Nothing Special   »   [go: up one dir, main page]

WO2020202742A1 - Catheter assembly, light-emitting method, and training method for catheter manipulation - Google Patents

Catheter assembly, light-emitting method, and training method for catheter manipulation Download PDF

Info

Publication number
WO2020202742A1
WO2020202742A1 PCT/JP2020/002795 JP2020002795W WO2020202742A1 WO 2020202742 A1 WO2020202742 A1 WO 2020202742A1 JP 2020002795 W JP2020002795 W JP 2020002795W WO 2020202742 A1 WO2020202742 A1 WO 2020202742A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
light emitting
light
phosphor
illuminant
Prior art date
Application number
PCT/JP2020/002795
Other languages
French (fr)
Japanese (ja)
Inventor
田中葉子
高橋治彦
齊藤佳之
楠耕太郎
福岡徹也
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2021511147A priority Critical patent/JPWO2020202742A1/ja
Publication of WO2020202742A1 publication Critical patent/WO2020202742A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • FIG. 7 is a cross-sectional view of the catheter assembly according to the second embodiment of the present invention.
  • FIG. 8 is a vertical sectional view of a modified example of the catheter assembly according to the second embodiment of the present invention.
  • FIG. 9 is a plan view showing a light emitting state in a bright field BF of the catheter assembly according to the second embodiment of the present invention.
  • FIG. 10 is a plan view showing a light emitting state in the dark field DF of the catheter assembly according to the second embodiment of the present invention.
  • FIG. 11 is a side enlarged view of a catheter assembly in a non-luminous state according to a second embodiment of the present invention and a lower limb blood vessel model in a bright field BF.
  • FIG. 12 is a side enlarged view of the luminescent catheter assembly according to the second embodiment of the present invention and the lower limb blood vessel model in the dark field DF.
  • FIG. 13 is a cross-sectional view of the catheter assembly according to the third embodiment of the present invention.
  • FIG. 14 is a vertical cross-sectional view of the catheter assembly according to the third embodiment of the present invention.
  • FIG. 15 is a plan view showing a light emitting state in the dark field DF of the catheter assembly according to the third embodiment of the present invention.
  • FIG. 16 is an enlarged side view showing a light emitting state of the catheter assembly according to the third embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention before expansion of the balloon portion in the bright field BF.
  • FIG. 18 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention before expansion of the balloon portion in the dark field DF.
  • FIG. 19 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention when the balloon portion is expanded in the bright field BF.
  • FIG. 20 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention when the balloon portion is expanded in the dark field DF.
  • FIG. 21 is a schematic cross-sectional view showing a state in which powder crystals are recovered after the balloon portion contracts in the bright field BF of the catheter assembly according to the fourth embodiment of the present invention.
  • FIG. 22 is a schematic cross-sectional view showing a state in which powder crystals are recovered after the balloon portion contracts in the dark field DF of the catheter assembly according to the fourth embodiment of the present invention.
  • FIG. 23 is an overall view of the catheter assembly according to the fifth embodiment of the present invention in a bright field BF.
  • FIG. 24 is an overall view of the catheter assembly according to the fifth embodiment of the present invention in the dark field DF.
  • FIG. 25 is a schematic enlarged cross-sectional view of the catheter assembly according to the fifth embodiment of the present invention in the dark field DF.
  • BF a bright field
  • catheters outside the range of the X-ray contrast image using an X-ray contrast device and blood vessels that cannot be seen unless a contrast medium is injected are visually recognized, which causes a difference between actual surgery and visual recognition. ..
  • the ceiling light 20 is turned off, the hand part outside the body cannot be seen.
  • the operator who cannot directly see the blood vessel model 2 and the catheter assembly 10 in the blood vessel model 2 is an image display unit that displays an image from the camera 4 as an imaging unit attached to the box body 3.
  • the training is performed while observing the light emitting body 1 of the catheter assembly 10 projected on the flat panel display (FPD) 5.
  • the light emitting body means at least one selected from a phosphor coated on the outer surface of the main body, a side light emitting optical fiber arranged in the main body cavity, and a chip type LED arranged in the main body cavity. ..
  • the line of sight and posture of the catheter operation are different between the conventional bright field BF shown in FIG. 1 and the dark field DF of FIG. 2, and the hand sensation during the catheter operation is also different due to the difference in the positions of the neck and shoulders during the catheter operation. May occur.
  • the light emitting method for emitting light from the catheter includes a step of preparing the catheter, a step of imparting a light emitting body to the catheter, and a step of causing the catheter to emit light by the light emitting body.
  • the catheter assembly 10 used in the first embodiment is coated with the light emitting body 1 in order to impart the light emitting body 1 to at least a part of the outer surface.
  • the light emitting body 1 preferably, a phosphor 100 that emits fluorescence that is visible light by ultraviolet rays is preferable.
  • the phosphor a compound having an aromatic ring or a metal compound is particularly preferable.
  • the phosphor 100 may be a water-soluble or water-dispersible pigment, a water-insoluble powder, or one fixed to the outer surface of the catheter by drying or cross-linking depending on the purpose or site. Those that do not detach from the outer surface of the catheter in warm water by fixation are particularly preferred because they can be used in training hard lesion models in warm water.
  • the phosphor 1 is a powdery phosphor coated on the outer surface of the catheter, or is the phosphor 100 that can be peeled off from the outer surface of the catheter assembly by dissolving in water, the drug-coated balloon It is possible to perform training to visually check how the catheter and other drugs provided flow out at the lesion.
  • the entire catheter assembly may be made to emit light so that the entire catheter assembly can be visually recognized under the dark field DF, and the water-soluble phosphor 160 may be injected into the balloon catheter 12.
  • the balloon portion 12a may be made to emit light by injecting into the dilated lumen of the above.
  • the phosphor 100 in the first embodiment is thinly applied to the outer surface of the tip soft tip of the guiding catheter 10', and the physical properties do not change, so that the same hand sensation as in an actual operation can be obtained.
  • the catheter may be a balloon catheter, a stent delivery catheter, or an atherectomy catheter, in addition to a guiding catheter.
  • the phosphor 100 may be applied to the guide wire 13.
  • the site to which the phosphor 100 is applied may be any site of the catheter, but the outer surface of the catheter is preferable, and the base shaft or the tip is particularly preferable.
  • the phosphor 100 When an ultraviolet light source 6 is arranged on the inner surface of the box 3 and irradiated with ultraviolet rays, the phosphor 100 emits visible light and the tip portion 10a of the catheter assembly emits light.
  • the ultraviolet ray is light having a wavelength that is invisible to humans, and here, it means light having a wavelength of 10 nm to 400 nm, preferably including light having a wavelength of 300 nm to 380 nm.
  • Visible light means that the short wavelength limit of the wavelength range defined in JISZ8120 is 360 nm to 400 nm and the long wavelength limit is 760 nm to 830 nm.
  • the ultraviolet light source 6 does not contain visible light, only the emission of the phosphor 100 can be observed, but the ultraviolet light source 6 may include visible light due to the amount of light and the cost of the ultraviolet light source 6. In this case, if the amount of fluorescence emitted from the phosphor 100 is larger than the amount of visible light generated by the reflection from the medium on the blood vessel model or the water surface, training for visually recognizing the movement of the catheter assembly can be performed. Alternatively, visible light may be reduced from the light source by an ultraviolet transmitted visible light absorbing filter.
  • At least one or more films 26 containing an ultraviolet absorber may be placed in the observation window 25 in order to directly visually recognize the movement of the catheter assembly 10 in the blood vessel model 2.
  • the FPD5 is arranged at the same position as the FPD5 of the X-ray contrast apparatus normally used by the operator, and the operator's line of sight and posture can be arranged at the same position as the familiar position.
  • the catheter assembly 10 can be operated while viewing the image of the dark field DF whose visual recognition is similar to that of the X-ray contrast image.
  • guidance or training may be provided to correct a posture in which fatigue is likely to accumulate or an unnecessarily time-consuming movement.
  • FIG. 7 is a cross-sectional view showing a state in which the catheter assembly 110 is made to emit light by causing the side light emitting optical fiber 120 to emit light.
  • a normal optical fiber has a structure in which light introduced from the irradiation end (entrance) of light propagates in the long axis direction and does not emit light from the side.
  • a side light emitting optical fiber 120 having an outer diameter of 2 mm is used. Inserted and connected to both ends of the side light emitting optical fiber 120, an LED light source 150 having a power LED having a light emitting amount of at least 30 lumens or more.
  • the side light emitting optical fiber 120 When power is supplied to the LED light source 150 to cause the LED light source 150 to emit light, the side light emitting optical fiber 120 emits light, and the catheter assembly 110 emits light using the light of the side light emitting optical fiber 120.
  • the side light emitting optical fiber 120 is arranged in the lumen of the catheter, and the light source is arranged on at least one of the tip opening side and the proximal opening side of the catheter.
  • the reinforcing body may be a coil type, and the outer layer may contain a pigment, but it is preferable that the reinforcing body does not contain a pigment because the amount of light emitted from the catheter is large.
  • the LED light source 150 is fixed to the end of the side light emitting optical fiber 120 and is fixed in an aluminum housing with a socket so that light does not leak to the surroundings unnecessarily and heat is dissipated. May be good.
  • the light emitting surface of the tip-type LED 130 is arranged perpendicular to the long axis of the catheter in the lumen of the guiding catheter 10', and the tip-type LED 130 is made to emit light in the catheter lumen. You may.
  • the side light emitting optical fiber 120 arranged in the catheter lumen at a position away from the distal end opening and the proximal end opening may emit light.
  • the light emitting surface of the chip type LED 130 is arranged adjacently to 130A facing the tip side of the guiding catheter 10'and 130B facing the base end side, and a tube type spacer 180 having heat resistance and insulation is provided between them. , It is possible to avoid contact between LEDs and promote heat dissipation by light emission.
  • the concave portion 120d may be provided on the end surface of the side light emitting optical fiber 120, and the spherical lens of the chip type LED 130 may be brought close to the concave portion 120d to increase the amount of light emitted from the side emitting optical fiber 120.
  • the chip type means a surface mount type (SMD) or a chip-on-board type (COB).
  • SMD surface mount type
  • COB chip-on-board type
  • the chip-type LED 130 a commercially available chip-type LED may be used.
  • the corner portion 130a on the outer surface is polished.
  • the light emitting surface can be inserted into the lumen of the guiding catheter 10'with an inner diameter of 2.2 mm even if the light emitting surface is directed in the direction perpendicular to the long axis of the catheter.
  • the light emitting surface is a flat flat plate type LED chip (not shown), it may be arranged so as to be in contact with the irradiation end 120c of the side light emitting optical fiber 120.
  • a copper wire having an outer diameter less than 1/2 of the difference between the inner diameter of the guiding catheter 10'and the outer diameter of the side light emitting optical fiber 120 between the chip type LED 130 and the power supply P for supplying power is used.
  • a plurality of sets of copper wires connected to the anode and cathode of the chip type LED 130 by solder 195 can be arranged.
  • the plurality of sets of leads are arranged between the inner surface of the guiding catheter 10'and the outer surface of the side emitting optical fiber 120.
  • the total length of the guiding catheter 10' is 1500 mm and the length of the side emitting optical fiber 120 is 300 mm
  • four sets of chip-type LEDs arranged in opposite directions and five side emitting optical fibers 120 are arranged in the lumen of the guiding catheter 10'. This is placed.
  • the set of copper wires connected to the chip-type LED 130 is connected to the power supply P through the proximal opening of the guiding catheter 10'.
  • the set of copper wires connected to the chip-type LED 130 is connected to the power supply P through the tip opening of the guiding catheter 10'.
  • the amount of light emitted from the catheter assembly 110 can be increased as compared with arranging the LED light sources 150 only at both ends.
  • the catheter assembly 110 When the amount of light emitted is increased, the catheter assembly 110 appears to emit light even in the bright field BF as shown in FIG. 9 for exhibition. Therefore, the ceiling light 20 may be turned off to make the catheter assembly 110 emit light more clearly in the dark field DF.
  • the contrast-enhanced catheter may be visible in the X-ray contrast image.
  • FIG. 11 when the catheter assembly 110 according to the second embodiment is viewed from the side, the blood vessels of the blood vessel model 2 overlap and are difficult to see, but as shown in FIG. 12, the catheter assembly 110 emits light. Then, the arrangement and shape of the stationary catheter assembly 110 may be visually recognized in three dimensions.
  • a chip-type light emitting diode (LED) 130' that causes the catheter assembly 210 to emit light is wired in the lumen of the guiding catheter and connected to a power source. Ru.
  • a copper wire 190 is soldered to a chip-type LED 130'having a width of 1.6 mm or less, specifically, a chip-type LED 130'having a length of 4.0 mm and a width of 1.5 mm shown in FIG. At least one of those fixed at 195 can be inserted and arranged.
  • a chip type resistor 196 having a length of 3.2 mm, a width of 1.6 mm, and a thickness of 0.6 mm or less, and a constant current diode 197 having an outer diameter of 1.8 mm or less.
  • a protection circuit to prevent damage to the LED may be placed in the lumen of the guiding catheter 10'.
  • the chip type LED 130' has a high light emission amount of 30 lm / mm 2 or more, as shown in FIG. 13 (B), the light is emitted outside the outer diameter of the catheter even under a bright field BF of about 300 lux. It can be visually recognized that the light is emitted larger than the outer diameter so as to spread.
  • the light emitting surface is parallel to the long axis of the catheter as it is in the lumen of the guiding catheter having an inner diameter of 2.2 mm. It can also be inserted in the direction.
  • the catheter assembly 210 emits light in the dark field DF.
  • the catheter assembly 210 may be used for product display or the like in a bright field BF.
  • the length is 1.6 mm or more and the length is 1.6 mm or more, the length is about the same as that of the tip contrast marker or the pipe marker of the catheter. Therefore, when the chip-type LED 130 emits light, a range larger than the maximum outer diameter of the guiding catheter 10'appears to emit light, so that it can be visually recognized as a marker.
  • the current or voltage may be controlled to reduce the amount of light emitted from the chip-type LED 130, and training for finding a marker may be performed.
  • the catheter that emits light by the light emitting method of the first to third embodiments can be used for training of catheter operation as described above.
  • the training method of the fourth embodiment it can be used for training of drug application to the inner wall of the blood vessel by the drug coated balloon catheter 12 as shown in FIGS. 17 to 22.
  • a phosphor 100 at the tip 10a of the guiding catheter 10'and a phosphor 101 are provided in the inner tube of the balloon catheter, and a powdery phosphor 140 is supported on the balloon 12a of the balloon catheter 12. Then, by arranging it in the model lesion X and irradiating ultraviolet rays from the ultraviolet light source 6 under the dark field DF, the position of the powdery phosphor 140 carried on the emitting balloon portion 12a is visually recognized, and the catheters are relative to each other. Training to visually recognize the position may be performed.
  • the fifth embodiment as a training method is a tumor model Ca of the liver model Lv, so-called transcatheter arterial embolization (TAE) for treating liver cancer with a catheter, or transcatheter arterial hepatic artery chemoembolization (TAE). Training in catheter operation such as chemoembolization (TACE) can be performed.
  • TACE transcatheter arterial embolization
  • the mixture 163 is injected into the microcatheter 10 "with a syringe (not shown), and is injected from the tip of the microcatheter 10" into the occlusion target X2 of the tumor blood vessel model 2'.
  • the mixture 163 when observed by irradiating ultraviolet rays with a dark field DF, the mixture 163 emits light in the microcatheter 10 ”, and it is possible to visually recognize whether the flow in the tumor model 2 ′ or the obstruction target position X2 is obstructed. can do.
  • an angiographic catheter 10'''with a large inner diameter may be used, or a catheter capable of changing the flow path by attaching a balloon to the tip may be used, or a catheter having these functions can be used. Different catheters may be used together.
  • the catheter assembly may be used for display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided are a catheter assembly, a light-emitting method, and a training method for catheter manipulation with which it is possible to train catheter manipulation with the same line of sight or attitude as in an actual maneuver. A catheter carrying a phosphor (1) therewith is manipulated under a dark field DF and observation is made by an FPD (5) using a camera (4).

