WO2020137558A1 - 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 - Google Patents
交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 Download PDFInfo
- Publication number
- WO2020137558A1 WO2020137558A1 PCT/JP2019/048560 JP2019048560W WO2020137558A1 WO 2020137558 A1 WO2020137558 A1 WO 2020137558A1 JP 2019048560 W JP2019048560 W JP 2019048560W WO 2020137558 A1 WO2020137558 A1 WO 2020137558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- exchange coupling
- thickness
- magnetic field
- ptmn
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 387
- 238000010168 coupling process Methods 0.000 title claims abstract description 265
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 265
- 230000008878 coupling Effects 0.000 title claims abstract description 258
- 238000001514 detection method Methods 0.000 title claims description 89
- 230000000694 effects Effects 0.000 title claims description 22
- 229910019041 PtMn Inorganic materials 0.000 claims abstract description 127
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 101
- 229910019026 PtCr Inorganic materials 0.000 claims abstract description 62
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 40
- 230000005415 magnetization Effects 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 29
- 239000012528 membrane Substances 0.000 claims description 21
- 238000010030 laminating Methods 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 510
- 230000000052 comparative effect Effects 0.000 description 56
- 229910052748 manganese Inorganic materials 0.000 description 28
- 230000001965 increasing effect Effects 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 23
- 229910052742 iron Inorganic materials 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 239000011241 protective layer Substances 0.000 description 15
- 229910052804 chromium Inorganic materials 0.000 description 14
- 239000011651 chromium Substances 0.000 description 14
- 230000000903 blocking effect Effects 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910000640 Fe alloy Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 229910003321 CoFe Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910002546 FeCo Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- KVCQTKNUUQOELD-UHFFFAOYSA-N 4-amino-n-[1-(3-chloro-2-fluoroanilino)-6-methylisoquinolin-5-yl]thieno[3,2-d]pyrimidine-7-carboxamide Chemical compound N=1C=CC2=C(NC(=O)C=3C4=NC=NC(N)=C4SC=3)C(C)=CC=C2C=1NC1=CC=CC(Cl)=C1F KVCQTKNUUQOELD-UHFFFAOYSA-N 0.000 description 1
- 229910002521 CoMn Inorganic materials 0.000 description 1
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0052—Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/007—Environmental aspects, e.g. temperature variations, radiation, stray fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/14—Measuring or plotting hysteresis curves
Definitions
- the present invention relates to an exchange coupling film, a magnetoresistive effect element and a magnetic detection device using the same.
- the exchange coupling film including the antiferromagnetic layer and the fixed magnetic layer is used as a magnetoresistive element or a magnetic detection device.
- Patent Document 1 describes that in a magnetic recording medium, an exchange coupling film can be formed by combining a Co alloy as a ferromagnetic film and various alloys as an antiferromagnetic film. Examples of the antiferromagnetic film include alloys such as CoMn, NiMn, PtMn, and PtCr.
- the magnetic detection device requires reflow processing (melting processing) of the solder when mounting the magnetic effect element on the board, and may be used in a high temperature environment such as around the engine. Therefore, it is preferable that the exchange coupling film used in the magnetic detection device has a large magnetic field (Hex) in which the magnetization direction of the pinned magnetic layer is reversed in order to detect the magnetic field in a wide dynamic range.
- Hex magnetic field
- the magnetization direction of the pinned magnetic layer is not easily affected, that is, strong magnetic field resistance. Is required.
- the present invention has a large magnetic field (Hex) for reversing the magnetization direction of a ferromagnetic layer that exchange-couples with an antiferromagnetic layer such as a fixed magnetic layer, and therefore has an excellent magnetic field resistance and an exchange-coupling film using the same.
- An object is to provide an effect element and a magnetic detection device.
- an antiferromagnetic layer and a ferromagnetic layer are stacked, and the antiferromagnetic layer includes an IrMn layer, a first PtMn layer, a PtCr layer, and
- the second PtMn layer is an exchange-coupling film having a structure in which the IrMn layer is stacked in this order so as to be close to the ferromagnetic layer.
- the IrMn layer may be laminated so as to be in contact with the ferromagnetic layer, or may have a structure in which a PtMn layer is further laminated between the IrMn layer and the ferromagnetic layer.
- FIG. 1 is a diagram illustrating a hysteresis loop of a magnetization curve of the exchange coupling film according to the present invention.
- the exchange coupling magnetic field Hex acts on the fixed magnetic layer including the ferromagnetic layer that exchange couples with the antiferromagnetic layer.
- the shape is shifted along the H axis according to the magnitude of the exchange coupling magnetic field Hex.
- the pinned magnetic layer of the exchange coupling film becomes a good pinned magnetic layer because the larger the exchange coupling magnetic field Hex, the more difficult it is for the magnetization direction to reverse even when an external magnetic field is applied.
- the coercive force Hc defined by the difference between the center of the hysteresis loop shifted along the H axis (the magnetic field strength at this center corresponds to the exchange coupling magnetic field Hex) and the H axis intercept of the hysteresis loop is the exchange coupling magnetic field Hex.
- the external magnetic field is smaller than the above, even if the fixed magnetic layer of the exchange coupling film is magnetized in the direction along the external magnetic field by applying the external magnetic field, when the application of the external magnetic field is completed, the relative magnetic field is larger than the coercive force Hc.
- the relatively strong exchange coupling magnetic field Hex makes it possible to align the magnetization directions of the pinned magnetic layers. That is, when the relationship between the exchange coupling magnetic field Hex and the coercive force Hc is Hex>Hc, the exchange coupling film has good strong magnetic field resistance.
- the antiferromagnetic layer has a configuration in which an IrMn layer, a first PtMn layer, a PtCr layer, and a second PtMn layer are stacked, and thus the exchange coupling magnetic field is formed.
- Increasing Hex is realized.
- the exchange coupling film according to the present invention can increase the exchange coupling magnetic field Hex even when the thickness of the PtCr layer is small, as compared with the case where the second PtMn layer is not laminated. Therefore, the total thickness (total thickness) of the antiferromagnetic layer can be made relatively small, which is also preferable from the viewpoint of production efficiency.
- an antiferromagnetic layer and a ferromagnetic layer are laminated, and the antiferromagnetic layer includes a first PtMn layer, a PtCr layer, and a second PtMn layer in this order.
- the first PtMn layer is stacked so as to be close to the ferromagnetic layer, and the thickness of the PtCr layer is greater than both the thickness of the first PtMn layer and the thickness of the second PtMn layer.
- An exchange coupling membrane having a thick structure is provided.
- An exchange coupling film including an antiferromagnetic layer formed from such a laminated structure has a high exchange coupling magnetic field Hex, and a relationship with the coercive force Hc is likely to be Hex>Hc, and has good strong magnetic field resistance.
- such exchange-coupling membranes may tend to have higher blocking temperatures.
- the above antiferromagnetic layer may include a Mn-containing layer having a Mn content of more than 50 atomic% between the first PtMn layer and the ferromagnetic layer.
- a plurality of layers may be laminated on the Mn-containing layer.
- the Mn-containing layer may include at least one layer selected from the group consisting of IrMn layer and Mn layer.
- the thickness of the Mn-containing layer May be preferably 12 ⁇ or less.
- the thickness of the second PtMn layer is more than 0 ⁇ and less than 60 ⁇ , and the thickness of the second PtMn layer is preferably 15 ⁇ or more and 55 ⁇ or less. There is. In the above exchange coupling film, it may be preferable that the thickness of the PtCr layer is 100 ⁇ or more, and that the total thickness of the antiferromagnetic layer is 200 ⁇ or less.
- the above-mentioned exchange coupling film and a free magnetic layer are laminated, and the ferromagnetic layer of the exchange coupling film constitutes at least a part of a pinned magnetic layer.
- a resistance effect element is provided.
- the present invention provides, as another aspect, a magnetic detection device including the above magnetoresistive effect element.
- the above magnetic detection device includes a plurality of the magnetoresistive effect elements on the same substrate, and the plurality of magnetoresistive effect elements may include those having different fixed magnetization directions of the fixed magnetic layer. Good.
- an exchange coupling film having excellent resistance to a strong magnetic field is provided. Therefore, by using the exchange coupling film of the present invention, it is possible to provide a stable magnetic detection device even when placed in a strong magnetic field environment.
- Explanatory drawing which shows the membrane structure of the exchange coupling membrane 70 of the 3rd Embodiment of this invention
- Explanatory drawing which shows the film structure of the exchange coupling film 71 which concerns on one of the modifications of the 3rd Embodiment of this invention
- Explanatory drawing which shows the membrane structure of the exchange coupling membrane 72 which concerns on the other one of the modifications of the 3rd Embodiment of this invention
- Explanatory drawing which shows the film structure of the exchange coupling film 73 which concerns on another one of the modification of the 3rd Embodiment of this invention
- Explanatory drawing which shows the film structure of the laminated body 221 which concerns on Example 21.
- FIG. 2 shows a film structure of a magnetic detection element 11 using the exchange coupling film 10 according to the first embodiment of the present invention.
- the magnetic detection element 11 includes a base layer 1, an antiferromagnetic layer 2, a fixed magnetic layer 3 including a ferromagnetic layer, a nonmagnetic material layer 4, a free magnetic layer 5 and a protective layer 6 which are stacked in this order from the surface of the substrate SB.
- the film is formed (so-called bottom type).
- the IrMn layer 2a, the first PtMn layer 2b, the PtCr layer 2c, and the second PtMn layer 2d are arranged in this order, and the IrMn layer 2a is close to the ferromagnetic layer (the pinned magnetic layer 3).
- Each of these layers is formed by, for example, a sputtering process or a CVD process, and an annealing treatment is performed after the film formation, so that exchange coupling occurs between the antiferromagnetic layer 2 and the pinned magnetic layer 3.
- the antiferromagnetic layer 2 and the pinned magnetic layer 3 are the exchange coupling film 10 according to the first embodiment of the invention.
- the magnetic detection element 11 is a laminated element using a so-called single spin valve type giant magnetoresistive effect (GMR effect), and has a magnetization vector that changes with the fixed magnetization vector of the fixed magnetic layer 3 and the external magnetic field of the free magnetic layer 5.
- the electrical resistance changes in relation to the vector of.
- the substrate SB for example, a substrate in which an alumina layer is formed on a silicon substrate is used.
- the underlayer 1 is formed of NiFeCr alloy (nickel/iron/chromium alloy), Cr, Ta, or the like.
- a NiFeCr alloy is preferable in order to increase the magnetic field (hereinafter, also appropriately referred to as “Hex”) in which the magnetization direction of the pinned magnetic layer 3 is reversed.
- the antiferromagnetic layer 2 has a structure in which an IrMn layer 2a, a first PtMn layer 2b, a PtCr layer 2c, and a second PtMn layer 2d are stacked.
- the exchange coupling magnetic field Hex becomes large, and the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc tends to be 1 or more. Therefore, it is possible to obtain the exchange coupling film 10 having excellent resistance to a strong magnetic field.
- the thickness of the IrMn layer 2a is preferably 12 ⁇ or less, more preferably 4 ⁇ or more and 10 ⁇ or less. By setting the thickness of the IrMn layer 2a within this range, the exchange coupling magnetic field Hex becomes large, and Hex/Hc can also be increased. Moreover, since the thickness of the IrMn layer 2a is in this range, the variation in the thickness of the first PtMn layer 2b is unlikely to affect the exchange coupling magnetic field Hex or Hex/Hc.
- the thickness of the second PtMn layer 2d is preferably more than 0 ⁇ and less than 60 ⁇ , more preferably 10 ⁇ or more and 50 ⁇ or less, or even more preferably 15 ⁇ or more and 55 ⁇ or less, and particularly preferably 20 ⁇ or more and 50 ⁇ or less. .. When the thickness of the second PtMn layer 2d is in this range, the exchange coupling magnetic field Hex becomes large, and Hex/Hc can also be increased.
- the thickness of the PtCr layer 2c is preferably 100 ⁇ or more, more preferably 110 ⁇ or more. When the PtCr layer 2c is 100 ⁇ or more, the exchange coupling magnetic field Hex becomes large, and Hex/Hc can also be increased.
- the upper limit of the thickness of the PtCr layer 2c may be preferably 200 ⁇ or less from the viewpoint of production efficiency and the like.
- the total thickness of the antiferromagnetic layer 2 is preferably 200 ⁇ or less. Even if the total thickness of the antiferromagnetic layer 2 is 200 ⁇ or less, the exchange coupling magnetic field Hex can be increased, so that the production efficiency of the exchange coupling film 10 can be increased.
- the antiferromagnetic layer 2 is annealed to be ordered, and exchange coupling is generated between the antiferromagnetic layer 2 and the pinned magnetic layer 3 (interface) made of a ferromagnetic layer.
- the magnetic field based on this exchange coupling (exchange coupling magnetic field Hex) makes it difficult for the exchange coupling film 10 to reverse its magnetization direction even when an external magnetic field is applied, and improves the strong magnetic field resistance.
- the PtCr layer 2c of the antiferromagnetic layer 2 the first PtMn layer 2b and the IrMn layer 2a, and the second PtMn layer 2d.
- Each atom (Pt, Cr, Mn, Ir) contained in is mutually diffused.
- the fixed magnetic layer 3 is formed of a ferromagnetic CoFe alloy (cobalt-iron alloy).
- the CoFe alloy has a high coercive force by increasing the Fe content.
- the fixed magnetic layer 3 is a layer that contributes to the giant magnetoresistive effect of the spin valve type, and the direction in which the fixed magnetization direction P of the fixed magnetic layer 3 extends is the sensitivity axis direction of the magnetic detection element 11. From the viewpoint of enhancing the strong magnetic field resistance of the exchange coupling film 10, it may be preferable that the film thickness of the pinned magnetic layer 3 is 12 ⁇ or more and 30 ⁇ or less.
- the nonmagnetic material layer 4 can be formed by using Cu (copper) or the like.
- the material and structure of the free magnetic layer 5 are not limited, for example, a CoFe alloy (cobalt/iron alloy), a NiFe alloy (nickel/iron alloy), or the like can be used as the material, and the free magnetic layer 5 has a single-layer structure. It can be formed as a laminated structure, a laminated ferri structure, or the like.
- the protective layer 6 can be formed using Ta (tantalum) or the like.
- FIG. 3 is an explanatory diagram showing the film structure of the magnetic detection element 21 using the exchange coupling film 20 according to the second embodiment of the present invention.
- the exchange coupling film 20 is formed by joining the fixed magnetic layer 3 having the self-pinned structure and the antiferromagnetic layer 2. Further, the non-magnetic material layer 4 and the free magnetic layer 5 are formed closer to the substrate SB than the fixed magnetic layer 3 (so-called top type), which is different from the magnetic detection element 11 of FIG.
