WO2021060116A1 - ガス供給装置及びガス供給方法 - Google Patents
ガス供給装置及びガス供給方法 Download PDFInfo
- Publication number
- WO2021060116A1 WO2021060116A1 PCT/JP2020/035136 JP2020035136W WO2021060116A1 WO 2021060116 A1 WO2021060116 A1 WO 2021060116A1 JP 2020035136 W JP2020035136 W JP 2020035136W WO 2021060116 A1 WO2021060116 A1 WO 2021060116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- gas supply
- processing
- flow rate
- raw material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45557—Pulsed pressure or control pressure
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45561—Gas plumbing upstream of the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02697—Forming conducting materials on a substrate
Definitions
- This disclosure relates to a gas supply device and a gas supply method.
- Patent Document 1 describes a film forming apparatus provided with a gas supply mechanism for supplying WCl 6 (tungsten hexachloride) gas to a processing container in order to form a W (tungsten) film on a wafer by ALD. ..
- the gas supply mechanism includes a raw material tank in which WCl 6 , which is a solid raw material, is housed, a gas supply source for supplying carrier gas to the raw material tank, and a gas supply line connecting the raw material tank and the processing container.
- a flow meter, a tank for temporarily storing gas, and a valve are interposed in the gas supply line in order toward the downstream side.
- the present disclosure provides a technique capable of increasing the detection accuracy of the flow rate of the raw material gas contained in the processing gas supplied to the substrate.
- the gas supply device of the present disclosure is In a gas supply device that supplies processing gas to a processing container that stores a substrate for processing.
- a raw material container that holds liquid or solid raw materials
- a carrier gas supply unit for supplying carrier gas into the raw material container
- a gas supply path for supplying a processing gas containing the vaporized raw material and the carrier gas from the raw material container to the processing container
- a flow meter provided in the gas supply path for measuring the flow rate of the processing gas
- a flow path provided on the downstream side of the flow meter in the gas supply path and narrowed to increase the average value of pressure between the gas supply path and the flow meter.
- the film forming apparatus 1 including one embodiment of the gas supply apparatus of the present disclosure will be described with reference to the longitudinal side view of FIG.
- the film forming apparatus 1 includes a processing container 11, a stage 2 that horizontally supports the wafer B in the processing container 11, a shower head 3 that supplies gas into the processing container 11 in a shower shape, and the inside of the processing container 11. It includes an exhaust unit 30 for exhausting and a gas supply mechanism 4 for supplying various gases to the shower head 3.
- the film forming apparatus 1 performs ALD in which a processing gas containing WCl 5 (tungsten pentoxide) gas, which is a raw material gas, and an H 2 gas, which is a reducing gas, are alternately and repeatedly supplied into the processing container 11 to the wafer B. A W film is formed.
- WCl 5 tungsten pentoxide
- the above-mentioned processing gas is a film-forming gas for forming a film on the wafer B.
- the N 2 gas between the period for supplying period and a reducing gas supplying process gas is supplied as a purge gas for purging the process chamber 11. Therefore, the film forming apparatus 1 is configured to repeat a cycle of supplying the processing gas, the purge gas, the reducing gas, and the purge gas in this order.
- the processing container 11 is circular, and a wafer B carry-in / outlet 13 opened / closed by a gate valve 12 is formed on the lower side of the side wall thereof.
- the side wall on the upper side of the processing container 11 is composed of an annular exhaust duct 14 having a rectangular vertical cross section. Further, a slit-shaped exhaust port 15 along the circumference of the exhaust duct 14 is opened on the inner peripheral surface of the exhaust duct 14 and communicates with the flow path 16 in the exhaust duct 14.
- a peripheral edge portion of a top plate 17 constituting the ceiling portion of the processing container 11 is provided on the exhaust duct 14.
- the stage 2 places the wafer B on the central portion of the upper surface thereof.
- a heater 21 for heating the wafer B is embedded in the stage 2, and the wafer B is heated to a desired temperature during the film forming process.
- Reference numeral 22 in the drawing is a cover, which covers the stage 2 from the outside of the mounting area of the wafer B on the upper surface of the stage 2 to the side surface of the stage 2.
- the stage 2 is supported by the support column 23, and the lower side of the support column 23 extends out of the processing container 11 through a hole 18 provided at the bottom of the processing container 11 and is connected to the elevating mechanism 24.
- the elevating mechanism 24 moves the stage 2 up and down between the ascending position shown by the solid line in FIG.
- the ascending position is a position when the wafer B is processed
- the descending position is a position when the wafer B is delivered to and from a transfer mechanism (not shown).
- a flange 25 is provided on the outside of the processing container 11 in the support column 23, and a bellows 26 is connected to the flange 25 and the outer peripheral edge of the hole 18, so that the airtightness inside the processing container 11 is maintained.
- Three vertical pins 27 are provided in the vicinity of the bottom surface of the processing container 11, and the pin 27 is moved up and down by the elevating mechanism 28 and sunk on the upper surface of the stage 2 in the descending position. As a result, the wafer B is delivered between the transfer mechanism and the stage 2.
- the shower head 3 is provided facing the stage 2 and is composed of a main body 31 fixed to the lower side of the top plate 17 of the processing container 11 and a shower plate 32 connected to the main body 31 from below. There is. A gas diffusion space 33 surrounded by the main body 31 and the shower plate 32 is formed, and the gas diffusion space 33 is the downstream end of the gas introduction hole 34 penetrating the main body 31 and the top plate 17 of the processing container 11. Is connected. An annular protrusion 35 projecting downward is formed on the peripheral edge of the shower plate 32. A large number of gas discharge holes 36 communicating with the gas diffusion space 33 are dispersedly opened in the inner region of the annular protrusion 35 on the lower surface of the shower plate 32.
- the annular projection 35 and the cover member 22 of the stage 2 are close to each other, and the space sandwiched between the lower surface of the shower plate 32 and the upper surface of the stage 2 inside the annular projection 35 is the processing space 37.
- the exhaust unit 30 includes an exhaust pipe 38 connected to the exhaust duct 14 and an exhaust mechanism 39 connected to the downstream side of the exhaust pipe 38 and having a vacuum pump, a pressure control valve, and the like.
- the exhaust mechanism 39 exhausts the inside of the processing container 11 through the exhaust duct 14, and a vacuum atmosphere of a desired pressure is formed.
- the gas supply mechanism 4 which is a gas supply device will be described.
- the gas supply mechanism 4 includes a WCl 5 gas supply unit 41, various gas supply sources, and a piping system for supplying gas from each gas supply source and the WCl 5 gas supply unit 41 to the shower head 3. Further, as will be described later, the gas supply mechanism 4 also includes a valve, a flow meter (mass flow meter: MFM), a mass flow controller (MFC), a buffer tank, and an orifice provided in the gas supply pipe constituting the above piping system. included.
- MFM mass flow meter
- MFC mass flow controller
- the downstream end of the gas supply pipe 51 is connected to the gas introduction hole 34 of the top plate 17 of the processing container 11.
- the upstream side of the gas supply pipe 51 branches to form the processing gas supply pipe 52 and the reduction gas supply pipe 53, respectively.
- the upstream end of the processing gas supply pipe 52 constitutes the processing gas supply unit 41 via a valve V1, a buffer tank 54, a ring plate 50 forming an orifice 55 (not shown in FIG. 1), an MFM 56, valves V2, and V3 in this order. It is connected to the raw material container 42.
- a processing gas supply path is formed in the processing gas supply pipe 52, and the orifice 55 forms a narrowed flow path in the processing gas supply path. Then, by opening and closing the valve V1, the processing gas is supplied to and from the processing container 11.
- Each member such as the ring plate 50 other than the valve V1 interposed in the processing gas supply pipe 52 will be described in detail later.
- the MFM 56 and the valve V2 are branched to form the gas supply pipe 57.
- the upstream end of the gas supply pipe 57 is connected to the N 2 gas supply source 59 via valves V4 and MFC 58 in this order.
- the N 2 gas supplied from the gas supply source 59 to the gas supply pipe 57 is a diluting gas that dilutes the WCl 5 gas in the processing gas flowing through the processing gas supply pipe 52.
- the downstream side of the valve V1 in the processing gas supply pipe 52 is branched, and the upstream side of the branched pipe is further branched into two to form the gas supply pipes 61 and 62.
- the upstream end of the gas supply pipe 61 is connected to the N 2 gas supply source 64 via valves V5 and MFC 63 in this order.
- the upstream end of the gas supply pipe 62 is connected to the upstream side of the MFC 65 of the gas supply pipe 61 via valves V5 and MFC 65 in this order.
- Gas supply pipe 61 is a line for supplying the N 2 gas to the wafer B to purge the process chamber 11.
- Gas supply pipe 62 is a line for supplying a constant N 2 gas during the deposition process in the processing container 11.
- the upstream end of the reducing gas supply pipe 53 is connected to the H 2 gas supply source 73 via a valve V11, a buffer tank 71, and an MFC 72 in this order.
- the buffer tank 71 has a role of supplying a large amount of gas into the processing container 11 in a short time, similarly to the buffer tank 54 described in detail later.
- the downstream side of the valve V11 of the reducing gas supply pipe 53 is branched to form the gas supply pipe 74.
- the upstream end of the gas supply pipe 74 is connected to the H 2 gas supply source 76 via a valve V12, MFC75 sequentially.
- H 2 gas supplied from the H 2 gas supply source 76, a WCl 5 gas is supplied into the processing vessel 11 at the time of supplying to the wafer B, the WCl 5 supplied to the wafer B with additive gas to activate is there.
- the downstream side of the valve V12 is branched, and the upstream side of the branched pipe is further branched into two to form the gas supply pipes 77 and 78.
- the upstream end of the gas supply pipe 77 is connected to the N 2 gas supply source 70 via a valve V13, MFC79 sequentially.