Description

カテーテル組立体、発光方法およびカテーテル操作の訓練方法Catheter assembly, luminescence method and catheter operation training method
 本発明は、生体管腔内に挿入されるカテーテルを用いた発光するカテーテル組立体、その発光方法およびカテーテル操作の訓練方法に関する。 The present invention relates to a luminescent catheter assembly using a catheter inserted into a living lumen, a luminescent method thereof, and a training method for catheter operation.
 近年カテーテル治療の増大に伴い、予め術者が特許文献1で開示されたシリコン製血管モデルなどを用いて訓練を行う場合がある。 With the increase in catheter treatment in recent years, the surgeon may perform training using a silicon blood vessel model disclosed in Patent Document 1 in advance.
 訓練において、ガイドワイヤーやガイディングカテーテルをモデルに挿入してカテーテルの硬さやトルク伝達性を手感覚で覚えることができる。さらに訓練において、故意にガイドワイヤーでモデル血管を穿孔し、あるいは蛇行血管通過時によりカテーテルをキンクさせるなどのトラブルを発生させ、その際の手感覚を認識させる訓練を行うことができる。 In training, you can insert a guide wire or guiding catheter into the model and learn the hardness and torque transmission of the catheter by hand. Further, in the training, it is possible to perform training to intentionally perforate a model blood vessel with a guide wire or to cause a trouble such as kinking the catheter when passing through a meandering blood vessel, and to recognize the hand sensation at that time.
 これにより実際の手術において、その手感覚に基づきトラブルを事前に回避することができる。 This makes it possible to avoid troubles in advance based on the feeling of the hand in actual surgery.
特開2006-267565号公報Japanese Unexamined Patent Publication No. 2006-267565
 通常、血管モデルを温水中で操作すると、天井の照明が水面あるいはモデル表面で反射して血管モデル内のカテーテルが見えない場合、あるいは分岐したモデル血管が重なる方向から見た際にモデル血管によってカテーテルが見えない場合がある。 Normally, when the vessel model is operated in warm water, the catheter by the model vessel is seen when the ceiling illumination is reflected on the water surface or the model surface and the catheter in the vessel model cannot be seen, or when the branched model vessels are viewed from the overlapping direction. May not be visible.
 また、実際の手術では穿刺時以外、術者は人体でなくX線造影装置を通した画像で視認する。従って術者の視線や姿勢あるいは立ち位置は血管モデルではなく、X線造影画像を表示したフラットパネルディスプレイ(FPD)への視線、この視線を向ける姿勢あるいは立ち位置が好ましい。 Also, in actual surgery, the surgeon visually recognizes the image through an X-ray contrast device instead of the human body, except at the time of puncture. Therefore, the operator's line of sight, posture, or standing position is not a blood vessel model, but a line of sight to a flat panel display (FPD) displaying an X-ray contrast image, and a posture or standing position in which this line of sight is directed is preferable.
 さらに、X線造影画像は、X線照射範囲に限定されるうえ、造影剤により血管や造影マーカー部以外のカテーテル本体部などを視認することが困難である。 Furthermore, the X-ray contrast image is limited to the X-ray irradiation range, and it is difficult to visually recognize the blood vessel, the catheter body portion other than the contrast marker portion, and the like with the contrast agent.
 これらのことから、本来視認が困難な血管やカテーテル本体部を目印として視覚で認識(以下、視認識)して訓練すると、実際の手技における視認識との間に差異が生じる場合がある。 For these reasons, if training is performed by visually recognizing (hereinafter referred to as visual recognition) a blood vessel or the catheter body that is originally difficult to see as a mark, there may be a difference from the visual recognition in the actual procedure.
 また、天井の照明がある明るい状態では血管モデルとカテーテルとのコントラストが小さく、カテーテルの動き、特に末梢の細い血管内での動きが視認しにくい。 In addition, the contrast between the blood vessel model and the catheter is small in a bright state with ceiling lighting, and it is difficult to see the movement of the catheter, especially the movement in the small peripheral blood vessels.
 前記の目的を達成するのは、以下の本発明である。 It is the following invention that achieves the above object.
(1)本発明に係るカテーテル組立体は、本体部、手元部とおよび発光体を有し、前記本体部の、内腔および/または外表面に前記発光体を有することを特徴とするものである。 (1) The catheter assembly according to the present invention is characterized by having a main body portion, a hand portion and a light emitting body, and having the light emitting body in the lumen and / or the outer surface of the main body portion. is there.
(2)前記発光体が、前記本体部の外表面に塗布された蛍光体、前記本体部内腔に配置された側面発光光ファイバーおよび前記本体部内腔に配置されたチップ型LEDのうちから選ばれた少なくとも1以上である、上記(1)に記載のカテーテル組立体であってもよい。 (2) The light emitter was selected from a phosphor coated on the outer surface of the main body, a side light emitting optical fiber arranged in the main body cavity, and a chip type LED arranged in the main body cavity. The catheter assembly according to (1) above, which is at least one or more.
(3)本発明に係る発光方法は、カテーテルを用意するステップと、前記カテーテルに発光体を付与するステップと、前記発光体を発光させるステップと、前記発光体によりカテーテルを発光させるステップと、を有する発光方法であってもよい。 (3) The light emitting method according to the present invention includes a step of preparing a catheter, a step of imparting a light emitting body to the catheter, a step of causing the light emitting body to emit light, and a step of causing the catheter to emit light by the light emitting body. It may be a light emitting method having.
(4)前記発光体が紫外線照射により可視光を発光する蛍光体である、上記(3)に記載の発光方法であってもよい。 (4) The light emitting method according to (3) above, wherein the light emitting body is a phosphor that emits visible light by irradiation with ultraviolet rays.
(5)前記発光体が前記カテーテルの内腔に配置され、前記カテーテルの先端開口部側と基端開口部側の少なくとも一方に光源を配置した側面発光光ファイバーである、上記(3)に記載の発光方法であってもよい。 (5) The side light emitting optical fiber in which the light emitting body is arranged in the lumen of the catheter and a light source is arranged on at least one of the distal end opening side and the proximal end opening side of the catheter, according to the above (3). It may be a light emitting method.
(6)前記発光体が前記カテーテルの内腔に配置されたチップ型発光ダイオードである、上記(3)に記載の発光方法であってもよい。 (6) The light emitting method according to (3) above, wherein the light emitting body is a chip type light emitting diode arranged in the lumen of the catheter.
(7)前記蛍光体が前記カテーテルの内腔で流動可能な蛍光体を含む流体である、上記(3)に記載の発光方法であってもよい。 (7) The light emitting method according to (3) above, wherein the fluorescent substance is a fluid containing a fluorescent substance that can flow in the lumen of the catheter.
(8)前記蛍光体が前記カテーテルの外表面に固定した蛍光体である、上記(3)に記載の発光方法であってもよい。 (8) The light emitting method according to (3) above, wherein the phosphor is a phosphor fixed to the outer surface of the catheter.
(9)前記発光体がカテーテルの外表面から剥離可能な蛍光体である、上記(3)に記載の発光方法であってもよい。 (9) The light emitting method according to (3) above, wherein the light emitting body is a phosphor that can be peeled off from the outer surface of the catheter.
(10)本発明に係るカテーテル操作の訓練方法は、カテーテルを準備するステップと、血管モデルを用意するステップと、発光体を用意するステップと、前記カテーテルの内腔、前記カテーテルの外表面および前記血管モデル内で前記カテーテルから離れた位置の少なくとも1以上に前記発光体を配置するステップと、前記発光体を発光させるステップと、前記発光体を視認しながら前記カテーテルを操作するステップと、を有することを特徴とする訓練方法であってもよい。 (10) The catheter operation training method according to the present invention includes a step of preparing a catheter, a step of preparing a blood vessel model, a step of preparing a luminescent material, a cavity of the catheter, an outer surface of the catheter, and the above. It includes a step of arranging the illuminant at at least one position away from the catheter in the blood vessel model, a step of causing the illuminant to emit light, and a step of operating the catheter while visually recognizing the illuminant. The training method may be characterized in that.
(11)紫外線光源と、紫外線吸収剤を含む少なくとも1以上のフィルムと、撮像部と、画像表示部と、光を一部透過し、一部反射する透明な媒質を用意するステップと、暗視野を用意するステップと、を有し、前記暗視野で、前記紫外線光源から光を照射し、前記光を前記カテーテル、前記血管モデルおよび前記発光体に照射し、前記発光体から生じる発光量が反射によって生じる発光量よりも大きい状態で前記カテーテル、前記血管モデルおよび前記発光体の少なくとも1以上を観察するステップを有する、上記(10)に記載の訓練方法であってもよい。 (11) A step of preparing an ultraviolet light source, at least one film containing an ultraviolet absorber, an imaging unit, an image display unit, a transparent medium that partially transmits light and partially reflects light, and a dark field of view. In the dark field, the ultraviolet light source irradiates the light, the catheter, the vascular model, and the illuminant are irradiated with the light, and the amount of luminescence generated from the illuminant is reflected. The training method according to (10) above, which comprises a step of observing at least one of the catheter, the vascular model, and the luminescent material in a state larger than the amount of light emitted by the light source.
(12)前記発光体が、前記紫外線によって蛍光を発する蛍光体である、上記(10)に記載の訓練方法であってもよい。 (12) The training method according to (10) above, wherein the light emitting body is a phosphor that emits fluorescence by the ultraviolet rays.
(13)前記光源が、前記紫外線を含む光を発する、上記(10)に記載の訓練方法であってもよい。 (13) The training method according to (10) above, wherein the light source emits light including the ultraviolet rays.
(14)前記訓練方法が、前記撮像部で撮影した画像を前記画像表示部に表示し、前記画像を視認しながら行われる、上記(10)に記載の訓練方法であってもよい。 (14) The training method may be the training method according to (10) above, wherein an image taken by the imaging unit is displayed on the image display unit and the training method is performed while visually recognizing the image.
 本発明に係るカテーテル組立体、発光方法および訓練方法により、簡便な装置を用いて、カテーテル組立体を発光させ、商品展示あるいは手感覚および視認識が実際の手術に近いカテーテル操作の訓練を行うことができる。 According to the catheter assembly, the light emitting method and the training method according to the present invention, the catheter assembly is made to emit light by using a simple device, and the product display or the training of the catheter operation whose hand sensation and visual recognition are close to those of the actual operation is performed. Can be done.
