Nothing Special   »   [go: up one dir, main page]

WO2020216389A1 - Messsystem - Google Patents

Messsystem Download PDF

Info

Publication number
WO2020216389A1
WO2020216389A1 PCT/DE2020/100146 DE2020100146W WO2020216389A1 WO 2020216389 A1 WO2020216389 A1 WO 2020216389A1 DE 2020100146 W DE2020100146 W DE 2020100146W WO 2020216389 A1 WO2020216389 A1 WO 2020216389A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring system
permeability
component
movement
stainless steel
Prior art date
Application number
PCT/DE2020/100146
Other languages
English (en)
French (fr)
Inventor
Florian ZELLER
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN202080017550.8A priority Critical patent/CN113508278A/zh
Priority to KR1020217028805A priority patent/KR20220005433A/ko
Publication of WO2020216389A1 publication Critical patent/WO2020216389A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D2025/081Hydraulic devices that initiate movement of pistons in slave cylinders for actuating clutches, i.e. master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/28The target being driven in rotation by additional gears

Definitions

  • the invention relates to a measuring system, comprising a magnetic field-dependent sensor, which is arranged opposite this to detect a state or a movement of a movably mounted component, the movably mounted component carrying a permeability and a device for determining a position of an actuator in a hydrostatic Actuator system according to the preamble of claim 9.
  • a sensor system and a piston-cylinder arrangement are known from DE 10 2012 219 173 A1.
  • the sensor system comprises a switching point sensor which is mounted opposite a magnet, the magnet passing through the switching point sensor being mechanically attached to a linearly movable element. Since magnetic materials are very expensive, they add to the cost of the sensor system.
  • the invention is based on the object of specifying a measuring system that is robust and yet can be manufactured inexpensively.
  • the object is achieved in that the movably mounted component consists at least partially of stainless steel, with at least one area with a predetermined permeability being integrated in the stainless steel in the direction of movement of the component.
  • permeability should be understood to mean the permeability to magnetic fields.
  • a plurality of areas arranged at a distance from one another and having the same permeability extend in the stainless steel.
  • a plurality of regions with different permeability which are arranged at a distance from one another, extend in the stainless steel in the direction of movement of the component. Areas with different permeability increase the accuracy of the position detection of the component.
  • the areas with permeability have different sizes and / or shapes. This refines the position or state detection.
  • the permeability is designed as a structure in the area.
  • the magnetic field-dependent sensor lies directly opposite the movably mounted component and carries a back bias magnet on a side facing away from the component. This back-bias magnet sets a preload on the sensor, which increases the sensor signal, which makes it easier to evaluate.
  • the permeability of the areas is realized by a ferromagnetic material.
  • Ferromagnetism is the most common type of magnetism, so such materials are inexpensive to use.
  • the component is mounted so that it can move linearly or in a rotational manner, the sensor detecting a linear change in position or a change in angle.
  • This measuring system can therefore be used in a variety of ways.
  • a further development of the invention relates to a device for determining a position of an actuator in a hydrostatic actuator system, preferably a clutch actuation system in a vehicle, in which an electric motor for conveying a hydraulic fluid in a piston unit of the actuator system is used to determine a rotor shaft for cooperation with a measuring system having an angular position of the rotor shaft.
