Nothing Special   »   [go: up one dir, main page]

WO2020136923A1 - 連続攪拌装置 - Google Patents

連続攪拌装置 Download PDF

Info

Publication number
WO2020136923A1
WO2020136923A1 PCT/JP2019/007646 JP2019007646W WO2020136923A1 WO 2020136923 A1 WO2020136923 A1 WO 2020136923A1 JP 2019007646 W JP2019007646 W JP 2019007646W WO 2020136923 A1 WO2020136923 A1 WO 2020136923A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
processed
processing space
space
stirring device
Prior art date
Application number
PCT/JP2019/007646
Other languages
English (en)
French (fr)
Inventor
榎村眞一
Original Assignee
エム・テクニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/047985 external-priority patent/WO2020136781A1/ja
Priority claimed from PCT/JP2018/047984 external-priority patent/WO2020136780A1/ja
Application filed by エム・テクニック株式会社 filed Critical エム・テクニック株式会社
Priority to JP2020562311A priority Critical patent/JP7292744B2/ja
Priority to US17/418,724 priority patent/US20220056004A1/en
Priority to KR1020217018686A priority patent/KR20210107666A/ko
Priority to CN201980086310.0A priority patent/CN113227027A/zh
Priority to JP2020529779A priority patent/JP6783494B1/ja
Priority to EP19902614.7A priority patent/EP3904321A4/en
Priority to PCT/JP2019/051345 priority patent/WO2020138387A1/ja
Priority to JP2020102329A priority patent/JP6762058B1/ja
Publication of WO2020136923A1 publication Critical patent/WO2020136923A1/ja
Priority to JP2020172773A priority patent/JP7442186B2/ja
Priority to JP2023056088A priority patent/JP2023073454A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1152Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis with separate elements other than discs fixed on the discs, e.g. vanes fixed on the discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1155Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis with interconnected discs, forming open frameworks or cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/23Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis
    • B01F27/231Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis with a variable orientation during mixing operation, e.g. with tiltable rotor axis
    • B01F27/2312Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis with a variable orientation during mixing operation, e.g. with tiltable rotor axis the position of the rotating shaft being adjustable in the interior of the receptacle, e.g. to locate the stirrer in different locations during the mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2711Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with intermeshing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2712Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2714Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2722Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/93Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • B01J14/005Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J16/005Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2495Net-type reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/213Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C49/217Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/255Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/593Dicarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/12Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/72Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 spiro-condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00141Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a continuous stirring device. More specifically, it relates to a continuous reaction apparatus which is effective and useful for the fields of chemistry, biochemistry, agriculture, food, medicine, cosmetics, metal industry, etc., especially for chemical reaction and synthesis.
  • a reaction process for chemically reacting two or more kinds of substances or one kind of substances themselves to obtain a new substance is roughly classified into a batch type and a continuous type.
  • a solvent, a substrate, a reaction agent and the like are put in a container typified by a flask in a laboratory, and the reaction is performed by stirring with a stirrer or the like.
  • Both the batch type and the continuous type have been industrially put into practical use, but the reaction field naturally has a volume. The volume in this reaction vessel affects the heterogeneity of reaction conditions in the reaction field.
  • a reactant when added to a uniform substrate solution to perform a chemical reaction, it takes a certain amount of time until the concentration of the reactant becomes uniform.
  • the reaction agent is added to the solvent and the substrate in the container, the reaction conditions are already different at the start and the end of the addition of the reaction agent. The heterogeneity of the reaction conditions in the reaction field caused by the factors as described above eventually affects the reaction products.
  • the desired reaction cannot be ideally performed because various reaction conditions occur in one container. For example, it is not possible to completely select the main reaction and the side reaction, generation of a by-product accompanying it, and in the case of a polymerization reaction, it is difficult to obtain a uniform molecular weight distribution of the obtained product. Including the adhesion of the product to the wall surface of the container, the yield of the reaction product to the product is naturally low.
  • the reaction vessel is usually equipped with a stirring device such as a stirrer or a turbine. By increasing the mixing speed of the mixed reaction fluid in the vessel with the stirring device, the uniformity of the reaction field is ensured and the reaction speed is dealt with.
  • CSTR continuous stirred tank reactor
  • Patent Document 1 proposes a continuous stirring tank reactor (CSTR) in which the reactors are continuously arranged in eight stages in series with an orifice plate sandwiched therebetween. By using this reactor (CSTR), an emulsion aggregation toner is prepared. Particles are made.
  • CSTR continuous stirring tank reactor
  • Patent Document 2 a plurality of mixing tank units and a plurality of partition plate units are provided, these units are connected in a state of being alternately stacked, and a disk-shaped disc-type stirring blade is installed in the internal space of each mixing tank unit.
  • a continuous reaction apparatus has been proposed, and this apparatus is suitable for producing toner by a wet method.
  • Patent Document 3 proposes a method of determining a CSTR agitator, a method of determining a raw material inlet position of the CSTR, and a method of determining a supply flow rate of the CSTR. This is to control the age of the liquid as it passes through the CSTR.
  • each stirring tank is ideally as small and multi-stage type as possible. If the agitation tank becomes large, the above-mentioned batch type problem occurs, and if the number of stages is reduced, the agitation tank naturally becomes large, so the number of agitation tanks must be increased.
  • the extrusion flow reactor (PFR) is now attracting attention as a continuous stirrer. This is a model in which, in the case of an ideal flow, the reaction proceeds gradually toward the outlet of the reactor without mixing the contents before and after the advancing direction, which is flowing into the reactor having a constant cross-sectional area at a certain speed.
  • micro reactors, micro mixers and micro reactors that are micro flow channel reactors are proposed. These have been advocated as advantages that they can be synthesized in a minute amount, high efficiency of temperature control, high efficiency of interfacial reaction, efficient mixing, and the like.
  • Patent Document 5 discloses a thin film fluid that is disposed so as to be able to approach and separate from each other so as to face each other, and that is formed between processing surfaces in which at least one rotates with respect to the other.
  • the first issue is to secure the reaction time. Since the fluids are merged in the thin film fluid between the processing surfaces, the diffusion efficiency is unprecedented and as a result, perfect mixing can be realized, but especially in the case of organic reaction, the absolute reaction time is extended. There were times when I wanted to. In order to shorten the reaction time, trial and error such as extremely raising the reaction temperature or increasing the amount of catalyst is repeated, but adverse effects such as increase of by-products and danger are conspicuous. Also, if the processing surface is made extremely large, it is possible to secure the reaction time, but such problems as large cost and installation area are not realistic.
  • JP 2012-166191 A International Publication No. 2015/186710 Pamphlet Japanese Patent Publication No. 2017-522415 JP, 2005-060281, A Japanese Patent No. 5561732
  • the present invention provides a stirrer having a new structure, in various reaction treatments, etc., is a continuous type, is compact while being capable of scale-up, and has a desired reaction product.
  • An object of the present invention is to provide an inexpensive and simple continuous stirring device that can be generated with high efficiency.
  • the present invention does not make the continuous stirred tank reactor (CSTR) a multi-stage type but has a structure having an effect closer to that of an ideal extrusion flow reactor (PFR), so that the reaction time is sufficiently increased.
  • An object of the present invention is to provide a continuous stirrer, which can secure and obtain a desired reaction product with high efficiency.
  • each of the eight reactors is divided by an orifice plate, and a stirring shaft is passed through a hole of the orifice plate.
  • a stirring blade attached to the stirring shaft of the reactor rotates, a suction force is generated around the stirring shaft due to its discharge force, so if the hole of the orifice plate is large, backflow of the fluid in the reactor occurs, The retention time is prevented from becoming constant.
  • the hole of the orifice plate is small, a large liquid feeding pressure is required, and since the reactor (CSTR) described in Patent Document 1 has eight reactors arranged in series, a larger liquid feeding pressure is required.
  • the partition plate unit installed between the two mixing tank units is provided with a stirring shaft and a liquid passage hole through which the reaction liquid passes, which causes the same problem as in Patent Document 1. It can occur.
  • the orifice is a technology used only for flow rate adjustment and flow rate measurement, but the labyrinth is for sealing purposes, and it is easy to prevent backflow of fluid in the narrow space where sealing is performed and pressure loss is small, so control of fluid retention time It's a perfect hit.
  • the labyrinth is accompanied by rotation, it is necessary to provide a stirring blade depending on the volume and shape of the processing space that is composed of a narrow space divided by the labyrinth and a space wider than the narrow space located upstream of the labyrinth. Therefore, it is not necessary to stack reactors as in Patent Documents 1 and 2. In particular, it is not realistic to arrange several tens of reactors.
  • the seal does not mean a completely leak-free seal, but it gradually leaks the fluid to the downstream side while retaining the fluid in a space wider than the narrow space arranged on the upstream side of the narrow space.