図1は、従来の明視野BFにおけるカテーテル操作の訓練方法の斜視図である。FIG. 1 is a perspective view of a conventional method for training catheter operation in a bright field BF. 図2は、本発明の第1の実施形態に係るカテーテル組立体を用いた、暗視野DFでのカテーテル操作の訓練方法の斜視図である。FIG. 2 is a perspective view of a method for training catheter operation in a dark field DF using the catheter assembly according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係るカテーテル組立体を用いた、暗視野DFでの発光状態と、カテーテル操作の訓練方法を示す側面斜視図である。FIG. 3 is a side perspective view showing a light emitting state in a dark field DF and a method for training catheter operation using the catheter assembly according to the first embodiment of the present invention. 図4は、従来の明視野BFにおける血管モデルの平面図である。FIG. 4 is a plan view of a blood vessel model in a conventional bright field BF. 図5は、本発明の第1の実施形態に係るカテーテル組立体の横断面図である。FIG. 5 is a cross-sectional view of the catheter assembly according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態のカテーテル組立体を用いた、暗視野DFでの発光状態の平面図である。FIG. 6 is a plan view of a light emitting state in a dark field DF using the catheter assembly of the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係るカテーテル組立体の横断面図である。FIG. 7 is a cross-sectional view of the catheter assembly according to the second embodiment of the present invention. 図8は、本発明の第2の実施形態に係るカテーテル組立体の変形例の縦断面図である。FIG. 8 is a vertical sectional view of a modified example of the catheter assembly according to the second embodiment of the present invention. 図9は、本発明の第2の実施形態に係るカテーテル組立体の、明視野BFにおける発光状態を示す平面図である。FIG. 9 is a plan view showing a light emitting state in a bright field BF of the catheter assembly according to the second embodiment of the present invention. 図10は、本発明の第2の実施形態に係るカテーテル組立体の、暗視野DFにおける発光状態を示す平面図である。FIG. 10 is a plan view showing a light emitting state in the dark field DF of the catheter assembly according to the second embodiment of the present invention. 図11は、本発明の第2の実施形態に係る非発光状態のカテーテル組立体と、明視野BFにおける下肢血管モデルの側面拡大図である。FIG. 11 is a side enlarged view of a catheter assembly in a non-luminous state according to a second embodiment of the present invention and a lower limb blood vessel model in a bright field BF. 図12は、本発明の第2の実施形態に係る発光状態のカテーテル組立体と、暗視野DFにおける下肢血管モデルの側面拡大図である。FIG. 12 is a side enlarged view of the luminescent catheter assembly according to the second embodiment of the present invention and the lower limb blood vessel model in the dark field DF. 図13は、本発明の第3の実施形態に係るカテーテル組立体の横断面図である。FIG. 13 is a cross-sectional view of the catheter assembly according to the third embodiment of the present invention. 図14は、本発明の第3の実施形態に係るカテーテル組立体の縦断面図である。FIG. 14 is a vertical cross-sectional view of the catheter assembly according to the third embodiment of the present invention. 図15は、本発明の第3の実施形態に係るカテーテル組立体の、暗視野DFにおける発光状態を示す平面図である。FIG. 15 is a plan view showing a light emitting state in the dark field DF of the catheter assembly according to the third embodiment of the present invention. 図16は、本発明の第3の実施形態に係るカテーテル組立体の発光状態を示す側面拡大図である。FIG. 16 is an enlarged side view showing a light emitting state of the catheter assembly according to the third embodiment of the present invention. 図17は、本発明の第4の実施形態に係るカテーテル組立体の、明視野BFでのバルーン部拡張前の状態を示す断面模式図である。FIG. 17 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention before expansion of the balloon portion in the bright field BF. 図18は、本発明の第4の実施形態に係るカテーテル組立体の、暗視野DFでのバルーン部拡張前の状態を示す断面模式図である。FIG. 18 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention before expansion of the balloon portion in the dark field DF. 図19は、本発明の第4の実施形態に係るカテーテル組立体の、明視野BFでのバルーン部拡張時の状態を示す断面模式図である。FIG. 19 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention when the balloon portion is expanded in the bright field BF. 図20は、本発明の第4の実施形態に係るカテーテル組立体の、暗視野DFでのバルーン部拡張時の状態を示す断面模式図である。FIG. 20 is a schematic cross-sectional view showing a state of the catheter assembly according to the fourth embodiment of the present invention when the balloon portion is expanded in the dark field DF. 図21は、本発明の第4の実施形態に係るカテーテル組立体の、明視野BFでのバルーン部収縮後、粉末結晶体を回収した状態を示す断面模式図である。FIG. 21 is a schematic cross-sectional view showing a state in which powder crystals are recovered after the balloon portion contracts in the bright field BF of the catheter assembly according to the fourth embodiment of the present invention. 図22は、本発明の第4の実施形態に係るカテーテル組立体の、暗視野DFでのバルーン部収縮後、粉末結晶体を回収した状態を示す断面模式図である。FIG. 22 is a schematic cross-sectional view showing a state in which powder crystals are recovered after the balloon portion contracts in the dark field DF of the catheter assembly according to the fourth embodiment of the present invention. 図23は、本発明の第5の実施形態に係るカテーテル組立体の、明視野BFにおける全体図である。FIG. 23 is an overall view of the catheter assembly according to the fifth embodiment of the present invention in a bright field BF. 図24は、本発明の第5の実施形態に係るカテーテル組立体の、暗視野DFにおける全体図である。FIG. 24 is an overall view of the catheter assembly according to the fifth embodiment of the present invention in the dark field DF. 図25は、本発明の第5の実施形態に係るカテーテル組立体の、暗視野DFにおける拡大断面模式図である。FIG. 25 is a schematic enlarged cross-sectional view of the catheter assembly according to the fifth embodiment of the present invention in the dark field DF.
 以下、本発明の好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、以下の説明において、カテーテルの手元側を「基端」、生体内へ挿入される側を「先端」と呼ぶ。 Hereinafter, preferred embodiments of the present invention will be mentioned and described in detail with reference to the accompanying drawings. The dimensional ratios in the drawings may be exaggerated and differ from the actual ratios for convenience of explanation. Further, in the following description, the hand side of the catheter is referred to as a "base end", and the side inserted into the living body is referred to as a "tip".
 従来、図1のように血管モデルを使用した訓練は、明視野(Bright Field:以下BF)即ち天井などに設けられた照明20の下で行う。このため、X線造影装置を用いたX線造影画像範囲外のカテーテルや、造影剤を注入しないと本来見えない血管などを視認してしまうため、実際の手術と視覚による視認識に差異が生じる。一方、天井の照明20を消すと、体外に出ている手元部分が見えない。 Conventionally, training using a blood vessel model as shown in FIG. 1 is performed under a light 20 provided in a bright field (hereinafter referred to as BF), that is, a ceiling or the like. For this reason, catheters outside the range of the X-ray contrast image using an X-ray contrast device and blood vessels that cannot be seen unless a contrast medium is injected are visually recognized, which causes a difference between actual surgery and visual recognition. .. On the other hand, when the ceiling light 20 is turned off, the hand part outside the body cannot be seen.
<第1の実施形態>
 図2のように血管モデル2を箱体3で覆い、暗視野(Dark Field 以下DF)として、血管モデル2と発光体1を設けたガイディングカテーテル組立体10を観察する。シース11、バルーンカテーテル12およびガイドワイヤー13のうち、基端部で体外に露出しているものを明視野BFで直接視認する。
<First Embodiment>
As shown in FIG. 2, the blood vessel model 2 is covered with the box body 3, and the guiding catheter assembly 10 provided with the blood vessel model 2 and the illuminant 1 is observed as a dark field (Dark Field or less DF). Of the sheath 11, the balloon catheter 12, and the guide wire 13, those exposed to the outside of the body at the proximal end are directly visually recognized by the bright field BF.
 図3に示すように、血管モデル2および血管モデル2内のカテーテル組立体10を直接視認できない術者は、箱体3に取り付けた撮像部としてのカメラ4からの映像を映し出す画像表示部であるフラットパネルディスプレイ(FPD)5に映し出されたカテーテル組立体10の発光体1を見ながら訓練を行う。 As shown in FIG. 3, the operator who cannot directly see the blood vessel model 2 and the catheter assembly 10 in the blood vessel model 2 is an image display unit that displays an image from the camera 4 as an imaging unit attached to the box body 3. The training is performed while observing the light emitting body 1 of the catheter assembly 10 projected on the flat panel display (FPD) 5.
 ここで、カテーテル組立体とは、本体部と手元部と発光体を有し、本体部の、内腔および/または外側の少なくとも一部に発光体を有するものをいう。本体部は、内腔を有する長尺な部位である。手元部は、本体部の基端側に固定されて、手で操作可能な部位である。 Here, the catheter assembly means a catheter assembly having a main body portion, a hand portion, and a light emitting body, and having a light emitting body in at least a part of the lumen and / or outside of the main body portion. The main body is a long part having a lumen. The hand portion is a portion that is fixed to the base end side of the main body portion and can be operated by hand.
 また発光体とは、本体部の外表面に塗布された蛍光体、本体部内腔に配置された側面発光光ファイバー、本体部内腔に配置されたチップ型LEDのうちから選ばれた少なくとも1以上をいう。 The light emitting body means at least one selected from a phosphor coated on the outer surface of the main body, a side light emitting optical fiber arranged in the main body cavity, and a chip type LED arranged in the main body cavity. ..
 図1に示す従来の明視野BFと、図2の暗視野DFでは、カテーテル操作の視線と姿勢が異なり、カテーテル操作の際の首や肩の位置の差異によりカテーテル操作時の手感覚にも差異が生じる場合がある。 The line of sight and posture of the catheter operation are different between the conventional bright field BF shown in FIG. 1 and the dark field DF of FIG. 2, and the hand sensation during the catheter operation is also different due to the difference in the positions of the neck and shoulders during the catheter operation. May occur.
 ガイディングカテーテル10’の内部または外側に発光体1を設けたカテーテル組立体10の発光体1から光を発することで、暗視野DF内で発光体1のみを視認でき、X線造影画像に近いコントラストが明確な画像を取得することができる。これにより、視認識と手感覚が実際の手術により近いカテーテル操作の訓練を行うことができる。 By emitting light from the illuminant 1 of the catheter assembly 10 provided with the illuminant 1 inside or outside the guiding catheter 10', only the illuminant 1 can be visually recognized in the dark field DF, which is close to an X-ray contrast image. An image with clear contrast can be obtained. This makes it possible to train catheter operation in which visual recognition and hand sensation are closer to those of actual surgery.
 図4は、照明20下において、従来の明視野BFにおけるシリコン製の血管モデル2を温水22の入った水槽21内に配置し、血管モデル2内にカテーテル組立体10を配置した様子を示したものである。血管モデル2は、カテーテルの物性や造影剤の粘度などが実際の手術と同じになるように、水温を37℃と体温と同じにした温水22を満たした水槽21内に浸漬する。水は光の一部を透過し一部を反射する透明な媒質であるため、水面に天井の光23が映ったり、血管モデル2の表面で光23が反射したりする。さらに水温を維持するためのポンプ付き温調器(図示せず)による水流や人が動くことによる振動によって、水面に波24が生じ、ガイディングカテーテル10’の一部が見えにくくなる。暗視野DFであれば、水面や血管モデルからの反射を少なくしてガイディングカテーテル10’を視認することができる。 FIG. 4 shows a state in which the silicon blood vessel model 2 in the conventional bright field BF is placed in the water tank 21 containing the hot water 22 and the catheter assembly 10 is placed in the blood vessel model 2 under the illumination 20. It is a thing. The blood vessel model 2 is immersed in a water tank 21 filled with warm water 22 having a water temperature of 37 ° C., which is the same as the body temperature, so that the physical properties of the catheter and the viscosity of the contrast medium are the same as in the actual surgery. Since water is a transparent medium that transmits a part of light and reflects a part of it, the ceiling light 23 is reflected on the water surface, and the light 23 is reflected on the surface of the blood vessel model 2. Further, a wave 24 is generated on the water surface due to a water flow by a temperature controller with a pump (not shown) for maintaining the water temperature or vibration caused by the movement of a person, and a part of the guiding catheter 10'is difficult to see. With the dark field DF, the guiding catheter 10'can be visually recognized with less reflection from the water surface or the blood vessel model.