- the magnetic detection element 21 is also a laminated element using a so-called single spin valve type giant magnetoresistive effect.
- the electrical resistance changes depending on the relative relationship between the fixed magnetization vector of the first magnetic layer 3A of the fixed magnetic layer 3 and the magnetization vector of the free magnetic layer 5 which changes according to the external magnetic field.
- the pinned magnetic layer 3 has a self-pinning structure including a first magnetic layer 3A and a second magnetic layer 3C, and a non-magnetic intermediate layer 3B located between these two layers.
- the fixed magnetization direction P1 of the first magnetic layer 3A and the fixed magnetization direction P2 of the second magnetic layer 3C are antiparallel due to the interaction.
- the fixed magnetization direction P1 of the first magnetic layer 3A adjacent to the nonmagnetic material layer 4 is the fixed magnetization direction of the fixed magnetic layer 3.
- the direction in which the fixed magnetization direction P1 extends is the sensitivity axis direction of the magnetic detection element 11.
- the first magnetic layer 3A and the second magnetic layer 3C are made of a FeCo alloy (iron/cobalt alloy).
- the FeCo alloy has a higher coercive force by increasing the Fe content.
- the first magnetic layer 3A adjacent to the nonmagnetic material layer 4 is a spin-valve type layer that contributes to the giant magnetoresistive effect.
- the nonmagnetic intermediate layer 3B is made of Ru (ruthenium) or the like.
- the thickness of the nonmagnetic intermediate layer 3B made of Ru is preferably 3 to 5 ⁇ or 8 to 10 ⁇ .
- a plurality of types of metals forming the alloy (Pt and Cr in the case of the PtCr layer 2c) are simultaneously supplied.
- a plurality of kinds of metals forming the alloy may be alternately supplied.
- a specific example of the former is simultaneous sputtering of a plurality of types of metals forming an alloy, and a specific example of the latter is an alternate lamination of metal films of different types.
- Simultaneous feeding of the multiple metals forming the alloy may be preferred for increasing Hex over alternating feeding.
- FIG. 17 is an explanatory view showing the film configuration of the magnetic detection element 110 using the exchange coupling film 70 according to the third embodiment of the present invention.
- the layers having the same functions as those of the magnetic detection element 11 shown in FIG. the non-magnetic material layer 4 and the free magnetic layer 5 are common to the magnetic sensing element 11 of FIG. 2 in that they are formed farther to the substrate SB than the fixed magnetic layer 3 (so-called bottom type).
- the first PtMn layer 8b, the PtCr layer 8c, and the second PtMn layer 8d are laminated, and the thickness D3 of the PtCr layer 8c is the thickness D2 of the first PtMn layer 8b and the second PtMn layer 8b.
- the PtMn layer 8d has a structure thicker than any of the thicknesses D4. With such a structure, the exchange coupling magnetic field Hex becomes particularly large, and the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc tends to be larger than 1. Therefore, the exchange coupling film 70 excellent in strong magnetic field resistance can be obtained.
- the blocking temperature Tb of the exchange coupling film 70 according to the third embodiment may tend to be higher than the blocking temperature Tb of the exchange coupling film 10 according to the first embodiment.
- the thickness D4 of the second PtMn layer 8d is preferably more than 0 ⁇ and less than 60 ⁇ , more preferably 10 ⁇ or more and 50 ⁇ or less, or even more preferably 15 ⁇ or more and 55 ⁇ or less, and particularly preferably 20 ⁇ or more and 50 ⁇ or less.
- the ratio of the thickness D3 of the PtCr layer 8c to the thickness D2 of the first PtMn layer 8b is preferably about 2 to 10 times from the viewpoint of increasing the exchange coupling magnetic field Hex or Hex/Hc. There are cases.
- the ratio of the thickness D3 of the PtCr layer 8c to the thickness D4 of the second PtMn layer 8d is preferably about 2 to 10 times from the viewpoint of increasing the exchange coupling magnetic field Hex or Hex/Hc. There are cases.
- the thickness of the PtCr layer 8c is preferably 100 ⁇ or more, more preferably 110 ⁇ or more.
- the exchange coupling magnetic field Hex is increased and Hex/Hc can be increased.
- the upper limit of the thickness of the PtCr layer 8c may be preferably 200 ⁇ or less from the viewpoint of production efficiency and the like.
- the total thickness of the antiferromagnetic layer 2 is preferably 200 ⁇ or less. Even if the total thickness of the antiferromagnetic layer 2 is 200 ⁇ or less, the exchange coupling magnetic field Hex can be increased, so that the production efficiency of the exchange coupling film 70 can be increased.
- the antiferromagnetic layer 80 is annealed to be ordered, and exchange coupling is generated between the antiferromagnetic layer 80 and the pinned magnetic layer 3 formed of the ferromagnetic layer (interface).
- the magnetic field based on this exchange coupling (exchange coupling magnetic field Hex) makes it difficult for the exchange coupling film 10 to reverse the magnetization direction even when an external magnetic field is applied, and improves the strong magnetic field resistance.
- each layer constituting the antiferromagnetic layer 80 first PtMn layer 8b, PtCr layer 8c, and second PtMn layer 8d.
- the Mn content is more than 50 atomic% between the first PtMn layer 8b and the pinned magnetic layer 3. It may have the Mn-containing layer 8a.
- the Mn-containing layer 8a may have a plurality of layers stacked.
- the Mn-containing layer 8a may include at least one layer selected from the group consisting of an IrMn layer and a Mn layer.
- the thickness of the Mn-containing layer 8a is preferably 12 ⁇ or less, and more preferably 4 ⁇ or more and 10 ⁇ or less. By setting the thickness of the IrMn layer 2a within this range, the exchange coupling magnetic field Hex becomes large, and Hex/Hc can also be increased. Further, since the thickness of the Mn-containing layer 8a is in this range, the variation in the thickness of the first PtMn layer 2b hardly affects the exchange coupling magnetic field Hex or Hex/Hc.
- FIG. 19 and FIG. 20 show the film configuration of the magnetic detection elements 112 and 113 using the exchange coupling films 72 and 73 of the top type in which the fixed magnetic layer 3 has a self-pinning structure.
- FIG. 4 shows a magnetic sensor (magnetic detection device) 30 in which the magnetic detection elements 11 shown in FIG. 2 are combined.
- the magnetic detection elements 11 having different fixed magnetization directions P are distinguished by giving different reference numerals 11Xa, 11Xb, 11Ya, and 11Yb, respectively.
- the magnetic detection elements 11Xa, 11Xb, 11Ya, 11Yb are provided on the same substrate.
- the magnetic sensor 30 shown in FIG. 4 has a full bridge circuit 32X and a full bridge circuit 32Y.
- the full bridge circuit 32X includes two magnetic detection elements 11Xa and two magnetic detection elements 11Xb
- the full bridge circuit 32Y includes two magnetic detection elements 11Ya and two magnetic detection elements 11Yb.
- Each of the magnetic detection elements 11Xa, 11Xb, 11Ya, 11Yb has the film structure of the exchange coupling film 10 of the magnetic detection element 11 shown in FIG. Unless otherwise specified, these will be appropriately referred to as magnetic detection elements 11 hereinafter.
- the full-bridge circuit 32X and the full-bridge circuit 32Y use the magnetic detection elements 11 having different fixed magnetization directions shown by arrows in FIG. 4 in order to make the detection magnetic field directions different, and detect the magnetic field.
- the mechanism is the same. Therefore, a mechanism for detecting a magnetic field using the full bridge circuit 32X will be described below.
- the full bridge circuit 32X is configured by connecting a first series section 32Xa and a second series section 32Xb in parallel.
- the first serial portion 32Xa is configured by connecting the magnetic detection element 11Xa and the magnetic detection element 11Xb in series
- the second serial portion 32Xb is configured by connecting the magnetic detection element 11Xb and the magnetic detection element 11Xa in series. Is configured.
- the power supply voltage Vdd is applied to the power supply terminal 33 common to the magnetic detection element 11Xa forming the first series section 32Xa and the magnetic detection element 11Xb forming the second series section 32Xb.
- the ground terminal 34 common to the magnetic detection element 11Xb forming the first series portion 32Xa and the magnetic detection element 11Xa forming the second series portion 32Xb is set to the ground potential GND.
- (OutX2) is obtained as the detection output (detection output voltage) VXs in the X direction.
- the full-bridge circuit 32Y also operates in the same manner as the full-bridge circuit 32X, so that the output potential (OutY1) of the middle point 35Ya of the first series section 32Ya and the output potential of the middle point 35Yb of the second series section 32Yb ( A differential output (OutY1)-(OutY2) from OutY2) is obtained as a detection output (detection output voltage) VYs in the Y direction.
- the direction of the free magnetic layer 5 of each magnetic detection element 11 changes so as to follow the direction of the external magnetic field H.
- the resistance value changes due to the vector relationship between the fixed magnetization direction P of the fixed magnetic layer 3 and the magnetization direction of the free magnetic layer 5.
- the sensitivity axis direction and the direction of the external magnetic field H coincide with each other, so that the electric resistance value decreases.
- the detection output voltage VYs is zero.
- the detection output voltages VXs and VYs of the full bridge circuit 32X and the full bridge circuit 32Y also change accordingly. Therefore, the moving direction and the moving amount (relative position) of the detection target can be detected based on the detection output voltages VXs and VYs obtained from the full bridge circuit 32X and the full bridge circuit 32Y.
- FIG. 4 shows a magnetic sensor 30 configured to detect a magnetic field in the X direction and the Y direction orthogonal to the X direction.
- the configuration may be such that only the full bridge circuit 32X or the full bridge circuit 32Y that detects only the magnetic field in the X direction or the Y direction is provided.
- FIG. 5 shows a planar structure of the magnetic detection element 11Xa and the magnetic detection element 11Xb. 4 and 5, the BXa-BXb direction is the X direction. 5A and 5B, the fixed magnetization direction P of the magnetic detection elements 11Xa and 11Xb is indicated by an arrow. In the magnetic detection element 11Xa and the magnetic detection element 11Xb, the fixed magnetization direction P is the X direction, which is opposite to each other.
- the magnetic detection element 11Xa and the magnetic detection element 11Xb have stripe-shaped element portions 12.
- the longitudinal direction of the element portion 12 is oriented in the BYa-BYb direction.
- the plurality of element parts 12 are arranged in parallel, the right ends of the adjacent element parts 12 in the figure are connected via the conductive part 13a, and the left ends of the adjacent element parts 12 in the figure are connected via the conductive part 13b.
- the conductive portions 13a and 13b are alternately connected, and the element portion 12 is connected in a so-called meander shape.
- the conductive portion 13a in the lower right portion of the drawing is integrated with the connection terminal 14a
- the conductive portion 13b in the upper left portion of the drawing is integrated with the connection terminal 14b.
- Each element unit 12 is configured by laminating a plurality of metal layers (alloy layers).
- FIG. 2 shows the laminated structure of the element portion 12.
- Each element unit 12 may have a laminated structure shown in FIG.
- the magnetic detection element 11 can be replaced with the magnetic detection element 21 of the second embodiment shown in FIG.
- the IrMn layer 2a is in contact with the pinned magnetic layer 3, that is, the IrMn layer 2a is directly laminated on the laminated pinned magnetic layer 3, but the IrMn layer 2a is Another layer containing Mn (a Mn layer and a PtMn layer are exemplified) may be laminated between and the fixed magnetic layer 3.
- the ferromagnetic layer in contact with the antiferromagnetic layer is not limited to the pinned magnetic layer.
- the exchange coupling film according to the present invention may be composed of a ferromagnetic layer and at least a part of the free magnetic layer and the antiferromagnetic layer.
- a giant magnetoresistive (GMR) element is exemplified as the magnetic detection element including the exchange coupling film according to the present invention, but the magnetic detection element including the exchange coupling film according to the present invention is a tunnel magnetic resistance. It may be an effect (TMR) element.
- Examples 1 to 7 and Comparative Examples 1 to 10-2 A laminate 22 (see FIG. 6) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 40.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 22 is annealed at 350° C. for 20 hours in a magnetic field of 15 kOe to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 2 which are ferromagnetic layers, and the laminated body 22 including the exchange coupling film 40 is obtained.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(20)]/Fixed magnetic layer 3: Co 40 at% Fe 60at% (18.5) / antiferromagnetic layer 2 [IrMn layer 2a: Ir 22at% Mn 78at% (d1) / first PtMn layer 2b: Pt 50at% Mn 50at% (d2) / PtCr layer 2c: Pt 51 at% Cr 49 at% (d3)/second PtMn layer 2d: Pt 50 at% Mn 50 at% (d4)]/protective layer 6: Ta(100)
- the thickness d1 of the IrMn layer 2a was changed in the range of 0 ⁇ to 8 ⁇ .
- the thickness d2 of the first PtMn layer 2b was changed in the range of 0 ⁇ to 300 ⁇ .
- the thickness d3 of the PtCr layer 2c was changed in the range of 0 ⁇ to 300 ⁇ .
- the thickness D1 of the second PtMn layer 2d was changed in the range of 0 ⁇ to 180 ⁇ .
- Tables 1 and 2 show d1 to d4 and the total thickness (total thickness) of the antiferromagnetic layer 2 in each example and each comparative example.
- FIG. 7 is a graph based on the results of Table 1 and showing the dependence of the exchange coupling magnetic field Hex on the thickness (total thickness) of the antiferromagnetic layer 2.
- FIG. 8 is based on the results of Table 1, and is a graph showing the dependence of the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc on the thickness (total thickness) of the antiferromagnetic layer 2. is there.
- the total thickness is 200 ⁇ or less, but the exchange coupling magnetic field Hex is 1000 Oe or more. Hex/Hc became larger than 1. Therefore, the magnetic detection element (for example, the magnetoresistive effect element) including the exchange coupling film according to Example 1 can exhibit excellent magnetic characteristics even under a high temperature environment or a strong magnetic field environment.
- the antiferromagnetic layer is composed of the PtMn layer (Comparative Example 1 and Comparative Example 2) or the PtCr layer (Comparative Example 3), the exchange coupling magnetic field Hex is relative to the coercive force Hc. Hex/Hc was less than 1.
- the thickness of the PtCr layer 2c is When it becomes smaller, the exchange coupling magnetic field Hex tends to become smaller, and Hex/Hc was about 1.0 or less.
- FIG. 9 is a graph based on the results of Table 2 and showing the dependence of the exchange coupling magnetic field Hex on the thickness d4 of the second PtMn layer 2d.
- FIG. 10 is based on the results of Table 2, and is a graph showing the dependence of the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc on the thickness d4 of the second PtMn layer 2d.
- the thickness d4 of the second PtMn layer 2d is more than 0 ⁇ and less than 60 ⁇ , preferably the thickness d4 of the second PtMn layer 2d is more than 10 ⁇ and less than 60 ⁇ .
