Nothing Special   »   [go: up one dir, main page]

WO2020255744A1 - 研磨パッド、研磨パッドの製造方法及び研磨方法 - Google Patents

研磨パッド、研磨パッドの製造方法及び研磨方法 Download PDF

Info

Publication number
WO2020255744A1
WO2020255744A1 PCT/JP2020/022213 JP2020022213W WO2020255744A1 WO 2020255744 A1 WO2020255744 A1 WO 2020255744A1 JP 2020022213 W JP2020022213 W JP 2020022213W WO 2020255744 A1 WO2020255744 A1 WO 2020255744A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
shallow
land
pattern
Prior art date
Application number
PCT/JP2020/022213
Other languages
English (en)
French (fr)
Inventor
加藤 充
菊池 博文
知大 岡本
晋哉 加藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US17/617,118 priority Critical patent/US20220226962A1/en
Priority to JP2021527586A priority patent/JP7514234B2/ja
Priority to KR1020217036878A priority patent/KR102674356B1/ko
Priority to CN202080039388.XA priority patent/CN114286737B/zh
Publication of WO2020255744A1 publication Critical patent/WO2020255744A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention provides a polishing pad that can shorten the time required to make the polishing surface of the polishing pad rough enough for polishing.
  • polishing is performed to mirror-process substrate materials such as semiconductors and silicon wafers and glass, which is a material for hard disks, liquid crystal displays, and lenses, and to flatten irregularities caused by insulating films and metal films in the manufacturing process of semiconductor devices.
  • Chemical mechanical polishing is used to polish the surface to be polished while supplying slurry to the polished surface of the pad.
  • a non-woven fabric type polishing pad As the polishing pad for CMP, a non-woven fabric type polishing pad, a polishing pad mainly composed of a polymer foam having a closed cell structure, a polishing pad mainly composed of a non-foamed polymer, and the like are known.
  • the non-woven fabric type polishing pad has an advantage that it has good contact with the base material to be polished because it is flexible, but has a disadvantage that it has a low flatness that flattens the surface to be polished because it is flexible. ..
  • the polishing pad mainly composed of a polymer foam having a closed cell structure has an advantage that it has excellent flatness because it has a higher hardness than a non-woven fabric type polishing pad, while the polishing layer has a higher hardness.
  • Patent Document 1 discloses a high-hardness polishing pad mainly composed of non-foamed polyurethane.
  • a pad conditioner also called a dresser
  • a dresser is used to finely roughen the polishing surface of the polishing pad to form a roughness suitable for polishing.
  • Conditioning called break-in is performed.
  • the polishing device cannot be operated during the break-in of the polishing pad. Therefore, it is required to lengthen the operating time of the polishing apparatus by shortening the time required for break-in (hereinafter, also referred to as break-in time). By lengthening the operating time of the polishing device, the production cost of semiconductor devices and the like can be reduced.
  • Patent Document 2 discloses a polishing pad in which a microtexture having a specific roughness parameter is previously formed on a polishing surface. Patent Document 2 discloses that the break-in time can be shortened by using such a polishing pad.
  • Patent Document 3 is a method for manufacturing a polishing sheet made of a sheet-like foam, and in a step of adjusting the thickness of the polishing sheet by sandpaper hanging, the sandpaper hanging on the polished surface is the first finish grinding and the second. It consists of two stages of finish grinding, the first finish grinding is performed by increasing the sandpaper count, and the sandpaper count used for the second finish grinding is higher than the sandpaper count used at the end of the first finish grinding. Disclosed is a method for manufacturing a polishing pad which is small and has a total grinding amount of 10 ⁇ m or more and 1000 ⁇ m or less in the second finish grinding. Then, according to the manufacturing method of Patent Document 3, it is disclosed that a polishing pad having a short start-up time and excellent in-plane uniformity can be obtained when performing CMP.
  • Patent Document 4 is a polishing pad used for polishing an object to be polished, which has a polishing surface to be pressed against the object to be polished, and the waviness of the polishing surface has a period of 5 mm to 200 mm and is maximum.
  • a polishing pad having an amplitude of 40 ⁇ m or less and a negative zeta potential of a polished surface of ⁇ 50 mV or more and less than 0 mV.
  • Patent Document 4 according to such a polishing pad, the repulsion of the slurry with the negative polishing particles is suppressed, the polishing surface of the polishing pad and the slurry are well-adapted, and the break-in time is shortened. Disclose what you can do.
  • Patent Document 5 is a polishing pad for polishing a substrate, and has a polishing body having a polishing side facing the back surface and a plurality of cylinder-shaped protrusions continuous with the polishing side of the polishing body. Disclose a polishing pad comprising a polishing surface to be provided. And Patent Document 5 describes that the height of the cylinder-shaped protrusion is in the range of about 0.5 to 1 mm. On the other hand, Patent Document 5 does not mention shortening the break-in time.
  • the polishing pad having a polishing surface including a microtexture having a specific roughness parameter disclosed in Patent Document 2 may not be able to sufficiently shorten the break-in time.
  • a concentric or spiral microtexture that intersects perpendicularly to the radial direction of the polishing pad is formed on the polished surface by cutting, a non-foamed polymer with less surface irregularities is used as the polishing layer.
  • the rotation direction of the polishing pad and the groove direction match, water flows in the same direction as the polishing pad rotates, resulting in fluid lubrication, which makes it difficult for the polishing surface to be dressed and tends to increase the break-in time. there were.
  • Patent Documents 3 and 4 propose to provide a polishing pad in which the break-in time is shortened by obtaining a flatter polishing pad.
  • the polishing pads disclosed in Patent Documents 3 and 4 need to be buffed with sandpaper and manufactured, the polishing pads mainly composed of a non-foamed polymer having a very high hardness are used. It is difficult to apply, and there is a possibility that buff powder may remain on the polished surface to easily generate scratches.
  • An object of the present invention is to provide a polishing pad capable of shortening the time for making the polishing surface of the polishing pad a roughness suitable for polishing.
  • One aspect of the present invention is a polishing pad including a polishing layer having a polishing surface, wherein the polishing surface has a deep groove region having a first pattern formed from deep grooves or holes having a depth of 0.3 mm or more, and a deep groove.
  • the land region includes a land region which is a region excluding the region, and the land region is surrounded by a shallow recess having a second pattern and a depth of 0.01 to 0.1 mm and a shallow recess, and has a maximum horizontal distance. It is a polishing pad having a plurality of island-shaped land portions having a size of 8 mm or less.
  • the polished surface is one surface of the polishing layer on the side that comes into contact with the surface to be polished of the material to be polished and is subjected to polishing during polishing.
  • the horizontal direction of the land portion means the surface direction of the polishing surface of the polishing pad. According to such a polishing pad, it is possible to shorten the break-in time and the break-in polishing time for bringing the polished surface of the unused polishing pad into a surface state suitable for polishing. In particular, when the maximum horizontal distance of the land portion is 8 mm or less, the pad conditioner can easily hit each land portion surrounded by shallow dents, and it takes time to make the roughness suitable for polishing. Can be shortened.
  • the polishing pad of the present embodiment can improve the uniformity of the shape and surface roughness of the polished surface, it is necessary to check whether the surface shape of the entire surface of the polished surface is within the standard range. Easy to inspect. Further, a shallow dent can be formed by cutting or the like as described later without buffing the polished surface with sandpaper. When a shallow dent is formed by cutting, it is easy to omit the step of cleaning the buff powder in order to prevent the buff powder from remaining and generating scratches.
  • the second pattern is selected from a group consisting of a triangular lattice, a square lattice, a rectangular lattice, a rhombic lattice, and a hexagonal lattice formed on the entire surface of the land region. It is preferable to have at least one pattern.
  • the pad conditioner can easily hit the multiple island-shaped lands surrounded by shallow dents uniformly from all directions, and the roughness is suitable for polishing. It is preferable from the viewpoint that the time can be further shortened. Further, since such a pattern can be formed by combining shallow dents of straight lines, it is easy to form by cutting.
  • the projected area of each land portion is preferably in the range of 0.3 to 10 mm 2 .
  • the projected area of each land portion is within such a range, it becomes easier for the pad conditioner to hit each of the land portions surrounded by shallow dents, and the time for making the roughness suitable for polishing is shortened. It is preferable because it can be converted.
  • the ratio of the total projected area of the land portion is preferably 10 to 50% with respect to the total projected area of the land region.
  • the ratio of the total projected area of the land portion is the total projected area of each land portion with respect to the total projected area of the land region when the land region is projected two-dimensionally without considering the unevenness of the polished surface. Means the proportion of.
  • the depth of the shallow dent is preferably 0.02 to 0.06 mm.
  • the depth of the shallow dent is within such a range, in break-in and break-in polishing, each land portion surrounded by the shallow dent wears in a shorter time, so that the roughness is suitable for polishing. This is preferable because the time required for the operation can be further shortened.
  • the ratio of the projected area of the deep groove region is 5 to 40% with respect to the total projected area of the polished surface, and the first pattern is spiral or concentric. And having at least one pattern selected from the group consisting of a grid pattern is preferable from the viewpoint that the slurry can be sufficiently retained.
  • the polishing layer is made of a sheet mainly composed of a non-foamed polymer, it is easy to obtain a high hardness polishing layer in which the time for making the roughness suitable for polishing is short. Is preferable.
  • the polishing layer is made of a thermoplastic polyurethane sheet because it has excellent low scratch property and can be easily formed into the polishing layer.
  • the average depth of the shallow dent is 0. It is a polishing method including a step of conditioning the polished surface under conditioning conditions such that the cumulative conditioning time until it becomes less than 01 mm is 30 minutes or less, preferably 1 to 20 minutes.
  • the time required to make the polished surface of the polishing pad rough suitable for polishing can be shortened.
  • FIG. 1A is a schematic view of a polishing surface for explaining the polishing pad 10 of the embodiment.
  • FIG. 1B is a schematic cross-sectional view of a polishing layer for explaining the polishing pad 10 of the embodiment.
  • FIG. 2 is a schematic plan view of a polishing surface for explaining the polishing pad 20 of another example of the embodiment.
  • FIG. 3A is a partially enlarged schematic view of a polished surface for explaining the polishing pad 30 of another example of the embodiment.
  • FIG. 3B is a schematic cross-sectional view of a polishing layer for explaining the polishing pad 30 of another example of the embodiment.
  • FIG. 4 is a partially enlarged schematic view of a polished surface for explaining the polishing pad 40 of another example of the embodiment.
  • FIG. 5 is an explanatory diagram for explaining the pitch, width, and maximum distance in the horizontal direction of one island-shaped land portion in a regular triangular lattice-shaped shallow recess.
  • FIG. 6 is an explanatory diagram for explaining the pitch, width, and the maximum horizontal distance of one island-shaped land portion of a shallow grid-like recess.
  • FIG. 7 is an explanatory diagram for explaining the pitch, width, and the maximum horizontal distance of one island-shaped land portion that surrounds the circular land portions arranged in a regular hexagonal lattice pattern.
  • FIG. 8 is an explanatory diagram for explaining the pitch and width of shallow dents surrounding the regular hexagonal land portions arranged in a regular hexagonal lattice pattern, and the maximum distance in the horizontal direction of one island-shaped land portion.
  • FIG. 9 is an explanatory diagram for explaining CMP.
  • FIG. 10A is an explanatory diagram for explaining a change in the polished surface at break-in.
  • FIG. 10B is an explanatory diagram for explaining a change in the polished surface at break-in.
  • FIG. 11 is an enlarged photograph of the polished surface of the polishing pad obtained in Example 1.
  • FIG. 12 is an enlarged photograph showing a state during break-in polishing of the polished surface of the polishing pad obtained in Example 1.
  • FIG. 13 is an enlarged photograph of the polished surface of the polishing pad obtained in Comparative Example 1.
  • FIG. 14 is an enlarged photograph showing a state during break-in polishing of the polished surface of the polishing pad obtained in Comparative Example 1.
  • the polishing pad of this embodiment includes a polishing layer having a polishing surface.
  • the material for forming the polishing layer a synthetic or natural polymer material conventionally used for manufacturing the polishing layer of the polishing pad is used without particular limitation.
  • the polymer material forming the polishing layer include polyurethane, polyethylene, polypropylene, polybutadiene, ethylene-vinyl acetate copolymer, butyral resin, polystyrene, polyvinyl chloride, acrylic resin, epoxy resin, polyester, and polyamide. And so on. These may be used alone or in combination of two or more.
  • polyurethane obtained by reacting a polyurethane raw material containing a polymer diol, an organic diisocyanate and a chain extender is particularly excellent in flattening performance and can provide a polishing layer in which scratches are less likely to occur.
  • polyurethane used as a material for forming the polishing layer will be described in detail as a representative example.
  • polymer diol examples include the following compounds.
  • the high molecular weight diol include polyether diols such as polyethylene glycol and polytetramethylene glycol; poly (nonamethylene adipate) diol, poly (2-methyl-1,8-octamethylene adipate) diol, and poly (poly). Polyester diols such as 3-methyl-1,5-pentamethylene adipate) diols; polycarbonate diols such as poly (hexamethylene carbonate) diols, poly (3-methyl-1,5-pentamethylene carbonate) diols, or their co-weights. Coalescence etc. can be mentioned. These may be used alone or in combination of two or more.
  • organic diisocyanate examples include aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-bis (isocyanatomethyl) cyclohexane; 4 Aromatic diisocyanates such as, 4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and 1,5-naphthylene diisocyanate can be mentioned. These may be used alone or in combination of two or more. Among these, it is preferable from the viewpoint of excellent wear resistance of the polishing layer from which 4,4'-diphenylmethane diisocyanate can be obtained.
  • chain extender examples include low molecular weight compounds having two or more active hydrogen atoms capable of reacting with isocyanate groups and having a molecular weight of 350 or less. Specific examples thereof include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, and neopentyl.
  • Diols such as glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,9-nonanediol, spiroglycol; ethylenediamine, tetra Examples thereof include diamines such as methylene diamine, hexamethylene diamine, nonamethylene diol, hydrazine, xylylenediol amine, isophorone diol, and piperazine. These may be used alone or in combination of two or more. Of these, 1,4-butanediol and / or 1,9-nonanediol are particularly preferred.
  • the blending ratio of each component of the polyurethane raw material is appropriately adjusted in consideration of the characteristics to be imparted to the polishing layer. Specifically, for example, with respect to 1 mol of active hydrogen atom contained in the polymer diol and the chain extender, 0.95 to 1.3 mol of the isocyanate group contained in the organic diisocyanate, and further 0.96 to 1 mol. It is preferable to mix each component in a ratio of .1 mol, particularly 0.97 to 1.05 mol. If the amount of isocyanate groups contained in the organic diisocyanate is too small, the mechanical strength and abrasion resistance of the obtained polyurethane tend to decrease. Further, when the amount of isocyanate groups contained in the organic diisocyanate is too large, the productivity of polyurethane and the storage stability of the polyurethane raw material tend to decrease.
  • the proportion of nitrogen atoms derived from the isocyanate group of the organic polyisocyanate in polyurethane is 4.8 to 7.5% by mass, further 5.0 to 7.3% by mass, and particularly 5.2 to 7.1.
  • the mass% is preferable from the viewpoint that a polishing layer having particularly excellent flattening property and low scratch property can be obtained. If the proportion of nitrogen atoms derived from the isocyanate group is too low, the hardness of the obtained polishing layer tends to be low.
  • thermoplastic polyurethane is preferable from the viewpoint of obtaining a polishing layer having high hardness and excellent flatness.
  • the thermoplasticity means a property that can be melted and molded by a heating process such as extrusion molding, injection molding, calender molding, or 3D printer molding.
  • Such a thermoplastic polyurethane is produced by using a polyurethane raw material containing a polymer diol, an organic diisocyanate and a chain extender, and using a known polyurethane production method such as a prepolymer method or a one-shot method.
  • a method of melt-kneading and melt-polymerizing a polyurethane raw material in the absence of a solvent, and a method of continuous melt-polymerizing using a multi-screw screw type extruder are preferable from the viewpoint of excellent productivity. ..
  • the method for producing the polishing layer is not particularly limited.
  • the polishing layer is a composition obtained by blending the above-mentioned polymer material forming the polishing layer with a conventionally used additive for the polishing layer, if necessary.
  • a method of sheeting a polymer material for use by using a known sheeting method can be mentioned. Specific examples thereof include a method of melt-extruding a polymer material for a polishing layer with an extruder such as a single-screw extruder or a twin-screw extruder equipped with a T-die to form a sheet.
  • the sheet may be produced by molding the polymer material for the polishing layer described above into a block shape and slicing the block-shaped molded body. The obtained sheet is processed into a desired size and shape by cutting, punching, cutting or the like, or processed to a desired thickness by grinding or the like to finish a sheet for a polishing layer.
  • the D hardness of the polishing layer is 45 to 90, further 50 to 88, particularly 55 to 85, from the viewpoint of excellent balance between improvement of flatness and suppression of scratch generation on the surface of the substrate to be polished. preferable.
  • the polishing layer is preferably a polishing layer having a non-foaming structure, which is formed from a non-porous sheet having a non-foaming structure.
  • a polishing layer having a non-foamed structure is preferable because it can maintain high hardness and exhibits better flatness.
  • the polishing layer having a non-foamed structure is preferable because the pores are not exposed on the surface thereof and the abrasive grains in the slurry do not aggregate or adhere in the pores, so that scratches are less likely to occur.
  • the polishing layer having a non-foaming structure is preferable because the abrasion rate of the polishing layer is lower than that of the polishing layer having a foaming structure, and therefore the life is longer.
  • FIG. 1A and 1B are schematic views for explaining the polishing pad 10 of the present embodiment.
  • FIG. 1A (a) is a schematic plan view of the polishing pad 10 viewed from the side of the polishing surface P, which is one surface of the polishing layer, and (b) is a partially enlarged schematic view of the polishing surface P of (a).
  • FIG. 1B is a schematic cross-sectional view of the II-II'cross section of FIG. 1A (b).
  • 10 is a circular polishing pad including a polishing layer 5 having a polishing surface P on one surface.
  • the polishing pad 10 has a layer structure in which a polishing surface P is provided on one surface of the polishing layer 5 and a cushion layer 7 is adhered to the other surface via an adhesive layer 6.
  • the cushion layer 7 is laminated on the anti-polishing surface side opposite to the polishing surface P like the polishing pad 10, or another layer such as a support layer is laminated on the anti-polishing surface side. It may have a laminated structure of two or more layers, or may have a single-layer structure consisting of only a polishing layer. It should be noted that the polishing pad of the present embodiment has a laminated structure in which the cushion layer 7 is laminated on the anti-polishing surface side of the polishing layer like the polishing pad 10, and the polishing is uniform in the surface of the surface to be polished. It is particularly preferable because the property is more likely to be improved. When the polishing pad has a laminated structure, the cushion layer and the support layer are laminated on the anti-polishing surface of the polishing layer via an adhesive or an adhesive.
