させる。制御部5は、交流電圧の位相がこのように変化するように、インバータ回路4におけるスイッチング(オンオフ動作)を制御する。
 図11は、本開示の技術が適用される電力変換装置の第2の構成例を示す図である。第1の構成例と同様の構成についての説明は、上述の説明を援用することで省略する。図11に示す電力変換装置1Bは、コンバータ回路2、直流リンク部3、インバータ回路4及び制御部5を備え、単相の交流電源6から供給された入力交流電力を所定の電圧及び所定の周波数の出力交流電力に変換して、モータ7に供給する。
 コンバータ回路2は、リアクトル8を介して交流電源6に接続され、交流電源6が出力した交流を直流に整流(変換)する。コンバータ回路2は、例えば、複数(この例では、4つ)のダイオードがブリッジ状に結線されたダイオードブリッジ回路である。これらのダイオードは、交流電源6の交流電圧を全波整流して、直流電圧に変換する。コンバータ回路2は、変換後の直流電力を直流リンク部3を介して、インバータ回路4に供給する回路であれば、ダイオードブリッジとは別の回路形式の電圧変換回路でもよい。
 リアクトル8は、交流電源6とコンバータ回路2との間に接続されており、より具体的には、交流電源6の交流出力側とコンバータ回路2の交流入力側との間に直列に挿入されている。
 図10,11において、コンデンサ3aの容量値は、コンバータ回路2の出力をほとんど平滑化することができない一方で、インバータ回路4のスイッチング動作に起因するリプル電圧(スイッチング周波数fに応じた電圧変動)を抑制できるように、設定されている。具体的には、コンデンサ3aは、一般的な電力変換装置においてコンバータ回路2の出力の平滑化に用いられる平滑コンデンサ(例えば、電解コンデンサ)の容量値の約0.01倍の容量値(例えば、数十~数百μF程度)を有する小容量コンデンサ(例えば、フィルムコンデンサ)によって構成されている。
 コンデンサ3aの容量値はこのように小さいので、直流リンク部3においてコンバータ回路2の出力がほとんど平滑化されず、その結果、交流電源6の電源電圧vinの周波数に応じた脈動成分が直流電圧(直流リンク電圧vdc)に残留することになる。例えば、直流リンク電圧vdcは、図10の三相の交流電源6の場合、電源電圧vinの周波数の6倍の周波数の脈動成分を有し、図11の単相の交流電源6の場合、電源電圧vinの周波数の2倍の周波数の脈動成分を有する。
 また、電力変換装置にコンデンサ3aだけでなくリアクトル8も用いる場合、リアクトル8とコンデンサ3aによるLCフィルタが構成される。このLCフィルタの共振周波数fが、N相の交流電源6の商用周波数finのN倍以上の周波数であり、かつ、インバータ回路4のスイッチング動作に起因するリプル電圧を減衰するように、リアクトル8のインダクタンスとコンデンサ3aの容量値が設定される。
   N×fin≦f≦f/4
   f=1(2π√LC)
 Lはリアクトル8のインダクタンス、Cはコンデンサ3aの容量値を表す。
 電力変換装置が、直流リンク部3のコンデンサ3aの容量値がこのように小さいコンデンサレスインバータ(より詳しくは、電解コンデンサレスインバータ)の場合、モータ7の入力電力に生じる歪み成分(高調波成分)に起因する高調波が電源側に流出するおそれがある。電力変換装置がマトリックスコンバータの場合でも同様に、モータの入力電力に生じる歪み成分に起因する高調波が電源側に流出するおそれがある。
 制御部5は、モータ7の入力電力にモータ7の回転数に同期して生じる高調波成分が低減するように、その高調波成分と同じ周波数で、インバータ回路4から出力される交流電圧の位相を変化させる機能(高調波成分低減機能)を有する。この高調波成分低減機能により、インバータ回路4の入力側に生じる高調波(例えば、電源側に流出する電源高調波)を低減できる。