  • the target product X is obtained by reacting the raw material A and the raw material B in a chemical reaction process.
  • the first fluid treatment is mixing of the raw material A and the raw material B, and it is desired to mix the raw material A and the raw material B more uniformly and faster.
  • the reaction between the raw material A and the raw material B is allowed to proceed as the second fluid treatment.
  • the reaction conditions for efficiently obtaining the product X are adjusted.
  • the reaction conditions include the concentrations of the raw materials A and B, the temperature conditions in the reaction field, the pressure conditions and the stirring conditions, the presence or absence of a catalyst and its optimization, the reaction time, and the like. Therefore, a highly efficient, continuous type, inexpensive, and simple continuous stirring apparatus must be able to process each of the above processes (first fluid process and second fluid process) with high efficiency.
  • the continuous stirring device has an outer wall and an inner wall arranged inside the outer wall concentrically, at least one of the outer wall and the inner wall rotates with respect to the other, and the outer wall and the inner wall.
  • the present invention relates to a stirring device that stirs an object to be processed in a processing space formed between and.
  • a plurality of labyrinth seals are laid in the processing space, retention of the object to be processed upstream of the labyrinth seal, and subsequent passage of the labyrinth seal of the object to be processed. Is repeatedly performed, and the object to be treated is agitated.
  • the continuous stirring device in the continuous stirring device according to the present invention, a plurality of labyrinth seals are laid in the processing space, retention of the object to be processed on the upstream side of the labyrinth seal, and subsequent labyrinth seal of the object to be processed. Passage is repeated, and the residence time of the object to be treated is controlled and agitated.
  • the object to be processed refers to a fluid that is scheduled to be processed in the processing space.
  • the processing space is a set of a narrow overflow space and a retention space which is arranged on the upstream side of the seal space and wider than the seal space, from the upstream side to the downstream side of the flow of the object to be treated.
  • a plurality of sets of the seal space and the retention space may be continuously provided.
  • the apparatus may be implemented with the outer wall being a cylindrical wall and the inner wall being a cylindrical wall.
  • This device can be implemented as a temperature adjusting mechanism is laid for the purpose of controlling the temperature of the object to be processed in the processing space, and a plurality of the temperature adjusting mechanisms are laid and the plurality of temperature adjusting mechanisms are used to It can be implemented as being configured to adjust the objects to be processed in the processing space to different temperatures.
  • This apparatus has a supply port for supplying the object to be processed into the processing space, one end of the supply port is connected to the outside of the continuous stirring device, and the other end of the supply port communicates with the processing space.
  • This apparatus can be implemented as This apparatus can be implemented as an inlet provided for introducing the object to be processed into the processing space through a route different from the object to be processed supplied from the supply port.
  • This apparatus can be implemented as a plurality of discharge ports for discharging the object to be processed from the processing space at different processing times.
  • This apparatus can be implemented as a system in which a microwave irradiation mechanism for the object to be processed in the processing space is installed.
  • This device can be implemented as a device in which a gap adjusting mechanism for adjusting the width of the seal space is installed.
  • the outer wall and the inner wall are frustoconical in shape, and a gap for concentrically moving at least one of the outer wall and the inner wall for the purpose of adjusting the width of the sealing space.
  • the adjustment mechanism can be implemented as installed.
  • the apparatus includes a processing unit having an outer wall and an inner wall disposed inside the outer wall, the outer wall and the inner wall being concentric, the processing unit having a processing space, and the processing space, In a space between the outer wall and the inner wall, at least one of the outer wall and the inner wall is provided with a member constituting a labyrinth seal mechanism including a plurality of labyrinth seals, and at least one of the outer wall and the inner wall.
  • a labyrinth seal mechanism including a plurality of labyrinth seals
  • the present invention provides a stirrer having a new structure, in which at least one rotates with respect to the other in a processing space formed between an outer wall and an inner wall, for treating a fluid with respect to an object to be treated.
  • a plurality of labyrinth seals are laid in the processing space, and the retention of the object to be processed upstream of the labyrinth seal and the subsequent passage of the object to be processed through the labyrinth seal are repeated to stir or
  • the residence time of the treated material in the treatment space can be adjusted, and in particular, the reaction for continuing the reaction and completing the reaction in the organic reaction can be performed. Since sufficient time can be secured, the fluid can be effectively treated with respect to the object to be treated.
  • FIG. 1A is a cross-sectional view of a main part taken along the line AA of FIG. 1A
  • FIG. 2B is a cross-sectional view of the main part taken along the line BB of FIG.
  • (A) is a schematic sectional drawing of the continuous stirring apparatus which concerns on other embodiment of this invention
  • (B) (C) is principal part explanatory drawing of the same apparatus.
  • FIG. 1A and FIG. 5A the upper and lower parts of the figure correspond to the upper and lower parts of the apparatus, but in the present invention, the upper, lower, front, rear, left and right are merely to show a relative positional relationship, and an absolute position is specified. Not a thing.
  • R indicates the direction of rotation.
  • the continuous stirring device F includes a processing unit including an outer wall 61 and an inner wall 10 arranged inside the outer wall 61.
  • the outer wall 61 and the inner wall 10 are concentric with each other, and the processing section includes a processing space 81 formed between the outer wall 61 and the inner wall 10. At least one of the outer wall 61 and the inner wall 10 rotates with respect to the other.
  • the outer wall 61 has a cylindrical shape as a whole, and may be embodied as having a bottom portion and a top portion as necessary.
  • the outer wall 61 is a cylindrical wall 63, and flanges 67 projecting radially outward from the cylindrical wall 63 are formed at both ends thereof.
  • the inner wall 10 has a columnar shape as a whole, as shown in FIG.
  • the inner wall 10 has a columnar shape and is provided with a plurality of protrusions 16 that project radially outward from the outer peripheral surface 11.
  • the protrusions 16 have a circumferential shape in a plan view and are provided at predetermined intervals in the axial direction.
  • FIG. 1(B) is an explanatory view of a main part of the continuous stirring device F, and is a perspective view showing the arrangement of the inner wall 10, the protrusion 16 and a stirring blade 111 described later, and the other protrusion 16 on the upper side. It depicts the state that is not. As shown in FIG.
  • the entire protrusion 16 has a disk shape with the same thickness.
  • the protrusion 16 may have a thickness that changes in the radial direction.
  • a protrusion protruding radially inward from the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61 may be provided, and the inner surface 71 of the bottom portion 62 or the inner surface of the top portion 76 may be provided. You may provide the protrusion part which protrudes toward the process space 81.
  • the outer wall 61 has a cylindrical shape as a whole, and the inner wall 10 has a columnar shape as a whole.
  • the outer wall 61 is hollow because the inner surface of the outer wall 61 forming the processing space 81 is important for processing the fluid, and the inner wall 10 is the outer surface of the inner wall 10 forming the processing space 81. It may be solid or hollow because it is important for the treatment.
  • the inner wall 10 includes those having a circular cross section, a rectangular cross section, or a different cross section, regardless of whether the inner wall 10 is cylindrical or columnar.
  • the outer wall 61 also includes those having a circular cross section, a rectangular cross section, or an irregular cross section, regardless of whether the outer wall 61 is cylindrical or columnar.
  • the inner wall 10 is arranged inside the outer wall 61, and the outer wall 61 and the inner wall 10 are arranged concentrically.
  • a processing space 81 is formed between the outer wall 61 and the inner wall 10.
  • a processing space 81 is provided between the outer peripheral surface 11 of the inner wall 10 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61.
  • the object to be processed is processed in this processing space 81.
  • the object to be processed refers to a fluid that is scheduled to be processed in the processing space 81, and hereinafter, the object to be processed is also referred to as a fluid. If the processing space 81 can be provided between the outer wall 61 and the inner wall 10, the outer wall 61 and the inner wall 10 do not have to be arranged concentrically.
  • the interval of the processing space 81 is the retention of the object to be processed in the processing space 81.
  • 5 to 200% of the outer diameter D of the inner wall 10 is preferable, and 10 to 150% of the outer diameter D of the inner wall 10 is more preferable.
  • the interval between the processing spaces 81 is preferably 5 to 200 mm, more preferably 10 to 150 mm.
  • the outer diameter D of the inner wall 10 is the diameter of the inner wall 10 and does not include the protrusion 16.
  • At least one of the outer wall 61 and the inner wall 10 rotates with respect to the other.
  • the drive shaft of the rotary drive mechanism M such as an electric motor is connected to the rotary shaft 31, and the rotary shaft 31 has an inner wall via bearings 77, 77 provided on the bottom portion 62 and the top portion 76.