- the upstream end of the gas supply pipe 78 is connected to the upstream side of the MFC 79 of the gas supply pipe 77 via valves V14 and MFC 66 in this order.
- the gas supply pipe 77 is a line that supplies N 2 gas to the wafer B in order to purge the inside of the processing container 11.
- Gas supply pipe 78 is a line for supplying a constant N 2 gas during the deposition process in the processing container 11.
- the processing gas supply unit 41 includes a raw material container 42, a carrier gas supply pipe 43, an N 2 gas supply source 44 for supplying N 2 gas, which is a carrier gas, to the raw material container 42, and a bypass pipe 45.
- Source container 42 houses the WCl 5 is a film forming material in the solid state comprises a heater 46 for the WCl 5 gas was sublimed by heating the WCl 5.
- the upstream end of the processing gas supply pipe 52 and the downstream end of the carrier gas supply pipe 43 are open in the gas phase region in the raw material container 42.
- the upstream end of the carrier gas supply pipe 43 is connected to the N 2 gas supply source 44 via valves V7, V8, and MFC47.
- These carrier gas supply pipe 43, valves V7, V8, MFC47 and N 2 gas supply source 44 constitute a carrier gas supply unit. Further, the valves V2 and V3 in the processing gas supply pipe 52 and the valves V7 and V8 in the carrier gas supply pipe 43 are connected by a bypass pipe 45 provided with the valve V9.
- the carrier gas can be supplied into the raw material container 42, and the processing gas containing WCl 5 gas and the carrier gas can be supplied to the processing gas supply pipe 52. it can.
- the flow rate of the WCl 5 gas in the processing gas supplied to the processing gas supply pipe 52 as described above increases as the flow rate of the carrier gas supplied to the raw material container 42 increases.
- the carrier gas is supplied to the raw material container 42 at a constant flow rate, and the processing gas is constantly supplied to the processing gas supply pipe 52.
- the carrier gas can be supplied to the processing gas supply pipe 52 via the bypass pipe 45 without passing through the raw material container 42. It can. That is, of the WCl 5 gas and the carrier gas, the carrier gas can be independently supplied to the processing gas supply pipe 52, in other words, the carrier gas can be supplied to the processing gas supply pipe 52 by bypassing the raw material container 42. ..
- the buffer tank 54 provided in the processing gas supply pipe 52 is provided to supply a relatively large flow rate of processing gas to the processing container 11 in a short time.
- the valve V1 of the processing gas supply pipe 52 is repeatedly opened and closed during the film forming process, that is, while the processing gas is being supplied to the processing gas supply pipe 52 as described above. To do. While the valve V1 is closed, the processing gas supplied from the processing gas supply unit 41 as described above is supplied to the buffer tank 54 and temporarily stored. Then, when the valve V1 is opened, the processing gas is discharged from the buffer tank 54 into the processing container 11 at a relatively large flow rate, and the processing is performed promptly. In order to perform one cycle of ALD at high speed, the opening and closing of the valve V1 is also performed at high speed.
- the configuration of the above-mentioned MFM56 used is not limited, but an example of the configuration is shown in FIG. 2 for the sake of explanation.
- the MFM 56 shown in this figure is, for example, a thermal flow meter, and includes a main flow path 91 for gas and a thin tube 92 for connecting the upstream side and the downstream side of the main flow path 91 to each other.
- 93 is a resistor provided in the main flow path 91 against a gas flow, and the thin tube 92 forms a flow path that bypasses the resistor 93.
- the ratio of the flow rate of the gas flowing through the thin tube 92 to the outlet of the MFM 56 in the MFM 56 and the flow rate of the gas not flowing through the thin tube 92 toward the outlet of the MFM 56 becomes constant.
- a coil 95 which is a heating element connected to the bridge circuit 94, is wound on the upstream side and the downstream side of the thin tube 92, respectively.
- the bridge circuit 94 transmits a detection signal to the control unit 10 described later.
- the control unit 10 calculates the flow rate of the gas flowing through the MFM 56 based on the detection signal.
- the flow rate in the present specification means a flow rate per unit time, not an integrated flow rate. For example, by providing the resistor 93 as described above, the conductance in the MFM 56 is smaller than the conductance in the processing gas supply pipe 52.
- the flow rate of the WCl 5 gas in the process gas High detection is required.
- the first detection value by the MFM 56 when supplying the processing gas to the processing gas supply pipe 52 and the carrier gas as described above are processed by bypassing the raw material container 42.
- the difference from the second detection value by the MFM 56 when supplying the gas to the gas supply pipe 52 may be calculated. That is, the flow rate may be measured by the MFM 56 under the same conditions except for the carrier gas distribution path, and the difference between the measurement results may be calculated.
- the orifice 55 of the processing gas supply pipe 52 is provided to improve the accuracy of the flow rate of the WCl 5 gas when calculating the flow rate of the WCl 5 gas as described above.
- FIG. 3 is also referred to as appropriate.
- the pressure distribution in the length direction of the processing gas supply pipe 52 when the valve V1 is opened and the gas flows is made to correspond to the schematic view of the processing gas supply pipe 52 on the upper side of the graph.
- the horizontal axis and the vertical axis of the graph indicate the position of the processing gas supply pipe 52 in the flow path and the pressure in the flow path, respectively.
- FIG. 3 the pressure distribution in each case where the orifice 55 is provided and when the orifice 55 is not provided is shown by a solid line graph and a chain line graph, respectively.
- the state of the gas and the pressure distribution in the processing gas supply pipe 52 when the orifice 55 is not provided will be described.
- the conductance of the flow path of the MFM 56 is smaller than that of the processing gas supply pipe 52.
- Such a small conductance creates a large differential pressure between the inlet and outlet of the MFM56. Since the differential pressure is formed in this way, the flow velocity of the gas in the MFM 56 is high.
- the valve V1 is switched from the open state to the closed state, the flow velocity of the gas, which was previously high in the MFM56, is greatly reduced. Therefore, the amount of fluctuation of the gas flow velocity in the MFM 56 due to the opening and closing of the valve V1 is large.
- the conductance of the orifice 55 is smaller than the conductance of the flow path of the MFM 56.
- a differential pressure is formed at the orifice 55 so that the pressure of the flow path on the upstream side of the orifice 55 is higher than that when the orifice 55 is not provided. Orifice. That is, the pressure on the downstream side of the MFM 56 rises, the pressure difference between the inlet and the outlet of the MFM 56 is suppressed, and the flow velocity in the MFM 56 is also suppressed. By suppressing the flow velocity, the flow rate flowing through the MFM 56 is also suppressed. Therefore, as the valve V1 is repeatedly opened and closed, sudden fluctuations in the flow rate are suppressed.
- the orifice 55 By providing the orifice 55 as described above, the pressure in the flow path between the MFM 56 and the orifice 55 increases as compared with the case where the orifice 55 is not provided. More specifically, the orifice 55 is configured so that the average value of the pressure in the flow path between the MFM 56 and the orifice 55 increases as compared with the case where the orifice 55 is not provided.
- the average value of the pressure is defined as, for example, three or more measurement positions separated from each other in the length direction of the flow path of the flow path between the MFM 56 and the orifice 55, which are set at the time of gas flow. It is the average value of the pressure measured at the measurement position.
- the upper side and the lower side of FIG. 4 are graphs schematically showing the time course of the flow rate detected by the MFM 56 in each case where the orifice 55 is not provided and when the orifice 55 is provided.
- the horizontal axis of the graph represents time, and the vertical axis of the graph represents flow rate.
- the period A1 in the graph is the period during which the carrier gas is supplied alone, and the period A2 is the period during which the processing gas is supplied.
- the valve V1 described above is repeatedly opened and closed.
- the vibration becomes large during the period A2 in which the flow rate of the gas flowing through the MFM 56 is large.
- the amount of change in the flow rate is large in this way, even if the difference between the flow rate value in the period A1 and the flow rate value in the period A2 is taken to obtain the flow rate of the WCl 5 gas, it is relatively relatively There is a risk of including a large error. That is, there is a concern that a deviation may occur from the actual flow rate of the WCl 5 gas.
- the vibration of the waveform of the graph is small and the change in the flow rate is suppressed for the above reasons in both the periods A1 and A2. Therefore, in obtaining the flow rate of WCl 5 gas by taking the difference between the flow rate value in period A1 and the flow rate value in period A2 as described above, the flow rate of WCl 5 gas obtained is the same as the actual flow rate of WCl 5 gas. The deviation is suppressed.
- the orifice 55 is a circular hole that opens into the circular ring plate 50. If the diameter of the orifice 55 is too large, the conductance of the orifice 55 becomes too large, and there is a concern that the effect of sufficiently suppressing the differential pressure of the MFM 56 cannot be obtained. If the diameter of the orifice 55 is too small, the conductance of the orifice 55 becomes too small, and there is a concern that gas will not flow through the processing gas supply pipe 52.
- the distance L4 along the flow path from the MFM 56 to the orifice 55 is, for example, 10 mm to 1000 mm. Further, the volume of the flow path from the MFM 56 to the orifice 55 is, for example, 1 cc to 1000 cc.
- the orifice 55 is not limited to being provided on the upstream side of the buffer tank 54, and may be provided on the downstream side of the buffer tank 54. However, if the orifice 55 is arranged on the downstream side of the buffer tank 54 in this way, the flow of the processing gas is obstructed, and there is a concern that a large amount of the processing gas cannot be supplied to the processing container 11 in a short time.
- the orifice 55 is preferably provided on the upstream side of the buffer tank 54.
- control unit 10 which is a computer provided in the film forming apparatus 1, will be described.