 次に、高調波成分低減機能を有する制御部5の構成例について説明する。
 図12は、制御部の第1の構成例を示すブロック図である。図12に示す制御部5Aは、制御部5の一例である。制御部5Aは、インバータ回路4内の各スイッチング素子をオンオフ動作させる制御信号であるゲート信号Gをインバータ回路4に出力する。制御部5Aは、モータ制御部11、補償部20、加算器13及びPWM演算部12を備えている。制御部5Aが備えるこれらの各部の機能は、メモリに読み出し可能に記憶されたプログラムによって、プロセッサ(例えば、CPU(Central Processing Unit))が動作することにより実現される。
 モータ制御部11は、インバータ回路4から出力される交流電圧の位相を制御する電圧位相基準値δと、インバータ回路4の電圧制御率Kとを生成して出力する。電圧制御率は、変調率とも称される。
 補償部20は、モータ7の入力電力の高調波を補償する。補償部20は、モータ7の入力電力にモータ7の回転数に同期して発生する高調波成分を検出し、その高調波成分が低減するように、検出した高調波成分と同じ周波数で、インバータ回路4から出力される交流電圧の位相を変化させる。補償部20は、検出した高調波成分と同じ周波数で変化する補償量C(=Asin(6θ+B))を生成し、補償量Cに基づいて、インバータ回路4から出力される交流電圧の位相δ'を、検出した高調波成分と同じ周波数で変化させる。
 この例では、補償部20は、補償量Cの基準位相Bを、検出した高調波成分の振幅aに応じて調整し、補償量Cの振幅Aを、モータ7の回転数(電気角速度ω)、モータ7の出力トルクT及びモータ7の入力電力Pin0のうちのいずれかに応じて変更する。補償部20は、高調波成分検出部21、基準位相演算部22、積分器23、加算器24、波形生成部25、振幅演算部26及び乗算器27を有する。
 高調波成分検出部21は、モータ7の入力電力にモータ7の回転数に同期して発生する高調波成分の振幅aをフーリエ変換等により検出する。モータの入力電力に発生する6次の高調波成分と同じ次数の高調波がインバータ回路の入力側の電力にも生じるので、例えば、高調波成分検出部21は、コンデンサ3aの両端の直流リンク電圧vdcから、モータ7の入力電力に発生する高調波成分の振幅aを検出する。あるいは、高調波成分検出部21は、リアクトル8の両端のリアクトル電圧vから、モータ7の入力電力に発生する高調波成分の振幅aを検出してもよい。あるいは、高調波成分検出部21は、リアクトル8に流れるリアクトル電流iから、モータ7の入力電力に発生する高調波成分の振幅aを検出してもよい。あるいは、高調波成分検出部21は、モータ7の入力電力を実際にモニタし、そのモニタ値から、モータ7の入力電力に発生する高調波成分の振幅aを検出してもよい。
 高調波成分検出部21は、高調波成分の振幅aを検出するための信号を、インバータ回路4の電圧ベクトルが変化しない期間(例えば、大きさが零の電圧ベクトルを出力する期間)に取得する。これにより、振幅aを検出するための信号を電圧ベクトルが変化する期間に取得する場合に比べて、振幅aの検出精度が向上する。
 基準位相演算部22は、補償量Cの基準位相Bを、高調波成分検出部21により検出された高調波成分の振幅aに応じて調整する。基準位相演算部22は、例えば、高調波成分検出部21により検出された振幅aに応じて、その検出された振幅aが小さくなるように、山登り法を用いて、補償量Cの基準位相Bを調整する。これにより、モータ7の入力電力に発生する高調波成分の振幅を低減する最適な基準位相B(基準位相Bの目標値の一例)が得られる。