  • the C hardness of the cushion layer is preferably 20 to 70.
  • the material of the cushion layer is not particularly limited. Specific examples thereof include a sheet obtained by impregnating a non-woven fabric with a resin, an elastomer sheet having a non-foamed structure or a foamed structure, and the like. More specifically, a composite obtained by impregnating a non-woven fabric with polyurethane; rubbers such as natural rubber, nitrile rubber, polybutadiene rubber, and silicone rubber; polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, fluorine-based thermoplastic elastomers, and the like Examples include thermoplastic elastomers; foamed plastics; sheets such as polyurethane. Among these, a polyurethane sheet having a foamed structure is particularly preferable from the viewpoint that preferable flexibility can be easily obtained.
  • the polished surface P excludes the deep groove region G having the first pattern composed of the deep groove or the hole 1 having a depth of 0.3 mm or more and the deep groove region G. It is provided with a land area L, which is an area.
  • a spiral pattern is formed as the first pattern.
  • the land region L has a shallow dent 2 having a second pattern and a depth of 0.01 to 0.1 mm, and a plurality of island-shaped land portions 3 surrounded by the shallow dent 2.
  • the island-shaped land portion means a convex portion that protrudes with respect to a shallow recess and has a peripheral edge that is discontinuously independent of the surrounding land portion.
  • a triangular lattice pattern is formed as a second pattern.
  • the deep groove region G and the shallow dent 2 are formed on the entire polishing surface, but the deep groove region G and the shallow dent 2 are formed on the entire polishing surface. It is not required and may be formed at least in a region in contact with the substrate to be polished.
  • the deep groove or hole 1 forming the deep groove region G is deeper than the shallow recess 2 formed in the land region L.
  • the depth of the deep groove or hole is 0.3 mm or more, and the shallow dent has a depth of 0.01 to 0.1 mm.
  • a deep groove or hole with a depth of 0.3 mm or more acts as a liquid pool for holding the slurry during polishing and supplying the slurry to the land region.
  • Such deep grooves or holes having a depth of 0.3 mm or more maintain a depth that sufficiently holds the slurry even after a break-in treatment that finely roughens the polished surface of an unused polishing pad.
  • the land area having the second pattern and having a shallow dent having a depth of 0.01 to 0.1 mm and a plurality of island-shaped lands surrounded by the shallow dent is a land area of an unused polishing pad.
  • the time required for break-in to finely roughen the polished surface and the time required for break-in polishing are shortened.
  • the island-shaped land portion increases the contact points between the polished surface and the pad conditioner, thereby shortening the time required for the polished surface to have an appropriate surface roughness. Let me.
  • the depth of the deep groove or hole formed on the polished surface is 0.3 mm or more, 0.3 to 3.0 mm, further 0.4 to 2.5 mm, particularly 0.5 to 2.0 mm. Is preferably 0.6 to 1.5 mm. Unless otherwise specified, the depth of the deep groove or hole is based on the depth of the deep groove or hole from the surface of the land portion on the polished surface of the unused polishing pad before the break-in treatment.
  • the depth of the deep groove or hole is less than 0.3 mm, when the polishing pad is used continuously, it will be worn so that it becomes a shallow groove or hole of less than 0.1 mm after a short period of use, for example. Because of the ease, the life of the polishing pad is shortened, and the polishing rate is likely to change. In order to sufficiently hold the slurry, it is preferable that the depth is at least 0.2 mm or more even at the end of the life of the polishing pad. On the other hand, if the deep groove or hole is too deep, the volume of the deep groove or hole becomes too large and it is necessary to supply a large amount of slurry when polishing the surface to be polished, which is not preferable in terms of cost. is there.
  • the pattern of the first pattern formed by the deep grooves or holes having a depth of 0.3 mm or more is not particularly limited, and may be a pattern having regularity or a pattern having no regularity.
  • the patterns of grooves and holes for supplying the slurry conventionally formed on the polished surface such as concentric circles, lattice patterns, and radial patterns, are particularly limited. Can be adopted without.
  • FIG. 2 shows a schematic plan view of a polishing pad 20 having a polishing surface having a deep groove region G formed from deep grooves 11 in which the pattern of the first pattern is concentric.
  • the polishing pad 20 is the same polishing pad as the polishing pad 10 except that the first spiral pattern is changed to the first concentric pattern.
  • the deep groove or hole having a depth of 0.3 mm or more may be only a deep groove, only a hole, or a combination of a deep groove and a hole.
  • examples of the shape of the hole include a circular shape, an elliptical shape, an oval shape, a triangular shape, a quadrangular shape, and the like on the polished surface.
  • the depth of the polishing surface is 30 to 90%, more 40 to 85%, and particularly 50 to 80% of the thickness of the polishing layer. It is preferable that the deep groove is formed in the above, because it is easy to achieve both polishing uniformity and flattening property.
  • a spiral, concentric or lattice pattern is excellent in the retention of the slurry and the supply of the slurry to the land region.
  • the groove pitch and groove width are not particularly limited, but the groove pitch is 1 to 15 mm, the groove width is 0.1 to 4 mm, and the groove pitch is 2 to 12 mm. It is preferable that the groove width is 0.2 to 3 mm, particularly the groove pitch is 3 to 10 mm and the groove width is 0.3 to 2 mm from the viewpoint of particularly excellent polishing rate and polishing uniformity.
  • the cross-sectional shape when the deep groove or the hole 1 is cut perpendicularly to the longitudinal direction is a rectangle with reference to FIG. 1B.
  • the cross-sectional shape of the deep groove or hole is not particularly limited. Specifically, the cross-sectional shape may be a trapezoid, a triangle, a semicircle, a semicircle, or the like, in addition to a rectangle.
  • the ratio of the projected area of the deep groove region to 5 to 40%, moreover 10 to 30% of the total projected area of the polished surface is excellent in the balance between the slurry retention and the polishing rate.
  • the projected area is the area when the polished surface is projected onto the two-dimensional surface. If the ratio of the projected area of the deep groove region to the total projected area of the polished surface is too low, the amount of slurry retained during polishing tends to be small, and the polishing rate and polishing uniformity tend to decrease.
  • the land region L has a shallow dent 2 having a second pattern and a depth of 0.01 to 0.1 mm, and a plurality of island-shaped land portions 3 surrounded by the shallow dent 2.
  • shallow dents 2 having a triangular lattice pattern as a second pattern are evenly formed on the entire surface of the land region L.
  • the plurality of island-shaped land portions 3 surrounded by the shallow recesses 2 having the second pattern of the triangular lattice have a triangle or a shape obtained by dividing the triangle by a deep groove or a hole 1, respectively.
  • the pattern of the second pattern formed by the shallow dents having a depth of 0.01 to 0.1 mm is not particularly limited, and may be a pattern having regularity or a pattern having no regularity. It is preferable that the pattern has regularity because it is excellent in productivity and quality control.
  • Specific examples of the pattern of the second pattern include a triangular lattice, an XY lattice, a rectangular lattice such as a square lattice and a rhombic lattice, and a hexagonal lattice.
  • the triangular lattice shape is particularly preferable because it makes it easier for the pad conditioner to uniformly hit a plurality of island-shaped land portions surrounded by shallow dents from all directions, and the break-in time can be further shortened. .. Further, since the triangular lattice pattern can be formed by combining shallow dents of straight lines, it is preferable because it can be easily formed by cutting.
  • the shape of the plurality of island-shaped land portions surrounded by shallow dents is a triangle when the second pattern is a triangular lattice, a square when the second pattern is a square lattice, and a second pattern.
  • the pattern 2 has a rhombic grid shape, it has a rhombic shape, and when the second pattern has a hexagonal grid shape, it has a hexagonal shape.
  • FIG. 3A is a partially enlarged schematic view of the polished surface of the polishing pad 30 of another example of the present embodiment
  • FIG. 3B is a schematic cross-sectional view of the polishing pad 30.
  • the polishing pad 30 is the same polishing pad as the polishing pad 10 except that the second pattern having a triangular lattice pattern is changed to the second pattern having a square lattice pattern.
  • FIG. 3A is a partially enlarged schematic view of the polishing pad 30 when viewed from the side of the polishing surface, which is one surface of the polishing layer
  • FIG. 3B is a schematic cross-sectional view of the III-III'cross section of FIG. 3A.
  • a shallow recess 12 having a second pattern in a square lattice shape is formed on the polished surface of the polishing pad 30, and the plurality of island-shaped land portions 13 surrounded by the shallow recess 12 are square or square or. It has a shape in which a square is divided by a deep groove or a hole 1.
  • FIG. 4 shows a partially enlarged schematic view of the polished surface of the polishing pad 40 of another example of the present embodiment.
  • the polishing pad 40 is the same polishing pad as the polishing pad 10 except that the second pattern having a triangular lattice pattern is changed to the second pattern having a rhombic lattice pattern.
  • a shallow recess 22 having a second pattern having a rhombic lattice pattern is formed on the polished surface of the polishing pad 40, and the plurality of island-shaped land portions 23 surrounded by the shallow recess 22 are rhombic or It has a shape in which a rhombus is divided by a deep groove or a hole 1.
  • the depth of the shallow depression formed in the land region is 0.01 to 0.1 mm, 0.02 to 0.09 mm, and further 0.03 to 0.08 mm, particularly 0.04 to 0. It is preferably 07 mm. Since the depth of the shallow dent is 0.01 to 0.1 mm, the island-shaped land portion can be quickly formed in a break-in or break-in polishing to make an unused polishing pad rough enough for polishing. Abrasion shortens the time required to obtain a roughness suitable for polishing. Unless otherwise specified, the depth of the shallow dent is also based on the depth of the shallow dent from the surface of the land portion on the polished surface of the unused polishing pad before the break-in treatment.
  • the time required for break-in and break-in polishing will be long, and the land portion remaining after break-in will retain the slurry during polishing.
  • the polishing characteristics tend to change over time.
  • the depth of the shallow dent is less than 0.01 mm, the height difference between the land portion and the shallow dent is small, so that the conditioner concentrates on the land portion and the action of contact is reduced, resulting in break-in. And the time required for break-in polishing becomes longer.
  • the pitch and width of the shallow dents are not particularly limited.
  • the pitch (P 1 , P 2 , P 3). , P 4) is 1 ⁇ 8 mm, more is preferably 2 ⁇ 6 mm.
  • the width (W 1 , W 2 , W 3 , W 4 ) is preferably 0.5 to 4 mm, more preferably 1 to 2 mm. Such a pitch and width are preferable because it is easy for the pad conditioner to form a land portion that is easily hit uniformly.
  • the maximum horizontal distance (M 1 , M 2 , M 3 , M 4 ) of the land portion which is the maximum distance of one land portion, is 8 mm or less, and 0.
  • Pad conditioner for each land area surrounded by shallow dents which is 5 to 6 mm, more 0.7 to 5 mm, especially 1 to 4.5 mm, and in particular 1.5 to 4 mm. Is preferable because it is easy to hit the land portion uniformly, and the land portion is quickly worn, so that the time for obtaining the roughness suitable for polishing can be further shortened.
  • one of the projected area of the island-shaped land portion 0.3 ⁇ 10 mm 2, still more, 0.5 ⁇ 9 mm 2, in particular in the range of 1.5 ⁇ 5 mm 2 to 1 ⁇ 7 mm 2, it Is preferable.
  • the pad conditioner can easily hit each land portion surrounded by the shallow dent, and the break-in time can be further shortened. Is preferable.
  • the maximum horizontal distance of the land which is the maximum distance of one island-shaped land
  • the maximum horizontal distance of the land portion which is the maximum distance of one island-shaped land portion
  • a shallow dent is formed. It tends to be complicated.
  • the ratio of the total projected area of the land portion to the total projected area of the land region is preferably 10 to 50%, more preferably 15 to 45%, and particularly preferably 20 to 40%.
  • the ratio of the total projected area of the land portion is the projected area of each land portion when the land region is projected two-dimensionally without considering the unevenness of the polished surface with respect to the total projected area of the land region. Means the percentage of the total.
  • the maximum horizontal distance M 1 of the island-shaped land portion and the projected area of one island-shaped land portion are formed.
  • S 1 , the ratio R 1 of the total projected area of the land portion can be calculated from the following formula.
  • R 2 of the total projected area of the part can be calculated from the following formula.
  • the land portion is a circle arranged in a regular hexagonal lattice pattern as shown in FIG. 7, one horizontal maximum distance M 3 of the island-shaped land portion and one island-shaped land portion are formed.
  • the projected area S 3 and the ratio R 3 of the total projected area of the land portion can be calculated from the following equation.
  • one island-shaped land portion has a maximum horizontal distance of M 4 and one island-shaped land portion.
  • the projected area S 4 and the ratio R 4 of the total projected area of the land portion can be calculated from the following equation.
  • the cross-sectional shape when the shallow dent is cut perpendicularly to the longitudinal direction is a rectangle with reference to FIG. 1B.
  • the cross-sectional shape of the shallow recess of the polishing pad is not particularly limited. Specifically, the cross-sectional shape may be a trapezoid, a triangle, a semicircle, a semicircle, a sinusoidal curve, or the like, in addition to a rectangle.
  • the method of forming the deep groove region and the land region of the polishing surface of the polishing layer of the polishing pad of the present embodiment is not particularly limited. Further, the deep groove region and the land region may be formed in separate steps or simultaneously in one step, or when they are formed in separate steps, either the deep groove region or the land region. May be formed first.
  • the method of forming the deep groove region which is an opening having a first pattern formed from a deep groove or a hole of 0.3 mm or more, is not particularly limited. Specifically, for example, a method of forming a deep groove or a hole by cutting on one surface of a polishing layer sheet; a transfer process in which a heated mold or metal wire is stamped and brought into contact with one surface of the polishing layer sheet.
  • the method of forming the land area is also not particularly limited. Specifically, for example, a method of forming a shallow dent on one surface of a polishing layer sheet by cutting along the shape of a predetermined second pattern; one surface of a circular polymer sheet to be a polishing layer. A method of forming a shallow dent by melting or volatilizing a polymer by a transfer process of stamping and contacting a heated mold or metal wire; laser processing is performed on one surface of a circular polymer sheet to be a polishing layer.
  • a method of forming a shallow dent by cutting or a method of forming a shallow dent by transfer processing is preferable from the viewpoint of excellent productivity, and a method of cutting is particularly suitable for processing accuracy of a shallow dent. It is preferable because it is excellent.
  • a straight shallow dent having a depth of 0.01 to 0.1 mm is cut on one surface of a polymer sheet using a cutting tool such as a cutting tool blade.
  • a cutting tool such as a cutting tool blade.
  • a method of forming a shallow dent by transfer processing for example, the following method can be mentioned.
  • a method of forming a sheet (2) A polymer material for forming a polishing layer is melt-extruded using an extruder equipped with a T-die to form a sheet, and then a shallow recess having a second pattern is formed.
  • the polymer is melted or volatilized by stamping and contacting a mold having a shape having a convex portion on the surface, which is an inverted shape of a shallow recess having a heated second pattern on one surface.
  • RIM reaction injection molding
  • polishing pad of the present embodiment described above is preferably used for CMP.
  • an embodiment of CMP using the polishing pad 10 of this embodiment will be described.
  • a CMP device 100 including a circular rotary surface plate 101 as shown in FIG. 9, a slurry supply nozzle 102, a carrier 103, and a pad conditioner 104 is used.
  • the polishing pad 10 is attached to the surface of the rotary surface plate 101 with a double-sided adhesive sheet or the like. Further, the carrier 103 supports the base material 50 to be polished.
  • the rotary surface plate 101 is rotated by the motor shown in the figure, for example, in the direction indicated by the arrow. Further, the carrier 103 is rotated in the direction shown by, for example, an arrow by a motor (not shown) while pressing the surface to be polished of the base material 50 to be polished against the polished surface of the polishing pad 10.
  • the pad conditioner 104 rotates, for example, in the direction indicated by the arrow. When the diameter of the pad conditioner 104 is smaller than the diameter of the base material 50 to be polished, the pad conditioner 104 is used as a rotary surface plate 101 in order to make the entire area of the polishing pad in contact with the material to be polished rough enough for polishing. Swing in the radial direction of.
  • a condition called break-in is usually performed to finely roughen the polishing surface of the polishing pad to form a roughness suitable for polishing prior to polishing the substrate to be polished. ..
  • the surface of the polishing pad 10 is conditioned by pressing the pad conditioner 104 for CMP while flowing water on the surface of the polishing pad 10 which is fixed to the rotating surface plate 101 and rotates.
  • the pad conditioner for example, a pad conditioner in which diamond particles are fixed to the surface of a carrier by nickel electrodeposition or the like is used.
  • a polishing pad having a high-hardness polishing layer there is a problem that break-in, which is conditioning for forming a roughness suitable for polishing on the polished surface of an unused polishing pad, takes time. Further, even in polishing after break-in, it may take time for break-in polishing until the polishing characteristics become stable.
  • FIG. 10A shows a part of the polished surface before conditioning
  • FIG. 10B shows a part of the polished surface after conditioning.
  • the polished surface P is a deep groove region G having a first pattern composed of deep grooves or holes 1 having a depth of 0.3 mm or more, and a land region L which is a region excluding the deep groove region G.
  • the polishing pad of the present embodiment the area required for conditioning can be reduced on the polishing surface of the unused polishing pad, and the pad conditioner is easily caught on the peripheral edge of the island-shaped land portion to increase frictional force. The break-in time is shortened due to the increase.
  • the average depth of the shallow dent is less than 0.01 mm, the action of the shallow dent is substantially reduced and the polishing characteristics are stabilized.
  • the conditions for such conditioning are not particularly limited, but the cumulative conditioning time until the average depth of the shallow dent becomes less than 0.01 mm is within 30 minutes, and further, 1 to 20 minutes, particularly 2 to 2. It is preferable to select the type of pad conditioner, the conditioning load, and the rotation speed so that the time is 15 minutes, because the polishing pad start-up process is completed in a short time and the polishing characteristics are stabilized. It should be noted that the conditioning load and the rotation speed may be increased only during the start-up process of the polishing pad to promote the wear of the island-shaped land portion.
  • diamond count # 60 to 200 is preferable, but it can be appropriately selected according to the resin composition of the polishing layer and the polishing conditions.
  • the conditioning load depends on the diameter of the conditioner, and is preferably 5 to 50 N when the diameter is 150 mm or less, 10 to 250 N when the diameter is 150 to 250 mm, and about 50 to 300 N when the diameter is 250 mm or more. ..
  • the rotation speed of the conditioner and the platen is preferably 10 to 200 rpm, respectively, but the rotation speeds of the conditioner and the platen are preferably different in order to prevent synchronization of rotation.
  • polishing of the surface to be polished of the base material to be polished is started.
  • the slurry is supplied from the slurry supply nozzle to the surface of the rotating polishing pad.
  • the slurry contains, for example, a liquid medium such as water or oil; an abrasive such as silica, alumina, cerium oxide, zirconium oxide, or silicon carbide; a base, an acid, a surfactant, an oxidizing agent, a reducing agent, a chelating agent, or the like.