- the thickness d4 of the second PtMn layer 2d is 15 ⁇ or more and 55 ⁇ or less, and particularly preferably the thickness d4 of the second PtMn layer 2d is 20 ⁇ or more and 50 ⁇ or less (Examples) 1 to 3), the exchange coupling magnetic fields Hex and Hex/Hex/Hex/Hex/Hex/ It was confirmed that Hc was remarkably high.
- the thickness d4 of the second PtMn layer 2d is 60 ⁇ or more (Examples 4 to 6)
- the antiferromagnetic layer 2 has the same thickness (total thickness), but the second PtMn layer 2d has the same thickness.
- the exchange coupling magnetic field Hex is higher than that in the case where the antiferromagnetic layer 2 is not provided (Comparative Example 7) and the case where the antiferromagnetic layer 2 has the same thickness (total thickness) but has a laminated structure of an IrMn layer and a PtMn layer (Comparative Example 9). Was confirmed to be high.
- Laminates 22 and 221 (see FIGS. 6 and 21) having the following film configurations were manufactured for the purpose of evaluating the characteristics of the exchange coupling films 40 and 74.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 22 is annealed in a magnetic field of 10 kOe at 350° C. for 20 hours to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 2 made of ferromagnetic layers to obtain the laminated body 22 including the exchange coupling film 40.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(20)]/Fixed magnetic layer 3: Co 40 at% Fe 60at% (100) / antiferromagnetic layer 2 [IrMn layer 2a: Ir 22at% Mn 78at% (d1) / first PtMn layer 2b: Pt 50at% Mn 50at% (d2) / PtCr layer 2c: Pt 51 at% Cr 49 at% (d3)/second PtMn layer 2d: Pt 50 at% Mn 50 at% (d4)]/protective layer 6: [Ru(20)/Ta(100)]
- the thickness d1 of the IrMn layer 2a was changed in the range of 0 ⁇ to 80 ⁇ .
- the thickness d2 of the first PtMn layer 2b was changed in the range of 0 ⁇ to 300 ⁇ .
- the thickness d3 of the PtCr layer 2c was changed in the range of 0 ⁇ to 250 ⁇ .
- the thickness d4 of the second PtMn layer 2d was changed in the range of 0 ⁇ to 30 ⁇ .
- Table 3 shows d1 to d4 and the total thickness (total thickness) of the antiferromagnetic layer 2 in each example and each comparative example.
- FIG. 11 is a graph based on the results of Table 3 and showing the dependence of the exchange coupling magnetic field Hex on the thickness (total thickness) of the antiferromagnetic layer 2.
- FIG. 12 is based on the results of Table 3, and is a graph showing the dependence of the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc on the thickness (total thickness) of the antiferromagnetic layer 2. is there.
- the anticoupling film 40 having the configurations according to Comparative Examples 11 to 14 was used.
- the exchange coupling magnetic field Hex was larger than that of the exchange coupling film 40 including the ferromagnetic layer 2.
- the exchange coupling magnetic field Hex increases as the thickness d3 of the PtCr layer 2c increases, and Hex/Hc also increases. It was confirmed that Hex/Hc was larger than 1 in the exchange coupling film 40 including the antiferromagnetic layer 2. Therefore, the magnetic detection element (for example, the magnetoresistive effect element) including the exchange coupling film according to the eleventh to fourteenth embodiments can appropriately perform the detection function even under the strong magnetic field environment, that is, the strong magnetic field. Have resistance.
- the magnetic detection elements including the exchange coupling films according to Examples 12 to 14 have excellent strong magnetic field resistance because the magnetizations are aligned in the direction based on the exchange coupling magnetic field Hex when the application of the external magnetic field is released. ..
- the blocking temperature Tb (unit: °C) of each example was calculated based on the results of Tables 4 to 12. The results are shown in Table 13. As shown in Table 13, the blocking temperature Tb of the exchange coupling film 40 (Examples 11 to 14) including the IrMn layer 2a as the Mn-containing layer was 410°C. The blocking temperature Tb of the exchange coupling film 74 (exchange coupling film 74 according to Example 15) not including the Mn-containing layer was 510°C. Therefore, it has been suggested that it is preferable to use the exchange coupling film 40 having no Mn-containing layer when it is used in a particularly severe high temperature environment.
- FIG. 13 is a graph showing the measured temperature dependence of the exchange coupling magnetic field Hex for the exchange coupling films 40 according to Comparative Examples 11 to 13 and Example 12.
- FIG. 14 is a graph showing the measured temperature dependence of the room-temperature-standardized exchange coupling magnetic field for the exchange coupling films 40 according to Comparative Examples 11 to 13 and Example 12.
- FIG. 15 is a graph showing the measured temperature dependence of the exchange coupling magnetic field Hex for Comparative Examples 14 and 15, and the exchange coupling films 40 according to Examples 11 to 14.
- FIG. 16 is a graph showing the measured temperature dependence of the room-temperature-standardized exchange coupling magnetic field for the exchange coupling films 40 according to Comparative Examples 14 and 15 and Examples 11 to 14.
- the exchange coupling magnetic field Hex was 50 Oe or less, but by exchanging a part of the PtCr layer on the fixed magnetic layer 3 side with the PtMn layer, the exchange coupling magnetic field Hex could be increased to about 100 Oe or less. (Comparative example 12). Further, by replacing a part of the PtMn layer on the pinned magnetic layer 3 side with the IrMn layer, the exchange coupling magnetic field Hex could be increased to about 150 Oe or less (Comparative Example 13). However, the blocking temperature Tb of the exchange coupling film 40 was lowered by about 50°C. In addition, the exchange coupling magnetic field Hex could be increased to about 200 Oe by replacing a part of the PtCr layer on the protective layer 6 side with the PtMn layer (Example 12).
- FIGS. 15 and 16 compare the antiferromagnetic layer 2 having the structure according to the example and the case where the film located between the PtCr layer and the pinned magnetic layer 3 constitutes the antiferromagnetic layer 2 by itself. It is a thing. Specifically, in Comparative Example 14, the antiferromagnetic layer 2 is a PtMn layer, and in Comparative Example 15, the antiferromagnetic layer 2 is an IrMn layer. As is particularly clear in FIG. 16, the blocking temperature Tb of the exchange coupling film 40 according to the example was about 410° C. regardless of the thickness of the PtCr layer.
- the blocking temperature Tb of the exchange coupling film 40 including the antiferromagnetic layer 2 made of the PtMn layer and the antiferromagnetic layer 2 made of the IrMn layer was lower than the blocking temperature Tb of the exchange coupling film 40 according to the example. .. Therefore, the exchange coupling membrane according to the present invention can function more stably in a high temperature environment than the exchange coupling membrane according to the related art.
- the blocking temperature Tb of the exchange coupling film 74 according to the fifteenth embodiment is higher than the blocking temperature Tb of the exchange coupling film 40, and the exchange coupling film 74 according to the fifteenth embodiment can properly function even in a severe high temperature environment. Be expected.
- Example 21 A laminate 221 (see FIG. 21) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 74.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 221 is annealed at 350° C. for 20 hours in a magnetic field of 15 kOe to fix the magnetizations of the pinned magnetic layer 3 made of a ferromagnetic layer and the antiferromagnetic layer 84 to obtain the laminated body 221 including the exchange coupling film 74.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 40 at% Fe 60at% (18)/antiferromagnetic layer 84 [first PtMn layer 8b: Pt 50at % Mn 50at % (16)/PtCr layer 8c: Pt 51at% Cr 49at% (130)/second PtMn layer 8d: Pt 50at% Mn 50at% (30)]/protective layer 6: Ta(100)
- Example 22 to 26 A laminate 22 (see FIG. 6) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 40.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 22 is annealed at 350° C. for 20 hours in a magnetic field of 15 kOe to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 2 which are ferromagnetic layers, and the laminated body 22 including the exchange coupling film 40 is obtained.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 40 at% Fe 60at% (18)/antiferromagnetic layer 2 [IrMn layer 2a: Ir 20at% Mn 80at% (d1)/first PtMn layer 2b: Pt 50at % Mn 50at % (16)/PtCr layer 2c: Pt 51at% Cr 49 at% (130)/second PtMn layer 2d: Pt 50 at% Mn 50 at% (30)]/protective layer 6: Ta(100)
- the thickness d1 of the IrMn layer 2a was changed in the range of 2 ⁇ to 10 ⁇ .
- Table 14 shows d1 of each example.
- Example 27 to 31 A laminate 222 (see FIG. 22) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 75.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 222 is annealed at 350° C. for 20 hours in a magnetic field of 15 kOe to fix the magnetizations of the pinned magnetic layer 3 made of a ferromagnetic layer and the antiferromagnetic layer 85 to obtain a laminated body 222 including the exchange coupling film 75.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 40 at% Fe 60at% (18)/antiferromagnetic layer 85 [Mn layer 8a1:Mn(D1)/first PtMn layer 8b:Pt 50at % Mn 50at % (16)/PtCr layer 8c:Pt 51at% Cr 49at% (130 )/Second PtMn layer 8d: Pt 50at% Mn 50at% (30)]/Protective layer 6: Ta(100)
- the thickness d1 of the Mn layer 2a1 was changed in the range of 2 ⁇ to 10 ⁇ .
- Table 14 shows d1 of each example.
- the exchange coupling films 74, 40, and 75 according to Examples 21 to 31 had a high exchange coupling magnetic field Hex. Hex/Hc was higher than 1 in each of the exchange coupling films 74, 40, and 75 according to Example 21 to Example 31. Therefore, the magnetic detection element (for example, a magnetoresistive effect element) including the exchange coupling film according to the twenty-first embodiment to the thirty-first embodiment can exhibit excellent magnetic characteristics even under a strong magnetic field environment.
- the magnetic detection element for example, a magnetoresistive effect element
- Example 41 to Example 48 and Comparative Example 41 to Comparative Example 47 A laminate 221 (see FIG. 21) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 74.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 221 is annealed at 350° C. for 20 hours in a magnetic field of 10 kOe to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 84, which are ferromagnetic layers, to obtain the laminated body 221 including the exchange coupling film 74.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 90 at% Fe 10at% (100)/antiferromagnetic layer 84 [first PtMn layer 8b: Pt 50at % Mn 50at % (D2)/PtCr layer 8c: Pt 51at% Cr 49at% (D3)/second PtMn layer 8d: Pt 50at% Mn 50at% (D4)]/protective layer 6: Ta(100)
- the thickness D2 of the first PtMn layer 8b was set to 0 ⁇ or 20 ⁇ .
- the thickness D3 of the PtCr layer 8c was changed in the range of 0 ⁇ to 180 ⁇ .
- the thickness D4 of the second PtMn layer 8d was changed in the range of 0 ⁇ to 160 ⁇ .
- the total thickness (total thickness) of the antiferromagnetic layer 84 was fixed at 180 ⁇ . Table 15, D2, D3 and D4 of each example is shown.
- the magnetization curve of the exchange coupling film 74 according to each example was measured using a VSM (vibrating sample magnetometer), and from the obtained hysteresis loop, the exchange coupling magnetic field Hex (unit: Oe) and the coercive force Hc (unit: : Oe), and the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc.
- VSM vibrating sample magnetometer
- the exchange coupling films 74 according to Examples 41 to 48 had a high exchange coupling magnetic field Hex.
- the Hex/Hc of each of the exchange coupling films 74 of Examples 41 to 48 was higher than that of Comparative Example 41 (0.10).
- the thickness D4 of the second PtMn layer 8d is more than 10 ⁇ and less than 60 ⁇ , preferably the thickness D4 of the second PtMn layer 8d is 15 ⁇ or more and 55 ⁇ or less, more preferably It was confirmed that when the thickness D4 of the PtMn layer 8d of No. 2 is 20 ⁇ or more and 50 ⁇ or less (Examples 42 to 44), the exchange coupling magnetic fields Hex and Hex/Hc are significantly increased. ..
- the magnetic detection element for example, a magnetoresistive effect element
- the exchange coupling film 74 according to Examples 41 to 48 can exhibit excellent magnetic characteristics even under a strong magnetic field environment.
- the first PtMn layer 8b located on the pinned magnetic layer 3 side in the configuration of Example 43 in which the exchange coupling magnetic fields Hex and Hex/Hc are remarkably high is a PtCr layer. It was confirmed that both the exchange coupling magnetic field Hex and the coercive force Hc are remarkably reduced by changing the values.
- the first PtMn layer 8b having a thickness of 20 ⁇ which is an extremely thin thickness in comparison with the total thickness 180 ⁇ of the antiferromagnetic layer 84, is particularly important for increasing the exchange coupling magnetic fields Hex and Hex/Hc. It was confirmed that they have various roles.
- Example 51 to Example 56 and Comparative Example 51 to Comparative Example 56 A laminate 221 (see FIG. 21) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 74.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 221 is annealed at 350° C. for 20 hours in a magnetic field of 15 kOe to fix the magnetizations of the pinned magnetic layer 3 made of a ferromagnetic layer and the antiferromagnetic layer 84 to obtain the laminated body 221 including the exchange coupling film 74.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 90 at% Fe 10 at% (X) or Co 40 at% Fe 60 at% (X)/antiferromagnetic layer 84 [first PtMn layer 8b: Pt 50 at% Mn 50 at% (D2)/PtCr layer 8c: Pt 51 at% Cr 49 at% ( D3)/second PtMn layer 8d: Pt 50at% Mn 50at% (D4)]/protective layer 6: Ta(100)
- the thickness D2 of the first PtMn layer 8b was set to 20 ⁇ or 180 ⁇ .
- the thickness D3 of the PtCr layer 8c was 0 ⁇ or 130 ⁇ .
- the thickness D4 of the second PtMn layer 8d was 0 ⁇ or 30 ⁇ .
- the total thickness (total thickness) of the antiferromagnetic layer 84 was fixed at 180 ⁇ .
- the composition of the pinned magnetic layer 3 was Co 90 at% Fe 10 at% or Co 40 at% Fe 60 at%, and the thickness X of each was changed in the range of 18 ⁇ to 100 ⁇ . Table 16, shows D2, D3 and D4 and X of each example.
- the magnetization curve of the exchange coupling film 74 according to each example was measured using a VSM (vibrating sample magnetometer), and from the obtained hysteresis loop, the exchange coupling magnetic field Hex (unit: Oe) and the coercive force Hc (unit: : Oe), and the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc.
- VSM vibrating sample magnetometer
- the exchange coupling magnetic fields Hex and Hex/Hc tend to increase as the fixed magnetic layer 3 becomes thinner regardless of the composition of the fixed magnetic layer 3. It was Therefore, the magnetic detection element (for example, a magnetoresistive effect element) including the exchange coupling film 74 according to the examples 51 to 56 can exhibit excellent magnetic characteristics even under a strong magnetic field environment. In particular, when the thickness of the pinned magnetic layer 3 may be small, the exchange coupling magnetic fields Hex and Hex/Hc can be increased by adjusting the thickness of the pinned magnetic layer 3.