 なお、暗視野DFで観察する効果として、一般に目の網膜は暗視野DFのほうが、感度が良く、形の差や小さいもの認識することができることが挙げられる。 As an effect of observing with the dark field DF, it is generally mentioned that the dark field DF has better sensitivity for the retina of the eye, and can recognize differences in shape and small objects.
 これは網膜には約500万~600万の錐体細胞と1.2億~1.4億の桿体細胞があり、明暗に敏感な桿体細胞のほうが錐体細胞よりも多く、1光子(photon)でも感じうるからである。血管モデル2は、腕の血管からカテーテル組立体10を挿入し、下肢動脈の左浅大腿動脈の病変部Xを治療する訓練を目的としている。 This is because the retina has about 5 to 6 million pyramidal cells and 120 to 140 million rod cells, and there are more rod cells that are sensitive to light and dark than pyramidal cells, and one photon. This is because it can be felt even in (photon). The blood vessel model 2 is intended for training in which the catheter assembly 10 is inserted from the blood vessel of the arm to treat the lesion X of the left superficial femoral artery of the lower limb artery.
 カテーテルの発光させる発光方法は、カテーテルを用意するステップと、カテーテルに発光体を付与するステップと、前記発光体によりカテーテルを発光させるステップとを有する。 The light emitting method for emitting light from the catheter includes a step of preparing the catheter, a step of imparting a light emitting body to the catheter, and a step of causing the catheter to emit light by the light emitting body.
 カテーテル操作の訓練方法は、カテーテルを準備するステップと、血管モデルを用意するステップと、発光体を用意するステップと、カテーテルの内腔、カテーテルの外表面および/または前記血管モデル内で前記カテーテルから離れた位置の少なくとも1以上に前記発光体を配置するステップと、前記発光体を発光するステップと、前記発光体を視認しながらカテーテルを操作するステップと、を有することを特徴とする訓練方法である。 Catheter operation training methods include a step of preparing a catheter, a step of preparing a blood vessel model, a step of preparing a luminescent material, and a step of preparing a catheter, an outer surface of the catheter, and / or from the catheter within the blood vessel model. A training method comprising: arranging the illuminant at at least one or more distant positions, illuminating the illuminant, and operating the catheter while visually recognizing the illuminant. is there.
 第1の実施形態に使用するカテーテル組立体10は、図5に示すように外表面の少なくとも一部に発光体1を付与するために、発光体1が塗布されている。発光体1として、好ましくは紫外線により可視光である蛍光を発する蛍光体100が好ましい。蛍光体として、芳香環を有する化合物や金属化合物が特に好ましい。 As shown in FIG. 5, the catheter assembly 10 used in the first embodiment is coated with the light emitting body 1 in order to impart the light emitting body 1 to at least a part of the outer surface. As the light emitting body 1, preferably, a phosphor 100 that emits fluorescence that is visible light by ultraviolet rays is preferable. As the phosphor, a compound having an aromatic ring or a metal compound is particularly preferable.
 蛍光体100は、目的や部位によって水溶性あるいは水分散性の顔料、非水溶性の粉末、あるいは乾燥や架橋によってカテーテルの外表面に固定するものでもよい。固定によって温水中でカテーテルの外表面から剥離しないものは、温水中の硬い病変モデルの訓練で使用できるため、特に好ましい。 The phosphor 100 may be a water-soluble or water-dispersible pigment, a water-insoluble powder, or one fixed to the outer surface of the catheter by drying or cross-linking depending on the purpose or site. Those that do not detach from the outer surface of the catheter in warm water by fixation are particularly preferred because they can be used in training hard lesion models in warm water.
 あるいは、蛍光体1が、粉末状蛍光体をカテーテルの外表面に塗布したものであったり、水に溶け出すことによりカテーテル組立体の外表面から剥離可能な蛍光体100であれば、薬剤コーテッドバルーンカテーテルやその他に設けられる薬剤が、病変部でどのように流出するかを視認する訓練を行うことができる。 Alternatively, if the phosphor 1 is a powdery phosphor coated on the outer surface of the catheter, or is the phosphor 100 that can be peeled off from the outer surface of the catheter assembly by dissolving in water, the drug-coated balloon It is possible to perform training to visually check how the catheter and other drugs provided flow out at the lesion.
 また、流動可能な流体として水溶性蛍光体160を造影剤として注入することで、暗視野DF下でカテーテル組立体全体を視認できるように発光させてもよく、水溶性蛍光体160をバルーンカテーテル12の拡張内腔に注入してバルーン部12aを発光させてもよい。 Further, by injecting the water-soluble phosphor 160 as a contrast medium as a fluid that can flow, the entire catheter assembly may be made to emit light so that the entire catheter assembly can be visually recognized under the dark field DF, and the water-soluble phosphor 160 may be injected into the balloon catheter 12. The balloon portion 12a may be made to emit light by injecting into the dilated lumen of the above.
 第1の実施形態における蛍光体100は、ガイディングカテーテル10’の先端ソフトチップの外表面に薄く塗布され、物性が変化しないことで、実際の手術と同じ手感覚を得ることができる。カテーテルは、ガイディングカテーテルのほか、バルーンカテーテル、ステントデリバリーカテーテル、アテレクトミーカテーテルでもよい。蛍光体100は、ガイドワイヤー13に塗布されてもよい。 The phosphor 100 in the first embodiment is thinly applied to the outer surface of the tip soft tip of the guiding catheter 10', and the physical properties do not change, so that the same hand sensation as in an actual operation can be obtained. The catheter may be a balloon catheter, a stent delivery catheter, or an atherectomy catheter, in addition to a guiding catheter. The phosphor 100 may be applied to the guide wire 13.
 蛍光体100が塗布される部位は、カテーテルのいずれの部位でもよいが、カテーテルの外表面が好ましく、基部シャフトあるいは先端部が特に好ましい。 The site to which the phosphor 100 is applied may be any site of the catheter, but the outer surface of the catheter is preferable, and the base shaft or the tip is particularly preferable.
 箱体3の内面に紫外線光源6を配置して紫外線を照射すると、蛍光体100が可視光の蛍光を発し、カテーテル組立体先端部10aが発光する。ここで、紫外線とは、人間に視認できない波長の光であり、ここでは10nm~400nmの波長の光をいい、好ましくは300nm~380nmの波長の光を含むものをいう。 When an ultraviolet light source 6 is arranged on the inner surface of the box 3 and irradiated with ultraviolet rays, the phosphor 100 emits visible light and the tip portion 10a of the catheter assembly emits light. Here, the ultraviolet ray is light having a wavelength that is invisible to humans, and here, it means light having a wavelength of 10 nm to 400 nm, preferably including light having a wavelength of 300 nm to 380 nm.
 可視光とは、JISZ8120に規定する波長範囲の短波長限界が360nm~400nm、長波長限界が760nm~830nmものをいう。 Visible light means that the short wavelength limit of the wavelength range defined in JISZ8120 is 360 nm to 400 nm and the long wavelength limit is 760 nm to 830 nm.
 紫外線光源6が可視光を含まなければ、蛍光体100の発光のみ観察できるが、紫外線光源6の光量やコストなどから、紫外線光源6に可視光が含まれてもよい。この場合、蛍光体100から生じる蛍光の発光量が、血管モデルや水面における媒質からの反射によって生じる可視光量よりも大きければ、カテーテル組立体の動きを視認する訓練を行うことができる。あるいは、紫外線透過可視光吸収フィルターにより光源から可視光が減らされてもよい。 If the ultraviolet light source 6 does not contain visible light, only the emission of the phosphor 100 can be observed, but the ultraviolet light source 6 may include visible light due to the amount of light and the cost of the ultraviolet light source 6. In this case, if the amount of fluorescence emitted from the phosphor 100 is larger than the amount of visible light generated by the reflection from the medium on the blood vessel model or the water surface, training for visually recognizing the movement of the catheter assembly can be performed. Alternatively, visible light may be reduced from the light source by an ultraviolet transmitted visible light absorbing filter.
 あるいは、血管モデル2内のカテーテル組立体10の動きを直接視認するために、観察窓25に紫外線吸収剤を含む少なくとも1以上のフィルム26を配置してもよい。目や皮膚に対する保護のほか、カメラ4の画像センサーの保護もできるため好ましい。 Alternatively, at least one or more films 26 containing an ultraviolet absorber may be placed in the observation window 25 in order to directly visually recognize the movement of the catheter assembly 10 in the blood vessel model 2. In addition to protecting the eyes and skin, it is also preferable because it can protect the image sensor of the camera 4.
 FPD5が、術者が通常使用しているX線造影装置のFPD5と同じ位置に配置されて、術者の視線や姿勢を、習熟した位置と同じ位置に配置できる。これにより、X線造影画像に視認識が類似する暗視野DFの画像を見ながら、カテーテル組立体10を操作することができる。あるいは、疲労がたまりやすい姿勢や、不必要に時間がかかる動作を修正するために指導あるいは、訓練を行ってもよい。 The FPD5 is arranged at the same position as the FPD5 of the X-ray contrast apparatus normally used by the operator, and the operator's line of sight and posture can be arranged at the same position as the familiar position. As a result, the catheter assembly 10 can be operated while viewing the image of the dark field DF whose visual recognition is similar to that of the X-ray contrast image. Alternatively, guidance or training may be provided to correct a posture in which fatigue is likely to accumulate or an unnecessarily time-consuming movement.
 さらに、箱体3が術者の手や体の動線と重なるのであれば、水槽21上部に蓋を設け、カメラ4を水槽の側面側や、水槽の下に隙間ができるように水槽の下に架台を設けて水槽の下面側、あるいは水中に配置してもよい。 Further, if the box body 3 overlaps with the flow line of the operator's hand or body, a lid is provided on the upper part of the water tank 21, and the camera 4 is placed on the side surface side of the water tank or under the water tank so that a gap is formed under the water tank. A pedestal may be provided on the bottom surface of the aquarium or placed in water.
 これにより、手感覚と視認識が実際の手術に近い状態で、訓練できる。さらに、従来のX線造影装置を用いた訓練でのX線による被ばくも無いため、長時間の訓練も可能となる。あるいは、大型のX線造影装置を持ち込めない展示会場などで用いてもよい。 This allows training with hand sensation and visual recognition close to the actual surgery. Furthermore, since there is no exposure to X-rays in training using a conventional X-ray contrast apparatus, long-term training is possible. Alternatively, it may be used in an exhibition hall where a large X-ray contrast apparatus cannot be brought in.
<第2の実施形態>
 図7は、側面発光光ファイバー120を発光させることで、カテーテル組立体110を発光させた状態を示す横断面図である。
<Second embodiment>
FIG. 7 is a cross-sectional view showing a state in which the catheter assembly 110 is made to emit light by causing the side light emitting optical fiber 120 to emit light.
 通常の光ファイバーは、光の照射端(入口)から導入した光が長軸方向に伝播して側面発光しない構造である。 A normal optical fiber has a structure in which light introduced from the irradiation end (entrance) of light propagates in the long axis direction and does not emit light from the side.
 一方、側面発光光ファイバー120は、導入された光をコア120bの添加物により側面へ放出することで、側面発光光ファイバー120全体が光る構造である。そのため、側面発光光ファイバー120は、光源に近い部位ほど発光量が大きい。 On the other hand, the side light emitting optical fiber 120 has a structure in which the entire side light emitting optical fiber 120 shines by emitting the introduced light to the side surface by the additive of the core 120b. Therefore, the side light emitting optical fiber 120 emits a larger amount of light from the portion closer to the light source.
