WO2020230807A1 - 脂肪族ポリエステル共重合体 - Google Patents
脂肪族ポリエステル共重合体 Download PDFInfo
- Publication number
- WO2020230807A1 WO2020230807A1 PCT/JP2020/019066 JP2020019066W WO2020230807A1 WO 2020230807 A1 WO2020230807 A1 WO 2020230807A1 JP 2020019066 W JP2020019066 W JP 2020019066W WO 2020230807 A1 WO2020230807 A1 WO 2020230807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stretched
- stretched polyester
- polyester according
- stretching
- pha
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/005—Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/84—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0039—Amorphous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0041—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0059—Degradable
- B29K2995/006—Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0077—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0082—Flexural strength; Flexion stiffness
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- the present invention relates to a stretched polyester having high shape followability, flexibility, and repeated elasticity.
- biodegradable plastics are attracting attention as biodegradable materials such as implant materials that do not need to be recovered, drug sustained-release carriers, and scaffolds in regenerative medicine.
- Biodegradable materials such as polyglycolic acid, polylactic acid, hydroxyapatite, collagen and hyaluronic acid are used in medical practice. These materials have characteristics such as biocompatibility and bioabsorbability, and it is desirable to suture patients who cannot remove threads or sites that do not require re-incision, and to be absorbed and replaced with living tissue after maintaining strength for a certain period of time. It has contributed to the improvement of medical care such as inclusions, sustained-release carriers such as pharmaceuticals and bioactive substances, and scaffolds in regenerative medicine. On the other hand, many of these existing bioabsorbable materials are stretchable, and many of them are hard as a single material, and their use has been limited.
- PHA Polyhydroxyalkanoate
- 3HB poly-3-hydroxybutyrate
- 3HB poly-3-hydroxybutyrate
- P (3HB) has a melting point as high as polypropylene (hereinafter abbreviated as PP), has a fracture strength similar to PP, but has a fracture elongation of 5% or less, and a glass transition point of 4 ° C. and room temperature or less. It is a hard and brittle material with high crystallinity.
- PP polypropylene
- a method of introducing a second component monomer unit to form a copolymer and a method of increasing the molecular weight are known as methods for improving the physical properties.
- 3-hydroxyvalerate hereinafter, 3HV
- 3-hydroxyhexanoate hereinafter, 3HH
- 4-hydroxybutyrate hereinafter, 4HB
- Lactate hereinafter LA
- GA Glycolate
- 3HP 3-Hydroxypropionate
- a copolymer introduced with a long chain length hydroxyalkanoate or the like can be given as an example. ..
- a P (3HB) biosynthetic gene (phaCAB) extracted from the P (3HB) synthetic bacterium Cupriavidus necator is introduced into Escherichia coli XL1-Blue, which does not have a PHA synthesis system / degradation system.
- a method of culturing the recombinant bacterium at pH 6 to produce ultrahigh molecular weight P (3HB) (Non-Patent Document 2), and a method of culturing a strain in which the PHA degrading enzyme gene of a PHA-producing wild strain is disrupted (Patent Document 2). 1), there are methods for obtaining ultrahigh molecular weight PHA by adjusting the culture conditions of PHA-producing wild strains (Patent Document 2).
- Aliphatic polyesters such as PHA generally have a slow crystallization rate, a glass transition point of room temperature or lower, deterioration over time due to secondary crystallization after molding, and fracture elongation tends to decrease.
- the amorphous part that did not crystallize in the first crystallization exists between the lamella crystals, but in secondary crystallization, the molecular chain of the amorphous part is taken into the crystal part by molecular motion and crystallized. It means that the degree of crystallization is improved.
- annealing may be performed by heat treatment in order to eliminate the strain inside the plastic, and the crystallization that progresses during this heat treatment is also called secondary crystallization.
- P (3HB) is a polymer that has a slow crystallization rate but high crystallinity, a glass transition point of 4 ° C., which is below room temperature, secondary crystallization progresses during storage, and is hard and brittle, and its physical properties deteriorate over time. is there.
- Copolymerized PHA consisting of a second component unit that does not co-crystallize with the 3HB unit, such as a 4-hydroxybutyrate (4HB) unit or a 3-hydroxyhexanoate (3HH) unit, changes the ratio of the second unit component.
- a second component unit that does not co-crystallize with the 3HB unit such as a 4-hydroxybutyrate (4HB) unit or a 3-hydroxyhexanoate (3HH) unit
- 4HB 4-hydroxybutyrate
- 3HH 3-hydroxyhexanoate
- Patent Document 3 Sorbitol acetylate, a compound having an amide bond and pentaerythritol have been proposed (Patent Document 4). These are measures taken to promote the slow crystallization rate of PHA and improve the workability during molding, but they are ineffective because they cause a decrease in strength and deteriorate the surface appearance of the molded product. Problems such as sufficientness, the need to add additives, and deterioration over time due to secondary crystallization still remain. In addition, there is no description about the elasticity of the molded product.
- Non-Patent Documents 3 and 4 As biodegradable plastics exhibiting elasticity, P (3HB-co-4HB) (Non-Patent Documents 3 and 4), P (3HB-co-3HH) (Patent Document 5), caprolactone and lactic acid and / or glycolic acid There is a report of a material (Patent Document 6) in which a copolymer is photo-cured by adding a photoreactive acrylate group and / or a methacrylate group.
- Patent Document 7 It is already known that the P (3HB-co-4HB) copolymer having 3 to 60% of 4HB units is highly flexible, and that a supple and tough molded product can be obtained by using this copolymer (). Patent Document 7). Further, the ratio of 4HB can be arbitrarily adjusted (Patent Documents 8, 9 and 10), and Patent Document 11 also describes that a molded product formed from P (3HB) is subjected to stretching processing. However, when the stretching force is released, it relaxes almost completely and does not shrink, and even at P (3HB-co-3HV), it co-crystallizes with high crystallinity, so that the stretchability is 100% or less and there is almost no elasticity. .. In addition, the problem of deterioration over time due to secondary crystallization remained.
- Non-Patent Document 3 reports that a P (3HB-co-4HB) copolymer solvent cast film having a 4HB ratio of 31% was stretched and then showed elasticity to almost return to its original shape. It is considered that the problem of deterioration over time due to crystallization still remains.
- Non-Patent Document 4 describes that a copolymer of 4HB and 3HB (4HB content of about 20 to 35%) is elastomeric and is a material that stretches and returns by applying force, but secondary crystallization. It is considered that the problem of deterioration over time due to the above remains. Neither document shows hysteresis showing repeated expansion and contraction.
- Patent Document 12 describes a mixed polyester molded product of a copolymer of 3HB and 4HB (4HB ratio of 60% to 95%) and crystalline biodegradable polyester, which is obtained by stretching and is biodegradable. It is a molded product that has a low initial elastic coefficient at low strain, and is described as having flexibility, toughness, and biodegradability. It is described that the draw heat-treated yarn and film shrink to 60 to 70% immediately after stretching, but it is unknown whether they are elastic bodies that are repeatedly expanded and contracted, and the problem of deterioration over time due to secondary crystallization still remains. It is thought that it is.
- Patent Document 13 states that a copolymer of 3HB and 4HB (30% to 99% 4HB) has good biocompatibility, elasticity, and flexibility, and does not cause safety problems such as cytotoxicity. Although it is described that it can be used as a material, it is unclear whether it is an elastic body that expands and contracts repeatedly, and it is considered that the problem of deterioration over time due to secondary crystallization still remains. In addition, it is a composite with other fiber composite knitted fabrics and woven fabrics such as polyethylene terephthalate, and there is a description of a composite with a fiber composite such as polyglycolic acid and polylactic acid, but it is not necessarily aimed at complete decomposability. Absent.
- Patent Document 14 describes that a filament melt-extruded when a P (3HB-co-3HH) copolymer is melt-spun is rapidly cooled below the glass transition temperature, and then partially crystallized at a temperature above the glass transition temperature. It is described that the pre-stretched product obtained by advancing is a filament exhibiting elasticity which is further stretchable and has a property of suppressing the growth of spherulites. It is stated that this method requires quenching to a temperature below the glass transition temperature, and that it does not grow into three-dimensional spherulites even when left at room temperature for a while, and tends to be less brittle, but it is still secondary at this stage. It is presumed that deterioration over time due to crystallization will progress. Moreover, the degree of elasticity is not clear.
- a stretchable material can be obtained by photocuring a copolymer of caprolactone and lactic acid and / or glycolic acid with a group such as acrylate (Patent Document 6).
- Patent Document 6 a lactic acid-caprolactone copolymer having a molecular weight of 2000 to 10000, elastic deformation occurs only up to a strain of about 20 to 60%, and the stress at that time is as low as 2 to 0.2 N / mm 2 or less ( Non-Patent Document 5), it cannot be said that it is a sufficiently high polymer, and it cannot be used in a region where stronger strength and elasticity are required.
- a copolymer of caprolactone and lactic acid and / or glycolic acid is obtained by chemical synthesis using a polymerization catalyst such as tin octylate (tin 2-ethylhexanoate), and the catalyst is used in medical applications. Attention must be paid to the amount.
- a biodegradable material that exhibits elastic deformation is also obtained by cross-linking a copolymer obtained by copolymerizing a cyclic depsipeptide and ⁇ -caprolactone with polyisocyanates (Patent Document 15).
- a polymerization catalyst such as tin 2-ethylhexanoate is used for the synthesis of the copolymer, and it is not known whether the crosslinked product can be melt-molded after preparation, and it is not clear whether the copolymer can be put into practical use. ..
- An object of the present invention is to provide a stretched polyester having shape followability and flexibility by elastic response.
- the present inventor has a P (3HB-co-4HB) copolymer molded product having an ⁇ structure ( ⁇ crystal) showing a disordered orientation, and the period of the ⁇ crystal is long.
- the molded body is deformed by stretching after being subjected to a crystallization treatment for a certain period of time, and the degree of orientation of the ⁇ crystal is adjusted in the extending direction while maintaining the degree of X-ray orientation of the ⁇ structure at 50% or more.
- the molecular chain of the amorphous part between the ⁇ crystal is stretched to develop the ⁇ structure (planar zigzag structure), and when unloaded, the orientation of the ⁇ crystal is maintained.
- the ⁇ structure is reduced or eliminated to obtain a molded product showing an elastic response, and the present invention has been completed.
- the ⁇ structure is a folded lamella crystal, and the ⁇ structure represents a planar zigzag stretched chain structure.
- ⁇ 1> An aliphatic copolymerized polyester containing two or more types of monomer units, which contains an ⁇ structure and an amorphous structure, and has an ⁇ structure having an X-ray orientation degree of 50% or more.
- the ⁇ structure is detected by wide-angle X-ray diffraction measurement and small-angle X-ray scattering measurement in the stretched state, and stretched by wide-angle X-ray diffraction measurement and small-angle X-ray scattering measurement in the unloaded state.
- the stretched polyester according to ⁇ 1> wherein the ⁇ structure is significantly reduced or the ⁇ structure is not detected as compared with the state where the ⁇ structure is formed.
- ⁇ 3> The stretched polyester according to ⁇ 1> or ⁇ 2>, which has elasticity with a tensile elongation recovery rate of 20% or more and 100% or less.
- ⁇ 4> An aliphatic copolymerized polyester containing two or more types of monomer units, which has elasticity and a tensile elongation recovery rate of 20% or more and 100% or less.
- ⁇ 5> The stretched polyester according to any one of ⁇ 1> to ⁇ 4>, which is stretched after crystallization and exhibits elasticity after being unloaded.
- ⁇ 6> The stretched polyester according to any one of ⁇ 1> to ⁇ 5>, wherein the crystal structure is oriented by stretching.
- ⁇ 7> The stretched polyester according to ⁇ 5> or ⁇ 6>, wherein the crystal structure is oriented by stretching 2 to 20 times.