- Example 61 to 78 and Comparative examples 61 and 62 A laminate 22 (see FIG. 6) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 40.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 22 is annealed at 350° C. for 20 hours in a magnetic field of 15 kOe to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 2 made of ferromagnetic layers to obtain the laminated body 222 including the exchange coupling film 40.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 90 at% Fe 10at% (100)/antiferromagnetic layer 2 [IrMn layer 2a: Ir 20at% Mn 80at% (8)/first PtMn layer 2b: Pt 50at % Mn 50at % (12)/PtCr layer 2c: Pt 51at% Cr 49 at% (d3)/second PtMn layer 2d:Pt 50 at% Mn 50 at% (d4)]/protective layer 6: Ta(100)
- the thickness d3 of the PtCr layer 2c is set to 130 ⁇ or 160 ⁇ .
- the thickness d4 of the second PtMn layer 2d was changed in the range of 0 ⁇ to 80 ⁇ .
- Table 17 shows d3 and d4 of each example.
- the magnetization curve of the exchange coupling film 40 according to each example was measured using a VSM (vibrating sample magnetometer), and from the obtained hysteresis loop, the exchange coupling magnetic field Hex (unit: Oe) and the coercive force Hc (unit: : Oe), and the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc.
- VSM vibrating sample magnetometer
- the exchange coupling magnetic fields Hex and Hex/Hc are irrespective of the thickness d3 of the PtCr layer 2c and when the second PtMn layer 2d is more than 10 ⁇ and less than 60 ⁇ . It tended to be higher. Further, when the second PtMn layer 2d is more than 10 ⁇ and less than 60 ⁇ , the value of the exchange coupling magnetic field Hex and Hex/Hc of the thickness d3 of the PtCr layer 2c is 130 ⁇ or 160 ⁇ . The values are almost equal. Therefore, it was confirmed that when the second PtMn layer 2d of the exchange coupling film 40 is more than 10 ⁇ and less than 60 ⁇ , the variation in the thickness of the PtCr layer 2c hardly affects the magnetic characteristics.
- the exchange coupling magnetic fields Hex and Hex/Hc tend to increase. As shown in Table 17 and FIGS. In the exchange coupling film 40 according to the example, there is a tendency that the exchange coupling magnetic fields Hex and Hex/Hc have a thickness region that specifically increases as the total thickness of the antiferromagnetic layer 2 increases.
- Laminates 22 and 221 (see FIGS. 6 and 21) having the following film configurations were manufactured for the purpose of characterization of the exchange coupling films 40 and 74.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminate 22 is annealed in a magnetic field of 15 kOe at 350° C. for 20 hours to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 2 made of ferromagnetic layers and to include the exchange coupling films 40 and 74. 221 was obtained.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(10)]/Fixed magnetic layer 3: Co 90 at% Fe 10at% (100)/antiferromagnetic layer 2 [IrMn layer 2a: Ir 20at% Mn 80at% (d1)/first PtMn layer 2b: Pt 50at % Mn 50at % (d2)/PtCr layer 2c: Pt 51at% Cr 49 at% (130)/second PtMn layer 2d: Pt 50 at% Mn 50 at% (30)]/protective layer 6: Ta(100)
- the magnetization curve of the exchange coupling film 40 according to each example was measured using a VSM (vibrating sample magnetometer), and from the obtained hysteresis loop, the exchange coupling magnetic field Hex (unit: Oe) and the coercive force Hc (unit: : Oe), and the ratio (Hex/Hc) of the exchange coupling magnetic field Hex to the coercive force Hc.
- VSM vibrating sample magnetometer
- the thickness d1 of the IrMn layer 2a is in the range of 12 ⁇ or less, even if the thickness d2 of the first PtMn layer 2b fluctuates, a high exchange coupling magnetic field is obtained. It was confirmed that Hex could be maintained. In particular, it was confirmed that a high exchange coupling magnetic field Hex and a high Hex/Hc (specifically, 1.0 or more) can be stably realized when the IrMn layer 2a is in the range of 4 ⁇ or more and 10 ⁇ or less. In other words, it was confirmed that when manufacturing the exchange coupling film 40, the tolerance of the thickness d2 of the first PtMn layer 2b can be set relatively loose.
- Example 111 to 128 and Comparative Examples 111 to 131 A laminate 22 (see FIG. 6) having the following film structure was manufactured for the purpose of evaluating the characteristics of the exchange coupling film 40.
- the numerical value in parentheses indicates the film thickness ( ⁇ ).
- the laminated body 22 is annealed in a magnetic field of 10 kOe at 350° C. for 20 hours to fix the magnetizations of the pinned magnetic layer 3 and the antiferromagnetic layer 2 made of ferromagnetic layers to obtain the laminated body 22 including the exchange coupling film 40.
- Substrate SB Silicon substrate having an alumina layer formed on the surface/Underlayer 1: NiFeCr(42)/Nonmagnetic material layer 4: [Cu(30)/Ru(20)]/Fixed magnetic layer 3: Co 90at% Fe 10at% (100) / antiferromagnetic layer 2 [IrMn layer 2a: Ir 22at% Mn 78at% (d1) / first PtMn layer 2b: Pt 50at% Mn 50at% (d2) / PtCr layer 2c: Pt 51 at% Cr 49 at% (d3)/second PtMn layer 2d: Pt 50 at% Mn 50 at% (d4)]/protective layer 6:/Ta(100)
- the thickness d1 of the IrMn layer 2a was changed in the range of 0 ⁇ to 8 ⁇ .
- the thickness d2 of the first PtMn layer 2b was changed in the range of 0 ⁇ to 300 ⁇ .
- the thickness d3 of the PtCr layer 2c was changed in the range of 0 ⁇ to 300 ⁇ .
- the thickness d4 of the second PtMn layer 2d was changed in the range of 0 ⁇ to 30 ⁇ .
- Table 19 shows the total thickness (total thickness) of the antiferromagnetic layer 2 and d1 to d4 of each example and each comparative example.
- the magnetization curve of the exchange coupling film 40 according to each of the examples and comparative examples was measured using a VSM (vibrating sample magnetometer), and the exchange coupling magnetic field Hex (unit: Oe) was obtained from the obtained hysteresis loop. .. The results are shown in Table 19 and FIG.
- the antiferromagnetic layer 2 does not have the IrMn layer 2a as the Mn-containing layer like the exchange coupling film 74.
- the exchange-coupling magnetic field Hex also increases as the thickness increases, and when the total thickness of the antiferromagnetic layer 2 is 300 ⁇ , the exchange-coupling magnetic field Hex is 500 Oe or more. Therefore, when strong magnetic field resistance is particularly required, the exchange coupling film 40 having no Mn-containing layer may be preferable.
- the magnitude of the exchange coupling magnetic field Hex is It becomes relatively less affected by the total thickness of the antiferromagnetic layer 2.
- the magnitude of the exchange coupling magnetic field Hex is stable in the range of 300 Oe to 350 Oe. It was confirmed that it was not easily affected by film variations.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Thin Magnetic Films (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
固定磁性層の磁化の向きが反転する磁界(Hex)が大きく強磁場耐性に優れる交換結合膜は、反強磁性層2と強磁性層を備える固定磁性層3とが積層され、反強磁性層2は、IrMn層2a、第1のPtMn層2b、PtCr層2cおよび第2のPtMn層2dが、この順番で積層された構造を有し、IrMn層2aが固定磁性層3に接していることを特徴とする交換結合膜10であって、第2のPtMn層2dの厚さd4が0Å超60Å未満であることが好ましい場合があり、PtCr層2cの厚さd3が100Å以上であることが好ましい場合があり、反強磁性層2の全体の厚さ(d1+d2+d3+d4)が200Å以下であることが好ましい場合がある。
Description
本発明は交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置に関する。
反強磁性層と固定磁性層とを備えた交換結合膜は、磁気抵抗効果素子や磁気検出装置として用いられる。特許文献1には、磁気記録用媒体において、強磁性膜としてのCo合金と、反強磁性膜としての種々の合金とを組み合わせることにより交換結合膜を構成できることが記載されている。反強磁性膜としては、CoMn、NiMn、PtMn、PtCrなどの合金が例示されている。
磁気検出装置は、磁気効果素子を基板に実装する際、はんだをリフロー処理(溶融処理)する必要があり、また、エンジンの周辺のような高温環境下において、用いられることがある。このため、磁気検出装置に用いられる交換結合膜は、広いダイナミックレンジで磁界を検出可能とするために、固定磁性層の磁化の方向が反転する磁界(Hex)が大きいことが好ましい。
また、近時、大出力モータなど強磁場発生源の近傍に配置されて強磁場が印加される環境であっても、固定磁性層の磁化の向きが影響を受けにくいこと、すなわち、強磁場耐性が求められている。
本発明は、固定磁性層など反強磁性層と交換結合する強磁性層の磁化の向きが反転する磁界(Hex)が大きく、ゆえに強磁場耐性に優れる交換結合膜、ならびにこれを用いた磁気抵抗効果素子および磁気検出装置を提供することを目的としている。
上記課題を解決するために提供される本発明は、一態様において、反強磁性層と強磁性層とが積層され、前記反強磁性層は、IrMn層、第1のPtMn層、PtCr層および第2のPtMn層が、この順番で前記IrMn層が前記強磁性層に近位になるように積層された構造を有することを特徴とする交換結合膜である。前記IrMn層は前記強磁性層に接するように積層されていてもよいし、前記IrMn層と前記強磁性層との間にさらにPtMn層が積層された構造を有していてもよい。
図1は、本発明に係る交換結合膜の磁化曲線のヒステリシスループを説明する図である。通常、軟磁性体のM-H曲線(磁化曲線)が作るヒステリシスループは、H軸とM軸との交点(磁界H=0A/m、磁化M=0A/m)を中心として対称な形状となるが、図1に示されるように、本発明に係る交換結合膜のヒステリシスループは、反強磁性層と交換結合する強磁性層を備える固定磁性層に対して交換結合磁界Hexが作用するため、交換結合磁界Hexの大きさに応じてH軸に沿ってシフトした形状となる。交換結合膜の固定磁性層は、この交換結合磁界Hexが大きいほど外部磁界が印加されても磁化の向きが反転しにくいため、良好な固定磁性層となる。
このH軸に沿ってシフトしたヒステリシスループの中心(この中心の磁界強度が交換結合磁界Hexに相当する。)とヒステリシスループのH軸切片との差によって定義される保磁力Hcが交換結合磁界Hexよりも小さい場合には、外部磁場が印加されて交換結合膜の固定磁性層がその外部磁場に沿った方向に磁化されたとしても、外部磁場の印加が終了すれば、保磁力Hcよりも相対的に強い交換結合磁界Hexによって、固定磁性層の磁化の方向を揃えることが可能となる。すなわち、交換結合磁界Hexと保磁力Hcとの関係がHex>Hcである場合には、交換結合膜は良好な強磁場耐性を有する。