 一方、補償部20は、モータ7の回転数(電気角速度ω)の6倍周波数を積分器23により積分することによって、6θを生成する。基準位相演算部22により演算された基準位相Bと積分器23により得られた6θとが加算器24により加算されることにより、(6θ+B)が得られる。波形生成部25は、モータ7の回転数に同期した、位相が(6θ+B)の正弦波sin(6θ+B)を生成する。正弦波で脈動させる場合を例示しているが、位相が(6θ+B)の三角波や矩形波などの他の周期波形でもよい。
 振幅演算部26は、補償量Cの振幅Aを、モータ7の回転数(電気角速度ω)、モータ7の出力トルクT及びモータ7の入力電力Pin0のうちのいずれかに応じて変更する。振幅演算部26は、例えば、電源高調波が高調波規制値以下となる、電気角速度ωと振幅Aとの相関関係に基づいて、電気角速度ωの検出値又は指令値から最適な振幅A(振幅Aの目標値の一例)を生成する。電源高調波が高調波規制値以下となる相関関係は、例えば、試験等によって予め決められる関係則であり、ルックアップテーブルや演算式などによって定義される。同様に、電気角速度ωを出力トルクTまたは入力電力Pin0に置換した場合でも、このような相関関係を用いて、最適な振幅Aが得られる。
 波形生成部25により生成されたsin(6θ+B)と振幅演算部26により導出された振幅Aとが乗算器27により乗算されることによって、補償量C(=Asin(6θ+B))が得られる。モータ制御部11により生成された電圧位相基準値δと乗算器27により生成された補償量Cとが加算器13により加算されることで、電圧位相δ'が生成される。
 PWM演算部12は、電圧制御率Kおよび電圧位相δ'から、極座標変換、逆パーク変換及び空間ベクトル変換などを用いて、u相、v相及びw相の三相の電圧指令値を生成する。三相の電圧指令値は、PWM(パルス幅変調)信号である。PWM演算部12は、三相の電圧指令値の振幅を電圧制御率Kに応じて調整することで、インバータ回路4から出力される交流電圧の大きさを制御できる。PWM演算部12は、三相の電圧指令値をゲート信号Gに変換してインバータ回路4に出力する。
 このように、制御部5Aは、モータ7の入力電力に生ずる歪みに起因する高調波成分を検出し、検出した高調波成分の振幅aに応じて、その高調波成分と同じ周波数で、インバータ回路4から出力される交流電圧の位相を変動させて、その高調波成分を低減する。これにより、電圧制御率Kを下げずにモータ7の運転領域を確保できるとともに、モータ7の入力電力の高調波成分が低減するので、電源高調波を電源高調波規制値以下に低減できる。
 図13は、制御部の第2の構成例を示すブロック図である。第1の構成例と同様の構成についての説明は、上述の説明を援用することで省略する。図13に示す制御部5Bは、制御部5の一例である。制御部5Bは、補償部30を備える。
 この例では、補償部30は、補償量Cの振幅Aを、検出した高調波成分の振幅aに応じて調整し、補償量Cの基準位相Bを、モータ7の回転数(電気角速度ω)、モータ7の出力トルクT及びモータ7の入力電力Pin0のうちのいずれかに応じて変更する。補償部30は、高調波成分検出部21、基準位相演算部22、積分器23、加算器24、波形生成部25、振幅演算部26及び乗算器27を有する。
 基準位相演算部22は、補償量Cの基準位相Bを、モータ7の回転数(電気角速度ω)、モータ7の出力トルクT及びモータ7の入力電力Pin0のうちのいずれかに応じて変更する。基準位相演算部22は、例えば、電源高調波が高調波規制値以下となる、電気角速度ωと振幅Aとの相関関係に基づいて、電気角速度ωの検出値又は指令値から最適な基準位相B(基準位相Bの目標値の一例)を生成する。電源高調波が高調波規制値以下となる相関関係は、例えば、試験等によって予め決められる関係則であり、ルックアップテーブルや演算式などによって定義される。同様に、電気角速度ωを出力トルクTまたは入力電力Pin0に置換した場合でも、このような相関関係を用いて、最適な基準位相Bが得られる。