 腕から導入するガイディングカテーテル10’の最大外径が2.3mm以上2.6mm以下、最大内径が2.1mm以上、全長が1500mm~1600mm程度であれば、外径2mmの側面発光光ファイバー120を挿入し、側面発光光ファイバー120の両端に、少なくとも30ルーメン以上の発光量を有するパワーLEDを有するLED光源150を接続する。 If the maximum outer diameter of the guiding catheter 10'introduced from the arm is 2.3 mm or more and 2.6 mm or less, the maximum inner diameter is 2.1 mm or more, and the total length is about 1500 mm to 1600 mm, a side light emitting optical fiber 120 having an outer diameter of 2 mm is used. Inserted and connected to both ends of the side light emitting optical fiber 120, an LED light source 150 having a power LED having a light emitting amount of at least 30 lumens or more.
 LED光源150に電力を供給してLED光源150を発光させると、側面発光光ファイバー120が発光し、側面発光光ファイバー120の光を用いてカテーテル組立体110が発光する。 When power is supplied to the LED light source 150 to cause the LED light source 150 to emit light, the side light emitting optical fiber 120 emits light, and the catheter assembly 110 emits light using the light of the side light emitting optical fiber 120.
 側面発光光ファイバー120をカテーテルの内腔に配置し、カテーテルの先端開口部側と基端開口部側の少なくとも一方に、光源を配置する。 The side light emitting optical fiber 120 is arranged in the lumen of the catheter, and the light source is arranged on at least one of the tip opening side and the proximal opening side of the catheter.
 これにより、側面発光光ファイバー120から照射された光が、ガイディングカテーテル10’の内層14からブレード16の交差部の隙間を通って外層15を通過して外部に到達する。補強体はコイル型でもよく、外層には顔料を含んでもよいが、顔料を含まないほうがカテーテルの発光量が大きく好ましい。 As a result, the light emitted from the side light emitting optical fiber 120 passes from the inner layer 14 of the guiding catheter 10'to the outer layer 15 through the gap at the intersection of the blades 16 and reaches the outside. The reinforcing body may be a coil type, and the outer layer may contain a pigment, but it is preferable that the reinforcing body does not contain a pigment because the amount of light emitted from the catheter is large.
 LED光源150は、側面発光光ファイバー120の端部に固定されて、不必要に光が周囲に漏れないことおよび放熱のために、ソケットのついたアルミ製のハウジング内に固定されたものを用いてもよい。 The LED light source 150 is fixed to the end of the side light emitting optical fiber 120 and is fixed in an aluminum housing with a socket so that light does not leak to the surroundings unnecessarily and heat is dissipated. May be good.
 あるいは、図8に示す変形例のように、ガイディングカテーテル10’の内腔にチップ型LED130の発光面をカテーテルの長軸に対して垂直に配置し、カテーテル内腔でチップ型LED130を発光させてもよい。これにより、先端開口部と基端開口部から離れた位置のカテーテル内腔内に配置した側面発光光ファイバー120を発光させてもよい。 Alternatively, as in the modified example shown in FIG. 8, the light emitting surface of the tip-type LED 130 is arranged perpendicular to the long axis of the catheter in the lumen of the guiding catheter 10', and the tip-type LED 130 is made to emit light in the catheter lumen. You may. As a result, the side light emitting optical fiber 120 arranged in the catheter lumen at a position away from the distal end opening and the proximal end opening may emit light.
 チップ型LED130の発光面をガイディングカテーテル10’の先端側に向けた130Aと基端側に向けた130Bを隣接して配置し、その間に耐熱性と絶縁性を有するチューブ型のスペーサー180を設け、LED同士の接触を避け、発光による放熱を促進してもよい。 The light emitting surface of the chip type LED 130 is arranged adjacently to 130A facing the tip side of the guiding catheter 10'and 130B facing the base end side, and a tube type spacer 180 having heat resistance and insulation is provided between them. , It is possible to avoid contact between LEDs and promote heat dissipation by light emission.
 あるいは、側面発光光ファイバー120の端面に凹部120dを設け、チップ型LED130の球面レンズを凹部120dに近接させて、側面発光光ファイバー120の発光量を増やしてもよい。 Alternatively, the concave portion 120d may be provided on the end surface of the side light emitting optical fiber 120, and the spherical lens of the chip type LED 130 may be brought close to the concave portion 120d to increase the amount of light emitted from the side emitting optical fiber 120.
 チップ型とは、表面実装型(SMD)またはチップオンボード型(COB)であることを意味する。チップ型LED130は、市販のチップ型LEDを用いてもよく、例えば縦1.6mm、幅1.6mm、高さ1.6mmのドーム型レンズ付きLEDであれば、外表面の角部130aを研磨して面取りすることで、内径2.2mmのガイディングカテーテル10’の内腔に、発光面をカテーテルの長軸に対して垂直方向に向けても挿入することができる。 The chip type means a surface mount type (SMD) or a chip-on-board type (COB). As the chip-type LED 130, a commercially available chip-type LED may be used. For example, in the case of an LED with a dome-shaped lens having a length of 1.6 mm, a width of 1.6 mm, and a height of 1.6 mm, the corner portion 130a on the outer surface is polished. By chamfering, the light emitting surface can be inserted into the lumen of the guiding catheter 10'with an inner diameter of 2.2 mm even if the light emitting surface is directed in the direction perpendicular to the long axis of the catheter.
 あるいは、発光面が平らな平板型LEDチップ(図示せず)であれば、側面発光光ファイバー120の照射端120cに接触するように配置してもよい。 Alternatively, if the light emitting surface is a flat flat plate type LED chip (not shown), it may be arranged so as to be in contact with the irradiation end 120c of the side light emitting optical fiber 120.
 チップ型LED130と、電力を供給する電源Pと間には、ガイディングカテーテル10’の内径と、側面発光光ファイバー120の外径の差の1/2未満の外径を有する銅線であれば、チップ型LED130のアノードとカソードにそれぞれハンダ195により接続した銅線1組を複数組配置することができる。複数組の導線は、ガイディングカテーテル10’の内面と側面発光光ファイバー120の外面の間に配置される。 A copper wire having an outer diameter less than 1/2 of the difference between the inner diameter of the guiding catheter 10'and the outer diameter of the side light emitting optical fiber 120 between the chip type LED 130 and the power supply P for supplying power is used. A plurality of sets of copper wires connected to the anode and cathode of the chip type LED 130 by solder 195 can be arranged. The plurality of sets of leads are arranged between the inner surface of the guiding catheter 10'and the outer surface of the side emitting optical fiber 120.
 ガイディングカテーテル10’の全長が1500mm、側面発光光ファイバー120の長さが300mmとして、ガイディングカテーテル10’の内腔に、反対向きに配置されたチップ型LEDを4組、側面発光光ファイバー120を5本配置する。チップ型LED130の発光面が先端側の場合、このチップ型LED130に接続される銅線の組は、ガイディングカテーテル10’の基端開口部を通って電源Pと接続する。 Assuming that the total length of the guiding catheter 10'is 1500 mm and the length of the side emitting optical fiber 120 is 300 mm, four sets of chip-type LEDs arranged in opposite directions and five side emitting optical fibers 120 are arranged in the lumen of the guiding catheter 10'. This is placed. When the light emitting surface of the chip-type LED 130 is on the distal end side, the set of copper wires connected to the chip-type LED 130 is connected to the power supply P through the proximal opening of the guiding catheter 10'.
 同様に、チップ型LED130の発光面が基端側の場合、このチップ型LED130に接続される銅線の組は、ガイディングカテーテル10’の先端開口部を通って電源Pと接続する。 Similarly, when the light emitting surface of the chip-type LED 130 is on the proximal end side, the set of copper wires connected to the chip-type LED 130 is connected to the power supply P through the tip opening of the guiding catheter 10'.
 側面発光光ファイバー120の外径が2mm、長さが1500mmの場合、両端にのみLED光源150を配置するより、カテーテル組立体110の発光量を大きくすることができる。 When the outer diameter of the side light emitting optical fiber 120 is 2 mm and the length is 1500 mm, the amount of light emitted from the catheter assembly 110 can be increased as compared with arranging the LED light sources 150 only at both ends.
 発光量を増やすと、展示用として図9のように明視野BFにおいてもカテーテル組立体110が発光しているように見える。このため、天井の照明20を消灯して、暗視野DFにおいて、カテーテル組立体110をより明瞭に発光させてもよい。 When the amount of light emitted is increased, the catheter assembly 110 appears to emit light even in the bright field BF as shown in FIG. 9 for exhibition. Therefore, the ceiling light 20 may be turned off to make the catheter assembly 110 emit light more clearly in the dark field DF.
 また、血管が重なっても、造影性のカテーテルがX線造影画像では視認できるようにしてもよい。図11に示すように、第2の実施形態に係るカテーテル組立体110を側面から見た場合、血管モデル2の血管が重複して見えにくいが、図12に示すようにカテーテル組立体110を発光させて、静置したカテーテル組立体110が立体的にどのような配置や形状となるかを視認してもよい。 Further, even if the blood vessels overlap, the contrast-enhanced catheter may be visible in the X-ray contrast image. As shown in FIG. 11, when the catheter assembly 110 according to the second embodiment is viewed from the side, the blood vessels of the blood vessel model 2 overlap and are difficult to see, but as shown in FIG. 12, the catheter assembly 110 emits light. Then, the arrangement and shape of the stationary catheter assembly 110 may be visually recognized in three dimensions.
<第3の実施形態>
 図13に示す第3の実施形態に係るカテーテル組立体210は、カテーテル組立体210を発光させるチップ型発光ダイオード(LED)130’が、ガイディングカテーテルの内腔内に配線されて電源に接続される。
<Third embodiment>
In the catheter assembly 210 according to the third embodiment shown in FIG. 13, a chip-type light emitting diode (LED) 130'that causes the catheter assembly 210 to emit light is wired in the lumen of the guiding catheter and connected to a power source. Ru.
 例えば内径が2.2mmのカテーテル組立体210は、幅1.6mm以下、具体的には図13のAに示す長さ4.0mm、幅1.5mmのチップ型LED130’に銅線190をはんだ195で固定したものを少なくとも1つ以上挿入して配置することができる。さらに、図14に示すように、長さ3.2mm、幅1.6mm、厚み0.6mm以下のチップ型抵抗196や、外径1.8mm以下の定電流ダイオード197など、過電流や過電圧によるLEDの損傷を防ぐ保護回路をガイディングカテーテル10’内腔に配置してもよい。 For example, in a catheter assembly 210 having an inner diameter of 2.2 mm, a copper wire 190 is soldered to a chip-type LED 130'having a width of 1.6 mm or less, specifically, a chip-type LED 130'having a length of 4.0 mm and a width of 1.5 mm shown in FIG. At least one of those fixed at 195 can be inserted and arranged. Further, as shown in FIG. 14, due to overcurrent or overvoltage, such as a chip type resistor 196 having a length of 3.2 mm, a width of 1.6 mm, and a thickness of 0.6 mm or less, and a constant current diode 197 having an outer diameter of 1.8 mm or less. A protection circuit to prevent damage to the LED may be placed in the lumen of the guiding catheter 10'.
 また、光量が30lm/mm以上の高発光量を有するチップ型LED130’であれば、図13(B)に示すように、300ルクス程度の明視野BF下でもカテーテルの外径より外側に光が広がるように、外径より大きく発光することが視認できる。 Further, if the chip type LED 130'has a high light emission amount of 30 lm / mm 2 or more, as shown in FIG. 13 (B), the light is emitted outside the outer diameter of the catheter even under a bright field BF of about 300 lux. It can be visually recognized that the light is emitted larger than the outer diameter so as to spread.
 例えば縦1.6mm、幅1.6mm、高さ1.6mmのドーム型レンズ付きLEDであれば、内径2.2mmのガイディングカテーテルの内腔にそのまま発光面をカテーテルの長軸に対して平行方向に向けても挿入することができる。 For example, in the case of an LED with a dome-shaped lens having a length of 1.6 mm, a width of 1.6 mm, and a height of 1.6 mm, the light emitting surface is parallel to the long axis of the catheter as it is in the lumen of the guiding catheter having an inner diameter of 2.2 mm. It can also be inserted in the direction.