  • 10 is rotatably supported, and the inner wall 10 rotates with respect to the outer wall 61.
  • the outer wall 61 may be rotated with respect to the inner wall 10, or both may be rotated, but both need to be relatively rotated.
  • the outer wall 61 is provided with a supply part 75 and an outflow part 68.
  • the supply unit 75 is a supply port for supplying an object to be processed, which is a fluid to be processed in the processing space 81, from the outside of the system (outside the apparatus) to the processing space 81, and one end thereof stores the object to be processed. It is connected to the outside of a continuous stirring device F such as a tank, and the other end communicates directly or indirectly with the processing space 81.
  • the supply part 75 is provided on the outer wall 61 and communicates with the seal part 84 via a receiving part 82 described below.
  • the outflow part 68 is an outlet for discharging the processed material, which has been processed with the fluid in the processing space 81, out of the system (outside of the apparatus).
  • the upper side of FIG. 1A is the upstream side of the flow of the object to be processed
  • the outflow portion 68 is provided above the cylindrical wall 63 of the outer wall 61
  • the outflow portion 68 is provided below the cylindrical wall 63 of the outer wall 61.
  • a plurality of supply parts 75 and outflow parts 68 may be provided on the outer wall 61.
  • the processing space 81 By providing a plurality of supply parts 75 on the outer wall 61, it is possible to supply a plurality of objects to be processed into the processing space 81 from outside the system (outside the apparatus), and by providing a plurality of outflow parts 68 on the outer wall 61, the processing space is provided. According to the processing time of the object to be processed in 81, the object to be processed can flow out of the processing space 81 to the outside of the system (outside the apparatus).
  • a member forming the processing space 81 such as the outer peripheral surface 11 of the inner wall 10 or the cylindrical wall 63 of the outer wall 61, may be provided with a labyrinth seal mechanism for extending the residence time of the fluid in the processing space 81.
  • a labyrinth seal is a minimally leaking seal that provides a resistance to the flow of fluid with a radial or axial gap between the labyrinth seal and the labyrinth created by the peripheral knife-like structure or contact points. Is what causes the expansion of one after another.
  • the protruding portion 16 is a member that constitutes the labyrinth seal mechanism, and the viscosity of the object to be processed may be increased between the tip of the protruding portion 16 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61.
  • it has a minute gap of about 0.01 mm to 1 mm.
  • the labyrinth seal applied to the present invention is not a completely leak-free seal, but a mechanism that gradually leaks the fluid to the downstream side while retaining the fluid in the space on the upstream side.
  • the processing space 81 includes a seal portion 84 and a pool portion 83.
  • the seal portion 84 is a narrow space formed between the tip of the protruding portion 16 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61, and the pool portion 83 is the outer peripheral surface of the inner wall 10 without the protruding portion 16. It is a space formed between 11 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61, and is a space arranged upstream of the seal portion 84 and wider than the seal portion 84.
  • the labyrinth seal means the seal portion 84
  • the labyrinth seal mechanism means the set of the seal portion 84 and the pool portion 83.
  • the inner wall 10 rotates with respect to the outer wall 61
  • the protrusion 16 is provided on the outer peripheral surface 11 of the inner wall 10
  • the tip of the protrusion 16 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61 are formed. It is ideal to provide the seal portion 84 between the two in terms of controlling the age of the object to be processed.
  • a plurality of sets are continuously arranged from the upstream side to the downstream side of the flow of the object to be processed, with the seal part 84 and the pool part 83 as one set.
  • a set of seal portion 84 and pool portion 83 may be arranged.
  • the processing space 81 includes a receiving section 82.
  • the receiving portion 82 is the uppermost space of the processing space 81 and is wider than the sealing portion 84, and can receive the object to be processed supplied from the supply portion 75 without resistance. It may also be used as the pool section 83 arranged at the uppermost stream of the flow of the object to be processed.
  • the fluid supplied from the supply unit 75 to the processing space 81 is first received and stored in the receiving unit 82.
  • the receiving portion 82 is filled with the fluid
  • the fluid leaks to the seal portion 84 arranged on the downstream side of the receiving portion 82.
  • the seal portion 84 is filled with the fluid
  • the fluid leaks to the pool portion 83 arranged on the downstream side of the seal portion 84.
  • the fluid is received and stored in the pool section 83.
  • the fluid leaks to the seal portion 84 arranged on the downstream side of the pool portion 83. Since a plurality of sets of seal portions 84 and pool portions 83 are continuously arranged in the processing space 81, the movement of these fluids is repeated.
  • the inner wall 10 having the protrusion 16 on the outer peripheral surface 11 is rotating.
  • a centrifugal force acts due to the rotation of the inner wall 10, and, for example, the fluid in the receiving portion 82 is downstream of the receiving portion 82.
  • the seal portion 84 which is a narrow space, due to the rotation of the inner wall 10, the fluid is unlikely to leak to the pool portion 83 arranged on the downstream side of the seal portion 84, but the fluid is not completely sealed, and a small portion is not formed.
  • the predetermined amount is determined according to the required processing conditions such as the purpose of the required processing, the processing amount, and the processing speed.
  • the inner wall 10 is rotated, and in the processing space 81, a plurality of sets of the receiving portion 82, the sealing portion 84 that is a narrow sealing space, and the pool portion 83 that is a retention space wider than the sealing portion 84 are continuously arranged.
  • the amount of fluid supplied from the supply unit 75 to the processing space 81 is minimized in the seal portion 84, and the fluid leaked from the seal portion 84 is disposed in the pool portion 83 located downstream of the seal portion 84.
  • the labyrinth seal extends the residence time of the fluid in the processing space 81.
  • the residence time of the fluid in the entire device is leveled. For example, considering a case where the total pool capacity of fluid planned for the entire apparatus is satisfied by the single pool section 83, the retention from the empty state of the single pool section 83 until it becomes full is considered. Even if the time is constant, when continuous operation is performed even after it is full, all the fluid that fills the single pool section 83 is replaced with new fluid that flows in from the upstream. It is difficult to configure, and some of the fluids flow out downstream before the retention time reaches the above-mentioned retention time, and some of the other fluids remain in the pool section 83 forever.
  • a plurality of sets of the seal portion 84 and the pool portion 83 are continuously provided in the processing space 81, and the inner wall 10 forming the processing space 81 is located on the upstream side of the sealing portion 84 by rotating with respect to the outer wall 61.
  • the retention of the object to be treated in the pool portion 83 and the subsequent passage of the object to be treated through the sealing portion 84 are repeatedly performed, whereby the retention time of the object to be treated can be controlled.
  • the residence time of the fluid in the processing space 81 depends on the volume of the processing space 81, the interval and the length of the processing space 81, the number of sets of the seal portion 84 and the pool portion 83, the rotation speed of the inner wall 10, the continuous stirring device F. It can be adjusted by adjusting the introduction amount of the introduced fluid.
  • the retention time of the fluid in the processing space 81 is preferably about 2 to 30 minutes, more preferably about 3 to 10 minutes. However, when the treatment of the fluid is a polymerization reaction or the like, retention of several hours may be required. ..
  • the peripheral speed of the outer circumference of the inner wall 10 is preferably 0.5 to 35 m/sec.
  • the protrusion 16 is not included in the outer periphery of the inner wall 10.
  • the protrusion 16 may have any shape as long as it can form the seal portion 84 which is a narrow space between the tip of the protrusion 16 and the outer wall 61.
  • the protrusion may have any shape as long as it can form the seal portion 84 that is a narrow space between the tip and the inner wall 10.
  • the length of the protrusion and the width of the tip of the protrusion can be appropriately set within the range necessary to obtain the labyrinth sealability.
  • the fluid filling the sealing portion 84 which is a narrow space, becomes a laminar flow, so that the sealing effect is enhanced.
  • the fluid stored in the receiving portion 82 or the pool portion 83 which is a relatively large space, becomes a turbulent flow, so that the stirring action is applied to the fluid during the retention.
  • the outer wall 61 and the top portion 76 may be provided with an introduction portion 69.
  • the introduction unit 69 is a supply port for supplying the processing object to the processing space 81 from a different route from the processing object supplied from the supply unit 75 to the processing space 81.
  • the introduction part 69 is provided on the outer wall 61 between the supply part 75 and the outflow part 68, and supplies another object to be processed to the object being processed.
  • the introduction portion 69 may be provided at the upper end of the cylindrical wall 63 of the outer wall 61, or its position may be changed.
  • the object to be processed supplied from the introduction part 69 to the processing space 81 may be different from the object to be processed supplied from the supply part 75 to the processing space 81, or may be the same. It can be one.