本発明の一態様に係る交換結合膜は、反強磁性層が、IrMn層と第1のPtMn層とPtCr層と第2のPtMn層とが積層されてなる構成とすることにより、交換結合磁界Hexを大きくすることが実現される。また、本発明に係る交換結合膜は、第2のPtMn層が積層されていない場合との対比で、PtCr層の厚さが小さくても交換結合磁界Hexを高くすることができる。それゆえ、反強磁性層の全体の厚さ(総厚)を相対的に小さくすることができ、生産効率などの観点からも好ましい。
本発明は、他の一態様として、反強磁性層と強磁性層とが積層され、前記反強磁性層は、第1のPtMn層、PtCr層および第2のPtMn層が、この順番で前記第1のPtMn層が前記強磁性層に近位になるように積層され、前記PtCr層の厚さが前記第1のPtMn層の厚さおよび前記第2のPtMn層の厚さのいずれよりも厚い構造を有することを特徴とする交換結合膜を提供する。かかる積層構造体から形成された反強磁性層を備える交換結合膜は、交換結合磁界Hexが高く、かつ、保磁力Hcとの関係がHex>Hcとなりやすく、良好な強磁場耐性を有する。また、かかる交換結合膜はブロッキング温度が高くなる傾向を有する場合がある
上記の反強磁性層は、前記第1のPtMn層と前記強磁性層との間に、Mnの含有量が50原子%超であるMn含有層を有してなるものであってもよい。前記Mn含有層は複数の層が積層されていてもよい。前記Mn含有層は、IrMn層およびMn層からなる群から選ばれる少なくとも1層を含んでいてもよい。Mn含有層がIrMn層からなる場合や、IrMn層とPtMn層との積層体からなる場合に、上記の本発明の一態様に係る交換結合膜と同様の構成となる。反強磁性層を構成するために成膜された膜の厚さのばらつきが反強磁性層の特性(交換結合磁界Hexの大きさなど)に与える影響を抑える観点から、Mn含有層の厚さは12Å以下であることが好ましい場合がある。
上記の交換結合膜において、前記第2のPtMn層の厚さが0Å超60Å未満であることが好ましい場合があり、前記第2のPtMn層の厚さが15Å以上55Å以下であることが好ましい場合がある。上記の交換結合膜において、前記PtCr層の厚さが100Å以上であることが好ましい場合があり、前記反強磁性層の全体の厚さが200Å以下であることが好ましい場合がある。
本発明は、別の一態様として、上記の交換結合膜とフリー磁性層とが積層され、前記交換結合膜の強磁性層は、固定磁性層の少なくとも一部を構成することを特徴とする磁気抵抗効果素子を提供する。
本発明は、また別の一態様として、上記の磁気抵抗効果素子を備えていることを特徴とする磁気検出装置を提供する。
上記の磁気検出装置は、同一基板上に上記の磁気抵抗効果素子を複数備えており、複数の前記磁気抵抗効果素子には、前記固定磁性層の固定磁化方向が異なるものが含まれていてもよい。
本発明によれば、強磁場耐性に優れる交換結合膜が提供される。したがって、本発明の交換結合膜を用いれば、強磁場環境下に置かれても安定な磁気検出装置とすることが可能である。
<第1の実施形態>
図2に本発明の第1の実施形態に係る交換結合膜10を使用した磁気検出素子11の膜構成が示されている。
磁気検出素子11は、基板SBの表面から、下地層1、反強磁性層2、強磁性層からなる固定磁性層3、非磁性材料層4、フリー磁性層5および保護層6の順に積層されて成膜されている(いわゆるボトムタイプ)。反強磁性層2は、IrMn層2a、第1のPtMn層2b、PtCr層2cおよび第2のPtMn層2dが、この順番で、IrMn層2aが強磁性層(固定磁性層3)に近位になるように積層された積層構造を有する。IrMn層2aが固定磁性層3に接するように積層されていてもよい。これら各層は、例えばスパッタ工程やCVD工程で成膜され、成膜後にアニール処理が行われることにより反強磁性層2と固定磁性層3との間に交換結合が生じる。反強磁性層2と固定磁性層3とが本発明の第1の実施の形態の交換結合膜10である。
図2に本発明の第1の実施形態に係る交換結合膜10を使用した磁気検出素子11の膜構成が示されている。
磁気検出素子11は、基板SBの表面から、下地層1、反強磁性層2、強磁性層からなる固定磁性層3、非磁性材料層4、フリー磁性層5および保護層6の順に積層されて成膜されている(いわゆるボトムタイプ)。反強磁性層2は、IrMn層2a、第1のPtMn層2b、PtCr層2cおよび第2のPtMn層2dが、この順番で、IrMn層2aが強磁性層(固定磁性層3)に近位になるように積層された積層構造を有する。IrMn層2aが固定磁性層3に接するように積層されていてもよい。これら各層は、例えばスパッタ工程やCVD工程で成膜され、成膜後にアニール処理が行われることにより反強磁性層2と固定磁性層3との間に交換結合が生じる。反強磁性層2と固定磁性層3とが本発明の第1の実施の形態の交換結合膜10である。
磁気検出素子11は、いわゆるシングルスピンバルブ型の巨大磁気抵抗効果(GMR効果)を利用した積層素子であり、固定磁性層3の固定磁化のベクトルと、フリー磁性層5の外部磁界によって変化する磁化のベクトルとの相対関係で電気抵抗が変化する。
基板SBとして、例えばシリコン基板上にアルミナ層が形成されたものが用いられる。下地層1は、NiFeCr合金(ニッケル・鉄・クロム合金)、CrあるいはTaなどで形成される。本実施形態の交換結合膜10において固定磁性層3の磁化の向きが反転する磁界(以下、適宜「Hex」ともいう)を高くするために、NiFeCr合金が好ましい。
反強磁性層2は、IrMn層2aと第1のPtMn層2bとPtCr層2cと第2のPtMn層2dとが積層された構造を有する。このような構造を有することにより、交換結合磁界Hexが大きくなり、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)が1以上となりやすい。それゆえ、強磁場耐性に優れる交換結合膜10が得られる。
IrMn層2aの厚さは、12Å以下であることが好ましく、4Å以上10Å以下であることがより好ましい。IrMn層2aの厚さがこの範囲にあることにより、交換結合磁界Hexが大きくなり、Hex/Hcをも高めることができる。また、IrMn層2aの厚さがこの範囲にあることにより、第1のPtMn層2bの厚さのばらつきが、交換結合磁界HexやHex/Hcに影響を与えにくくなる。第2のPtMn層2dの厚さは、0Å超60Å未満であることが好ましく、10Å以上50Å以下であることまたは15Å以上55Å以下であることがより好ましく、20Å以上50Å以下であることが特に好ましい。第2のPtMn層2dの厚さがこの範囲にあることにより、交換結合磁界Hexが大きくなり、Hex/Hcをも高めることができる。
PtCr層2cの厚さは、100Å以上であることが好ましく、110Å以上であることがより好ましい。PtCr層2cが100Å以上であることにより、交換結合磁界Hexが大きくなり、Hex/Hcをも高めることができる。PtCr層2cの厚さの上限は、生産効率などの観点から、200Å以下であることが好ましい場合がある。
反強磁性層2の全体の厚さは、200Å以下であることが好ましい。反強磁性層2の全体の厚さが200Å以下であっても、交換結合磁界Hexを高めることが可能であるから、交換結合膜10の生産効率を高めることが可能である。
本実施形態では、反強磁性層2をアニール処理して規則化し、強磁性層からなる固定磁性層3との間(界面)で交換結合を生じさせる。この交換結合に基づく磁界(交換結合磁界Hex)によって交換結合膜10は外部磁場が印加されても磁化の向きが反転しにくくなって強磁場耐性が向上する。なお、交換結合膜10に交換結合磁界Hexを生じさせるために行うアニール処理の際に、反強磁性層2のPtCr層2c、第1のPtMn層2bおよびIrMn層2aならびに第2のPtMn層2dに含まれる各原子(Pt,Cr,Mn,Ir)は相互拡散する。
固定磁性層3は、強磁性のCoFe合金(コバルト・鉄合金)で形成される。CoFe合金は、Feの含有割合を高くすることにより、保磁力が高くなる。固定磁性層3はスピンバルブ型の巨大磁気抵抗効果に寄与する層であり、固定磁性層3の固定磁化方向Pが延びる方向が磁気検出素子11の感度軸方向である。交換結合膜10の強磁場耐性を高める観点から、固定磁性層3の膜厚は、12Å以上30Å以下であることが好ましい場合がある。
非磁性材料層4は、Cu(銅)などを用いて形成することができる。
フリー磁性層5は、その材料および構造が限定されるものではないが、例えば、材料としてCoFe合金(コバルト・鉄合金)、NiFe合金(ニッケル・鉄合金)などを用いることができ、単層構造、積層構造、積層フェリ構造などとして形成することができる。
保護層6は、Ta(タンタル)などを用いて形成することができる。
フリー磁性層5は、その材料および構造が限定されるものではないが、例えば、材料としてCoFe合金(コバルト・鉄合金)、NiFe合金(ニッケル・鉄合金)などを用いることができ、単層構造、積層構造、積層フェリ構造などとして形成することができる。
保護層6は、Ta(タンタル)などを用いて形成することができる。
<第2の実施形態>
図3に本発明の第2の実施形態の交換結合膜20を使用した磁気検出素子21の膜構成を示す説明図が示されている。本実施形態では、図2に示す磁気検出素子11と機能が同じ層に同じ符号を付して、説明を省略する。
第2の実施形態の磁気検出素子21では、交換結合膜20が、セルフピン止め構造の固定磁性層3と反強磁性層2とが接合されて構成されている。また、非磁性材料層4とフリー磁性層5が固定磁性層3よりも基板SBに近位に形成されている(いわゆるトップタイプ)点において、図2の磁気検出素子11と相違している。
図3に本発明の第2の実施形態の交換結合膜20を使用した磁気検出素子21の膜構成を示す説明図が示されている。本実施形態では、図2に示す磁気検出素子11と機能が同じ層に同じ符号を付して、説明を省略する。
第2の実施形態の磁気検出素子21では、交換結合膜20が、セルフピン止め構造の固定磁性層3と反強磁性層2とが接合されて構成されている。また、非磁性材料層4とフリー磁性層5が固定磁性層3よりも基板SBに近位に形成されている(いわゆるトップタイプ)点において、図2の磁気検出素子11と相違している。
磁気検出素子21も、いわゆるシングルスピンバルブ型の巨大磁気抵抗効果を利用した積層素子である。固定磁性層3の第1磁性層3Aの固定磁化のベクトルと、フリー磁性層5の外部磁界によって変化する磁化のベクトルとの相対関係で電気抵抗が変化する。
固定磁性層3は、第1磁性層3Aおよび第2磁性層3Cと、これらの二層の間に位置する非磁性中間層3Bと、で構成されたセルフピン止め構造となっている。第1磁性層3Aの固定磁化方向P1と、第2磁性層3Cの固定磁化方向P2とは、相互作用により反平行となっている。非磁性材料層4に隣接する第1磁性層3Aの固定磁化方向P1が固定磁性層3の固定磁化方向である。この固定磁化方向P1が延びる方向が磁気検出素子11の感度軸方向である。
第1磁性層3Aおよび第2磁性層3Cは、FeCo合金(鉄・コバルト合金)で形成される。FeCo合金は、Feの含有割合を高くすることにより、保磁力が高くなる。非磁性材料層4に隣接する第1磁性層3Aはスピンバルブ型の巨大磁気抵抗効果に寄与する層である。
非磁性中間層3BはRu(ルテニウム)などで形成されている。Ruからなる非磁性中間層3Bの膜厚は、3~5Åまたは8~10Åであることが好ましい。
非磁性中間層3BはRu(ルテニウム)などで形成されている。Ruからなる非磁性中間層3Bの膜厚は、3~5Åまたは8~10Åであることが好ましい。
なお、交換結合膜10を製造する際、PtCr層2cなど合金層を成膜する際には、合金を形成する複数種類の金属(PtCr層2cの場合にはPtおよびCr)を同時に供給してもよいし、合金を形成する複数種類の金属を交互に供給してもよい。前者の具体例として合金を形成する複数種類の金属の同時スパッタが挙げられ、後者の具体例として異なる種類の金属膜の交互積層が挙げられる。合金を形成する複数種類の金属の同時供給が交互供給よりもHexを高めることにとって好ましい場合がある。
<第3の実施形態>
図17に本発明の第3の実施形態の交換結合膜70を使用した磁気検出素子110の膜構成を示す説明図が示されている。本実施形態では、図2に示す磁気検出素子11と機能が同じ層に同じ符号を付して、説明を省略する。
また、非磁性材料層4とフリー磁性層5が固定磁性層3よりも基板SBに遠位に形成されている(いわゆるボトムタイプ)点において、図2の磁気検出素子11と共通している。
図17に本発明の第3の実施形態の交換結合膜70を使用した磁気検出素子110の膜構成を示す説明図が示されている。本実施形態では、図2に示す磁気検出素子11と機能が同じ層に同じ符号を付して、説明を省略する。
また、非磁性材料層4とフリー磁性層5が固定磁性層3よりも基板SBに遠位に形成されている(いわゆるボトムタイプ)点において、図2の磁気検出素子11と共通している。
反強磁性層80は、第1のPtMn層8bとPtCr層8cと第2のPtMn層8dとが積層され、PtCr層8cの厚さD3が第1のPtMn層8bの厚さD2および第2のPtMn層8dの厚さD4のいずれよりも厚い構造を有する。このような構造を有することにより、交換結合磁界Hexが特に大きくなり、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)が1よりも大きくなりやすい。それゆえ、強磁場耐性に優れる交換結合膜70が得られる。また、第3の実施形態に係る交換結合膜70のブロッキング温度Tbは、第1の実施形態に係る交換結合膜10のブロッキング温度Tbよりも高くなる傾向が見られることもある。
第2のPtMn層8dの厚さD4は、0Å超60Å未満であることが好ましく、10Å以上50Å以下または15Å以上55Å以下であることがより好ましく、20Å以上50Å以下であることが特に好ましい。第2のPtMn層2dの厚さD4がこの範囲にあることにより、交換結合磁界Hexが大きくなり、Hex/Hcを高めることができる。PtCr層8cの厚さD3の第1のPtMn層8bの厚さD2に対する比は2倍~10倍程度であることが、交換結合磁界Hexを高めたり、Hex/Hcを高めたりする観点から好ましい場合がある。PtCr層8cの厚さD3の第2のPtMn層8dの厚さD4に対する比は2倍~10倍程度であることが、交換結合磁界Hexを高めたり、Hex/Hcを高めたりする観点から好ましい場合がある。
PtCr層8cの厚さは、100Å以上であることが好ましく、110Å以上であることがより好ましい。PtCr層8cが100Å以上であることにより、交換結合磁界Hexが大きくなり、Hex/Hcをも高めることができる。PtCr層8cの厚さの上限は、生産効率などの観点から、200Å以下であることが好ましい場合がある。
反強磁性層2の全体の厚さは、200Å以下であることが好ましい。反強磁性層2の全体の厚さが200Å以下であっても、交換結合磁界Hexを高めることが可能であるから、交換結合膜70の生産効率を高めることが可能である。
本実施形態では、反強磁性層80をアニール処理して規則化し、強磁性層からなる固定磁性層3との間(界面)で交換結合を生じさせる。この交換結合に基づく磁界(交換結合磁界Hex)によって交換結合膜10は外部磁場が印加されても磁化の向きが反転しにくく強磁場耐性が向上する。なお、交換結合膜70に交換結合磁界Hexを生じさせるために行うアニール処理の際に、反強磁性層80を構成する各層(第1のPtMn層8b、PtCr層8cおよび第2のPtMn層8d)に含まれる各原子(Pt,Cr,Mn,Ir)は相互拡散する。
図18に示されるように、本実施形態の一変形例に係る交換結合膜71は、第1のPtMn層8bと固定磁性層3との間に、Mnの含有量が50原子%超であるMn含有層8aを有してなるものであってもよい。このMn含有層8aは複数の層が積層されていてもよい。Mn含有層8aは、IrMn層およびMn層からなる群から選ばれる少なくとも1層を含んでいてもよい。Mn含有層8aがIrMn層からなる場合や、IrMn層とPtMn層との積層体からなる場合に、上記の本発明の第1実施形態に係る交換結合膜10と同様の構成となる。Mn含有層8aの厚さは、12Å以下であることが好ましく、4Å以上10Å以下であることがより好ましい。IrMn層2aの厚さがこの範囲にあることにより、交換結合磁界Hexが大きくなり、Hex/Hcをも高めることができる。また、Mn含有層8aの厚さがこの範囲にあることにより、第1のPtMn層2bの厚さのばらつきが、交換結合磁界HexやHex/Hcに影響を与えにくくなる。
第1の実施形態に係る交換結合膜10と第2実施形態に係る交換結合膜20との関係に対応して、第3の実施形態に係る交換結合膜70、71と同様の構成を有しつつ、トップタイプで、かつ固定磁性層3がセルフピン止め構造を有する交換結合膜72、73を使用した磁気検出素子112、113の膜構成を、図19および図20に示す。
<磁気センサの構成>
図4に、図2に示す磁気検出素子11を組み合わせた磁気センサ(磁気検出装置)30が示されている。図4では、固定磁化方向P(図2参照)が異なる磁気検出素子11を、それぞれ11Xa,11Xb,11Ya,11Ybの異なる符号を付して区別している。磁気センサ30では、磁気検出素子11Xa,11Xb,11Ya,11Ybが同一基板上に設けられている。
図4に、図2に示す磁気検出素子11を組み合わせた磁気センサ(磁気検出装置)30が示されている。図4では、固定磁化方向P(図2参照)が異なる磁気検出素子11を、それぞれ11Xa,11Xb,11Ya,11Ybの異なる符号を付して区別している。磁気センサ30では、磁気検出素子11Xa,11Xb,11Ya,11Ybが同一基板上に設けられている。
図4に示す磁気センサ30は、フルブリッジ回路32Xおよびフルブリッジ回路32Yを有している。フルブリッジ回路32Xは、2つの磁気検出素子11Xaと2つの磁気検出素子11Xbとを備えており、フルブリッジ回路32Yは、2つの磁気検出素子11Yaと2つの磁気検出素子11Ybとを備えている。磁気検出素子11Xa,11Xb,11Ya,11Ybはいずれも、図4に示した磁気検出素子11の交換結合膜10の膜構造を備えている。これらを特に区別しない場合、以下適宜、磁気検出素子11と記す。
フルブリッジ回路32Xとフルブリッジ回路32Yとは、検出磁場方向を異ならせるために、図4中に矢印で示した固定磁化方向が異なる磁気検出素子11を用いたものであって、磁場を検出する機構は同じである。そこで、以下では、フルブリッジ回路32Xを用いて磁場を検出する機構を説明する。
フルブリッジ回路32Xは、第1の直列部32Xaと第2の直列部32Xbが並列に接続されて構成されている。第1の直列部32Xaは、磁気検出素子11Xaと磁気検出素子11Xbとが直列に接続されて構成され、第2の直列部32Xbは、磁気検出素子11Xbと磁気検出素子11Xaとが直列に接続されて構成されている。
第1の直列部32Xaを構成する磁気検出素子11Xaと、第2の直列部32Xbを構成する磁気検出素子11Xbに共通の電源端子33に、電源電圧Vddが与えられる。第1の直列部32Xaを構成する磁気検出素子11Xbと、第2の直列部32Xbを構成する磁気検出素子11Xaに共通の接地端子34が接地電位GNDに設定されている。
フルブリッジ回路32Xを構成する第1の直列部32Xaの中点35Xaの出力電位(OutX1)と、第2の直列部32Xbの中点35Xbの出力電位(OutX2)との差動出力(OutX1)-(OutX2)がX方向の検知出力(検知出力電圧)VXsとして得られる。