- ⁇ 8> A lamellar crystal structure and an amorphous structure are included, and a specific stretched chain structure is developed during stretching, and when the tensile load is removed, the stretched chain structure is significantly reduced or disappears.
- ⁇ 1> The stretched polyester according to any one of ⁇ 7>.
- ⁇ 9> The stretched polyester according to any one of ⁇ 1> to ⁇ 8>, wherein the stretched chain structure has a flat zigzag structure.
- ⁇ 10> The stretched polyester according to any one of ⁇ 1> to ⁇ 9>, wherein the lamellar crystal structure is a fold of a spiral structure.
- ⁇ 11> The stretched polyester according to any one of ⁇ 1> to ⁇ 10>, wherein the two or more types of monomer units are a combination of two or more types of monomer units having different main chain lengths.
- ⁇ 12> The stretched polyester according to any one of ⁇ 1> to ⁇ 11>, wherein the polyester contains a 3-hydroxybutyrate unit as a monomer unit.
- ⁇ 13> The stretched polyester according to ⁇ 12>, wherein the polyester further contains a 4-hydroxybutyrate unit as a monomer unit.
- ⁇ 14> The stretched polyester according to ⁇ 13>, wherein the ratio of 4-hydroxybutyrate units to all monomer units is 10 mol% to 30 mol%.
- ⁇ 15> The stretched polyester according to any one of ⁇ 1> to ⁇ 14>, wherein the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is 100,000 to 3,000,000.
- ⁇ 16> The stretched polyester according to any one of ⁇ 1> to ⁇ 15>, which is biodegradable.
- ⁇ 17> The stretched polyester according to any one of ⁇ 1> to ⁇ 16>, which is bioabsorbable.
- ⁇ 18> The stretched polyester according to any one of ⁇ 1> to ⁇ 17>, which is derived from biosynthesis or chemical synthesis.
- ⁇ 20> A fiber containing the stretched polyester according to any one of ⁇ 1> to ⁇ 18>.
- ⁇ 21> A molded product containing the stretched polyester according to any one of ⁇ 1> to ⁇ 18>.
- the method for producing a stretched polyester according to any one of ⁇ 1> to ⁇ 18> which comprises.
- ⁇ 23> The method according to ⁇ 22>, wherein the form of the stretched polyester produced is a film, a fiber, or a molded product.
- the aliphatic stretched polyester of the present invention is deformed by the stretching treatment and can exhibit an elastic response by unloading, and has shape followability and flexibility due to the elastic response without adding a cross-linking agent.
- FIG. 1 shows stress-strain curves of tensile tests on the films of Production Examples 1 to 12 and 14.
- FIG. 2 shows the results of WAXD measurement and SAXS measurement of the film molded product of Production Example 1 sample. The upper side shows the WAXD measurement and the lower side shows the SAXS measurement.
- Original indicates a pre-stretched film molded product
- ⁇ 5 indicates that it is being stretched 5 times
- ⁇ 10 indicates that it is being stretched 10 times
- After release indicates that it is being unloaded
- Drawing again indicates that it is being re-stretched.
- FIG. 3 shows a change in the crystal structure of the PHA polymer.
- FIG. 4 shows a procedure for evaluating the elasticity of a film.
- FIG. 5 shows a stress-strain curve (strain 0% to 100%) of the PHA fiber of Example 15 (Production Example 2).
- FIG. 6 shows a stress-strain curve (strain 0% to 100%) of the PHA fiber of Example 16 (Production Example 5).
- FIG. 7 shows a stress-strain curve (strain 0% to 100%) of the PHA fiber of Example 17 (Production Example 13).
- FIG. 8 shows a stress-strain curve (strain 0% to 100%) of the PHA fiber of Example 17 (Production Example 13).
- FIG. 9 shows a stress-strain curve (strain 0% to 10%) of the PHA fiber of Example 17 (Production Example 13).
- FIG. 10 shows a stress-strain curve (strain 0% to 1000%) of the PHA film of Example 2 (Production Example 2).
- FIG. 11 shows a stress-strain curve (strain 0% to 1000%) of the PHA film of Example 5 (Production Example 5).
- FIG. 12 shows a stress-strain curve (strain 0% to 1000%) of the PHA film of Example 14 (Production Example 14).
- FIG. 13 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 2.
- FIG. 14 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 3.
- FIG. 15 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 4.
- FIG. 13 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 2.
- FIG. 16 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 5.
- FIG. 17 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 6.
- FIG. 18 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 7.
- FIG. 19 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 8.
- FIG. 20 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 9.
- FIG. 21 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 10.
- FIG. 22 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 11.
- FIG. 23 shows the results of WAXD measurement and SAXS measurement of the film molded product of the sample of Production Example 12.
- FIG. 24 is a diagram showing a method of calculating the degree of orientation.
- FIG. 25 shows the results of WAXD measurement of the P (3HB-co-3HV) fiber produced in Example 19.
- FIG. 26 shows a stress-strain curve of the P (3HB-co-3HV) fiber produced in Example 19.
- the polyester of the present invention is an aliphatic copolymer polyester containing two or more kinds of monomer units, and is a stretched polyester containing an ⁇ structure and an amorphous structure and having an X-ray orientation of the ⁇ structure of 50% or more. ..
- the stretched polyester of the present invention can have shape followability and flexibility.
- the stretched polyester of the present invention can suppress deterioration over time due to secondary crystallization without the addition of a crystal nucleating agent or the like.
- the polyester of the present invention contains two or more kinds of monomer units, and preferably two or more kinds of monomer units are a combination of two or more kinds of monomer units having different main chain lengths.
- the polymerization unit preferably contains a 3-hydroxybutyrate unit.
- the polymerization unit preferably contains 4-hydroxybutyrate units in addition to 3-hydroxybutyrate units.
- the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is preferably 100,000 or more, more preferably 200,000 or more, and further may be 300,000 or more, 400,000 or more, or 500,000 or more.
- Weight average molecular weight measured by polystyrene conversion gel permeation chromatography is 600,000 or more, 700,000 or more, 800,000 or more, 900,000 or more, 1 million or more, 1.1 million or more, 1.2 million or more, 1.3 million or more, 1.4 million or more, 150. It may be 10,000 or more, 2 million or more, 3 million or more, or 4 million or more.
- the upper limit of the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is not particularly limited, but is generally 20 million or less, 10 million or less, 8 million or less, 7 million or less, 6 million or less, 5 million or less, It may be 4 million or less, or 3 million or less.
- the weight average molecular weight measured by polystyrene conversion gel permeation chromatography is 400,000 or more and 2.5 million or less, considering that the molecular weight decreases due to thermal decomposition and the viscosity at the time of melting does not become too high. It is more preferably 500,000 or more and 2.2 million or less, and further preferably 600,000 or more and 2 million or less.
- the aliphatic stretched polyester of the present invention preferably contains 3-hydroxybutyrate units, more preferably 3-hydroxybutyrate units and 4-hydroxybutyrate units as polymerization units.
- the polyester of the present invention contains 3-hydroxybutyrate units
- the polyester of the present invention contains 3-hydroxybutyrate units and when the polyester of the present invention contains 3-hydroxybutyrate units and 4-hydroxybutyrate units, the polymerization units are 3-hydroxybutyrate units and 4 -It may contain another polymerization unit other than the hydroxybutyrate unit.
- lactate (LA), glycolate (GA), 3-hydroxypropionate (3HP), 3-hydroxyvalerate (3HV), 5-hydroxyvalerate (5HV), 5- Hydroxyhexanoate (5HH), 6-hydroxyhexanoate (6HH), 3-hydroxyhexanoate (3HH), hydroxyalkanoate having 7 or more carbon atoms and the like can be mentioned.
- a ternary copolymer or a multi-dimensional copolymer containing the above-mentioned polymerization unit can be used instead of the binary copolymer.
- the above-mentioned copolymer composition can be mixed and used at an arbitrary ratio.
- 3-hydroxybutyrate unit and the 4-hydroxybutyrate unit are represented by the following equations, respectively.
- 4-Hydroxybutyrate unit: -OCH 2 CH 2 CH 2 C ( O)-
- the ratio of 4-hydroxybutyrate units to all monomer units is preferably 10 mol% to 30 mol%.
- the ratio of 4-hydroxybutyrate units to all monomer units may be 11 mol% or more, 12 mol% or more, 13 mol% or more, 14 mol% or more, 15 mol% or more, or 16 mol% or more, 17 mol%. As mentioned above, it may be 18 mol%, 19 mol% or more, and 20 mol% or more.
- the ratio of 4-hydroxybutyrate units to all monomer units is 30 mol% or less, 29 mol% or less, 28 mol% or less, 27 mol% or less, 26 mol% or less, 25 mol% or less, 24 mol% or less, 23. It may be less than or equal to mol%, less than or less than 22 mol%, or less than or equal to 21 mol%.
- the polyester of the present invention may be a random polymer, a block polymer, an alternating polymer, or a graft polymer, but is preferably a random polymer.
- P (3HB-co-4HB) is extensible and supple, but if the above-mentioned copolymer is crystallized for a certain period of time and then deformed by stretching, it is extensible. At the same time, it has been found in the present invention that elastic deformation is imparted to impart elasticity. Further, according to a preferred embodiment of the present invention, it has been found that deterioration over time due to secondary crystallization is suppressed.
- the stretched polyester of the present invention contains an ⁇ structure and an amorphous structure, and the degree of X-ray orientation of the ⁇ structure is 50% or more.
- the calculation of the degree of X-ray orientation can be performed according to the method described in [Calculation of degree of orientation] in the examples described later.
- the X-ray orientation of the ⁇ structure may be 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more. However, it may be 85% or more.
- the upper limit of the X-ray orientation of the ⁇ structure is not particularly limited, but is generally 95% or less, and may be 90% or less.
- the stretched polyester of the present invention has elasticity.
- Elasticity is a property of polyester, which is an elastic body, stretched by applying an external force and then returns to the original state when the external force is removed.
- the polyester of the present invention has elasticity with a tensile elongation recovery rate of 20% or more and 100% or less.
- the lower limit of the tensile elongation recovery rate may be 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more.
- the upper limit of the tensile elongation recovery rate is not particularly limited, but may be 95% or less, 90% or less, 85% or less, or 80% or less.
- the tensile elongation recovery rate means the tensile elongation recovery rate when evaluated by the method described in [Stretchability evaluation: Fiber] of the examples described later. That is, a fiber having a length of 3 cm and a fiber diameter of about 0.1 to 0.3 mm is subjected to a cycle test using a tensile tester under the conditions of a temperature of 23 ° C. and an initial length of 10 mm. At a tensile speed of 20 mm / min, the strain is extended to 100% strain (20 mm, which is twice the initial length, that is, the displacement length is 10 mm), and then the gripper is held at the same speed to the original length. The operation of moving and contracting the fibers is repeated.
- the tensile elongation recovery rate means the tensile elongation recovery rate when evaluated by the method described in [Stretchability evaluation: film] of Examples described later. That is, a film cut to a length of 3 cm and a width of 3 mm is subjected to a cycle test using a tensile tester under the conditions of a temperature of 23 ° C. and an initial length of 10 mm. At a tensile speed of 20 mm / min, the strain is extended to 1000% (110 mm, which is 11 times the initial length, that is, the displacement length is 100 mm), and then the gripper is held at the same speed to the original length. The operation of moving and shrinking the film is repeated.
- the cast film is an unstretched film, and corresponds to the invention of the present application after the first stretching operation (stretching to a displacement length of 100 mm) in the tensile test is completed.
- the displacement length at the first time point of the second elongation that is, substantially equal to the end time point of the first contraction
- the deemed tensile elongation recovery rate r (that is, based on the displacement length 0 mm of the unstretched film) %)
- Is r [(110- (y + 10)) / 100] ⁇ 100 Indicated by.
- the present invention is a stretched polyester, and when the displacement length of the film after the first stretching is set to 0 mm and re-referenced,
- r 1 is the deemed tensile elongation recovery rate after the first stretching
- r 2 is the deemed tensile elongation recovery rate after the second stretching.