- the control unit 10 includes a program. A group of steps is incorporated in the program so that a series of operations in the film forming apparatus 1 described later can be performed, and the control unit 10 outputs a control signal to each part of the film forming apparatus 1 by the program. , The operation of each part is controlled. Specifically, for example, opening and closing of each valve, gas flow rate adjustment by each MFC, raising and lowering of the pin 27 by the raising and lowering mechanism 28, raising and lowering of the stage 2 by the raising and lowering mechanism 24, exhaust in the processing container 11 by the exhaust mechanism 39, and heater 21. Each operation such as heating of the wafer B is controlled.
- the program is stored in a storage medium such as a compact disk, a hard disk, a memory card, or a DVD, and is installed in the control unit 10.
- This flow rate adjusting step is a step for setting the flow rate of the raw material gas in the processing gas supplied to the wafer B to a desired value at the time of the film forming process. More specifically, the ratio of the flow rate of the carrier gas supplied from the gas supply source 44 to the MFC 47 during the film forming process and the flow rate of the diluted gas supplied from the gas supply source 59 via the MFC 58 is set. decide. 7 and 8 are also referred to as appropriate for explanation.
- FIG. 7 and 8 show the open / closed state of the valve and the gas flow state in each of the pipes of the treated gas supply pipe 52 and the treated gas supply unit 41, and the closed valve is hatched.
- the part where the gas is flowing is shown thicker than the part where the gas is not flowing.
- the wafer B is not stored in the processing container 11, and the inside of the processing container 11 has a vacuum atmosphere with a preset pressure. Then, from the state in which each valve is closed, the valves V2, V4, V8, and V9 are opened, and the opening and closing of the valve V1 is repeated as in the case of performing the film forming process.
- the left side and the right side of FIG. 7 show the valve V1 in the closed state and the open state, respectively.
- the flow rate of the carrier gas supplied from the gas supply source 44 via the MFC 47 and the flow rate of the diluted gas supplied from the gas supply source 59 via the MFC 58 are the flow rates preset as the flow rates during the film formation process, respectively. Will be done.
- the control unit 10 acquires a detection signal transmitted from the MFM 56 while the valve V1 is repeatedly opened and closed and the diluent gas and the carrier gas are supplied to the processing container 11 as described above. After that, the valves V1, V2, V4, V8, and V9 are closed to stop the supply of the diluent gas and the carrier gas into the processing container 11. Then, the average value of the flow rate is calculated from the detection signal obtained in a specific period. This specific period is, for example, a period in which 10 opening / closing cycles including the last opening / closing cycle are performed, assuming that one opening / closing of the valve V1 is one opening / closing cycle.
- the average value of the flow rates calculated in this way is set as the flow rate when the flow rate of the WCl 5 gas, which is the raw material gas, is 0. That is, a process corresponding to the zero point adjustment of the MFM 56 is performed (step S1).
- each valve is closed, the valves V2 to V4, V7, and V8 are opened, and the processing gas and the diluted gas are supplied into the processing container 11 via the processing gas supply pipe 52.
- the valve V1 is repeatedly opened and closed in the same manner as in step S1.
- the left side and the right side of FIG. 8 show the valve V1 in the closed state and the open state, respectively.
- the processing gas containing the diluting gas is supplied to the processing gas supply pipe 52, and further intermittently supplied into the processing container 11.
- the flow rate of the carrier gas supplied from the gas supply source 44 via the MFC 47 and the flow rate of the diluted gas supplied from the gas supply source 59 via the MFC 58 are the same flow rates as in step S1 performed immediately before, respectively. ..
- the control unit 10 acquires a detection signal transmitted from the MFM 56 while the valve V1 is repeatedly opened and closed and the processing gas and the diluent gas are supplied as described above. After that, the valves V1 to V4, V7, and V8 are closed to stop the supply of the processing gas and the carrier gas into the processing container 11. Then, for example, the average value of the flow rate is calculated from the detection signal obtained in the above specific period, and this calculated value is used as the flow rate of WCl 5 gas (step S2). That is, in steps S1 and S2, the difference between the average value of the flow rate acquired during the period A2 shown in the lower graph of FIG. 4 and the average value of the flow rate acquired during the period A1 is calculated. Will be there. As described in FIGS. 3 and 4, by the action of the orifice 55, the fluctuation of the flow rate value detected by the MFM 56 in steps S1 and S2 is suppressed, and the calculated flow rate value of WCl 5 gas becomes highly accurate. ..
- the control unit 10 calculates the difference between the calculated flow rate of the WCl 5 gas and the target value, and based on the difference, the carrier gas at the time of the film forming process so that the flow rate of the WCl 5 gas becomes the target value.
- the setting of the ratio of the flow rate of the diluting gas to the flow rate is changed (step S3). That is, the settings of MFC 47 and 58 are changed.
- the above change in the ratio of the carrier gas and the diluted gas is performed so as not to change the total flow rate of the carrier gas flow rate and the diluted gas flow rate.
- step S4 it is determined whether or not steps S1 to S3 have been performed a preset number of times.
- the flow rate of the carrier gas and the flow rate of the dilution gas set in the last step S3 are the flow rates of the carrier gas and the dilution gas at the time of the film forming process, respectively. It is determined as a flow rate (step S5).
- step S4 it is determined that steps S1 to S3 have not been executed a preset number of times, each step after step S1 is executed again.
- the film forming process of the wafer B performed after the flow rate adjusting step of the raw material gas will be described with reference to FIG. It is assumed that the processing gas in the following description of the film forming process includes a diluting gas.
- the wafer B is carried into the processing container 11, and the inside of the processing container 11 is provided with a vacuum atmosphere having a desired pressure. Then, from the state in which the valve is closed, a state in which the valve V6, V14 is opened, the supply of N 2 gas is performed into the processing chamber 11 through the gas supply pipe 62 and 78.
- valves V2, V3, V7, and V8 are opened, and the carrier gas and the diluted gas are supplied from the gas supply sources 44 and 59 via the MFCs 47 and 58 at the flow rates determined in step S5 of the flow rate adjusting step, respectively.
- the processing gas is stored in the buffer tank 54 as shown on the left side of FIG.
- H 2 gas is supplied to and stored in the buffer tank 71.
- valve V1 is opened, and the processing gas stored in the buffer tank 71 is supplied into the processing container 11 as shown on the right side of FIG. Further, when the valve V1 is opened, the valve V12 is opened, and the H 2 gas, which is an additive gas, is supplied to the processing container 11 via the gas supply pipe 74 (step T1). WCl 5 is adsorbed on the wafer B, and the WCl 5 is activated by the action of the H 2 gas. Subsequently, the valve V1 is closed, and the supply of the processing gas into the processing container 11 is stopped.
- step T2 the valves V5 and V13 are opened, the purge gas is supplied into the processing container 11 via the gas supply pipes 61 and 77, and the inside of the processing container 11 is purged (step T2).
- the valve V1 is closed, the processing gas is stored in the buffer tank 54 again.
- valves V5 and V13 are closed, and the supply of the purge gas into the processing container 11 is stopped.
- the valve V11 is opened, H 2 gas as the reducing gas via a reducing gas supply pipe 53 is supplied into the processing vessel 11, WCl 5 adsorbed on the wafer B is reduced thin layer of W is formed (Step T3).
- the valve V11 is closed and the supply of H 2 gas into the processing container 11 is stopped.
- the valves V5 and V13 are opened, the purge gas is supplied into the processing container 11 via the gas supply pipes 61 and 77, and the inside of the processing container 11 is purged (step T4).
- the cycle consisting of steps T1 to T4 described above is repeated, and a thin layer of W is deposited on the wafer B to form a W film.
- the cycles of steps T1 to T4 are stopped, and the wafer B is carried out from the processing container 11.
- the control unit 10 receives the detection signal output from the MFM 56 and acquires the flow rate of the WCl 5 gas. Then, the average value of the flow rates of the WCl 5 gas is calculated. If there is a discrepancy between this average value and the target value, the setting of the ratio between the flow rate of the carrier gas and the flow rate of the diluted gas is changed by the amount corresponding to the discrepancy. That is, after the same settings as in step S3 of the raw material gas flow rate adjusting step are adjusted, the next wafer B is processed.
- the flow rate of the WCl 5 gas contained in the processing gas can be detected with high accuracy. Therefore, when forming the W film on each wafer B, the film thickness of the W film can be adjusted to the target value with high accuracy.
- the solid raw material contained in the raw material container 42 is not limited to WCl 5 , but may be WCl 6 (tungsten hexachloride).
- the film is not limited to forming a W film.
- a ruthenium film may be formed by using ruthenium carbonyl (Ru 3 (CO) 12 ) as a solid raw material.
- the present technology can also be applied to, for example, when a tantalum film is formed by using a gas obtained by vaporizing solid tantalum chloride at room temperature and a reducing gas.
- the present technology can be applied not only to the case where the solid raw material is vaporized and the wafer B is processed as described above, but also when the liquid raw material is vaporized and the wafer B is processed.
- tantalum oxide can be formed into a film by using a gas obtained by vaporizing pentaethoxytantalum, which is a liquid raw material, and an oxidizing gas.
- the present technology is not limited to being applied to a film forming apparatus that performs ALD, and the present technology may be applied to a film forming apparatus that performs CVD (Chemical Vapor Deposition).
- CVD Chemical Vapor Deposition
- the present technology is not limited to being applied only to the film forming process.
- this technology is also used when a carrier gas is supplied to a container containing a fluorocarbon-based liquid, the liquid is vaporized to generate an etching gas, and the etching gas is used to etch a silicon oxide-based film on the wafer B surface.
- the raw material contained in the raw material container 42 may be any raw material that produces a gas for processing the substrate, and is not limited to the film-forming raw material. More specifically, it is necessary to supply a raw material gas generated from a solid raw material or a liquid raw material having a vapor pressure smaller than the processing pressure for processing in the processing container 11 into the processing container 11 by using a carrier gas.
