WO2021053820A1 - 空気調和機 - Google Patents
空気調和機 Download PDFInfo
- Publication number
- WO2021053820A1 WO2021053820A1 PCT/JP2019/037053 JP2019037053W WO2021053820A1 WO 2021053820 A1 WO2021053820 A1 WO 2021053820A1 JP 2019037053 W JP2019037053 W JP 2019037053W WO 2021053820 A1 WO2021053820 A1 WO 2021053820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- temperature
- indoor
- refrigerant
- refrigerant pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B6/00—Compression machines, plants or systems, with several condenser circuits
- F25B6/02—Compression machines, plants or systems, with several condenser circuits arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/006—Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02742—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioner, and more particularly to an air conditioner capable of heating defrost operation in which defrosting of an outdoor heat exchanger and heating of a room are performed at the same time.
- Frost may adhere to the outdoor heat exchanger during heating operation with an air conditioner.
- the outdoor heat exchanger exchanges heat between the refrigerant flowing inside and the outdoor air.
- frost adheres to the outdoor heat exchanger
- the heat exchange efficiency of the outdoor heat exchanger is reduced, and the heating efficiency of the air conditioner is lowered.
- the air conditioner may carry out a defrosting operation in order to melt the frost adhering to the outdoor heat exchanger.
- the defrosting operation the heating operation is stopped and the four-way valve is switched to the same state as in the cooling operation. Then, as in the cooling operation, the outdoor heat exchanger functions as a condenser to melt the frost adhering to the outdoor heat exchanger.
- the temperature of the indoor heat exchanger that functions as an evaporator becomes low. Therefore, if the indoor fan is kept rotating, cold air is blown from the indoor unit. In that case, the comfort of the room is significantly deteriorated. Therefore, the indoor fan is stopped during the defrosting operation. When the heating operation is restarted after the defrosting operation is performed, the rotation of the indoor fan is started after the indoor heat exchanger has warmed up.
- the outdoor heat exchanger is divided into upper and lower parts, one of which is a first heat exchanger and the other of which is a second heat exchanger.
- the air conditioner is provided with a bypass circuit that allows a part of the high-temperature and high-pressure refrigerant discharged from the compressor to flow to the first heat exchanger and the second heat exchanger.
- the control device communicates the bypass circuit with the first heat exchanger by switching the flow path switching valve when defrosting the first heat exchanger. Let me. As a result, a part of the high-temperature and high-pressure refrigerant discharged from the compressor flows to the first heat exchanger via the bypass. As a result, the frost in the first heat exchanger melts. During that time, the second heat exchanger continues to function as an evaporator, so that the heating operation in the indoor heat exchanger can be maintained.
- the bypass circuit and the second heat exchanger are switched by switching the flow path switching valve.
- the first heat exchanger can function as an evaporator while defrosting the second heat exchanger.
- the heating defrost operation is performed in which the heating operation in the indoor heat exchanger is continued while alternately defrosting the two heat exchangers installed outdoors. Can be done. Therefore, it is possible to prevent the indoor comfort from being lost even during defrosting.
- the heating operation is stopped, so that the temperature in the room drops and the comfort deteriorates.
- the heating operation can be continued and warm air can be blown out.
- the heating capacity may be lower than that of normal heating operation. In that case, the temperature of the wind blown from the indoor unit decreases. In this case, although not as much as the defrosting operation, the room temperature is lowered and the comfort in the room is deteriorated.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide an air conditioner that suppresses a decrease in room temperature during heating defrost operation and maintains indoor comfort. There is.
- the air exchanger according to the present invention is connected to a compressor having a suction port for sucking the refrigerant and a discharge port for discharging the refrigerant, and the discharge port of the compressor during heating operation, and functions as a condenser.
- a flow path switching device provided between the bypass pipe and the outdoor heat exchanger, an indoor fan that conveys air to the indoor heat exchanger, a temperature detector that detects the temperature of the indoor heat exchanger, and the like.
- the outdoor heat exchanger includes a first heat exchanger and a second heat exchanger in which the refrigerant flow paths are independent of each other, and the flow path switching device follows a control signal from the control unit. , Switching between the connection and disconnection between the first heat exchanger and the bypass pipe, and switching between the connection and disconnection between the second heat exchanger and the bypass pipe, and the control unit.
- the heating operation, the first heat exchanger, and the first which causes the first heat exchanger and the second heat exchanger to function as an evaporator and the indoor heat exchanger to function as a condenser.
- a heating defrost operation in which one of the heat exchangers functions as an evaporator, the other of the first heat exchanger and the second heat exchanger functions as a condenser, and the indoor heat exchanger functions as a condenser.
- the temperature of the indoor heat exchanger detected by the temperature detector at the start of the heating defrost operation is set as the first temperature, and the indoor heat exchanger detected by the temperature detector during the heating defrost operation.
- the control unit has the second temperature lower than the first temperature and the difference between the first temperature and the second temperature during the heating defrost operation.
- it is equal to or more than the first set value the rotation speed of the indoor fan is lowered.
- the air conditioner according to the present invention it is possible to suppress a decrease in room temperature during heating defrost operation and maintain indoor comfort.
- FIG. It is a block diagram which showed the structure of the air conditioner which concerns on Embodiment 1.
- FIG. It is a figure explaining the control method of the rotation speed of the indoor fan in the air conditioner which concerns on Embodiment 1.
- FIG. It is a flowchart which shows the flow of the control process of the rotation speed of an indoor fan in the air conditioner which concerns on Embodiment 1.
- FIG. It is a block diagram which showed the structure of the air conditioner which concerns on Embodiment 2. It is a block diagram which showed the structure of the air conditioner which concerns on Embodiment 3.
- FIG. It is a figure which showed the state of the 1st flow path switching device and the 2nd flow path switching device in each operation mode of the air conditioner which concerns on Embodiments 1 to 4.
- the present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.
- the present invention includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
- FIG. 1 is a configuration diagram showing the configuration of the air conditioner 100 according to the first embodiment.
- the air conditioner 100 is a separate type air conditioner in which the outdoor unit 1 and the indoor unit 2 are connected by a refrigerant pipe, an electric wiring, or the like.
- the air conditioner 100 includes a refrigeration cycle, a blower, and a control system.
- the refrigeration cycle 3 includes a compressor 10, a four-way valve 20, a flow path switching valve 70, an outdoor heat exchanger 50, an expansion valve 30, an indoor heat exchanger 40, a bypass valve 60, a bypass pipe 80, and refrigerant pipes 81 and 82. , 83, 84, 85, 86A, 86B, 87A, 87B, 88, 89, 91.
- the refrigerant circulates in the refrigerant flow path in the order of the compressor 10, the indoor heat exchanger 40, the expansion valve 30, and the outdoor heat exchanger 50.
- various refrigerants can be adopted, and for example, R32, R410A and the like can be adopted.
- the refrigeration cycle 3 is configured to be capable of performing heating operation, defrosting operation, heating defrost operation, and cooling operation.
- the blower includes an indoor fan 400, an indoor fan motor 500, an outdoor fan 95, and an outdoor fan motor 96, which will be described later.
- the control system includes a control unit 300 and a control unit 301, which will be described later, and various sensors such as a temperature detection unit 200.
- an indoor heat exchanger 40, a temperature detection unit 200, an indoor fan 400, an indoor fan motor 500, and a control unit 301 are housed in the housing of the indoor unit 2.
- the indoor heat exchanger 40 is connected between the refrigerant pipe 84 and the refrigerant pipe 83.
- the indoor heat exchanger 40 has a heat transfer tube and heat exchange fins.
- the indoor heat exchanger 40 exchanges heat between the indoor air and the refrigerant flowing in the heat transfer tube.
- the indoor heat exchanger 40 functions as a condenser during the heating operation and the heating defrost operation, and functions as an evaporator during the defrosting operation and the cooling operation.
- the temperature detection unit 200 is provided in the indoor heat exchanger 40.
- the temperature detection unit 200 detects the temperature of the indoor heat exchanger 40 at regular intervals.
- the temperature data of the indoor heat exchanger 40 detected by the temperature detection unit 200 is stored in a memory provided in the control unit 300, which will be described later.
- the temperature data stored in the memory may be only the latest data, but may be historical data for a certain period of time.
- the temperature detection unit 200 measures the temperature of the indoor heat exchanger 40 during the cooling operation, the heating operation, and the heating defrost operation.
- the temperature detection unit 200 may detect the temperature of the refrigerant flowing inside the indoor heat exchanger 40 as the temperature of the indoor heat exchanger 40.
- the temperature detection unit 200 may detect the surface temperature of the heat transfer tube of the indoor heat exchanger 40 and output it as the temperature of the refrigerant. Alternatively, the temperature detection unit 200 may detect the temperature of the heat exchange fins of the indoor heat exchanger 40 as the temperature of the indoor heat exchanger 40. As the temperature detection unit 200, various sensors such as a temperature sensor and an infrared sensor that can detect the temperature can be adopted.
- the indoor fan 400 is arranged so as to convey indoor air to the indoor heat exchanger 40.
- the indoor heat exchanger 40 is arranged on the upstream side of the indoor fan 400.
- the indoor fan motor 500 drives the indoor fan 400.
- the control unit 301 controls the rotation speed of the indoor fan 400 by outputting a control signal to the indoor fan motor 500. By changing the rotation speed of the indoor fan 400, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 40 can be adjusted.
- the data of the rotation speed of the indoor fan 400 is stored in the memory of the control unit 301 at regular intervals.
- the rotation speed data stored in the memory may be only the latest data, but may be historical data for a certain period of time.
- the control unit 301 has a microcomputer equipped with a processor, ROM, RAM, I / O port, and the like.
- the ROM and RAM are the memories of the control unit 301.
- a detection signal from the temperature detection unit 200 and an operation signal from the operation unit that accepts an operation by the user are input to the control unit 301.
- the control unit 301 controls the operation of the entire indoor unit 2 including the indoor heat exchanger 40, the indoor fan motor 500, and the indoor fan 400 based on these input signals.
- the control unit 301 of the indoor unit 2 and the control unit 300 of the outdoor unit 1 communicate necessary information with each other. For example, information on the start and end of the heating defrost operation is transmitted from the control unit 300 of the outdoor unit 1 to the control unit 301 of the indoor unit 2.
- a compressor 10 Inside the housing of the outdoor unit 1, a compressor 10, a four-way valve 20, an expansion valve 30, an outdoor heat exchanger 50, a bypass valve 60, a flow path switching valve 70, a control unit 300, an outdoor fan 95, and an outdoor fan motor 96 is stored.
- the compressor 10 has a suction port 10a for sucking the refrigerant and a discharge port 10b for discharging the refrigerant.
- the suction port 10a of the compressor 10 is connected to the refrigerant pipe 91, and the discharge port 10b of the compressor 10 is connected to the refrigerant pipe 81.
- the compressor 10 compresses the low-pressure refrigerant sucked from the refrigerant pipe 91 and discharges it to the refrigerant pipe 81 as the high-pressure refrigerant. Therefore, the refrigerant pipe 91 is the suction pipe of the compressor 10, and the refrigerant pipe 81 is the discharge pipe of the compressor 10.
- an inverter-driven compressor whose operating frequency can be adjusted is used.
- An operating frequency range is preset in the compressor 10.
- the compressor 10 operates at a variable operating frequency included in the operating frequency range according to a control signal from the control unit 300.
- the output of the compressor 10 can be adjusted by changing the operating frequency of the compressor 10.
- Various types of compressor 10 can be adopted, for example, a rotary type, a reciprocating type, a scroll type, a screw type and the like can be adopted.
- the four-way valve 20 is a first flow path switching device that switches the flow direction of the refrigerant in the refrigeration cycle 3.
- the four-way valve 20 has four ports E, F, G, and H.
- a refrigerant pipe 89 is connected to the port E
- a refrigerant pipe 91 is connected to the port F
- a refrigerant pipe 82 is connected to the port G
- a refrigerant pipe 83 is connected to the port H.
- the refrigerant pipe 82 is connected to the refrigerant pipe 81, which is the discharge pipe of the compressor 10.
- the four-way valve 20 has a first state in which port E and port F communicate with each other and port G and port H communicate with each other as shown by the solid line in FIG. It is possible to take a second state in which the port H communicates with each other and the port E and the port G communicate with each other.
- the four-way valve 20 is set to the first state during the heating operation and the heating defrost operation, and is set to the second state during the defrosting operation and the cooling operation by the control signal from the control unit 300. Will be done.
- FIG. 7 is a diagram showing the states of the first flow path switching device and the second flow path switching device in each operation mode of the air conditioners according to the first to fourth embodiments.
- the four-way valve 20 is used as the first flow path switching device, but the case is not limited to that case.
- the first flow path switching device a combination of a plurality of two-way valves or three-way valves can also be used.
- the port G and the port E are communicated with each other, and the port H and the port F are communicated with each other.
- the refrigerant pipe 82 and the refrigerant pipe 89 are connected, and the refrigerant pipe 83 and the refrigerant pipe 91 are connected.
- the outdoor heat exchanger 50 is a fin tube type heat exchanger having a plurality of heat transfer tubes and a plurality of heat exchange fins.
- the outdoor heat exchanger 50 has two heat exchangers 50A and 50B in which the refrigerant flow paths are independent of each other. That is, the first heat exchanger 50A and the second heat exchanger 50B are connected in parallel to each other in the refrigeration cycle 3.
- the heat exchanger 50A is arranged above the heat exchanger 50B in the vertical direction.
- the upper heat exchanger 50A will be referred to as a first heat exchanger 50A
- the lower heat exchanger 50B will be referred to as a second heat exchanger 50B.
- the first heat exchanger 50A and the second heat exchanger 50B are arranged vertically.
- the heat exchange fins of the first heat exchanger 50A and the heat exchange fins of the second heat exchanger 50B may or may not be divided.
- Both the first heat exchanger 50A and the second heat exchanger 50B have a plurality of heat transfer tubes and a plurality of heat exchange fins inside.
- the first heat exchanger 50A and the second heat exchanger 50B exchange heat between the refrigerant flowing through the heat transfer tube and the outdoor air blown by the outdoor fan 95.
- the first heat exchanger 50A and the second heat exchanger 50B function as an evaporator during the heating operation and as a condenser during the cooling operation and the defrosting operation.
- one of the first heat exchanger 50A and the second heat exchanger 50B functions as an evaporator, and the other functions as a condenser.
- the first heat exchanger 50A and the second heat exchanger 50B can perform defrosting when functioning as a condenser. In the heating defrost operation, the first heat exchanger 50A and the second heat exchanger 50B alternately function as condensers.
- the outdoor fan 95 is arranged so as to convey the outdoor air to the outdoor heat exchanger 50.
- the outdoor fan 95 is a propeller fan
- the outdoor heat exchanger 50 is arranged on the upstream side of the outdoor fan 95.
- the outdoor fan motor 96 drives the outdoor fan 95.
- the control unit 300 changes the rotation speed of the outdoor fan 95 by controlling the outdoor fan motor 96 by outputting a control signal. By changing the rotation speed of the outdoor fan 95, the amount of heat exchange between the refrigerant and the outdoor air in the outdoor heat exchanger 50 can be adjusted.
- the outdoor fan 95 may be composed of one fan or two fans.
- the outdoor fan 95 is composed of one fan, the fan blows air to both the first heat exchanger 50A and the second heat exchanger 50B.
- the outdoor fan 95 is composed of two fans, those two fans are arranged one above the other.
- One end of the refrigerant pipe 81 is connected to the discharge port 10b of the compressor 10. Further, the other end of the refrigerant pipe 81, one end of the bypass pipe 80, and one end of the refrigerant pipe 82 are connected to each other so as to branch from the other end of the refrigerant pipe 81 to the bypass pipe 80 and the refrigerant pipe 82. The other end of the refrigerant pipe 82 is connected to the port G of the four-way valve 20. The other end of the bypass pipe 80 is connected to the bypass valve 60.
- the refrigerant pipe 83 connects the port H of the four-way valve 20 and the indoor heat exchanger 40.
- the refrigerant pipe 84 connects the indoor heat exchanger 40 and the expansion valve 30.
- One end of the refrigerant pipe 85 is connected to the expansion valve 30.
- the other end of the refrigerant pipe 85, one end of the refrigerant pipe 86A and one end of the refrigerant pipe 86B are connected to each other at the connection point 73 so that the other end of the refrigerant pipe 85 branches into the refrigerant pipe 86A and the refrigerant pipe 86B. It is connected.
- the other end of the refrigerant pipe 86A is connected to the first heat exchanger 50A, and the other end of the refrigerant pipe 86B is connected to the second heat exchanger 50B.