  • a lubricating oil, a coolant, or the like may be used in combination with the slurry, if necessary.
  • the rotating base material to be polished which is fixed to the carrier, is pressed against the polishing pad in which the slurry is evenly distributed on the polishing surface. Then, the polishing process is continued until a predetermined flatness and polishing amount are obtained. Finished quality is affected by adjusting the pressing force applied during polishing and the speed of relative movement between the rotating surface plate and the carrier.
  • the polishing conditions are not particularly limited, but in order to perform efficient polishing, it is preferable that the rotation speeds of the surface plate and the base material to be polished are as low as 300 rpm or less. Further, the pressure applied to the base material to be polished for pressure contact with the polishing pad is preferably 150 kPa or less from the viewpoint of preventing scratches after polishing. Further, during polishing, it is preferable to continuously or discontinuously supply the slurry to the polishing pad so that the slurry is evenly distributed on the polished surface.
  • Such CMP of this embodiment is preferably used for polishing in the manufacturing process of various semiconductor devices, MEMS (Micro Electro Mechanical Systems) and the like.
  • objects to be polished include semiconductor substrates such as silicon, silicon carbide, gallium nitride, gallium arsenide, zinc oxide, sapphire, germanium, and diamond; a silicon oxide film formed on a wiring board having a predetermined wiring, and silicon nitride.
  • Insulating films such as films and low-k films, and wiring materials such as copper, aluminum, and tungsten; glass, crystals, optical substrates, hard disks, and the like can be mentioned.
  • the polishing pad of the present embodiment is particularly preferably used for polishing an insulating film or wiring material formed on a semiconductor substrate.
  • the melt of the polymerized thermoplastic polyurethane was continuously extruded into water in the form of strands, and then shredded with a pelletizer to obtain pellets.
  • the pellets were dehumidified and dried at 70 ° C. for 20 hours, then fed to a uniaxial extruder and extruded from a T-die to form a 2.0 mm thick sheet.
  • the surface of the obtained sheet was ground to obtain a uniform sheet having a thickness of 1.5 mm, and then cut out into a circular shape having a diameter of 38 cm to obtain a sheet for a polishing layer.
  • the D hardness of the polishing layer sheet measured under the condition of the measurement temperature of 25 ° C. was 67.
  • PTMG, PEG, BD, and MDI are blended in a ratio such that the mass ratio of PTMG: PEG: BD: MDI is 19.5: 9.2: 16.4: 54.9, and coaxial with a metering pump.
  • the thermoplastic polyurethane was continuously melt-polymerized by continuously supplying it to a twin-screw extruder rotating in. Then, the melt of the polymerized thermoplastic polyurethane was continuously extruded into water in the form of strands, and then shredded with a pelletizer to obtain pellets. The pellets were dehumidified and dried at 70 ° C.
  • the surface of the obtained sheet was ground to obtain a uniform sheet having a thickness of 1.5 mm, and then cut out into a circular shape having a diameter of 38 cm to obtain a sheet for a polishing layer.
  • the D hardness of the polishing layer sheet measured under the condition of the measurement temperature of 25 ° C. was 76.
  • Example 1 A spiral deep groove having a width of 0.7 mm, a depth of 1.0 mm, and a groove pitch of 9.0 mm is formed on the polished surface, which is one surface of the polishing layer sheet having a thickness of 1.5 mm and a diameter of 38 cm, obtained in Production Example 1. Was formed by cutting.
  • the cross-sectional shape of the deep groove is rectangular. At this time, the area ratio of the deep groove region to the total area of the polished surface was 8%.
  • a shallow triangular lattice-shaped dent composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.08 mm and a pitch of 4.0 mm was formed on the polished surface in which the deep groove was formed by cutting.
  • the cross-sectional shape of the shallow dent is also rectangular.
  • a large number of equilateral triangular island-shaped land portions having a side length of 3.0 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land portion was 3.9 mm 2 , and the maximum horizontal distance of one island-shaped land portion was 3.0 mm.
  • the ratio of the total projected area of the land portion to the total projected area of the land region was 42%.
  • FIG. 1 An enlarged photograph of the polished surface of the obtained polishing pad is shown in FIG.
  • the surface roughness of the land region was measured using a surface roughness measuring device (“Surftest SJ-210” manufactured by Mitutoyo Co., Ltd.) in accordance with JIS B 0601: 2001 and JIS B 0671: 2002.
  • the average roughness Ra was 9.8 ⁇ m
  • the maximum height Rz was 55.0 ⁇ m
  • the protruding peak height Rpk was 13.2 ⁇ m.
  • the depths of the shallow dents and deep grooves were averaged by measuring 8 points at the portion in contact with the wafer using the depth gauge "E-DP2J” manufactured by Nakamura Seisakusho Co., Ltd. Further, the projected area of one island-shaped land portion and the maximum horizontal distance of one island-shaped land portion are determined by using the scale loupe "No. 1983" manufactured by Tokai Sangyo Co., Ltd. in FIG. P 1 and W 1 were measured and calculated from the formula described in Equation 1.
  • a cushion layer was attached to the back surface of the polishing layer with respect to the polishing surface with a double-sided adhesive sheet to create a multi-layer type polishing pad.
  • a cushion layer "Poron H48" manufactured by Inoac Corporation, which is a polyurethane foam sheet having a thickness of 0.8 mm, was used. Then, the polishing characteristics of the obtained polishing pad were evaluated by the following evaluation method.
  • polishing pad was attached to a polishing device "MAT-BC15" manufactured by MAT Co., Ltd. Then, a slurry having a pH of about 12 prepared by diluting the slurry "SS-25" manufactured by Cabot Microelectronics Co., Ltd. twice was prepared, and under the conditions of a platen rotation speed of 100 rpm, a head rotation speed of 99 rpm, and a polishing pressure of 41.4 kPa.
  • a silicon wafer having a diameter of 4 inches having a silicon oxide film having a thickness of 1000 nm on the surface was polished for 60 seconds while supplying the slurry to the polished surface of the polishing pad at a speed of 120 mL / min.
  • the dresser rotation speed is 70 rpm
  • the polishing pad rotation speed is 100 rpm
  • the dresser load is 20 N.
  • the surface of the polishing pad was conditioned for 30 seconds while running pure water at a rate of minutes.
  • another silicon wafer was polished again and further conditioned for 30 seconds. In this way, 100 silicon wafers were polished.
  • the film thickness of the silicon oxide film before and after polishing of the silicon wafers polished on the third, fifth, tenth, fifteenth, 25th, 50th, and 100th sheets was measured.
  • the polishing speed was determined.
  • the depth of the shallow dent was measured for each polishing of two sheets, and the cumulative conditioning time when the depth became less than 0.01 mm was determined.
  • FIG. 12 shows an enlarged photograph of the polished surface after polishing 10 silicon wafers with the polishing pad of Example 1. It can be seen that the polished surface is well compatible with water, and the polished surface is finely roughened with a conditioner to have excellent slurry retention.
  • Example 2 A spiral deep groove having a width of 0.7 mm, a depth of 1.0 mm, and a groove pitch of 4.5 mm is formed on the polished surface, which is one surface of the polishing layer sheet having a thickness of 1.5 mm and a diameter of 38 cm, obtained in Production Example 1. Formed by cutting. The cross-sectional shape of the deep groove is rectangular. At this time, the area ratio of the deep groove to the total area of the polished surface was 16%.
  • a shallow triangular lattice-shaped recess composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.04 mm and a pitch of 3.0 mm was further formed on the entire surface of the polished surface in which the deep groove was formed by cutting.
  • the cross-sectional shape of the shallow dent is also rectangular.
  • a large number of island-shaped equilateral triangular land portions having a side length of 1.9 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land is 1.5 mm 2
  • the maximum horizontal distance of one island-shaped land is 1.9 mm, which is the total projected area of the land area.
  • the ratio of the total projected area was 30%.
  • the polishing layer was manufactured in this way.
  • Example 3 In Example 2, instead of forming a triangular lattice-like shallow dent composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.04 mm and a pitch of 3.0 mm on the polished surface, the width is 1.5 mm and the depth is 0.
  • the polishing layer was produced in the same manner except that a shallow triangular lattice-like recess composed of a plurality of straight lines having a pitch of .06 mm and a pitch of 5.5 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • Example 4 In Example 2, instead of forming a triangular lattice-like shallow dent composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.04 mm and a pitch of 3.0 mm on the polished surface, the width is 1.0 mm and the depth is 0.
  • the polishing layer was produced in the same manner except that a shallow XY lattice-like recess composed of a plurality of straight lines having a pitch of .03 mm and a pitch of 2.5 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • On the polished surface a large number of island-shaped square land portions having a side length of 1.5 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land portion is 2.3 mm 2
  • the maximum horizontal distance of one island-shaped land portion is 2.1 mm
  • the land portion has a total projected area of the land area.
  • the ratio of the total projected area was 36%.
  • the polishing layer was manufactured in this way.
  • Example 5 A plurality of concentric circles having a width of 0.3 mm, a depth of 1.0 mm, and a groove pitch of 2.5 mm are formed on the polished surface, which is one surface of the polishing layer sheet having a thickness of 1.5 mm and a diameter of 38 cm, obtained in Production Example 1.
  • the deep groove was formed by cutting.
  • the cross-sectional shape of the deep groove is rectangular. At this time, the area ratio of the deep groove to the total area of the polished surface was 12%.
  • a shallow triangular lattice-shaped recess composed of a plurality of straight lines having a width of 2.0 mm, a depth of 0.05 mm and a pitch of 4.5 mm was further formed on the entire surface of the polished surface in which the deep groove was formed by cutting.
  • the cross-sectional shape of the shallow dent is also rectangular.
  • a large number of island-shaped equilateral triangular land portions having a side length of 2.2 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land portion is 2.0 mm 2
  • the maximum horizontal distance of one island-shaped land portion is 2.2 mm
  • the land portion has a total projected area of the land area.
  • the ratio of the total projected area was 17%.
  • the polishing layer was manufactured in this way.
  • Example 6 In Example 2, instead of forming a triangular lattice-like shallow recess composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.04 mm and a pitch of 3.0 mm on the polished surface, the width is 2.0 mm and the depth is 0.
  • the polishing layer was produced in the same manner except that a shallow triangular lattice-like recess composed of a plurality of straight lines having a pitch of 0.05 mm and a pitch of 9.0 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • Example 7 In Example 2, instead of forming a triangular lattice-like shallow recess composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.04 mm and a pitch of 3.0 mm on the polished surface, the width is 2.0 mm and the depth is 0.
  • the polishing layer was produced in the same manner except that a shallow XY lattice-like recess composed of a plurality of straight lines having a pitch of 7.0 mm and a pitch of 0.05 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • On the polished surface a large number of island-shaped square land portions having a side length of 5.0 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land portion is 25.0 mm 2
  • the maximum horizontal distance of one island-shaped land portion is 7.1 mm
  • the land portion has a total projected area of the land area.
  • the ratio of the total projected area was 51%.
  • the polishing layer was manufactured in this way.
  • Example 8 On the polished surface, which is one surface of the polishing layer sheet having a thickness of 1.5 mm and a diameter of 38 cm, obtained in Production Example 2, the width of the upper surface is 1.5 mm, the width of the bottom surface is 0.5 mm, the depth is 0.8 mm, and the groove is formed. A spiral deep groove with a pitch of 7.0 mm was formed by cutting. The cross-sectional shape of the deep groove is trapezoidal. At this time, the area ratio of the deep groove region to the total area of the polished surface was 21%.
  • the width of the upper surface is 1.0 mm
  • the width of the bottom surface is 0.9 mm
  • the depth is 0.05 mm
  • the pitch is 2.5 mm.
  • the dent was formed by cutting.
  • the cross-sectional shape of the shallow dent is trapezoidal. In this way, a large number of island-shaped equilateral triangular land portions having a side length of 1.3 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land is 0.8 mm 2
  • the maximum horizontal distance of one island-shaped land is 1.3 mm
  • the land area is relative to the total projected area of the land area.
  • the ratio of the total projected area was 22%.
  • the polishing layer was manufactured in this way.
  • Example 9 In Example 8, instead of forming a shallow triangular grid-like recess composed of a plurality of straight lines having a width of 1.0 mm on the upper surface, a width of 0.9 mm on the bottom surface, a depth of 0.05 mm and a pitch of 2.5 mm on the polished surface.
  • the polishing layer was produced in the same manner except that a shallow triangular lattice-like recess composed of a plurality of straight lines having a width of 1.5 mm and a depth of 0.03 mm and a pitch of 6.0 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • Example 10 In Example 8, instead of forming a shallow triangular grid-like recess composed of a plurality of straight lines having a width of 1.0 mm on the upper surface, a width of 0.9 mm on the bottom surface, a depth of 0.05 mm and a pitch of 2.5 mm on the polished surface.
  • the polishing layer is manufactured in the same manner except that a shallow XY grid-like recess consisting of a plurality of straight lines having a width of 1.0 mm on the upper surface, a width of 0.9 mm on the bottom surface, a depth of 0.05 mm and a pitch of 3.0 mm is formed. did.
  • the cross-sectional shape of the shallow dent is trapezoidal.
  • a punching plate made of SUS (hole shape: a circle with a diameter of 1.5 mm, a hole) is provided on the entire surface of the polished surface, which is one surface of the polishing layer sheet having a thickness of 1.5 mm and a diameter of 38 cm, obtained in Production Example 2.
  • a large number of island-shaped circular lands with a diameter of 1.5 mm were formed, surrounded by shallow dents.
  • the projected area of one island-shaped land portion is 1.8 mm 2
  • the maximum horizontal distance of one island-shaped land portion is 1.5 mm
  • the land portion has a total projected area of the land area.
  • the ratio of the total projected area was 33%.
  • a spiral deep groove having a top surface width of 2.0 mm, a bottom surface width of 1.0 mm, a depth of 0.8 mm, and a groove pitch of 7.0 mm was formed on the polished surface by cutting.
  • the cross-sectional shape of the deep groove is trapezoidal.
  • the area ratio of the deep groove region to the total area of the polished surface was 29%.
  • the polishing layer was manufactured in this way.
  • Example 1 In Example 1, a polishing layer was produced in the same manner as in Example 1 except that a shallow dent was not formed. Then, using the obtained polishing layer, a polishing pad was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2. An enlarged photograph of the polished surface of the obtained polishing pad is shown in FIG. The surface roughness of the land region was measured using a surface roughness measuring device (“Surftest SJ-210” manufactured by Mitutoyo Co., Ltd.) in accordance with JIS B 0601: 2001 and JIS B 0671: 2002. The average roughness Ra was 0.2 ⁇ m, the maximum height Rz was 1.8 ⁇ m, and the protruding peak height Rpk was 0.4 ⁇ m. Further, FIG. 14 shows an enlarged photograph of the polished surface after polishing 10 wafers of the polishing pad of Comparative Example 1. It can be seen that the polished surface is repelling water and the pad surface is not in a sufficient state to hold the slurry.
  • Example 2 In Example 1, a polishing layer was produced in the same manner as in Example 1 except that a deep groove was not formed. Then, using the obtained polishing layer, a polishing pad was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 instead of forming a triangular lattice-like shallow recess composed of a plurality of straight lines having a width of 1.0 mm, a depth of 0.04 mm and a pitch of 3.0 mm on the polished surface, the width is 1.0 mm and the depth is 0.
  • the polishing layer was produced in the same manner except that a shallow triangular lattice-like recess consisting of a plurality of straight lines having a pitch of .20 mm and a pitch of 3.0 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • the polished surface On the polished surface, a large number of island-shaped equilateral triangular land portions having a side length of 1.9 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land portion is 1.5 mm 2
  • the maximum horizontal distance of one island-shaped land portion is 1.9 mm
  • the ratio of the total projected area of the land portion is It was 30% of the total projected area of the land area.
  • the polishing layer was manufactured in this way.
  • Example 8 the polishing layer was produced in the same manner as in Example 8 except that a shallow dent was not formed. Then, using the obtained polishing layer, a polishing pad was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 9 instead of forming a triangular lattice-like shallow recess composed of a plurality of straight lines having a width of 1.5 mm and a depth of 0.03 mm and a pitch of 6.0 mm on the polished surface, the width is 1.0 mm and the depth is 0.
  • a polishing layer was produced in the same manner except that a shallow XY lattice-like recess composed of a plurality of straight lines having a pitch of .20 mm and a pitch of 3.0 mm was formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • On the polished surface a large number of island-shaped square land portions having a side length of 2.0 mm surrounded by a large number of shallow dents were formed.
  • the projected area of one island-shaped land portion is 4.0 mm 2 , and the maximum horizontal distance of one island-shaped land portion is 2.8 mm, which is the total projected area of the land portion of the land region.
  • the ratio of the total projected area was 44%.
  • the polishing layer was manufactured in this way.
  • Example 9 instead of forming a shallow triangular lattice-like recess composed of a plurality of straight lines having a width of 1.5 mm, a depth of 0.03 mm and a pitch of 6.0 mm on the polished surface, the width is 2.0 mm and the depth is 0.
  • the polishing layer was produced in the same manner except that a plurality of concentric shallow dents having a pitch of 4.0 mm at .04 mm were formed.
  • the cross-sectional shape of the shallow dent is rectangular.
  • the land between the shallow dents was continuous concentrically rather than island-shaped.
  • the ratio of the total projected area of the land portion to the total projected area of the land region was 50%.
  • the polishing layer was manufactured in this way.
  • Example 11 instead of pressing a punching plate made of SUS by a hot press to form a shallow dent having an island-shaped circular land portion having a diameter of 1.5 mm formed between them, the following shallow dent is formed.
  • a polishing layer was produced in the same manner as in Example 11 except that it was formed. Then, using the obtained polishing layer, a polishing pad was prepared and evaluated in the same manner as in Example 1.
  • a circular shallow dent with a diameter of 2 mm and a depth of 0.06 mm was created by cutting into a hexagonal lattice with a center-to-center pitch of 2.5 mm.
  • the cross-sectional shape of the shallow dent is rectangular.
  • the land between the shallow dents was continuous in a hexagonal lattice-like sea shape instead of an island shape.
  • the ratio of the total projected area of the land portion was 42% of the total projected area of the land region. The results are shown in Table 2.
  • the polishing pads of Examples 1 to 11 do not have the polishing pads of Comparative Examples 1 and 4 having no shallow dents, and the polishing of Comparative Examples 6 and 7 having no island-shaped land portion surrounded by the shallow dents. Compared with the pad, the time required for the polishing speed to stabilize was shorter, and the break-in polishing time could be shortened.
  • the polishing pads of Examples 1 to 5, 8 to 11 having an island-shaped land portion having a maximum horizontal distance of 7 mm or less had a particularly remarkable effect of shortening the break-in polishing time.
  • the polishing pads of Comparative Example 3 and Comparative Example 5 having a shallow dent depth of more than 0.1 mm have a relatively high polishing rate at the initial stage of use, but the polishing rate is difficult to stabilize and the effect of shortening the break-in polishing time is effective. It was small.
  • the polishing pad of Comparative Example 2 having no deep groove had a low polishing rate.
  • the polishing pad according to the present invention is useful for polishing semiconductor substrates, glass, and the like. It is particularly suitable for chemical mechanical polishing of substrate materials such as semiconductors, hard disks and liquid crystal displays, and optical components such as lenses and mirrors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