 図15に示すように暗視野DFにおいて、カテーテル組立体210が発光する。あるいは、カテーテル組立体210は、明視野BFにおいて商品展示などに用いてもよい。 As shown in FIG. 15, the catheter assembly 210 emits light in the dark field DF. Alternatively, the catheter assembly 210 may be used for product display or the like in a bright field BF.
 浅大腿動脈が全長にわたって閉塞した石灰化病変部モデルは、カテーテルの位置を把握するために、透明のゲルを用いる必要がある。 For the calcified lesion model in which the superficial femoral artery is occluded over the entire length, it is necessary to use a transparent gel in order to grasp the position of the catheter.
 図16に示すように硬さなどを忠実に再現するため光が通りにくい材料を用いても、カテーテル内のチップ型LED130’の発光量が多く、カテーテルの外径より外側に光が広がるように見える。このため、石灰化病変モデル内のカテーテル組立体210の位置を視認しながら訓練をすることができる。 As shown in FIG. 16, even if a material that does not allow light to pass through is used to faithfully reproduce the hardness and the like, the amount of light emitted by the chip-type LED 130'inside the catheter is large, and the light spreads outside the outer diameter of the catheter. appear. Therefore, training can be performed while visually recognizing the position of the catheter assembly 210 in the calcified lesion model.
 あるいは長さが1.6mm以上の縦長のチップ型LED130’であれば、長さがカテーテルの先端造影マーカーやパイプマーカーと同程度となる。このため、チップ型LED130を発光させることでガイディングカテーテル10’の最大外径よりも大きい範囲が発光して見えるので、マーカーとして視認することができる。 Alternatively, if the length is 1.6 mm or more and the length is 1.6 mm or more, the length is about the same as that of the tip contrast marker or the pipe marker of the catheter. Therefore, when the chip-type LED 130 emits light, a range larger than the maximum outer diameter of the guiding catheter 10'appears to emit light, so that it can be visually recognized as a marker.
 逆に、電流あるいは電圧をコントロールして、チップ型LED130の発光量を小さくして、マーカーを見つける訓練を行ってもよい。
<訓練方法>
 第1~第3実施形態の発光方法により発光させたカテーテルは、すでに述べたようにカテーテル操作の訓練に使用することができる。
On the contrary, the current or voltage may be controlled to reduce the amount of light emitted from the chip-type LED 130, and training for finding a marker may be performed.
<Training method>
The catheter that emits light by the light emitting method of the first to third embodiments can be used for training of catheter operation as described above.
 第4の実施形態の訓練方法として、図17から22に示すような薬剤コーテッドバルーンカテーテル12による血管内壁への薬剤塗布の訓練に用いることができる。 As the training method of the fourth embodiment, it can be used for training of drug application to the inner wall of the blood vessel by the drug coated balloon catheter 12 as shown in FIGS. 17 to 22.
 図17および図18に示すように、ガイディングカテーテル10’の先端部10aの蛍光体100、バルーンカテーテルの内管に蛍光体101を設け、バルーンカテーテル12のバルーン12aに粉末状蛍光体140を担持し、モデル病変部Xに配置し、暗視野DF下で紫外線光源6から紫外線を照射することで、発光するバルーン部12aに担持した粉末状蛍光体140の位置を視認して、カテーテル同士の相対位置を視認する訓練を行ってもよい。 As shown in FIGS. 17 and 18, a phosphor 100 at the tip 10a of the guiding catheter 10'and a phosphor 101 are provided in the inner tube of the balloon catheter, and a powdery phosphor 140 is supported on the balloon 12a of the balloon catheter 12. Then, by arranging it in the model lesion X and irradiating ultraviolet rays from the ultraviolet light source 6 under the dark field DF, the position of the powdery phosphor 140 carried on the emitting balloon portion 12a is visually recognized, and the catheters are relative to each other. Training to visually recognize the position may be performed.
 あるいは、プラーク内のコレステロール結晶を模擬した粉末蛍光体141をモデル病変部Xに配置して、カテーテルと病変部Xの相対位置を視認する訓練を行ってもよい。図19および図20に示すように、バルーン12aを拡張してモデル病変部Xに塗布した粉末状蛍光体140に紫外線光源6から紫外線を照射してもよい。これにより、粉末状蛍光体140がモデル病変部Xに塗布されたかどうかや、塗布位置が目標位置かを視認でき、病変部への薬剤塗布の訓練ができる。 Alternatively, a powder phosphor 141 simulating cholesterol crystals in the plaque may be placed in the model lesion X, and training may be performed to visually recognize the relative positions of the catheter and the lesion X. As shown in FIGS. 19 and 20, the powdery phosphor 140 applied to the model lesion X by expanding the balloon 12a may be irradiated with ultraviolet rays from the ultraviolet light source 6. As a result, it is possible to visually recognize whether or not the powdered phosphor 140 has been applied to the model lesion X and whether the application position is the target position, and it is possible to train the application of the drug to the lesion.
 あるいは、図21および図22に示すように、モデル病変部Xまたはバルーン12aから流出した粉末状蛍光体140および粉末蛍光体141を、吸引して回収する訓練をすることもできる。 Alternatively, as shown in FIGS. 21 and 22, the powdery phosphor 140 and the powdery phosphor 141 flowing out from the model lesion X or the balloon 12a can be trained to be sucked and collected.
 訓練方法としての第5の実施形態は、肝臓モデルLvの腫瘍モデルCa、いわゆる肝臓がんをカテーテルで治療する肝動脈塞栓療法(Hepatic Transcatheter arterial embolization:TAE)や肝動脈化学塞栓術(Hepatic Ttranscatheter arterial chemoembolization:TACE)などのカテーテル操作の訓練を行うことができる。 The fifth embodiment as a training method is a tumor model Ca of the liver model Lv, so-called transcatheter arterial embolization (TAE) for treating liver cancer with a catheter, or transcatheter arterial hepatic artery chemoembolization (TAE). Training in catheter operation such as chemoembolization (TACE) can be performed.
 図23に示すように腹腔動脈モデルに血管造影カテーテル10’’’を配置し、その内腔内にマイクロカテーテル10’’を挿入して、先端を腫瘍血管モデル2’の閉塞標的X2に配置する。 As shown in FIG. 23, an angiographic catheter 10'''is placed in the celiac artery model, a microcatheter 10'' is inserted into the lumen thereof, and the tip is placed at the occlusion target X2 of the tumor blood vessel model 2'. ..
 水溶性蛍光体160や塞栓用ビーズ161と造影剤や抗がん剤を模した高粘性液体である水分散性蛍光体162の混合物163を用意する。 Prepare a mixture 163 of the water-soluble phosphor 160 and the embolic beads 161 and the water-dispersible phosphor 162 which is a highly viscous liquid imitating a contrast agent and an anticancer agent.
 明視野BF下では、水面の乱反射により混合物163が狙い通り腫瘍モデルCaにつながる閉塞標的X2を閉塞したこと、あるいは塞栓用ビーズ161の一部がX2から末梢側に流出していることを視認することが困難である。 Under the bright field BF, it is visually recognized that the mixture 163 blocked the obstruction target X2 connected to the tumor model Ca as intended by the diffused reflection of the water surface, or that a part of the embolic beads 161 flowed out from X2 to the peripheral side. Is difficult.
 シリンジ(図示せず)により混合物163をマイクロカテーテル10”に注入して、マイクロカテーテル10”の先端から腫瘍血管モデル2’の閉塞標的X2へ注入する。 The mixture 163 is injected into the microcatheter 10 "with a syringe (not shown), and is injected from the tip of the microcatheter 10" into the occlusion target X2 of the tumor blood vessel model 2'.
 図24に示すように、暗視野DFで紫外線を照射して観察すると、混合物163がマイクロカテーテル10”内で発光し、腫瘍モデル2’内での流れや閉塞標的位置X2を閉塞したかを視認することができる。 As shown in FIG. 24, when observed by irradiating ultraviolet rays with a dark field DF, the mixture 163 emits light in the microcatheter 10 ”, and it is possible to visually recognize whether the flow in the tumor model 2 ′ or the obstruction target position X2 is obstructed. can do.
 あるいは、蛍光体を担持した塞栓用ビーズ161’を用いて、図25に示すように水溶性蛍光体150が閉塞標的X2から流出したあと、閉塞の成否や余分なビーズの流出を直接確認する訓練を行うことができる。 Alternatively, training for directly confirming the success or failure of occlusion and the outflow of excess beads after the water-soluble phosphor 150 has flowed out from the blockage target X2 as shown in FIG. 25 using the embolic beads 161'carrying a phosphor. It can be performed.
 これにより、効果的に閉塞標的X2を閉塞するためにマイクロカテーテル10”を最適位置に配置できる訓練を行うことができる。 This makes it possible to perform training that allows the microcatheter 10 "to be placed in the optimum position in order to effectively occlude the obstruction target X2.
 閉塞範囲が広い場合は、内径の大きい血管造影カテーテル10’’’を用いてもよく、あるいは、先端にバルーンを取りつけて流路を変えることができるカテーテルを用いてもよく、あるいはこれらの機能の異なるカテーテルを併用してもよい。 If the occlusion range is wide, an angiographic catheter 10'''with a large inner diameter may be used, or a catheter capable of changing the flow path by attaching a balloon to the tip may be used, or a catheter having these functions can be used. Different catheters may be used together.
 上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもなく、カテーテル組立体を展示用に用いてもよい。 Although the present invention has been described above with reference to preferred embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and various modifications can be made without departing from the spirit of the present invention. Alternatively, the catheter assembly may be used for display.
 なお、本出願は、2019年3月29日に出願された日本特許出願番号2019-65272号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 It should be noted that this application is based on Japanese Patent Application No. 2019-65272 filed on March 29, 2019, and the disclosure contents thereof are referred to and incorporated as a whole.
1 発光体
2 血管モデル、
2’ 腫瘍血管モデル、
3 箱体、
4 カメラ、
5 FPD、
6 紫外線光源、
10 カテーテル組立体
10’ ガイディングカテーテル、
10’’ マイクロカテーテル、
10’’’ 血管造影カテーテル、
11 シース、
12 バルーンカテーテル
12a バルーン、
13 ガイドワイヤー、
14 内層、
15 外層、
16 補強体、
21 水槽、
22 水、
23 反射した天井照明、
24 波、
25 観測窓、
26 紫外線吸収フィルム、
100 蛍光体、
101 バルーンカテーテル用マーカー、
102 マイクロカテーテル用マーカー、
110 第2の実施形態のカテーテル組立体、
120 側面発光光ファイバー、
130 チップ型発光ダイオード、
140 粉末状蛍光体、
141 粉末状蛍光体、
150 ソケット付きLED光源、
160 水溶性蛍光体、
161 塞栓ビーズ、
162 水分散性蛍光体、
163 混合物、
180 スペーサー、
190 銅線、
195 ハンダ、
196 チップ抵抗、
197 定電流ダイオード、
X 病変部、
X2 閉塞標的、
BF 明視野、
DF 暗視野、
Lv 肝臓モデル、
Ca 腫瘍モデル。
1 illuminant 2 blood vessel model,
2'Tumor vessel model,
3 box body,
4 cameras,
5 FPD,
6 UV light source,
10 Catheter Assembly 10'Guiding Catheter,
10'' Microcatheter,
10''' Angiography catheter,
11 sheath,
12 Balloon catheter 12a Balloon,
13 guide wire,
14 inner layer,
15 outer layer,
16 Reinforcing body,
21 aquarium,
22 water,
23 Reflected ceiling lighting,
24 waves,
25 Observation window,
26 UV absorbing film,
100 fluorophore,
101 Balloon catheter marker,
102 Microcatheter marker,
110 Catheter assembly of the second embodiment,
120 side emitting optical fiber,
130 chip type light emitting diode,
140 powdery phosphor,
141 powdered phosphor,
LED light source with 150 socket,
160 water-soluble phosphor,
161 Embolic beads,
162 water-dispersible phosphor,
163 mixture,
180 spacer,
190 copper wire,
195 solder,
196 chip resistors,
197 constant current diode,
X lesion,
X2 obstruction target,
BF bright field,
DF dark field,
Lv liver model,
Ca tumor model.