- the refrigerant pipe 86A is provided with a capillary tube 72A, and the refrigerant pipe 86B is provided with a capillary tube 72B.
- the refrigerant pipe 87A connects the first heat exchanger 50A and the port B2 of the flow path switching valve 70, and the refrigerant pipe 87B connects the second heat exchanger 50B and the port B1 of the flow path switching valve 70.
- the refrigerant pipe 88 connects the bypass valve 60 and the port A of the flow path switching valve 70.
- the refrigerant pipe 89 connects the port C of the flow path switching valve 70 and the port E of the four-way valve 20.
- the refrigerant pipe 91 connects the port F of the four-way valve 20 and the suction port 10a of the compressor 10.
- the expansion valve 30 is an example of a pressure reducing device that depressurizes the inflowing high-pressure refrigerant and causes it to flow out as a low-pressure refrigerant.
- an electronic expansion valve whose opening degree can be adjusted by a control signal from the control unit 300 is used.
- the bypass pipe 80 is a hot gas bypass flow path that supplies a part of the refrigerant discharged from the discharge port 10b of the compressor 10 to the first heat exchanger 50A and the second heat exchanger 50B.
- the refrigerant supplied from the bypass pipe 80 is used for defrosting the first heat exchanger 50A and the second heat exchanger 50B.
- a bypass valve 60 as a throttle device is connected to the bypass pipe 80.
- the bypass valve 60 depressurizes the high-pressure refrigerant discharged from the discharge port 10b of the compressor 10 to a medium pressure.
- the refrigerant whose medium pressure is adjusted by the bypass valve 60 is guided to the first heat exchanger 50A via the flow path switching valve 70.
- the refrigerant whose medium pressure is adjusted by the bypass valve 60 is guided to the second heat exchanger 50B via the flow path switching valve 70.
- the bypass valve 60 an electronic expansion valve whose opening degree can be adjusted by a control signal from the control unit 300 is used, but the bypass valve 60 is not limited to this case, and a capillary tube may be used.
- the flow path switching valve 70 is an example of a second flow path switching device that switches the flow of the refrigerant between the heating operation, the defrosting operation, the cooling operation, and the heating defrost operation.
- the second flow path switching device connects and disconnects the first heat exchanger 50A and the bypass pipe 80 according to the control signal from the control unit 300, and between the second heat exchanger 50B and the bypass pipe 80. Switch between connecting and disconnecting.
- a four-way valve having four ports A, B1, B2, and C is used as the flow path switching valve 70.
- the flow path switching valve 70 may take states I, II and III according to the control signal from the control unit 300. In the state I, as shown by the solid line in FIG.
- port C and port B1 communicate with each other, and port C and port B2 communicate with each other, but port A does not communicate with either port B1 or port B2.
- port A and port B1 communicate with each other, and port C and port B2 communicate with each other.
- port A and port B2 communicate with each other, and port C and port B1 communicate with each other.
- the flow path switching valve 70 is set to the state I during the heating operation, the defrosting operation, and the cooling operation, and is set to the state II or the state III during the heating defrost operation under the control of the control unit 300.
- the control unit 300 has a microcomputer equipped with a processor, ROM, RAM, I / O port, and the like.
- the ROM and RAM are the memories of the control unit 300.
- the control unit 300 is input with detection signals from various sensors provided for the outdoor unit 1 and information transmitted from the indoor unit 2.
- the control unit 300 changes the frequency of the compressor 10, the rotation speed of the outdoor fan 95, and the four-way valve 20, the expansion valve 30, the flow path switching valve 70, based on the input signals and information. Then, the opening degree of the bypass valve 60 is adjusted.
- the operation of the air conditioner 100 will be described.
- There are four operation modes of the air conditioner 100 cooling operation, heating operation, defrosting operation, and heating defrost operation.
- the difference between the defrosting operation and the heating defrost operation will be explained.
- the defrosting operation is an operation in which the heating is temporarily stopped and the outdoor heat exchanger 50 is defrosted.
- the heating defrost operation is an operation in which the outdoor heat exchanger 50 is defrosted while heating.
- the four-way valve 20 is set to the second state.
- port F and port H communicate with each other
- port E and port G communicate with each other.
- the flow path switching valve 70 is set to the state I.
- the port C and the port B1 communicate with each other
- the port C and the port B2 communicate with each other.
- the bypass valve 60 may be open or closed.
- the flow path switching valve 70 communicates the port B1 and the port C and the port B2 and the port C, even if the refrigerant is present in the refrigerant pipe 88, the refrigerant is transferred from the port A to another port. Does not flow out.
- the settings of the four-way valve 20, the flow path switching valve 70, and the bypass valve 60 are the same during the cooling operation and the defrosting operation.
- the high-temperature and high-pressure gas refrigerant discharged from the discharge port 10b of the compressor 10 is diverted by the flow path switching valve 70 via the four-way valve 20 to each of the first heat exchanger 50A and the second heat exchanger 50B. Inflow.
- both the first heat exchanger 50A and the second heat exchanger 50B function as condensers. That is, the gas refrigerant flowing into each of the first heat exchanger 50A and the second heat exchanger 50B is condensed into a liquid refrigerant.
- frost is attached to each of the first heat exchanger 50A and the second heat exchanger 50B.
- both the first heat exchanger 50A and the second heat exchanger 50B function as condensers. Therefore, in each of the first heat exchanger 50A and the second heat exchanger 50B, the frost adhering to each of the first heat exchanger 50A and the second heat exchanger 50B is melted by the heat radiation from the refrigerant flowing inside. To do. As a result, the first heat exchanger 50A and the second heat exchanger 50B are defrosted.
- the liquid refrigerant flowing out of the first heat exchanger 50A flows into the refrigerant pipe 86A and is depressurized by the capillary tube 72A.
- the liquid refrigerant flowing out of the second heat exchanger 50B flows into the refrigerant pipe 86B and is depressurized by the capillary tube 72B.
- These liquid refrigerants merge at the connection point 73 of the refrigerant pipe 86A and the refrigerant pipe 85, and flow into the expansion valve 30.
- the liquid refrigerant is further depressurized by the expansion valve 30 to become a low-pressure two-phase refrigerant.
- the two-phase refrigerant flowing out of the expansion valve 30 flows into the indoor heat exchanger 40 via the refrigerant pipe 84.
- the indoor heat exchanger 40 functions as an evaporator. That is, in the indoor heat exchanger 40, the refrigerant flowing inside absorbs heat from the indoor air. As a result, the two-phase refrigerant that has flowed into the indoor heat exchanger 40 evaporates to become a low-pressure gas refrigerant.
- the gas refrigerant flowing out of the indoor heat exchanger 40 is sucked from the suction port 10a of the compressor 10 via the refrigerant pipe 83 and the four-way valve 20.
- the gas refrigerant sucked into the compressor 10 is compressed to become a high-temperature and high-pressure gas refrigerant.
- the above cycle is continuously repeated.
- the four-way valve 20 is set to the first state.
- port E and port F are communicated with each other, and port G and port H are communicated with each other.
- the flow path switching valve 70 is set to the state I.
- the port C and the port B1 communicate with each other, and the port C and the port B2 communicate with each other.
- the compressor 10 sucks the refrigerant from the refrigerant pipe 91 and compresses it.
- the compressed refrigerant flows to the refrigerant pipe 83 via the refrigerant pipe 81, the refrigerant pipe 82, and the four-way valve 20.
- the refrigerant flows into the indoor heat exchanger 40 from the refrigerant pipe 83.
- the refrigerant is discharged from the compressor 10 to become superheated steam at high temperature and high pressure.
- the indoor heat exchanger 40 exchanges heat between a high-temperature and high-pressure refrigerant and indoor air. By this heat exchange, the refrigerant is condensed and liquefied.
- the indoor heat exchanger 40 functions as a condenser.
- the liquefied refrigerant flows from the indoor heat exchanger 40 to the refrigerant pipe 84.
- the control unit 300 can adjust the rotation speed of the indoor fan 400 by outputting a control signal. By adjusting the rotation speed of the indoor fan 400, the amount of air conveyed to the indoor heat exchanger 40 changes, and the amount of heat exchanged between the refrigerant and the air in the indoor heat exchanger 40 can be adjusted.
- the refrigerant is depressurized by the expansion valve 30 to become a low-pressure two-phase refrigerant.
- the two-phase refrigerant flowing out of the expansion valve 30 flows into the refrigerant pipe 85.
- the control unit 300 can adjust the opening degree of the expansion valve 30 by outputting a control signal.
- the amount of reduced pressure of the refrigerant can be adjusted by adjusting the opening degree of the expansion valve 30.
- the opening degree of the expansion valve 30 is changed in the opening direction, the pressure of the refrigerant discharged from the expansion valve 30 increases.
- the opening degree of the expansion valve 30 is changed in the closing direction, the pressure of the refrigerant discharged from the expansion valve 30 decreases.
- the refrigerant decompressed by the expansion valve 30 and flows out to the refrigerant pipe 85 branches into the refrigerant pipe 86A and the refrigerant pipe 86B.
- the two-phase refrigerant that has flowed into the refrigerant pipe 86A is further depressurized by the capillary tube 72A and flows into the first heat exchanger 50A.
- the two-phase refrigerant that has flowed into the refrigerant pipe 86B is further depressurized by the capillary tube 72B and flows into the second heat exchanger 50B.
- both the first heat exchanger 50A and the second heat exchanger 50B function as evaporators. That is, in each of the first heat exchanger 50A and the second heat exchanger 50B, heat exchange is performed between the refrigerant flowing inside and the outdoor air blown by the outdoor fan 95, and the refrigerant absorbs heat from the outdoor air. .. As a result, the two-phase refrigerant flowing into each of the first heat exchanger 50A and the second heat exchanger 50B evaporates to become a low-pressure superheated refrigerant.
- the control unit 300 can adjust the rotation speed of the outdoor fan 95 by outputting a control signal.
- the amount of air transferred to each of the first heat exchanger 50A and the second heat exchanger 50B changes, and the first heat exchanger 50A and the second heat exchanger 50B are changed.
- the amount of heat exchanged between the refrigerant and the air in each of the above can be adjusted.
- the refrigerant flowing out of the first heat exchanger 50A flows into the refrigerant pipe 87A, and the refrigerant flowing out from the second heat exchanger 50B flows into the refrigerant pipe 87B.
- the refrigerant flowing through the refrigerant pipe 87A and the refrigerant pipe 87B is merged by the flow path switching valve 70 as shown by the solid line in FIG. 1, and flows from the port C to the refrigerant pipe 89.
- the refrigerant flowing through the refrigerant pipe 89 flows from the refrigerant pipe 91 to the compressor 10 via the four-way valve 20. During the heating operation, the above cycle is continuously repeated.
- the opening degree of the bypass valve 60 may be open or fully closed. Since the flow path switching valve 70 communicates the port B1 and the port C and the port B2 and the port C, even if the refrigerant is present in the refrigerant pipe 88, the refrigerant is transferred from the port A to another port. Does not flow out.
- the outdoor heat exchanger 50 may be frosted and need to be defrosted. In that case, it is conceivable to temporarily stop the heating operation, switch to the defrosting operation, and flow the high-temperature and high-pressure refrigerant compressed by the compressor 10 to the outdoor heat exchanger 50. In this case, since the heating operation is interrupted, the room temperature drops and the comfort of the room is lost.
- the flow path switching valve 70 is operated to alternately defrost the first heat exchanger 50A and the second heat exchanger 50B while continuing the heating operation.
- the heating defrost operation will be described below.
- the four-way valve 20 is set to the first state.
- port E and port F communicate with each other
- port G and port H communicate with each other.
- the flow path switching valve 70 is alternately set in the state II and the state III.
- state II port A and port B1 communicate with each other
- port C and port B2 communicate with each other
- state III port A and port B2 communicate with each other, and port C and port B1 communicate with each other.
- the first heat exchanger 50A and the bypass pipe 80 are cut off, and the second heat exchanger 50B and the bypass pipe 80 communicate with each other.
- the first heat exchanger 50A and the bypass pipe 80 communicate with each other, and the second heat exchanger 50B and the bypass pipe 80 are cut off.
- the flow path switching valve 70 is set to state III. ..
- the refrigerant pipe 88 and the refrigerant pipe 87A are connected, and the refrigerant pipe 89 and the refrigerant pipe 87B are connected.
- a part of the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the bypass pipe 80.
- the remaining high-temperature and high-pressure refrigerant discharged from the compressor 10 flows to the indoor heat exchanger 40 via the refrigerant pipe 82, the four-way valve 20, and the refrigerant pipe 83.
- the refrigerant that has flowed into the bypass pipe 80 is depressurized by the bypass valve 60.
- the decompressed refrigerant flows from the bypass valve 60 into the first heat exchanger 50A to be defrosted via the refrigerant pipe 88, the flow path switching valve 70, and the refrigerant pipe 87A.
- the first heat exchanger 50A functions as a condenser.
- the refrigerant that has flowed into the first heat exchanger 50A condenses while exchanging heat with frost, and defrosts the first heat exchanger 50A.
- the opening degree of the bypass valve 60 by changing the opening degree of the bypass valve 60, the amount of refrigerant flowing into the first heat exchanger 50A to be defrosted can be adjusted, and the amount of heat exchanged between the refrigerant and frost can be adjusted.
- the opening degree of the bypass valve 60 is changed in the opening direction, the amount of refrigerant at the outlet of the bypass valve 60 increases, the amount of refrigerant flowing through the first heat exchanger 50A increases, and the amount of heat exchanged between the refrigerant and frost increases. To do. At this time, the amount of refrigerant flowing through the indoor heat exchanger 40 decreases, so that the heating capacity decreases.
- the opening degree of the bypass valve 60 is changed in the closing direction, the amount of refrigerant at the outlet of the bypass valve 60 decreases, the amount of refrigerant flowing through the first heat exchanger 50A decreases, and the amount of heat exchanged between the refrigerant and frost. Decreases. At this time, the amount of refrigerant flowing through the indoor heat exchanger 40 increases, so that the heating capacity increases.
- the bypass valve 60 is controlled by a control signal from the control unit 300.
- the refrigerant condensed by the first heat exchanger 50A merges with the refrigerant condensed by the indoor heat exchanger 40 and decompressed by the expansion valve 30 at the connection point 73 between the refrigerant pipe 86A and the refrigerant pipe 85, and joins the refrigerant pipe 86B. It flows.
- the refrigerant that has flowed into the refrigerant pipe 86B flows into the second heat exchanger 50B and evaporates. At this time, the second heat exchanger 50B functions as an evaporator. After that, the refrigerant returns to the compressor 10 via the refrigerant pipe 87B, the flow path switching valve 70, the refrigerant pipe 89, the four-way valve 20, and the refrigerant pipe 91.
- the flow path switching valve 70 is set to the state II. Will be done.
- the refrigerant pipe 88 and the refrigerant pipe 87B are connected, and the refrigerant pipe 87A and the refrigerant pipe 89 are connected.
- a part of the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the bypass pipe 80.
- the remaining high-temperature and high-pressure refrigerant discharged from the compressor 10 flows to the indoor heat exchanger 40 via the refrigerant pipe 82, the four-way valve 20, and the refrigerant pipe 83.
- the refrigerant that has flowed into the bypass pipe 80 is depressurized by the bypass valve 60.
- the decompressed refrigerant flows from the bypass valve 60 into the second heat exchanger 50B to be defrosted via the refrigerant pipe 88, the flow path switching valve 70, and the refrigerant pipe 87B.
- the refrigerant that has flowed into the second heat exchanger 50B condenses while exchanging heat with frost, and defrosts the second heat exchanger 50B. At this time, the second heat exchanger 50B functions as a condenser.
- the amount of refrigerant flowing into the second heat exchanger 50B which is the target of defrosting, is adjusted, and the amount of heat exchanged between the refrigerant and frost. Can be adjusted. Since the operation at this time is the same as that in the case where the defrosting target is the first heat exchanger 50A, the above description is referred to, and detailed description thereof will be omitted here.
- the refrigerant condensed by the second heat exchanger 50B merges with the refrigerant condensed by the indoor heat exchanger 40 and decompressed by the expansion valve 30 at the connection point 73 between the refrigerant pipe 86B and the refrigerant pipe 85, and joins the refrigerant pipe 86A. It flows.
- the refrigerant that has flowed into the refrigerant pipe 86A flows into the first heat exchanger 50A and evaporates. At this time, the first heat exchanger 50A functions as an evaporator. After that, the refrigerant returns to the compressor 10 via the refrigerant pipe 87A, the flow path switching valve 70, the refrigerant pipe 89, the four-way valve 20, and the refrigerant pipe 91.