研磨面を有する研磨層を含む研磨パッドであって、研磨面は、深さ0.3mm以上の深溝または孔から形成された第1のパターンを有する深溝領域と、深溝領域を除いた領域であるランド領域とを備え、ランド領域は、第2のパターンを有する深さ0.01~0.1mmである浅い凹みと、浅い凹みで囲まれ、且つ水平方向の最大距離が8mm以下である複数の島状のランド部と、を有する研磨パッド。

Description

研磨パッド、研磨パッドの製造方法及び研磨方法
 本発明は、研磨パッドの研磨面を研磨に適した粗さにするために要する時間を短縮化できる研磨パッドを提供する。
 従来、半導体やシリコンウェハなどの基板材料やハードディスク,液晶ディスプレイ,レンズの材料であるガラスを鏡面加工したり、半導体デバイスの製造工程における絶縁膜や金属膜による凹凸を平坦化したりするために、研磨パッドの研磨面にスラリーを供給しながら被研磨面を研磨する化学機械研磨(CMP)が用いられている。
 CMP用の研磨パッドとしては、不織布タイプの研磨パッド、独立気泡構造を有する高分子発泡体を主体とする研磨パッド、非発泡高分子体を主体とする研磨パッド等が知られている。不織布タイプの研磨パッドは、柔軟であるために被研磨基材との接触性が良いという長所を有する一方、柔軟であるために被研磨面を平坦化する平坦化性が低いという短所があった。また、独立気泡構造を有する高分子発泡体を主体とする研磨パッドは、不織布タイプの研磨パッドに比べて高硬度を有するために平坦化性に優れるという長所を有する一方、研磨層のさらなる高硬度化による高い平坦化性の実現は困難であるという短所があった。一方、非発泡高分子体を主体とする研磨パッドは、高い平坦化性を実現することができる。また、非発泡高分子体を主体とする研磨パッドは、高分子発泡体を主体とする研磨パッドよりも耐摩耗性が高いことから研磨パッドの寿命が長くなる長所や、発泡のばらつきによる研磨特性の違いが生じにくいという長所も有する。例えば、下記特許文献1は、非発泡ポリウレタンを主体とする高硬度の研磨パッドを開示する。
 CMPにおいては、通常、新品で未使用の研磨パッドの使用開始前に、パッドコンディショナー(ドレッサーとも称される)を用いて、研磨パッドの研磨面を細かく荒らして研磨に適した粗さを形成するためのブレークインと呼ばれるコンディショニングが行われる。未使用の研磨パッドの使用開始前に、研磨面をコンディショニングすることにより研磨面のスラリーの保持性が向上する。
 研磨パッドのブレークインの間は研磨装置を稼働させることができない。そのために、ブレークインに要する時間(以下、ブレークイン時間とも称する)を短縮化することにより、研磨装置の稼働時間を長くすることが求められている。研磨装置の稼働時間を長くすることにより、半導体デバイス等の生産コストが低減する。
 ブレークイン時間を短縮化する技術は、いくつか提案されている。例えば、下記特許文献2は、特定の粗さパラメータを有するミクロテキスチャーを予め研磨面に形成させた研磨パッドを開示する。特許文献2は、このような研磨パッドによれば、ブレークイン時間を短縮化できることを開示する。
 また、下記特許文献3は、シート状の発泡体からなる研磨シートの製造方法であって、その厚みをサンドペーパー掛けで調整する工程において、研磨面のサンドペーパー掛けが第1仕上げ研削と第2仕上げ研削の2段階からなり、第1仕上げ研削がサンドペーパーの番手を大きくして行われ、第2仕上げ研削に使用するサンドペーパーの番手が第1仕上げ研削の最後に使用するサンドペーパーの番手より小さく、かつ、第2仕上げ研削の合計削り量が10μm以上1000μm以下である研磨パッドの製造方法を開示する。そして、特許文献3の製造方法によれば、CMPを行なう際の立ち上げまでの時間が短く、かつ面内均一性に優れた研磨パッドが得られることを開示する。
 また、下記特許文献4は、被研磨物の研磨に用いられる研磨パッドであって、被研磨物に圧接される研磨面を有し、研磨面のうねりが、周期5mm~200mmであって、最大振幅40μm以下であり、研磨面のマイナスのゼータ電位を、-50mV以上0mV未満とした研磨パッドを開示する。特許文献4は、このような研磨パッドによれば、スラリーのマイナスの研磨粒子との反発が抑制されて、研磨パッドの研磨面とスラリーとのなじみが良好となって、ブレークイン時間を短縮化できることを開示する。
 ところで、下記特許文献5は、基板を研磨するための研磨パッドであって、裏面と対向する研磨側を有する研磨本体と、研磨本体の該研磨側と連続的である複数のシリンダ状突出部を備える研磨面とを備える、研磨パッドを開示する。そして、特許文献5は、シリンダ状突出部の高さが、ほぼ0.5~1ミリメートルの範囲にあることが記載されている。一方、特許文献5には、ブレークイン時間の短縮化についての言及はない。
特開2014-038916号公報 特開2002-144220号公報 特開2010-253665号公報 特開2012-210709号公報 特表2016-506307号公報
 例えば、特許文献2に開示された、特定の粗さパラメータを有するミクロテキスチャーを含む研磨面を有する研磨パッドは、ブレークイン時間を充分に短縮化されない場合があった。例えば、研磨面に切削加工により、研磨パッドの直径方向と垂直に交差する同心円状や螺旋状のミクロテキスチャーを形成した場合、研磨層として表面の凹凸が少ない非発泡高分子体を使用している場合には、研磨パッドの回転方向と溝の方向が一致するために、回転とともに水が同じ方向に流れて流体潤滑となり、研磨面がドレスされにくくなってブレークイン時間が長くなりやすいという問題があった。一方、特許文献3及び特許文献4は、より平坦な研磨パッドを得ることによってブレークイン時間を短縮化させた研磨パッドを提供することを提案する。しかし、特許文献3及び特許文献4に開示された研磨パッドは、サンドペーパーでバフ掛けして製造する必要があるために、非常に高硬度の非発泡高分子体を主体とする研磨パッドには適用することが難しく、また、研磨面にバフ粉が残留してスクラッチを発生させやすくするおそれもあった。
 本発明は、研磨パッドの研磨面を研磨に適した粗さにするための時間を短縮化できる研磨パッドを提供することを目的とする。
 本発明の一局面は、研磨面を有する研磨層を含む研磨パッドであって、研磨面は、深さ0.3mm以上の深溝または孔から形成された第1のパターンを有する深溝領域と、深溝領域を除いた領域であるランド領域とを備え、ランド領域は、第2のパターンを有する深さ0.01~0.1mmである浅い凹みと、浅い凹みで囲まれ、且つ水平方向の最大距離が8mm以下である複数の島状のランド部と、を有する研磨パッドである。研磨面とは、研磨中に研磨される被研磨材の被研磨面に当接して研磨に供される側の研磨層の一面である。また、ランド部の水平方向とは、研磨パッドの研磨面の面方向を意味する。このような研磨パッドによれば、未使用の研磨パッドの研磨面を研磨に適した表面状態にするためのブレークイン時間や慣らし研磨の時間を短縮化できる。とくに、ランド部の水平方向の最大距離が8mm以下である場合には、浅い凹みで囲まれた各ランド部のそれぞれにパッドコンディショナーが当たりやすくなり、研磨に適した粗さにするための時間を短縮化できる。
 また、本実施形態の研磨パッドは、研磨面の形状や表面粗さの均一性を高くすることができるために、研磨面の全面で表面形状が規格範囲内となっているかを点検するための検査がしやすい。また、研磨面をサンドペーパーでバフ掛けすることなく、後述するように切削加工等によって浅い凹みを形成することができる。切削加工によって浅い凹みを形成した場合には、バフ粉が残留してスクラッチを発生させることを抑制するためのバフ粉を洗浄する工程を省略しやすい。
 また、上述した研磨パッドにおいては、第2のパターンが、ランド領域の全面に形成された、三角格子状,正方格子状,矩形格子状,菱形格子状,及び六角格子状からなる群から選ばれる少なくとも1つのパターンを有することが好ましい。第2のパターンがこのような模様である場合には、浅い凹みで囲まれた複数の島状のランド部に全方向から均質にパッドコンディショナーが当たりやすくなり、研磨に適した粗さにするための時間をより短縮化できる点から好ましい。また、このような模様は、直線の浅い凹みの組み合わせで形成できるために、切削加工による形成が容易である。
 また、上述した研磨パッドにおいては、各ランド部の投影面積が0.3~10mm2の範囲であることが好ましい。各ランド部の投影面積がこのような範囲である場合には、浅い凹みで囲まれた各ランド部のそれぞれにパッドコンディショナーが当たりやすくなり、研磨に適した粗さにするための時間をより短縮化できる点から好ましい。
 また、上述した研磨パッドにおいては、ランド部の総投影面積の割合が、ランド領域の全投影面積に対して、10~50%であることが好ましい。ここで、ランド部の総投影面積の割合とは、研磨面の凹凸を考慮せずにランド領域を2次元的に投影したときの、ランド領域の全投影面積に対する各ランド部の投影面積の合計の割合を意味する。ランド部の総投影面積の割合がこのような範囲である場合には、浅い凹みで囲まれた各ランド部のそれぞれにパッドコンディショナーが当たりやすくなり、研磨に適した粗さにするための時間をより短縮化できる点から好ましい。
 また、上述した研磨パッドにおいては、浅い凹みの深さが0.02~0.06mmであることが好ましい。浅い凹みの深さがこのような範囲である場合には、ブレークインや慣らし研磨において、浅い凹みで囲まれた各ランド部がさらに短時間で摩耗するために、研磨に適した粗さにするための時間をより短縮化できる点から好ましい。
 また、上述した研磨パッドにおいては、深溝領域の投影面積の割合が、研磨面の全投影面積に対して、5~40%であること、また、第1のパターンが、螺旋状,同心円状,及び格子状からなる群から選ばれる少なくとも1つのパターンを有することがスラリーを充分に保持させることができる点から好ましい。
 また、上述した研磨パッドにおいては、研磨層が非発泡高分子体を主体とするシートからなることが、研磨に適した粗さにするための時間が短い高硬度の研磨層が得られやすい点から好ましい。
 また、上述した研磨パッドにおいては、研磨層が熱可塑性ポリウレタンシートからなることが、低スクラッチ性に優れ、研磨層への成形も容易である点から好ましい。
 また、本発明の他の一局面は、上述した研磨パッドを用いた、半導体デバイスの製造工程において半導体デバイスの被研磨面の研磨を行うための研磨方法において、浅い凹みの平均深さが0.01mm未満となるまでの累計のコンディショニング時間が30分間以内、好ましくは、1~20分間になるコンディショニング条件で研磨面のコンディショニングを行う工程を備える研磨方法である。
 本発明によれば、研磨パッドの研磨面を研磨に適した粗さにするための時間を短縮化できる。
図1Aは、実施形態の研磨パッド10を説明するための研磨面の模式図である。 図1Bは、実施形態の研磨パッド10を説明するための研磨層の断面模式図である。 図2は、実施形態の他の例の研磨パッド20を説明するための研磨面の平面模式図である。 図3Aは、実施形態の他の例の研磨パッド30を説明するための研磨面の部分拡大模式図である。 図3Bは、実施形態の他の例の研磨パッド30を説明するための研磨層の断面模式図である。 図4は、実施形態の他の例の研磨パッド40を説明するための研磨面の部分拡大模式図である。 図5は、正三角格子状の浅い凹みのピッチ、幅、島状のランド部の1個の水平方向の最大距離を説明するための説明図である。 図6は、正方形格子状の浅い凹みのピッチ、幅、島状のランド部の1個の水平方向の最大距離を説明するための説明図である。 図7は、正六角格子状に配された円形のランド部を囲む浅い凹みのピッチ、幅、島状のランド部の1個の水平方向の最大距離を説明するための説明図である。 図8は、正六角格子状に配された正六角形のランド部を囲む浅い凹みのピッチ、幅、島状のランド部の1個の水平方向の最大距離を説明するための説明図である。 図9は、CMPを説明するための説明図である。 図10Aは、ブレークインにおける研磨面の変化を説明するための説明図である。 図10Bは、ブレークインにおける研磨面の変化を説明するための説明図である。 図11は、実施例1で得られた研磨パッドの研磨面の拡大写真である。 図12は、実施例1で得られた研磨パッドの研磨面の慣らし研磨中の状態を示す拡大写真である。 図13は、比較例1で得られた研磨パッドの研磨面の拡大写真である。 図14は、比較例1で得られた研磨パッドの研磨面の慣らし研磨中の状態を示す拡大写真である。
 本実施形態の研磨パッドは研磨面を有する研磨層を含む。
 研磨層を形成する材料は、従来、研磨パッドの研磨層の製造に用いられている合成または天然の高分子材料が特に限定なく用いられる。研磨層を形成する高分子材料の具体例としては、例えば、ポリウレタン,ポリエチレン,ポリプロピレン,ポリブタジエン,エチレン-酢酸ビニル共重合体,ブチラール樹脂,ポリスチレン,ポリ塩化ビニル,アクリル樹脂,エポキシ樹脂,ポリエステル,ポリアミド等が挙げられる。これらは、単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、高分子ジオール,有機ジイソシアネートおよび鎖伸長剤を含むポリウレタン原料を反応させることにより得られるポリウレタンが、平坦化性能に優れ、またスクラッチが発生しににくい研磨層が得られる点からとくに好ましい。以下、研磨層を形成する材料として用いられるポリウレタンについて、代表例として詳しく説明する。
 ポリウレタン原料である高分子ジオール,有機ジイソシアネート,鎖伸長剤としては、例えば、次のような化合物が挙げられる。
 高分子ジオールの具体例としては、例えば、ポリエチレングリコール,ポリテトラメチレングリコール等のポリエーテルジオール;ポリ(ノナメチレンアジペート)ジオール,ポリ(2-メチル-1,8-オクタメチレンアジペート)ジオール,ポリ(3-メチル-1,5-ペンタメチレンアジペート)ジオール等のポリエステルジオール;ポリ(ヘキサメチレンカーボネート)ジオール,ポリ(3-メチル-1,5-ペンタメチレンカーボネート)ジオール等のポリカーボネートジオールまたはこれらの共重合体などが挙げられる。これらは、単独で用いても2種以上を組み合わせて用いてもよい。
 また、有機ジイソシアネートの具体例としては、例えば、ヘキサメチレンジイソシアネート,イソホロンジイソシアネート,4,4'-ジシクロヘキシルメタンジイソシアネート,1,4-ビス(イソシアナトメチル)シクロヘキサンなどの脂肪族または脂環式ジイソシアネート;4,4’-ジフェニルメタンジイソシアネート,2,4-トリレンジイソシアネート,2,6-トリレンジイソシアネート,1,5-ナフチレンジイソシアネートなどの芳香族ジイソシアネートを挙げることができる。これらは、単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、4,4’-ジフェニルメタンジイソシアネートが得られる研磨層の耐摩耗性に優れる等の点から好ましい。
 また、鎖伸長剤としては、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量350以下の低分子化合物が挙げられる。その具体例としては、例えば、エチレングリコール,ジエチレングリコール,1,3-プロパンジオール,1,2-ブタンジオール,1,3-ブタンジオール,1,4-ブタンジオール,1,5-ペンタンジオール,ネオペンチルグリコール,1,6-ヘキサンジオール,3-メチル-1,5-ペンタンジオール,1,4-ビス(β-ヒドロキシエトキシ)ベンゼン,1,9-ノナンジオール,スピログリコール等のジオール類;エチレンジアミン,テトラメチレンジアミン,ヘキサメチレンジアミン,ノナメチレンジアミン,ヒドラジン,キシリレンジアミン,イソホロンジアミン,ピペラジン等のジアミン類などが挙げられる。これらは、単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、1,4-ブタンジオールおよび/または1,9-ノナンジオールがとくに好ましい。
 ポリウレタン原料の各成分の配合割合は研磨層に付与すべき特性などを考慮して適宜調整される。具体的には、例えば、高分子ジオール及び鎖伸長剤に含まれる活性水素原子1モルに対して、有機ジイソシアネートに含まれるイソシアネート基が0.95~1.3モル、さらには0.96~1.1モル、とくには0.97~1.05モルとなる割合で各成分を配合することが好ましい。有機ジイソシアネートに含まれるイソシアネート基が少なすぎる場合には、得られるポリウレタンの機械的強度及び耐摩耗性が低下する傾向がある。また、有機ジイソシアネートに含まれるイソシアネート基が多すぎる場合には、ポリウレタンの生産性やポリウレタン原料の保存安定性が低下する傾向がある。