- the stretched polyester of the present invention can be stretched after crystallization and exhibit elasticity after being unloaded.
- the crystal structure is oriented by the above-mentioned stretching.
- the stretching treatment it is preferable to perform stretching 2 to 20 times, more preferably 2 to 15 times, and more preferably 2 to 10 times (for example, 2 to 10 times stretching) within a range that does not break. It can be stretched 2 times, 5 times, or 10 times).
- the stretching ratio and the number of stretching times may be appropriately adjusted according to the required expansion and contraction width.
- the stretched polyester of the present invention preferably contains a lamellar crystal structure (a structure formed by folding a spiral structure: also referred to as an ⁇ structure) and an amorphous structure, and has a specific stretched chain structure (planar zigzag structure: ⁇ ) during stretching.
- a lamellar crystal structure a structure formed by folding a spiral structure: also referred to as an ⁇ structure
- amorphous structure a structure formed by folding a spiral structure: also referred to as an ⁇ structure
- ⁇ specific stretched chain structure
- the stretched chain structure ( ⁇ structure) can be measured by the wide-angle X-ray diffraction measurement and the small-angle X-ray scattering measurement described in the examples below.
- the ⁇ structure is preferably detected by wide-angle X-ray diffraction measurement and small-angle X-ray scattering measurement in the stretched state, but in the unloaded state, the wide-angle X-ray rotation
- the ⁇ structure is significantly reduced or the ⁇ structure is not detected as compared with the stretched state.
- the stretched chain structure is not detected by wide-angle X-ray diffraction measurement, but it is sufficient that the signal derived from the stretched chain structure is reduced after unloading.
- the crystallinity of the stretched polyester of the present invention is not particularly limited, but is preferably 10% or more, and may be 20% or more, 30% or more, or 40% or more.
- the upper limit of the crystallinity is not particularly limited, but is generally 80% or less.
- the stretched polyester of the present invention is preferably biodegradable, more preferably bioabsorbable.
- Biodegradability means that it can be degraded by microorganisms or enzymes in the natural environment (eg, soil, compost, lakes, seawater, etc.) or can be degraded in vivo to non-toxic components.
- Bioabsorbability means that it can be metabolized by a living body such as a human or an animal.
- the present invention is a stretched polyester that has shape followability and flexibility due to its elastic response and can suppress deterioration over time due to secondary crystallization without the addition of a cross-linking agent or a crystal nucleating agent. They can also be added as long as they are not broken.
- the method for synthesizing PHA there are a fermentation synthesis method (biosynthesis method) and a chemical synthesis method.
- the method for producing the aliphatic polyester of the present invention may be either a fermentation synthesis method (biosynthesis method) or a chemical synthesis method, but the fermentation synthesis method (biosynthesis method) is preferable in order to obtain a polyester having a large molecular weight.
- the chemical synthesis method is a method for chemically synthesizing PHAs according to a normal organic synthesis method.
- P (3HB-co-6HHx) is synthesized by, for example, ring-opening polymerization of a fatty acid lactone such as (R) - ⁇ -butyrolactone or ⁇ -caprolactone under a catalyst.
- P (3HB-co-4HB) by ring-opening polymerization of fatty acid lactones such as (R) - ⁇ -butyrolactone and ⁇ -butyrolactone under a catalyst.
- Etc Etc.
- the fermentation synthesis method is a method of biosynthesizing PHAs according to a normal culture engineering method.
- the polyester containing 4HB of the present invention uses a microorganism capable of producing P (3HB) as a carbon source, ⁇ -caprolactone (also known as 6-hexanolactone), or its own. 6-Hydroxyhexanoate or a salt thereof which is a saponified product, ⁇ -butyrolactone, or 4-hydroxybutyrate or a salt thereof which is a saponified product, butyric acid derivatives such as 4-chlorobutylate and 4-bromobutyrate, etc.
- Even chain ⁇ , ⁇ -alkanediol, etc. with 4 or more carbon atoms such as 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, etc. It can be produced by culturing in the presence of (Saito et al., Polymer International 39, 169 (1996), and International Publication WO 2019/044837).
- microorganisms capable of producing P (3HB) include the genus Cupriavidus, the genus Alcaligenes, the genus Ralstonia, the genus Delftia, the genus Commonas, the genus Hydrogenophaga, the genus Burkholderia, the genus Escherichia, the genus Azacotera spp., Allochromatium genus, Azorhizobium spp., Bacillus sp., Caulobacter genus, Chromobacterium sp., Ectothiorhodospira spp., Klebsiella spp., Nocardia spp., Pseudomonas spp., Rhodobacter sp., Rhodococcus sp., Rhodospirillum spp., Rickettsia spp., Sinorhizobium spp., Sphingomon
- 3HB, 3HV, 3HP, 4HB, 5HV, etc. can be sufficiently incorporated into PHA, but other recombinant bacteria into which a PHA polymerizing enzyme gene having different substrate specificity is introduced can be used. Hydroxy acids can also be polymerized to PHA.
- Cupriavidus necator H16 strain not only the Cupriavidus necator H16 strain, but also its genetically modified strains, and as described above, other Cupriavidus, Alcaligenes, Ralstonia, Delftia, Commonas, Hydrogenophaga, Birchacher Methylobacterium sp., Paracoccos spp., Acinetobacter spp., Aeromonas spp., Allochromatium genus, Azorhizobium spp., Bacillus sp., Caulobacter genus, Chromobacterium sp., Ectothiorhodospira spp., Klebsiella spp., Nocardia spp., Pseudomonas spp., Rhodobacter sp., Rhodococcus sp., Rhodospirillum spp., Rickettsia spp.
- microorganisms having or imparting the ability to polymerize PHA such as the genus Sinorhizobium, the genus Sphingomonas, the genus Synechocystis, the genus Thiococcus, the genus Thiocystis, the genus Vibrio, and the genus Watersia.
- the pH of the culture broth is generally about 4 to about 10, preferably about 5 to about 8, and more preferably about 5.8 to about 7.5.
- the culture temperature is generally 15 ° C. to 45 ° C., preferably 20 ° C. to 40 ° C., and more preferably 25 ° C. to 38 ° C.
- the culture method may be either batch culture, fed-batch culture or continuous culture.
- the medium component is not particularly limited as long as it is a substance that can be assimilated by the microorganism used.
- carbon sources include sugars such as arabinose, glucose, mannose, fructose and galactose, sugar alcohols such as sorbitol, mannitol and inositol, alcohols such as methanol, ethanol and butanol, acetic acid, butyric acid, fatty acids and vegetable oils.
- Organic carbon sources, inorganic carbon sources such as carbon dioxide, natural products such as yeast extract, sugar honey, peptone and meat extract can be used.
- Nitrogen sources include, for example, inorganic nitrogen compounds such as ammonia, ammonium salts (ammonium chloride, ammonium sulfate, ammonium phosphate), nitrates and / or, for example, urea, corn steep liquor, casein, peptone, yeast extract, meat.
- Organic nitrogen-containing substances such as extracts can be used.
- Inorganic components include, for example, calcium salts, magnesium salts, potassium salts, sodium salts, phosphates, manganese salts, zinc salts, iron salts, copper salts, molybdenum salts, cobalt salts, nickel salts, chromium salts, boron compounds and Each is selected from iodine compounds and the like, and more specific examples thereof include primary potassium phosphate, secondary potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride and the like.
- Examples of other organic nutrient sources include amino acids such as glycine, alanine, serine, threonine and proline, and vitamins such as vitamin B1, vitamin B12, folic acid and vitamin C.
- a method for producing 4HB-containing PHA there are a method in which a precursor capable of becoming 4HB-CoA is added to a PHA-producing wild strain and cultured, and a method in which a supply route of 4HB-CoA is introduced by genetic recombination.
- a method of culturing a PHA-producing wild-type strain containing a precursor capable of 4HB-CoA may be adopted, or a 4HB-CoA supply route by genetic recombination may be introduced.
- ⁇ -caprolactone also known as 6-hexanolactone
- ⁇ -butyrolactone or a saponification thereof
- 6-hydroxyhexanoate or a salt thereof ⁇ -butyrolactone
- 4- Hydroxybutyrate or a salt thereof butyric acid derivatives such as 4-chlorobutylate and 4-bromobutyrate, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decane Even chain ⁇ , ⁇ -alkanediol, etc.
- 4HB-containing PHA having 4 or more carbon atoms such as diol are known, and 4HB-containing PHA can be produced by culturing a microorganism capable of synthesizing P (3HB) in the presence thereof. Yes (International Publication WO2019 / 044837, and Polymer International 39, 169-174 (1996)).
- the amount of the precursor that can be 4HB-CoA is not particularly limited, but it can be supplied in a batch, continuous, or intermittent manner to the extent that it does not cause growth inhibition.
- the ratio of 4HB in PHA can be changed by changing the amount of these precursors used, the concentration used, the supply rate, and the like.
- 3HH-CoA As a fermentation synthesis method for producing PHAs containing monomer units other than 3HB and 4HB, propionic acid, valeric acid, 1,3-propanediol, 1,5-pentanediol, propanol, pentanol, etc. are used as 3HV or A carbon source from which 3HH-CoA can be supplied by the ⁇ -oxidation pathway using a method of incorporating 3HP or 5HV monomer units or a microorganism carrying a broad substrate specific PHA polymerizing enzyme capable of recognizing 3HB-CoA and 3HH-CoA. It is also possible to use a method of incorporating a 3HH monomer unit by using.
- a recombinant bacterium capable of changing the substrate specificity of the PHA polymerizing enzyme by gene substitution and incorporating lactic acid, glycolic acid, 3HH monomer unit and the like.
- the cells Prior to culturing for the production of PHA, the cells are grown, and in the latter stage, the cells are transferred to the nutrient-restricted PHA accumulation conditions such as phosphorus source and nitrogen source with medium exchange or growth, so-called growth-unlinked PHA. It is possible to carry out production, or it is possible to carry out growth-linked production in which bacterial cells grow and PHA accumulates at the same time.
- bacterial cells can be separated and recovered by ordinary solid-liquid separation means such as filtration and centrifugation, and the bacterial cells can be washed and dried to obtain dried bacterial cells. ..
- the produced polyester is extracted from the dried cells by a conventional method with an organic solvent such as chloroform, and PHA is precipitated by adding a poor solvent such as hexane to the extract. Can be recovered.
- the recovered cells may be physically crushed such as high-pressure homogenizer or ultrasonic treatment, alkaline treatment such as sodium hydroxide, potassium hydroxide or sodium hypochlorite, solvent treatment, protease, lysozyme, lipase, etc.
- PHA can also be recovered by removing components other than PHA by known methods such as enzyme treatment, oxidation treatment with an oxidizing agent such as hydrogen peroxide, washing with a solvent such as methanol, ethanol, and acetone, and drying.
- melt processing steps such as melt spinning, melt extrusion, and injection molding can be performed.
- the molded body is heat-treated and crystallized, and then stretched to obtain fibers, films, and molded bodies having rubber elasticity.
- the melting temperature is between 100 ° C. and 220 ° C.
- the melting time is 20 minutes or less
- the mold temperature and the winding temperature are in the range of 5 ° C. to 50 ° C. ..
- the fibers, films, and molded bodies thus melt-processed are subjected to crystallization treatment.
- the crystallization temperature is within the range of 20 ° C. to 120 ° C. and the crystallization time is within the range of 1 minute to 120 minutes, it is possible to proceed to the next stretching process.
- crystallization occurs at the same time as the solvent evaporates, so that the next stretching process can proceed.
- a film having rubber elasticity can be produced by crystallizing a film melt-molded at 180 ° C. for 2 to 5 minutes by hot pressing and crystallizing it at 23 ° C. for 60 minutes and stretching it 2 to 10 times.