- the present technology can be applied in a certain supply system.
- a part of the flow path of the processing gas supply pipe 52 is used as an orifice 55 to form a narrowed flow path, but the orifice 55 is not limited to be provided.
- the processing gas supply pipe 52 is configured so that a portion is provided on the downstream side of the MFM 56, for example, a portion whose diameter is reduced as the pipe diameter is directed toward the downstream side. That is, a part of the processing gas supply pipe 52 may be configured as a trumpet pipe to form a narrowed flow path and reduce the conductance.
- the buffer tank 54 is provided as the gas storage unit, but the gas storage unit may not be provided. As the gas storage unit, instead of providing the buffer tank 54, a part of the processing gas supply pipe may be expanded in diameter so that the effect of temporarily storing a large amount of gas can be obtained as in the buffer tank 54.
- the MFM is not limited to the above-described configuration.
- it may be configured by bending the main flow path 91.
- the MFM is not limited to a thermal flow meter, and may be, for example, a differential pressure flow meter that detects the pressure before and after the resistor 93 and detects the flow rate based on the differential pressures thereof.
- the difference between the average value of the flow rate in the arbitrary period in the period A1 for bypassing the carrier gas and the average value of the flow rate in the arbitrary period in the period A2 for supplying the processing gas is calculated.
- the calculated value was assumed to be the flow rate of WCl 5 gas.
- the calculation is not limited to this, and for example, the difference may be calculated by aligning the start timings of the periods A1 and A2 to obtain the transition of the flow rate of the WCl 5 gas during processing.
- Evaluation test 1 As the evaluation test 1, the valve V1 was repeatedly opened and closed and the processing gas was supplied to the processing container 11 by using the film forming apparatus 1 described with reference to FIG. During that time, the detection signal output from the MFM 56 was acquired and the detected flow rate was monitored. That is, the flow rate was detected with the orifice 55 provided in the processing gas supply pipe 52. Further, as the comparative test 1, the flow rate was detected under the same conditions as in the evaluation test 1 except that the orifice 55 was not provided in the processing gas supply pipe 52.
- FIG. 9 and 10 are graphs showing the results of the evaluation test 1 and the comparative test 1, respectively.
- the horizontal axis of the graph shows the elapsed time (unit: seconds), and the vertical axis of the graph shows the detected flow rate (unit: sccm).
- the vibration of the waveform of the graph that is, the fluctuation range of the flow rate is large.
- the evaluation test 1 it can be seen that this fluctuation range is suppressed. Therefore, from this evaluation test 1, as described with reference to FIG. 4, the effect that the fluctuation of the detected flow rate can be suppressed by providing the orifice 55 is shown.
- Evaluation test 2 As the evaluation test 2, the valve V1 was repeatedly opened and closed and the processing gas was supplied to the processing container 11 in a state where the orifice 55 was provided in the processing gas supply pipe 52 as in the evaluation test 1. This processing gas was supplied 5 times under the same conditions as each other, and the transition of the calculated value of the flow rate of the raw material gas was examined each time. Further, as the comparative test 2, the same test as the evaluation test 2 was performed except that the orifice 55 was not provided in the processing gas supply pipe 52.
- FIGS. 11 and 12 are graphs showing the results of the evaluation test 2 and the comparative test 2, respectively. Similar to the graphs of FIGS. 9 and 10, the horizontal axis and the vertical axis of the graphs of FIGS. 11 and 12 are the elapsed time. Each shows the flow rate. However, in the graphs of FIGS. 11 and 12, the WCl calculated by receiving the detection signal output from the MFM 56 after the processing (step S1) corresponding to the zero point adjustment of the MFM 56 is performed on the control unit 10. It represents the flow rate of 5 gases. The unit of flow rate is mg / min. In the graph of FIG. 12, the results of each measurement are shown by different line types.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
基板を格納する処理容器に処理ガスを供給して処理を行うガス供給装置において、液体または固体の原料を収容する原料容器と、前記原料容器内にキャリアガスを供給するためのキャリアガス供給部と、前記原料容器から、気化した前記原料と前記キャリアガスとを含む処理ガスを、前記処理容器に供給するガス供給路と、前記処理ガスの流量を測定するために前記ガス供給路に設けられる流量計と、前記ガス供給路において前記流量計の下流側に設けられ、当該ガス供給路における前記流量計との間の圧力の平均値を上昇させるために狭窄された流路と、を備えるガス供給装置を構成する。
Description
本開示は、ガス供給装置及びガス供給方法に関する。
半導体デバイスの製造工程においては、基板である半導体ウエハ(以下、ウエハと記載する)に各種のガス処理が行われる。このガス処理の一つとしては、例えばALD(Atomic Layer Deposition)による成膜がある。特許文献1には、ALDによりウエハにW(タングステン)膜を成膜するために、WCl6(六塩化タングステン)ガスを処理容器に供給するガス供給機構を備えた成膜装置について記載されている。当該ガス供給機構は、固体原料であるWCl6が収容される原料タンクと、原料タンクにキャリアガスを供給するガス供給源と、原料タンクと処理容器とを接続するガス供給ラインと、を備え、ガス供給ラインには流量計と、ガスを一時貯留するタンクと、バルブとが、下流側に向けて順に介設されている。
本開示は、基板に供給される処理ガスに含まれる原料ガスの流量の検出精度を高くすることができる技術を提供する。
本開示のガス供給装置は、
基板を格納する処理容器に処理ガスを供給して処理を行うガス供給装置において、