 振幅演算部26は、補償量Cの振幅Aを、高調波成分検出部21により検出された高調波成分の振幅aに応じて調整する。振幅演算部26は、例えば、高調波成分検出部21により検出された振幅aに応じて、その検出された振幅aが小さくなるように、山登り法を用いて、補償量Cの振幅Aを調整する。これにより、モータ7の入力電力に発生する高調波成分の振幅を低減する最適な振幅A(振幅Aの目標値の一例)が得られる。
 波形生成部25により生成されたsin(6θ+B)と振幅演算部26により導出された振幅Aとが乗算器27により乗算されることによって、補償量C(=Asin(6θ+B))が得られる。モータ制御部11により生成された電圧位相基準値δと乗算器27により生成された補償量Cとが加算器13により加算されることで、電圧位相δ'が生成される。
 このように、制御部5Bは、モータ7の入力電力に生ずる歪みに起因する高調波成分を検出し、検出した高調波成分の振幅aに応じて、その高調波成分と同じ周波数で、インバータ回路4から出力される交流電圧の位相を変動させて、その高調波成分を低減する。これにより、電圧制御率Kを下げずにモータ7の運転領域を確保できるとともに、モータ7の入力電力の高調波成分が低減するので、電源高調波を電源高調波規制値以下に低減できる。
 図14は、制御部の第3の構成例を示すブロック図である。第3の構成例と同様の構成についての説明は、上述の説明を援用することで省略する。図14に示す制御部5Cは、制御部5の一例である。制御部5Cは、補償部40を備える。
 この例では、補償部40は、補償量Cの振幅A及び基準位相Bを、検出した高調波成分の振幅aに応じて調整する。補償部30は、高調波成分検出部21、基準位相演算部22、積分器23、加算器24、波形生成部25、振幅演算部26及び乗算器27を有する。基準位相演算部22は、第1の構成例(図12)と同じ機能であり、振幅演算部26は、第2の構成例(図13)と同じ機能である。
 制御部5Cは、モータ7の入力電力に生ずる歪みに起因する高調波成分を検出し、検出した高調波成分の振幅aに応じて、その高調波成分と同じ周波数で、インバータ回路4から出力される交流電圧の位相を変動させて、その高調波成分を低減する。これにより、電圧制御率Kを下げずにモータ7の運転領域を確保できるとともに、モータ7の入力電力の高調波成分が低減するので、電源高調波を電源高調波規制値以下に低減できる。
 図8,9は、本開示の技術でモータを実機で駆動したときの試験結果の一例を示す図であり、図10,12に示す構成を備える電力変換装置でモータを実際に駆動した場合を示す。縦軸は、モータ7の入力電力のうち6次の高調波成分の電力Pin6に起因して交流電源6側に発生する電源高調波を表す。振幅A又は基準位相Bを変えることで、電源高調波が変化する。30次及び32次の電源高調波の各々の振幅が略零になる振幅A及び基準位相Bが存在するので、30次及び32次の電源高調波の各々の振幅が電源高調波規制値を満たすことができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が可能である。
 本国際出願は、2019年10月23日に出願した日本国特許出願第2019-192870号に基づく優先権を主張するものであり、日本国特許出願第2019-192870号の全内容を本国際出願に援用する。
1A,1B 電力変換装置
4 インバータ回路
5,5A,5B,5C 制御部
6 交流電源
7 モータ
8 リアクトル
20,30,40 補償部