  • Examples of the object to be processed supplied from the introduction part 69 to the processing space 81 include raw materials themselves, a polymerization initiator, a reaction terminator, a pH adjuster, a catalyst, a coating agent and the like.
  • the introduction part 69 may also be used as an exhaust port for exhausting gas generated in the processing of the fluid, or an exhaust port for exhausting gas may be separately provided.
  • the object to be processed supplied from the supply section 75 to the processing space 81 is discharged from the outflow section 68 while introducing the object to be processed or discharging a fluid such as gas through the introducing section 69 as necessary. By doing so, the processing of the fluid is completed in the restricted processing space 81.
  • Temperature adjustment mechanism Even if the temperature of the fluid flowing through the processing space 81 is adjusted by providing the temperature adjusting mechanism T on at least one of the outer wall 61 and the inner wall 10 and adjusting the temperature of the member by cooling or heating. Good.
  • a temperature adjusting jacket for flowing various heat media including ice water and steam is attached to the outer peripheral surface of the cylindrical wall 63 of the outer wall 61.
  • one temperature adjusting jacket may be provided on the outer wall 61, and as shown in FIG. 5(A) described later, a plurality of temperature adjusting jackets (T1 in FIG. 5(A)) may be provided. Two of T2) may be provided on the outer wall 61.
  • a plurality of temperature adjustment jackets when a plurality of temperature adjustment jackets are provided on the outer wall 61, these jackets may be adjusted to the same temperature or different temperatures. By adjusting the plurality of temperature adjustment jackets to different temperatures, the temperature of the fluid flowing in the processing space 81 can be adjusted according to the progress of the processing of the fluid in the processing space 81.
  • a cooling element or a heating element may be attached to at least one of the outer wall 61 and the inner wall 10.
  • the inner wall 10 may be provided with a stirring blade 111 and a scraper 112. It is effective when processing the fluid of a highly viscous object.
  • a plurality of plate-like members are formed on the outer peripheral surface 10 between the protrusions 16 provided on the inner wall 61 and without the protrusions 16.
  • the stirring blades 111 are provided at intervals in the circumferential direction.
  • the stirring blade 111 may be fixed to the outer peripheral surface 11 of the inner wall 10 or may be fixed to the disk-shaped protrusion 16. By rotating the stirring blade 111 together with the inner wall 10, it is possible to enhance the stirring function for the object to be processed flowing in the processing space 81.
  • FIG. 1A is a cross-sectional view of the main part taken along the line AA of FIG. 1A
  • FIG. 2B is a cross-sectional view of the main part taken along the line BB of FIG. 2A.
  • a column portion 113 for supporting the scraper 112 is provided between the protrusions 16 and 16.
  • the column portion 113 is two plate-shaped members, and the scraper 112 is sandwiched between the two plate-shaped members to attach the scraper 112 and the two plate-shaped members to the bolt 114.
  • the pillar 113 supports the scraper 112 by fixing the scraper 112. As shown in FIGS. 2A and 2B, the tip of the scraper 112 is brought into close contact with the inner peripheral surface 70 of the cylindrical wall 70 of the outer wall 61.
  • the scraper 112 is a scraping blade that scrapes off the adhered matter that has adhered to the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61.
  • the scraper 112 is fixed to the column portion 113 provided on the inner wall 10, the tip of the scraper 112 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61 are brought into close contact with each other, and the scraper 112 rotates together with the inner wall 10. Continuously scrapes off the deposits.
  • the inner wall of the cylindrical wall 63 of the outer wall 61 is When deposits are generated on the peripheral surface 70, the heat transfer efficiency of the inner peripheral surface 70, which is the heat transfer surface, is significantly reduced, and the temperature of the fluid in the processing space 81 cannot be adjusted.
  • the scraper 112 continuously scrapes off the adhered substances, thereby preventing the heat transfer efficiency of the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61 from being lowered and improving the yield of the product.
  • a baffle 78 may be provided on the outer wall 61 for implementation.
  • a baffle 78 is attached to the outer wall 61.
  • the cylindrical wall 63 of the outer wall 61 is provided with a supporting portion 79 for supporting the baffle 78, and the tip of the baffle 78 supported by the supporting portion 79 projects toward the pool portion 83. ing.
  • the inner wall 10 has a hexagonal columnar shape and is provided with a plurality of protrusions 16 that project radially outward from the outer peripheral surface 11.
  • the inner wall 10 may have a prismatic shape such as a cylindrical shape, a hexagonal pillar shape, or a quadrangular pillar shape, or may have a deformed pillar shape.
  • the catalyst portion 115 in the pool portion 83.
  • FIG. 4 a form in which a catalyst supported on a carrier is attached as the catalyst portion 115 can be shown, and more specifically, the protrusion 16 between the protrusions 16 provided on the inner wall 61 can be formed.
  • a catalyst portion 115 having an outer diameter substantially the same as that of the protruding portion 16 is attached to the outer peripheral surface 11.
  • the outer diameter of the catalyst portion 115 may be shorter than that of the protrusion 16.
  • the outer diameter of the catalyst portion 115 refers to the outer diameter of the entire carrier supporting the catalyst.
  • the catalyst portion 115 may be attached to the disc-shaped protrusion portion 16.
  • a space is provided between the outer peripheral surface 11 of the inner wall 10 and the catalyst portion 115 so that the catalyst portion 115 is attached to the disc-shaped protrusion portion 16.
  • Catalysts supported on a plurality of carriers may be attached to the outer peripheral surface 11 of the inner wall 10 as the catalyst portions 115 at intervals in the circumferential direction. Since the catalyst portion 115 rotates together with the inner wall 10, the carrier on which the catalyst is carried preferably has a strength capable of withstanding the rotation.
  • the carrier on which the catalyst is supported is preferably honeycomb-shaped or mesh-shaped for flowing the fluid, and it is not preferable that the carrier causes resistance to the fluid flowing in the processing space 81 more than necessary.
  • the catalyst supported on the carrier or the catalyst itself is a solid, and can be selected and carried out as necessary depending on the type of the object to be treated and the type of reaction. By thus providing the catalyst portion 115 in the pool portion 83, the reaction can be efficiently performed. Note that each embodiment can be implemented in combination with the above embodiment.
  • the inner wall 10 and the outer wall 61 can be configured by a single member or a combination of a plurality of members, and the materials thereof include various metals, ceramics such as silicon carbide (SiC), sintered metal, and abrasion resistance. It is possible to employ steel, sapphire, or other metal that has been hardened, or hard material that has been subjected to lining, coating, plating, or the like.
  • both the outer wall 61 and the inner wall 10 are frustoconical in shape, and the outer wall 61 and the inner wall 10 are concentrically arranged.
  • the lower part of FIG. 5A is the upstream side of the flow of the object to be processed
  • the upper part of FIG. 5A is the downstream side of the flow of the object to be processed.
  • the truncated cone tubular shape is a tubular shape having a circular cross section, and its diameter gradually increases or decreases gradually from the upstream side to the downstream side of the flow of the object to be processed, but its diameter May be constant.
  • the diameters of the objects to be processed are increased on the upstream side and the downstream side. You may provide the part which becomes fixed.
  • the labyrinth seal mechanism acts there may be a portion where the diameter thereof gradually increases or decreases and a portion where the diameter thereof becomes constant.
  • both the outer wall 61 and the inner wall 10 are tubular with a circular cross section, and the diameter thereof gradually increases from the upstream side to the downstream side of the flow of the object to be treated.
  • the outer wall 61 is in the shape of a truncated cone having a bottom portion 62, a flange protruding outward in the radial direction is formed at the open end, and a top portion 76 and a flange 67 that are separate members from the outer wall 61 are fixed. It has been closed.
  • the inner wall 10 is in the shape of a truncated cone, and is provided with a plurality of protrusions 16 that protrude radially outward from the outer peripheral surface 11.
  • the protrusions 16 have a circumferential shape in a plan view, are provided at a predetermined interval in the axial direction, and are narrowed from the base end to the tip of the protrusions 16, The thickness changes in the direction.
  • the inner wall 10 may have a solid truncated cone shape.
  • At least one of the outer wall 61 and the inner wall 10 may be movably provided by a gap adjusting mechanism (not shown).
  • a gap adjusting mechanism By providing at least one of the outer wall 61 and the inner wall 10 so as to be movable, the size of the seal portion 84 can be adjusted.
  • the inner wall 10 is provided concentrically, that is, in the central axis direction by a gap adjusting mechanism (not shown). It is preferable that the position of the central axis does not change. By providing the inner wall 10 concentrically so as to be movable, the size of the seal portion 84 can be adjusted.
  • the outer wall 61 is in the shape of a truncated cone, and the inner wall 10 is concentrically movable so that the space between the tip of the protrusion 16 and the inner peripheral surface 70 of the cylindrical wall 63 of the outer wall 61 is increased.