- the defrosting of the first heat exchanger 50A and the defrosting of the second heat exchanger 50B are alternately performed while continuing the heating. Only the state of the flow path switching valve 70 differs between the case where the first heat exchanger 50A is defrosted and the case where the second heat exchanger 50B is defrosted. That is, when the flow path switching valve 70 is set to the state III, the first heat exchanger 50A is defrosted, and the second heat exchanger 50B functions as an evaporator. On the other hand, when the flow path switching valve 70 is set to the state II, the second heat exchanger 50B is defrosted, and the first heat exchanger 50A functions as an evaporator.
- the heating operation can be continued.
- the defrosting of the first heat exchanger 50A and the defrosting of the second heat exchanger 50B are performed at least once. Further, considering that the water generated by defrosting collects in the lower second heat exchanger 50B, first defrosting the second heat exchanger 50B, then defrosting the first heat exchanger 50A, Finally, it is more desirable to perform defrosting in the order of the second heat exchanger 50B.
- the outdoor heat exchanger 50 which serves as an evaporator, is halved compared to the normal heating operation. That is, during normal heating operation, in the outdoor heat exchanger 50, both the first heat exchanger 50A and the second heat exchanger 50B function as evaporators. On the other hand, during the heating defrost operation, in the outdoor heat exchanger 50, only one of the first heat exchanger 50A and the second heat exchanger 50B functions as an evaporator, and the other functions as a condenser. Therefore, the heating capacity tends to decrease. When the heating capacity is lowered, the temperature of the indoor heat exchanger 40 is lowered and the blowing temperature is lowered, and as a result, the room temperature is lowered and the comfort is deteriorated.
- the control unit 301 controls the rotation speed of the indoor fan 400 according to the temperature of the indoor heat exchanger 40.
- a method of controlling the rotation speed of the indoor fan 400 will be described with reference to FIGS. 2 and 3.
- FIG. 2 is a diagram illustrating a method of controlling the rotation speed of the indoor fan 400 in the air conditioner 100 according to the first embodiment.
- FIG. 3 is a flowchart showing a flow of control processing of the rotation speed of the indoor fan 400 in the air conditioner 100 according to the first embodiment.
- the control unit 301 raises and lowers the rotation speed Rot of the indoor fan 400 during the heating defrost operation with reference to the temperature tem of the indoor heat exchanger 40 at the start of the heating defrost operation.
- the control unit 301 can be controlled so as to prevent an excessive decrease in the blowing temperature and the heating capacity of the indoor unit 2 during the heating defrost operation.
- the temperature tem of the indoor heat exchanger 40 at the start of the heating defrost operation is the temperature T1 ° C. Therefore, the temperature T1 ° C. becomes a reference.
- the temperature tem of the indoor heat exchanger 40 is detected by the temperature detection unit 200.
- the reference temperature T1 ° C. is referred to as a first temperature.
- the rotation speed R1 is the rotation speed Rot of the indoor fan 400 at the start of the heating defrost operation.
- the time P1 indicates the time when the heating defrost operation is started.
- the time P2 indicates the time when the temperature tem of the indoor heat exchanger 40 reaches (T1-a) ° C.
- the time P3 indicates the time when the temperature tem of the indoor heat exchanger 40 reaches (T1 + b) ° C.
- a and b are a ⁇ 0 and b ⁇ 0, both of which are preset values.
- a and b will be referred to as a first set value a and a second set value b, respectively.
- the temperature tem of the indoor heat exchanger 40 gradually decreases.
- the temperature detection unit 200 detects the temperature tem of the indoor heat exchanger 40 during the heating defrost operation at a preset cycle.
- the temperature tem of the indoor heat exchanger 40 during the heating defrost operation is referred to as a second temperature.
- the control unit 301 gradually lowers the rotation speed Rot of the indoor fan 400 when the second temperature is lower than the first temperature and the difference between the first temperature and the second temperature is equal to or larger than the first set value a. ..
- the control unit 301 gradually lowers the rotation speed Rot of the indoor fan 400 from the time when the second temperature of the indoor heat exchanger 40 reaches (T1-a) ° C., that is, the time P2, the control unit 301 gradually lowers the rotation speed Rot of the indoor fan 400.
- the control unit 301 lowers the rotation speed Rot of the indoor fan 400 in a stepwise manner at a constant lowering rate for a certain time width.
- the rotation speed Rot of the indoor fan 400 may be linearly lowered at a constant falling rate in proportion to the elapsed time.
- the temperature tem of the indoor heat exchanger 40 rises, and it is possible to prevent the blowout temperature of the indoor unit 2 from falling.
- the temperature tem of the indoor heat exchanger 40 starts to rise after a certain period of time has elapsed from the time P2.
- a lower limit value of the rotation speed Rot of the indoor fan 400 may be set in advance. In that case, the control unit 301 controls so that the rotation speed Rot of the indoor fan 400 does not fall below the lower limit value. Further, the lower limit value is stored in advance in the memory of the control unit 301.
- the temperature tem of the indoor heat exchanger 40 gradually rises by lowering the rotation speed Rot of the indoor fan 400.
- the control unit 301 gradually increases the rotation speed Rot of the indoor fan 400 when the second temperature is higher than the first temperature and the difference between the first temperature and the second temperature is the second set value b or more. ..
- the control unit 301 gradually increases the rotation speed Rot of the indoor fan 400.
- the control unit 301 raises the rotation speed Rot of the indoor fan 400 in a stepwise manner at a constant rate of increase for a certain time width.
- the rotation speed Rot of the indoor fan 400 may be linearly increased at a constant increase rate in proportion to the elapsed time. Increasing the rotation speed Rot of the indoor fan 400 increases the amount of air transported from the indoor fan 400 to the indoor heat exchanger 40. As a result, the heating capacity with respect to the indoor heating load is increased, and it is possible to prevent a decrease in room temperature.
- control unit 301 raises and lowers the rotation speed Rot of the indoor fan 400 with reference to the temperature T1, which is the first temperature, so that the blowout temperature of the indoor unit 2 and the heating capacity are excessively lowered. Can be prevented. As a result, it is possible to achieve both the blowing temperature of the indoor unit 2 and the heating capacity.
- the rate of increase in the rotation speed Rot of the indoor fan 400 with respect to the elapsed time is set to be the same as or greater than the rate of decrease of the rotation speed of the indoor fan 400 with respect to the elapsed time.
- the ascending speed of the rotation speed Rot when increasing the rotation speed Rot of the indoor fan 400 is the same as or greater than the decreasing speed of the rotation speed Rot when decreasing the rotation speed of the indoor fan 400. .. Therefore, the time required for the rotation speed Rot of the indoor fan 400 to rise from R2 to R1 (P4-P3) is the same as the time required for the rotation speed Rot of the indoor fan 400 to decrease from R1 to R2 (P3-P2). Or shorter.
- the ascending speed of the rotation speed Rot when increasing the rotation speed Rot of the indoor fan 400 is constant, but the ascending speed may be variable.
- the lowering speed of the rotation speed Rot when lowering the rotation speed of the indoor fan 400 is constant, the lowering speed may be variable.
- step S1 the control unit 301 detects the temperature tem of the indoor heat exchanger 40 by using the temperature detection unit 200 at the start of the heating defrost operation and stores it in the memory of the control unit 301.
- the temperature tem at this time is the temperature T1 which is the first temperature used as a reference. That is, in the example of FIG. 2, it is the temperature tem at time P1.
- step S1 the control unit 301 obtains the temperature tem of the indoor heat exchanger 40 measured last from the memory of the control unit 301 by the temperature detection unit 200 during the heating operation of the air conditioner 100. , It may be acquired as a reference first temperature.
- step S2 the control unit 301 detects the rotation speed Rot of the indoor fan 400 at the start of the heating defrost operation.
- the rotation speed Rot at this time is, in the example of FIG. 2, the rotation speed R1 at time P1.
- step S2 the control unit 301 sets the rotation speed Rot of the indoor fan 400, which was last measured during the heating operation of the air conditioner 100, from the memory of the control unit 301 at the start of the heating defrost operation. It may be acquired as the number of rotations of.
- step S3 the control unit 301 detects the temperature tem of the indoor heat exchanger 40 by using the temperature detection unit 200.
- step S4 the control unit 301 determines whether the air conditioner 100 has completed the heating defrost operation based on the information from the control unit 300 of the outdoor unit 1.
- the control unit 301 determines that the air conditioner 100 has finished the heating defrost operation
- the control unit 301 proceeds to step S11.
- the control unit 301 determines that the air conditioner 100 has not completed the heating defrost operation
- the control unit 301 proceeds to step S5.
- step S5 the control unit 301 determines whether the temperature tem of the indoor heat exchanger 40 acquired in step S3 is (T1-a) ° C. or lower.
- the process returns to the process of step S3.
- the control unit 301 determines that the temperature tem of the indoor heat exchanger 40 is (T1-a) ° C. or lower, the process proceeds to step S6.
- control unit 301 repeats the loop from step S3 to "NO” in step S5 until the determination in step S4 is "YES".
- the loop from step S3 to “NO” in step S5 is between time P1 and time P2 in the example of FIG.
- Step S6 is the time point of time P2 in the example of FIG.
- the control unit 301 gradually lowers the rotation speed Rot of the indoor fan 400.
- step S7 the control unit 301 again uses the temperature detection unit 200 to detect the temperature tem of the indoor heat exchanger 40.
- the temperature tem at this time is the temperature during the heating defrost operation, and is the second temperature.
- step S8 the control unit 301 determines whether the air conditioner 100 has completed the heating defrost operation based on the information from the control unit 300 of the outdoor unit 1.
- the control unit 301 determines that the air conditioner 100 has finished the heating defrost operation
- the control unit 301 proceeds to step S11.
- the control unit 301 determines that the air conditioner 100 has not completed the heating defrost operation
- the control unit 301 proceeds to step S9.
- step S9 the control unit 301 determines whether the temperature tem of the indoor heat exchanger 40 acquired in step S7 is (T1 + b) ° C. or higher.
- the process returns to the process of step S6.
- the control unit 301 determines that the temperature tem of the indoor heat exchanger 40 is (T1 + b) ° C. or higher, the process proceeds to step S10.
- control unit 301 repeats the loop from step S6 to "NO” in step S9 until the determination in step S8 is "YES".
- the loop from step S6 to “NO” in step S9 is between time P2 and time P3 in the example of FIG.
- Step S10 is the time point of time P3 in the example of FIG.
- the control unit 301 gradually increases the rotation speed Rot of the indoor fan 400. After that, the process returns to step S3, and the processes of steps S3 to S10 are repeated.
- step S11 the air conditioner 100 ends the heating defrost operation and restarts the heating operation. Therefore, the control unit 301 controls by the rotation speed Rot of the indoor fan 400 set by the user with a remote controller or the like. At this time, the change speed of the rotation speed Rot of the indoor fan 400 may be constant or variable. Moreover, you may change it momentarily.
- the indoor fan 400 rotation speed Rot during the heating defrost operation is increased and decreased with reference to the temperature T1 of the indoor heat exchanger 40 before the start of the heating defrost operation.
- the control unit 301 can be controlled so as to prevent an excessive decrease in the blowing temperature and the heating capacity of the indoor unit 2 during the heating defrost operation.
- the rotation speed Rot of the indoor fan 400 may be lowered momentarily without gradually lowering.
- the temperature tem of the indoor heat exchanger 40 suddenly rises, and the discharge pressure of the indoor unit 2 suddenly rises.
- the frequency of the compressor 10 may decrease due to the protection control of the compressor 10.
- the flow rate of the refrigerant may decrease, the defrosting capacity may decrease, and undissolved frost may occur.
- the temperature tem of the indoor heat exchanger 40 may decrease, resulting in deterioration of comfort. Therefore, it is desirable that the rotation speed Rot of the indoor fan 400 is not lowered momentarily, but is gradually lowered over a certain period of time.
- the rotation speed Rot of the indoor fan 400 may be increased momentarily without gradually increasing.
- the temperature tem of the indoor heat exchanger 40 may drop sharply, the blowing temperature of the indoor unit 2 may drop, and the comfort of the room may deteriorate.
- the user may feel uncomfortable due to changes in air volume or sound. Therefore, it is desirable that the rotation speed Rot of the indoor fan 400 is not increased momentarily, but is gradually increased over a certain period of time.
- the speed at which the rotation speed Rot of the indoor fan 400 is increased is slow, the temperature of the indoor heat exchanger 40 suddenly rises during the heating defrost operation, and the frequency of the compressor 10 may be limited by the condensation pressure protection. When limited, the flow rate of the refrigerant is reduced, the defrosting capacity is reduced, and undissolved frost may occur. In addition, the temperature tem of the indoor heat exchanger 40 may decrease, resulting in deterioration of comfort. Therefore, as described above, the speed at which the rotation speed Rot of the indoor fan 400 is increased needs to be at least the same as or faster than the speed at which the rotation speed of the indoor fan 400 is decreased.
- the rate of increase in the rotation speed Rot of the indoor fan 400 with respect to the elapsed time is equal to or greater than the rate of decrease of the rotation speed of the indoor fan 400 with respect to the elapsed time. Is set to.
- the control unit 301 controls so that the rotation speed Rot of the indoor fan 400 does not exceed the upper limit value.
- the heating defrost operation is performed by controlling the rotation speed Rot of the indoor fan 400 during the heating defrost operation so as to decrease and increase with reference to the temperature T1 of the indoor heat exchanger 40 before the start of the heating defrost operation. It is possible to suppress a decrease in the temperature of the blowout inside and an excessive decrease in the heating capacity. As a result, heating defrost operation that does not lower the room temperature and does not deteriorate the comfort becomes possible.
- the temperature of the indoor heat exchanger 40 before the start of the heating defrost operation is set as the first temperature
- the temperature of the indoor heat exchanger 40 during the heating defrost operation is set as the second temperature.
- the control unit 301 lowers the rotation speed of the indoor fan 400. ..
- the temperature of the indoor heat exchanger 40 can be raised.
- the heating defrost operation can be performed without lowering the room temperature and without deteriorating the comfort.
- the control unit 301 uses the indoor fan 400 when the second temperature is higher than the first temperature and the difference between the first temperature and the second temperature is the second set value b or more. Rotation speed Rot is increased. As a result, it is possible to suppress a decrease in heating capacity. In this way, in the first embodiment, it is possible to prevent an excessive decrease in the blowing temperature and the heating capacity of the indoor unit 2 during the heating defrost operation. As a result, in the first embodiment, the heating defrost operation can be performed without lowering the room temperature and without deteriorating the comfort.
- FIG. 4 is a configuration diagram showing the configuration of the air conditioner 100 according to the second embodiment. The difference between FIGS. 1 and 4 is that in FIG. 4, four on-off valves 70A, 70B, 70C and 70D are provided instead of the flow path switching valve 70 of FIG.
- the refrigerant pipe 88 is branched into the refrigerant pipe 88A and the refrigerant pipe 88B on the way.
- the refrigerant pipe 88A is connected to the refrigerant pipe 87A at the connection point 74.
- the refrigerant pipe 88B is connected to the refrigerant pipe 87B at the connection point 75.
- the refrigerant pipe 89 branches at the branch point 76 and is connected to the refrigerant pipe 87A and the refrigerant pipe 87B.
- the on-off valve 70A is provided in the refrigerant pipe 88A.
- the on-off valve 70B is provided in the refrigerant pipe 88B.
- the on-off valve 70C is connected between the connection point 74 and the branch point 76 in the refrigerant pipe 87A.
- the on-off valve 70D is connected between the connection point 75 and the branch point 76 in the refrigerant pipe 87B.
- the second flow path switching device is the flow path switching valve 70 composed of an integrated valve, but as shown in FIG. 4, four second flow path switching devices are used. It may be composed of on-off valves 70A, 70B, 70C and 70D. Each of the on-off valves 70A, 70B, 70C, and 70D is composed of, for example, a solenoid valve. Since the other configurations are the same as those in FIG. 1, they are shown with the same reference numerals, and the description thereof will be omitted here.
- the four on-off valves 70A, 70B, 70C, and 70D constitute a second flow path switching device that switches the flow of the refrigerant between the heating operation, the defrosting operation, the cooling operation, and the heating defrost operation. ing.
- the second flow path switching device can take the states I, II, and III described in the first embodiment by changing the port connection by the control signal from the control unit 300.