- the film breaks to about 200% (strain 100%). It can be stretched without being loaded, and when it is subsequently unloaded, it has the property of recovering strain to nearly 140% (strain 40%).
- the fibers and films produced in this manner retain a good elastic response even after storage for a long period of six months or more, and are molded bodies in which deterioration with time due to secondary crystallization is suppressed.
- PHA was produced using Cupriavidus necator H16 strain (ATCC17699).
- the flow acceleration of% fructose is about 1 to 2 g / h (0.5 to 1 g / h ⁇ L), and the flow acceleration of ⁇ -butyrolactone is 0.2 to 0.5 g / h (0.1 to 0.25 g / h).
- -Culturing was started at a low flow velocity of about L), and the flow acceleration was gradually or continuously increased according to the growth of the bacterial cells.
- the aeration rate was controlled at 0.2 to 0.3 L / min
- the stirring speed was controlled at 500 to 700 rpm
- the culture temperature was controlled at 36 ° C.
- the lower limit of the culture pH was controlled at 6.0
- a 2N NaOH solution was used as the pH adjusting alkali.
- the ratio of ⁇ -butyrolactone: fructose was about 0.5.
- the culture was completed 140 hours after the start of the culture.
- the method for extracting and purifying PHA from the cells was as follows. In a glass Erlenmeyer flask with a screw cap, about 4 to 10 g of lyophilized cells were suspended in 400 mL of chloroform and extracted at 30 ° C. for 24 to 48 hours. The obtained viscous solution was filtered through a filter paper to remove bacterial cell residues. The obtained clarified solution was concentrated to about 100 to 200 mL with an evaporator, and PHA was precipitated with 5 times the amount of hexane, which is a poor solvent. The obtained white precipitate was washed with ethanol and then vacuum dried to obtain purified PHA.
- ⁇ Manufacturing example 7> The culture was carried out in the same manner as in Production Example 6 except that the culture time in the jar culture was 172 hours and the ratio of ⁇ -caprolactone: fructose was about 0.5.
- ⁇ Manufacturing example 8> The culture was carried out in the same manner as in Production Example 6 except that the culture time in the jar culture was 172 hours and the ratio of ⁇ -caprolactone: fructose was about 0.6.
- ⁇ Manufacturing example 9> The same procedure as in Production Example 6 was carried out except that the culture time in the jar culture was 205 hours and the ratio of ⁇ -caprolactone: fructose was about 0.6.
- ⁇ Manufacturing example 9> The same procedure as in Production Example 6 was carried out except that the culture time in the jar culture was 205 hours and the ratio of ⁇ -caprolactone: fructose was about 0.6.
- ⁇ Manufacturing example 10 Production example except that the culture time in jar culture was 114 hours, the ratio of ⁇ -caprolactone: fructose was about 0.4, and after culturing, purification was performed by combining high-pressure crushing treatment, alkali treatment, oxidant treatment, solvent washing, etc. The same procedure as in 1 was performed.
- ⁇ Manufacturing example 11> The same procedure as in Production Example 10 was carried out except that the culture time in the jar culture was 111 hours and the ratio of ⁇ -caprolactone: fructose was about 0.5.
- ⁇ Manufacturing example 12> The same procedure as in Production Example 10 was carried out except that the culture time in the jar culture was 113 hours and the ratio of ⁇ -caprolactone: fructose was about 0.5.
- ⁇ Manufacturing example 13> The same procedure as in Production Example 10 was carried out except that the culture time in the jar culture was 113 hours and the ratio of ⁇ -caprolactone: fructose was about 0.4.
- ⁇ Manufacturing example 14> The same procedure as in Production Example 6 was carried out except that the culture time in the jar culture was 113 hours and the ratio of ⁇ -caprolactone: fructose was about 0.5.
- the PHA molecular weight (weight average molecular weight Mw and number average molecular weight Mn) was measured by the gel permeation chromatography method as follows. The measurement results of the molecular weights (Mw and Mn) for PHA of each production example are shown in Table 1 below. Chloroform was added to the purified PHA to a concentration of about 0.5 mg / ml, dissolved at 60 ° C. for 4 hours, returned to room temperature, filtered through a PTFE filter having a pore size of 0.2 ⁇ m to remove insoluble matter, and the measurement sample was taken. And said.
- the GPC conditions are as follows.
- Table 1 below shows the 4HB ratio measured by NMR for the PHA of each production example.
- the glass transition temperature (Tg) and melting point (Tm) were measured using a differential scanning calorimeter (PerkinElmer, DSC8500) equipped with an intracooler.
- the measurement atmosphere was nitrogen (20 ml / min), the temperature was raised from ⁇ 50 ° C. to 200 ° C. at 20 ° C./min, and the sample was kept for 1 minute to completely melt the sample. Subsequently, the mixture was rapidly cooled to ⁇ 50 ° C. at 200 ° C./min, held for 3 minutes, and then heated again to 200 ° C. at 20 ° C./min (this temperature rise is referred to as a second run).
- Tg and Tm were measured by the DSC curve (thermogram) measured in the above second run.
- the baseline fluctuates when the glass state shifts to the amorphous state. Therefore, the temperature at which the fluctuation occurs is read as Tg.
- a melting peak endothermic peak
- the temperature at the apex peak position was set to Tm.
- the sample was around 1 mg, and an aluminum sample pan was used. Indium was used for temperature calibration. The measurement results are shown in Table 1 below.
- the PHA film obtained above was cut into strips having a length of 3 cm and a width of 3 mm, and stretched at 23 ° C. using a stretching machine at an arbitrary magnification such as 2 times, 5 times, 10 times, and the like. If necessary, the stretching was stopped, the load was removed, and the stretching operation was repeated again.
- the PHA cast film produced by using the P (3HB-co-4HB) polymer obtained in Production Examples 1 to 14 is stretched as described above to obtain the films of Examples 1 to 14, respectively.
- WAXD Wide-angle X-ray diffraction
- SAXS small-angle X-ray scattering
- a large synchrotron radiation facility SPring-8 was used, and the X-ray wavelength was 0.1 nm and the camera length was 250 mm.
- the film was placed perpendicular to the X-ray beam and parallel to the detector.
- the wavelength of the X-ray was 0.1 nm and the camera length was 2500 mm.
- FIGS. 2 and 13 to 23 The results of WAXD measurement and SAXS measurement for the samples of Production Examples 1 to 12 are shown in FIGS. 2 and 13 to 23.
- the upper side shows the WAXD measurement and the lower side shows the SAXS measurement.
- Original indicates a pre-stretched film molded product
- ⁇ 5 indicates a 5-fold stretch
- ⁇ 10 indicates a 10-fold stretch
- After release or Zero stress indicates after unloading
- Drawing again indicates a re-stretch.
- the high-intensity ring pattern portion shows the peak diffracted by the crystal
- the weak-intensity portion shows the part derived from amorphous.
- the ⁇ structure starts to be slightly oriented in the stretching direction, but the period of the ⁇ crystal is not uniform.
- 5-fold and 10-fold stretching and re-stretching after unloading diffraction points due to the ⁇ structure were observed on the WAXD equator line, so that the molecular chain of the amorphous part between the ⁇ structure and the ⁇ structure was observed.
- this ⁇ structure Since this ⁇ structure is not in a stable state, it is expected that it will melt and return to the normal Thai molecular chain when the tension state is released. Furthermore, after unloading, the entire body shrinks due to rubber elasticity. Since the higher-order structure composed of lamella crystals can be dynamically rearranged at this time, it is expected that the structure will have a certain degree of periodicity, and it is strong on the meridian in the SAXS measurement of the film after unloading. This is considered to be the reason why the scattering pattern is observed.
- Table 2 shows the results of measuring the degree of orientation [%] of the films of Examples 1 to 12.
- the crystallization time depends on the ratio of 4HB and the crystallization temperature, but for P (3HB-co-4HB) having a 4HB ratio of about 10 mol% to 30 mol%, it takes about 1 minute to 120 minutes for the next stretching. You can move to the process.
- the primary PHA fiber is pressed against a metal pin heated to 60 ° C. (a circular pin having a cross section of 7-8 mm and a smooth surface, stainless steel or chrome-plated pin) and stretched about 5 times to obtain a fiber. It was.
- Examples 15, 16 and 17 are those that have been allowed to stand at 23 ° C. for one month. As in the case of the film, it is presumed that the X-ray orientation of the ⁇ structure of the fibers of Examples 15 to 17 is 50% or more.
- Example 17 Although it is in the form of a film, it has been reported that in unstretched films of poly3-hydroxybutyrate homopolymers, the elongation at break is significantly reduced due to deterioration over time (GJM de Koning et al, POLYMER, 1993, Figure 2) of Vol.34, No.19, 4089-4094). [Evaluation of long-term stability] The fiber produced in Example 17 was stored at 23 ° C. for half a year, and the fiber was designated as Example 18.
- the PHA fibers prepared in Examples 15 to 17 were evaluated by a cycle test in which they were repeatedly expanded and contracted.
- a stretched PHA fiber having a length of 3 cm and a fiber diameter of about 0.1 to 0.3 mm is subjected to a tensile tester AGS-X or EZ-Test (manufactured by Shimadzu Corporation) at a temperature of 23 ° C. and an initial length of 10 mm.
- a cycle test was conducted under the conditions of. The strain was stretched to 100% (twice the length) at a tensile speed of 20 mm / min, and then the gripper was moved to the original length at the same speed to contract the PHA fibers. This was repeated 5 times. The stress-strain curves during the second to fifth contractions are shown in FIGS. 5 to 7.
- the PHA fiber derived from Production Example 2 prepared in Example 15 has a tensile elongation recovery rate (%) at the first time point of the second elongation (that is, considered to be approximately equal to the end time point of the first contraction). It was about 70%, and the tensile elongation recovery rate (%) was about 70% to about 60% at the first time of the third to fifth elongation (FIG. 5).
- the PHA fiber derived from Production Example 5 prepared in Example 16 has a tensile elongation recovery rate (%) at the first time point of the second elongation (that is, considered to be approximately equal to the end time point of the first contraction).
- the PHA fibers derived from Production Example 13 prepared in Example 17 have a tensile elongation recovery rate (%) at the first time point of the second elongation (ie, considered to be approximately equal to the end time point of the first contraction). It was about 60%, and the tensile elongation recovery rate (%) was about 60% to about 55% at the first time of the third to fifth elongation (FIG. 7).
- the PHA fiber prepared in Example 17 is stretched at a tensile speed of 20 mm / min to a strain of 100% (twice the length), and then the gripper is moved at the same speed until the strain is stretched to 90%. And the PHA fiber was shrunk. This was repeated 5 times. The stress-strain curve during the 1st to 5th expansion and contraction is shown in FIG. The PHA fibers prepared in Example 17 were stretched to 100% strain and then repeatedly stretched to approximately 90%.
- the PHA fiber prepared in Example 17 is stretched to a strain of 10% (1.1 times the length) at a tensile speed of 20 mm / min, and then the gripper is held at the same speed to the original length.
- the PHA fibers were shrunk. This was repeated 5 times.
- the stress-strain curve during the 1st to 5th expansion and contraction is shown in FIG.
- the PHA fiber prepared in Example 17 was stretched to a strain of 10% and then repeatedly stretched to about 1% (1.01 times).
- the PHA film derived from Production Example 2 was evaluated by a cycle test in which it was repeatedly expanded and contracted.
- a PHA film cut to a length of 3 cm and a width of 3 mm is subjected to a cycle test using a tensile tester AGS-X or EZ-Test (manufactured by Shimadzu Corporation) at a temperature of 23 ° C. and an initial length of 10 mm. went.
- the strain was stretched to 1000% (11 times the length) at a tensile speed of 20 mm / min, and then the gripper was moved to the original length at the same speed to shrink the PHA film. This was repeated 5 times.
- the stress-strain curve during the second to fifth expansion and contraction is shown in FIG.