液体または固体の原料を収容する原料容器と、
前記原料容器内にキャリアガスを供給するためのキャリアガス供給部と、
前記原料容器から、気化した前記原料と前記キャリアガスとを含む処理ガスを、前記処理容器に供給するガス供給路と、
前記処理ガスの流量を測定するために前記ガス供給路に設けられる流量計と、
前記ガス供給路において前記流量計の下流側に設けられ、当該ガス供給路における前記流量計との間の圧力の平均値を上昇させるために狭窄された流路と、
を備える。
基板を格納する処理容器に処理ガスを供給して処理を行うガス供給装置において、
液体または固体の原料を収容する原料容器と、
前記原料容器内にキャリアガスを供給するためのキャリアガス供給部と、
前記原料容器から、気化した前記原料と前記キャリアガスとを含む処理ガスを、前記処理容器に供給するガス供給路と、
前記処理ガスの流量を測定するために前記ガス供給路に設けられる流量計と、
前記ガス供給路において前記流量計の下流側に設けられ、当該ガス供給路における前記流量計との間の圧力の平均値を上昇させるために狭窄された流路と、
を備える。
本開示によれば、基板に供給される処理ガスに含まれる原料ガスの流量の検出精度を高くすることができる。
本開示のガス供給装置の一実施形態を含む成膜装置1について、図1の縦断側面図を参照しながら説明する。成膜装置1は、処理容器11と、処理容器11内でウエハBを水平に支持するステージ2と、処理容器11内にガスをシャワー状に供給するシャワーヘッド3と、処理容器11の内部を排気する排気部30と、シャワーヘッド3に各種のガスを供給するガス供給機構4と、を備えている。成膜装置1は、処理容器11内に原料ガスであるWCl5(五塩化タングステン)ガスを含む処理ガスと、還元ガスであるH2ガスとを交互に繰り返し供給するALDを行い、ウエハBにW膜を成膜する。従って、上記の処理ガスは、ウエハBに成膜を行うための成膜ガスである。処理ガスを供給する期間と還元ガスを供給する期間との間にはN2ガスを、処理容器11内をパージするためのパージガスとして供給する。従って、成膜装置1は、処理ガス、パージガス、還元ガス、パージガスを順に供給するサイクルを繰り返し行うように構成されている。
上記の処理容器11は円形であり、その側壁の下部側にはゲートバルブ12により開閉されるウエハBの搬入出口13が形成されている。処理容器11の上部側の側壁は、縦断面が矩形状をなす円環状の排気ダクト14により構成されている。また、当該排気ダクト14の内周面には、当該排気ダクト14の周に沿ったスリット状の排気口15が開口し、排気ダクト14内の流路16に連通している。排気ダクト14上には処理容器11の天井部を構成する天板17の周縁部が設けられている。
ステージ2は、その上面の中央部にウエハBを載置する。当該ステージ2には、ウエハBを加熱するためのヒータ21が埋設されており、成膜処理中にウエハBを所望の温度に加熱する。図中22はカバーであり、ステージ2上面のウエハBの載置領域の外側からステージ2の側面に亘って当該ステージ2を被覆する。ステージ2は支柱23により支持されており、当該支柱23の下部側は、処理容器11の底部に設けられる孔部18を介して処理容器11外へ伸出し、昇降機構24に接続されている。昇降機構24によりステージ2は、図1に実線で示す上昇位置と、その下方の一点鎖線で示す下降位置との間で昇降する。上昇位置はウエハBに処理が行われるときの位置であり、下降位置は図示しない搬送機構との間でウエハBの受け渡しが行われるときの位置である。
支柱23における処理容器11の外側にフランジ25が設けられており、フランジ25と孔部18の外周縁部とにベローズ26が接続され、処理容器11内の気密性が保たれる。処理容器11の底面近傍には、垂直な3本(2本のみ図示)のピン27が設けられており、昇降機構28により昇降し、下降位置におけるステージ2の上面にて突没する。それにより、搬送機構とステージ2との間でウエハBの受け渡しが行われる。
シャワーヘッド3はステージ2に対向して設けられ、処理容器11の天板17の下部側に固定された本体部31と、本体部31に下方から接続されたシャワープレート32と、により構成されている。本体部31とシャワープレート32とに囲まれるガス拡散空間33が形成されており、当該ガス拡散空間33には、本体部31及び処理容器11の天板17を貫通するガス導入孔34の下流端が接続されている。シャワープレート32の周縁部には下方に突出する環状突起35が形成されている。そして、シャワープレート32の下面の環状突起35の内側領域には、ガス拡散空間33に各々連通する多数のガス吐出孔36が、分散して開口している。ステージ2が上昇位置に位置するとき、環状突起35とステージ2のカバー部材22とが近接し、環状突起35の内側におけるシャワープレート32の下面とステージ2の上面とに挟まれる空間が処理空間37を形成する。
排気部30は、排気ダクト14に接続される排気管38と、排気管38の下流側に接続された、真空ポンプや圧力制御バルブ等を有する排気機構39と、により構成される。排気機構39により、排気ダクト14を介して処理容器11内が排気され、所望の圧力の真空雰囲気が形成される。
続いて、ガス供給装置であるガス供給機構4について説明する。ガス供給機構4は、WCl5ガス供給部41と、各種のガス供給源と、各ガス供給源及びWCl5ガス供給部41からガスをシャワーヘッド3に供給する配管系と、を備えている。また、後述するように上記の配管系を構成するガス供給管に介設されるバルブ、流量計(マスフローメータ:MFM)、マスフローコントローラ(MFC)、バッファタンク及びオリフィスについても当該ガス供給機構4に含まれる。
上記の処理容器11の天板17のガス導入孔34には、ガス供給管51の下流端が接続されている。ガス供給管51の上流側は分岐して処理ガス供給管52、還元ガス供給管53を各々形成する。処理ガス供給管52の上流端はバルブV1、バッファタンク54、オリフィス55を形成するリング板50(図1では不図示)、MFM56、バルブV2、V3を順に介して、処理ガス供給部41を構成する原料容器42に接続されている。処理ガス供給管52内は処理ガス供給路を形成し、オリフィス55は、当該処理ガス供給路において狭窄された流路をなす。そして、バルブV1の開閉により、処理容器11内への処理ガスの給断が行われる。上記の処理ガス供給管52に介設されるバルブV1以外のリング板50等の各部材については、後に詳しく説明する。
処理ガス供給管52において、MFM56とバルブV2との間は分岐し、ガス供給管57を形成している。ガス供給管57の上流端はバルブV4、MFC58を順に介してN2ガスの供給源59に接続されている。ガス供給源59からガス供給管57に供給されるN2ガスは、処理ガス供給管52を通流する処理ガス中のWCl5ガスを希釈する希釈ガスである。
処理ガス供給管52におけるバルブV1の下流側は分岐し、その分岐した管の上流側がさらに2つに分岐してガス供給管61、62を形成している。ガス供給管61の上流端はバルブV5、MFC63を順に介して、N2ガス供給源64に接続されている。ガス供給管62の上流端はバルブV5、MFC65を順に介して、ガス供給管61のMFC65の上流側に接続されている。ガス供給管61は処理容器11内をパージするためにN2ガスをウエハBに供給するラインである。ガス供給管62は、成膜処理中に常時N2ガスを処理容器11内に供給するためのラインである。
還元ガス供給管53の上流端は、バルブV11、バッファタンク71、MFC72を順に介して、H2ガス供給源73に接続されている。バッファタンク71については、後に詳しく述べるバッファタンク54と同様に、短時間で大量のガスを処理容器11内に供給する役割を有する。また、還元ガス供給管53のバルブV11の下流側は分岐して、ガス供給管74を形成している。ガス供給管74の上流端はバルブV12、MFC75を順に介してH2ガス供給源76に接続されている。このH2ガス供給源76から供給されるH2ガスは、WCl5ガスをウエハBに供給する際に処理容器11内に供給され、ウエハBに供給されたWCl5を活性化する添加ガスである。
ガス供給管74においてバルブV12の下流側が分岐し、その分岐した管の上流側はさらに2つに分岐してガス供給管77、78を形成している。ガス供給管77の上流端は、バルブV13、MFC79を順に介してN2ガス供給源70に接続されている。ガス供給管78の上流端はバルブV14、MFC66を順に介して、ガス供給管77のMFC79の上流側に接続されている。ガス供給管77は処理容器11内をパージするためにN2ガスをウエハBに供給するラインである。ガス供給管78は、成膜処理中に常時N2ガスを処理容器11内に供給するためのラインである。
続いて、処理ガス供給部41について説明する。処理ガス供給部41は、原料容器42と、キャリアガス供給管43と、キャリアガスであるN2ガスを原料容器42に供給するためのN2ガス供給源44と、バイパス管45と、を含む。原料容器42は、固体状態の成膜原料であるWCl5を収容し、当該WCl5を加熱して昇華させてWCl5ガスとするためのヒータ46を備える。原料容器42内の気相領域には、上記の処理ガス供給管52の上流端と、キャリアガス供給管43の下流端と、が開口している。キャリアガス供給管43の上流端は、バルブV7、V8、MFC47を介してN2ガス供給源44に接続されている。これらキャリアガス供給管43、バルブV7、V8、MFC47及びN2ガス供給源44はキャリアガス供給部を構成する。また、処理ガス供給管52におけるバルブV2、V3間と、キャリアガス供給管43におけるバルブV7、V8間とが、バルブV9が介設されたバイパス管45によって接続されている。
上記のように処理ガス供給部41が構成されることにより、キャリアガスを原料容器42内に供給し、WCl5ガスとキャリアガスとを含む処理ガスを、処理ガス供給管52に供給することができる。そのように処理ガス供給管52に供給される処理ガス中のWCl5ガスの流量については、原料容器42へ供給するキャリアガスの流量が多いほど、多くなる。成膜処理中は例えば一定の流量で原料容器42へキャリアガスが供給され、処理ガス供給管52に常時、処理ガスが供給される。
上記のように処理ガス供給管52に処理ガスを供給する際には、処理ガス供給部41を構成するバルブV2、V3及びV7~V9のうち、バイパス管45のバルブV9のみが閉じられる。その一方で、バルブV3、V7を閉じると共にバルブV2、V8、V9を開くことで、キャリアガスについて原料容器42を経由することなく、バイパス管45を介して処理ガス供給管52に供給することができる。つまり、WCl5ガス及びキャリアガスのうち、キャリアガスを単独で処理ガス供給管52に供給する、言い換えれば、原料容器42をバイパスして、キャリアガスを処理ガス供給管52に供給することができる。
ところで、上記の処理ガス供給管52に設けられるバッファタンク54については、短時間で比較的大流量の処理ガスを、処理容器11に供給するために設けられる。より具体的に述べると、ALDを行うために、処理ガス供給管52のバルブV1については成膜処理中、即ち上記のように処理ガス供給管52に処理ガスが供給されている間、繰り返し開閉する。バルブV1の閉鎖中に処理ガス供給部41から、既述のように供給された処理ガスは、バッファタンク54に供給されて一時的に貯留される。そして、バルブV1が開放されたときに当該バッファタンク54から、比較的大流量で処理ガスが処理容器11内に放出され、速やかに処理が行われる。ALDの1サイクルを高速で行うために、上記のバルブV1の開閉についても高速で行われる。
用いられる上記のMFM56の構成に制限は無いが、説明のために図2にその構成の一例を示す。この図に示すMFM56は例えば熱式流量計であり、ガスの主流路91と、主流路91の上流側と下流側とを互いに接続する細管92と、を備えている。図中93は主流路91に設けられるガス流に対する抵抗体であり、細管92は当該抵抗体93をバイパスする流路を形成する。抵抗体93の作用により、MFM56において細管92を流れてMFM56の出口へ向かうガスの流量と細管92を流れずにMFM56の出口へ向かうガスの流量との比が一定となる。