Claims (9)

  1.  交流電源から供給された入力交流電力を所定の電圧及び周波数の出力交流電力に電力変換する電力変換装置であって、
     前記出力交流電力をモータに供給するインバータ回路と、
     前記モータの入力電力の高調波を補償する補償部とを備え、
     前記補償部は、前記入力電力に前記モータの回転数に同期して発生する高調波成分を検出し、前記高調波成分が低減するように、前記高調波成分と同じ周波数で、前記インバータ回路から出力される交流電圧の位相を変化させる、電力変換装置。
  2.  前記補償部は、前記高調波成分と同じ周波数で変化する補償量を生成し、前記補償量に基づいて前記交流電圧の位相を前記高調波成分と同じ周波数で変化させる、請求項1に記載の電力変換装置。
  3.  前記補償部は、前記補償量の位相を、検出した前記高調波成分に応じて調整し、前記補償量の振幅を、前記モータの回転数、トルク及び電力のうちのいずれかに応じて変更する、請求項2に記載の電力変換装置。
  4.  前記補償部は、前記補償量の振幅を、検出した前記高調波成分に応じて調整し、前記補償量の位相を、前記モータの回転数、トルク及び電力のうちのいずれかに応じて変更する、請求項2に記載の電力変換装置。
  5.  前記補償部は、前記補償量の位相及び振幅を、検出した前記高調波成分に応じて調整する、請求項2に記載の電力変換装置。
  6.  前記電力変換装置は、前記入力交流電力を整流し、前記インバータ回路に電力供給するコンバータ回路を備え、
     前記コンバータ回路と前記インバータ回路との間に、前記コンバータ回路と並列にコンデンサが接続され、
     前記補償部は、前記コンデンサの両端の電圧から前記高調波成分を検出する、請求項1から5のいずれか一項に記載の電力変換装置。
  7.  前記電力変換装置は、前記入力交流電力を整流し、前記インバータ回路に電力供給するコンバータ回路を備え、
     前記コンバータ回路と前記交流電源または前記インバータ回路との間にリアクトルが接続され、
     前記補償部は、前記リアクトルの両端の電圧から前記高調波成分を検出する、請求項1から5のいずれか一項に記載の電力変換装置。
  8.  前記電力変換装置は、前記入力交流電力を整流し、前記インバータ回路に電力供給するコンバータ回路を備え、
     前記コンバータ回路と前記交流電源または前記インバータ回路との間にリアクトルが接続され、
     前記補償部は、前記リアクトルに流れる電流から前記高調波成分を検出する、請求項1から5のいずれか一項に記載の電力変換装置。
  9.  前記補償部は、前記高調波成分を検出するための信号を、前記インバータ回路の電圧ベクトルが変化しない期間に取得する、請求項1から8のいずれか一項に記載の電力変換装置。
PCT/JP2020/039624 2019-10-23 2020-10-21 電力変換装置 WO2021079919A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/754,772 US12095395B2 (en) 2019-10-23 2020-10-21 Power conversion apparatus
CN202080073116.1A CN114556767A (zh) 2019-10-23 2020-10-21 电力转换装置
EP20878173.2A EP4050788A4 (en) 2019-10-23 2020-10-21 ELECTRICITY CONVERSION DEVICE
AU2020371391A AU2020371391B2 (en) 2019-10-23 2020-10-21 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-192870 2019-10-23
JP2019192870A JP7311778B2 (ja) 2019-10-23 2019-10-23 電力変換装置