- the on-off valve 70C is in the open state and the refrigerant pipe 89 and the refrigerant pipe 87A communicate with each other, and the on-off valve 70D is in the open state and the refrigerant pipe 89 and the refrigerant pipe 87B communicate with each other. At this time, the on-off valves 70A and 70B are in the closed state.
- the on-off valve 70B is in the open state and the refrigerant pipe 88 and the refrigerant pipe 87B communicate with each other, and the on-off valve 70C is in the open state and the refrigerant pipe 89 and the refrigerant pipe 87A communicate with each other. At this time, the on-off valves 70A and 70D are in the closed state.
- the on-off valve 70A is in the open state and the refrigerant pipe 88 and the refrigerant pipe 87A communicate with each other, and the on-off valve 70D is in the open state and the refrigerant pipe 89 and the refrigerant pipe 87B communicate with each other. At this time, the on-off valves 70B and 70C are in the closed state.
- the on-off valves 70A, 70B, 70C and 70D are set to the state I during the heating operation, the defrosting operation and the cooling operation, and are set to the state II or the state III during the heating defrost operation under the control of the control unit 300.
- the state of the four-way valve 20 which is the first flow path switching device and the state of the second flow path switching device in each operation mode in the second embodiment are the same as those in the first embodiment. Is.
- the second flow path switching device can take the states I, II and III described in the first embodiment by opening and closing the on-off valves 70A, 70B, 70C and 70D. ..
- the air conditioner 100 can perform the same operation as in the first embodiment. Therefore, even in the second embodiment, the same effect as that of the first embodiment can be obtained.
- FIG. 5 is a configuration diagram showing the configuration of the air conditioner 100 according to the third embodiment.
- the difference between FIGS. 1 and 5 is that in FIG. 5, two three-way valves 600 and 700 are provided instead of the flow path switching valve 70 of FIG. Further, in FIG. 5, the refrigerant pipe 89 branches at the branch point 77 and is connected to the refrigerant pipe 93 and the refrigerant pipe 94.
- the three-way valve 600 has three ports J, K, and L.
- the port J is connected to the refrigerant pipe 88.
- the port K is connected to the refrigerant pipe 87A.
- the port L is connected to the refrigerant pipe 93.
- the three-way valve 700 has three ports M, N, and P.
- the port M is connected to the refrigerant pipe 88.
- the port N is connected to the refrigerant pipe 87B.
- the port P is connected to the refrigerant pipe 94.
- the three-way valves 600 and 700 constitute a second flow path switching device that switches the flow of the refrigerant between the heating operation, the defrosting operation, the cooling operation, and the heating defrost operation.
- the second flow path switching device can take the states I, II, and III described in the first embodiment by switching the communication state of the ports of the three-way valves 600 and 700 by the control signal from the control unit 300. ..
- the port L and the port K communicate with each other
- the refrigerant pipe 89 and the refrigerant pipe 87A communicate with each other
- the port P and the port N communicate with each other
- the refrigerant pipe 89 and the refrigerant pipe 87B communicate with each other.
- the port M and the port N communicate with each other
- the refrigerant pipe 88 and the refrigerant pipe 87B communicate with each other
- the port L and the port K communicate with each other
- the refrigerant pipe 89 and the refrigerant pipe 87A communicate with each other.
- the port J and the port K communicate with each other
- the refrigerant pipe 88 and the refrigerant pipe 87A communicate with each other
- the port P and the port N communicate with each other
- the refrigerant pipe 89 and the refrigerant pipe 87B communicate with each other.
- the three-way valves 600 and 700 are set to the state I during the heating operation, the defrosting operation and the cooling operation, and are set to the state II or the state III during the heating defrost operation under the control of the control unit 300.
- the state of the four-way valve 20 which is the first flow path switching device and the state of the second flow path switching device in each operation mode in the third embodiment are the same as those in the first embodiment. Is.
- the control unit 300 can take the states I, II, and III described in the first embodiment by switching the communication state of the ports of the three-way valves 600 and 700. As a result, the air conditioner 100 can perform the same operation as in the first embodiment. Therefore, even in the third embodiment, the same effect as that of the first embodiment can be obtained.
- FIG. 6 is a configuration diagram showing the configuration of the air conditioner 100 according to the fourth embodiment.
- the main difference between FIGS. 1 and 6 is that in FIG. 6, two four-way valves 800 and 900 are provided instead of the flow path switching valve 70 of FIG. Since the four-way valves 800 and 900 assume valves that operate at a differential pressure, a check valve 90 is used to secure the differential pressure.
- the configuration of FIG. 6 will be described below.
- the four-way valve 800 has four ports Q, R, S, and T.
- the port R is closed so that the refrigerant does not leak out.
- the port S is connected to the refrigerant pipe 93.
- the port T is connected to the refrigerant pipe 87A. Port Q will be described later.
- the four-way valve 900 has four ports U, V, W, and X.
- the port V is closed so that the refrigerant does not leak out.
- the port W is connected to the refrigerant pipe 94.
- the port X is connected to the refrigerant pipe 87B. Port U will be described later.
- the four-way valve 20, the four-way valve 800, and the four-way valve 900 are all differential pressure driven four-way valves that operate by the differential pressure of the discharge pressure and the suction pressure.
- the four-way valve 800 and the four-way valve 900 four-way valves having the same configuration can be used.
- the port R of the four-way valve 800 is closed, and the port V of the four-way valve 900 is closed. Therefore, as the four-way valves 800 and 900, three-way valves having the same configuration can also be used.
- the refrigerant pipe 88 connected to the bypass valve 60 is branched at the branch point 105, one is connected to the port Q of the four-way valve 800, and the other is connected to the port U of the four-way valve 900.
- another branch point 106 is provided between the bypass valve 60 and the branch point 105.
- the branch point 106 and the check valve 90 are connected by a refrigerant pipe 93.
- the check valve 90 and the port E of the four-way valve 20 are connected by a refrigerant pipe 92.
- the check valve 90 allows the flow of the refrigerant in the direction from the port E of the four-way valve 20 toward the refrigerant pipe 88, and blocks the flow of the refrigerant in the direction from the refrigerant pipe 88 toward the port E.
- an on-off valve such as a solenoid valve or an electric valve that opens and closes under the control of the control unit 300 is used.
- an on-off valve that opens and closes depending on the pressure difference between the upstream side and the downstream side of the valve may be used.
- the open state when the pressure on the upstream side of the on-off valve is larger than the pressure on the downstream side, the open state is set, and when the pressure on the downstream side is larger than the pressure on the upstream side, the closed state is set.
- the check valve 90 any device can be used as long as it allows the flow of the refrigerant in one direction and blocks the flow of the refrigerant in the opposite direction.
- One end of the refrigerant pipe 103 is connected to the branch point 101 provided in the middle of the refrigerant pipe 91.
- the other end of the refrigerant pipe 103 is branched into the refrigerant pipe 93 and the refrigerant pipe 94 at a branch point 104.
- the refrigerant pipe 93 is connected to the port S of the four-way valve 800.
- the refrigerant pipe 94 is connected to the port W of the four-way valve 900.
- the port T of the four-way valve 800 is connected to the first heat exchanger 50A via the refrigerant pipe 87A.
- the port X of the four-way valve 900 is connected to the second heat exchanger 50B via the refrigerant pipe 87B.
- the four-way valves 800 and 900 constitute a second flow path switching device that switches the flow of the refrigerant between the heating operation, the defrosting operation, the cooling operation, and the heating defrost operation.
- the second flow path switching device can take the states I, II, and III described in the first embodiment by switching the communication state of the ports of the four-way valves 800 and 900 by the control signal from the control unit 300. ..
- the port S and the port T communicate with each other
- the refrigerant pipe 103 and the refrigerant pipe 87A communicate with each other
- the port W and the port X communicate with each other
- the refrigerant pipe 103 and the refrigerant pipe 87B communicate with each other.
- the port U and the port X communicate with each other
- the refrigerant pipe 88 and the refrigerant pipe 87B communicate with each other
- the port S and the port T communicate with each other
- the refrigerant pipe 103 and the refrigerant pipe 87A communicate with each other.
- the port Q and the port T communicate with each other
- the refrigerant pipe 88 and the refrigerant pipe 87A communicate with each other
- the port W and the port X communicate with each other
- the refrigerant pipe 103 and the refrigerant pipe 87B communicate with each other.
- the four-way valves 800 and 900 are set to the state I during the heating operation, the defrosting operation, and the cooling operation by the control signal from the control unit 300, and are set to the state II or the state III during the heating defrost operation.
- the state of the four-way valve 20 which is the first flow path switching device and the state of the second flow path switching device in each operation mode in the fourth embodiment are the same as those in the first embodiment. Is.
- the control unit 300 can take the states I, II, and III described in the first embodiment by switching the communication state of the ports of the four-way valves 800 and 900. As a result, the air conditioner 100 can perform the same operation as in the first embodiment. Therefore, even in the fourth embodiment, the same effect as that of the first embodiment can be obtained.
- an example including the defrosting operation has been described as the operation mode of the air conditioner 100, but the operation mode of the defrosting operation is not set. May be good. In that case, there are three operation modes: cooling operation, heating operation, and heating defrost operation. Further, it is not necessary to set the operation mode of the cooling operation. In that case, there are two operation modes, heating operation and heating defrost operation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Central Air Conditioning (AREA)
Abstract
空気調和機は、圧縮機と、室内熱交換器と、室外熱交換器とを備え、室外熱交換器は、第1熱交換器と第2熱交換器とを含み、制御部は、第1熱交換器と第2熱交換器とを蒸発器として機能させるとともに、室内熱交換器を凝縮器として機能させる、暖房運転と、第1熱交換器および第2熱交換器の一方を蒸発器、第1熱交換器および第2熱交換器の他方を凝縮器として機能させるとともに、室内熱交換器を凝縮器として機能させる、暖房デフロスト運転とを行うものであって、暖房デフロスト運転開始時に温度検出部が検出した室内熱交換器の温度を第1温度とし、暖房デフロスト運転中に温度検出部が検出した室内熱交換器の温度を第2温度としたとき、制御部は、第2温度が第1温度よりも低く、且つ、第1温度と第2温度との差が第1設定値以上の場合に、室内ファンの回転数を下降させる。
Description
本発明は、空気調和機に関し、特に、室外熱交換器の除霜と室内の暖房とを同時に行う暖房デフロスト運転が可能な空気調和機に関する。
空気調和機での暖房運転時には、室外熱交換器に霜が付着する場合がある。室外熱交換器は、内部を流れる冷媒と室外の空気との間の熱交換を行う。しかしながら、室外熱交換器に霜が付着すると、室外熱交換器の熱交換効率が低減し、空気調和機の暖房効率が低下してしまう。
そこで、空気調和機では、室外熱交換器に付着した霜を溶かすために、除霜運転を実施する場合がある。除霜運転では、暖房運転を停止し、四方弁を冷房運転時と同じ状態に切り替える。そして、冷房運転時と同様に、室外熱交換器を凝縮器として機能させることで、室外熱交換器に付着した霜を溶かす。
除霜運転中は、蒸発器として機能する室内熱交換器が低温となる。そのため、室内ファンを回転させたままにすると、室内機から冷風が吹き出される。その場合、室内の快適性が著しく悪化する。そのため、除霜運転中は、室内ファンを停止させる。また、除霜運転実施後に暖房運転を再開させる場合には、室内熱交換器が暖まった後に室内ファンの回転を開始する。
特許文献1に記載の空気調和装置では、室外熱交換器を上下2つに分け、一方を第1熱交換器とし、他方を第2熱交換器としている。空気調和装置では、圧縮機から吐出された高温高圧の冷媒の一部を第1熱交換器および第2熱交換器に流すバイパス回路を設けている。
特許文献1に記載の空気調和装置では、制御装置は、第1熱交換器の除霜を行う際には、流路切替弁を切替えることで、当該バイパス回路と第1熱交換器とを連通させる。これにより、圧縮機から吐出された高温高圧の冷媒の一部が、当該バイパスを介して、第1熱交換器に流れる。その結果、第1熱交換器の霜が溶ける。その間、第2熱交換器は引き続き蒸発器として機能するので、室内熱交換器における暖房運転を維持することができる。
同様に、特許文献1に記載の空気調和装置では、制御装置は、第2熱交換器の除霜を行う際には、流路切替弁を切替えることで、当該バイパス回路と第2熱交換器とを連通させる。これにより、第2熱交換器を除霜しながら、第1熱交換器を蒸発器として機能させることができる。
このように、特許文献1に記載の空気調和装置では、室外に設置された2つの熱交換器を交互に除霜しながら、室内熱交換器における暖房運転を継続する、暖房デフロスト運転を行うことができる。このため、除霜中においても、室内の快適感が失われるのを防止することができる。
上述したように、一般的に、除霜運転中は、暖房運転を停止するため、室内の温度が低下し、快適性が悪化する。
一方、特許文献1の暖房デフロスト運転中は、暖房運転を継続し、温風を吹き出すことができる。しかしながら、通常の暖房運転よりも暖房能力が低下する場合がある。その場合、室内機から吹き出される風の温度が低下する。この場合、除霜運転ほどではないが、室温が低下し、室内の快適性が悪化する。
本発明は、上記のような課題を解決するためになされたものであり、暖房デフロスト運転中の室温の低下を抑制し、室内の快適性を維持する、空気調和機を提供することを目的としている。
本発明に係る空気調和機は、冷媒を吸入する吸入口と、前記冷媒を吐出する吐出口とを有する圧縮機と、暖房運転時に、前記圧縮機の前記吐出口に接続され、凝縮器として機能する室内熱交換器と、前記暖房運転時に、前記圧縮機の前記吸入口に接続され、蒸発器として機能する室外熱交換器と、前記圧縮機の前記吐出口に接続されたバイパス配管と、前記バイパス配管と前記室外熱交換器との間に設けられた流路切替装置と、前記室内熱交換器に空気を搬送する室内ファンと、前記室内熱交換器の温度を検出する温度検出部と、制御部とを備え、前記室外熱交換器は、冷媒流路が互いに独立した第1熱交換器と第2熱交換器とを含み、前記流路切替装置は、前記制御部からの制御信号に従って、前記第1熱交換器と前記バイパス配管との間の接続と遮断との切替、および、前記第2熱交換器と前記バイパス配管との間の接続と遮断との切替を行い、前記制御部は、前記第1熱交換器と前記第2熱交換器とを蒸発器として機能させるとともに、前記室内熱交換器を凝縮器として機能させる、前記暖房運転と、前記第1熱交換器および前記第2熱交換器の一方を蒸発器、前記第1熱交換器および前記第2熱交換器の他方を凝縮器として機能させるとともに、前記室内熱交換器を凝縮器として機能させる、暖房デフロスト運転とを行うものであって、前記暖房デフロスト運転開始時に前記温度検出部が検出した前記室内熱交換器の温度を第1温度とし、前記暖房デフロスト運転中に前記温度検出部が検出した前記室内熱交換器の温度を第2温度としたとき、前記制御部は、前記暖房デフロスト運転中に、前記第2温度が前記第1温度よりも低く、且つ、前記第1温度と前記第2温度との差が第1設定値以上の場合に、前記室内ファンの回転数を下降させる。
本発明に係る空気調和機によれば、暖房デフロスト運転中の室温の低下を抑制し、室内の快適性を維持することができる。
以下、本発明に係る空気調和機100の実施の形態について図面を参照して説明する。本発明は、以下の実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々に変形することが可能である。また、本発明は、以下の実施の形態に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
実施の形態1.