  • the measurement system is designed according to at least one of the features described in this application for property rights.
  • the rotor shaft is advantageously designed as a can which has a plurality of areas with the same and / or different permeability in the direction of movement. Such a robust and inexpensive motor shaft can be easily manufactured in series production and requires less installation space, so that the device comprising the motor shaft can be reduced in size.
  • FIG. 3 exemplary embodiments of a movably mounted component according to FIG. 1.
  • FIG. 1 an embodiment of a device according to the invention is shown in the form of a hydraulic actuator 1 for performing the method according to the invention.
  • the hydraulic clutch actuator 1 includes a control unit 2 which controls an electric motor for actuating the clutch actuator 1.
  • the control device 2 is designed as a module which is connected to a hydraulic module 3.
  • a spindle 4 can be moved on both sides along an axial actuator path.
  • the spindle 4 is driven by the electric motor, which has a stator 5.
  • a rotor shaft 6 is mounted radially inside the stator 5 and is in engagement with the spindle 4 via a planetary roller gear (not shown).
  • the rotor shaft is made of stainless steel and has several magnetic areas 10 in the direction of rotation.
  • the planetary roller gear is encased in a sleeve 7.
  • a pressure piece 8 is attached, which acts on an element of a hydraulic path, not shown, such as a master cylinder. Between the pressure piece 8 and the hydraulic module 3 he stretches a bellows 11, which protects the actuator 1 from contamination.
  • the electric motor is activated commutated.
  • the rotational movement of the rotor shaft 6 must be recorded. This is done by a measuring system 12, as shown in FIG. 2.
  • the rotor shaft 6 is made of stainless steel with a predetermined permeability m1.
  • the areas 10 are provided with a ferromagnetic material at equal intervals rial integrated.
  • a Hall sensor 13 is arranged opposite these areas 10 and has a back-bias magnet 14 on its side facing away from the rotor shaft 6. By means of this back-bias magnet 14, the signal from the Hall sensor 13 is magnetically tensioned so that local differences in the magnetism can be reliably detected when the rotor shaft 6 moves past the Hall sensor 13.
  • FIG. 3 different configurations of the ferromagnetic areas 10 are shown, which can be integrated in the rotor shaft 6 made of stainless steel.
  • 3a shows a top view of the rotor shaft 6, which has regions 10 which are evenly spaced from one another and have the same permeability m2, which differs from the permeability m1 of the stainless steel.
  • Fig. 3b rectangular areas 10, 15, 16 are shown which have different Permeabilitä th.
  • the area 15 has the permeability m3
  • the area 16 has a permeability m4.
  • the areas 10, 15, 16 can also have different widths.
  • the ferromagnetic areas can have structures with different ferromagnetic properties. These ferromagnetic properties can be realized by the structure of a square 17 or a circle 18 or a triangle 19 or a semicircle 20 or the like (Fig. 3c).
  • the solution described is not limited to an angle detection with a rotor position sensor, but can also be used for linear motion detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Die Erfindung betrifft ein Messsystem, umfassend einen magnetfeldabhängigen Sensor, der zur Erfassung eines Zustandes oder einer Bewegung eines beweglich gelagerten Bauelementes (6) diesem gegenüberliegend angeordnet ist, wobei das beweglich gelagerte Bauelement (6) eine Permeabilität trägt. Bei einem Messsystem, welches einfach und robust ausgebildet ist, besteht das beweglich gelagerte Bauelement (6) zumindest teilweise aus Edelstahl, wobei in dem Edelstahl in Bewegungsrichtung des Bauelementes (6) mindestens ein Bereich (10, 15, 16) mit einer vorgegebenen Permeabilität integriert ist.