 ポリウレタン中の、有機ポリイソシアネートのイソシアネート基に由来する窒素原子の割合は、4.8~7.5質量%、さらには5.0~7.3質量%、とくには5.2~7.1質量%であることが、平坦化性や低スクラッチ性にとくに優れる研磨層が得られる点から好ましい。イソシアネート基に由来する窒素原子の割合が低すぎる場合には得られる研磨層の硬度が低くなる傾向がある。
 また、研磨層を形成する材料として用いられるポリウレタンとしては、熱可塑性ポリウレタンであることが、高硬度を有する平坦化性に優れた研磨層が得られる点から好ましい。なお、熱可塑性とは、押出成形,射出成形,カレンダー成形、3Dプリンタ成形等の加熱工程により溶融して成形可能な特性を意味する。このような、熱可塑性ポリウレタンは、高分子ジオール,有機ジイソシアネート及び鎖伸長剤を含むポリウレタン原料を用い、プレポリマー法やワンショット法などの公知のポリウレタンの製造方法を用いて製造される。とくには、実質的に溶媒の不存在下でポリウレタン原料を溶融混練して溶融重合する方法、さらには、多軸スクリュー型押出機を使用して連続溶融重合する方法が生産性に優れる点から好ましい。
 研磨層の製造方法は特に限定されないが、例えば、上述した研磨層を形成する高分子材料に、必要に応じて従来用いられていた研磨層用の添加剤等を配合した組成物である研磨層用の高分子材料を、公知のシート化法を用いて、シート化する方法が挙げられる。具体的には、例えば、研磨層用の高分子材料をT-ダイを装着した単軸押出機や二軸押出機等の押出機により溶融押出してシート化する方法が挙げられる。また、シートは、上記した研磨層用の高分子材料をブロック状に成形し、ブロック状の成形体をスライスして製造してもよい。得られたシートは、裁断、打ち抜き、切削等により所望の寸法、形状に加工したり、研削等により所望の厚さに加工したりして研磨層用シートに仕上げられる。
 研磨層のD硬度は、45~90、さらには50~88、とくには55~85であることが平坦化性の向上と被研磨基材の表面のスクラッチ発生の抑制とのバランスに優れる点から好ましい。
 また、研磨層は、非発泡構造を有する非多孔性であるシートから形成されている、非発泡構造を有する研磨層であることが好ましい。非発泡構造を有する研磨層は、高い硬度を保持することができ、より優れた平坦化性を示す点から好ましい。また、非発泡構造を有する研磨層は、その表面に気孔が露出せず、気孔中でスラリー中の砥粒が凝集や凝着しないために、スクラッチが発生しにくい点から好ましい。また、非発泡構造を有する研磨層は発泡構造を有する研磨層に比べて、研磨層の摩耗速度が小さいために寿命が長い点から好ましい。
 次に、本実施形態の研磨パッドの研磨層の研磨面の形態について図面を参照して詳しく説明する。図1A及び図1Bは、本実施形態の研磨パッド10を説明するための模式図である。図1A中、(a)は研磨パッド10を研磨層の一面である研磨面Pの側から見た平面模式図、(b)は(a)の研磨面Pの部分拡大模式図である。また、図1Bは図1Aの(b)のII-II'断面における模式断面図である。
 図1A及び図1B中、10は、研磨面Pを一面に有する研磨層5を含む、円形状の研磨パッドである。図1Bの模式断面図を参照すれば、研磨パッド10は、研磨層5の一面に研磨面Pを備え、他の一面に接着層6を介してクッション層7が接着された層構成を有する。
 本実施形態の研磨パッドは、研磨パッド10のように研磨面Pの反対面である反研磨面側にクッション層7を積層したり、反研磨面側に支持体層などの他の層を積層したりした2層以上の積層構造を有するものであっても、また、研磨層のみからなる単層構造を有するものであってもよい。なお、本実施形態の研磨パッドとしては、研磨パッド10のように、研磨層の反研磨面側にクッション層7を積層された積層構造を有することが、被研磨面の面内での研磨均一性がより向上しやすい点からとくに好ましい。研磨パッドが積層構造を有する場合、研磨層の反研磨面に粘着剤や接着剤を介してクッション層や支持体層が積層される。
 クッション層のC硬度は20~70であることが好ましい。また、クッション層の素材はとくに限定されない。具体的には、例えば、不織布に樹脂を含浸させてなるシートや、非発泡構造または発泡構造を有するエラストマーのシート等が挙げられる。さらに具体的には、不織布にポリウレタンを含浸させた複合体;天然ゴム,ニトリルゴム,ポリブタジエンゴム,シリコーンゴム等のゴム;ポリエステル系熱可塑性エラストマー,ポリアミド系熱可塑性エラストマー,フッ素系熱可塑性エラストマー等の熱可塑性エラストマー;発泡プラスチック;ポリウレタン等のシートが挙げられる。これらの中では、好ましい柔軟性が得られやすい点から、発泡構造を有するポリウレタンのシートがとくに好ましい。
 そして、図1Aの(b)及び図1Bを参照すれば、研磨面Pは、深さ0.3mm以上の深溝又は孔1からなる第1のパターンを有する深溝領域Gと、深溝領域Gを除いた領域であるランド領域Lとを備える。研磨パッド10においては、図1Aに示すように、第1のパターンとして螺旋状のパターンが形成されている。ランド領域Lは、第2のパターンを有する深さ0.01~0.1mmである浅い凹み2と、浅い凹み2で囲まれた複数の島状のランド部3とを有する。ここで、島状のランド部とは、浅い凹みに対して突出した凸部であって、周囲のランド部と互いに不連続に独立した周縁を備える凸部を意味する。研磨パッド10においては、第2のパターンとして三角格子状のパターンが形成されている。なお、図1A及び図1Bの研磨パッド10においては、深溝領域G及び浅い凹み2は研磨面全体に形成されているが、深溝領域G及び浅い凹み2は研磨面全体に形成されていることは要求されず、少なくとも被研磨基材と接触する領域に形成されていればよい。
 図1Bの模式断面図を参照すれば、深溝領域Gを形成する深溝又は孔1は、ランド領域Lに形成された浅い凹み2よりも深い。具体的には、深溝又は孔の深さは0.3mm以上であり、浅い凹みは深さ0.01~0.1mmである。
 深さ0.3mm以上の深溝又は孔は、研磨中にスラリーを保持してランド領域にスラリーを供給するための液溜りとして作用する。このような0.3mm以上の深さを有する深溝又は孔は、未使用の研磨パッドの研磨面を細かく荒らすブレークインの処理の後にもスラリーを充分に保持する深さを維持する。
 一方、第2のパターンを有する、深さ0.01~0.1mmである浅い凹みと、浅い凹みで囲まれた複数の島状のランド部とを備えるランド領域は、未使用の研磨パッドの研磨面を細かく荒らすブレークインに要する時間や慣らし研磨に要する時間を短縮化する。詳しくは、研磨面をパッドコンディショナーでコンディショニングする際に、島状のランド部が、研磨面とパッドコンディショナーとの接触点を増加させることにより、研磨面を適切な表面粗さにする時間を短縮化させる。
 研磨面に形成された深溝又は孔の深さは0.3mm以上であり、0.3~3.0mm、さらには0.4~2.5mm、とくには0.5~2.0mm、ことには0.6~1.5mmであることが好ましい。なお、深溝又は孔の深さは、とくに言及の無い限り、ブレークインの処理の前の未使用の研磨パッドの研磨面におけるランド部の表面からの深溝又は孔の深さを基準とする。
 深溝又は孔の深さが0.3mm未満の場合には、研磨パッドの使用を続けた場合に、例えば、短時間の使用で0.1mm未満のような浅い溝や孔になるように摩耗しやすいために、研磨パッドの寿命が短くなったり、研磨レートが変化しやすくなったりする。スラリーを充分に保持させるためには、研磨パッドの寿命の末期においても少なくとも0.2mm以上の深さがあることが好ましい。一方、深溝又は孔が深すぎる場合には、深溝又は孔の容積が大きくなりすぎて、被研磨面の研磨の際に多くのスラリーを供給する必要があるために、コスト的に好ましくないことがある。
 深さ0.3mm以上の深溝又は孔により形成された第1のパターンの模様は特に限定されず、規則性を有する模様であっても規則性を有さない模様であってもよい。第1のパターンの模様の具体例としては、螺旋状の他、同心円状,格子状,放射状等の、従来、研磨面に形成されていたスラリーを供給するための溝や孔の模様を特に限定なく採用することができる。一例として、図2に、第1のパターンの模様が同心円状である深溝11から形成された深溝領域Gを備えた研磨面を有する研磨パッド20の平面模式図を示す。研磨パッド20は、螺旋状の第1のパターンを同心円状の第1のパターンに変更した以外は研磨パッド10と同様の研磨パッドである。
 また、深さ0.3mm以上の深溝又は孔は、深溝のみであっても、孔のみであっても、深溝と孔の組み合わせであってもよい。また、孔の形状としては、研磨面において、円形,楕円形,長円形,三角形,四角形等の形状が挙げられる。
 また、研磨パッドがクッション層を積層した積層タイプである場合においては、研磨面に、研磨層の厚さの30~90%、さらには40~85%、とくには50~80%である深さの深溝が形成されていることが、研磨均一性と平坦化性とを両立させやすい点から好ましい。
 第1のパターンの模様としては、螺旋状,同心円状または格子状の模様が、とくには、螺旋状または格子状の模様が、スラリーの保持性及びランド領域へのスラリーの供給性に優れる点から好ましい。螺旋状,同心円状または格子状の模様を有する場合、溝ピッチ及び溝幅についてはとくに限定されないが、溝ピッチが1~15mmで溝幅が0.1~4mm、さらには溝ピッチが2~12mmで溝幅が0.2~3mm、とくには溝ピッチが3~10mmで溝幅が0.3~2mmであることが、研磨レートや研磨均一性にとくに優れる点から好ましい。
 また、研磨パッド10においては、深溝又は孔1を長手方向に対して垂直に切断したときの断面形状は、図1Bを参照すれば、長方形である。深溝又は孔の断面形状は特に限定されない。具体的には、断面形状は、長方形の他、台形,三角形,半円形,半長円形等であってもよい。
 深溝領域の投影面積の割合は、研磨面の全投影面積に対して、5~40%、さらには、10~30%であることが、スラリーの保持性と研磨レートとのバランスに優れる点から好ましい。ここで、投影面積とは研磨面を2次元の面に投影したときの面積である。研磨面の全投影面積に対する、深溝領域の投影面積の割合が低すぎる場合には、研磨中にスラリーの保持量が少なくなって、研磨レートや研磨均一性が低下する傾向がある。一方、深溝領域の投影面積の割合が高すぎる場合には、研磨中に研磨される被研磨面と接触するランド領域の接触面積が少なくなることにより、研磨レートが低下しやすくなったり、深溝又は孔の痕が被研磨面に転写されて研磨ムラが発生しやすくなったりする傾向がある。
 一方、ランド領域Lは、第2のパターンを有する深さ0.01~0.1mmである浅い凹み2と、浅い凹み2で囲まれた複数の島状のランド部3と、を有する。図1Aを参照すれば、研磨パッド10においては、第2のパターンとして三角格子状のパターンを有する浅い凹み2がランド領域Lの全面に万遍なく形成されている。三角格子状の第2のパターンを有する浅い凹み2によって囲まれた複数の島状のランド部3は、それぞれ三角形、または、三角形を深溝又は孔1で分断した形状を有する。
 深さ0.01~0.1mmの浅い凹みにより形成された第2のパターンの模様は特に限定されず、規則性を有する模様であっても規則性を有さない模様であってもよいが、規則性を有する模様であることが生産性や品質管理性に優れる点から好ましい。第2のパターンの模様の具体例としては、例えば、三角格子状,XY格子状や正方格子状や菱形格子状等の矩形格子状,六角格子状等が挙げられる。これらの中では、とくには、三角格子状が、浅い凹みで囲まれた複数の島状のランド部に全方向から均質にパッドコンディショナーが当たりやすくなり、ブレークイン時間をより短縮化できる点から好ましい。また、三角格子状の模様は直線の浅い凹みの組み合わせによって形成できるために、切削加工によって容易に形成しやすい点から好ましい。
 そして、浅い凹みで囲まれた複数の島状のランド部の形状は、第2のパターンが三角格子状である場合には三角形、第2のパターンが正方格子状である場合には正方形、第2のパターンが菱形格子状である場合には菱形、第2のパターンが六角格子状である場合には六角形になる。
 図3Aは、本実施形態の他の例の研磨パッド30の研磨面の部分拡大模式図、図3Bは、研磨パッド30の断面模式図である。研磨パッド30は、三角格子状の第2のパターンを正方格子状の第2のパターンに変更した以外は研磨パッド10と同様の研磨パッドである。図3Aは研磨パッド30を研磨層の一面である研磨面の側から見たときの部分拡大模式図、図3Bは図3AのIII-III'断面における模式断面図である。
 研磨パッド30の研磨面には、正方格子状である第2のパターンを有する浅い凹み12が形成されており、浅い凹み12によって囲まれた複数の島状のランド部13は、正方形、または、正方形を深溝又は孔1で分断した形状を有する。
 また、図4は、本実施形態の他の例の研磨パッド40の研磨面の部分拡大模式図を示す。研磨パッド40は、三角格子状の第2のパターンを菱形格子状の第2のパターンに変更した以外は研磨パッド10と同様の研磨パッドである。研磨パッド40の研磨面には、菱形格子状である第2のパターンを有する浅い凹み22が形成されており、浅い凹み22によって囲まれた複数の島状のランド部23は、菱形、または、菱形を深溝又は孔1で分断した形状を有する。
 ランド領域に形成された浅い凹みの深さは、0.01~0.1mmであり、0.02~0.09mm、さらには、0.03~0.08mm、とくには0.04~0.07mmであることが好ましい。浅い凹みの深さが0.01~0.1mmであることにより、未使用の研磨パッドを研磨に適した粗さにするためのブレークインや慣らし研磨において、島状のランド部が短時間で磨耗することにより研磨に適した粗さにするための時間が短縮化される。なお、浅い凹みの深さも、とくに言及の無い限り、ブレークインの処理の前の未使用の研磨パッドの研磨面におけるランド部の表面からの浅い凹みの深さを基準とする。
 ランド領域に形成された浅い凹みの深さが0.1mmを超える場合には、ブレークインや慣らし研磨に要する時間が長くなったり、ブレークイン後に残ったランド部が研磨中にスラリーの保持性や研磨される被研磨面との接触面積を変化させて、研磨特性が経時変化しやすくなったりする。また、浅い凹みの深さが0.01mm未満である場合には、ランド部と浅い凹みとの高低差が小さいために、ランド部にコンディショナーが集中して接触する作用が低下して、ブレークインや慣らし研磨に要する時間が長くなる。
 浅い凹みが、三角格子状,矩形格子状,または六角格子状のような格子状である場合、浅い凹みのピッチ及び幅については特に限定されない。三角格子状の場合に図5を参照し、矩形格子状の場合に図6を参照し、六角格子状の場合に図7及び図8を参照した場合、ピッチ(P,P,P,P)は1~8mm,さらには2~6mmであることが好ましい。また、幅(W,W,W,W)は0.5~4mm,さらには1~2mmであることが好ましい。このようなピッチ及び幅はパッドコンディショナーが均質に当たりやすいランド部を形成しやすい点から好ましい。
 また、図5~図8を参照すれば、1つのランド部の最大距離であるランド部の水平方向の最大距離(M,M,M,M)は8mm以下であり、0.5~6mm、さらには、0.7~5mm、とくには、1~4.5mm、ことには、1.5~4mmであることが、浅い凹みで囲まれた各ランド部のそれぞれにパッドコンディショナーが均質に当たりやすくなり、ランド部が速やかに磨耗することにより研磨に適した粗さにするための時間をより短縮化できる点から好ましい。
 また、島状のランド部の1個の投影面積は、0.3~10mm2、さらには、0.5~9mm2、とくには1~7mm2、ことには1.5~5mm2の範囲であることが好ましい。島状のランド部の1個の投影面積がこのような範囲である場合には、浅い凹みで囲まれた各ランド部のそれぞれにパッドコンディショナーが当たりやすくなり、ブレークイン時間をより短縮化できる点から好ましい。
 島状の1つのランド部の最大距離であるランド部の水平方向の最大距離が8mmを超えたり、ランド部の1個の投影面積が大きすぎたりする場合には、ランド部の中心付近にパッドコンディショナーが均質に接触しにくくなり、ランド部の磨耗に時間が掛かりやすくなる。また、島状の1つのランド部の最大距離であるランド部の水平方向の最大距離が小さすぎたり、ランド部の1個の投影面積が小きすぎたりする場合には、浅い凹みの形成が煩雑になる傾向がある。
 また、ランド領域の全投影面積に対する、ランド部の総投影面積の割合は、10~50%、さらには15~45%、とくには20~40%であることが好ましい。ここで、ランド部の総投影面積の割合とは、ランド領域の全投影面積に対する、研磨面の凹凸を考慮せずにランド領域を2次元的に投影したときの、各ランド部の投影面積の合計の割合を意味する。ランド部の総投影面積の割合がこのような範囲である場合には、浅い凹みで囲まれた各ランド部のそれぞれにコンディショナーが当たりやすくなり、研磨に適した粗さにするための時間をより短縮化できる点から好ましい。