図1は、実施の形態1に係る空気調和機100の構成を示した構成図である。図1に示すように、空気調和機100は、室外機1と室内機2とを、冷媒配管および電気配線などで接続したセパレート形空気調和機である。空気調和機100は、冷凍サイクルと送風装置と制御系とで構成されている。
図1は、実施の形態1に係る空気調和機100の構成を示した構成図である。図1に示すように、空気調和機100は、室外機1と室内機2とを、冷媒配管および電気配線などで接続したセパレート形空気調和機である。空気調和機100は、冷凍サイクルと送風装置と制御系とで構成されている。
冷凍サイクル3は、圧縮機10、四方弁20、流路切替弁70、室外熱交換器50、膨張弁30、室内熱交換器40、バイパス弁60、バイパス配管80、および、冷媒配管81、82、83、84、85、86A、86B、87A、87B、88、89、91を有する。冷凍サイクル3においては、暖房運転時には、圧縮機10、室内熱交換器40、膨張弁30、室外熱交換器50の順に、冷媒が冷媒流路を循環する。
冷凍サイクル3を流れる冷媒としては、様々な冷媒を採用可能であり、例えば、R32、R410A等を採用し得る。
冷凍サイクル3は、暖房運転、除霜運転、暖房デフロスト運転、および、冷房運転を実行できるように構成されている。
送風装置としては、後述する室内ファン400、室内ファンモータ500、室外ファン95、および、室外ファンモータ96が含まれる。
制御系には、後述する制御部300および制御部301と、温度検出部200などの各種センサとが含まれる。
図1に示すように、室内機2の筐体内には、室内熱交換器40、温度検出部200、室内ファン400、室内ファンモータ500、および、制御部301が収納されている。
室内熱交換器40は、冷媒配管84と冷媒配管83との間に接続されている。室内熱交換器40は、伝熱管と熱交換フィンとを有している。室内熱交換器40は、室内の空気と伝熱管内を流れる冷媒との間の熱交換を行う。室内熱交換器40は、暖房運転時および暖房デフロスト運転時には凝縮器として機能し、除霜運転時および冷房運転時には蒸発器として機能する。
温度検出部200は、室内熱交換器40に設けられている。温度検出部200は、室内熱交換器40の温度を一定周期で検出する。温度検出部200にて検出された室内熱交換器40の温度のデータは、制御部300に設けられた後述するメモリに格納される。メモリに格納される温度のデータは最新のものだけでもよいが、一定期間の履歴データであってもよい。また、温度検出部200は、冷房運転時、暖房運転時および暖房デフロスト運転時の室内熱交換器40の温度を測定する。なお、温度検出部200は、室内熱交換器40の温度として、室内熱交換器40の内部を流れる冷媒の温度を検出してもよい。その場合には、温度検出部200は、室内熱交換器40の伝熱管の表面温度を検出して、それを冷媒の温度として出力するようにしてもよい。あるいは、温度検出部200は、室内熱交換器40の温度として、室内熱交換器40の熱交換フィンの温度を検出してもよい。温度検出部200としては、温度センサ、赤外線センサ等の温度が検出できる各種センサが採用可能である。
室内ファン400は、室内熱交換器40に室内の空気を搬送するように配置されている。例えば、室内ファン400がクロスフローファンの場合、室内ファン400の上流側に室内熱交換器40が配置されている。
室内ファンモータ500は、室内ファン400を駆動する。制御部301は、制御信号を室内ファンモータ500に対して出力することで、室内ファン400の回転数を制御する。室内ファン400の回転数を変更することにより、室内熱交換器40における冷媒と室内の空気との熱交換量を調整することができる。室内ファン400の回転数のデータは、一定周期で、制御部301のメモリに格納される。メモリに格納される回転数のデータは最新のものだけでもよいが、一定期間の履歴データであってもよい。
制御部301は、プロセッサ、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。ROMおよびRAMは、制御部301のメモリである。制御部301には、温度検出部200からの検出信号と、ユーザによる操作を受け付ける操作部からの操作信号とが入力される。制御部301は、入力されたこれらの信号に基づき、室内熱交換器40、室内ファンモータ500および室内ファン400を含む室内機2全体の動作を制御する。また、室内機2の制御部301と室外機1の制御部300とは、互いに必要な情報を通信する。例えば、暖房デフロスト運転の開始および終了の情報は、室外機1の制御部300から室内機2の制御部301に送信される。
室外機1の筐体内には、圧縮機10、四方弁20、膨張弁30、室外熱交換器50、バイパス弁60、流路切替弁70、制御部300、室外ファン95、および、室外ファンモータ96が収納されている。
圧縮機10は、冷媒を吸入する吸入口10aと、冷媒を吐出する吐出口10bとを有する。圧縮機10の吸入口10aは冷媒配管91に接続され、圧縮機10の吐出口10bは冷媒配管81に接続されている。圧縮機10は、冷媒配管91から吸入した低圧冷媒を圧縮し、高圧冷媒として冷媒配管81に吐出する。従って、冷媒配管91は、圧縮機10の吸入配管であり、冷媒配管81は、圧縮機10の吐出配管である。圧縮機10としては、運転周波数を調整可能なインバータ駆動の圧縮機が用いられる。圧縮機10には、運転周波数範囲があらかじめ設定されている。圧縮機10は、制御部300からの制御信号に従って、運転周波数範囲に含まれる可変の運転周波数で動作する。圧縮機10の運転周波数を変更することにより、圧縮機10の出力を調整することができる。圧縮機10は種々のタイプを採用可能であり、例えば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等を採用し得る。
四方弁20は、冷凍サイクル3の冷媒の流れ方向を切り替える第1流路切替装置である。四方弁20は、4つのポートE、F、G、Hを有している。ポートEには冷媒配管89が接続され、ポートFには冷媒配管91が接続され、ポートGには冷媒配管82が接続され、ポートHには冷媒配管83が接続されている。冷媒配管82は、圧縮機10の吐出配管である冷媒配管81に接続されている。
四方弁20は、図1の実線で示すように、ポートEとポートFとが連通するとともにポートGとポートHとが連通する第1状態と、図1の破線で示すように、ポートFとポートHとが連通するとともにポートEとポートGとが連通する第2状態と、をとり得る。四方弁20は、図7に示されるように、制御部300からの制御信号により、暖房運転時および暖房デフロスト運転時には第1状態に設定され、除霜運転時および冷房運転時には第2状態に設定される。なお、図7は、実施の形態1~4に係る空気調和機の各運転モードにおける第1流路切替装置および第2流路切替装置の状態を示した図である。
ここでは、第1流路切替装置として、四方弁20を用いる場合の例を示しているが、その場合に限定されない。第1流路切替装置としては、複数の二方弁または三方弁の組合せを用いることもできる。
このように、第1状態においては、図1の実線で示すように、四方弁20は、ポートEとポートFとが連通されるとともに、ポートGとポートHとが連通される。その結果、冷媒配管82と冷媒配管83とが接続されるとともに、冷媒配管89と冷媒配管91とが接続される。
また、第2状態においては、四方弁20は、図1の破線で示すように、ポートGとポートEとが連通されるとともに、ポートHとポートFとが連通される。その結果、冷媒配管82と冷媒配管89とが接続されるとともに、冷媒配管83と冷媒配管91とが接続される。
室外熱交換器50は、複数の伝熱管と複数の熱交換フィンとを有するフィンチューブ型熱交換器である。室外熱交換器50は、冷媒流路が互いに独立した2つの熱交換器50Aおよび50Bを有している。すなわち、第1熱交換器50Aおよび第2熱交換器50Bは、冷凍サイクル3において互いに並列に接続されている。熱交換器50Aは、鉛直方向において、熱交換器50Bの上側に配置されている。以下では、上側の熱交換器50Aを第1熱交換器50Aと呼び、下側の熱交換器50Bを第2熱交換器50Bと呼ぶ。このように、第1熱交換器50Aと第2熱交換器50Bとは上下に配置されている。第1熱交換器50Aの熱交換フィンと第2熱交換器50Bの熱交換フィンとは、分割されていても、分割されていなくても良い。
第1熱交換器50Aおよび第2熱交換器50Bはいずれも、内部に複数の伝熱管と複数の熱交換フィンとを有している。第1熱交換器50Aおよび第2熱交換器50Bは、伝熱管を流通する冷媒と、室外ファン95により送風される室外の空気との間の熱交換を行う。第1熱交換器50Aおよび第2熱交換器50Bは、暖房運転時には蒸発器として機能し、冷房運転時および除霜運転時には凝縮器として機能する。なお、暖房デフロスト運転時には、第1熱交換器50Aおよび第2熱交換器50Bの一方が蒸発器として機能し、他方が凝縮器として機能する。第1熱交換器50Aおよび第2熱交換器50Bは、凝縮器として機能しているときに、除霜を行うことができる。暖房デフロスト運転では、第1熱交換器50Aおよび第2熱交換器50Bが交互に凝縮器として機能する。
室外ファン95は、室外熱交換器50に室外の空気を搬送するように配置されている。例えば、室外ファン95がプロペラファンの場合、室外ファン95の上流側に室外熱交換器50が配置されている。
室外ファンモータ96は、室外ファン95を駆動する。制御部300は、制御信号を出力することによって、室外ファンモータ96を制御することにより、室外ファン95の回転速度を変更する。室外ファン95の回転速度を変更することにより、室外熱交換器50における冷媒と室外空気との熱交換量を調整することができる。
なお、室外ファン95は、1つのファンから構成されていてもよく、あるいは、2つのファンから構成されていてもよい。室外ファン95が1つのファンから構成されている場合は、当該ファンが、第1熱交換器50Aと第2熱交換器50Bとの両方に対して送風を行う。一方、室外ファン95が2つのファンから構成されている場合には、それらの2つのファンを上下に配置する。
冷媒配管81の一端は、圧縮機10の吐出口10bに接続されている。また、冷媒配管81の他端からバイパス配管80と冷媒配管82とに分岐するように、冷媒配管81の当該他端、バイパス配管80の一端および冷媒配管82の一端が互いに接続されている。冷媒配管82の他端は、四方弁20のポートGに接続される。バイパス配管80の他端はバイパス弁60に接続される。
冷媒配管83は、四方弁20のポートHと室内熱交換器40とを接続する。冷媒配管84は、室内熱交換器40と膨張弁30とを接続する。冷媒配管85の一端は、膨張弁30に接続されている。また、冷媒配管85の他端から冷媒配管86Aと冷媒配管86Bとに分岐するように、冷媒配管85の当該他端、冷媒配管86Aの一端および冷媒配管86Bの一端が、接続点73で、互いに接続されている。
冷媒配管86Aの他端は、第1熱交換器50Aに接続され、冷媒配管86Bの他端は、第2熱交換器50Bに接続される。冷媒配管86Aには、キャピラリチューブ72Aが設けられ、冷媒配管86Bには、キャピラリチューブ72Bが設けられている。
冷媒配管87Aは、第1熱交換器50Aと流路切替弁70のポートB2とを接続し、冷媒配管87Bは、第2熱交換器50Bと流路切替弁70のポートB1とを接続する。
冷媒配管88は、バイパス弁60と流路切替弁70のポートAとを接続する。冷媒配管89は、流路切替弁70のポートCと四方弁20のポートEとを接続する。
冷媒配管91は、四方弁20のポートFと圧縮機10の吸入口10aとを接続する。
膨張弁30は、流入する高圧の冷媒を減圧させて、低圧の冷媒として流出させる減圧装置の一例である。膨張弁30として、制御部300からの制御信号により開度が調整可能な電子膨張弁が用いられる。
バイパス配管80は、圧縮機10の吐出口10bから吐出された冷媒の一部を、第1熱交換器50Aおよび第2熱交換器50Bに供給するホットガスバイパス流路である。バイパス配管80から供給される冷媒は、第1熱交換器50Aおよび第2熱交換器50Bの除霜に利用される。バイパス配管80には、絞り装置としてのバイパス弁60が接続されている。バイパス弁60は、圧縮機10の吐出口10bから吐出された高圧の冷媒を中圧に減圧する。第1熱交換器50Aが除霜対象の場合には、バイパス弁60によって中圧にされた冷媒が、流路切替弁70を介して、第1熱交換器50Aに導かれる。また、第2熱交換器50Bが除霜対象の場合には、バイパス弁60によって中圧にされた冷媒が、流路切替弁70を介して、第2熱交換器50Bに導かれる。なお、バイパス弁60としては、制御部300からの制御信号により開度が調整可能な電子膨張弁が用いられるが、その場合に限らず、毛細管を用いるようにしても良い。
流路切替弁70は、暖房運転時、除霜運転時、冷房運転時、暖房デフロスト運転時とで、冷媒の流れを切り替える第2流路切替装置の一例である。第2流路切替装置は、制御部300からの制御信号に従って、第1熱交換器50Aとバイパス配管80との間の接続と遮断、および、第2熱交換器50Bとバイパス配管80との間の接続と遮断とを切り替える。図1においては、流路切替弁70としては、4つのポートA、B1、B2、Cを備える四方弁が用いられている。流路切替弁70は、制御部300からの制御信号に従って、状態I、状態IIおよび状態IIIをとり得る。状態Iでは、図1の実線で示すように、ポートCとポートB1とが連通するとともに、ポートCとポートB2とが連通するが、ポートAはポートB1およびポートB2のいずれとも連通しない。状態IIでは、ポートAとポートB1とが連通するとともにポートCとポートB2とが連通する。状態IIIでは、ポートAとポートB2とが連通するとともにポートCとポートB1とが連通する。流路切替弁70は、制御部300の制御により、暖房運転時、除霜運転時および冷房運転時には状態Iに設定され、暖房デフロスト運転時には状態IIまたは状態IIIに設定される。
制御部300は、プロセッサ、ROM、RAM、I/Oポート等を備えたマイクロコンピュータを有している。ROMおよびRAMは、制御部300のメモリである。制御部300には、室外機1に対して設けられた各種センサなどからの検出信号と、室内機2から送信されてくる情報とが入力される。制御部300は、入力されたそれらの信号および情報に基づいて、圧縮機10の周波数の変更および室外ファン95の回転数の変更、並びに、四方弁20、膨張弁30、流路切替弁70、および、バイパス弁60の開度の調整を行う。
次に、空気調和機100の動作について説明する。空気調和機100の運転モードには、冷房運転、暖房運転、除霜運転、および、暖房デフロスト運転の4種類がある。除霜運転と暖房デフロスト運転との違いについて説明する。除霜運転は、暖房をいったん停止して、室外熱交換器50の除霜を行う運転である。一方、暖房デフロスト運転は、暖房を行いながら、室外熱交換器50の除霜を行う運転である。以下、4種類の運転モードにおける空気調和機100の動作について説明する。
まず、冷房運転時および除霜運転時の空気調和機100の動作について説明する。冷房運転時および除霜運転時には、四方弁20は、第2状態に設定される。第2状態では、ポートFとポートHとが連通するとともにポートEとポートGとが連通する。また、流路切替弁70は、状態Iに設定される。状態Iでは、ポートCとポートB1が連通するとともに、ポートCとポートB2とが連通する。なお、バイパス弁60は、開いていても、閉じていてもよい。流路切替弁70は、ポートB1とポートCとを連通し、ポートB2とポートCとを連通しているため、冷媒配管88に冷媒が存在していても、ポートAから他のポートに冷媒が流れ出すことはない。冷房運転時と除霜運転時とでは、四方弁20、流路切替弁70およびバイパス弁60の設定は同じである。
圧縮機10の吐出口10bから吐出された高温高圧のガス冷媒は、四方弁20を経由して流路切替弁70で分流し、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれに流入する。冷房運転時および除霜運転時には、第1熱交換器50Aおよび第2熱交換器50Bはいずれも凝縮器として機能する。すなわち、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれに流入したガス冷媒は、凝縮して液冷媒となる。
また、除霜運転時には、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれに霜が付着している。上述したように、第1熱交換器50Aおよび第2熱交換器50Bはいずれも凝縮器として機能している。そのため、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれでは、内部を流通する冷媒からの放熱によって、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれに付着した霜が融解する。これにより、第1熱交換器50Aおよび第2熱交換器50Bの除霜が行われる。