Description

Messsystem
Die Erfindung betrifft ein Messystem, umfassend einen magnetfeldabhängigen Sensor, der zur Erfassung eines Zustandes oder einer Bewegung eines beweglich gelagerten Bauelemen tes diesem gegenüberliegend angeordnet ist, wobei das beweglich gelagerte Bauelement ei ne Permeabilität trägt sowie eine Vorrichtung zur Bestimmung einer Position eines Aktors in einem hydrostatischen Aktorsystem gemäß dem Oberbegriff von Anspruch 9.
Aus der DE 10 2012 219 173 A1 sind ein Sensorsystem und eine Kolben-Zylinder-Anordnung bekannt. Das Sensorsystem umfasst einen Schaltpunktsensor, welcher einem Magneten ge genüberliegend gelagert ist, wobei der den Schaltpunktsensor passierende Magnet an einem linear beweglichen Element mechanisch befestigt ist. Da Magnetmaterialien sehr teuer sind, erhöhen diese die Kosten für das Sensorsystem.
Die DE 10 2012 218 605 DE offenbart einen induktiven Schaltpunktsensor für eine Kupp- lungs-Zylinder-Anordnung, der eine mit einer Stromquelle verbundene primäre Spule und mindestens eine sekundäre Spule aufweist, die von einem beweglich gelagerten elektrisch leitfähigen T arget zur Erkennung eines Schaltpunktes überstrichen wird. Mit Hilfe dieser An ordnung kann zwar auf den Einsatz eines Magneten verzichtet werden, allerdings ist diese Anordnung in ihrer Herstellung sehr aufwendig.
Der Erfindung liegt die Aufgabe zugrunde, ein Messystem anzugeben, welches robust ausge bildet ist und trotzdem kostengünstig herstellbar ist.
Erfindungsgemäß ist die Aufgabe dadurch gelöst, dass das beweglich gelagerte Bauelement zumindest teilweise aus Edelstahl besteht, wobei in dem Edelstahl in Bewegungsrichtung des Bauelementes mindestens ein Bereich mit einer vorgegebenen Permeabilität integriert ist.
Dies hat den Vorteil, dass die magnetischen Bereiche innerhalb des Edelstahls erkannt wer den, da der Edelstahl lokal unterschiedliche magnetische Eigenschaften aufweist. Dadurch wird die Bewegung des Bauteiles detektiert. Auf die Verwendung von teurem Magnetmaterial kann somit verzichtet werden Ein solches Messystem ist einfach in der Herstellung und trotz dem robust und zuverlässig in der Anwendung. Im Weiteren soll unter Permeabilität die Durchlässigkeit für magnetische Felder verstanden werden. Vorteilhafterweise erstrecken sich in Bewegungsrichtung des Bauelements mehrere beab- standet zueinander angeordnete Bereiche mit gleicher Permeabilität in dem Edelstahl.
Dadurch lassen sich einzelne Positionen des sich bewegenden Bauteils einfach durch den Sensor detektieren.
In einer Ausgestaltung erstrecken sich in Bewegungsrichtung des Bauelements mehrere be- abstandet zueinander angeordnete Bereiche mit unterschiedlicher Permeabilität in dem Edel stahl. Bereiche mit unterschiedlicher Permeabilität erhöhen die Genauigkeit der Positionser kennung des Bauteils.
In einer Variante weisen die Bereiche mit Permeabilität unterschiedliche Größen und/oder Formen auf. Dadurch wird die Positions- oder Zustandserkennung verfeinert.
In einer Ausführungsform ist die Permeabilität in dem Bereich als Struktur ausgebildet.
Dadurch lässt sich eine hohe Genauigkeit bei der Messung der Bewegung des Bauteiles rea lisieren.
In einer weiteren Ausgestaltung liegt der magnetfeldabhängige Sensor dem beweglich gela gerten Bauteil direkt gegenüberliegt und trägt auf einer dem Bauteil abgewandten Seite einen Back-Bias-Magneten. Durch diesen Back-Bias-Magneten wird eine Vorspannung am Sensor eingestellt, wodurch das Sensorsignal vergrößert wird, was dessen Auswertung erleichtert.
In einer weiteren Variante ist die Permeabilität der Bereiche durch ein ferromagnetisches Ma terial realisiert. Bei dem Ferromagnetismus handelt es sich um den am häufigsten auftreten den Magnetismus, so dass solche Materialien kostengünstig in der Verwendung sind.
Bei dem beschriebenen Messsystem ist das Bauelement linear oder rotatorisch beweglich ge lagert, wobei der Sensor eine lineare Positionsänderung oder eine Winkeländerung detektiert, Somit ist dieses Messsystem vielfältig einsetzbar.