フルブリッジ回路32Yも、フルブリッジ回路32Xと同様に作用することで、第1の直列部32Yaの中点35Yaの出力電位(OutY1)と、第2の直列部32Ybの中点35Ybの出力電位(OutY2)との差動出力(OutY1)―(OutY2)がY方向の検知出力(検知出力電圧)VYsとして得られる。
図4に矢印で示すように、フルブリッジ回路32Xを構成する磁気検出素子11Xaおよび磁気検出素子11Xbの感度軸方向と、フルブリッジ回路32Yを構成する磁気検出素子11Yaおよび各磁気検出素子11Ybの感度軸方向とは互いに直交している。
図4に示す磁気センサ30では、それぞれの磁気検出素子11のフリー磁性層5の向きが外部磁場Hの方向に倣うように変化する。このとき、固定磁性層3の固定磁化方向Pと、フリー磁性層5の磁化方向との、ベクトルの関係で抵抗値が変化する。
例えば、外部磁場Hが図4に示す方向に作用したとすると、フルブリッジ回路32Xを構成する磁気検出素子11Xaでは感度軸方向と外部磁場Hの方向が一致するため電気抵抗値は小さくなり、一方、磁気検出素子11Xbでは感度軸方向と外部磁場Hの方向が反対であるため電気抵抗値は大きくなる。この電気抵抗値の変化により、検知出力電圧VXs=(OutX1)-(OutX2)が極大となる。外部磁場Hが紙面に対して右向きに変化するにしたがって、検知出力電圧VXsが低くなっていく。そして、外部磁場Hが図3の紙面に対して上向きまたは下向きになると、検知出力電圧VXsがゼロになる。
一方、フルブリッジ回路32Yでは、外部磁場Hが図4に示すように紙面に対して左向きのときは、全ての磁気検出素子11で、フリー磁性層5の磁化の向きが、感度軸方向(固定磁化方向P)に対して直交するため、磁気検出素子11Yaおよび磁気検出素子11Xbの電気抵抗値は同じである。したがって、検知出力電圧VYsはゼロである。図4において外部磁場Hが紙面に対して下向きに作用すると、フルブリッジ回路32Yの検知出力電圧VYs=(OutY1)―(OutY2)が極大となり、外部磁場Hが紙面に対して上向きに変化するにしたがって、検知出力電圧VYsが低くなっていく。
このように、外部磁場Hの方向が変化すると、それに伴いフルブリッジ回路32Xおよびフルブリッジ回路32Yの検知出力電圧VXsおよびVYsも変動する。したがって、フルブリッジ回路32Xおよびフルブリッジ回路32Yから得られる検知出力電圧VXsおよびVYsに基づいて、検知対象の移動方向や移動量(相対位置)を検知することができる。
図4には、X方向と、X方向に直交するY方向の磁場を検出可能に構成された磁気センサ30を示した。しかし、X方向またはY方向の磁場のみを検出するフルブリッジ回路32Xまたはフルブリッジ回路32Yのみを備えた構成としてもよい。
図5に、磁気検出素子11Xaと磁気検出素子11Xbの平面構造が示されている。図4と図5は、BXa-BXb方向がX方向である。図5(A)(B)に、磁気検出素子11Xa,11Xbの固定磁化方向Pが矢印で示されている。磁気検出素子11Xaと磁気検出素子11Xbでは、固定磁化方向PがX方向であり、互いに逆向きである。
図5に示すように、磁気検出素子11Xaと磁気検出素子11Xbは、ストライプ形状の素子部12を有している。素子部12の長手方向がBYa-BYb方向に向けられている。素子部12は複数本が平行に配置されており、隣り合う素子部12の図示右端部が導電部13aを介して接続され、隣り合う素子部12の図示左端部が導電部13bを介して接続されている。素子部12の図示右端部と図示左端部では、導電部13a,13bが互い違いに接続されており、素子部12はいわゆるミアンダ形状に連結されている。磁気検出素子11Xa,11Xbの、図示右下部の導電部13aは接続端子14aと一体化され、図示左上部の導電部13bは接続端子14bと一体化されている。
各素子部12は複数の金属層(合金層)が積層されて構成されている。図2に素子部12の積層構造が示されている。なお、各素子部12は図3に示す積層構造であってもよい。
なお、図4と図5に示す磁気センサ30では、磁気検出素子11を図3に示す第2の実施形態の磁気検出素子21に置き換えることが可能である。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。例えば、上記の交換結合膜では、IrMn層2aが固定磁性層3に接している、すなわち、積層された固定磁性層3の上に直接的にIrMn層2aが積層されているが、IrMn層2aと固定磁性層3との間にMnを含有する他の層(Mn層およびPtMn層が例示される。)が積層されてもよい。また、本発明に係る交換結合膜において反強磁性層に接する強磁性層は固定磁性層に限定されない。例えば、フリー磁性層の少なくとも一部を構成する強磁性層と反強磁性層とから本発明に係る交換結合膜が構成されていてもよい。また、上記の説明では、本発明に係る交換結合膜を備える磁気検出素子として、巨大磁気抵抗効果(GMR)素子を例示したが、本発明に係る交換結合膜を備える磁気検出素子はトンネル磁気抵抗効果(TMR)素子であってもよい。
以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1から実施例7および比較例1から比較例10-2)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(20)]/固定磁性層3:Co40at%Fe60at%(18.5)/反強磁性層2[IrMn層2a:Ir22at%Mn78at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:Ta(100)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(20)]/固定磁性層3:Co40at%Fe60at%(18.5)/反強磁性層2[IrMn層2a:Ir22at%Mn78at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:Ta(100)
IrMn層2aの厚さd1は0Åから8Åの範囲で変更した。第1のPtMn層2bの厚さd2は0Åから300Åの範囲で変更した。PtCr層2cの厚さd3は0Åから300Åの範囲で変更した。第2のPtMn層2dの厚さD1は0Åから180Åの範囲で変更した。各実施例および各比較例のd1からd4および反強磁性層2の全体の厚さ(総厚)を表1および表2に示す。
VSM(振動試料型磁力計)を用いて、各実施例・比較例に係る交換結合膜40の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表1および表2に示した。
図7は、表1の結果に基づくものであって、交換結合磁界Hexの反強磁性層2の厚さ(総厚)に対する依存性を示すグラフである。図8は、表1の結果に基づくものであって、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)の反強磁性層2の厚さ(総厚)に対する依存性を示すグラフである。表1ならびに図7および図8から明らかなように、実施例1に係る構成の反強磁性層2を備える交換結合膜40では、総厚が200Å以下でありながら交換結合磁界Hexが1000Oe以上と大きくなり、しかも、Hex/Hcが1よりも大きくなった。したがって、実施例1に係る交換結合膜を備える磁気検出素子(例えば磁気抵抗効果素子)は、高温環境下や強磁場環境下であっても優れた磁気特性を示すことができる。
これに対し、反強磁性層がPtMn層からなる場合(比較例1および比較例2)やPtCr層からなる場合(比較例3)には、保磁力Hcとの対比で交換結合磁界Hexが相対的に低く、Hex/Hcは1未満であった。
また、IrMn層2a、第1のPtMn層2bおよびPtCr層2cが積層されてなり第2のPtMn層2dを有しない場合(比較例4から比較例8)には、PtCr層2cの厚さが小さくなると交換結合磁界Hexが小さくなる傾向があり、Hex/Hcは1.0程度またはそれ以下であった。
図9は、表2の結果に基づくものであって、交換結合磁界Hexの第2のPtMn層2dの厚さd4に対する依存性を示すグラフである。図10は、表2の結果に基づくものであって、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)の第2のPtMn層2dの厚さd4に対する依存性を示すグラフである。表2ならびに図9および図10から明らかなように、第2のPtMn層2dの厚さd4が0Å超60Å未満である場合、好ましくは第2のPtMn層2dの厚さd4が10Å超60Å未満である場合、より好ましくは第2のPtMn層2dの厚さd4が15Å以上55Å以下である場合、特に好ましくは第2のPtMn層2dの厚さd4が20Å以上50Å以下である場合(実施例1から実施例3)には、第1のPtMn層2bおよびPtCr層2cが積層されてなり第2のPtMn層2dを有しない場合(比較例7)に比べて、交換結合磁界HexおよびHex/Hcが顕著に高くなることが確認された。第2のPtMn層2dの厚さd4が60Å以上である場合(実施例4から実施例6)には、反強磁性層2の厚さ(総厚)が等しいが第2のPtMn層2dを有しない場合(比較例7)や、反強磁性層2の厚さ(総厚)が等しいがIrMn層とPtMn層との積層構造からなる場合(比較例9)に比べて、交換結合磁界Hexが高くなることが確認された。
(実施例11から実施例15および比較例11から比較例15)
以下の膜構成を備える積層体22、221(図6、図21参照)を交換結合膜40、74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を10kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(20)]/固定磁性層3:Co40at%Fe60at%(100)/反強磁性層2[IrMn層2a:Ir22at%Mn78at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:[Ru(20)/Ta(100)]
以下の膜構成を備える積層体22、221(図6、図21参照)を交換結合膜40、74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を10kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(20)]/固定磁性層3:Co40at%Fe60at%(100)/反強磁性層2[IrMn層2a:Ir22at%Mn78at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:[Ru(20)/Ta(100)]
IrMn層2aの厚さd1は0Åから80Åの範囲で変更した。第1のPtMn層2bの厚さd2は0Åから300Åの範囲で変更した。PtCr層2cの厚さd3は0Åから250Åの範囲で変更した。第2のPtMn層2dの厚さd4は0Åから30Åの範囲で変更した。各実施例および各比較例のd1からd4および反強磁性層2の全体の厚さ(総厚)を表3に示す。
VSM(振動試料型磁力計)を用いて、各実施例・比較例に係る交換結合膜40の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表3に示した。
図11は、表3の結果に基づくものであって、交換結合磁界Hexの反強磁性層2の厚さ(総厚)に対する依存性を示すグラフである。図12は、表3の結果に基づくものであって、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)の反強磁性層2の厚さ(総厚)に対する依存性を示すグラフである。表3ならびに図11および図12から明らかなように、実施例11から実施例14に係る構成の反強磁性層2を備える交換結合膜40では、比較例11から比較例14に係る構成の反強磁性層2を備える交換結合膜40よりも交換結合磁界Hexが大きくなった。実施例11から実施例14を対比することにより、PtCr層2cの厚さd3が大きくなるほど交換結合磁界Hexが大きくなるとともに、Hex/Hcが大きくなり、実施例12から実施例14に係る構成の反強磁性層2を備える交換結合膜40ではHex/Hcが1よりも大きくなることが確認された。したがって、実施例11から実施例14に係る交換結合膜を備える磁気検出素子(例えば磁気抵抗効果素子)は、強磁場環境下であっても検出機能を適切に果たすことができる、すなわち、強磁場耐性を有する。特に、実施例12から実施例14に係る交換結合膜を備える磁気検出素子は、外部磁場の印加が解除されると交換結合磁界Hexに基づく方向に磁化が揃うため、優れた強磁場耐性を有する。
VSM(振動試料型磁力計)を用いて、比較例11から比較例15および実施例11から実施例15に係る交換結合膜40の磁化曲線を、環境温度(単位:℃)を変化させながら測定し、得られたヒステリシスループから、各温度の交換結合磁界Hex(単位:Oe)を求めた。各温度の交換結合磁界Hex、および各温度の交換結合磁界Hexを室温での交換結合磁界Hexで規格化した値(室温規格化の交換結合磁界)を表4から表12に示す。
表4から表12の結果に基づいて各例のブロッキング温度Tb(単位:℃)を求めた。その結果を表13に示す。表13に示されるように、Mn含有層としてのIrMn層2aを備える交換結合膜40(実施例11から実施例14)のブロッキング温度Tbは、410℃となった。また、Mn含有層を備えない交換結合膜74(実施例15に係る交換結合膜74)のブロッキング温度Tbは、510℃となった。したがって、特に過酷な高温環境で用いられる場合には、Mn含有層を備えない構成の交換結合膜40を用いることが好ましい可能性が示唆された。
図13は、比較例11から比較例13および実施例12に係る交換結合膜40についての、交換結合磁界Hexの測定温度依存性を示すグラフである。図14は、比較例11から比較例13および実施例12に係る交換結合膜40についての、室温規格化の交換結合磁界の測定温度依存性を示すグラフである。図15は、比較例14および比較例15ならびに実施例11から実施例14に係る交換結合膜40についての、交換結合磁界Hexの測定温度依存性を示すグラフである。図16は、比較例14および比較例15ならびに実施例11から実施例14に係る交換結合膜40についての、室温規格化の交換結合磁界の測定温度依存性を示すグラフである。
図13および図14は、反強磁性層2の総膜厚が180Åである場合の対比であって、それぞれ、反強磁性層2がPtCr層のみからなる場合(比較例11)、比較例11との対比でPtCr層の固定磁性層3側の一部をPtMn層に置き換えた場合(比較例12)、比較例12との対比でPtMn層の固定磁性層3側の一部をIrMn層に置き換えた場合(比較例13)、比較例13との対比でPtCr層の保護層6側の一部をPtMn層に置き換えた場合(実施例12)となる。比較例11では、交換結合磁界Hexが50Oe以下であったが、PtCr層の固定磁性層3側の一部をPtMn層に置き換えることにより、交換結合磁界Hexを100Oe以下程度まで高めることができた(比較例12)。さらに、PtMn層の固定磁性層3側の一部をIrMn層に置き換えることにより、交換結合磁界Hexを150Oe以下程度まで高めることができた(比較例13)。ただし、交換結合膜40のブロッキング温度Tbは50℃程度低下した。加えて、PtCr層の保護層6側の一部をPtMn層に置き換えることにより、交換結合磁界Hexを200Oe程度まで高めることができた(実施例12)。
図15および図16は、実施例に係る構成の反強磁性層2と、PtCr層と固定磁性層3との間に位置する膜が単独で反強磁性層2を構成した場合とを対比したものである。具体的には、比較例14では反強磁性層2はPtMn層からなり、比較例15では反強磁性層2はIrMn層からなる。図16において特に明確なように、実施例に係る交換結合膜40のブロッキング温度Tbは、PtCr層の厚さに依らず410℃程度であった。また、PtMn層からなる反強磁性層2やIrMn層からなる反強磁性層2を備える交換結合膜40のブロッキング温度Tbは、実施例に係る交換結合膜40のブロッキング温度Tbよりも低くなった。したがって、本発明に係る交換結合膜は、従来技術に係る交換結合膜よりも高温環境下において安定的に機能することが可能である。実施例15に係る交換結合膜74のブロッキング温度Tbは交換結合膜40のブロッキング温度Tbよりも高くなり、実施例15に係る交換結合膜74は特に過酷な高温環境においても適切に機能しうると期待される。
(実施例21)
以下の膜構成を備える積層体221(図21参照)を交換結合膜74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体221を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層84の磁化を固定して交換結合膜74を含む積層体221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co40at%Fe60at%(18)/反強磁性層84[第1のPtMn層8b:Pt50at%Mn50at%(16)/PtCr層8c:Pt51at%Cr49at%(130)/第2のPtMn層8d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
以下の膜構成を備える積層体221(図21参照)を交換結合膜74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体221を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層84の磁化を固定して交換結合膜74を含む積層体221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co40at%Fe60at%(18)/反強磁性層84[第1のPtMn層8b:Pt50at%Mn50at%(16)/PtCr層8c:Pt51at%Cr49at%(130)/第2のPtMn層8d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
(実施例22から実施例26)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co40at%Fe60at%(18)/反強磁性層2[IrMn層2a:Ir20at%Mn80at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(16)/PtCr層2c:Pt51at%Cr49at%(130)/第2のPtMn層2d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co40at%Fe60at%(18)/反強磁性層2[IrMn層2a:Ir20at%Mn80at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(16)/PtCr層2c:Pt51at%Cr49at%(130)/第2のPtMn層2d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
IrMn層2aの厚さd1は2Åから10Åの範囲で変更した。各実施例のd1を表14に示す。
(実施例27から実施例31)