Publications (1)

Publication Number Publication Date
WO2021079919A1 true WO2021079919A1 (ja) 2021-04-29

Family

ID=75620078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039624 WO2021079919A1 (ja) 2019-10-23 2020-10-21 電力変換装置

Country Status (6)

Country Link
US (1) US12095395B2 (ja)
EP (1) EP4050788A4 (ja)
JP (1) JP7311778B2 (ja)
CN (1) CN114556767A (ja)
AU (1) AU2020371391B2 (ja)
WO (1) WO2021079919A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7515727B2 (ja) * 2021-07-28 2024-07-12 三菱電機株式会社 電力変換装置および空気調和機
JP7283598B1 (ja) 2022-02-24 2023-05-30 株式会社明電舎 電圧型インバータの制御装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454872A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電力変換装置
JPH05176584A (ja) * 1991-12-26 1993-07-13 Hitachi Ltd 電力変換器の制御装置
JPH1189297A (ja) * 1997-09-08 1999-03-30 Toshiba Corp 電力変換装置
JP2000287481A (ja) * 1999-03-31 2000-10-13 Fujitsu General Ltd モータの制御方法
WO2008139518A1 (ja) * 2007-04-27 2008-11-20 Mitsubishi Electric Corporation 電力変換装置
JP2009044873A (ja) * 2007-08-09 2009-02-26 Mitsubishi Electric Corp 電動機駆動装置および圧縮機駆動装置並びに圧縮機
JP2010098941A (ja) 2008-09-22 2010-04-30 Daikin Ind Ltd 電力変換器及びその制御方法並びにダイレクトマトリックスコンバータ
JP2010239681A (ja) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd 回転電機制御装置
JP2012016276A (ja) * 2006-04-11 2012-01-19 Nsk Ltd モータ駆動制御装置及びこれを使用した電動パワーステアリング装置
JP2012165634A (ja) 2011-01-18 2012-08-30 Daikin Ind Ltd 電力変換装置
JP2016208668A (ja) * 2015-04-22 2016-12-08 株式会社デンソー 3相回転機の制御装置
JP2019192870A (ja) 2018-04-27 2019-10-31 ローム株式会社 半導体集積回路装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176584B2 (ja) 2008-02-20 2013-04-03 住友化学株式会社 積層フィルム
JP5983567B2 (ja) * 2013-09-10 2016-08-31 トヨタ自動車株式会社 電動機制御装置
JP6195003B1 (ja) * 2016-09-30 2017-09-13 ダイキン工業株式会社 インバータ装置
JP6983082B2 (ja) * 2018-01-25 2021-12-17 株式会社Soken Dc・ac変換器の制御装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454872A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電力変換装置
JPH05176584A (ja) * 1991-12-26 1993-07-13 Hitachi Ltd 電力変換器の制御装置
JPH1189297A (ja) * 1997-09-08 1999-03-30 Toshiba Corp 電力変換装置
JP2000287481A (ja) * 1999-03-31 2000-10-13 Fujitsu General Ltd モータの制御方法
JP2012016276A (ja) * 2006-04-11 2012-01-19 Nsk Ltd モータ駆動制御装置及びこれを使用した電動パワーステアリング装置
WO2008139518A1 (ja) * 2007-04-27 2008-11-20 Mitsubishi Electric Corporation 電力変換装置
JP2009044873A (ja) * 2007-08-09 2009-02-26 Mitsubishi Electric Corp 電動機駆動装置および圧縮機駆動装置並びに圧縮機
JP2010098941A (ja) 2008-09-22 2010-04-30 Daikin Ind Ltd 電力変換器及びその制御方法並びにダイレクトマトリックスコンバータ
JP2010239681A (ja) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd 回転電機制御装置
JP2012165634A (ja) 2011-01-18 2012-08-30 Daikin Ind Ltd 電力変換装置
JP2016208668A (ja) * 2015-04-22 2016-12-08 株式会社デンソー 3相回転機の制御装置
JP2019192870A (ja) 2018-04-27 2019-10-31 ローム株式会社 半導体集積回路装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050788A4

Also Published As

Publication number Publication date
AU2020371391A1 (en) 2022-05-12
US20240171109A1 (en) 2024-05-23
JP7311778B2 (ja) 2023-07-20
EP4050788A4 (en) 2023-11-15
JP2021069187A (ja) 2021-04-30
AU2020371391B2 (en) 2023-01-05
US12095395B2 (en) 2024-09-17
EP4050788A1 (en) 2022-08-31
CN114556767A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
JP6566105B2 (ja) 電力変換装置
RU2462806C1 (ru) Устройство преобразования электроэнергии
EP3916986B1 (en) Direct power conversion device
WO2018061546A1 (ja) 電力変換器の制御装置
WO2013047236A1 (ja) 電力変換器制御方法
KR101485989B1 (ko) 모터 제어 장치
JP2014068465A (ja) インバータ制御装置
JP5813934B2 (ja) 電力変換装置
WO2021079919A1 (ja) 電力変換装置
JP4253156B2 (ja) インバータ制御方法およびその装置
JP6226901B2 (ja) 発電システム
Hinkkanen et al. Control of induction motor drives equipped with small DC-link capacitance
JP3236985B2 (ja) Pwmコンバータの制御装置
JP4401724B2 (ja) 電力変換装置
JP5755342B2 (ja) モータ駆動システム
JP2017017918A (ja) 回転機駆動装置の制御装置
KR0181399B1 (ko) 전압형 pwm 컨버터의 불평형 전원 전압 제어 장치 및 방법
JP2016127649A (ja) 電力変換装置
KR101911267B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2015154612A (ja) 制御装置
JP5067424B2 (ja) 電力変換装置
KR20200058941A (ko) 인버터 제어장치
JP2021048739A (ja) インバータ装置及びインバータ装置の制御方法
JP2000175460A (ja) 電力変換システム及び電力変換方法
JP2012085405A (ja) 電力変換装置,電力変換方法及び電動機駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17754772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020371391

Country of ref document: AU

Date of ref document: 20201021

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020878173

Country of ref document: EP

Effective date: 20220523