Eine Weiterbildung der Erfindung betrifft eine Vorrichtung zur Bestimmung einer Position ei nes Aktors in einem hydrostatischen Aktorsystem, vorzugsweise eines Kupplungsbetäti gungssystems in einem Fahrzeug, bei welchem ein Elektromotor zur Förderung einer Hydrau likflüssigkeit in einer Kolbeneinheit des Aktorsystems eine Rotorwelle zum Zusammenwirken mit einem Messsystem zur Bestimmung einer Winkellage der Rotorwelle aufweist. Das Mes- system ist dabei nach mindestens einem der in dieser Schutzrechtsanmeldung beschriebenen Merkmale ausgebildet. Vorteilhafterweise ist die Rotorwelle als Spaltrohr ausgebildet, welches in Bewegungsrichtung mehrere Bereiche mit gleicher und/ der unterschiedlicher Permeabilität aufweist. Eine solche robuste und kostengünstige Motorwelle lässt sich einfach in einer Serienproduktion hersteilen und benötigt weniger Bauraum, so dass die die Motorwelle umfassende Vorrichtung in ihren Ausmaßen reduziert werden kann.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Mehrere davon sollen anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen:
Fig. 1 ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung,
Fig. 2 ein Ausführungsbeispiel des erfindungsgemäßen Messsystems,
Fig. 3 Ausführungsbeispiele eines beweglich gelagerten Bauteils gemäß Fig. 1.
In Fig. 1 ist ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in Form eines hyd raulischen Aktors 1 zur Durchführung des erfindungsgemäßen Verfahrens dargestellt. Der hydraulische Kupplungsaktor 1 umfasst ein Steuergerät 2, das einen Elektromotor zur Betäti gung des Kupplungsaktors 1 ansteuert. Das Steuergerät 2 ist als Modul ausgebildet, welches mit einem Hydraulikmodul 3 verbunden ist. Bei einer Lageveränderung des Kupplungsaktors 1 ist eine Spindel 4 entlang eines axialen Aktorweges beidseitig bewegbar. Die Spindel 4 wird von dem Elektromotor angetrieben, der einen Stator 5 aufweist. Radial innerhalb des Stators 5 ist eine Rotorwelle 6 gelagert, die über ein nicht weiter gezeigtes Planetenwälzgetriebe mit der Spindel 4 im Eingriff steht. Die Rotorwelle besteht aus Edelstahl und weist in Rotationsrich tung mehrere magnetische Bereiche 10 auf. Das Planetenwälzgetriebe ist von einer Hülse 7 ummantelt. An der dem Steuergerät 2 abgewandten Ende 4.1 der Spindel 4 ist ein Druckstück 8 befestigt, welches auf ein nicht weiter dargestelltes Element einer hydraulischen Strecke, wie einen Geberzylinder, wirkt. Zwischen dem Druckstück 8 und dem Hydraulikmodul 3 er streckt sich ein Faltenbalg 11 , der den Aktor 1 vor Verschmutzung schützt.
Um die Spindel 4 auf eine gewünschte Position verfahren zu können, wird der Elektromotor kommutiert angesteuert. Dazu muss die Rotationsbewegung der Rotorwelle 6 erfasst werden. Dies erfolgt durch ein Messsystem 12, wie es in Fig. 2 dargestellt ist. Die Rotorwelle 6 besteht aus Edelstahl mit einer vorgegebenen Permeabilität m1. Entlang der Bewegungsrichtung der Rotorwelle 6 sind in gleichen Abständen die Bereiche 10 mit einem ferromagnetischen Mate- rial integriert. Diesen Bereichen 10 gegenüberliegend ist ein Hallsensor 13 angeordnet, wel cher einen Back-Bias-Magneten 14 auf seiner der Rotorwelle 6 abgewandten Seite aufweist. Mittels diesem Back-Bias-Magneten 14, wird das Signal des Hallsensors 13 magnetisch vor gespannt, so dass lokale Unterschiede des Magnetismus zuverlässig erkannt werden können, wenn sich die Rotorwelle 6 an dem Hallsensor 13 vorbei bewegt.
In Fig. 3 sind verschiedene Ausgestaltungen der ferromagnetischen Bereiche 10 gezeigt, die in der Rotorwelle 6 aus Edelstahl integriert werden können. Fig. 3a zeigt eine Draufsicht auf die Rotorwelle 6, welche zueinander gleichmäßig beabstandete Bereiche 10 mit der gleichen Permeabilität m2 aufweist, welche sich von der Permeabilität m1 des Edelstahls unterscheidet.
In Fig. 3b sind rechteckige Bereiche 10, 15, 16 gezeigt, welche unterschiedliche Permeabilitä ten aufweisen. Neben der Permeabilität m2 des Bereiches 10, weist der Bereich 15 die Per meabilität m3 auf, während der Bereich 16 eine Permeabilität m4 besitzt. Darüber hinaus kön nen die Bereiche 10, 15, 16 auch unterschiedlich breit ausgebildet sein.
Um eine Zustandserfassung eines Bauteiles zu vereinfachen, können die ferromagnetischen Bereiche Strukturen mit verschiedenen ferromagnetischen Eigenschaften aufweisen. Diese ferromagnetischen Eigenschaften können durch die Struktur eines Quadrates 17 oder eines Kreises 18 oder eines Dreiecks 19 oder eines Halbkreises 20 oder ähnlichem realisiert wer den (Fig. 3c).
Die beschriebene Lösung ist nicht auf eine Winkelerkennung mit einem Rotorlagesensor be schränkt, sondern kann auch bei linearen Bewegungserkennungen eingesetzt werden.
Bezugszeichenliste hydrostatischer Kupplungsaktor
Steuergerät
Hydraulikmodul
Spindel
Stator
Rotor
Hülse
Druckstück
Bereich mit ferromagnetischen Material
Faltenbalg
Messsystem
Hallsensor
Back-Bias-Magnet
Bereich mit ferromagnetischem Material
Bereich mit ferromagnetischen Material
Quadrat
Kreis
Dreieck
Halbkreis