  • the minute gap of can be adjusted. It is advantageous that the width of the seal portion 84 can be adjusted and a relatively wide seal portion 84 can be provided when it is desired to remove the gas generated during the reaction or when processing a highly viscous object.
  • 5(B) and 5(C) are explanatory views of the main part of the continuous stirring device F, in which the width of the seal portion changes when the inner wall 10 is moved concentrically by a gap adjusting mechanism (not shown). Indicates.
  • FIG. 5C is a cross-sectional view of an essential part when the cylindrical inner wall 10 is moved concentrically by a gap adjusting mechanism (not shown). As shown in FIGS. 5B and 5C, when the inner wall 10 is raised concentrically by a gap adjusting mechanism (not shown), the width of the seal portion 84 becomes wider.
  • the specific configuration of the gap adjusting mechanism is not particularly limited, and linear feeding means such as a screw feeding mechanism and a fluid pressure driving mechanism such as air and hydraulic pressure can be appropriately selected and employed.
  • the outer wall 61 and the inner wall 10 are provided with a microwave generator such as a magnetron for irradiating at least one of them with a microwave as a microwave irradiation mechanism, and heat a fluid flowing in the processing space 81 and promote a chemical reaction. You may go.
  • a microwave generator such as a magnetron for irradiating at least one of them with a microwave as a microwave irradiation mechanism
  • the inner wall 10 and the outer wall 61 may be provided with a pressure adjusting mechanism for adjusting the pressure of the fluid flowing through the processing space 81.
  • a pressure adjusting mechanism for adjusting the pressure of the fluid flowing through the processing space 81.
  • various pumps can be used as the pressure adjusting mechanism.
  • a negative pressure may be applied to the processing space 81.
  • nitrogen gas it is possible to use nitrogen gas to pressurize the processing space 81 or control the degree of vacuum of the processing space 81 by a vacuum pump.
  • the fluid treatment is a reaction treatment, which is a treatment for mixing raw materials, a subsequent reaction, and a reaction product, and the following treatments can be performed. Examples include fluid retention, fluid agitation, fluid mixing, heat treatment, pH adjustment, and aging. This reaction treatment may or may not be accompanied by crystallization, crystallization, precipitation, or the like. For example, in the case of an organic reaction, the reaction may be completed by a residence treatment, and a stirring treatment may be added at that time.
  • the continuous stirring device F performs the first fluid treatment (mixing of the raw material A and the raw material B) and the second fluid treatment (progress of the reaction between the raw material A and the raw material B) exemplified above. You may use it as what you do.
  • the first fluid treatment may be performed by a device different from the continuous stirring device F according to the present invention, and the second fluid treatment subsequent to the first fluid treatment may be performed by the continuous stirring device F according to the present invention.
  • the first fluid treatment may be performed by the continuous stirring apparatus F according to the present invention, and the second fluid treatment subsequent to the first fluid treatment may be performed by an apparatus different from the continuous stirring apparatus F according to the present invention. ..
  • a fluid different from the fluid which has been subjected to pretreatment such as pre-dispersion, pre-emulsification, pre-milling, etc.
  • a device different from the continuous treatment device F according to the present invention or a direct fluid without pre-treatment is used. It is possible to develop such as processing of.
  • reaction conditions such as temperature conditions, pressure conditions, stirring conditions, and reaction time of the reaction field. It is possible to control processing characteristics such as selectivity and product yield, the reaction rate of the raw material is the ratio of the raw material consumed by the reaction to the supplied raw material, and the selectivity is determined by the reaction. The ratio of the consumed raw materials to the production of the target product, and the product yield is the product of the reaction rate and the selectivity.
  • Reynolds number in fluid motion, a dimensionless number that represents the ratio of inertial force and viscous force is called Reynolds number, and is represented by the following equation (1).
  • ⁇ / ⁇ is the kinematic viscosity
  • V is the representative velocity
  • L is the representative length