- the PHA cast film prepared from Production Example 2 has a deemed tensile elongation recovery rate (%) of about 50% at the first time of the second elongation (ie, considered to be approximately equal to the end of the first contraction).
- the deemed tensile elongation recovery rate (%) was about 45% to about 40% (FIG. 10).
- the tensile / stretch recovery rate (%) is calculated based on the displacement of 0 mm at the first time of the second stretch, the tensile / stretch recovery rate (%) at the third cycle test is 92%, and at the fourth stretch is 88%. At the 5th time, it becomes 85%.
- the PHA film derived from Production Example 5 was evaluated by a cycle test in the same manner as described above.
- the stress-strain curves during the second to fifth contractions are shown in FIG.
- the PHA film derived from Production Example 5 has a deemed tensile elongation recovery rate (%) of about 50% at the first time point of the second elongation (ie, considered to be approximately equal to the end time point of the first contraction).
- the deemed tensile elongation recovery rate (%) was about 45% to about 40%.
- the tensile / stretch recovery rate (%) is calculated based on the displacement of 0 mm at the first time of the second stretch
- the tensile / stretch recovery rate (%) at the third cycle test is 91%, and 87% at the fourth stretch. At the 5th time, it becomes 85%.
- the PHA film derived from Production Example 14 was evaluated by a cycle test in the same manner as described above.
- the stress-strain curves during the second to fifth contractions are shown in FIG.
- the PHA film from Production Example 14 has a deemed tensile elongation recovery rate (%) of about 50% at the first time point of the second elongation (ie, considered approximately equal to the end time point of the first contraction).
- the deemed tensile elongation recovery rate (%) was about 50% to about 40%.
- the tensile / stretch recovery rate (%) is calculated based on the displacement of 0 mm at the first time of the second stretch
- the tensile / stretch recovery rate (%) at the third cycle test is 96%, and 94% at the fourth stretch. At the 5th time, it becomes 92%.
- Example 19 Preparation of elastic P (3HB-co-3HV) fiber and structural analysis thereof ⁇ Experiment> P (3HB-co-12% -3HV) (Metabolix) was melted at 150 ° C. for 5 minutes using a melt spinning device. After that, the extruded resin was neck-stretched up to 5 times by hand to prepare a fiber having elasticity that stretches up to 2 times. At the large synchrotron radiation facility SPring-8 (FSBL03XU), the obtained elastic fibers were irradiated with X-rays while performing a cycle test, and structural analysis was performed.
- SPring-8 FSBL03XU
- a cycle test was conducted in the order of 0.5N ⁇ 2N ⁇ 0.5N ⁇ 4N ⁇ 0.5N ⁇ 6N ⁇ 0.5N ⁇ 10N ⁇ 0.5N, and the relationship between elasticity and molecular chain structure was analyzed. .. Further, the obtained fibers were stretched 1-fold, 1.5-fold, and 2-fold, and annealed at 100 ° C. for 24 hours. The stretching and structural analysis were specifically carried out in the same manner as in Examples 1 to 14. From the above, 1-fold, 1.5-fold, and 2-fold two-stage stretch heat-treated fibers were prepared, and their physical properties were evaluated and their structures were analyzed by a tensile tester and X-ray diffraction.
- the factor of elasticity is the reversible change of Thai molecule and ⁇ crystal.
- Films, fibers, and other molded products that exhibit biodegradability, biocompatibility, and bioabsorbability of the present invention are supple, follow external forces and shapes, and require elasticity. It is useful for industrial use such as knitted fabrics, films and fiber composites using. It can be used for applications that take advantage of the biodegradability and bioabsorbability of plastics used in agriculture, fisheries, commerce, industry, medicine, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
P(3HB)は、結晶化速度は遅いが結晶性が高く、ガラス転移点が4℃と室温以下であり、保管中に二次結晶化が進み、硬くてもろく物性の経時劣化が進むポリマーである。3-ヒドロキシバレレート(3HV)ユニットを共重合体化することで、P(3HB-co-3HV)はしなやかさに改善は見られたが、3HBユニットと3HVユニットは同じ結晶格子内に存在することができ、ガラス転移点は共重合体化でさらに下がる方向に向かい、成形後の二次結晶化による経時劣化は進行していくことが知られている。
<1> 2種類以上のモノマー単位を含む脂肪族共重合ポリエステルであって、α構造とアモルファス構造とを含み、α構造のX線配向度が50%以上である、延伸ポリエステル。
<2> 延伸された状態においては広角X線回析測定及び小角X線散乱測定によりβ構造が検出され、除荷された状態においては広角X線回析測定及び小角X線散乱測定により、延伸された状態と比較してβ構造が有意に減少するか、またはβ構造が検出されない、<1>に記載の延伸ポリエステル。
<3> 引張伸長回復率が20%以上100%以下である伸縮性を有する、<1>又は<2>に記載の延伸ポリエステル。
<4> 2種類以上のモノマー単位を含む脂肪族共重合ポリエステルであって、引張伸長回復率が20%以上100%以下である伸縮性を有する、延伸ポリエステル。
<5> 結晶化後、延伸を施し、その除荷後、伸縮性を発揮する、<1>から<4>の何れか一に記載の延伸ポリエステル。
<6> 延伸により結晶構造が配向処理されている、<1>から<5>の何れか一に記載の延伸ポリエステル。
<7> 2~20倍の延伸により結晶構造が配向処理されている、<5>又は<6>に記載の延伸ポリエステル。
<8> ラメラ結晶構造とアモルファス構造とを含み、延伸中に特異的な伸びきり鎖構造を発現し、引張荷重を除荷すると、前記伸びきり鎖構造が有意に減少あるいは消失する、<1>から<7>の何れか一に記載の延伸ポリエステル。
<9> 前記伸びきり鎖構造が平面ジグザグ構造である、<1>から<8>の何れか一に記載の延伸ポリエステル。
<10> 前記のラメラ結晶構造がらせん構造の折り畳みからなる<1>から<9>の何れか一に記載の延伸ポリエステル。
<11> 2種類以上のモノマー単位が、主鎖長の異なる2種類以上のモノマー単位の組み合わせである、<1>から<10>の何れか一に記載の延伸ポリエステル。
<12> ポリエステルが、モノマー単位として3-ヒドロキシブチレート単位を含む、<1>から<11>の何れか一に記載の延伸ポリエステル。
<13> ポリエステルが、モノマー単位としてさらに4-ヒドロキシブチレート単位を含む、<12>に記載の延伸ポリエステル。
<14> 全モノマー単位に対する4-ヒドロキシブチレート単位の割合が10モル%~30モル%である、<13>に記載の延伸ポリエステル。
<15> ポリスチレン換算ゲル浸透クロマトグラフィー測定による重量平均分子量が100,000~3,000,000である、<1>から<14>の何れか一に記載の延伸ポリエステル。
<16> 生分解性である、<1>から<15>の何れか一に記載の延伸ポリエステル。
<17> 生体吸収性である、<1>から<16>の何れか一に記載の延伸ポリエステル。
<18> 生物合成由来または化学合成由来である、<1>から<17>の何れか一に記載の延伸ポリエステル。
<19> <1>から<18>の何れか一に記載の延伸ポリエステルを含有する、フィルム。
<20> <1>から<18>の何れか一に記載の延伸ポリエステルを含有する、繊維。
<21> <1>から<18>の何れか一に記載の延伸ポリエステルを含有する、成形体。
<22> 2種類以上のモノマー単位を含む脂肪族共重合ポリエステルを結晶化後延伸により配向処理する延伸工程;および
前記延伸工程により配向処理されたポリエステルの引張荷重を除荷する除荷工程:
を含む、<1>から<18>の何れか一に記載の延伸ポリエステルの製造方法。
<23> 製造される延伸ポリエステルの形態が、フィルム、繊維又は成形体である、<22>に記載の方法。
本発明のポリエステルは、2種類以上のモノマー単位を含む脂肪族共重合ポリエステルであって、α構造とアモルファス構造とを含み、α構造のX線配向度が50%以上である、延伸ポリエステルである。
2種類以上のモノマー単位を含む脂肪族共重合ポリエステルを使用すること、並びにα構造とアモルファス構造とを含むことにより、本発明の延伸ポリエステルは形状追従性及び柔軟性を有することが可能になる。
また、本発明の延伸ポリエステルは、結晶核剤などの添加なしでも二次結晶化による経時劣化を抑制することができる。
本発明のポリエステルは、2種類以上のモノマー単位を含むものであるが、好ましくは2種類以上のモノマー単位は、主鎖長の異なる2種類以上のモノマー単位の組み合わせである。重合単位としては、3-ヒドロキシブチレート単位を含むことが好ましい。重合単位としては、3-ヒドロキシブチレート単位に加えて、4-ヒドロキシブチレート単位を含むことが好ましい。
3-ヒドロキシブチレート単位:-OCH(CH3)CH2C(=O)-
4-ヒドロキシブチレート単位:-OCH2CH2CH2C(=O)-
本発明のポリエステルは、ランダムポリマー、ブロックポリマー、交互ポリマー、またはグラフトポリマーの何れでもよいが、好ましくはランダムポリマーである。
α構造のX線配向度は50%以上であればよいが、55%以上でもよく、60%以上でもよく、65%以上でもよく、70%以上でもよく、75%以上でもよく、80%以上でもよく、85%以上でもよい。α構造のX線配向度の上限は特に限定されないが、一般的には95%以下であり、90%以下でもよい。
R=[(20-(X+10))/10]×100
で示される。
r=[(110-(y+10))/100]×100
で示される。
しかし、本発明は延伸ポリエステルであり、初回延伸後フィルムの変位長さを0mmとして基準にし直すと、
引張伸長回復率R(%)は、
R=r2/r1×100
で示される。ただし、r1は1回目延伸後のみなし引張伸長回復率であり、r2は2回目延伸後のみなし引張伸長回復率である。
一般に、PHA類を合成する方法としては、発酵合成法(生物合成法)と化学合成法とがある。本発明の脂肪族ポリエステルを製造する方法は発酵合成法(生物合成法)でも化学合成法でもよいが、分子量の大きなポリエステルを得るためには発酵合成法(生物合成法)の方が好ましい。
炭素源としては、例えば、アラビノース、グルコース、マンノース、フラクトースおよびガラクトースなどの糖類、ソルビトール、マンニトールおよびイノシトールなどの糖アルコール類、メタノール、エタノール、ブタノールなどのアルコール類、酢酸、酪酸、脂肪酸や植物油などの有機炭素源、二酸化炭素などの無機炭素源、酵母エキス、糖蜜、ペプトンおよび肉エキスなどの天然物等を使用することができる。