上記の細管92の上流側、下流側には夫々ブリッジ回路94に接続される発熱体であるコイル95が巻設されている。ブリッジ回路94は、後述の制御部10に検出信号を送信する。制御部10は当該検出信号に基づいて、MFM56を流れるガスの流量を算出する。なお本明細書において流量とは特に記載無い限り、積算流量ではなく、単位時間あたりの流量を意味する。例えば上記のような抵抗体93を備えることで、MFM56におけるコンダクタンスは、処理ガス供給管52におけるコンダクタンスよりも小さい。
ところでウエハBに所望の膜厚のW膜を成膜するために、成膜処理時あるいは成膜処理前のWCl5ガスの流量の調整時において、処理ガス中の当該WCl5ガスの流量を精度高く検出することが求められる。このWCl5ガスの流量を得るためには、処理ガス供給管52に処理ガスを供給するときのMFM56による第1の検出値と、上記のようにキャリアガスを、原料容器42をバイパスさせて処理ガス供給管52に供給するときのMFM56による第2の検出値との差分を算出すればよい。つまり、キャリアガスの流通経路以外は同じ条件でMFM56によって流量を測定し、各測定結果の差分を算出すればよい。
処理ガス供給管52のオリフィス55は、上記のようにWCl5ガスの流量を算出するにあたり、そのWCl5ガスの流量の精度を高くするために設けられている。以下、このオリフィス55の作用を述べるために、図3も適宜参照する。図3のグラフは、バルブV1が開放されてガスが通流する際における、処理ガス供給管52の長さ方向における圧力分布を、グラフの上側の処理ガス供給管52の模式図に対応させて表しており、グラフの横軸、縦軸が処理ガス供給管52の流路における位置、当該流路における圧力を夫々示している。そして、この図3ではオリフィス55が設けられる場合、オリフィス55が設けられない場合の夫々における圧力分布を、実線のグラフ、鎖線のグラフで夫々示している。
先ず、オリフィス55が設けられない場合におけるガスの状態及び処理ガス供給管52における圧力分布について説明する。上記のようにMFM56については、処理ガス供給管52に比べると、流路のコンダクタンスが小さい。そのようにコンダクタンスが小さいことで、MFM56の入口と出口との間に大きな差圧が形成される。このように差圧が形成されるので、MFM56におけるガスの流速は高い。そしてバルブV1が開放された状態から閉鎖した状態に切り替わると、MFM56においてはそれまで高かったガスの流速が大きく低下する。従って、バルブV1の開閉によるMFM56におけるガスの流速の変動量は大きい。そして、上記のようにバルブV1の開閉が高速で繰り返されるため、このようなガスの流速の変動が短い周期で起きることになる。流速は流量に対応するので、流量についても流速と同様に、急激な変化が短い周期で繰り返される不安定なものとなる。
続いてオリフィス55が設けられた場合について述べる。このオリフィス55のコンダクタンスは、MFM56の流路のコンダクタンスよりも小さい。そのように構成されたオリフィス55をMFM56の下流側に設けることで、図3に示すように処理ガス供給管52をガスが通流する際には、処理ガス供給管52の下流側に向かうにつれて流路の圧力が下降するが、オリフィス55の入口と出口との間には大きな差圧が形成される。つまり、このオリフィス55において大きな圧力損失が発生し、当該オリフィス55の上流側での圧力損失は抑制されている。
さらに詳しく述べると、オリフィス55を設けない場合に比べて、オリフィス55を設けた場合は、当該オリフィス55の上流側における流路の圧力が高くなるように、当該オリフィス55にて差圧が形成される。即ち、MFM56の下流側の圧力が上昇し、当該MFM56の入口と出口との差圧について抑制されることとなり、MFM56における流速についても抑制される。流速について抑制されることで、MFM56を流れる流量についても抑制される。従って、バルブV1の開閉が繰り返されるにあたり、流量についての急激な変動が抑制される。
なお、上記のようにオリフィス55を設けることで、MFM56とオリフィス55との間の流路の圧力がオリフィス55を設けない場合に比べて上昇する。より具体的に述べると、当該MFM56とオリフィス55との間の流路の圧力の平均値が、当該オリフィス55を設けない場合に比べて上昇するように、オリフィス55は構成される。この圧力の平均値とは、当該MFM56とオリフィス55との間の流路について、流路の長さ方向に互いに離れた測定位置を例えば3つ以上任意に設定し、ガスの流通時に設定した各測定位置で測定される圧力の平均値である。
図4の上側、下側は、オリフィス55が設けられない場合、オリフィス55が設けられる場合の夫々における、MFM56によって検出される流量の経時変化を模式的に示したグラフである。グラフの横軸は時間、グラフの縦軸は流量を夫々表している。グラフ中の期間A1は上記のキャリアガスが単独で供給される期間であり、期間A2は処理ガスが供給される期間である。期間A1、A2においては、既述したバルブV1の開閉が繰り返し行われている。オリフィス55が設けられない場合には、期間A1、A2共に、上記の理由で流量の変化が大きい、即ちグラフの波形の振動が大きいものとなる。特にMFM56を流通するガスの流量が多い期間A2について、当該振動が大きくなる。後述の評価試験でも示すように、このように流量の変化量が大きいことにより、期間A1における流量値と期間A2における流量値との差分を取ってWCl5ガスの流量を求めたとしても比較的大きな誤差を含んでしまうおそれが有る。つまり、実際のWCl5ガスの流量との間にずれが生じる懸念が有る。
それに対して、オリフィス55が設けられる場合には、期間A1、A2共に、上記の理由で、グラフの波形の振動が小さく、流量の変化が抑制される。そのため、上記のように期間A1における流量値と期間A2における流量値との差分を取ってWCl5ガスの流量を求めるにあたり、得られるWCl5ガスの流量は、実際のWCl5ガスの流量とのずれが抑えられたものとなる。
以下、オリフィス55の構成について図2の他に、図5の斜視図も参照して、さらに詳しく述べる。オリフィス55は円形のリング板50に開口する円形の孔である。オリフィス55の径が大きすぎると、当該オリフィス55のコンダクタンスが大きくなりすぎて上記のMFM56の差圧を十分に抑制できる作用が得られない懸念が有る。そして、オリフィス55の径が小さすぎると、当該オリフィス55のコンダクタンスが小さくなりすぎて処理ガス供給管52をガスが流れなくなってしまう懸念が有る。その観点からオリフィス55の径L1は、例えば0.5mm~2mmとすることが好ましく、処理ガス供給管52の流路径(内径)をL2とすると、L1/L2=1/10~1/2とすることが好ましい。また、十分にコンダクタンスを抑制するために、オリフィス55の長さL3(図2参照)は、例えば1mmである。
また、MFM56からオリフィス55までの流路に沿った距離L4は、例えば10mm~1000mmである。さらにMFM56からオリフィス55までの流路の容積は、例えば1cc~1000ccである。ところで、オリフィス55はバッファタンク54の上流側に設けることに限られず、バッファタンク54の下流側に設けてもよい。ただし、そのようにオリフィス55をバッファタンク54の下流側に配置すると、処理ガスの流れが阻害され、短時間での大量の処理容器11への処理ガスの供給が行えなくなる懸念が有ることから、オリフィス55はバッファタンク54の上流側に設けることが好ましい。
続いて、成膜装置1に設けられるコンピュータである制御部10(図1参照)について説明する。制御部10はプログラムを備えている。当該プログラムには、後述する成膜装置1における一連の動作を実施することができるようにステップ群が組み込まれており、当該プログラムによって制御部10は成膜装置1の各部に制御信号を出力し、当該各部の動作が制御される。具体的には、例えば各バルブの開閉、各MFCによるガスの流量調整、昇降機構28によるピン27の昇降、昇降機構24によるステージ2の昇降、排気機構39による処理容器11内の排気、ヒータ21によるウエハBの加熱などの各動作が制御される。また、MFM56からの検出信号の受信、当該検出信号に基づいた原料ガスの流量の算出が、当該プログラムにより行われる。プログラムは、例えばコンパクトディスク、ハードディスク、メモリーカード、DVDなどの記憶媒体に格納されて、制御部10にインストールされる。
成膜装置1において、成膜処理を行う前に行われる原料ガス(WCl5ガス)の流量調整工程について、図6のフローチャートを参照しながら説明する。この流量調整工程は、成膜処理時において、ウエハBに供給される処理ガス中の原料ガスの流量を所望の値にするための工程である。より具体的には、成膜処理時におけるガス供給源44からMFC47を介して供給されるキャリアガスの流量と、ガス供給源59からMFC58を介して供給される希釈ガスの流量と、の割合を決定する。説明のために図7、図8も適宜、参照する。この図7、図8は、処理ガス供給管52及び処理ガス供給部41の各配管におけるバルブの開閉状態及びガスの通流状態を示しており、閉じているバルブについてハッチングを付している。また、配管についてはガスが流通している部位を、ガスが流通していない部位に比べて太く示している。
処理容器11内にウエハBが格納されておらず、当該処理容器11内が予め設定された圧力の真空雰囲気とされる。そして各バルブが閉じられた状態から、バルブV2、V4、V8、V9が開かれた状態となると共に、成膜処理を行う際と同様にバルブV1の開閉が繰り返される。図7の左側、右側は、そのようにバルブV1が閉じられた状態、開かれた状態を夫々示したものである。このような各部の動作により、希釈ガス(N2ガス)と、バイパス管45を通過したキャリアガス(N2ガス)とが処理ガス供給管52に供給され、さらに間欠的に処理容器11内に供給される。ガス供給源44からMFC47を介して供給されるキャリアガスの流量、ガス供給源59からMFC58を介して供給される希釈ガスの流量については、夫々成膜処理時の流量として予め設定された流量とされる。
制御部10は、上記のようにバルブV1の開閉が繰り返されて希釈ガス及びキャリアガスが処理容器11に供給される間、MFM56から送信される検出信号を取得する。然る後、バルブV1、V2、V4、V8、V9を閉じて、処理容器11内への希釈ガス及びキャリアガスの供給を停止する。そして、特定の期間に得られた検出信号より、流量の平均値を算出する。この特定の期間は、例えばバルブV1の1回の開閉を1開閉サイクルとすると、最後の開閉サイクルを含む10開閉サイクルが行われる期間である。このように算出された流量の平均値を、原料ガスであるWCl5ガスの流量が0であるときの流量として設定する。即ち、MFM56のゼロ点調整に相当する処理を行う(ステップS1)。
続いて、各バルブが閉じられた状態から、バルブV2~V4、V7、V8が開かれた状態となり、処理ガス及び希釈ガスが処理ガス供給管52を介して処理容器11内に供給されると共に、ステップS1と同様にバルブV1の開閉が繰り返し行われる。図8の左側、右側は、そのようにバルブV1が閉じられた状態、開かれた状態を夫々示したものである。このような各部の動作により、希釈ガスを含む処理ガスが処理ガス供給管52に供給され、さらに間欠的に処理容器11内に供給される。ガス供給源44からMFC47を介して供給されるキャリアガスの流量、ガス供給源59からMFC58を介して供給される希釈ガスの流量については、各々直前に行われたステップS1と同じ流量とされる。
制御部10は、上記のようにバルブV1の開閉が繰り返されて処理ガス及び希釈ガスが供給されている間、MFM56から送信される検出信号を取得する。然る後、バルブV1~V4、V7、V8を閉じて、処理容器11内への処理ガス及びキャリアガスの供給を停止する。そして、例えば上記の特定の期間で得られた検出信号より、流量の平均値を算出し、この算出値をWCl5ガスの流量とする(ステップS2)。つまり、ステップS1、S2では、図4の下側のグラフで示した期間A2中に取得される流量の平均値と、期間A1中に取得される流量の平均値と、の差分が算出されていることになる。図3、図4で説明したようにオリフィス55の作用により、ステップS1、S2でMFM56により検出される流量値の変動は抑制され、算出されるWCl5ガスの流量値は精度の高いものとなる。