  • is the density
  • is the viscosity.
  • the flow of the fluid has a critical Reynolds number as a boundary, and becomes a laminar flow below the critical Reynolds number and a turbulent flow above the critical Reynolds number.
  • the fluid treatment of one fluid may be performed or the fluid treatment of two or more fluids may be performed.
  • the fluid treatment method using the continuous stirrer F according to the present invention can be applied to various treatments such as emulsification, dispersion, mixing, pulverization, and reaction, and when the fluid treatment is reaction, for example, Japanese Patent Application Laid-Open No. 2009-089022.
  • the present invention can be applied to various objects to be treated shown in Japanese Patent Laid-Open Publication No. 2003-242242 and can be applied to various reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Accessories For Mixers (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polymerisation Methods In General (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

新しい構成の連続撹拌装置を提供する。 連続撹拌装置Fは、外壁61と外壁61の内側に配置された内壁10とを同心で有し、外壁61と内壁10とのうち少なくとも一方が他方に対して回転し、外壁61と内壁10との間に形成される処理空間81内に被処理物を通過させ攪拌する。処理空間81に複数のラビリンスシールが敷設され、ラビリンスシールの上流側の被処理物の滞留と、その後の被処理物のラビリンスシールの通過とが繰り返し行われ、被処理物を攪拌するように又は被処理物の滞留時間を制御し攪拌するように構成される。処理空間81は、狭溢なシール空間84とシール空間84の上流側に配置され且つシール空間84よりも広い滞留空間83とを一組として、被処理物の流れの上流から下流にかけてシール空間84と滞留空間83とを複数組連続的に備える。

Description

連続攪拌装置
本発明は、連続式攪拌装置に関する。さらに詳しくは、化学、生化学、農業、食品、医薬、化粧品、金属工業などの分野、とりわけ化学反応、合成に有効並びに有用な連続反応装置に関する。
一般的に2種類以上の物質もしくは1種類の物質そのもの同士を化学反応させて、新たな物質を得るための反応処理は、バッチ式と連続式とに大きく分類される。バッチ式の反応処理は、実験室においてフラスコに代表されるような容器の中に、溶媒と基質、反応剤などを入れ、撹拌機などで撹拌して反応を行う。バッチ式と連続式のいずれも工業的に実用化されているが、当然ながらその反応場は容積を持つ。この反応容器における容積は、反応場における反応条件の不均一性に影響する。例えば、均一な基質溶液に反応剤を加えて化学反応を行う場合、反応剤の濃度が均一になるまでには一定の時間を要する。反応条件における温度についても同様の事が考えられる。つまり、反応容器を外部乃至内部から、加熱や冷却を行う場合、反応容器内全体が一定温度に到達するまでには一定の時間を要し、さらに、容器内の反応場全体を完全に一定温度とすることは極困難であると考えられる。また、バッチ式の反応容器の場合において、容器中の溶媒と基質に反応剤を投入する場合、反応剤の投入開始時と終了時ではすでに異なる反応条件である。上記のような要因によって生じる反応場における反応条件の不均一性は、結果的に反応生成物に影響を与える。つまり、一つの容器内に様々な反応条件が発生する事により、目的の反応を理想的には行えない。例えば、主反応と副反応を完全には選択できない事やそれに伴う副生成物の発生、また重合反応などの場合には得られる生成物の分子量分布が均一に成り難い事等が挙げられる。容器壁面への生成物の付着も含めると、反応物から生成物への収率は自ずと低くなる。反応場におけるそれらの問題を解決するために、通常、反応容器には、撹拌機、タービンなどの撹拌装置を備える。撹拌装置により容器内の混合反応流体の混合速度を向上することで、反応場の均一性を確保し、反応速度に対応せんとするものであった。しかし、対象とする混合反応流体の粘度が上昇する毎に再び上記反応場における不均一化の問題が浮上する。それでも尚、瞬間的な混合を目標とする事によって、自然と撹拌所要動力は増大する一途である。また、温度勾配が大きいため短時間で加熱する場合には必要以上の熱エネルギーを必要とすることなどの問題もある。
さらに上記のような反応処理は化学工業において頻繁に使用されるにも関わらず、安全性の問題および危険を伴う。多くの場合、比較的大量の高度な毒性の化学物質が用いられ、人および環境に相当な危険を示し、溶媒が種々の点で環境汚染物質であることから、格別の問題が現れる。また、例えば、フリーデル-クラフツアシル化の場合における反応の強力な発熱性のリスクや、ニトロ化の場合には発熱反応のみならず大きな爆発のリスクがある。さらにそれらの危険性は実生産に向けてスケールアップを図ると同時に前面に出てくる。
上記の問題を解決するために、特許文献1-3に示されるような、連続攪拌槽型反応器(CSTR)が注目されている。CSTRは、理想流れの場合、連続的に流入する原料などの反応物質は反応器に入った瞬間に反応器内容物と完全に混合され、反応器内容物は完全に均一とするモデルであるが、現実は非理想流れとなり完全混合槽列モデルとなる。
特許文献1では、反応器がオリフィス板を挟んで直列8段で連続的に整列している連続撹拌式槽型反応器(CSTR)が提案され、この反応器(CSTR)を用いて乳化凝集トナー粒子が作製されている。
特許文献2では、複数の混合槽ユニットと複数の仕切り板ユニットを備え、これらのユニットを交互に積層した状態で接続され、各混合槽ユニットの内部空間に円盤状ディスク型攪拌翼が設置された連続式反応装置が提案され、この装置は湿式法によるトナーの製造に好適である。
また、特許文献3では、CSTRの撹拌機を決定する方法やCSTRの原料入り口位置の決定、CSTRの供給流量の決定の方法が提案されている。これは、CSTRを液体が通過する際の液体の齢を制御するためである。
CSTRを突き詰めてゆくと各攪拌槽は出来るだけ小さくかつ多段式が理想となる。攪拌槽が大きくなると上述したようなバッチ式の問題が発生するし、多段を減らすと自ずから攪拌槽が大きくなるので攪拌槽の段数を増加しなければならない。
その結果、コストの問題や設置スペースの問題が発生する。
連続式攪拌装置として次に押し出し流れ反応器(PFR)が注目されている。
これは、理想流れの場合、断面積一定の反応器にある速度で流入している進行方向前後で内容物は混じり合うことなく反応器出口に向かって徐々に反応が進むというモデルである。
現実には微小反応器、微小流路式反応器であるマイクロミキサーやマイクロリアクターが提案される。これらは微少量での合成が可能なことや、温度制御の高効率化、界面反応の高効率化、効率的混合などの利点が提唱されている。しかし、一般的なマイクロリアクターを用いる場合にはマイクロデバイス及びシステムの利点は数あるとしても、実際にはマイクロ流路径が狭くなればなるほどその圧力損失は流路の4乗に反比例する事、つまり実際には流体を送り込むポンプが入手し難いくらい大きな送液圧力が必要となる事、また析出を伴う反応の場合、生成物が流路に詰まる現象や反応によって生じる泡によるマイクロ流路の閉鎖、さらに基本的には分子の拡散速度にその反応を期待するため、全ての反応に対してマイクロ流路が有効・適応可能と言う訳ではなく、現実的にはトライアルアンドエラー方式に反応を試行し、首尾良いものを選択する必要性があるなど、その問題も多い。そのため特許文献4のようにマイクロリアクター中に発生する堆積物の問題を超音波処理する事で回避する場合もあるが、超音波によって生じる流路内の不規則な乱流やキャビテーションは、目的の反応に対して常に都合良くは作用しない可能性が高い。さらにスケールアップについても、マイクロリアクターそのものの数を増やす方法、つまりナンバリングアップで解決されて来たが、実際には積層可能数は数十が限界であり、自ずと製品価値の高い製品に的が絞られやすく、また、装置が増えるという事は、その故障原因の絶対数も増えるという事であり、実際に詰まりなどの問題が発生した場合、その故障箇所など、問題箇所を検出する事が大変困難と成りうる可能性がある。
これらの問題を解決すべく特許文献5に示されるような有機化合物の製造方法が本願出願人により提案された。特許文献5は、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間にできる薄膜流体中で、例えば、有機化合物を少なくとも1種類含む流体と反応剤を少なくとも1種類含む流体とを合流させるものであり、当該薄膜流体中において各種の有機反応をさせることを特徴とする、有機化合物の製造方法であり、薄膜流体中において有機反応させることから、反応の均一性を確保でき、スケールアップも可能としている。
しかしながら、特許文献5に示される有機化合物の製造方法を用いた場合であっても、前述した通り現実的にはトライアルアンドエラー方式に反応を試行し、首尾良いものを選択する必要性があるなど、同様の問題が見受けられる。
その問題の第一として反応時間の確保が上げられる。処理用面間における薄膜流体中で各流体を合流されるものであるため拡散効率は前例がないくらい高い結果、完全混合を実現できているが、特に有機反応の場合絶対的な反応時間を延ばしたい場合があった。反応時間の短縮化のために反応温度を極端に上げたり触媒量を増やしたり等のトライアルアンドエラーを繰り返すが副生成物の増大や危険性などの弊害も目立つ。また処理用面を極端に大型化すれば反応時間の確保は可能となるが大きなコストや設置面積の問題など現実的ではない。