第1熱交換器50Aから流出した液冷媒は、冷媒配管86Aに流入され、キャピラリチューブ72Aで減圧される。第2熱交換器50Bから流出した液冷媒は、冷媒配管86Bに流入され、キャピラリチューブ72Bで減圧される。これらの液冷媒は、冷媒配管86Aと冷媒配管85の接続点73で合流して、膨張弁30に流入される。当該液冷媒は、膨張弁30でさらに減圧され、低圧の二相冷媒となる。膨張弁30から流出した二相冷媒は、冷媒配管84を経由して、室内熱交換器40に流入する。
冷房運転時および除霜運転時には、室内熱交換器40は蒸発器として機能する。すなわち、室内熱交換器40では、内部を流通する冷媒が室内空気から吸熱する。これにより、室内熱交換器40に流入した二相冷媒は蒸発して、低圧のガス冷媒となる。室内熱交換器40から流出したガス冷媒は、冷媒配管83および四方弁20を経由して、圧縮機10の吸入口10aから吸入される。圧縮機10に吸入されたガス冷媒は、圧縮されて高温高圧のガス冷媒となる。冷房運転時および除霜運転時には、以上のサイクルが連続的に繰り返される。
次に、暖房運転時の動作について説明する。暖房運転時には、四方弁20は、第1状態に設定される。第1状態では、ポートEとポートFとが連通されるとともに、ポートGとポートHとが連通される。また、流路切替弁70は、状態Iに設定される。状態Iでは、ポートCとポートB1とが連通するとともに、ポートCとポートB2とが連通する。
これにより、第1熱交換器50Aとバイパス配管80との間は遮断され、第2熱交換器50Bとバイパス配管80との間は遮断される。
圧縮機10は、冷媒配管91から冷媒を吸入して圧縮する。圧縮された冷媒は、冷媒配管81、冷媒配管82、および、四方弁20を経由し、冷媒配管83へ流れる。
次に、当該冷媒は、冷媒配管83から室内熱交換器40に流入される。当該冷媒は、圧縮機10から吐出されて、高温高圧の過熱蒸気となっている。室内熱交換器40は、高温高圧の冷媒と室内の空気との間で熱交換を行う。この熱交換によって、冷媒は凝縮されて液化する。このとき、室内熱交換器40は、凝縮器として機能している。液化した冷媒は、室内熱交換器40から冷媒配管84へ流れる。制御部300は、制御信号を出力することによって、室内ファン400の回転数を調整することができる。室内ファン400の回転数を調整することで、室内熱交換器40に搬送される空気量が変化し、室内熱交換器40における冷媒と空気の交換熱量を調整することができる。
室内熱交換器40から冷媒配管84に流出した冷媒は、膨張弁30に流入される。当該冷媒は、膨張弁30で減圧されて、低圧の二相冷媒となる。膨張弁30から流出した二相冷媒は、冷媒配管85へ流れる。制御部300は、制御信号を出力することによって、膨張弁30の開度を調整することができる。膨張弁30の開度を調整することで冷媒の減圧量を調整することができる。膨張弁30の開度を開方向に変化させると、膨張弁30から出口される冷媒の圧力は上昇する。一方で、膨張弁30の開度を閉方向に変化させると、膨張弁30から出口される冷媒の圧力は低下する。
膨張弁30により減圧されて冷媒配管85に流れ出た冷媒は、冷媒配管86Aと冷媒配管86Bとに分岐する。冷媒配管86Aに流入した二相冷媒は、キャピラリチューブ72Aでさらに減圧され、第1熱交換器50Aに流入する。一方、冷媒配管86Bに流入した二相冷媒は、キャピラリチューブ72Bでさらに減圧され、第2熱交換器50Bに流入する。
暖房運転時には、第1熱交換器50Aおよび第2熱交換器50Bはいずれも蒸発器として機能する。すなわち、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれでは、内部を流通する冷媒と、室外ファン95により送風される室外空気との熱交換が行われ、冷媒が室外空気から吸熱する。これにより、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれに流入した二相冷媒は蒸発して、低圧の過熱冷媒になる。制御部300は、制御信号を出力することによって、室外ファン95の回転数を調整することができる。室外ファン95の回転数を調整することで、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれに搬送される空気量が変化し、第1熱交換器50Aおよび第2熱交換器50Bのそれぞれにおける冷媒と空気の交換熱量を調整することができる。
第1熱交換器50Aから流出した冷媒は冷媒配管87Aに流れ、第2熱交換器50Bから流出した冷媒は冷媒配管87Bに流れる。冷媒配管87Aおよび冷媒配管87Bを流れる冷媒は、流路切替弁70によって、図1の実線のように合流し、ポートCから冷媒配管89へ流れる。冷媒配管89を流れる冷媒は、四方弁20を経由して冷媒配管91から圧縮機10に流れる。暖房運転時には、以上のサイクルが連続的に繰り返される。
なお、暖房運転が行われている間、バイパス弁60の開度は開いていても全閉でもよい。流路切替弁70は、ポートB1とポートCとを連通し、ポートB2とポートCとを連通しているため、冷媒配管88に冷媒が存在していても、ポートAから他のポートに冷媒が流れ出すことはない。
上記のように暖房運転が行われている間、室外熱交換器50に霜が付き、除霜する必要が生じる場合がある。その際は、一旦暖房運転を停止し、除霜運転に切り替え、圧縮機10で圧縮された高温高圧の冷媒を、室外熱交換器50に流すことが考えられる。この場合、暖房運転が中断されるため、室温が低下し、室内の快適性が失われる。
一方、暖房デフロスト運転では、暖房運転を継続しながら、流路切替弁70を動作させて、第1熱交換器50Aおよび第2熱交換器50Bを交互に除霜する。以下では、暖房デフロスト運転について説明する。
暖房デフロスト運転では、四方弁20は、第1状態に設定される。第1状態では、ポートEとポートFとが連通するとともに、ポートGとポートHとが連通する。また、流路切替弁70は、状態IIと状態IIIとに交互に設定される。状態IIでは、ポートAとポートB1とが連通するとともにポートCとポートB2とが連通する。状態IIIでは、ポートAとポートB2とが連通するとともにポートCとポートB1とが連通する。
従って、状態IIでは、第1熱交換器50Aとバイパス配管80との間は遮断され、第2熱交換器50Bとバイパス配管80との間は連通する。一方、状態IIIでは、第1熱交換器50Aとバイパス配管80との間は連通し、第2熱交換器50Bとバイパス配管80との間は遮断される。
暖房運転が行われている間に、室外熱交換器50に霜が付き、例えば、第1熱交換器50Aを除霜する必要が生じた場合、流路切替弁70は状態IIIに設定される。その結果、冷媒配管88と冷媒配管87Aとが接続され、冷媒配管89と冷媒配管87Bとが接続される。これにより、圧縮機10から吐出された高温高圧冷媒の一部が、バイパス配管80に流れ込む。圧縮機10から吐出された高温高圧の残りの冷媒は、冷媒配管82、四方弁20、および、冷媒配管83を経由して、室内熱交換器40に流れる。バイパス配管80に流れ込んだ冷媒は、バイパス弁60によって減圧される。減圧された冷媒は、バイパス弁60から、冷媒配管88、流路切替弁70、および、冷媒配管87Aを経由して、除霜対象である第1熱交換器50Aに流れ込む。このとき、第1熱交換器50Aは、凝縮器として機能している。第1熱交換器50Aに流れ込んだ冷媒は霜と熱交換しながら凝縮し、第1熱交換器50Aの除霜を行う。
このとき、バイパス弁60の開度を変更することで、除霜対象である第1熱交換器50Aに流れ込む冷媒量を調節して、冷媒と霜との交換熱量を調整することができる。バイパス弁60の開度を開方向に変化させると、バイパス弁60の出口の冷媒量が増加して、第1熱交換器50Aを流れる冷媒量が増加し、冷媒と霜との交換熱量が増加する。このとき、室内熱交換器40を流れる冷媒量は減少するため、暖房能力が下がる。一方、バイパス弁60の開度を閉方向に変化させると、バイパス弁60の出口の冷媒量が減少して、第1熱交換器50Aを流れる冷媒量が減少し、冷媒と霜との交換熱量が減少する。このとき、室内熱交換器40を流れる冷媒量は増加するため、暖房能力が上がる。バイパス弁60は、制御部300からの制御信号により制御される。
第1熱交換器50Aで凝縮した冷媒は、冷媒配管86Aと冷媒配管85との接続点73で、室内熱交換器40で凝縮され膨張弁30で減圧された冷媒と合流し、冷媒配管86Bに流れる。
冷媒配管86Bに流れた冷媒は、第2熱交換器50Bに流れ込み、蒸発する。このとき、第2熱交換器50Bは、蒸発器として機能している。その後、当該冷媒は、冷媒配管87B、流路切替弁70、冷媒配管89、四方弁20、および、冷媒配管91を経由して、圧縮機10に戻る。
一方、暖房運転が行われている間に、室外熱交換器50に霜が付き、例えば、第2熱交換器50Bを除霜する必要が生じた場合、流路切替弁70は状態IIに設定される。その結果、冷媒配管88と冷媒配管87Bとが接続され、冷媒配管87Aと冷媒配管89とが接続される。これにより、圧縮機10から吐出された高温高圧冷媒の一部が、バイパス配管80に流れ込む。圧縮機10から吐出された高温高圧の残りの冷媒は、冷媒配管82、四方弁20、および、冷媒配管83を経由して、室内熱交換器40に流れる。バイパス配管80に流れ込んだ冷媒は、バイパス弁60によって減圧される。減圧された冷媒は、バイパス弁60から、冷媒配管88、流路切替弁70、および、冷媒配管87Bを経由して、除霜対象である第2熱交換器50Bに流れ込む。第2熱交換器50Bに流れ込んだ冷媒は霜と熱交換しながら凝縮し、第2熱交換器50Bの除霜を行う。このとき、第2熱交換器50Bは、凝縮器として機能している。
このとき、制御部300からの制御信号によってバイパス弁60の開度を変更することで、除霜対象である第2熱交換器50Bに流れ込む冷媒量を調節して、冷媒と霜との交換熱量を調整することができる。このときの動作は、除霜対象が第1熱交換器50Aの場合と同じであるため、上記の説明を参照し、ここでは詳細な説明は省略する。
第2熱交換器50Bで凝縮した冷媒は、冷媒配管86Bと冷媒配管85との接続点73で、室内熱交換器40で凝縮され膨張弁30で減圧された冷媒と合流し、冷媒配管86Aに流れる。
冷媒配管86Aに流れた冷媒は、第1熱交換器50Aに流れ込み、蒸発する。このとき、第1熱交換器50Aは、蒸発器として機能している。その後、当該冷媒は、冷媒配管87A、流路切替弁70、冷媒配管89、四方弁20、および、冷媒配管91を経由して、圧縮機10に戻る。
暖房デフロスト運転においては、暖房を継続しながら、第1熱交換器50Aの除霜と、第2熱交換器50Bの除霜とを交互に行う。第1熱交換器50Aを除霜する場合と第2熱交換器50Bを除霜する場合とでは、流路切替弁70の状態のみが異なる。すなわち、流路切替弁70が状態IIIに設定された場合、第1熱交換器50Aの除霜が行われ、第2熱交換器50Bは蒸発器として機能する。一方、流路切替弁70が状態IIに設定された場合、第2熱交換器50Bの除霜が行われ、第1熱交換器50Aは蒸発器として機能する。このように、第1熱交換器50Aまたは第2熱交換器50Bの一方が蒸発器として機能するため、暖房運転を継続することができる。なお、暖房デフロスト運転では、第1熱交換器50Aの除霜と第2熱交換器50Bの除霜とが少なくとも1回ずつ行われることが望ましい。また、除霜により発生する水が、下側の第2熱交換器50Bに溜まることを考慮すると、最初に第2熱交換器50Bの除霜、次に第1熱交換器50Aの除霜、最後に第2熱交換器50Bという順序で除霜を行うことが、より望ましい。
ここからは、暖房デフロスト運転における、快適性に関する課題と実施の形態1による解決策について説明する。
暖房デフロスト運転中は、蒸発器となる室外熱交換器50が、通常の暖房運転時と比べて半減する。すなわち、通常の暖房運転時では、室外熱交換器50において、第1熱交換器50Aと第2熱交換器50Bとの両方が蒸発器として機能する。一方、暖房デフロスト運転中は、室外熱交換器50において、第1熱交換器50Aおよび第2熱交換器50Bのいずれか一方のみが蒸発器として機能し、他方は凝縮器として機能する。そのため、暖房能力が低下しやすい。暖房能力が低下すると、室内熱交換器40の温度が低下して、吹き出し温度が低下し、その結果、室温が低下し快適性が悪化する。
上記課題を解決するため、実施の形態1では、制御部301が、室内熱交換器40の温度に応じて、室内ファン400の回転数を制御する。以下、図2および図3を用いて、室内ファン400の回転数の制御方法について説明する。図2は、実施の形態1に係る空気調和機100における室内ファン400の回転数の制御方法を説明する図である。図3は、実施の形態1に係る空気調和機100における室内ファン400の回転数の制御処理の流れを示すフローチャートである。
まず、はじめに、図2を用いて、実施の形態1に係る空気調和機100における室内ファン400の回転数の制御方法の概要について説明する。
制御部301は、暖房デフロスト運転開始時の室内熱交換器40の温度Temを基準にして、暖房デフロスト運転中の室内ファン400の回転数Rotを上昇および下降させる。これにより、制御部301は、暖房デフロスト運転中の室内機2の吹き出し温度と暖房能力の過度な低下を防ぐように制御することができる。
図2において、暖房デフロスト運転開始時の室内熱交換器40の温度Temは、温度T1℃である。従って、温度T1℃が、基準となる。室内熱交換器40の温度Temは、温度検出部200により検出される。以下では、基準となる温度T1℃を、第1温度と呼ぶ。また、図2において、回転数R1は、暖房デフロスト運転開始時の室内ファン400の回転数Rotである。時刻P1は、暖房デフロスト運転が開始された時刻を示す。また、時刻P2は、室内熱交換器40の温度Temが、(T1-a)℃になった時刻を示す。また、時刻P3は、室内熱交換器40の温度Temが、(T1+b)℃になった時刻を示す。ここで、aおよびbは、a≧0およびb≧0で、共に、予め設定された値である。以下では、aおよびbを、それぞれ、第1設定値aおよび第2設定値bと呼ぶ。
図2に示すように、時刻P1で暖房デフロスト運転が開始された後は、室内熱交換器40の温度Temは徐々に低下する。温度検出部200は、暖房デフロスト運転時の室内熱交換器40の温度Temを、予め設定された周期で検出する。以下では、暖房デフロスト運転中の室内熱交換器40の温度Temを、第2温度と呼ぶ。制御部301は、第2温度が第1温度より低く、且つ、第1温度と第2温度との差が第1設定値a以上の場合に、室内ファン400の回転数Rotを徐々に低下させる。言い換えると、室内熱交換器40の第2温度が(T1-a)℃になった時点、すなわち、時刻P2の時点から、制御部301は、室内ファン400の回転数Rotを徐々に下降させる。図2の例では、制御部301が、一定の時間幅で、室内ファン400の回転数Rotを、一定の下降率で、階段状に下降させている。しかしながら、この場合に限らず、室内ファン400の回転数Rotは、経過時間に比例させて、一定の下降率で、直線状に下降させてもよい。室内ファン400の回転数Rotを下降させることにより、室内熱交換器40の温度Temが上昇し、室内機2の吹き出し温度の低下を防ぐことができる。但し、このとき、室内熱交換器40の温度Temが上昇し始めるまでには時間がかかるため、時刻P2の時点から一定時間が経過した後に、室内熱交換器40の温度Temが上昇し始める。
一方、室内ファン400の回転数Rotを低下させると、室内ファン400から室内熱交換器40へ搬送される風量が減少する。その結果、室内の暖房負荷に対して暖房能力が不足し、室温が低下する可能性がある。そのため、制御部301において、暖房能力の不足を防ぐため、室内ファン400の回転数Rotの下限値を予め設けておいても良い。その場合、制御部301は、室内ファン400の回転数Rotが下限値を下回らないように制御する。また、当該下限値は、制御部301のメモリに予め格納されている。
時刻P2と時刻P3との間では、室内ファン400の回転数Rotを低くしたことにより、室内熱交換器40の温度Temが、徐々に上昇する。制御部301は、第2温度が第1温度より高く、且つ、第1温度と第2温度との差が第2設定値b以上の場合に、室内ファン400の回転数Rotを徐々に上昇させる。言い換えると、室内熱交換器40の第2温度が(T1+b)℃になった時点、すなわち、時刻P3の時点から、制御部301は、室内ファン400の回転数Rotを徐々に上昇させる。図2の例では、制御部301が、一定の時間幅で、室内ファン400の回転数Rotを、一定の上昇率で、階段状に上昇させている。しかしながら、この場合に限らず、室内ファン400の回転数Rotは、経過時間に比例させて、一定の上昇率で、直線状に上昇させてもよい。室内ファン400の回転数Rotを上昇させると、室内ファン400から室内熱交換器40へ搬送される風量が増加する。その結果、室内の暖房負荷に対する暖房能力が上がり、室温の低下を防ぐことができる。