Claims (14)

  1.  本体部、手元部および発光体を有し、
     前記本体部の、内腔および/または外表面に前記発光体を有することを特徴とするカテーテル組立体。
    It has a main body, a hand, and a luminous body.
    A catheter assembly comprising the luminous body in the lumen and / or outer surface of the main body.
  2.  前記発光体が、前記本体部の外表面に塗布された蛍光体、前記本体部内腔に配置された側面発光光ファイバーおよび前記本体部内腔に配置されたチップ型LEDのうちから選ばれた少なくとも1以上である請求項1に記載のカテーテル組立体。 The light emitter is at least one selected from a phosphor coated on the outer surface of the main body, a side light emitting optical fiber arranged in the main body cavity, and a chip type LED arranged in the main body cavity. The catheter assembly according to claim 1.
  3.  発光方法であって、
     カテーテルを用意するステップと、
     前記カテーテルに発光体を付与するステップと、
     前記発光体を発光させるステップと、
     前記発光体によりカテーテルを発光させるステップと、
    を有する、発光方法。
    It is a light emitting method
    Steps to prepare the catheter and
    The step of applying a luminescent material to the catheter and
    The step of making the illuminant emit light,
    The step of causing the catheter to emit light by the illuminant,
    A light emitting method having.
  4.  前記発光体が紫外線照射により可視光を発光する蛍光体である、請求項3に記載の発光方法。 The light emitting method according to claim 3, wherein the light emitting body is a phosphor that emits visible light by irradiation with ultraviolet rays.
  5.  前記発光体が前記カテーテルの内腔に配置され、前記カテーテルの先端開口部側と基端開口部側の少なくとも一方に光源を配置した側面発光光ファイバーである、請求項3に記載の発光方法。 The light emitting method according to claim 3, wherein the light emitting body is a side light emitting optical fiber in which the light emitting body is arranged in the lumen of the catheter and a light source is arranged on at least one of the tip opening side and the proximal opening side of the catheter.
  6.  前記発光体が前記カテーテルの内腔に配置された発光ダイオードである、請求項3に記載の発光方法。 The light emitting method according to claim 3, wherein the light emitting body is a light emitting diode arranged in the lumen of the catheter.
  7.  前記蛍光体が前記カテーテルの内腔で流動可能な蛍光体を含む流体である、請求項3に記載の発光方法。 The light emitting method according to claim 3, wherein the fluorescent substance is a fluid containing a fluorescent substance that can flow in the lumen of the catheter.
  8.  前記蛍光体が前記カテーテルの外表面に固定した蛍光体である、請求項3に記載の発光方法。 The light emitting method according to claim 3, wherein the phosphor is a phosphor fixed to the outer surface of the catheter.
  9.  前記発光体が前記カテーテルの外表面に塗布された剥離可能な蛍光体である請求項3に記載の発光方法。 The light emitting method according to claim 3, wherein the light emitting body is a peelable phosphor coated on the outer surface of the catheter.
  10.  カテーテル操作の訓練方法であって、
     カテーテルを準備するステップと、
     血管モデルを用意するステップと、
     発光体を用意するステップと、
     前記カテーテルの内腔、前記カテーテルの外表面および前記血管モデル内で前記カテーテルから離れた位置の少なくとも1以上に前記発光体を配置するステップと、
     前記発光体を発光するステップと、
     前記発光体を視認しながら前記カテーテルを操作するステップと、
     を有することを特徴とする訓練方法。
    It is a training method for catheter operation.
    Steps to prepare the catheter and
    Steps to prepare a blood vessel model and
    Steps to prepare the illuminant and
    A step of placing the luminescent material in at least one position away from the catheter in the lumen of the catheter, the outer surface of the catheter and in the blood vessel model.
    The step of emitting light from the illuminant and
    The step of operating the catheter while visually recognizing the illuminant,
    A training method characterized by having.
  11.  紫外線光源と、紫外線吸収剤を含む少なくとも1以上のフィルムと、撮像部と、画像表示部と、光を一部透過し、一部反射する透明な媒質を用意するステップと、
     暗視野を用意するステップと、を有し、
     前記暗視野で、前記紫外線光源から紫外線を照射し、前記紫外線を前記カテーテル、前記血管モデルおよび前記発光体に照射し、前記発光体から生じる発光強度が、反射によって生じる光の強度よりも大きい状態で前記カテーテル、前記血管モデルおよび前記発光体の少なくとも1以上を観察するステップと、を有する請求項10に記載の訓練方法。
    A step of preparing an ultraviolet light source, at least one or more films containing an ultraviolet absorber, an imaging unit, an image display unit, and a transparent medium that partially transmits and partially reflects light.
    Have a step to prepare a dark field,
    A state in which ultraviolet rays are irradiated from the ultraviolet light source in the dark field, the catheter, the blood vessel model, and the illuminant are irradiated with the ultraviolet rays, and the emission intensity generated from the illuminant is larger than the intensity of light generated by reflection. 10. The training method according to claim 10, further comprising observing at least one or more of the catheter, the blood vessel model and the illuminant.
  12.  前記発光体が、前記紫外線によって蛍光を発する蛍光体である請求項10または11に記載の訓練方法。 The training method according to claim 10 or 11, wherein the light emitter is a phosphor that fluoresces due to the ultraviolet rays.
  13.  前記光源が、前記紫外線を含む光を発する請求項10から12のいずれか1項に記載の訓練方法。 The training method according to any one of claims 10 to 12, wherein the light source emits light including the ultraviolet rays.
  14.  前記訓練方法が、前記撮像部で撮影した画像を前記画像表示部に表示し、前記画像を視認しながら行われる請求項10から13のいずれか1項に記載の訓練方法。 The training method according to any one of claims 10 to 13, wherein the training method displays an image taken by the imaging unit on the image display unit and visually recognizes the image.
PCT/JP2020/002795 2019-03-29 2020-01-27 Catheter assembly, light-emitting method, and training method for catheter manipulation WO2020202742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511147A JPWO2020202742A1 (en) 2019-03-29 2020-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-065272 2019-03-29
JP2019065272 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202742A1 true WO2020202742A1 (en) 2020-10-08