Claims

Patentansprüche
1. Messystem, umfassend einen magnetfeldabhängigen Sensor, der zur Erfassung eines Zustandes oder einer Bewegung eines beweglich gelagerten Bauelementes (6) die sem gegenüberliegend angeordnet ist, wobei das beweglich gelagerte Bauelement (6) eine Permeabilität trägt, dadurch gekennzeichnet, dass das beweglich gelagerte Bau element (6) zumindest teilweise aus Edelstahl besteht, wobei in dem Edelstahl in Be wegungsrichtung des Bauelementes (6) mindestens ein Bereich (10, 15, 16) mit einer vorgegebenen Permeabilität integriert ist.
2. Messsystem nach Anspruch 1 , dadurch gekennzeichnet, dass sich in Bewegungsrich tung des Bauelements (6) mehrere beabstandet zueinander angeordnete Bereiche (10) mit gleicher Permeabilität in dem Edelstahl erstrecken.
3. Messsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich in Bewe gungsrichtung des Bauelements (6) mehrere beabstandet zueinander angeordnete Bereiche (10, 15, 16) mit unterschiedlicher Permeabilität in dem Edelstahl erstrecken.
4. Messsystem nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die Bereiche (10, 15, 16) Permeabilitäten unterschiedlicher Größen und/oder Formen aufweisen.
5. Messsystem nach mindestens einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die Permeabilität in dem Bereich (10, 15, 16) als Struktur (17, 18, 19, 20) ausgebildet ist.
6. Messystem nach mindestens einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass der magnetfeldabhängige Sensor (13) dem beweglich gelagerten Bau teil (6) direkt gegenüberliegt und auf einer dem Bauteil (6) abgewandten Seite einen Back-Bias-Magneten (14) trägt.
7. Messsystem nach mindestens einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die Permeabilität der Bereiche (10, 15, 16) durch ein ferromagneti sches Material realisiert ist.
8. Messsystem nach mindestens einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass das Bauelement (6) linear oder rotatorisch beweglich gelagert ist, wobei der Sensor (13) eine Positionsänderung oder eine Winkeländerung detektiert
9. Vorrichtung zur Bestimmung einer Position eines Aktors in einem hydrostatischen Ak torsystem, vorzugsweise in einem Fahrzeug, bei welchem ein Elektromotor (5, 6) zur Förderung einer Hydraulikflüssigkeit in einer Kolbeneinheit des Aktorsystems (1) eine Rotorwelle (6) zum Zusammenwirken mit einem Messsystem (12) zur Bestimmung ei ner Winkellage der Rotorwelle (6) aufweist, dadurch gekennzeichnet, dass das Mess system (12) nach mindestens einem der vorhergehenden Ansprüche ausgebildet ist.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Rotorwelle (6) als Spaltrohr ausgebildet ist, welches in Bewegungsrichtung mehrere Bereiche (10, 15, 16) mit gleicher und/ oder unterschiedlicher Permeabilität aufweist.
PCT/DE2020/100146 2019-04-26 2020-03-04 Messsystem WO2020216389A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080017550.8A CN113508278A (zh) 2019-04-26 2020-03-04 测量系统
KR1020217028805A KR20220005433A (ko) 2019-04-26 2020-03-04 측정 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110851.9 2019-04-26
DE102019110851.9A DE102019110851A1 (de) 2019-04-26 2019-04-26 Messsystem