以下の膜構成を備える積層体222(図22参照)を交換結合膜75の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体222を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層85の磁化を固定して交換結合膜75を含む積層体222を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co40at%Fe60at%(18)/反強磁性層85[Mn層8a1:Mn(D1)/第1のPtMn層8b:Pt50at%Mn50at%(16)/PtCr層8c:Pt51at%Cr49at%(130)/第2のPtMn層8d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
以下の膜構成を備える積層体222(図22参照)を交換結合膜75の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体222を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層85の磁化を固定して交換結合膜75を含む積層体222を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co40at%Fe60at%(18)/反強磁性層85[Mn層8a1:Mn(D1)/第1のPtMn層8b:Pt50at%Mn50at%(16)/PtCr層8c:Pt51at%Cr49at%(130)/第2のPtMn層8d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
Mn層2a1の厚さd1は2Åから10Åの範囲で変更した。各実施例のd1を表14に示した。
VSM(振動試料型磁力計)を用いて、各実施例に係る交換結合膜74、40、75の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表14および図22に示した。
表14および図22に示されるように、実施例21から実施例31に係る交換結合膜74、40、75は、高い交換結合磁界Hexを有していた。また、実施例21から実施例31に係る交換結合膜74、40、75は、いずれもHex/Hcが1よりも高くなった。したがって、実施例21から実施例31に係る交換結合膜を備える磁気検出素子(例えば磁気抵抗効果素子)は、強磁場環境下であっても優れた磁気特性を示すことができる。
(実施例41から実施例48および比較例41から比較例47)
以下の膜構成を備える積層体221(図21参照)を交換結合膜74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体221を10kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層84の磁化を固定して交換結合膜74を含む積層体221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層84[第1のPtMn層8b:Pt50at%Mn50at%(D2)/PtCr層8c:Pt51at%Cr49at%(D3)/第2のPtMn層8d:Pt50at%Mn50at%(D4)]/保護層6:Ta(100)
以下の膜構成を備える積層体221(図21参照)を交換結合膜74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体221を10kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層84の磁化を固定して交換結合膜74を含む積層体221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層84[第1のPtMn層8b:Pt50at%Mn50at%(D2)/PtCr層8c:Pt51at%Cr49at%(D3)/第2のPtMn層8d:Pt50at%Mn50at%(D4)]/保護層6:Ta(100)
第1のPtMn層8bの厚さD2は0Åまたは20Åとした。PtCr層8cの厚さD3は0Åから180Åの範囲で変更した。第2のPtMn層8dの厚さD4は0Åから160Åの範囲で変更した。反強磁性層84の全体の厚さ(総厚)は180Åで固定した。各実施例のD2,D3およびD4を表15に示した。
VSM(振動試料型磁力計)を用いて、各実施例に係る交換結合膜74の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表15ならびに図24および図25に示した。
表15ならびに図24および図25に示されるように、実施例41から実施例48に係る交換結合膜74は、高い交換結合磁界Hexを有していた。また、実施例41から実施例48に係る交換結合膜74は、いずれもHex/Hcが比較例41(0.10)よりも高くなった。第2のPtMn層8dの厚さD4の厚さが10Å超60Å未満である場合、好ましくは第2のPtMn層8dの厚さD4の厚さが15Å以上55Å以下である場合、より好ましくは第2のPtMn層8dの厚さD4の厚さが20Å以上50Å以下である場合(実施例42から実施例44)には、交換結合磁界HexおよびHex/Hcが顕著に高くなることが確認された。したがって、実施例41から実施例48に係る交換結合膜74を備える磁気検出素子(例えば磁気抵抗効果素子)は、強磁場環境下であっても優れた磁気特性を示すことができる。なお、比較例42と実施例43との対比より、交換結合磁界HexおよびHex/Hcが顕著に高い実施例43の構成において固定磁性層3側に位置する第1のPtMn層8bをPtCr層に変更することにより、交換結合磁界Hexおよび保磁力Hcの双方が著しく低下することが確認された。この点を換言すれば、反強磁性層84の総厚180Åとの対比では極めて薄い厚さである20Åの第1のPtMn層8bが、交換結合磁界HexおよびHex/Hcを高めることについて特に重要な役割を有していることが確認された。
(実施例51から実施例56および比較例51から比較例56)
以下の膜構成を備える積層体221(図21参照)を交換結合膜74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体221を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層84の磁化を固定して交換結合膜74を含む積層体221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(X)またはCo40at%Fe60at%(X)/反強磁性層84[第1のPtMn層8b:Pt50at%Mn50at%(D2)/PtCr層8c:Pt51at%Cr49at%(D3)/第2のPtMn層8d:Pt50at%Mn50at%(D4)]/保護層6:Ta(100)
以下の膜構成を備える積層体221(図21参照)を交換結合膜74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体221を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層84の磁化を固定して交換結合膜74を含む積層体221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(X)またはCo40at%Fe60at%(X)/反強磁性層84[第1のPtMn層8b:Pt50at%Mn50at%(D2)/PtCr層8c:Pt51at%Cr49at%(D3)/第2のPtMn層8d:Pt50at%Mn50at%(D4)]/保護層6:Ta(100)
第1のPtMn層8bの厚さD2は20Åまたは180Åとした。PtCr層8cの厚さD3は0Åまたは130Åとした。第2のPtMn層8dの厚さD4は0Åまたは30Åとした。反強磁性層84の全体の厚さ(総厚)は180Åで固定した。固定磁性層3の組成は、Co90at%Fe10at%またはCo40at%Fe60at%とし、それぞれの厚さXを18Åから100Åの範囲で変更した。各実施例のD2,D3およびD4ならびにXを表16に示した。
VSM(振動試料型磁力計)を用いて、各実施例に係る交換結合膜74の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表16ならびに図26から図29に示した。
表16ならびに図26から図29に示されるように、固定磁性層3の組成に依らず、固定磁性層3の厚さが薄くなると、交換結合磁界HexおよびHex/Hcは高くなる傾向が見られた。したがって、実施例51から実施例56に係る交換結合膜74を備える磁気検出素子(例えば磁気抵抗効果素子)は、強磁場環境下であっても優れた磁気特性を示すことができる。特に、固定磁性層3の厚さが薄くてもよい場合には、固定磁性層3の厚さを調整することにより、交換結合磁界HexおよびHex/Hcを高くすることが可能である。
(実施例61から実施例78ならびに比較例61および比較例62)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体222を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層2[IrMn層2a:Ir20at%Mn80at%(8)/第1のPtMn層2b:Pt50at%Mn50at%(12)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:Ta(100)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体222を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層2[IrMn層2a:Ir20at%Mn80at%(8)/第1のPtMn層2b:Pt50at%Mn50at%(12)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:Ta(100)
PtCr層2cの厚さd3は130Åまたは160Åとした。第2のPtMn層2dの厚さd4は0Åから80Åの範囲で変更した。各実施例のd3およびd4を表17に示した。
VSM(振動試料型磁力計)を用いて、各実施例に係る交換結合膜40の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表17および図30から図33に示した。
表17ならびに図30および図32に示されるように、PtCr層2cの厚さd3に依らず、第2のPtMn層2dが10Å超60Å未満である場合に、交換結合磁界HexおよびHex/Hcは高くなる傾向が見られた。また、第2のPtMn層2dが10Å超60Å未満である場合には、PtCr層2cの厚さd3が130Åであっても、160Åであっても、交換結合磁界Hexの値およびHex/Hcの値はほぼ等しくなった。したがって、交換結合膜40の第2のPtMn層2dが10Å超60Å未満である場合には、PtCr層2cの厚さのばらつきが磁気特性に影響を与えにくくなることが確認された。
さらに、一般的には、反強磁性層の厚さが厚くなると交換結合磁界HexおよびHex/Hcは高くなる傾向が見られるところ、表17ならびに図31および図33に示されるように、本発明例に係る交換結合膜40では、反強磁性層2の総厚が厚くなると、交換結合磁界HexおよびHex/Hcが特異的に高くなる厚さ領域を有する傾向が見られた。
(実施例81から実施例105および比較例81から比較例83)
以下の膜構成を備える積層体22、221(図6、図21参照)を交換結合膜40、74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40、74を含む積層体22、221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層2[IrMn層2a:Ir20at%Mn80at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(130)/第2のPtMn層2d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
以下の膜構成を備える積層体22、221(図6、図21参照)を交換結合膜40、74の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を15kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40、74を含む積層体22、221を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(10)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層2[IrMn層2a:Ir20at%Mn80at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(130)/第2のPtMn層2d:Pt50at%Mn50at%(30)]/保護層6:Ta(100)
IrMn層2aの厚さd1は0Åから20Åの範囲で変更し、第1のPtMn層2bの厚さd2は0Åから22Åの範囲で変更することにより、180Åから186Åの範囲の異なる総厚を有する交換結合膜40を得た。各実施例のd1、第1のPtMn層2bの厚さd2および総厚を表18に示す。
VSM(振動試料型磁力計)を用いて、各実施例に係る交換結合膜40の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)、保磁力Hc(単位:Oe)、交換結合磁界Hexの保磁力Hcに対する比(Hex/Hc)を求めた。結果を表18および図34から図36に示した。
表18および図34から図36に示されるように、IrMn層2aの厚さd1が12Å以下の範囲であれば、第1のPtMn層2bの厚さd2が変動しても、高い交換結合磁界Hexを維持できることが確認された。特に、IrMn層2aが4Å以上10Å以下の範囲であれば、高い交換結合磁界Hex、および高いHex/Hc(具体的には1.0以上)を安定的に実現しうることが確認された。換言すれば、交換結合膜40を製造する際に、第1のPtMn層2bの厚さd2の公差を相対的に緩く設定することが可能であることが確認された。
(実施例111から実施例128および比較例111から比較例131)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を10kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(20)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層2[IrMn層2a:Ir22at%Mn78at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:/Ta(100)
以下の膜構成を備える積層体22(図6参照)を交換結合膜40の特性評価の目的で製造した。以下の実施例および比較例では()内の数値は膜厚(Å)を示す。積層体22を10kOeの磁場中において350℃で20時間アニール処理し、強磁性層からなる固定磁性層3と反強磁性層2の磁化を固定して交換結合膜40を含む積層体22を得た。
基板SB:表面にアルミナ層が形成されたシリコン基板/下地層1:NiFeCr(42)/非磁性材料層4:[Cu(30)/Ru(20)]/固定磁性層3:Co90at%Fe10at%(100)/反強磁性層2[IrMn層2a:Ir22at%Mn78at%(d1)/第1のPtMn層2b:Pt50at%Mn50at%(d2)/PtCr層2c:Pt51at%Cr49at%(d3)/第2のPtMn層2d:Pt50at%Mn50at%(d4)]/保護層6:/Ta(100)
IrMn層2aの厚さd1は0Åから8Åの範囲で変更した。第1のPtMn層2bの厚さd2は0Åから300Åの範囲で変更した。PtCr層2cの厚さd3は0Åから300Åの範囲で変更した。第2のPtMn層2dの厚さd4は0Åから30Åの範囲で変更した。各実施例および各比較例のd1からd4および反強磁性層2の全体の厚さ(総厚)を表19に示す。
VSM(振動試料型磁力計)を用いて、各実施例・比較例に係る交換結合膜40の磁化曲線を測定し、得られたヒステリシスループから、交換結合磁界Hex(単位:Oe)を求めた。結果を表19および図37に示した。
図37の実施例111から実施例116の結果(黒丸、実線)に示されるように、交換結合膜74のようにMn含有層としてのIrMn層2aを有しない場合には、反強磁性層2の厚さが増えるにつれて交換結合磁界Hexも大きくなり、反強磁性層2の総厚が300Åにおいては交換結合磁界Hexが500Oe以上となった。したがって、強磁場耐性が特に求められる場合には、Mn含有層を有しない構成の交換結合膜40が好ましい可能性がある。一方、図37の実施例123から実施例128の結果(白丸、破線)に示されるように、交換結合膜40のようにIrMn層2aを有する場合には、交換結合磁界Hexの大きさは、反強磁性層2の総厚の影響を相対的に受けにくくなる。特に、反強磁性層2の総厚が150Åから300Åの範囲であれば、交換結合磁界Hexの大きさは300Oeから350Oeの範囲で安定するため、この構成の交換結合膜40は製造過程における成膜ばらつきの影響を受けにくいことが確認された。
Hex 交換結合磁界
Hc 保磁力
M0 残留磁化
Ms 飽和磁化
10,20,40,70,71,72,73,74,75 交換結合膜
1 下地層
2,80,81,82,83,84,85 反強磁性層
2a IrMn層
2b,8b 第1のPtMn層
2c,8c PtCr層
2d,8d 第2のPtMn層
3 固定磁性層(強磁性層)
3A 第1磁性層
3B 非磁性中間層
3C 第2磁性層
4 非磁性材料層
5 フリー磁性層
6 保護層
8a Mn含有層
8a1 Mn層
d1 IrMn層2aの膜厚
D1 Mn含有層の膜厚
d2,D2 第1のPtMn層2bの膜厚
d3,D3 PtCr層2cの膜厚
d4,D4 第2のPtMn層2bの膜厚
11,11Xa,11Xb,11Ya,11Yb,21,110,111 磁気検出素子22,221,222 積層体
30 磁気センサ(磁気検出装置)
P 固定磁性層3の固定磁化方向
P1 第1磁性層3Aの固定磁化方向
P2 第2磁性層3Cの固定磁化方向
32X,32Y フルブリッジ回路
33 電源端子
Vdd 電源電圧
34 接地端子
GND 接地電位
32Xa フルブリッジ回路32Xの第1の直列部
35Xa 第1の直列部32Xaの中点
OutX1 第1の直列部32Xaの中点35Xaの出力電位
32Xb フルブリッジ回路32Xの第2の直列部
35Xb 第2の直列部32Xbの中点
OutX2 第2の直列部32Xbの中点35Xbの出力電位
32Ya フルブリッジ回路32Yの第1の直列部
35Ya 第1の直列部32Yaの中点
OutY1 第1の直列部32Yaの中点35Yaの出力電位
32Yb フルブリッジ回路32Y第2の直列部
35Yb 第2の直列部32Ybの中点
OutY2 第2の直列部32Ybの中点35Ybの出力電位
H 外部磁場
12 素子部
13a,13b 導電部
14a,14b 接続端子
SB 基板
Hc 保磁力
M0 残留磁化
Ms 飽和磁化
10,20,40,70,71,72,73,74,75 交換結合膜
1 下地層
2,80,81,82,83,84,85 反強磁性層
2a IrMn層