このように、制御部301が、第1温度である温度T1を基準にして、室内ファン400の回転数Rotを上昇および下降させることで、室内機2の吹き出し温度と暖房能力の過度な低下を防ぐことができる。その結果、室内機2の吹き出し温度と暖房能力との両立が可能となる。
なお、経過時間に対する室内ファン400の回転数Rotの上昇率は、経過時刻に対する室内ファン400の回転数の下降率と同じか、それよりも大きくなるように設定される。言い換えれば、室内ファン400の回転数Rotを上昇させるときの回転数Rotの上昇速度は、室内ファン400の回転数を下降させるときの回転数Rotの下降速度と同じか、あるいは、下降速度より大きい。従って、室内ファン400の回転数Rotが、R2からR1まで上昇する所要時間(P4-P3)は、室内ファン400の回転数Rotが、R1からR2まで低下する所要時間(P3-P2)と同じか、それよりも短い。
また、上記の説明では、室内ファン400の回転数Rotを上昇させるときの回転数Rotの上昇速度が一定であると説明したが、その場合に限らず、上昇速度は可変でもよい。また、同様に、室内ファン400の回転数を下降させるときの回転数Rotの下降速度が一定であると説明したが、その場合に限らず、下降速度は可変でもよい。
次に、図3を用いて、実施の形態1に係る空気調和機100における室内ファン回転数制御の処理の流れについて説明する。図3の処理は、暖房デフロスト運転時に行われる。
まず、ステップS1において、制御部301は、暖房デフロスト運転開始時に、温度検出部200を用いて、室内熱交換器40の温度Temを検出して、制御部301のメモリに記憶する。このときの温度Temは、基準として用いられる第1温度となる温度T1である。すなわち、図2の例でいえば、時刻P1における温度Temである。
あるいは、別の方法として、ステップS1において、制御部301が、制御部301のメモリから、温度検出部200が空気調和機100の暖房運転中の最後に測定した室内熱交換器40の温度Temを、基準となる第1温度として取得するようにしてもよい。
次に、ステップS2において、制御部301は、暖房デフロスト運転開始時の室内ファン400の回転数Rotを検出する。このときの回転数Rotは、図2の例でいえば、時刻P1における回転数R1である。
あるいは、別の方法として、ステップS2において、制御部301が、制御部301のメモリから、空気調和機100の暖房運転中の最後に測定した室内ファン400の回転数Rotを、暖房デフロスト運転開始時の回転数として取得するようにしてもよい。
次に、ステップS3において、制御部301は、温度検出部200を用いて、室内熱交換器40の温度Temを検出する。
次に、ステップS4において、制御部301は、室外機1の制御部300からの情報に基づいて、空気調和機100が暖房デフロスト運転を終了したかを判定する。制御部301は、空気調和機100が暖房デフロスト運転を終了したと判定した場合は、ステップS11に進む。一方、制御部301は、空気調和機100が暖房デフロスト運転を終了していないと判定した場合は、ステップS5に進む。
ステップS5では、制御部301は、ステップS3で取得した室内熱交換器40の温度Temが、(T1-a)℃以下か判定する。制御部301は、室内熱交換器40の温度Temが、(T1-a)℃より高いと判定した場合は、ステップS3の処理に戻る。一方、制御部301は、室内熱交換器40の温度Temが、(T1-a)℃以下であると判定した場合は、ステップS6に進む。
このように、制御部301は、ステップS4の判定で「YES」となるまで、ステップS3からステップS5の「NO」までのループを繰り返す。ステップS3からステップS5の「NO」までのループは、図2の例でいえば、時刻P1から時刻P2の間である。
ステップS6は、図2の例でいえば、時刻P2の時点である。ステップS6では、制御部301は、室内ファン400の回転数Rotを徐々に低下させる。
次に、ステップS7では、制御部301は、再度、温度検出部200を用いて、室内熱交換器40の温度Temを検出する。このときの温度Temは、暖房デフロスト運転時の温度であり、第2温度である。
次に、ステップS8において、制御部301は、室外機1の制御部300からの情報に基づいて、空気調和機100が暖房デフロスト運転を終了したかを判定する。制御部301は、空気調和機100が暖房デフロスト運転を終了したと判定した場合は、ステップS11に進む。一方、制御部301は、空気調和機100が暖房デフロスト運転を終了していないと判定した場合は、ステップS9に進む。
ステップS9では、制御部301は、ステップS7で取得した室内熱交換器40の温度Temが、(T1+b)℃以上か判定する。制御部301は、室内熱交換器40の温度Temが、(T1+b)℃より低いと判定した場合は、ステップS6の処理に戻る。一方、制御部301は、室内熱交換器40の温度Temが、(T1+b)℃以上であると判定した場合は、ステップS10に進む。
このように、制御部301は、ステップS8の判定で「YES」となるまで、ステップS6からステップS9の「NO」までのループを繰り返す。ステップS6からステップS9の「NO」までのループは、図2の例でいえば、時刻P2から時刻P3の間である。
ステップS10は、図2の例でいうと、時刻P3の時点である。ステップS10では、制御部301は、室内ファン400の回転数Rotを徐々に上昇させる。その後、ステップS3に戻り、ステップS3からステップS10の処理を繰り返す。
ステップS11では、空気調和機100が、暖房デフロスト運転を終了して、暖房運転を再開している。そのため、制御部301は、ユーザがリモコン等によって設定した室内ファン400の回転数Rotで制御を行う。このときの室内ファン400の回転数Rotの変化速度は一定でも良いし可変させても良い。また、瞬間的に変化させても良い。
このように、実施の形態1では、暖房デフロスト運転中の室内ファン400回転数Rotは、暖房デフロスト運転開始前の室内熱交換器40の温度T1を基準として、上昇および下降させる。これにより、制御部301は、暖房デフロスト運転中の室内機2の吹き出し温度と暖房能力の過度な低下を防ぐように制御することができる。
室内ファン400の回転数Rotは、徐々に下降させずに、瞬間的に下降させても良い。しかしながら、その場合には、室内熱交換器40の温度Temが急上昇し、室内機2の吐出圧力が急上昇する。その結果、圧縮機10の保護制御によって、圧縮機10の周波数が低下する可能性がある。その場合、冷媒流量が減少し、デフロスト能力が低下して、霜の溶け残りが起きる可能性がある。また、室内熱交換器40の温度Temが低下して、快適性が悪化する可能性がある。そのため、室内ファン400の回転数Rotは、瞬間的に下降させずに、ある程度の時間をかけて、徐々に下降させるほうが望ましい。
また、室内ファン400の回転数Rotは、徐々に上昇させずに、瞬間的に上昇させても良い。しかしながら、その場合には、室内熱交換器40の温度Temが急激に低下し、室内機2の吹き出し温度が低下して、室内の快適性が悪化する恐れがある。また、風量または風音の変化によって、使用者が違和感を覚える恐れがある。そのため、室内ファン400の回転数Rotは、瞬間的に上昇させずに、ある程度の時間をかけて、徐々に上昇させるほうが望ましい。
また、室内ファン400の回転数Rotを上昇させる速度が遅いと、暖房デフロスト運転中に室内熱交換器40の温度が急上昇し、凝縮圧力保護によって圧縮機10の周波数が制限される恐れがある。制限がかかると、冷媒流量が減少し、デフロスト能力が低下して、霜の溶け残りが起きる可能性がある。また、室内熱交換器40の温度Temが低下し、快適性が悪化する可能性がある。そのため、上述したように、室内ファン400の回転数Rotを上昇させる速度は、少なくとも室内ファン400の回転数を下降させる速度と同じか、それよりも速くする必要がある。従って、実施の形態1では、上述したように、経過時間に対する室内ファン400の回転数Rotの上昇率は、経過時刻に対する室内ファン400の回転数の下降率と同じか、それよりも大きくなるように設定される。
室内ファン400の回転数Rotの上限値は設けなくても良いが、ユーザがリモコン等によって設定した室内ファン400の回転数を上限値として設定することで、風量または風音の変化によってユーザが違和感を覚えることを防ぐことができる。この場合、制御部301は、室内ファン400の回転数Rotが上限値を超えないように制御する。
上記のように、暖房デフロスト運転開始前の室内熱交換器40の温度T1を基準として、暖房デフロスト運転中の室内ファン400の回転数Rotを下降および上昇させるように制御することによって、暖房デフロスト運転中の吹き出し温度の低下と過度な暖房能力の低下を抑えることができる。その結果、室温を低下させずに快適性を悪化させることのない暖房デフロスト運転が可能になる。
以上のように、実施の形態1では、暖房デフロスト運転が開始される前の室内熱交換器40の温度を第1温度とし、暖房デフロスト運転時の室内熱交換器40の温度を第2温度としたとき、第2温度が第1温度よりも低く、且つ、第1温度と第2温度との差が第1設定値a以上の場合に、制御部301は室内ファン400の回転数を下降させる。これにより、室内熱交換器40の温度を上昇させることができる。その結果、暖房デフロスト運転中の室内機2の吹き出し温度の低下を防ぐことができる。こうして、実施の形態1では、室温を低下させずに、快適性を悪化させることのない、暖房デフロスト運転を行うことができる。
また、実施の形態1では、制御部301は、第2温度が第1温度よりも高く、且つ、第1温度と第2温度との差が第2設定値b以上の場合に、室内ファン400の回転数Rotを上昇させる。これにより、暖房能力の低下を抑えることができる。こうして、実施の形態1では、暖房デフロスト運転中の室内機2の吹き出し温度と暖房能力の過度な低下を防ぐことができる。その結果、実施の形態1では、室温を低下させずに、快適性を悪化させることのない、暖房デフロスト運転を行うことができる。
実施の形態2.
図4は、実施の形態2に係る空気調和機100の構成を示した構成図である。図1と図4との違いは、図4においては、図1の流路切替弁70の代わりに、4つの開閉弁70A、70B、70Cおよび70Dが設けられている。
図4は、実施の形態2に係る空気調和機100の構成を示した構成図である。図1と図4との違いは、図4においては、図1の流路切替弁70の代わりに、4つの開閉弁70A、70B、70Cおよび70Dが設けられている。
また、図4においては、冷媒配管88が、途中で、冷媒配管88Aと冷媒配管88Bとに分岐されている。冷媒配管88Aは、接続点74で、冷媒配管87Aに接続されている。また、冷媒配管88Bは、接続点75で、冷媒配管87Bに接続されている。
また、図4においては、冷媒配管89が、分岐点76で分岐して、冷媒配管87Aと冷媒配管87Bとに接続されている。
開閉弁70Aは、冷媒配管88Aに設けられている。開閉弁70Bは、冷媒配管88Bに設けられている。開閉弁70Cは、冷媒配管87Aのうち、接続点74と分岐点76との間に接続されている。開閉弁70Dは、冷媒配管87Bのうち、接続点75と分岐点76との間に接続されている。
上記の実施の形態1では、第2流路切替装置が、一体型の弁から構成された流路切替弁70であったが、図4のように、第2流路切替装置を、4つの開閉弁70A、70B、70Cおよび70Dから構成するようにしてもよい。開閉弁70A、70B、70C、70Dのそれぞれは、例えば電磁弁から構成される。他の構成については、図1と同じであるため、同一符号を付して示し、ここでは、その説明を省略する。
4つの開閉弁70A、70B、70C、70Dは、暖房運転時と、除霜運転時および冷房運転時と、暖房デフロスト運転時とで、冷媒の流れを切り替える、第2流路切替装置を構成している。第2流路切替装置は、制御部300からの制御信号により、ポートの接続を変更することで、実施の形態1で説明した状態I、状態IIおよび状態IIIをとり得る。
状態Iでは、開閉弁70Cが開状態となって冷媒配管89と冷媒配管87Aとが連通するとともに、開閉弁70Dが開状態となって冷媒配管89と冷媒配管87Bとが連通する。このとき、開閉弁70A、70Bは、閉状態となっている。
状態IIでは、開閉弁70Bが開状態となって冷媒配管88と冷媒配管87Bとが連通するとともに、開閉弁70Cが開状態となって冷媒配管89と冷媒配管87Aとが連通する。このとき、開閉弁70A、70Dは、閉状態となっている。
状態IIIでは、開閉弁70Aが開状態となって冷媒配管88と冷媒配管87Aとが連通するとともに、開閉弁70Dが開状態となって冷媒配管89と冷媒配管87Bとが連通する。このとき、開閉弁70B、70Cは、閉状態となっている。
開閉弁70A、70B、70Cおよび70Dは、制御部300の制御により、暖房運転時、除霜運転時および冷房運転時には状態Iに設定され、暖房デフロスト運転時には状態IIまたは状態IIIに設定される。図7に示すように、実施の形態2における、各運転モード時の第1流路切替装置である四方弁20の状態、および、第2流路切替装置の状態は、実施の形態1と同じである。
他の動作については、実施の形態1と同じであるため、ここでは、その説明を省略する。
このように、実施の形態2においては、第2流路切替装置が、開閉弁70A、70B、70Cおよび70Dの開閉により、実施の形態1で説明した状態I、状態IIおよび状態IIIをとり得る。その結果、空気調和機100が、実施の形態1と同様の動作を行うことができる。そのため、実施の形態2においても、実施の形態1と同様の効果を得ることができる。
実施の形態3.
図5は、実施の形態3に係る空気調和機100の構成を示した構成図である。図1と図5との違いは、図5においては、図1の流路切替弁70の代わりに、2つの三方弁600および700が設けられている。また、図5においては、冷媒配管89が、分岐点77で分岐して、冷媒配管93と冷媒配管94とに接続されている。
図5は、実施の形態3に係る空気調和機100の構成を示した構成図である。図1と図5との違いは、図5においては、図1の流路切替弁70の代わりに、2つの三方弁600および700が設けられている。また、図5においては、冷媒配管89が、分岐点77で分岐して、冷媒配管93と冷媒配管94とに接続されている。
三方弁600は、3つのポートJ、K、Lを有している。ポートJは、冷媒配管88に接続されている。ポートKは、冷媒配管87Aに接続されている。ポートLは、冷媒配管93に接続されている。
三方弁700は、3つのポートM、N、Pを有している。ポートMは、冷媒配管88に接続されている。ポートNは、冷媒配管87Bに接続されている。ポートPは、冷媒配管94に接続されている。
他の構成については、図1と同じであるため、同一符号を付して示し、ここでは、その説明を省略する。
三方弁600および700は、暖房運転時と、除霜運転時および冷房運転時と、暖房デフロスト運転時とで、冷媒の流れを切り替える第2流路切替装置を構成している。第2流路切替装置は、制御部300からの制御信号により、三方弁600および700のポートの連通状態を切り替えることにより、実施の形態1で説明した状態I、状態IIおよび状態IIIをとり得る。
状態Iでは、ポートLとポートKとが連通して冷媒配管89と冷媒配管87Aとが連通するとともに、ポートPとポートNとが連通して冷媒配管89と冷媒配管87Bとが連通する。
状態IIでは、ポートMとポートNとが連通して冷媒配管88と冷媒配管87Bとが連通するとともに、ポートLとポートKとが連通して冷媒配管89と冷媒配管87Aとが連通する。
状態IIIでは、ポートJとポートKとが連通して冷媒配管88と冷媒配管87Aとが連通するとともに、ポートPとポートNとが連通して冷媒配管89と冷媒配管87Bとが連通する。
三方弁600および700は、制御部300の制御により、暖房運転時、除霜運転時および冷房運転時には状態Iに設定され、暖房デフロスト運転時には状態IIまたは状態IIIに設定される。図7に示すように、実施の形態3における、各運転モード時の第1流路切替装置である四方弁20の状態、および、第2流路切替装置の状態は、実施の形態1と同じである。
他の動作については、実施の形態1と同じであるため、ここでは、その説明を省略する。
このように、実施の形態3においては、制御部300が、三方弁600および700のポートの連通状態を切り替えることにより、実施の形態1で説明した状態I、状態IIおよび状態IIIをとり得る。その結果、空気調和機100が、実施の形態1と同様の動作を行うことができる。そのため、実施の形態3においても、実施の形態1と同様の効果を得ることができる。
実施の形態4.