 なお、浅い凹みが図5に示すように正三角形を囲む三角格子状である場合、島状のランド部の1個の水平方向の最大距離M、島状のランド部の1個の投影面積S、ランド部の総投影面積の割合R1は次の式から算出できる。
Figure JPOXMLDOC01-appb-M000001
 また、浅い凹みが図6に示すように正方格子状である場合、島状のランド部の1個の水平方向の最大距離M2、島状のランド部の1個の投影面積S2、ランド部の総投影面積の割合R2は次の式から算出できる。
Figure JPOXMLDOC01-appb-M000002
 また、図7に示すようにランド部が正六角格子状に配された円形である場合、島状のランド部の1個の水平方向の最大距離M3、島状のランド部の1個の投影面積S3、ランド部の総投影面積の割合R3は次の式から算出できる。
Figure JPOXMLDOC01-appb-M000003
 また、ランド部が図8に示すように正六角格子状に配された正六角形である場合、島状のランド部の1個の水平方向の最大距離M4、島状のランド部の1個の投影面積S4、ランド部の総投影面積の割合R4は次の式から算出できる。
Figure JPOXMLDOC01-appb-M000004
 また、研磨パッド10においては、浅い凹みを長手方向に対して垂直に切断したときの断面形状は、図1Bを参照すれば、長方形である。研磨パッドの浅い凹みの断面形状は特に限定されない。具体的には、断面形状は、長方形の他、台形,三角形,半円形,半長円形,正弦曲線等であってもよい。
 本実施形態の研磨パッドの研磨層の研磨面の深溝領域及びランド領域の形成方法は特に限定されない。また、深溝領域とランド領域とは、それぞれ、別々の工程で形成しても、一度の工程で同時に形成してもよい、また、別々の工程で形成する場合、深溝領域とランド領域との何れを先に形成してもよい。
 0.3mm以上の深溝または孔から形成された第1のパターンを有する開口である、深溝領域の形成方法はとくに限定されない。具体的には、例えば、研磨層用シートの一面に切削加工することにより深溝または孔を形成する方法;研磨層用シートの一面に加熱された金型や金属線をスタンプして接触させる転写加工により高分子を溶融または揮散させて深溝または孔を形成する方法;研磨層用シートの一面にレーザー加工することにより高分子を分解または揮散させることにより深溝または孔を形成する方法;深溝または孔を形成するための凸部を予め形成された金型を用いて、深溝または孔を有する研磨面を備えた研磨層用シートを成形する方法;等が挙げられる。
 また、研磨層の研磨面に形成される、第2のパターンを有する深さ0.01~0.1mmである浅い凹みと、浅い凹みで囲まれた複数の島状のランド部と、を有するランド領域の形成方法もとくに限定されない。具体的には、例えば、研磨層用シートの一面に所定の第2のパターンの形状に沿って切削加工することにより、浅い凹みを形成する方法;研磨層となる円形状の高分子シートの一面に加熱された金型や金属線をスタンプして接触させる転写加工により高分子を溶融または揮散させて、浅い凹みを形成する方法;研磨層となる円形状の高分子シートの一面にレーザー加工することにより高分子を分解または揮散させることにより浅い凹みを形成する方法;研磨層となる円形状の高分子シートを成形する際の金型に浅い凹みを形成するための凸部を形成しておき、高分子シートの成形の際に浅い凹みを形成する方法;等が挙げられる。これらの中では、切削加工することにより浅い凹みを形成する方法、または転写加工により浅い凹みを形成する方法が、生産性に優れる点から好ましく、とくには切削加工する方法が浅い凹みの加工精度に優れる点から好ましい。
 なお、切削加工することにより浅い凹みを形成する方法としては、例えば、高分子シートの一面にバイト刃などの刃物を用いて深さ0.01~0.1mmである直線の浅い凹みを切削する方法において、複数の直線の浅い凹みを組み合わせることにより第2のパターンを有する深さ0.01~0.1mmである浅い凹みを形成する方法が挙げられる。
 また、転写加工することにより浅い凹みを形成する方法としては、例えば、次のような方法が挙げられる。(1)第2のパターンを有する浅い凹みの形状を反転させた凸部からなる形状をキャビティ表面に有する金型を用いて研磨層を形成するための高分子材料を射出成形して研磨層用シートを成形する方法、(2)研磨層を形成するための高分子材料をT-ダイを装着した押出機を用いて溶融押出してシート化した後、第2のパターンを有する浅い凹みの形状を反転させた凸部からなる形状を表面に有する冷却ロールに押圧することによって第2のパターンを有する浅い凹みを備えた高分子シートを成形する方法、(3)予め製造された研磨層用シートの一面に、加熱された第2のパターンを有する浅い凹みの形状を反転させた凸部からなる形状を表面に有する金型をスタンプして接触させることにより高分子を溶融または揮散させて、第2のパターンを有する浅い凹みを形成する方法、(4)反応射出成形(RIM)を用い、第2のパターンを有する浅い凹みの形状を反転させた凸部からなる形状をキャビティ表面に有する金型内に未硬化の樹脂を充填し、硬化させることによって、浅い凹みと複数のランド部からなるランド領域を有する研磨面を備えた高分子シートを一段階で製造する方法等、が挙げられる。
 以上説明した本実施形態の研磨パッドはCMPに好ましく用いられる。次に、本実施形態の研磨パッド10を用いたCMPの一実施形態について説明する。
 CMPにおいては、例えば、図9に示すような円形の回転定盤101と、スラリー供給ノズル102と、キャリア103と、パッドコンディショナー104とを備えたCMP装置100が用いられる。回転定盤101の表面に、研磨パッド10が両面粘着シート等により貼付けられる。また、キャリア103は被研磨基材50を支持する。
 CMP装置100においては、回転定盤101は、図略のモータにより、例えば、矢印に示す方向に回転する。また、キャリア103は、被研磨基材50の被研磨面を研磨パッド10の研磨面に圧接しながら、図略のモータにより例えば矢印に示す方向に回転する。パッドコンディショナー104は、例えば矢印に示す方向に回転する。パッドコンディショナー104の直径が被研磨基材50の直径よりも小さい場合には、研磨パッドの被研磨材と接触する領域全体を研磨に適した粗さとするために、パッドコンディショナー104を回転定盤101の半径方向に揺動させる。
 未使用の研磨パッドを用いるとき、通常は、被研磨基材の研磨に先立って、研磨パッドの研磨面を細かく荒らして研磨に適した粗さを形成するためのブレークインと呼ばれるコンディショニングが行われる。具体的には、回転定盤101に固定されて回転する研磨パッド10の表面に水を流しながら、CMP用のパッドコンディショナー104を押し当てて、研磨パッド10の表面のコンディショニングを行う。パッドコンディショナーとしては、例えば、ダイヤモンド粒子をニッケル電着等により担体表面に固定したパッドコンディショナーが用いられる。
 高硬度の研磨層を有する研磨パッドの場合、未使用の研磨パッドの研磨面に研磨に適した粗さを形成するためのコンディショニングであるブレークインに時間を要するという問題があった。また、ブレークイン後の研磨においても、研磨特性が安定するまでの慣らし研磨に時間を要する場合があった。本実施形態の研磨パッドによれば、未使用の研磨パッドの研磨面に第2のパターンを有する深さ0.01~0.1mmである浅い凹みと、浅い凹みで囲まれた複数の島状のランド部と、を有するランド領域を備えることにより、浅い凹みで囲まれた複数の島状のランド部に全方向から均質にパッドコンディショナーが当たりやすくなり、ブレークイン時間が短縮化される。図10A及び図10Bは、本実施形態の研磨パッド10のブレークインにおける研磨面の変化を説明するための説明図である。図10Aはコンディショニング前、図10Bはコンディショニング後の研磨面の一部分を示す。図10Aに示すコンディショニング前においては、研磨面Pは、深さ0.3mm以上の深溝又は孔1からなる第1のパターンを有する深溝領域Gと、深溝領域Gを除いた領域であるランド領域Lを有する。そして、コンディショニングを行うことにより、ランド領域Lの浅い凹み2で囲まれた複数の島状のランド部3が徐々に摩耗し、浅い凹み2が浅くなっていく。そして、コンディショニングを継続することにより、図10Bに示すように、島状のランド部3が磨耗して低くなり、同様に浅い凹み2も浅くなる。本実施形態の研磨パッドにおいては、未使用の研磨パッドの研磨面において、コンディショニングが必要な面積を少なくすることができるとともに、島状のランド部の周縁にパッドコンディショナーが引っ掛かりやすくなって摩擦力が大きくなるために、ブレークイン時間が短縮化される。
 とくに限定はされないが、浅い凹みの平均深さが0.01mm未満となったときが、実質的に浅い凹みの作用が低下し、研磨特性が安定する。このようなコンディショニングのための条件はとくに限定されないが、浅い凹みの平均深さが0.01mm未満となるまでの累計のコンディショニング時間が30分間以内、さらには、1~20分間、とくには2~15分間になるように、パッドコンディショナーの種類やコンディショニング荷重、回転速度を選定することが、研磨パッドの立ち上げ処理が短時間で終了し、研磨特性が安定することから好ましい。なお、研磨パッドの立ち上げ処理時のみ、コンディショニング荷重や回転速度を高くして島状のランド部の摩耗を促進しても良い。
 パッドコンディショナーの種類としては、ダイヤ番手#60~200が好ましいが、研磨層の樹脂組成や研磨条件に合わせて適宜選択することができる。また、コンディショニング荷重としては、コンディショナーの直径に依存し、直径150mm以下の場合には5~50N、直径150~250mmの場合には10~250N、直径250mm以上の場合には50~300N程度が好ましい。また、回転速度としては、コンディショナーとプラテンがそれぞれ10~200rpmであることが好ましいが、回転の同期を防ぐためにコンディショナーとプラテンの回転数が異なることが好ましい。
 そして、ブレークインが完了した後、被研磨基材の被研磨面の研磨を開始する。研磨においては、回転する研磨パッドの表面にスラリー供給ノズルからスラリーを供給する。スラリーは、例えば、水やオイル等の液状媒体;シリカ,アルミナ,酸化セリウム,酸化ジルコニウム,炭化ケイ素等の研磨剤;塩基,酸,界面活性剤,酸化剤,還元剤,キレート剤等を含有している。またCMPを行うに際し、必要に応じ、スラリーと共に、潤滑油、冷却剤などを併用してもよい。そして、研磨面にスラリーが満遍なく行き渡った研磨パッドに、キャリアに固定されて回転する被研磨基材を押し当てる。そして、所定の平坦度や研磨量が得られるまで、研磨処理が続けられる。研磨時に作用させる押し付け力や回転定盤とキャリアの相対運動の速度を調整することにより、仕上がり品質が影響を受ける。
 研磨条件は特に限定されないが、効率的に研磨を行うためには、定盤及び被研磨基材のそれぞれの回転速度は300rpm以下の低回転が好ましい。また、研磨パッドに圧接するために被研磨基材に掛ける圧力は、研磨後に傷が発生しないようにするという見地から、150kPa以下とすることが好ましい。また、研磨している間、研磨パッドには、研磨面にスラリーが満遍なく行き渡るようにスラリーを連続または不連続に供給することが好ましい。
 そして、研磨終了後の被研磨基材をよく洗浄した後、スピンドライヤ等を用いて被研磨基材に付着した水滴を払い落として乾燥させる。このようにして、被研磨面が平滑な面になる。
 このような本実施形態のCMPは、各種半導体デバイス、MEMS(Micro Electro Mechanical Systems)等の製造プロセスにおける研磨に好ましく用いられる。研磨対象の例としては、例えば、シリコン,炭化ケイ素,窒化ガリウム,ガリウムヒ素,酸化亜鉛,サファイヤ,ゲルマニウム,ダイヤモンドなどの半導体基板;所定の配線を有する配線板に形成されたシリコン酸化膜,シリコン窒化膜,low-k膜などの絶縁膜や、銅,アルミニウム,タングステンなどの配線材料;ガラス,水晶,光学基板,ハードディスク等が挙げられる。本実施形態の研磨パッドは、とくには、半導体基板上に形成された絶縁膜や配線材料を研磨する用途に好ましく用いられる。
 以下、実施例により本発明をさらに具体的に説明する。なお、本発明の範囲はこれらの実施例に何ら限定されるものではない。
 [製造例1]
 数平均分子量850のポリテトラメチレングリコール[略号:PTMG]、数平均分子量600のポリエチレングリコール[略号:PEG]、1,4-ブタンジオール[略号:BD]、及び4,4’-ジフェニルメタンジイソシアネート[略号:MDI]を、PTMG:PEG:BD:MDIの質量比が24.6:11.6:13.8:50.0となるような割合で配合し、定量ポンプにより、同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンを連続溶融重合した。そして、重合された熱可塑性ポリウレタンの溶融物をストランド状に水中に連続的に押出した後、ペレタイザーで細断してペレットを得た。このペレットを70℃で20時間除湿乾燥した後、単軸押出機に供給し、T-ダイから押出して、厚さ2.0mmのシートを成形した。そして、得られたシートの表面を研削して厚さ1.5mmの均一なシートとした後、直径38cmの円形状に切り抜くことにより、研磨層用シートを得た。JIS K 7311に準じて、測定温度25℃の条件で測定した研磨層用シートのD硬度は67であった。
 [製造例2]
 PTMG、PEG、BD、及びMDIを、PTMG:PEG:BD:MDIの質量比が19.5:9.2:16.4:54.9となるような割合で配合し、定量ポンプにより、同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンを連続溶融重合した。そして、重合された熱可塑性ポリウレタンの溶融物をストランド状に水中に連続的に押出した後、ペレタイザーで細断してペレットを得た。このペレットを70℃で20時間除湿乾燥した後、単軸押出成形機に供給し、T-ダイから押出して、厚さ2.0mmのシートを成形した。そして、得られたシートの表面を研削して厚さ1.5mmの均一なシートとした後、直径38cmの円形状に切り抜くことにより、研磨層用シートを得た。JIS K 7311に準じて、測定温度25℃の条件で測定した研磨層用シートのD硬度は76であった。
 [実施例1]
 製造例1で得られた、厚さ1.5mm、直径38cmの研磨層用シートの一面である研磨面に、幅0.7mm,深さ1.0mm,溝ピッチ9.0mmの螺旋状の深溝を切削加工で形成した。なお、深溝の断面形状は長方形である。このとき、研磨面の総面積に対する深溝領域の面積割合は8%であった。
 そして、深溝を形成された研磨面に、幅1.0mm,深さ0.08mmでピッチ4.0mmの複数の直線からなる三角格子状の浅い凹みを切削加工で形成した。浅い凹みの断面形状も長方形である。このようにして、多数の浅い凹みに囲まれた1辺の長さが3.0mmの正三角形の島状のランド部が多数形成された。島状のランド部の1個の投影面積は3.9mm2であり、島状のランド部の1個の水平方向の最大距離は3.0mmであった。また、ランド領域の全投影面積に対するランド部の総投影面積の割合は42%であった。得られた研磨パッドの研磨面の拡大写真を図11に示す。なお、表面粗さ測定器(ミツトヨ社製「サーフテストSJ-210」)を用い、JIS B 0601:2001及びJIS B 0671:2002に準拠して、ランド領域の表面粗さを測定したところ、算術平均粗さRaが9.8μm、最大高さRzが55.0μm、および突出山部高さRpkが13.2μmであった。
 なお、浅い凹み及び深溝の深さは、(株)中村製作所製デプスゲージ「E-DP2J」を用いて、ウェハに接触する部分で8点測定して平均した。また、島状のランド部の1個の投影面積及び島状のランド部の1個の水平方向の最大距離は、東海産業(株)製のスケールルーペ「No.1983」を用いて図5のP及びWを測定し、数1に記載の式から求めた。
 そして、研磨層の研磨面に対する裏面にクッション層を両面粘着シートで貼り合わせて複層型の研磨パッドを作成した。クッション層としては、厚さ0.8mmの発泡ポリウレタン製シートである(株)イノアックコーポレーション製「ポロンH48」を用いた。そして、得られた研磨パッドの研磨特性を次の評価方法により評価した。
〈研磨速度及び浅い凹みが消失するまでのコンディショニング時間〉
 得られた研磨パッドを(株)エム・エー・ティ製の研磨装置「MAT-BC15」に装着した。そして、キャボットマイクロエレクトロニクス社製のスラリー「SS-25」を2倍に希釈して調整したpH約12のスラリーを準備し、プラテン回転数100rpm、ヘッド回転数99rpm、研磨圧力41.4kPaの条件において、120mL/分の速度でスラリーを研磨パッドの研磨面に供給しながら膜厚1000nmの酸化ケイ素膜を表面に有する直径4インチのシリコンウェハを60秒間研磨した。