2b,8b 第1のPtMn層
2c,8c PtCr層
2d,8d 第2のPtMn層
3 固定磁性層(強磁性層)
3A 第1磁性層
3B 非磁性中間層
3C 第2磁性層
4 非磁性材料層
5 フリー磁性層
6 保護層
8a Mn含有層
8a1 Mn層
d1 IrMn層2aの膜厚
D1 Mn含有層の膜厚
d2,D2 第1のPtMn層2bの膜厚
d3,D3 PtCr層2cの膜厚
d4,D4 第2のPtMn層2bの膜厚
11,11Xa,11Xb,11Ya,11Yb,21,110,111 磁気検出素子22,221,222 積層体
30 磁気センサ(磁気検出装置)
P 固定磁性層3の固定磁化方向
P1 第1磁性層3Aの固定磁化方向
P2 第2磁性層3Cの固定磁化方向
32X,32Y フルブリッジ回路
33 電源端子
Vdd 電源電圧
34 接地端子
GND 接地電位
32Xa フルブリッジ回路32Xの第1の直列部
35Xa 第1の直列部32Xaの中点
OutX1 第1の直列部32Xaの中点35Xaの出力電位
32Xb フルブリッジ回路32Xの第2の直列部
35Xb 第2の直列部32Xbの中点
OutX2 第2の直列部32Xbの中点35Xbの出力電位
32Ya フルブリッジ回路32Yの第1の直列部
35Ya 第1の直列部32Yaの中点
OutY1 第1の直列部32Yaの中点35Yaの出力電位
32Yb フルブリッジ回路32Y第2の直列部
35Yb 第2の直列部32Ybの中点
OutY2 第2の直列部32Ybの中点35Ybの出力電位
H 外部磁場
12 素子部
13a,13b 導電部
14a,14b 接続端子
SB 基板
Claims (14)
- 反強磁性層と強磁性層とが積層され、
前記反強磁性層は、IrMn層、第1のPtMn層、PtCr層および第2のPtMn層が、この順番で前記IrMn層が前記強磁性層に近位になるように積層された構造を有することを特徴とする交換結合膜。 - 前記IrMn層と前記強磁性層との間にさらにPtMn層が積層された構造を有する、請求項1に記載の交換結合膜。
- 反強磁性層と強磁性層とが積層され、
前記反強磁性層は、第1のPtMn層、PtCr層および第2のPtMn層が、この順番で前記第1のPtMn層が前記強磁性層に近位になるように積層され、前記PtCr層の厚さが前記第1のPtMn層の厚さおよび前記第2のPtMn層の厚さのいずれよりも厚い構造を有することを特徴とする交換結合膜。 - 前記反強磁性層は、前記第1のPtMn層と前記強磁性層との間に、Mnの含有量が50原子%超であるMn含有層を有してなる、請求項3に記載の交換結合膜。
- 前記Mn含有層は、複数の層が積層されてなる、請求項4に記載の交換結合膜。
- 前記Mn含有層は、IrMn層およびMn層からなる群から選ばれる少なくとも1層を含む、請求項4または請求項5に記載の交換結合膜。
- 前記Mn含有層の厚さは12Å以下である、請求項4から請求項6のいずれか1項に記載の交換結合膜。
- 前記第2のPtMn層の厚さが0Å超60Å未満である、請求項1から請求項7のいずれか1項に記載の交換結合膜。
- 前記第2のPtMn層の厚さが15Å以上55Å以下である、請求項1から請求項7のいずれか1項に記載の交換結合膜。
- 前記PtCr層の厚さが100Å以上である、請求項1から請求項7のいずれか1項に記載の交換結合膜。
- 前記反強磁性層の全体の厚さが200Å以下である、請求項1から請求項10のいずれか1項に記載の交換結合膜。
- 請求項1から請求項11のいずれか1項に記載の交換結合膜とフリー磁性層とが積層され、前記交換結合膜の強磁性層は、固定磁性層の少なくとも一部を構成することを特徴とする磁気抵抗効果素子。
- 請求項12に記載の磁気抵抗効果素子を備えていることを特徴とする磁気検出装置。
- 同一基板上に請求項12に記載の磁気抵抗効果素子を複数備えており、
複数の前記磁気抵抗効果素子には、前記固定磁性層の固定磁化方向が異なるものが含まれる請求項13に記載の磁気検出装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019006539.4T DE112019006539B4 (de) | 2018-12-27 | 2019-12-11 | Austauschgekoppelter Film und Magnetoresistives Element sowie damit ausgestattete Magnetismus-Erfassungsvorrichtung |
CN201980073704.2A CN113016086B (zh) | 2018-12-27 | 2019-12-11 | 交换耦合膜、和利用其的磁阻效应元件以及磁检测装置 |
JP2020563049A JP7160945B2 (ja) | 2018-12-27 | 2019-12-11 | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 |
US17/357,216 US11693068B2 (en) | 2018-12-27 | 2021-06-24 | Exchange-coupled film and magnetoresistive element and magnetic sensing device including the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-244446 | 2018-12-27 | ||
JP2018244446 | 2018-12-27 | ||
JP2019-097861 | 2019-05-24 | ||
JP2019097861 | 2019-05-24 | ||
JP2019-153669 | 2019-08-26 | ||
JP2019153669 | 2019-08-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/357,216 Continuation US11693068B2 (en) | 2018-12-27 | 2021-06-24 | Exchange-coupled film and magnetoresistive element and magnetic sensing device including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020137558A1 true WO2020137558A1 (ja) | 2020-07-02 |
Family
ID=71127196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/048560 WO2020137558A1 (ja) | 2018-12-27 | 2019-12-11 | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11693068B2 (ja) |
JP (1) | JP7160945B2 (ja) |
CN (1) | CN113016086B (ja) |
DE (1) | DE112019006539B4 (ja) |
WO (1) | WO2020137558A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11476414B2 (en) * | 2017-08-14 | 2022-10-18 | Alps Alpine Co., Ltd. | Exchange coupling film, magnetoresistance effect element film using the exchange coupling film, and magnetic detector using the exchange coupling film |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7022766B2 (ja) * | 2017-12-26 | 2022-02-18 | アルプスアルパイン株式会社 | トンネル磁気抵抗効果膜ならびにこれを用いた磁気デバイス |
US11630168B2 (en) * | 2021-02-03 | 2023-04-18 | Allegro Microsystems, Llc | Linear sensor with dual spin valve element having reference layers with magnetization directions different from an external magnetic field direction |
CN117750870B (zh) * | 2023-12-13 | 2024-10-01 | 深圳技术大学 | 一种隧道磁电阻传感器及其使用的IrMn合金薄膜 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007049135A (ja) * | 2005-08-09 | 2007-02-22 | Hitachi Global Storage Technologies Netherlands Bv | 固定化改善のための異方性固定層を有する磁気抵抗センサ |
JP2007299880A (ja) * | 2006-04-28 | 2007-11-15 | Toshiba Corp | 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法 |
US20150340598A1 (en) * | 2014-05-21 | 2015-11-26 | Avalanche Technology, Inc. | Magnetic random access memory with multilayered seed structure |
JP2017157662A (ja) * | 2016-03-01 | 2017-09-07 | ソニー株式会社 | 磁気抵抗素子及び電子デバイス |
WO2018029883A1 (ja) * | 2016-08-10 | 2018-02-15 | アルプス電気株式会社 | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000215431A (ja) | 1999-01-28 | 2000-08-04 | Hitachi Ltd | 磁気記録用媒体 |
JP3756758B2 (ja) * | 2000-07-11 | 2006-03-15 | アルプス電気株式会社 | 交換結合膜と、この交換結合膜を用いた磁気抵抗効果素子、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッド |
EP1187103A3 (en) * | 2000-08-04 | 2003-01-08 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device, head, and memory element |
JP3652999B2 (ja) | 2001-04-04 | 2005-05-25 | 株式会社日立製作所 | 垂直磁気記録媒体及び磁気記憶装置 |
TWI222630B (en) | 2001-04-24 | 2004-10-21 | Matsushita Electric Ind Co Ltd | Magnetoresistive element and magnetoresistive memory device using the same |
JP3916908B2 (ja) * | 2001-09-28 | 2007-05-23 | 株式会社東芝 | 磁気抵抗効果素子、磁気メモリ及び磁気ヘッド |
US7351483B2 (en) * | 2004-11-10 | 2008-04-01 | International Business Machines Corporation | Magnetic tunnel junctions using amorphous materials as reference and free layers |
JP2008243920A (ja) * | 2007-03-26 | 2008-10-09 | Toshiba Corp | 磁気抵抗効果再生素子、磁気ヘッド、および磁気再生装置 |
JP2008252018A (ja) * | 2007-03-30 | 2008-10-16 | Toshiba Corp | 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ |
WO2012081377A1 (ja) * | 2010-12-16 | 2012-06-21 | アルプス電気株式会社 | 磁気センサ及び磁気センサの製造方法 |
WO2015146593A1 (ja) * | 2014-03-28 | 2015-10-01 | アルプス電気株式会社 | 磁気センサおよび磁気センサの製造方法ならびに電流センサ |
EP3104187A1 (en) * | 2015-06-09 | 2016-12-14 | International Iberian Nanotechnology Laboratory | Magnetoresistive sensor |
-
2019
- 2019-12-11 CN CN201980073704.2A patent/CN113016086B/zh active Active
- 2019-12-11 JP JP2020563049A patent/JP7160945B2/ja active Active
- 2019-12-11 WO PCT/JP2019/048560 patent/WO2020137558A1/ja active Application Filing
- 2019-12-11 DE DE112019006539.4T patent/DE112019006539B4/de active Active
-
2021
- 2021-06-24 US US17/357,216 patent/US11693068B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007049135A (ja) * | 2005-08-09 | 2007-02-22 | Hitachi Global Storage Technologies Netherlands Bv | 固定化改善のための異方性固定層を有する磁気抵抗センサ |
JP2007299880A (ja) * | 2006-04-28 | 2007-11-15 | Toshiba Corp | 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法 |
US20150340598A1 (en) * | 2014-05-21 | 2015-11-26 | Avalanche Technology, Inc. | Magnetic random access memory with multilayered seed structure |
JP2017157662A (ja) * | 2016-03-01 | 2017-09-07 | ソニー株式会社 | 磁気抵抗素子及び電子デバイス |
WO2018029883A1 (ja) * | 2016-08-10 | 2018-02-15 | アルプス電気株式会社 | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11476414B2 (en) * | 2017-08-14 | 2022-10-18 | Alps Alpine Co., Ltd. | Exchange coupling film, magnetoresistance effect element film using the exchange coupling film, and magnetic detector using the exchange coupling film |
Also Published As
Publication number | Publication date |
---|---|
US20210382122A1 (en) | 2021-12-09 |
CN113016086B (zh) | 2024-01-02 |
DE112019006539B4 (de) | 2024-10-10 |
CN113016086A (zh) | 2021-06-22 |
US11693068B2 (en) | 2023-07-04 |
JP7160945B2 (ja) | 2022-10-25 |
JPWO2020137558A1 (ja) | 2021-11-11 |
DE112019006539T5 (de) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020137558A1 (ja) | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 | |
US20080080102A1 (en) | Tunnel magnetoresistance element, magnetic head, and magnetic memory | |
CN111630402B (zh) | 磁检测装置及其制造方法 | |
JP6686147B2 (ja) | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 | |
CN111615636B (zh) | 磁检测装置及其制造方法 | |
US11476414B2 (en) | Exchange coupling film, magnetoresistance effect element film using the exchange coupling film, and magnetic detector using the exchange coupling film | |
JP6755319B2 (ja) | 磁気センサおよび電流センサ | |
CN111512172B (zh) | 磁场施加偏置膜及使用其的磁检测元件及磁检测装置 | |
JP6951454B2 (ja) | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 | |
JP6820432B2 (ja) | 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置 | |
JP6282990B2 (ja) | 磁気センサおよび電流センサ | |
JP7104068B2 (ja) | 位置検出素子およびにこれを用いた位置検出装置 | |
JP6204391B2 (ja) | 磁気センサおよび電流センサ | |
JP2000215420A (ja) | スピンバルブ型薄膜素子およびその製造方法とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19901946 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020563049 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19901946 Country of ref document: EP Kind code of ref document: A1 |