制御部10は、算出されたWCl5ガスの流量と目標値との差分を算出し、WCl5ガスの流量が目標値となるように、当該差分に基づいて、成膜処理時におけるキャリアガスの流量に対する希釈ガスの流量の割合の設定を変更する(ステップS3)。つまり、MFC47、58の設定が変更される。上記のキャリアガス及び希釈ガスについての割合の変更は、キャリアガスの流量と希釈ガスの流量との合計の流量について変更しないように行われる。
続いて、ステップS1~S3が予め設定された回数実施されたか否か判定される(ステップS4)。予め設定された回数実施されたと判定された場合は、最後に行われたステップS3で設定されたキャリアガスの流量、希釈ガスの流量が、夫々成膜処理時のキャリアガスの流量、希釈ガスの流量として決定される(ステップS5)。一方、ステップS4にてステップS1~S3が予め設定された回数実施されていないと判定された場合は、ステップS1以降の各ステップが再度実行される。
続いて、上記の原料ガスの流量調整工程後に行われるウエハBの成膜処理について、図1を参照しながら説明する。以下の成膜処理の説明における処理ガスには、希釈ガスが含まれるものとする。ウエハBが処理容器11に搬入され、処理容器11内が所望の圧力の真空雰囲気とされる。続いて、各バルブが閉じられた状態から、バルブV6、V14が開かれた状態となり、ガス供給管62、78を介して処理容器11内にN2ガスの供給が行われる。続いて、バルブV2、V3、V7、V8が開かれ、流量調整工程のステップS5において決定された流量でキャリアガス、希釈ガスが各々ガス供給源44、59からMFC47、58を介して供給され、処理ガスが図8の左側で示すようにバッファタンク54に貯められる状態となる。一方で、バッファタンク71にはH2ガスが供給され、貯留される。
続いて、バルブV1が開かれ、図8の右側で示したようにバッファタンク71に貯留された処理ガスが処理容器11内に供給される。また、このバルブV1の開放と共にバルブV12が開かれ、ガス供給管74を介して添加ガスであるH2ガスが処理容器11に供給される(ステップT1)。ウエハBにWCl5が吸着すると共に、H2ガスの作用により当該WCl5が活性化する。続いて、バルブV1が閉じられて、処理容器11内への処理ガスの供給が停止する。そして、バルブV5、V13が開かれ、ガス供給管61、77を介してパージガスが処理容器11内に供給され、処理容器11内がパージされる(ステップT2)。一方、バルブV1の閉鎖により、処理ガスは再びバッファタンク54に貯められる。
然る後、バルブV5、V13が閉じられて、処理容器11内へのパージガスの供給が停止する。そして、バルブV11が開かれ、還元ガス供給管53を介して還元ガスであるH2ガスが処理容器11内に供給され、ウエハBに吸着されたWCl5が還元されてWの薄層が形成される(ステップT3)。続いて、バルブV11が閉じられて処理容器11内へのH2ガスの供給が停止する。そして、バルブV5、V13が開かれ、ガス供給管61、77を介してパージガスが処理容器11内に供給され、処理容器11内がパージされる(ステップT4)。以上に述べたステップT1~T4からなるサイクルが繰り返され、ウエハBにWの薄層が堆積し、W膜が形成される。W膜が所望の膜厚になると、ステップT1~T4のサイクルが停止し、ウエハBは処理容器11内から搬出される。
上記の成膜処理の各ステップ(即ちT1~T4)の実施中に、制御部10はMFM56から出力される検出信号を受信し、WCl5ガスの流量を取得する。そして、WCl5ガスの流量の平均値を算出する。この平均値と目標値との間にずれが有る場合には、当該ずれに対応する分、キャリアガスの流量と希釈ガスの流量との割合の設定を変更する。つまり、上記した原料ガスの流量調整工程のステップS3と同様の設定の調整が行われた上で、次のウエハBの処理が行われる。
この成膜装置1によれば、処理ガスに含まれるWCl5ガスの流量を精度高く検出することができる。従って、各ウエハBにW膜を成膜するにあたり、W膜の膜厚を精度高く目標値に揃えることができる。ところでW膜を成膜するにあたり、原料容器42に収容する固体原料としてはWCl5に限られず、WCl6(六塩化タングステン)であってもよい。また、固体原料を用いて成膜を行う場合、W膜を成膜することに限られない。例えば固体原料としてルテニウムカルボニル(Ru3(CO)12)を用いてルテニウム膜を成膜してもよい。その他に、例えば常温で固体の塩化タンタルを気化させたガスと、還元ガスとを用いてタンタル膜を成膜する場合にも、本技術を適用することができる。
また、上記のように固体原料を気化させてウエハBに処理を行う場合に限られず、液体原料を気化させてウエハBに処理を行う場合にも本技術を適用することができる。一例を挙げると、液体原料であるペンタエトキシタンタルを気化させたガスと、酸化ガスとを用いて酸化タンタルを成膜することができる。また、ALDを行う成膜装置に本技術を適用することには限られず、CVD(Chemical Vapor Deposition)を行う成膜装置に本技術を適用してもよい。さらに、本技術は成膜処理のみに適用されることに限られない。例えばフルオロカーボン系の液体を収容した容器にキャリアガスを供給し、当該液体を気化させてエッチングガスを生成し、そのエッチングガスによりウエハB表面の酸化シリコン系の膜のエッチングを行う場合にも本技術を適用することができる。つまり、原料容器42に収容される原料としては基板に処理を行うガスを生成する原料であればよく、成膜原料には限られない。さらに詳しく述べると、処理容器11内において処理を行う処理圧力よりも小さい蒸気圧を持つ固体原料または液体原料から生成する原料ガスを、キャリアガスを使用して当該処理容器11内に供給する必要がある供給系で、本技術を適用することができる。
また、上記の例では処理ガス供給管52の流路の一部をオリフィス55として、狭窄された流路を形成しているが、当該オリフィス55を設けることには限られない。MFM56よりも下流側において、例えば管径が下流側に向かうにつれて縮径される部位が設けられるように処理ガス供給管52を構成する。つまり、処理ガス供給管52の一部について、ラッパ管として構成することで狭窄された流路を形成し、コンダクタンスを低下させてもよい。また、上記の例ではガス貯留部としてバッファタンク54が設けられているが、このガス貯留部が設けられない構成であってもよい。なお、ガス貯留部としてはバッファタンク54を設ける代りに処理ガス供給管の一部を拡径させ、バッファタンク54と同様に大量のガスを一時貯留する効果が得られるようにしてもよい。
また、理解を容易にするためにMFMの一例を示したが、MFMとしては既述の構成には限られない。例えば、主流路91について屈曲して構成されたものであってもよい。また、MFMとしては熱式流量計とすることに限られず、例えば抵抗体93の前後の圧力を各々検出し、それらの差圧に基づいて流量を検出する差圧流量計であってもよい。なお、上記の例ではキャリアガスをバイパスさせる期間A1内の任意の期間の流量の平均値と、処理ガスを供給する期間A2内の任意の期間の流量の平均値との差分を算出して、算出値をWCl5ガスの流量とするものとした。その算出に限られず、例えば期間A1、A2の開始タイミングを揃えて差分を算出し、処理中のWCl5ガスの流量の推移を求めてもよい。
今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更または組み合わせが行われてもよい。
(評価試験)
続いて本技術に関連して行われた評価試験について説明する。
評価試験1
評価試験1として、図1で説明した成膜装置1を用いて既述の成膜処理時と同様にバルブV1を繰り返し開閉すると共に、処理容器11に処理ガスを供給した。その間にMFM56から出力される検出信号を取得して、検出される流量をモニターした。つまり、処理ガス供給管52にオリフィス55を設けた状態で流量の検出を行った。また、比較試験1として、処理ガス供給管52にオリフィス55が設けられないことを除いては、評価試験1と同様の条件で流量の検出を行った。
続いて本技術に関連して行われた評価試験について説明する。
評価試験1
評価試験1として、図1で説明した成膜装置1を用いて既述の成膜処理時と同様にバルブV1を繰り返し開閉すると共に、処理容器11に処理ガスを供給した。その間にMFM56から出力される検出信号を取得して、検出される流量をモニターした。つまり、処理ガス供給管52にオリフィス55を設けた状態で流量の検出を行った。また、比較試験1として、処理ガス供給管52にオリフィス55が設けられないことを除いては、評価試験1と同様の条件で流量の検出を行った。
図9、図10は評価試験1、比較試験1の結果を夫々示すグラフである。グラフの横軸は経過した時間(単位:秒)を、グラフの縦軸は検出された流量(単位:sccm)を夫々示している。図10に示すように比較試験1では、図4の説明でも述べたようにグラフの波形の振動、即ち流量の変動幅が大きい。しかし図9に示すように評価試験1では、この変動幅が抑制されていることが分かる。従ってこの評価試験1からは図4で説明したように、オリフィス55を設けることによって、検出される流量の変動を抑制することができるという効果が示された。
評価試験2
評価試験2として、評価試験1と同様に処理ガス供給管52にオリフィス55が設けられた状態で、バルブV1を繰り返し開閉すると共に、処理容器11に処理ガスを供給した。互いに同じ条件でこの処理ガスの供給を5回行い、各回における原料ガスの流量の算出値の推移を調べた。また、比較試験2として、処理ガス供給管52にオリフィス55が設けられないことを除いては、評価試験2と同様の試験を行った。
評価試験2として、評価試験1と同様に処理ガス供給管52にオリフィス55が設けられた状態で、バルブV1を繰り返し開閉すると共に、処理容器11に処理ガスを供給した。互いに同じ条件でこの処理ガスの供給を5回行い、各回における原料ガスの流量の算出値の推移を調べた。また、比較試験2として、処理ガス供給管52にオリフィス55が設けられないことを除いては、評価試験2と同様の試験を行った。
図11、図12は評価試験2、比較試験2の結果を夫々示すグラフであり、図9、図10のグラフと同様、図11、図12のグラフの横軸、縦軸は、経過時間、流量を夫々示している。ただし、図11、図12のグラフは、制御部10についてMFM56のゼロ点調整に相当する処理(ステップS1)が行われた後に、MFM56から出力される検出信号を受信して、計算されたWCl5ガスの流量を表している。流量の単位はmg/分である。図12のグラフにおいて、各測定回の結果を、互いに異なる線種によって示している。このグラフに示すように比較試験2では、測定回毎に算出される原料ガスの流量の推移にずれが確認された。一方、評価試験2では各測定回の流量の推移は略一致し、グラフの線は互いに重なったため、図11では一つの線種のみ示している。従ってこの評価試験2からは、オリフィス55を設けることによって、原料ガスの流量の検出を繰り返すにあたっての再現性が高くなったことが確認された。このように再現性が高くなったことは、検出精度が高くなったものと推定される。
B ウエハ
10 制御部
11 処理容器
4 ガス供給機構
42 原料容器
52 処理ガス供給管
55 オリフィス
56 MFM
10 制御部
11 処理容器
4 ガス供給機構
42 原料容器
52 処理ガス供給管
55 オリフィス
56 MFM
Claims (6)
- 基板を格納する処理容器に処理ガスを供給して処理を行うガス供給装置において、
液体または固体の原料を収容する原料容器と、
前記原料容器内にキャリアガスを供給するためのキャリアガス供給部と、
前記原料容器から、気化した前記原料と前記キャリアガスとを含む前記処理ガスを、前記処理容器に供給するガス供給路と、