 そして、パッドコンディショナー((株)アライドマテリアル製のダイヤモンドドレッサー(ダイヤモンド番手#100ブロッキー、台金直径19cm))を用い、ドレッサー回転数70rpm、研磨パッド回転数100rpm、ドレッサー荷重20Nの条件で、150mL/分の速度で純水を流しながら、研磨パッドの表面を30秒間コンディショニングした。そして、別のシリコンウェハを再度研磨し、さらに、30秒間コンディショニングを行った。このようにして100枚のシリコンウェハを研磨した。そして、3枚目、5枚目、10枚目、15枚目、25枚目、50枚目、100枚目に研磨したシリコンウェハの研磨前および研磨後の酸化ケイ素膜の膜厚を測定し研磨速度を求めた。また、2枚研磨毎に浅い凹みの深さを測定し、0.01mm未満になった時点での累計コンディショニング時間を求めた。
 結果を表1に示す。また、実施例1の研磨パッドでシリコンウェハを10枚研磨した後の研磨面の拡大写真を図12に示す。研磨面が水とよくなじんでおり、研磨面がコンディショナーで細かく荒らされてスラリーの保持性に優れていることが分かる。
Figure JPOXMLDOC01-appb-T000005
[実施例2]
 製造例1で得られた、厚さ1.5mm、直径38cmの研磨層シートの一面である研磨面に、幅0.7mm,深さ1.0mm,溝ピッチ4.5mmの螺旋状の深溝を切削加工で形成した。なお、深溝の断面形状は長方形である。このとき、研磨面の総面積に対する深溝の面積割合は16%であった。
 そして、深溝を形成された研磨面の全面に、さらに、幅1.0mm,深さ0.04mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを切削加工で形成した。浅い凹みの断面形状も長方形である。このようにして、多数の浅い凹みに囲まれた1辺の長さが1.9mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は1.5mm2であり、島状のランド部の1個の水平方向の最大距離は1.9mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は30%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例3]
 実施例2において、研磨面に、幅1.0mm,深さ0.04mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅1.5mm,深さ0.06mmでピッチ5.5mmの複数の直線からなる三角格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが3.9mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は6.7mm2であり、島状のランド部の1個の水平方向の最大距離は3.9mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は38%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例4]
 実施例2において、研磨面に、幅1.0mm,深さ0.04mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅1.0mm,深さ0.03mmでピッチ2.5mmの複数の直線からなるXY格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが1.5mmの島状の正方形のランド部が多数形成された。島状のランド部の1個の投影面積は2.3mm2であり、島状のランド部の1個の水平方向の最大距離は2.1mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は36%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例5]
 製造例1で得られた、厚さ1.5mm、直径38cmの研磨層用シートの一面である研磨面に、幅0.3mm,深さ1.0mm,溝ピッチ2.5mmの同心円状の複数の深溝を切削加工で形成した。なお、深溝の断面形状は長方形である。このとき、研磨面の総面積に対する深溝の面積割合は12%であった。
 そして、深溝を形成された研磨面の全面に、さらに、幅2.0mm,深さ0.05mmでピッチ4.5mmの複数の直線からなる三角格子状の浅い凹みを切削加工で形成した。浅い凹みの断面形状も長方形である。このようにして、多数の浅い凹みに囲まれた1辺の長さが2.2mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は2.0mm2であり、島状のランド部の1個の水平方向の最大距離は2.2mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は17%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例6]
 実施例2において、研磨面に、幅1.0mm,深さ0.04mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅2.0mm,深さ0.05mmでピッチ9.0mmの複数の直線からなる三角格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが7.1mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は22.0mm2であり、島状のランド部の1個の水平方向の最大距離は7.1mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は47%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例7]
 実施例2において、研磨面に、幅1.0mm,深さ0.04mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅2.0mm,深さ0.05mmでピッチ7.0mmの複数の直線からなるXY格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが5.0mmの島状の正方形のランド部が多数形成された。島状のランド部の1個の投影面積は25.0mm2であり、島状のランド部の1個の水平方向の最大距離は7.1mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は51%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例8]
 製造例2で得られた、厚さ1.5mm、直径38cmの研磨層用シートの一面である研磨面に、上面の幅1.5mm、底面の幅0.5mm,深さ0.8mm,溝ピッチ7.0mmの螺旋状の深溝を切削加工で形成した。なお、深溝の断面形状は台形である。このとき、研磨面の総面積に対する深溝の領域の面積割合は21%であった。
 そして、深溝を形成された研磨面の全面に、さらに、上面の幅1.0mm、底面の幅0.9mm,深さ0.05mmでピッチ2.5mmの複数の直線からなる三角格子状の浅い凹みを切削加工で形成した。浅い凹みの断面形状は台形である。このようにして、多数の浅い凹みに囲まれた1辺の長さが1.3mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は0.8mm2であり、島状のランド部の1個の水平方向の最大距離は1.3mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は22%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例9]
 実施例8において、研磨面に、上面の幅1.0mm、底面の幅0.9mm,深さ0.05mmでピッチ2.5mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅1.5mm,深さ0.03mmでピッチ6.0mmの複数の直線からなる三角格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが4.5mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は8.8mm2であり、島状のランド部の1個の水平方向の最大距離は4.5mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は42%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例10]
 実施例8において、研磨面に、上面の幅1.0mm、底面の幅0.9mm,深さ0.05mmでピッチ2.5mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、上面の幅1.0mm、底面の幅0.9mm,深さ0.05mmでピッチ3.0mmの複数の直線からなるXY格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は台形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが2.0mmの島状の正方形のランド部が多数形成された。島状のランド部の1個の投影面積は4.0mm2であり、島状のランド部の1個の水平方向の最大距離は2.8mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は44%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [実施例11]
 製造例2で得られた、厚さ1.5mm、直径38cmの研磨層用シートの一面である研磨面の全面に、SUS製のパンチング板(穴の形状:直径1.5mmの円、穴の配置:六角格子、穴のピッチ:2.5mm、開口率:33%)を150℃の条件で熱プレスにより押し当てて浅い凹みを形成した。浅い凹みに囲まれた、直径1.5mmの島状の円形のランド部が多数形成された。島状のランド部の1個の投影面積は1.8mm2であり、島状のランド部の1個の水平方向の最大距離は1.5mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は33%であった。
 そして、研磨面に、上面の幅2.0mm、底面の幅1.0mm,深さ0.8mm,溝ピッチ7.0mmの螺旋状の深溝を切削加工で形成した。なお、深溝の断面形状は台形である。このとき、研磨面の総面積に対する深溝の領域の面積割合は29%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表1に示す。
 [比較例1]
 実施例1において、浅い凹みを形成しないこと以外は実施例1と同様にして研磨層を製造した。そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表2に示す。得られた研磨パッドの研磨面の拡大写真を図13に示す。なお、表面粗さ測定器(ミツトヨ社製「サーフテストSJ-210」)を用い、JIS B 0601:2001及びJIS B 0671:2002に準拠して、ランド領域の表面粗さを測定したところ、算術平均粗さRaが0.2μm、最大高さRzが1.8μm、および突出山部高さRpkが0.4μmであった。また、比較例1の研磨パッドのウェハを10枚研磨後の研磨面の拡大写真を図14に示す。研磨面が水を弾いており、パッド表面がスラリーを保持するのに充分な状態になっていないことがわかる。
Figure JPOXMLDOC01-appb-T000006
[比較例2]
 実施例1において、深溝を形成しないこと以外は実施例1と同様にして研磨層を製造した。そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表2に示す。
 [比較例3]
 実施例2において、研磨面に、幅1.0mm,深さ0.04mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅1.0mm,深さ0.20mmでピッチ3.0mmの複数の直線からなる三角格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが1.9mmの島状の正三角形のランド部が多数形成された。島状のランド部の1個の投影面積は1.5mm2であり、島状のランド部の1個の水平方向の最大距離は1.9mmであり、ランド部の総投影面積の割合は、ランド領域の全投影面積に対して30%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表2に示す。
 [比較例4]
 実施例8において、浅い凹みを形成しないこと以外は実施例8と同様にして研磨層を製造した。そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表2に示す。
 [比較例5]
 実施例9において、研磨面に、幅1.5mm,深さ0.03mmでピッチ6.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅1.0mm,深さ0.20mmでピッチ3.0mmの複数の直線からなるXY格子状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。研磨面には、多数の浅い凹みに囲まれた1辺の長さが2.0mmの島状の正方形のランド部が多数形成された。島状のランド部の1個の投影面積は4.0mm2であり、島状のランド部の1個の水平方向の最大距離は2.8mmであり、ランド領域の全投影面積に対するランド部の総投影面積の割合は44%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表2に示す。
 [比較例6]
 実施例9において、研磨面に、幅1.5mm,深さ0.03mmでピッチ6.0mmの複数の直線からなる三角格子状の浅い凹みを形成した代わりに、幅2.0mm,深さ0.04mmでピッチ4.0mmの複数の同心円状の浅い凹みを形成した以外は、同様にして研磨層を製造した。浅い凹みの断面形状は長方形である。浅い凹みと浅い凹みの間のランド部は島状ではなく同心円状に連続していた。ランド領域の全投影面積に対するランド部の総投影面積の割合は50%であった。このようにして研磨層を製造した。
 そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。結果を表2に示す。
 [比較例7]
 実施例11において、SUS製のパンチング板を熱プレスにより押し当てて直径1.5mmの島状の円形のランド部が間に形成された浅い凹みを形成した代わりに、次のような浅い凹みを形成した以外は実施例11と同様にして研磨層を製造した。そして、得られた研磨層を用いて実施例1と同様にして研磨パッドを作成し、評価した。
 直径2mm、深さ0.06mmの円形の浅い凹みを中心間ピッチ2.5mmで六角格子状に切削加工で作成した。浅い凹みの断面形状は長方形である。浅い凹みと浅い凹みの間のランド部は島状ではなく六角格子状の海状に連続していた。ランド部の総投影面積の割合は、ランド領域の全投影面積に対して42%であった。結果を表2に示す。
 以上の結果から、次のことがわかる。
 深さ0.3mm以上の深溝と、深さ0.01~0.1mmである浅い凹みと、浅い凹みで囲まれた水平方向の最大距離が8mm以下の複数の島状のランド部とを有する実施例1~11の研磨パッドは、浅い凹みを有しない比較例1及び比較例4の研磨パッドや、浅い凹みに囲まれた島状のランド部を有しない比較例6及び比較例7の研磨パッドと比べて、研磨速度が安定するまでに要する時間が短く、慣らし研磨の時間を短縮できた。なお、水平方向の最大距離が7mm以下の島状のランド部を有する実施例1~5,8~11の研磨パッドは、慣らし研磨の時間の短縮効果がとくに顕著であった。浅い凹みの深さが0.1mmを超える比較例3及び比較例5の研磨パッドは、使用初期の研磨速度は比較的高いが、研磨速度が安定しにくく、慣らし研磨の時間を短縮する効果が小さかった。深溝を有しない比較例2の研磨パッドは、研磨速度が低かった。
 本発明に係る研磨パッドは、半導体基板やガラス等の研磨用途に有用である。特に半導体やハードディスク、液晶ディスプレイなどの基板材料、あるいはレンズやミラーなどの光学部品などを化学機械研磨するときに好適である。
1 深溝または孔
2,12,22 浅い凹み
3,13 ランド部
5 研磨層
6 接着層
7 クッション層
10,20,30,40 研磨パッド
50 被研磨基材
G 深溝領域
L ランド領域
P 研磨面