Family

ID=72668090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002795 WO2020202742A1 (en) 2019-03-29 2020-01-27 Catheter assembly, light-emitting method, and training method for catheter manipulation

Country Status (2)

Country Link
JP (1) JPWO2020202742A1 (en)
WO (1) WO2020202742A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222387A (en) * 2006-02-23 2007-09-06 Yamaguchi Univ Stylet
JP2010528818A (en) * 2007-06-11 2010-08-26 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Three-dimensional light guidance for catheter placement
JP2011530082A (en) * 2008-08-04 2011-12-15 ユニバーシティ オブ ユタ リサーチ ファウンデーション Application of dyes for confocal imaging of cellular microstructures
JP2015505678A (en) * 2011-09-22 2015-02-26 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity System and method for visualizing ablated tissue
WO2017172385A1 (en) * 2016-03-28 2017-10-05 Becton, Dickinson And Company Cannula with light-emitting optical fiber
WO2018207753A1 (en) * 2017-05-11 2018-11-15 アルプス電気株式会社 Catheter device, connector device, and catheter system
JP2018175023A (en) * 2017-04-04 2018-11-15 ウシオ電機株式会社 Catheter device and catheter position confirmation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222387A (en) * 2006-02-23 2007-09-06 Yamaguchi Univ Stylet
JP2010528818A (en) * 2007-06-11 2010-08-26 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア Three-dimensional light guidance for catheter placement
JP2011530082A (en) * 2008-08-04 2011-12-15 ユニバーシティ オブ ユタ リサーチ ファウンデーション Application of dyes for confocal imaging of cellular microstructures
JP2015505678A (en) * 2011-09-22 2015-02-26 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity System and method for visualizing ablated tissue
WO2017172385A1 (en) * 2016-03-28 2017-10-05 Becton, Dickinson And Company Cannula with light-emitting optical fiber
JP2018175023A (en) * 2017-04-04 2018-11-15 ウシオ電機株式会社 Catheter device and catheter position confirmation method
WO2018207753A1 (en) * 2017-05-11 2018-11-15 アルプス電気株式会社 Catheter device, connector device, and catheter system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VERONICA GARCIA-VAZQUEZ: "Navigation and visualisation with HoloLens in endovascular aortic repair", INNOVATIVE SURGICAL SCIENCES, vol. 3, no. 3, 2018, pages 167 - 177, XP055746275 *

Also Published As

Publication number Publication date
JPWO2020202742A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN106943153B (en) System and method for generating images of the interior and exterior of a patient
US7992573B2 (en) Optically guided system for precise placement of a medical catheter in a patient
CA2381728C (en) Method and system to facilitate image guided surgery
WO2012073774A1 (en) Medical tool that emits near infrared fluorescence and medical tool position-confirming system
US10173075B2 (en) Light-guided ophthalmic radiation device
AU762236B2 (en) Cardiovascular catheter apparatus and catheter positioning method using tissue transillumination
US20080138289A1 (en) Systems and methods for detecting infrared emitting composites and medical applications therefor
US20090203994A1 (en) Method and apparatus for vasculature visualization with applications in neurosurgery and neurology
CN108348269A (en) The system and method for navigation for surgical instruments
US20080194973A1 (en) Light-guided transluminal catheter
US20200015930A1 (en) Method and device for enhanced transdermal visualization of medical devices
JP2010528818A (en) Three-dimensional light guidance for catheter placement
KR20140001870A (en) Sinus illumination lightwire device
AU2006291224A1 (en) Light-guided transluminal catheter
JP2016526958A (en) Method and apparatus for non-fluorescent percutaneous surgical access or low-fluorescence percutaneous surgical access
JP2022516171A (en) Positioning of the tube in the lumen by transillumination
WO2006049787A2 (en) Optically guided system for precise placement of a medical catheter in a patient
WO2020202742A1 (en) Catheter assembly, light-emitting method, and training method for catheter manipulation
JP2019217244A (en) Vein detection device
JP6644254B2 (en) In-vivo surgical device detection device
JP4886698B2 (en) Optically guided system for precise patient placement of medical catheters
JP2018516098A (en) Optical fiber for light diffusion that can change length and illumination pattern under control
US20120100515A1 (en) Fluoroscopy Simulator
US11045665B2 (en) Light-guided ophthalmic radiation device
JP2015126885A (en) Medical instrument emitting near infrared fluorescence and medical instrument position confirmation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784836

Country of ref document: EP

Kind code of ref document: A1