Publications (1)

Publication Number Publication Date
WO2020216389A1 true WO2020216389A1 (de) 2020-10-29

Family

ID=69845005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100146 WO2020216389A1 (de) 2019-04-26 2020-03-04 Messsystem

Country Status (4)

Country Link
KR (1) KR20220005433A (de)
CN (1) CN113508278A (de)
DE (1) DE102019110851A1 (de)
WO (1) WO2020216389A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146958A1 (de) * 2001-09-24 2003-04-17 Zahnradfabrik Friedrichshafen Modul für Aktuatoren in einem Fahrzeug
DE102006049999A1 (de) * 2006-10-24 2008-04-30 Zf Friedrichshafen Ag Rotor einer Vorrichtung zur Drehzahlerfassung
US20110273166A1 (en) * 2009-01-27 2011-11-10 Rls Merilna Tehnika D.O.O. Magnetic encoder scale
DE102012218605A1 (de) 2011-10-24 2013-04-25 Schaeffler Technologies AG & Co. KG Induktiver Schaltpunktsensor, insbesondere für eine Kolben-Zylinder-Anordnung einer Kupplungsbetätigungsvorrichtung
DE102012219173A1 (de) 2012-10-22 2014-04-24 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem und Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einem Kupplungsbetätigungssystem in einem Kraftfahrzeug