前記処理ガスの流量を測定するために前記ガス供給路に設けられる流量計と、
前記ガス供給路において前記流量計の下流側に設けられ、当該ガス供給路における前記流量計との間の圧力の平均値を上昇させるために狭窄された流路と、
を備えるガス供給装置。 - 前記ガス供給路において、前記狭窄された流路の下流側に、前記処理ガスの処理容器への給断を行うバルブが設けられる請求項1記載のガス供給装置。
- 前記ガス供給路において前記流量計の下流側に前記処理ガスを一時的に貯留するためのガス貯留部が設けられ、
前記狭窄された流路は、前記バルブと、当該ガス貯留部との間に設けられる請求項2記載のガス供給装置。 - 前記狭窄された流路はオリフィスである請求項1ないし3のいずれか一つに記載のガス供給装置。
- 前記処理ガスは、前記基板に成膜を行うための成膜ガスである請求項1ないし4のいずれか一つに記載のガス供給装置。
- 基板を格納する処理容器に処理ガスを供給して処理を行うガス供給方法において、
液体または固体の原料を収容する原料容器にキャリアガスを供給する工程と、
前記原料容器から、気化した前記原料と前記キャリアガスとを含む前記処理ガスについて、ガス供給路を通流させて前記処理容器に供給する工程と、
前記ガス供給路に設けられる流量計により、前記処理ガスの流量を測定する工程と、
を備え、
前記ガス供給路において前記流量計の下流側には、当該ガス供給路における前記流量計との間の圧力の平均値を上昇させるために狭窄された流路が設けられるガス供給方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227011893A KR20220061201A (ko) | 2019-09-24 | 2020-09-16 | 가스 공급 장치 및 가스 공급 방법 |
US17/753,886 US20220356581A1 (en) | 2019-09-24 | 2020-09-16 | Gas supply device and gas supply method |
CN202080064090.4A CN114375347A (zh) | 2019-09-24 | 2020-09-16 | 气体供给装置和气体供给方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-173173 | 2019-09-24 | ||
JP2019173173A JP7226222B2 (ja) | 2019-09-24 | 2019-09-24 | ガス供給装置及びガス供給方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021060116A1 true WO2021060116A1 (ja) | 2021-04-01 |
Family
ID=75157139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035136 WO2021060116A1 (ja) | 2019-09-24 | 2020-09-16 | ガス供給装置及びガス供給方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220356581A1 (ja) |
JP (1) | JP7226222B2 (ja) |
KR (1) | KR20220061201A (ja) |
CN (1) | CN114375347A (ja) |
WO (1) | WO2021060116A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7577092B2 (ja) | 2022-06-28 | 2024-11-01 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法及びプログラム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214870A (ja) * | 1990-05-08 | 1992-08-05 | Nec Corp | 化学気相成長装置 |
JP2018145458A (ja) * | 2017-03-02 | 2018-09-20 | 東京エレクトロン株式会社 | ガス供給装置、ガス供給方法及び成膜方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003271218A (ja) * | 2002-03-15 | 2003-09-26 | Toshiba Corp | 半導体製造装置、半導体製造システム及び基板処理方法 |
JP3908625B2 (ja) * | 2002-07-30 | 2007-04-25 | 東京エレクトロン株式会社 | 基板処理装置 |
JP4195837B2 (ja) * | 2003-06-20 | 2008-12-17 | 東京エレクトロン株式会社 | ガス分流供給装置及びガス分流供給方法 |
JP5461786B2 (ja) * | 2008-04-01 | 2014-04-02 | 株式会社フジキン | 気化器を備えたガス供給装置 |
JP5652960B2 (ja) * | 2011-08-01 | 2015-01-14 | 株式会社フジキン | 原料気化供給装置 |
JP5895712B2 (ja) * | 2012-05-31 | 2016-03-30 | 東京エレクトロン株式会社 | 原料ガス供給装置、成膜装置、原料ガスの供給方法及び記憶媒体 |
JP6446881B2 (ja) * | 2014-07-17 | 2019-01-09 | 東京エレクトロン株式会社 | ガス供給装置及びバルブ装置 |
JP6748586B2 (ja) * | 2016-07-11 | 2020-09-02 | 東京エレクトロン株式会社 | ガス供給システム、基板処理システム及びガス供給方法 |
JP6948803B2 (ja) * | 2017-03-02 | 2021-10-13 | 東京エレクトロン株式会社 | ガス供給装置、ガス供給方法及び成膜方法 |
JP7122102B2 (ja) * | 2017-11-08 | 2022-08-19 | 東京エレクトロン株式会社 | ガス供給システム及びガス供給方法 |
-
2019
- 2019-09-24 JP JP2019173173A patent/JP7226222B2/ja active Active
-
2020
- 2020-09-16 CN CN202080064090.4A patent/CN114375347A/zh active Pending
- 2020-09-16 US US17/753,886 patent/US20220356581A1/en active Pending
- 2020-09-16 WO PCT/JP2020/035136 patent/WO2021060116A1/ja active Application Filing
- 2020-09-16 KR KR1020227011893A patent/KR20220061201A/ko unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214870A (ja) * | 1990-05-08 | 1992-08-05 | Nec Corp | 化学気相成長装置 |
JP2018145458A (ja) * | 2017-03-02 | 2018-09-20 | 東京エレクトロン株式会社 | ガス供給装置、ガス供給方法及び成膜方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7577092B2 (ja) | 2022-06-28 | 2024-11-01 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN114375347A (zh) | 2022-04-19 |
JP7226222B2 (ja) | 2023-02-21 |
JP2021050380A (ja) | 2021-04-01 |
KR20220061201A (ko) | 2022-05-12 |
US20220356581A1 (en) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202135206A (zh) | 用於穩定壓力之反應器系統以及方法 | |
JP5949586B2 (ja) | 原料ガス供給装置、成膜装置、原料の供給方法及び記憶媒体 | |
US5989345A (en) | Process-gas supply apparatus | |
TWI525734B (zh) | And a raw material gas supply device for a semiconductor manufacturing apparatus | |
US10287682B2 (en) | Substrate processing apparatus, gas supply method, substrate processing method, and film forming method | |
WO2012014375A1 (ja) | ガス供給装置用流量制御器の校正方法及び流量計測方法 | |
US9777377B2 (en) | Film forming method and film forming device | |
TWI751301B (zh) | 基板處理裝置及基板處理方法 | |
KR102051185B1 (ko) | 가스 공급 장치 및 가스 공급 방법 | |
JP7281285B2 (ja) | 濃度制御装置、及び、ゼロ点調整方法、濃度制御装置用プログラム | |
KR102350389B1 (ko) | 성막 장치, 원료 공급 장치 및 성막 방법 | |
WO2021060116A1 (ja) | ガス供給装置及びガス供給方法 | |
TWI773705B (zh) | 用於基於熱的質量流量控制器(mfcs)之增進流量偵測可重複性的方法、系統及設備 | |
TWI821363B (zh) | 前驅物遞送系統 | |
JP2008277666A (ja) | バルブ開閉動作確認方法、ガス処理装置および記憶媒体 | |
JP2013076113A (ja) | ガス供給装置及び成膜装置 | |
JP7382893B2 (ja) | 原料供給装置及び成膜装置 | |
JP2011003599A (ja) | 半導体製造装置および半導体製造方法 | |
JP2020184552A (ja) | 成膜方法及び成膜装置 | |
KR102709850B1 (ko) | 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 | |
JP2005142355A (ja) | 基板処理装置及び半導体装置の製造方法 | |
WO2021193227A1 (ja) | ガス供給量算出方法、及び、半導体装置の製造方法 | |
US20130089934A1 (en) | Material Delivery System and Method | |
TWI855346B (zh) | 氣體供給系統、基板處理裝置、半導體裝置的製造方法及程式 | |
JP7344944B2 (ja) | ガス供給システム、基板処理装置、半導体装置の製造方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20868696 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227011893 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20868696 Country of ref document: EP Kind code of ref document: A1 |