そのほかの有機栄養源としては、例えばグリシン、アラニン、セリン、スレオニン、プロリン等のアミノ酸類、ビタミンB1、ビタミンB12、葉酸、ビタミンC、等のビタミン等が挙げられる。
上記のPHAを原料として使用し、溶融紡糸、溶融押出、射出成型のような溶融加工工程を行うことができる。この成型体に対して熱処理結晶化を施し、その後に、延伸することによりゴム弾性を有する繊維、フィルム、成型体を得ることができる。
溶媒キャスト法でフィルム等成形体が作成される場合には溶媒の蒸発時に結晶化も同時に起きるため、次の延伸プロセスに進むことができる。
例えば、溶融温度180℃において、5分間の溶融を行ったのち、23℃で巻き取った繊維を、23℃で30分間結晶化させ、約5倍に延伸するとゴム弾性を有する繊維を製造することができる。
溶融紡糸、結晶化、延伸を経て作成された後の繊維の長さを100%とすると(延伸前ではなく、全ての工程が終了した時点の長さを100%とする)、およそ200%(ひずみ100%)まで破断せず引き延ばすことが可能であり、その後、除荷することによって、130~150%(ひずみ30~50%)近くまでひずみが回復する性質を示し、伸張伸長回復率(%)が約70%~約50%であった。延伸倍率や延伸回数を適宜調節し、必要とされる伸縮幅に合わせればよい。
溶融成型、結晶化、延伸を経て作成された後のフィルムの長さを100%とすると(延伸して収縮した後の長さを100%とする)、およそ200%(ひずみ100%)まで破断せず引き延ばすことが可能であり、その後、除荷すると140%(ひずみ40%)近くまでひずみが回復する性質を有する。
このようにして製造された繊維やフィルムは、その後、半年以上の長期間にわたる保存後も良好な弾性応答を保持しており、二次結晶化による経時劣化が抑制された成形体である。
<製造例1>
Cupriavidus necator H16株(ATCC17699)を使用してPHAを製造した。
KH2PO4 2.72g/L、Na2HPO4 4.26g/L、NaHCO3 0.3g/L、(NH4)2SO4 2g/L、MgSO4・7H2O 0.2g/L、酵母エキス0.2g/L、下記ミネラル溶液3.5mLからなる滅菌された培地1に、フルクトースを14.24g/Lにて加えた培地にて試験管振とう培養を30℃24時間行い、前前培養液を得た。
ミネラル溶液:FeC6H5O7・xH2O 6g/L、ZnSO4・7H2O 2g/L、CuSO4・5H2O 0.1g/L、MnCl2・4H2O 1g/L、KI 0.1g/L、(NH4)6Mo7O24・4H2O 0.1g/L、CoCl2・6H2O 0.1g/L、H3BO3 0.2g/L、NaCl 5g/L、CaCl2・2H2O 4g/Lを水に溶解させたもの。
菌体からPHAを抽出精製する方法は以下のように行った。スクリューキャップ付きガラス製三角フラスコにて、凍結乾燥菌体4~10g程度を400mLのクロロホルムに懸濁し、30℃にて24~48時間抽出した。得られた粘調の溶液をろ紙にてろ過し、菌体残渣をとり除いた。得られた清澄液をエバポレーターにて100~200mL程度に濃縮し、5倍量の貧溶媒であるヘキサンにてPHAを析出させた。得られた白色沈殿物をエタノールにて洗浄後、真空乾燥させ、精製PHAを得た。
ジャー培養での培養時間を170時間とした以外は製造例1と同様に行った。
ジャー培養での培養時間を96時間とした以外は製造例1と同様に行った。
ジャー培養での培養時間を120時間とした以外は製造例1と同様に行った。
ジャー培養での培養時間を144時間とした以外は製造例1と同様に行った。
ジャー培養での培地で(NH4)2SO4を12.5g/Lに変更した培地を使用し、流加炭素源として42質量%フルクトース溶液とε-カプロラクトンを使用し、ε-カプロラクトン:フルクトースの比率は約0.4とし、12.5%アンモニア水をpH調整用アルカリに使用し、培養時間を149時間とした以外は製造例1と同様に行った。
ジャー培養での培養時間を172時間とし、ε-カプロラクトン:フルクトースの比率は約0.5とした以外は製造例6と同様に行った。
ジャー培養での培養時間を172時間とし、ε-カプロラクトン:フルクトースの比率は約0.6とした以外は製造例6と同様に行った。
ジャー培養での培養時間を205時間とし、ε-カプロラクトン:フルクトースの比率は約0.6とした以外は製造例6と同様に行った。
ジャー培養での培養時間を205時間とし、ε-カプロラクトン:フルクトースの比率は約0.6とした以外は製造例6と同様に行った。
ジャー培養での培養時間を114時間とし、ε-カプロラクトン:フルクトースの比率は約0.4とし、培養後に高圧破砕処理、アルカリ処理、酸化剤処理、溶剤洗浄等を組み合わせて精製した以外は製造例1と同様に行った。
ジャー培養での培養時間を111時間とし、ε-カプロラクトン:フルクトースの比率は約0.5とした以外は製造例10と同様に行った。
ジャー培養での培養時間を113時間とし、ε-カプロラクトン:フルクトースの比率は約0.5とした以外は製造例10と同様に行った。
ジャー培養での培養時間を113時間とし、ε-カプロラクトン:フルクトースの比率は約0.4とした以外は製造例10と同様に行った。
ジャー培養での培養時間を113時間とし、ε-カプロラクトン:フルクトースの比率は約0.5とした以外は製造例6と同様に行った。
PHA分子量(重量平均分子量Mw及び数平均分子量Mn)の測定は以下のようにゲルパーミエーションクロマトグラフィー法により行った。各製造例のPHAについて分子量(Mw及びMn)の測定結果を下記表1に示す。
精製したPHAを約0.5mg/mlとなるようにクロロホルムを加え、60℃で4時間溶解させた後、室温に戻し、孔径0.2μmのPTFEフィルターでろ過して不溶物を除き、測定サンプルとした。GPC条件は以下の通りである。
装置:島津製作所製 HPLC Prominenceシステム
カラム:昭和電工製 Shodex K-806L(2本直列)
カラム温度: 40℃
移動相: クロロホルム(1ml/分)
検出器: RI(40℃)
スタンダード:Shodexポリスチレン分子量スタンダード(687万~1270)
注入量:60μl
分析時間:30分
<1H-NMR>
各製造例の精製PHAの組成分析は核磁気共鳴分光装置(日本分光ECA500)を使用し決定した。精製したPHAを1.5質量%濃度でCDCl3に溶解し、測定サンプルとした。1H-NMRスペクトルは500MHz、にて室温で計測した。
ガラス転移温度(Tg)と融点(Tm)は、イントラクーラーを取り付けた示差走査熱量計(PerkinElmer,DSC8500)を用いて測定した。測定雰囲気は窒素(20ml/分)とし、-50℃から200℃まで20℃/分で昇温し、1分間保持することで完全にサンプルを溶融させた。続いて、200℃/分で-50℃まで急冷し、3分間保持した跡、再度200℃まで20℃/分で昇温(この昇温をセカンドランとする)した。上記のセカンドランにおいて測定されるDSC曲線(サーモグラム)によってTgおよびTmを測定した。なお、急冷冷却状態のガラス状態から昇温していくと、ガラス状態からアモルファス状態へ移行するときにベースラインの変動が起きるので、その変動が起きる温度を読み取ることによりTgとした。さらに昇温を続けていくと、DSC曲線に溶融ピーク(吸熱ピーク)が下に凸のピークとして表れるのでその頂点ピーク位置の温度をTmとした。サンプルは1mg前後とし、アルミ製のサンプルパンを使用した。温度校正にはインジウムを使用した。測定結果を下記表1に示す。
[フィルム結晶化]
製造例1~14で得られたP(3HB-co-4HB)ポリマー(各0.25g)をクロロホルム10mlに溶解し、得られたポリマー溶液を直径5cmのテフロンシャーレに注ぎ、穴をあけたフィルム(アルミホイル)で覆い、1日間程度かけて溶媒を蒸発させることにより溶媒キャストフィルムを作製した。得られたフィルムは23℃にて1週間静置することにより結晶化を進行させ、PHAキャストフィルムを得た。なお、ホットプレスなど溶融成型によってフィルムを作成する場合には180℃にて2~5分間加熱し溶融させた後、23℃にて1分~120分程度の結晶化時間をとり、次の延伸工程に移行できる。
上記で得られたPHAフィルムを長さ3cm、幅3mmの短冊状に切り、23℃にて、延伸機を用いて任意の倍率例えば2倍、5倍、10倍等に延伸した。必要に応じて延伸をやめ除荷し、再度、延伸操作を繰り返し行った。製造例1~14で得られたP(3HB-co-4HB)ポリマーを使用して製造したPHAキャストフィルムに、上記の通り延伸を施したものをそれぞれ、実施例1~14のフィルムとする。
製造例1~12のPHAから作成されたPHAキャストフィルムについて、 延伸前、延伸中、除荷後、再延伸中のフィルムの構造解析を、広角X線回折(WAXD)測定及び小角X線散乱(SAXS)測定により行った。
上記の広角X線回析(WAXD)の測定において測定したWAXD画像における特定の回折点(今回は(020)面)を含む領域を、リング状に選択し、同一の方位角を有する回折強度をすべて積算し、この強度を方位角に対してプロットすることで、方位角一次元プロファイルを作成した。回折点の存在する箇所では頂点を有する正規分布のようなカーブが得られるので、その半値幅(FWHM(full width at half maximum):ピークの半分の高さのピーク幅)を計測する(図24を参照)。半値幅をβとする場合、配向度F[%]は、
F=(180-β)/180 ×100[%]
で表される。
長さ3cm、幅3mmの短冊状に切り取ったPHAフィルムは引張試験機AGS-XあるいはEZ-Test((株)島津製作所製)を使用して、温度23℃、試験速度20mm/分、初期長10mmの条件でフィルムの破断までの引張試験を行った。なお、長方向の長さが3cmのうち、フィルムの固定にフィルムの端から1cmずつの領域を使用し、引張試験に使用する部分は中心の1cm(10mm)となり、その10mmの部分を初期長とした。応力ひずみ曲線の結果を図1に示す。
実施例2、4、5、6、8及14のフィルムの伸縮性を、図4に示したような方法で評価した。長さ3cm、幅3mmの短冊片に切ったフィルムをチャック間距離(固定治具間距離)1cmをひずみ0%とし、11倍の11cm(ひずみ1000%、変位長さ10cm)に引き伸ばし戻した際のひずみL1(%)、再び、11倍(ひずみ1000%)に伸ばして戻した際のひずみL2(%)を表3にまとめた。ひずみは、変位長さ/固定治具間距離(1cm)により求めた。
[繊維結晶化]
製造例2、5、13で得られたP(3HB-co-4HB)を170℃~180℃にて5~10分間加熱し溶融させた後、2mmの吐出ダイから押出し吐出させた。具体的には、株式会社井元製作所(京都)の高温溶融押出紡糸装置(IMC-19F8)を使用し、直径6mmのシリンダーに約5gのポリマーを充填し、ピストン押出速度は0.5mm/sにて押出した。23℃にてローラーに巻き取り、ローラーに巻き取った状態にて23℃で30分間静置して結晶化させ、1次PHA繊維を得た。結晶化の時間は4HBの比率や結晶化温度にもよるが、4HB比率10モル%~30モル%程度のP(3HB-co-4HB)であれば1分~120分程度で、次の延伸工程に移行できる。
上記1次PHA繊維を、60℃に加熱した金属ピン(断面が直径7-8mmの円形であり、表面が平滑なステンレス又はクロムメッキのピン)に押し当てながら約5倍に延伸した繊維を得た。23℃で1か月間静置したものを、それぞれ実施例15、16、17とする。フィルムの場合と同様に、実施例15~17の繊維についてもα構造のX線配向度は50%以上であることが推察される。なお、フィルム形状ではあるが、ポリ3-ヒドロキシブチレートのホモポリマーの未延伸フィルムにおいては経時劣化によって、破壊伸びが大幅に低下することが報告されている(G.J.M.de Koning et al, POLYMER, 1993, Vol.34, No.19, 4089-4094のFigure 2)。
[長期安定性の評価]
実施例17で製造した繊維を23℃で半年間保存した繊維を実施例18とした。
長さ3cm、繊維径約0.1~0.3mmの延伸PHA繊維(実施例17及び実施例18)を引張試験機AGS-XあるいはEZ-Test((株)島津製作所製)を使用して、温度23℃、試験速度20mm/分、初期長10mmの条件で繊維の破断までの引張試験を行った。引張試験結果を表4に示した。引張試験の結果、破断ひずみ(破壊伸び)は同程度であり、経時劣化はほぼ抑えられていた。
実施例15~17で作成したPHA繊維を繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、繊維径約0.1~0.3mmの延伸PHA繊維を、引張試験機AGS-XあるいはEZ-Test((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ100%(2倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHA繊維を収縮させた。これを5回繰り返した。2回目から5回目の収縮時の応力-ひずみ曲線を図5~図7に示した。
実施例16で作成された製造例5由来のPHA繊維は、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約65%であり、3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約65%~約60%であった(図6)。
実施例17で作成された製造例13由来のPHA繊維は、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、引張伸長回復率(%)が約60%であり、3回目~5回目の伸長の最初の時点において、引張伸長回復率(%)が約60%~約55%であった(図7)。
実施例17で作成されたPHA繊維はひずみ100%に伸張させた後、およそ90%へ繰り返し伸縮した。
実施例17で作成されたPHA繊維はひずみ10%に伸張させた後、およそ1%(1.01倍)へ繰り返し伸縮した。
製造例2由来のPHAフィルムを繰り返し伸縮させるサイクル試験にて評価した。長さ3cm、幅3mmに切り取られたPHAフィルムを、引張試験機AGS-XあるいはEZ-Test((株)島津製作所製)を使用して、温度23℃、初期長10mmの条件でサイクル試験を行った。引張速度20mm/分にてひずみ1000%(11倍の長さ)まで伸張し、続いてもとの長さにまでつかみ具を同速度で移動させ、PHAフィルムを収縮させた。これを5回繰り返した。2回目から5回目の伸縮時の応力-ひずみ曲線を図10に示した。
製造例5由来のPHAフィルムは、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、みなし引張伸長回復率(%)が約50%であり、3回目~5回目の伸長の最初の時点において、みなし引張伸長回復率(%)が約45%~約40%であった。2回目の伸張の最初の時点の変位0mmを基準として引張伸張回復率(%)を計算すると、サイクル試験3回目での引張伸張回復率(%)は91%であり、4回目では87%、5回目では85%となる。
製造例14由来のPHAフィルムは、2回目の伸長の最初の時点(すなわち、1回目の収縮の終了時点にほぼ等しいとみなす)において、みなし引張伸長回復率(%)が約50%であり、3回目~5回目の伸長の最初の時点において、みなし引張伸長回復率(%)が約50%~約40%であった。2回目の伸張の最初の時点の変位0mmを基準として引張伸張回復率(%)を計算すると、サイクル試験3回目での引張伸張回復率(%)は96%であり、4回目では94%、5回目では92%となる。