Claims (12)

  1.  研磨面を有する研磨層を含む研磨パッドであって、
     前記研磨面は、深さ0.3mm以上の深溝または孔から形成された第1のパターンを有する深溝領域と、前記深溝領域を除いた領域であるランド領域とを備え、
     前記ランド領域は、第2のパターンを有する深さ0.01~0.1mmである浅い凹みと、前記浅い凹みで囲まれ、且つ水平方向の最大距離が8mm以下である複数の島状のランド部と、を有する、研磨パッド。
  2.  前記第2のパターンが、前記ランド領域の全面に形成された、三角格子状,正方格子状,矩形格子状,菱形格子状,及び六角格子状からなる群から選ばれる少なくとも1つのパターンを有する請求項1に記載の研磨パッド。
  3.  前記ランド部の1個の投影面積が0.3~10mm2の範囲である請求項1または2に記載の研磨パッド。
  4.  前記ランド領域の全投影面積に対する前記ランド部の総投影面積の割合が、10~50%である請求項1~3の何れか1項に記載の研磨パッド。
  5.  前記浅い凹みの前記深さが0.02~0.06mmである請求項1~4の何れか1項に記載の研磨パッド。
  6.  前記研磨面の全投影面積に対する前記深溝領域の投影面積の割合が、5~40%である請求項1~5の何れか1項に記載の研磨パッド。
  7.  前記第1のパターンが、螺旋状,同心円状,及び格子状からなる群から選ばれる少なくとも1つのパターンを有する請求項1~6の何れか1項に記載の研磨パッド。
  8.  前記研磨層が非発泡高分子体を主体とするシートからなる請求項1~7の何れか1項に記載の研磨パッド。
  9.  前記研磨層が熱可塑性ポリウレタンシートを含む請求項1~8の何れか1項に記載の研磨パッド。
  10.  請求項1に記載の研磨パッドを製造する方法であって、
     前記研磨層となる高分子シートを準備する工程と、
     前記高分子シートの研磨面となる側に前記深溝領域を形成する工程と、
     前記高分子シートの研磨面となる側に前記ランド領域を形成する工程と、を備え、
     前記ランド領域を形成する浅い凹みは、切削加工または転写加工により形成される、研磨パッドの製造方法。
  11.  請求項1~9の何れか1項に記載の研磨パッドを用いて半導体デバイスの製造工程において前記半導体デバイスの被研磨面の研磨を行うための研磨方法において、
     前記浅い凹みの平均深さが0.01mm未満となるまでの累計のコンディショニング時間が30分間以内になるコンディショニング条件で前記研磨面のコンディショニングを行う工程を備える、研磨方法。
  12.  前記累計のコンディショニング時間が1~20分間である請求項11に記載の研磨方法。
PCT/JP2020/022213 2019-06-19 2020-06-04 研磨パッド、研磨パッドの製造方法及び研磨方法 WO2020255744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/617,118 US20220226962A1 (en) 2019-06-19 2020-06-04 Polishing pad, method for manufacturing polishing pad, and polishing method
JP2021527586A JP7514234B2 (ja) 2019-06-19 2020-06-04 研磨パッド、研磨パッドの製造方法及び研磨方法
KR1020217036878A KR102674356B1 (ko) 2019-06-19 2020-06-04 연마 패드, 연마 패드의 제조 방법 및 연마 방법
CN202080039388.XA CN114286737B (zh) 2019-06-19 2020-06-04 研磨垫、研磨垫的制造方法以及研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114147 2019-06-19
JP2019114147 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020255744A1 true WO2020255744A1 (ja) 2020-12-24

Family

ID=74040037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022213 WO2020255744A1 (ja) 2019-06-19 2020-06-04 研磨パッド、研磨パッドの製造方法及び研磨方法

Country Status (6)

Country Link
US (1) US20220226962A1 (ja)
JP (1) JP7514234B2 (ja)
KR (1) KR102674356B1 (ja)
CN (1) CN114286737B (ja)
TW (1) TWI813885B (ja)
WO (1) WO2020255744A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230021149A1 (en) * 2021-07-16 2023-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical-mechanical planarization pad and methods of use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511210A (ja) * 1994-04-08 1996-11-26 ローデル・インコーポレイテッド 研磨パッドおよびその使用方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT347283B (de) 1975-03-07 1978-12-27 Collo Gmbh Schaumstoffkoerper fuer reinigungs-, scheuer- und/oder polierzwecke u. dgl.
JPS6458475A (en) * 1987-08-25 1989-03-06 Rodeele Nitta Kk Grinding pad
JPH01140959A (ja) * 1987-11-24 1989-06-02 Sumitomo Electric Ind Ltd 非接触研磨装置の錫定盤
JPH01210259A (ja) * 1988-02-16 1989-08-23 Toshiba Corp 研磨装置
US5212910A (en) * 1991-07-09 1993-05-25 Intel Corporation Composite polishing pad for semiconductor process
US5216843A (en) * 1992-09-24 1993-06-08 Intel Corporation Polishing pad conditioning apparatus for wafer planarization process
US5441598A (en) * 1993-12-16 1995-08-15 Motorola, Inc. Polishing pad for chemical-mechanical polishing of a semiconductor substrate
KR20000025003A (ko) * 1998-10-07 2000-05-06 윤종용 반도체 기판의 화학 기계적 연마에 사용되는 연마 패드
KR100471527B1 (ko) * 1999-03-30 2005-03-09 가부시키가이샤 니콘 연마체, 연마장치, 연마방법 및 반도체 소자의 제조방법
US6656019B1 (en) * 2000-06-29 2003-12-02 International Business Machines Corporation Grooved polishing pads and methods of use
US6641471B1 (en) 2000-09-19 2003-11-04 Rodel Holdings, Inc Polishing pad having an advantageous micro-texture and methods relating thereto
JP2003017449A (ja) * 2001-06-28 2003-01-17 Hitachi Chem Co Ltd コンディショニングフリーcmpパッド及び基板の研磨方法
KR200357678Y1 (ko) * 2004-04-23 2004-08-09 동성에이앤티 주식회사 화학적 기계적 폴리싱용 폴리싱 패드
JP4756583B2 (ja) * 2005-08-30 2011-08-24 株式会社東京精密 研磨パッド、パッドドレッシング評価方法、及び研磨装置
US7226345B1 (en) * 2005-12-09 2007-06-05 The Regents Of The University Of California CMP pad with designed surface features
KR20070070094A (ko) * 2005-12-28 2007-07-03 제이에스알 가부시끼가이샤 화학 기계 연마 패드 및 화학 기계 연마 방법
US20080003935A1 (en) * 2006-07-03 2008-01-03 Chung-Chih Feng Polishing pad having surface texture
TWI409136B (zh) * 2006-07-19 2013-09-21 Innopad Inc 表面具微溝槽之化學機械平坦化墊
MY150905A (en) 2006-09-06 2014-03-14 Nitta Haas Inc Polishing pad
US7544115B2 (en) * 2007-09-20 2009-06-09 Novellus Systems, Inc. Chemical mechanical polishing assembly with altered polishing pad topographical components
US8388799B2 (en) * 2008-01-24 2013-03-05 Jsr Corporation Composition for forming polishing layer of chemical mechanical polishing pad, chemical mechanical polishing pad and chemical mechanical polishing method
JP2010253665A (ja) 2008-08-01 2010-11-11 Toray Ind Inc 研磨シートおよび研磨パッドの製造方法
TWM352126U (en) * 2008-10-23 2009-03-01 Bestac Advanced Material Co Ltd Polishing pad
JP5023099B2 (ja) 2009-04-03 2012-09-12 ニッタ・ハース株式会社 研磨パッドおよび研磨装置
JP5868566B2 (ja) 2009-05-28 2016-02-24 ニッタ・ハース株式会社 研磨パッド
KR101232787B1 (ko) * 2010-08-18 2013-02-13 주식회사 엘지화학 연마 시스템용 연마 패드
JPWO2013039203A1 (ja) * 2011-09-16 2015-03-26 東レ株式会社 研磨パッド
JP5997973B2 (ja) 2012-08-14 2016-09-28 株式会社クラレ 金属膜研磨用パッドおよびそれを用いた研磨方法
JP6228546B2 (ja) * 2012-09-28 2017-11-08 富士紡ホールディングス株式会社 研磨パッド
JP2014104521A (ja) * 2012-11-26 2014-06-09 Toyo Tire & Rubber Co Ltd 研磨パッド
US9649742B2 (en) 2013-01-22 2017-05-16 Nexplanar Corporation Polishing pad having polishing surface with continuous protrusions
US10160092B2 (en) * 2013-03-14 2018-12-25 Cabot Microelectronics Corporation Polishing pad having polishing surface with continuous protrusions having tapered sidewalls
KR102347711B1 (ko) * 2014-04-03 2022-01-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 폴리싱 패드 및 시스템과 이의 제조 및 사용 방법
US10875153B2 (en) * 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US9457449B1 (en) * 2015-06-26 2016-10-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad with composite polishing layer
US9539694B1 (en) * 2015-06-26 2017-01-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Composite polishing layer chemical mechanical polishing pad
US10144115B2 (en) * 2015-06-26 2018-12-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of making polishing layer for chemical mechanical polishing pad
TWI549781B (zh) * 2015-08-07 2016-09-21 智勝科技股份有限公司 研磨墊、研磨系統及研磨方法
TWI769988B (zh) 2015-10-07 2022-07-11 美商3M新設資產公司 拋光墊與系統及其製造與使用方法
US10875146B2 (en) * 2016-03-24 2020-12-29 Rohm And Haas Electronic Materials Cmp Holdings Debris-removal groove for CMP polishing pad
JP6002343B1 (ja) * 2016-03-25 2016-10-05 富士紡ホールディングス株式会社 研磨ブラシ
KR101986826B1 (ko) 2017-12-01 2019-06-07 에스케이씨 주식회사 연마패드 및 이의 제조방법
KR102059647B1 (ko) * 2018-06-21 2019-12-26 에스케이씨 주식회사 슬러리 유동성이 향상된 연마패드 및 이의 제조방법
US11633830B2 (en) * 2020-06-24 2023-04-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. CMP polishing pad with uniform window

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511210A (ja) * 1994-04-08 1996-11-26 ローデル・インコーポレイテッド 研磨パッドおよびその使用方法

Also Published As

Publication number Publication date
TW202114816A (zh) 2021-04-16
US20220226962A1 (en) 2022-07-21
CN114286737A (zh) 2022-04-05
TWI813885B (zh) 2023-09-01
JPWO2020255744A1 (ja) 2020-12-24
CN114286737B (zh) 2024-10-08
JP7514234B2 (ja) 2024-07-10
KR102674356B1 (ko) 2024-06-11
KR20210149837A (ko) 2021-12-09

Similar Documents

Publication Publication Date Title
JP5143528B2 (ja) 研磨パッド
JP4954762B2 (ja) ポリウレタン発泡体の製造方法
TWI457201B (zh) Laminated mats
KR102170859B1 (ko) 연마 패드 및 그것을 사용한 연마 방법
JP4261586B2 (ja) 研磨パッドの製造方法
JP6518680B2 (ja) 研磨層用非多孔性成形体,研磨パッド及び研磨方法
CN107000157B (zh) 抛光层用成型体及抛光垫
JP2008290244A (ja) 研磨パッド
JP2008252017A (ja) 研磨パッド
JP4986129B2 (ja) 研磨パッド
JP5288715B2 (ja) 研磨パッド
WO2020255744A1 (ja) 研磨パッド、研磨パッドの製造方法及び研磨方法
JP4237800B2 (ja) 研磨パッド
TW201021972A (en) Polishing pad
JP4968884B2 (ja) 研磨パッドの製造方法
WO2021117834A1 (ja) ポリウレタン、研磨層、研磨パッド及び研磨方法
JP5465578B2 (ja) 研磨パッドおよびその製造方法、ならびに半導体デバイスの製造方法
JP2009214220A (ja) 研磨パッド
JP4128607B2 (ja) 研磨パッド
TWI814517B (zh) 研磨墊
JP4465368B2 (ja) 研磨パッド
JP2021035713A (ja) 研磨パッド
JP2007307699A (ja) 研磨パッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527586

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217036878

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826515

Country of ref document: EP

Kind code of ref document: A1