図6は、実施の形態4に係る空気調和機100の構成を示した構成図である。図1と図6との主な違いは、図6においては、図1の流路切替弁70の代わりに、2つの四方弁800および900が設けられている。四方弁800および900は差圧で動作する弁を想定しているため、差圧を確保するために逆止弁90を使用している。以下に、図6の構成について説明する。
図6は、実施の形態4に係る空気調和機100の構成を示した構成図である。図1と図6との主な違いは、図6においては、図1の流路切替弁70の代わりに、2つの四方弁800および900が設けられている。四方弁800および900は差圧で動作する弁を想定しているため、差圧を確保するために逆止弁90を使用している。以下に、図6の構成について説明する。
四方弁800は、4つのポートQ、R、S、Tを有している。ポートRは、冷媒が漏れ出すことのないように閉塞されている。ポートSは、冷媒配管93に接続されている。ポートTは、冷媒配管87Aに接続されている。ポートQについては後述する。
四方弁900は、4つのポートU、V、W、Xを有している。ポートVは、冷媒が漏れ出すことのないように閉塞されている。ポートWは、冷媒配管94に接続されている。ポートXは、冷媒配管87Bに接続されている。ポートUについては後述する。
四方弁20、四方弁800および四方弁900はいずれも、吐出圧力および吸入圧力の差圧によって動作する差圧駆動式の四方弁である。四方弁20、四方弁800および四方弁900としては、同一構成の四方弁を用いることができる。なお、四方弁800はポートRが閉塞され、四方弁900はポートVが閉塞されている。そのため、四方弁800および900としては、同一構成の三方弁を用いることもできる。
図6においては、バイパス弁60に接続された冷媒配管88が、分岐点105で分岐され、一方が四方弁800のポートQに接続され、他方が四方弁900のポートUに接続されている。
冷媒配管88のうち、バイパス弁60と分岐点105との間には、別の分岐点106が設けられている。分岐点106と逆止弁90とは冷媒配管93により接続されている。また、逆止弁90と四方弁20のポートEとは冷媒配管92により接続されている。
逆止弁90は、四方弁20のポートEから冷媒配管88に向かう方向の冷媒の流れを許容し、冷媒配管88からポートEに向かう方向の冷媒の流れを阻止する。逆止弁90としては、制御部300の制御により開閉する電磁弁又は電動弁等の開閉弁を用いる。しかしながら、この場合に限らず、逆止弁90として、弁の上流側と下流側との圧力差によって開閉される開閉弁を用いるようにしてもよい。その場合、開閉弁の上流側の圧力が下流側の圧力よりも大きい場合に開状態となり、下流側の圧力が上流側の圧力よりも大きい場合に閉状態になる。このように、逆止弁90としては、一方向の冷媒の流れを許容し、逆方向の冷媒の流れが阻止できるものであれば、任意の装置を使用することができる。
冷媒配管91の途中に設けられた分岐点101には、冷媒配管103の一端が接続されている。冷媒配管103の他端は、分岐点104で、冷媒配管93と冷媒配管94とに分岐している。冷媒配管93は、四方弁800のポートSに接続されている。冷媒配管94は、四方弁900のポートWに接続されている。
四方弁800のポートTは、冷媒配管87Aを介して、第1熱交換器50Aに接続されている。四方弁900のポートXは、冷媒配管87Bを介して、第2熱交換器50Bに接続されている。
なお、他の構成および動作は、実施の形態1と同じであるため、同一符号を付して示し、ここでは、その説明を省略する。
四方弁800および900は、暖房運転時と、除霜運転時および冷房運転時と、暖房デフロスト運転時とで、冷媒の流れを切り替える第2流路切替装置を構成している。第2流路切替装置は、制御部300からの制御信号により、四方弁800および900のポートの連通状態を切り替えることにより、実施の形態1で説明した状態I、状態IIおよび状態IIIをとり得る。
状態Iでは、ポートSとポートTとが連通して冷媒配管103と冷媒配管87Aとが連通するとともに、ポートWとポートXとが連通して冷媒配管103と冷媒配管87Bとが連通する。
状態IIでは、ポートUとポートXとが連通して冷媒配管88と冷媒配管87Bとが連通するとともに、ポートSとポートTとが連通して冷媒配管103と冷媒配管87Aとが連通する。
状態IIIでは、ポートQとポートTとが連通して冷媒配管88と冷媒配管87Aとが連通するとともに、ポートWとポートXとが連通して冷媒配管103と冷媒配管87Bとが連通する。
四方弁800および900は、制御部300からの制御信号により、暖房運転時、除霜運転時および冷房運転時には状態Iに設定され、暖房デフロスト運転時には状態IIまたは状態IIIに設定される。図7に示すように、実施の形態4における、各運転モード時の第1流路切替装置である四方弁20の状態、および、第2流路切替装置の状態は、実施の形態1と同じである。
他の動作については、実施の形態1と同じであるため、ここでは、その説明を省略する。
このように、実施の形態4においては、制御部300が、四方弁800および900のポートの連通状態を切り替えることにより、実施の形態1で説明した状態I、状態IIおよび状態IIIをとり得る。その結果、空気調和機100が、実施の形態1と同様の動作を行うことができる。そのため、実施の形態4においても、実施の形態1と同様の効果を得ることができる。
なお、上記の実施の形態1~4においては、空気調和機100の運転モードとして、除霜運転を含む例について説明したが、その場合に限らず、除霜運転の運転モードは設定しなくてもよい。その場合には、冷房運転、暖房運転、および、暖房デフロスト運転の3種類の運転モードとなる。また、さらに、冷房運転の運転モードも設定しなくてもよい。その場合には、暖房運転、および、暖房デフロスト運転の2種類の運転モードとなる。
1 室外機、2 室内機、3 冷凍サイクル、10 圧縮機、10a 吸入口、10b 吐出口、20 四方弁、30 膨張弁、40 室内熱交換器、50 室外熱交換器、50A 第1熱交換器、50B 第2熱交換器、60 バイパス弁、70 流路切替弁、70A,70B,70C,70D 開閉弁、72A キャピラリチューブ、72B キャピラリチューブ、73 接続点、74 接続点、75 接続点、76 分岐点、77 分岐点、80 バイパス配管、81 冷媒配管、82 冷媒配管、83 冷媒配管、84 冷媒配管、85 冷媒配管、86A 冷媒配管、86B 冷媒配管、87A 冷媒配管、87B 冷媒配管、88 冷媒配管、88A 冷媒配管、88B 冷媒配管、89 冷媒配管、90 逆止弁、91 冷媒配管、92 冷媒配管、93 冷媒配管、94 冷媒配管、95 室外ファン、96 室外ファンモータ、100 空気調和機、101 分岐点、103 冷媒配管、104 分岐点、105 分岐点、106 分岐点、200 温度検出部、300 制御部、301 制御部、400 室内ファン、500 室内ファンモータ、600 三方弁、700 三方弁、800 四方弁、900 四方弁。
Claims (7)
- 冷媒を吸入する吸入口と、前記冷媒を吐出する吐出口とを有する圧縮機と、
暖房運転時に、前記圧縮機の前記吐出口に接続され、凝縮器として機能する室内熱交換器と、
前記暖房運転時に、前記圧縮機の前記吸入口に接続され、蒸発器として機能する室外熱交換器と、
前記圧縮機の前記吐出口に接続されたバイパス配管と、
前記バイパス配管と前記室外熱交換器との間に設けられた流路切替装置と、
前記室内熱交換器に空気を搬送する室内ファンと、
前記室内熱交換器の温度を検出する温度検出部と、
制御部と
を備え、
前記室外熱交換器は、冷媒流路が互いに独立した第1熱交換器と第2熱交換器とを含み、
前記流路切替装置は、前記制御部からの制御信号に従って、前記第1熱交換器と前記バイパス配管との間の接続と遮断との切替、および、前記第2熱交換器と前記バイパス配管との間の接続と遮断との切替を行い、
前記制御部は、
前記第1熱交換器と前記第2熱交換器とを蒸発器として機能させるとともに、前記室内熱交換器を凝縮器として機能させる、前記暖房運転と、
前記第1熱交換器および前記第2熱交換器の一方を蒸発器、前記第1熱交換器および前記第2熱交換器の他方を凝縮器として機能させるとともに、前記室内熱交換器を凝縮器として機能させる、暖房デフロスト運転と
を行うものであって、
前記暖房デフロスト運転開始時に前記温度検出部が検出した前記室内熱交換器の温度を第1温度とし、
前記暖房デフロスト運転中に前記温度検出部が検出した前記室内熱交換器の温度を第2温度としたとき、
前記制御部は、前記暖房デフロスト運転中に、前記第2温度が前記第1温度よりも低く、且つ、前記第1温度と前記第2温度との差が第1設定値以上の場合に、前記室内ファンの回転数を下降させる、
空気調和機。 - 前記制御部は、
前記暖房運転時には、前記流路切替装置によって、前記第1熱交換器と前記バイパス配管との間、および、前記第2熱交換器と前記バイパス配管との間を遮断して、前記第1熱交換器と前記第2熱交換器とを蒸発器として機能させるとともに、前記室内熱交換器を凝縮器として機能させ、
前記暖房デフロスト運転時には、前記流路切替装置によって、前記第1熱交換器および前記第2熱交換器の前記一方と前記バイパス配管との間を接続し、前記第1熱交換器および前記第2熱交換器の前記他方と前記バイパス配管との間を遮断して、前記第1熱交換器および前記第2熱交換器の前記一方と前記室内熱交換器とを凝縮器として機能させ、前記第1熱交換器および前記第2熱交換器の前記他方を蒸発器として機能させる、
請求項1に記載の空気調和機。 - 前記制御部は、前記暖房デフロスト運転中に、前記第2温度が前記第1温度よりも高く、且つ、前記第1温度と前記第2温度との差が第2設定値以上の場合に、前記室内ファンの前記回転数を上昇させる、
請求項1または2に記載の空気調和機。 - 前記室内ファンの前記回転数を上昇させるときの前記回転数の上昇速度は、前記室内ファンの前記回転数を下降させるときの前記回転数の下降速度と同じか、あるいは、大きい、
請求項3に記載の空気調和機。 - 前記制御部は、
前記室内ファンの前記回転数が、下限値よりも下降しないように制御する、
請求項1~4のいずれか1項に記載の空気調和機。 - 前記制御部は、
前記室内ファンの前記回転数が、上限値よりも上昇しないように制御する、
請求項1~5のいずれか1項に記載の空気調和機。 - 前記第1熱交換器は、前記第2熱交換器に対して、鉛直方向の上側に配置されている、
請求項1~6のいずれか1項に記載の空気調和機。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019007729.5T DE112019007729T5 (de) | 2019-09-20 | 2019-09-20 | Klimaanlage |
JP2021546160A JP7262595B2 (ja) | 2019-09-20 | 2019-09-20 | 空気調和機 |
US17/619,770 US11959672B2 (en) | 2019-09-20 | 2019-09-20 | Air-conditioning apparatus |
CN201980099827.3A CN114364933B (zh) | 2019-09-20 | 2019-09-20 | 空调机 |
PCT/JP2019/037053 WO2021053820A1 (ja) | 2019-09-20 | 2019-09-20 | 空気調和機 |
SE2250147A SE2250147A1 (en) | 2019-09-20 | 2019-09-20 | Air-conditioning apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/037053 WO2021053820A1 (ja) | 2019-09-20 | 2019-09-20 | 空気調和機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021053820A1 true WO2021053820A1 (ja) | 2021-03-25 |
Family
ID=74884437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037053 WO2021053820A1 (ja) | 2019-09-20 | 2019-09-20 | 空気調和機 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11959672B2 (ja) |
JP (1) | JP7262595B2 (ja) |
CN (1) | CN114364933B (ja) |
DE (1) | DE112019007729T5 (ja) |
SE (1) | SE2250147A1 (ja) |
WO (1) | WO2021053820A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022233135A1 (zh) * | 2021-05-06 | 2022-11-10 | 青岛海尔空调器有限总公司 | 空调室外机、空调器、空调控制方法、装置、设备及介质 |
JP7533557B2 (ja) | 2022-11-25 | 2024-08-14 | 株式会社富士通ゼネラル | 空気調和装置 |
US12130054B2 (en) * | 2019-06-25 | 2024-10-29 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230400210A1 (en) * | 2022-06-13 | 2023-12-14 | Haier Us Appliance Solutions, Inc. | Systems and methods for limiting air conditioner discharge rate |
CN115950050B (zh) * | 2022-12-06 | 2024-07-05 | 珠海格力电器股份有限公司 | 一种空调控制方法、装置、电子设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0587391A (ja) * | 1991-09-27 | 1993-04-06 | Toshiba Corp | 空気調和装置の制御装置 |
JPH05141755A (ja) * | 1991-11-25 | 1993-06-08 | Sanyo Electric Co Ltd | 空気調和機の風量制御方式 |
JPH10122626A (ja) * | 1996-10-21 | 1998-05-15 | Toshiba Corp | 空気調和機 |
JP2014020568A (ja) * | 2012-07-12 | 2014-02-03 | Hitachi Appliances Inc | 空気調和機 |
WO2014083867A1 (ja) * | 2012-11-29 | 2014-06-05 | 三菱電機株式会社 | 空気調和装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01111150A (ja) * | 1987-10-21 | 1989-04-27 | Daikin Ind Ltd | 蓄熱式空気調和機のデフロスト時のファン制御装置 |
JPH043843A (ja) | 1990-04-20 | 1992-01-08 | Fujitsu General Ltd | 空気調和機の制御方法 |
JP2867792B2 (ja) | 1992-05-15 | 1999-03-10 | 松下電器産業株式会社 | 暖冷房機 |
JPH1026386A (ja) | 1996-07-12 | 1998-01-27 | Fujitsu General Ltd | 空気調和機の制御方法 |
US6220043B1 (en) * | 1998-07-23 | 2001-04-24 | Texas Instruments Incorporated | Apparatus and method for control of a heat pump system |
JP5929862B2 (ja) * | 2013-09-30 | 2016-06-08 | ダイキン工業株式会社 | 空気調和装置 |
EP3385646B1 (en) * | 2015-12-02 | 2022-08-10 | Mitsubishi Electric Corporation | Air conditioning device |
-
2019
- 2019-09-20 SE SE2250147A patent/SE2250147A1/en unknown
- 2019-09-20 CN CN201980099827.3A patent/CN114364933B/zh active Active
- 2019-09-20 DE DE112019007729.5T patent/DE112019007729T5/de active Pending
- 2019-09-20 US US17/619,770 patent/US11959672B2/en active Active
- 2019-09-20 WO PCT/JP2019/037053 patent/WO2021053820A1/ja active Application Filing
- 2019-09-20 JP JP2021546160A patent/JP7262595B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0587391A (ja) * | 1991-09-27 | 1993-04-06 | Toshiba Corp | 空気調和装置の制御装置 |
JPH05141755A (ja) * | 1991-11-25 | 1993-06-08 | Sanyo Electric Co Ltd | 空気調和機の風量制御方式 |
JPH10122626A (ja) * | 1996-10-21 | 1998-05-15 | Toshiba Corp | 空気調和機 |
JP2014020568A (ja) * | 2012-07-12 | 2014-02-03 | Hitachi Appliances Inc | 空気調和機 |
WO2014083867A1 (ja) * | 2012-11-29 | 2014-06-05 | 三菱電機株式会社 | 空気調和装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12130054B2 (en) * | 2019-06-25 | 2024-10-29 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2022233135A1 (zh) * | 2021-05-06 | 2022-11-10 | 青岛海尔空调器有限总公司 | 空调室外机、空调器、空调控制方法、装置、设备及介质 |
JP7533557B2 (ja) | 2022-11-25 | 2024-08-14 | 株式会社富士通ゼネラル | 空気調和装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7262595B2 (ja) | 2023-04-21 |
CN114364933A (zh) | 2022-04-15 |
DE112019007729T5 (de) | 2022-06-02 |
CN114364933B (zh) | 2023-09-05 |
SE2250147A1 (en) | 2022-02-15 |
US20220357085A1 (en) | 2022-11-10 |
JPWO2021053820A1 (ja) | 2021-03-25 |
US11959672B2 (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7262595B2 (ja) | 空気調和機 | |
JP2004340470A (ja) | 冷凍装置 | |
WO2020121411A1 (ja) | 空気調和装置 | |
JP6987234B2 (ja) | 冷凍サイクル装置 | |
US11927376B2 (en) | Refrigeration cycle apparatus | |
JP6880204B2 (ja) | 空気調和装置 | |
JP7116346B2 (ja) | 熱源ユニット及び冷凍装置 | |
US10480837B2 (en) | Refrigeration apparatus | |
JP5310101B2 (ja) | 空気調和装置 | |
JPWO2019224944A1 (ja) | 空気調和機 | |
CN113167486B (zh) | 空调机 | |
JP2002174463A (ja) | 冷凍装置 | |
US20240167735A1 (en) | Heat source unit and air conditioner | |
JP7473775B2 (ja) | 熱源ユニット及び冷凍装置 | |
JP2016133257A (ja) | 空気調和装置 | |
EP3789695A1 (en) | A hvac system | |
JP6926460B2 (ja) | 冷凍装置 | |
JP2013108729A (ja) | 空気調和装置 | |
JP2002243319A (ja) | 空気調和装置 | |
JP5473581B2 (ja) | 空気調和装置 | |
JP2002243301A (ja) | 熱交換ユニット及び空気調和装置 | |
CN113614469B (zh) | 空调装置 | |
JP2003314909A (ja) | 冷凍装置 | |
JP2017120141A (ja) | 空気調和機および除霜補助装置 | |
JP3966345B2 (ja) | 過冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19945924 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021546160 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19945924 Country of ref document: EP Kind code of ref document: A1 |