<実験>
P(3HB-co-12%-3HV)(Metabolix社)を、溶融紡糸装置を用いて150℃で5分間溶融させた。その後押し出された樹脂を手で5倍までネッキング延伸することで、2倍にまで伸びる伸縮性を有する繊維を作製した。大型放射光施設SPring-8(FSBL03XU)で、得られた伸縮性繊維をサイクル試験しながらX線を照射させ、構造解析を行った。具体的には0.5N→2N→0.5N→4N→0.5N→6N→0.5N→10N→0.5N のようにサイクル試験を行い、伸縮性と分子鎖構造の関係を分析した。さらに得られた繊維を1倍延伸、1.5倍延伸、2倍延伸し、100℃、24時間でアニーリングを行った。延伸及び構造解析は、具体的には実施例1~14と同様に行った。以上より1倍、1.5倍、2倍二段階延伸熱処理繊維を作製し、引張試験機、X線回折によって物性評価と構造解析を行った。
[伸縮性と分子鎖構造の関係]
伸縮性繊維をサイクル試試験しながらX線を照射させる動的試験を行い、構造解析を行った。WAXDから、荷重をかけるとβ晶の強いピークが発現したが、除荷するとそのピークが減少した(図25)。またSAXS から、荷重をかけるとα晶間の長周期は増加し、除荷するとその長周期は減少した。さらにこの長周期の周期的な変化は繊維のつかみ具間距離の変化とほとんど一致していた。このことから、載荷時はα晶とα晶の間のタイ分子が伸び切りβ晶を発現するが、除荷時は発現していたβ晶がタイ分子に戻ることが考えられる。以上の結果より、伸縮性の要因は、タイ分子とβ晶が可逆的に変化するためだと考えらえる。
1倍、1.5倍、2倍二段階延伸熱処理繊維の引張試験を行った結果、破壊強度は延伸倍率の上昇に伴って増加し、2倍二段階延伸熱処理繊維の破壊強度は302MPaであった。一方、繊維の破壊伸びは延伸倍率の上昇に伴って減少した(図26)。これらの構造解析を行った結果、WAXDから1.5倍、2倍二段階延伸熱処理繊維に関して、α晶(2回らせん構造からなるラメラ結晶)とα晶の間の非晶領域のタイ分子が伸びきり、分子の伸びきり鎖に由来するβ晶(平面ジグザグ構造)を発現し、さらにSAXSから、1.5、2倍二段階延伸熱処理繊維はストリーク散乱が観察されたことから、シシカバブ構造のシシ部分が規則正しくパッキングしていることが分かった。以上から、破壊強度の上昇はシシ部分の分子鎖が伸び切りβ晶を形成しながら規則正しくパッキングしているため、また破壊伸びの低下は分子鎖が十分に伸び切っているためだ考えられる。
Claims (23)
- 2種類以上のモノマー単位を含む脂肪族共重合ポリエステルであって、α構造とアモルファス構造とを含み、α構造のX線配向度が50%以上である、延伸ポリエステル。
- 延伸された状態においては広角X線回析測定及び小角X線散乱測定によりβ構造が検出され、除荷された状態においては広角X線回析測定及び小角X線散乱測定により、延伸された状態と比較してβ構造が有意に減少するか、またはβ構造が検出されない、請求項1に記載の延伸ポリエステル。
- 引張伸長回復率が20%以上100%以下である伸縮性を有する、請求項1又は2に記載の延伸ポリエステル。
- 2種類以上のモノマー単位を含む脂肪族共重合ポリエステルであって、引張伸長回復率が20%以上100%以下である伸縮性を有する、延伸ポリエステル。
- 結晶化後、延伸を施し、その除荷後、伸縮性を発揮する、請求項1から4の何れか一項に記載の延伸ポリエステル。
- 延伸により結晶構造が配向処理されている、請求項1から5の何れか一項に記載の延伸ポリエステル。
- 2~20倍の延伸により結晶構造が配向処理されている、請求項5又は6に記載の延伸ポリエステル。
- ラメラ結晶構造とアモルファス構造とを含み、延伸中に特異的な伸びきり鎖構造を発現し、引張荷重を除荷すると、前記伸びきり鎖構造が有意に減少あるいは消失する、請求項1から7の何れか一項に記載の延伸ポリエステル。
- 前記伸びきり鎖構造が平面ジグザグ構造である、請求項1から8の何れか一項に記載の延伸ポリエステル。
- 前記のラメラ結晶構造がらせん構造の折り畳みからなる請求項1から9の何れか一項に記載の延伸ポリエステル。
- 2種類以上のモノマー単位が、主鎖長の異なる2種類以上のモノマー単位の組み合わせである、請求項1から10の何れか一項に記載の延伸ポリエステル。
- ポリエステルが、モノマー単位として3-ヒドロキシブチレート単位を含む、請求項1から11の何れか一項に記載の延伸ポリエステル。
- ポリエステルが、モノマー単位としてさらに4-ヒドロキシブチレート単位を含む、請求項12に記載の延伸ポリエステル。
- 全モノマー単位に対する4-ヒドロキシブチレート単位の割合が10モル%~30モル%である、請求項13に記載の延伸ポリエステル。
- ポリスチレン換算ゲル浸透クロマトグラフィー測定による重量平均分子量が100,000~3,000,000である、請求項1から14の何れか一項に記載の延伸ポリエステル。
- 生分解性である、請求項1から15の何れか一項に記載の延伸ポリエステル。
- 生体吸収性である、請求項1から16の何れか一項に記載の延伸ポリエステル。
- 生物合成由来または化学合成由来である、請求項1から17の何れか一項に記載の延伸ポリエステル。
- 請求項1から18の何れか一項に記載の延伸ポリエステルを含有する、フィルム。
- 請求項1から18の何れか一項に記載の延伸ポリエステルを含有する、繊維。
- 請求項1から18の何れか一項に記載の延伸ポリエステルを含有する、成形体。
- 2種類以上のモノマー単位を含む脂肪族共重合ポリエステルを結晶化後延伸により配向処理する延伸工程;および
前記延伸工程により配向処理されたポリエステルの引張荷重を除荷する除荷工程:
を含む、請求項1から18の何れか一項に記載の延伸ポリエステルの製造方法。 - 製造される延伸ポリエステルの形態が、フィルム、繊維又は成形体である、請求項22に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217038140A KR20220007866A (ko) | 2019-05-13 | 2020-05-13 | 지방족 폴리에스테르 공중합체 |
US17/610,798 US20220203600A1 (en) | 2019-05-13 | 2020-05-13 | Aliphatic polyester copolymer |
CN202080035643.3A CN113825620A (zh) | 2019-05-13 | 2020-05-13 | 脂肪族聚酯共聚物 |
JP2021519451A JP7568231B2 (ja) | 2019-05-13 | 2020-05-13 | 脂肪族ポリエステル共重合体 |
EP20806199.4A EP3970948B1 (en) | 2019-05-13 | 2020-05-13 | Aliphatic polyester copolymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019090739 | 2019-05-13 | ||
JP2019-090739 | 2019-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230807A1 true WO2020230807A1 (ja) | 2020-11-19 |
Family
ID=73288852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019066 WO2020230807A1 (ja) | 2019-05-13 | 2020-05-13 | 脂肪族ポリエステル共重合体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220203600A1 (ja) |
EP (1) | EP3970948B1 (ja) |
JP (1) | JP7568231B2 (ja) |
KR (1) | KR20220007866A (ja) |
CN (1) | CN113825620A (ja) |
TW (1) | TW202104343A (ja) |
WO (1) | WO2020230807A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021246433A1 (ja) * | 2020-06-02 | 2021-12-09 | 三菱瓦斯化学株式会社 | 高分子成形物の製造方法 |
WO2021246434A1 (ja) * | 2020-06-02 | 2021-12-09 | 三菱瓦斯化学株式会社 | 加熱による前処理を伴う高分子成形物の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792663B (zh) * | 2021-11-08 | 2023-02-11 | 行政院原子能委員會核能研究所 | 聚羥基烷酸酯生產及萃取方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5959419A (ja) | 1982-08-27 | 1984-04-05 | インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− | 3−ヒドロキシブチレ−ト重合体 |
JPS61120724A (ja) * | 1984-11-19 | 1986-06-07 | Idemitsu Petrochem Co Ltd | ポリエステルフイルムの製造方法 |
JPS6448821A (en) | 1987-08-18 | 1989-02-23 | Mitsubishi Chem Ind | Polyester copolymer and its production |
JPH03216193A (ja) | 1990-01-19 | 1991-09-24 | Mitsubishi Kasei Corp | ポリエステル共重合体の製造方法 |
JPH03292889A (ja) | 1990-04-10 | 1991-12-24 | Mitsubishi Kasei Corp | ポリエステル共重合体の製造方法 |
JPH0564591A (ja) | 1991-09-05 | 1993-03-19 | Mitsubishi Kasei Corp | ポリエステル共重合体の製造方法 |
JPH06336523A (ja) | 1993-03-31 | 1994-12-06 | Nippon Zeon Co Ltd | ポリエステル成形品 |
JPH07275344A (ja) | 1994-04-05 | 1995-10-24 | Nippon Zeon Co Ltd | 軟組織用医療用材料 |
JPH07300720A (ja) * | 1994-04-27 | 1995-11-14 | Ishikawa Pref Gov | 生分解性繊維とその製造方法 |
JPH09208817A (ja) * | 1995-11-30 | 1997-08-12 | Mitsui Toatsu Chem Inc | 乳酸系ポリマー延伸フィルム |
JPH09300845A (ja) * | 1996-05-17 | 1997-11-25 | Toray Ind Inc | 感熱孔版印刷原紙用フィルム |
JP2002371431A (ja) * | 2001-06-11 | 2002-12-26 | Kanegafuchi Chem Ind Co Ltd | 生分解性繊維およびその製造方法 |
JP3680132B2 (ja) | 2002-02-26 | 2005-08-10 | 独立行政法人産業技術総合研究所 | 伸縮性の(エラスティックな)性質を有する生分解性材料およびこの材料から形成される人工血管 |
JP2006168159A (ja) * | 2004-12-15 | 2006-06-29 | Kaneka Corp | 生分解性フィルムの製造方法 |
JP2008120888A (ja) | 2006-11-09 | 2008-05-29 | Univ Kansai | 生分解性共重合体及びその製造方法 |
WO2008099586A1 (ja) | 2007-02-15 | 2008-08-21 | Tokyo Institute Of Technology | 生分解性樹脂組成物 |
WO2014065253A1 (ja) | 2012-10-22 | 2014-05-01 | 株式会社カネカ | 高分子量pha生産微生物とそれを用いた高分子量phaの製造方法 |
JP6368245B2 (ja) | 2012-10-29 | 2018-08-01 | 株式会社カネカ | 脂肪族ポリエステル樹脂組成物および該樹脂組成物を含む成形体 |
WO2019044837A1 (ja) | 2017-08-29 | 2019-03-07 | 三菱瓦斯化学株式会社 | ポリエステルの製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61114755A (ja) | 1984-11-09 | 1986-06-02 | 株式会社御池鐵工所 | 圧縮加熱微砕機 |
JPH07290564A (ja) * | 1994-04-28 | 1995-11-07 | Showa Denko Kk | 脂肪族ポリエステル延伸成形体とその製造方法 |
JP2892964B2 (ja) * | 1995-04-05 | 1999-05-17 | 石川県 | 生分解性繊維 |
JP3369421B2 (ja) * | 1996-12-18 | 2003-01-20 | 理化学研究所 | ポリ(3−ヒドロキシブタン酸)からなるフィルム |
ATE376433T1 (de) * | 1999-03-25 | 2007-11-15 | Metabolix Inc | Medizinische vorrichtungen und verwendungen von polyhydroxyalkanoatpolymeren |
US6821612B1 (en) * | 1999-10-28 | 2004-11-23 | The Procter & Gamble Company | Methods for preparing soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and polymer products comprising such compositions |
JP4475481B2 (ja) * | 2000-02-10 | 2010-06-09 | 株式会社クレハ | 高強度ポリエステルアミド繊維の製造方法 |
WO2001079334A1 (fr) * | 2000-04-18 | 2001-10-25 | Kureha Kagaku Kogyo K.K. | Film de polyester-amide etire et procede de production de celui-ci |
JP2003311825A (ja) * | 2002-04-25 | 2003-11-06 | Inst Of Physical & Chemical Res | ポリヒドロキシアルカン酸からなる高強度フィルムおよびその製造法 |
KR100966572B1 (ko) * | 2005-07-04 | 2010-06-30 | 주식회사 엘지화학 | 형상기억능을 가진 폴리(3-히드록시알카노에이트) 블록공중합체 |