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1301884C (en) * 1989-02-10 1992-05-26 Ivan J. Garshelis Magnetic position sensor
DE102007025965A1 (de) * 2007-06-04 2008-12-11 Robert Bosch Gmbh Magnetfeldsensor
US8878526B2 (en) * 2009-01-27 2014-11-04 Renishaw Plc Magnetic encoder apparatus
DE102009035091A1 (de) * 2009-07-28 2011-02-10 Mahle International Gmbh Positionssensor und Linearaktuator
CN104205613B (zh) * 2012-04-25 2018-02-06 舍弗勒技术股份两合公司 用于确定电动机的位置的、尤其是在机动车的离合器操纵系统中的电动机的位置的方法和设备
DE102013221943A1 (de) * 2013-10-29 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld
CN103850773B (zh) * 2014-02-10 2017-01-04 龙口中宇汽车风扇离合器有限公司 离合器
DE102014218544A1 (de) * 2014-09-16 2016-03-17 Schaeffler Technologies AG & Co. KG Sensorikeinheit zur Bestimmung einer Rotorlage eines Elektromotors und ein Elektromotor, vozugsweise für einen Kupplungsaktor eines Kupplungsbetätigungssystems eines Kraftfahrzeuges
DE102015216509A1 (de) * 2015-08-28 2017-03-02 Schaeffler Technologies AG & Co. KG Winkelmesseinrichtung für einen rotatorisch angetriebenen Linearaktor
CN107645223B (zh) * 2016-07-21 2021-08-24 舍弗勒技术股份两合公司 电机总成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146958A1 (de) * 2001-09-24 2003-04-17 Zahnradfabrik Friedrichshafen Modul für Aktuatoren in einem Fahrzeug
DE102006049999A1 (de) * 2006-10-24 2008-04-30 Zf Friedrichshafen Ag Rotor einer Vorrichtung zur Drehzahlerfassung
US20110273166A1 (en) * 2009-01-27 2011-11-10 Rls Merilna Tehnika D.O.O. Magnetic encoder scale
DE102012218605A1 (de) 2011-10-24 2013-04-25 Schaeffler Technologies AG & Co. KG Induktiver Schaltpunktsensor, insbesondere für eine Kolben-Zylinder-Anordnung einer Kupplungsbetätigungsvorrichtung
DE102012219173A1 (de) 2012-10-22 2014-04-24 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem und Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einem Kupplungsbetätigungssystem in einem Kraftfahrzeug

Also Published As

Publication number Publication date
CN113508278A (zh) 2021-10-15
KR20220005433A (ko) 2022-01-13
DE102019110851A1 (de) 2020-10-29

Similar Documents

Publication Publication Date Title
EP2013586B1 (de) Magnetischer drehwinkelgeber
EP1445494B1 (de) Stellelement mit Lageerkennung
DE102007037217B4 (de) Induktive Messeinrichtung zur berührungslosen Erfassung der relativen Drehposition zwischen zwei Körpern mit diametral angeordneten Spulen
EP2893359B1 (de) Resolverlager
EP1979209A1 (de) Stelleinrichtung, insbesondere für eine kraftfahrzeug-feststellbremse
DE102017222677A1 (de) Sensoreinrichtung
DE102013208986A1 (de) Magnetgeberring einer Rotorlagesensorik eines elektrisch kommutierten Elektromotors
EP1607720A2 (de) Lenkwinkelsensor
DE10206543A1 (de) Getriebe sowie mit diesem Getriebe ausgestatteter Drehgeber
WO2013004539A2 (de) Verfahren und einrichtung zur messung des absoluten drehwinkels
EP1797399B1 (de) Magnetischer absolutpositionssensor mit variierender länge der einzelnen kodierungssegmente
WO2011076554A1 (de) Sensoranordnung zur kombinierten drehzahl-drehmoment-erfassung
WO2010063712A1 (de) Magnetischer encoder
WO1999030112A1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
DE102005005111A1 (de) Drehgeber
WO2020216389A1 (de) Messsystem
DE102011076284A1 (de) Lagereinheit mit Winkelmesssystem
DE19852916A1 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
DE19525292C2 (de) Vorrichtung zur Erfassung des Drehwinkels, der Drehzahl und/oder der Drehrichtung eines Drehantriebes
DE19852915A1 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
DE10228663A1 (de) Anordnung zum Bestimmen der Lage eines Körpers
DE19924995A1 (de) Anordnung und Verfahren zur Erfassung der Translationslage eines Stellelements in einem Getriebe
DE10153915A1 (de) Verfahren und Vorrichtung zur Fassung der Ist-Stellung eines zu lenkenden Rades bei einem Flurförderzeug mit einer elektrischen Lenkung
WO1999030113A1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
DE102009038087A1 (de) Kugelgewindetrieb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20711783

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20711783

Country of ref document: EP

Kind code of ref document: A1