特開2012-166191号公報 国際公開第2015/186710号パンフレット 特表2017-522415号公報 特開2005-060281号公報 特許第5561732号公報
上記に鑑み、本発明は、新しい構成の攪拌装置を提供するものであって、各種反応処理等において、連続式であり、スケールアップが可能でありながらコンパクトであり、目的とする反応生成物を高効率で生成可能な、安価でシンプルな連続攪拌装置を提供することを課題とする。
特に、本発明は、連続攪拌槽型反応器(CSTR)を多段式にするのではなく、理想的な押し出し流れ反応器(PFR)により近い効果を有する構成とすることによって、反応時間を十分に確保し、目的とする反応生成物を高効率で得ることができる連続攪拌装置を提供することを課題とする。
特許文献1では、8つの反応器それぞれがオリフィス板で分割され、オリフィス板の穴に撹拌軸が通されている。反応器の撹拌軸に取り付けられた攪拌翼が回転すると、その吐出力により攪拌軸の周りには吸い込み力が発生するため、オリフィス板の穴が大きいと反応器内の流体の逆流が発生し、滞留時間の一定化が妨げられる。また、オリフィス板の穴が小さいと大きな送液圧力が必要となり、特許文献1に記載の反応器(CSTR)は反応器が8段直列に配置されていることから、より大きな送液圧力が必要となる。
特許文献2では、二つの混合槽ユニットの間に設置される仕切り板ユニットの中心部には、撹拌軸及び反応液を通過させる通液穴が設けられており、特許文献1と同様の問題が発生しうる。
これらの問題は回転を伴うラビリンスで解決できる。
オリフィスはあくまで流量調整や流量測定に利用される技術であるが、ラビリンスはシール目的であり、シールを行う狭隘な空間で流体の逆流を防止しやすく圧力損失も少ないので、流体の滞留時間の制御には打って付けである。また、ラビリンスが回転を伴うので、ラビリンスで区分けされた狭隘な空間とその上流側に配置された狭隘な空間よりも広い空間とで構成される処理空間の容積や形状によっては攪拌羽根を設ける必要がなく、特許文献1、2のように反応器の段積みの必要がない。特に、反応器を数十段配置することは現実的でない。本発明では、これらの問題を解決した簡便にかつ安価に装置を製造することができるものである。ここで、シールとは、完全に漏れのないシールではなく、狭隘な空間の上流側に配置された狭隘な空間よりも広い空間に流体を滞留させながら徐々に流体を下流側へ漏らしていくものをいう。
一例として化学反応処理で原料Aと原料Bとを反応させて目的生成物Xを得るものとする。この場合、第一の流体処理は原料Aと原料Bの混合であり、原料Aと原料Bとをより均一にかつより早く混合することが望まれる。続いて、第二の流体処理として原料Aと原料Bとの反応を進行させる。この反応を進行させるために、生成物Xを効率的に得るための反応条件を調整する。反応条件とは、原料Aと原料Bの濃度や、反応場の温度条件、圧力条件や撹拌条件、触媒の有無やその適正化、反応時間などをいう。故に高効率で連続式且つ安価でシンプルな連続撹拌装置は前記の各処理(第一の流体処理と第二の流体処理)を高効率で処理可能としなければならない。
本発明に係る連続撹拌装置は、外壁と前記外壁の内側に配置された内壁とを同心で有し、前記外壁と前記内壁とのうち少なくとも一方が他方に対して回転し、前記外壁と前記内壁との間に形成される処理空間内に被処理物を通過させ攪拌する攪拌装置に関するものである。
本発明に係る連続撹拌装置においては、前記処理空間に複数のラビリンスシールが敷設され、前記ラビリンスシールの上流側の前記被処理物の滞留と、その後の前記被処理物の前記ラビリンスシールの通過とが繰り返し行われ、前記被処理物を攪拌するように構成されたものである。
また、本発明に係る連続撹拌装置においては、前記処理空間に複数のラビリンスシールが敷設され、前記ラビリンスシールの上流側の前記被処理物の滞留と、その後の前記被処理物の前記ラビリンスシールの通過とが繰り返し行われ、前記被処理物の滞留時間を制御し攪拌するように構成されたものである。
本発明において、被処理物とは、前記処理空間内で流体の処理を予定する流体をいう。
この装置は、前記処理空間は、狭溢なシール空間と前記シール空間の上流側に配置され且つ前記シール空間よりも広い滞留空間とを一組として、前記被処理物の流れの上流から下流にかけて前記シール空間と前記滞留空間とを複数組連続的に備えたものとして実施することができる。
この装置は、前記外壁は円筒壁であるものとして実施してもよく、前記内壁は円筒壁であるものとして実施してもよい。
この装置は、前記処理空間内の被処理物の温度制御を目的として温度調整機構が敷設されたものとして実施することができ、前記温度調整機構が複数敷設され、複数の前記温度調整機構により前記処理空間内の被処理物を異なる温度に調整するように構成されたものとして実施することができる。
この装置は、前記被処理物を前記処理空間内に供給する供給口を備え、前記供給口の一端が前記連続撹拌装置の外部に接続され、前記供給口の他端が前記処理空間に連通しているものとして実施することができる。
この装置は、前記供給口から供給される前記被処理物とは別経路で、前記被処理物を前記処理空間内に導入する導入口が設けられたものとして実施することができる。
この装置は、前記処理空間から前記被処理物を異なる処理時間ごとに排出する排出口が複数設けられたものとして実施することができる。
この装置は、前記処理空間内の被処理物に対するマイクロウェーブ照射機構が敷設されたものとして実施することができる。
この装置は、前記シール空間の広さを調整する間隙調整機構が敷設されたものとして実施することができる。
この装置は、前記外壁と前記内壁とは円錐台筒状であり、前記シール空間の広さを調整する事を目的として、前記外壁と前記内壁とのうちの少なくとも一方を同心上で移動させる間隙調整機構が敷設されたものとして実施することができる。
この装置は、外壁と前記外壁の内側に配置された内壁とを備えた処理部を備え、前記外壁と前記内壁とは同心であり、前記処理部は処理空間を備え、前記処理空間は、前記外壁と前記内壁との間の空間であって、前記外壁と前記内壁のうちの少なくとも一方に、複数のラビリンスシールを含むラビリンスシール機構を構成する部材を備え、前記外壁と前記内壁のうちの少なくとも一方が他方に対して回転し、前記ラビリンスシールの上流側の被処理物の滞留と、その後の前記被処理物の前記ラビリンスシールの通過とが繰り返し行われるよう構成され、前記処理空間は被処理物を攪拌する空間であるものとして実施することができる。
本発明は、新しい構成の撹拌装置を提供するものであって、少なくとも一方が他方に対して回転する、外壁と内壁との間に形成される処理空間において、被処理物に対して流体の処理を行うことによって、化学反応や乳化、分散、混合などの一連の流体処理を撹拌装置内で行う際、原料濃度や、反応場の温度条件、圧力条件や撹拌条件、触媒の有無やその適正化、反応時間等の種々の反応条件、特に反応時間を調整することができた結果、目的とする反応物を高効率で生成可能な連続撹拌装置を提供することができたものである。
特に、処理空間に複数のラビリンスシールが敷設され、ラビリンスシールの上流側の被処理物の滞留と、その後の被処理物のラビリンスシールの通過とが繰り返し行われ、被処理物を撹拌する又は被処理物の滞留時間を制御し撹拌するよう構成されることによって、処理空間内の被処理物の滞留時間を調整することができ、特に、有機反応における反応の継続と反応を完結させるための反応時間を十分に確保することができることから、被処理物に対する流体の処理を効果的に行うことができたものである。
(A)は本発明の実施の形態に係る連続撹拌装置の略断面図であり、(B)は同装置の要部説明図である。 (A)は図1(A)のA-A線に沿う要部断面図であり、(B)は図2(A)のB-B線に沿う要部断面図である。 本発明の他の実施の形態に係る連続撹拌装置の要部斜視図である。 本発明の更に他の実施の形態に係る連続撹拌装置の要部断面図である。 (A)は本発明の更に他の実施の形態に係る連続撹拌装置の略断面図であり、(B)(C)は同装置の要部説明図である。
以下、図面に基づき本発明の実施の形態を説明する。
図1(A)、図5(A)において図の上下は装置の上下に対応しているが、本発明において上下前後左右は相対的な位置関係を示すに止まり、絶対的な位置を特定するものではない。図2(A)においてRは回転方向を示している。
連続撹拌装置Fは、外壁61と外壁61の内側に配置される内壁10とを備える処理部を備える。外壁61と内壁10とは同心であり、処理部は外壁61と内壁10との間に形成される処理空間81を備える。外壁61と内壁10とのうちの少なくとも一方が他方に対して回転する。
(外壁)
外壁61は、図1(A)に示すように、全体として円筒状をなし、必要に応じて底部や天部を有するものとして実施され得る。本実施の形態においては、外壁61は円筒壁63であって、その両端には、円筒壁63から径方向外側に突出するフランジ67が形成されている。外壁61とは別部材である天部76又は底部62とフランジ67、67とが固定されることによって、円筒壁63の両端が閉鎖されている。
(内壁)
内壁10は、図1(A)に示すように、全体として柱状をなす。本実施の形態においては、内壁10は円柱状であって、その外周面11から径方向外側に突出する複数の突起部16を備える。突起部16は、平面視円周状をなし、軸方向において所定の間隔をあけて設けられている。図1(B)は、連続撹拌装置Fの要部説明図であって、内壁10と突起部16と後述する撹拌羽根111との配置を示す斜視図であり、上方の他の突起部16がない状態を描いている。図1(B)に示すように、突起部16は全体が厚みの等しい円盤状である。突起部16は径方向において厚みが変化するものであってもよい。
突起部16に換えて又は突起部16とともに、外壁61の円筒壁63の内周面70から径方向内側に突出する突起部を設けてもよく、底部62の内面71や天部76の内面から処理空間81に向けて突出する突起部を設けてもよい。
外壁61は全体として円筒状をなし、内壁10は全体として柱状をなす。外壁61は、処理空間81を構成する外壁61の内表面が流体の処理を行う上で重要であって、中空であり、内壁10は、処理空間81を構成する内壁10の外表面が流体の処理を行う上で重要であるから、中実であっても中空であってもよい。内壁10においては、円筒状、柱状の表現にかかわらず、断面円形、断面角形や断面異形状を有するものを含むものと理解すべきである。外壁61においても、円筒状、柱状の表現にかかわらず、断面円形、断面角形や断面異形状を有するものを含むものと理解することができる。但し、突起部16と外壁61との間の微小な間隔が本発明の実施に際しては重要となるため、外壁61が、断面円形ではない場合には回転に伴って突起部16との間の間隔が変化する点に注意して実施すべきである。
(処理空間)