EP2199078A1 (en) * | 2008-12-22 | 2010-06-23 | Total Petrochemicals Research Feluy | Polyethylene and poly(hydroxy carboxylic acid) multilayer films |
US20130137788A1 (en) * | 2010-08-18 | 2013-05-30 | Gouhei Yamamura | Porous film |
JP5411902B2 (ja) * | 2011-09-26 | 2014-02-12 | Krh株式会社 | ストレッチフィルム製品 |
JP5959419B2 (ja) | 2012-11-26 | 2016-08-02 | 株式会社日立製作所 | 列車運行管理システムおよび列車運行管理システムの制御方法 |
-
2020
- 2020-05-13 JP JP2021519451A patent/JP7568231B2/ja active Active
- 2020-05-13 US US17/610,798 patent/US20220203600A1/en active Pending
- 2020-05-13 WO PCT/JP2020/019066 patent/WO2020230807A1/ja unknown
- 2020-05-13 KR KR1020217038140A patent/KR20220007866A/ko not_active Application Discontinuation
- 2020-05-13 CN CN202080035643.3A patent/CN113825620A/zh active Pending
- 2020-05-13 EP EP20806199.4A patent/EP3970948B1/en active Active
- 2020-05-13 TW TW109115863A patent/TW202104343A/zh unknown
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5959419A (ja) | 1982-08-27 | 1984-04-05 | インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− | 3−ヒドロキシブチレ−ト重合体 |
JPS61120724A (ja) * | 1984-11-19 | 1986-06-07 | Idemitsu Petrochem Co Ltd | ポリエステルフイルムの製造方法 |
JPS6448821A (en) | 1987-08-18 | 1989-02-23 | Mitsubishi Chem Ind | Polyester copolymer and its production |
JPH03216193A (ja) | 1990-01-19 | 1991-09-24 | Mitsubishi Kasei Corp | ポリエステル共重合体の製造方法 |
JPH03292889A (ja) | 1990-04-10 | 1991-12-24 | Mitsubishi Kasei Corp | ポリエステル共重合体の製造方法 |
JPH0564591A (ja) | 1991-09-05 | 1993-03-19 | Mitsubishi Kasei Corp | ポリエステル共重合体の製造方法 |
JPH06336523A (ja) | 1993-03-31 | 1994-12-06 | Nippon Zeon Co Ltd | ポリエステル成形品 |
JPH07275344A (ja) | 1994-04-05 | 1995-10-24 | Nippon Zeon Co Ltd | 軟組織用医療用材料 |
JPH07300720A (ja) * | 1994-04-27 | 1995-11-14 | Ishikawa Pref Gov | 生分解性繊維とその製造方法 |
JPH09208817A (ja) * | 1995-11-30 | 1997-08-12 | Mitsui Toatsu Chem Inc | 乳酸系ポリマー延伸フィルム |
JPH09300845A (ja) * | 1996-05-17 | 1997-11-25 | Toray Ind Inc | 感熱孔版印刷原紙用フィルム |
JP2002371431A (ja) * | 2001-06-11 | 2002-12-26 | Kanegafuchi Chem Ind Co Ltd | 生分解性繊維およびその製造方法 |
JP4562316B2 (ja) | 2001-06-11 | 2010-10-13 | 株式会社カネカ | 生分解性繊維およびその製造方法 |
JP3680132B2 (ja) | 2002-02-26 | 2005-08-10 | 独立行政法人産業技術総合研究所 | 伸縮性の(エラスティックな)性質を有する生分解性材料およびこの材料から形成される人工血管 |
JP2006168159A (ja) * | 2004-12-15 | 2006-06-29 | Kaneka Corp | 生分解性フィルムの製造方法 |
JP2008120888A (ja) | 2006-11-09 | 2008-05-29 | Univ Kansai | 生分解性共重合体及びその製造方法 |
WO2008099586A1 (ja) | 2007-02-15 | 2008-08-21 | Tokyo Institute Of Technology | 生分解性樹脂組成物 |
WO2014065253A1 (ja) | 2012-10-22 | 2014-05-01 | 株式会社カネカ | 高分子量pha生産微生物とそれを用いた高分子量phaの製造方法 |
JP6368245B2 (ja) | 2012-10-29 | 2018-08-01 | 株式会社カネカ | 脂肪族ポリエステル樹脂組成物および該樹脂組成物を含む成形体 |
WO2019044837A1 (ja) | 2017-08-29 | 2019-03-07 | 三菱瓦斯化学株式会社 | ポリエステルの製造方法 |
Non-Patent Citations (12)
Title |
---|
ABE ET AL., MACROMOLECULES, vol. 28, 1995, pages 7630 |
ALISTAIR J. ANDERSON ET AL., MICROBIOLOGICAL REVIEWS, vol. 54, no. 4, 1990, pages 450 - 472 |
DAVID P. MARTIN ET AL., BIOCHEMICAL ENGINEERING JOURNAL, vol. 16, 2003, pages 97 - 105 |
G. J. M. DE KONING ET AL., POLYMER, vol. 34, no. 19, 1993, pages 4089 - 4094 |
GILDING ET AL., POLYMER, vol. 20, 1979, pages 1459 |
HORI ET AL., POLYMER, vol. 36, 1995, pages 4703 |
KAI-HEE HUONG ET AL., INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 101, 2017, pages 983 - 995 |
KUSAKA ET AL., APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 47, 1997, pages 140 - 143 |
LI ET AL., METABOLIC ENGINEERING, vol. 12, 2010, pages 352 - 359 |
SAITO ET AL., POLYMER INTERNATIONAL, vol. 39, 1996, pages 169 - 174 |
See also references of EP3970948A4 |
TAKASHI USHIDA, JOURNAL OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 106, 2003, pages 897 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021246433A1 (ja) * | 2020-06-02 | 2021-12-09 | 三菱瓦斯化学株式会社 | 高分子成形物の製造方法 |
WO2021246434A1 (ja) * | 2020-06-02 | 2021-12-09 | 三菱瓦斯化学株式会社 | 加熱による前処理を伴う高分子成形物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7568231B2 (ja) | 2024-10-16 |
EP3970948A4 (en) | 2022-06-15 |
TW202104343A (zh) | 2021-02-01 |
EP3970948B1 (en) | 2024-08-07 |
KR20220007866A (ko) | 2022-01-19 |
JPWO2020230807A1 (ja) | 2020-11-19 |
US20220203600A1 (en) | 2022-06-30 |
EP3970948A1 (en) | 2022-03-23 |
CN113825620A (zh) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Holmes | Biologically produced (R)-3-hydroxy-alkanoate polymers and copolymers | |
US6828357B1 (en) | Polyhydroxyalkanoate compositions having controlled degradation rates | |
dos Santos et al. | From obtaining to degradation of PHB: material properties. Part I | |
US6867248B1 (en) | Polyhydroxyalkanoate compositions having controlled degradation rates | |
US6878758B2 (en) | Polyhydroxyalkanoate compositions having controlled degradation rates | |
EP1163019B1 (en) | Medical devices and applications of polyhydroxyalkanoate polymers | |
Ren | Biodegradable poly (lactic acid): synthesis, modification, processing and applications | |
EP2196484B1 (en) | Polyhydroxyalkanoate compositions having controlled degradation rates | |
WO2020230807A1 (ja) | 脂肪族ポリエステル共重合体 | |
Zhang et al. | Mechanical properties, structure analysis and enzymatic degradation of uniaxially cold-drawn films of poly [(R)-3-hydroxybutyrate-co-4-hydroxybutyrate] | |
Yang et al. | In vitro enzymatic degradation of the cross-linked poly (ε-caprolactone) implants | |
Tanaka et al. | Mechanical properties and enzymatic degradation of poly [(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near Tg | |
US11466120B2 (en) | Polyester containing 4-hydroxybutyrate unit | |
JP7196848B2 (ja) | ポリエステルの製造方法 | |
Liu et al. | Lipase-catalyzed synthesis and characterization of polymers by cyclodextrin as support architecture | |
Yousefi et al. | Poly (hydroxyalkanoates): Emerging Biopolymers in Biomedical Fields and Packaging Industries for a Circular Economy | |
JPH0523189A (ja) | ポリエステル共重合体の製造方法 | |
de Koning | Prospects of bacterial poly [(R)-3-(hydroxyalkanoates)] | |
Lei et al. | Hydrophobic building blocks enable unprecedented durability for chemically recyclable and biodegradable polymer | |
Wang et al. | Ductile polylactic acid-based blend derived from bio-based poly (butylene adipate-co-butylene furandicarboxylate) | |
Xue | Synthesis, Modification and Application of Polylactic Acid | |
Rebocho et al. | Linking the Properties of Polyhydroxyalkanoates (PHA) to Current and Prospective Applications | |
Bidgoli et al. | Polylactic acid and polyhydroxybutyrate chemistry | |
Rebocho et al. | Linking the Properties of | |
Martino | Structure-property relations in polymers from renewable resources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20806199 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021519451 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217038140 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020806199 Country of ref document: EP Effective date: 20211213 |