内壁10は外壁61の内側に配置され、外壁61と内壁10とは同心に配置される。外壁61と内壁10との間に処理空間81が形成される。本実施の形態においては、内壁10の外周面11と外壁61の円筒壁63の内周面70との間に、処理空間81を備える。この処理空間81内で被処理物の処理が行われる。被処理物とは、処理空間81内で流体の処理を予定する流体をいい、以下、被処理物を流体とも記載する。外壁61と内壁10との間に処理空間81を設けることができれば、外壁61と内壁10とは同心に配置しなくてもよい。
処理空間81の間隔、即ち、本実施の形態においては、内壁10の外周面11と外壁61の円筒壁63の内周面70との間の間隔は、処理空間81内の被処理物の滞留時間にもよるが、内壁10の外径Dの5~200%が好ましく、内壁10の外径Dの10~150%がより好ましい。例えば、内壁10の外径Dが100mmである場合、処理空間81の間隔は、5~200mmが好ましく、10~150mmがより好ましい。ここで、内壁10の外径Dとは、内壁10の直径であって、突起部16は含まれない。
外壁61と内壁10とのうち少なくとも一方が他方に対して回転する。本実施の形態においては、電動機などの回転駆動機構Mの駆動軸が回転軸31に接続され、その回転軸31が、底部62と天部76とに設けられた軸受77、77を介して内壁10を回転可能に支持し、内壁10が外壁61に対して回転する。外壁61を内壁10に対して回転させるようにしてもよく、双方を回転させるようにしても構わないが、双方を相対的に回転させる必要がある。
(供給部と流出部)
外壁61には供給部75と流出部68とを備える。供給部75は処理空間81内で流体の処理を予定する流体である被処理物を系外(装置外)から処理空間81へ供給するための供給口であり、その一端は被処理物を貯留するタンクなどの連続撹拌装置Fの外部に接続され、他端は処理空間81に直接又は間接に連通している。本実施の形態においては、図1(A)に示すように、供給部75は外壁61に設けられ、次に述べる受け入れ部82を介してシール部84に連通する。流出部68は、処理空間81で流体の処理がなされた処理物を系外(装置外)に排出するための排出口である。本実施の形態においては、図1(A)の上方が被処理物の流れの上流側であり、図1(A)の下方が被処理物の流れの下流側であって、供給部75は外壁61の円筒壁63の上方に設けられ、流出部68は外壁61の円筒壁63の下方に設けられている。供給部75と流出部68とを外壁61に複数備えてもよい。供給部75を外壁61に複数備えることにより、複数の被処理物を系外(装置外)から処理空間81に供給することを可能とし、流出部68を外壁61に複数備えることにより、処理空間81内の被処理物の処理時間に応じて処理空間81から系外(装置外)へ処理物の流出を可能とする。
(ラビリンスシール機構)
内壁10の外周面11や外壁61の円筒壁63などの処理空間81を構成する部材に、処理空間81の流体の滞留時間を延ばすための、ラビリンスシール機構を備えてもよい。ラビリンスシールとは、半径方向または軸方向に間隙をもちながら流体の流れに対する抵抗を与える、漏れが最小のシールであって、周辺部のナイフ状構造や接触点が形成する迷路によって、通過する流体の膨張が次々と引き起こされるものをいう。
本実施形態においては、突起部16がラビリンスシール機構を構成する部材であり、突起部16の先端と外壁61の円筒壁63の内周面70との間には、被処理物の粘度にもよるが0.01mmから1mm程度の微小な間隙を有する。
このように微小な間隙に設定されることによって、被処理物はそこを通過する際に層流状となり、通過が困難となる。その結果、この微小な間隙を通過するために時間を要することとなり、微小な間隙より上流側の比較的広い空間内に被処理物が滞留することになる。
言い換えれば、本発明に適用されるラビリンスシールは、完全に漏れのないシールではなく、その上流側の空間に流体を滞留させながら徐々に流体を下流側へ漏らしていく機構であると言える。
図1(A)を用いてラビリンスシール機構の具体的な構成と機能とを説明する。
処理空間81は、シール部84とプール部83とを備える。シール部84は、突出部16の先端と外壁61の円筒壁63の内周面70との間に形成される狭隘な空間であり、プール部83は、内壁10の突起部16のない外周面11と外壁61の円筒壁63の内周面70との間に形成される空間であって、シール部84の上流側に配置され、シール部84よりも広い空間である。
本発明に係る連続撹拌装置Fにおいて、ラビリンスシールとはシール部84をいい、ラビリンスシール機構とは一組のシール部84とプール部83をいう。
本実施の形態のように、内壁10が外壁61に対して回転し、内壁10の外周面11に突起部16を設け、突起部16の先端と外壁61の円筒壁63の内周面70との間にシール部84を設けることが、被処理物の齢を制御する点で理想的である。
本実施形態においては、被処理物の流れの上流から下流にかけて、シール部84とプール部83とを一組として、複数組が連続して配置される。一組のシール部84とプール部83とを配置しても構わない。
処理空間81は、受け入れ部82を備える。受け入れ部82は、処理空間81のうちの最上流の空間であってシール部84よりも広い空間であり、供給部75から供給された被処理物を抵抗なく受け入れることができる。被処理物の流れの最上流に配置されるプール部83と兼用してもよい。
供給部75から処理空間81へ供給された流体は、まず、受け入れ部82で受け入れられ、貯留される。受け入れ部82が流体で満たされると、流体は受け入れ部82の下流側に配置されたシール部84に漏れる。シール部84が流体で満たされると、流体はシール部84の下流側に配置されたプール部83に漏れる。流体はプール部83で受け入れられ、貯留される。プール部83が流体で満たされると、流体はプール部83の下流側に配置されたシール部84に漏れる。処理空間81には、シール部84とプール部83とが複数組連続して配置されているので、これらの流体の移動が繰り返される。
一方、突起部16を外周面11に備えた内壁10は回転している。受け入れ部82、シール部84、プール部83のそれぞれの空間を流体が満たしている場合には、内壁10の回転により遠心力が作用し、例えば、受け入れ部82にある流体は受け入れ部82の下流側に配置されたシール部84に漏れにくい。特に、狭隘な空間であるシール部84においては、内壁10の回転により、流体はシール部84の下流側に配置されたプール部83に漏れにくいが、完全にシールするのではなく、わずかな所定量を下流側へ移動させる。この所定量は、要求される処理の目的や処理量、処理速度など必要な処理条件に応じて決定する。
このように、内壁10を回転させ、処理空間81において、受け入れ部82と、狭隘なシール空間であるシール部84とシール部84より広い滞留空間であるプール部83とが複数組連続して配置されることによって、供給部75から処理空間81へ供給された流体はシール部84で漏れ量が最小になり、シール部84から漏れた流体がシール部84の下流側に配置されたプール部83に満たされ貯留される結果、ラビリンスシールにより処理空間81内の流体の滞留時間が延びる。
特に、プール部83とシール部84を複数組設けることによって、装置全体における流体の滞留時間が平準化する。例えば、単一のプール部83によって、装置全体で予定する流体の総貯留容量を、満たすようにした場合を考えると、この単一のプール部83が空の状態からこれが満杯となるまでの滞留時間は一定であるとしても、満杯となった以降も連続運転をしていく場合には、単一のプール部83を満たした全ての流体が上流から流れ込んでくる新たな流体に全て入れ替わるように構成することは困難であり、一部の流体は上記の滞留時間に至らないまでに下流へ流出して、他の一部の流体はいつまでもプール部83内で滞留する。したがって、この滞留時間の制御は、偶然が支配する可能性が大きくなり、その結果、予定された所定の滞留時間に至らないまでに下流へ流出してしまう流体の割合も偶然が支配することになる。これに対して、プール部83とシール部84を複数組設けた場合には、一つあたりのプール部83での滞留時間は偶然が支配したとしても、設ける組数を多くしていくことによって、それぞれの流体の滞留時間が平準化していくことになり、滞留時間の安定的な制御の点で有利となる。
処理空間81にシール部84とプール部83とを一組として複数組連続して設け、処理空間81を構成する内壁10が外壁61に対して回転することによって、シール部84の上流側にあるプール部83での被処理物の滞留と、その後の被処理物のシール部84の通過とが繰り返し行われ、被処理物の滞留時間を制御することができる。
処理空間81内の流体の滞留時間は、処理空間81の容積、処理空間81の間隔やその長さ、シール部84とプール部83との組数、内壁10の回転数、連続撹拌装置Fに導入される流体の導入量を調整することによって調整することができる。処理空間81内の流体の滞留時間は、2~30分程度が好ましく、3~10分程度がより好ましいが、流体の処理が重合反応等の場合、数時間の滞留が必要になる場合もある。また、内壁10の外周における周速度は0.5~35m/secが適当である。内壁10の外周には突起部16は含まれない。連続撹拌装置Fの稼働中に滞留時間を調整したい場合、内壁10の回転数と連続撹拌装置Fに導入される流体の導入量を調整する。
これらを調整することによって、生成物に応じて目的の滞留時間を実現する。
突起部16の形状は、その先端と外壁61との間に狭隘な空間であるシール部84を形成できる形状であればよい。突起部を外壁61に備える場合、突起部の形状は、その先端と内壁10との間に狭隘な空間であるシール部84を形成できる形状であればよい。突起部の長さと突起部の先端の幅は、ラビリンスシール性を得るために必要な範囲で適宜設定することができる。
なお、狭隘な空間であるシール部84を満たす流体は層流となることによってそのシール効果は高まる。他方、比較的広い空間である受け入れ部82やプール部83に貯留される流体は乱流となることによって、その滞留中に撹拌作用が流体に対して加えられることになる。
(導入部)
外壁61や天部76には導入部69を備えてもよい。導入部69は、供給部75から処理空間81へ供給される被処理物とは別経路から、処理空間81に被処理物を供給するための供給口である。本実施の形態においては、導入部69は供給部75と流出部68との間の外壁61に設けられ、処理途中の被処理物に対して他の被処理物を供給するものである。導入部69は、外壁61の円筒壁63の上端に設けてもよく、その位置を変更してもよい。導入部69から処理空間81へ供給される被処理物は、供給部75から処理空間81に供給される被処理物とは、被処理物自体を比べると異なるものでもあっても構わないし同一のものであっても構わない。導入部69から処理空間81に供給される被処理物の一例として、原料そのものや重合開始剤、反応停止剤、pH調整剤、触媒、コーティング剤などが挙げられる。
導入部69は、流体の処理において発生するガスを排出する排出口と兼用させてもよく、ガスを排出する排出口を別途設けてもよい。
したがって、供給部75から処理空間81に供給された被処理物は、必要に応じて導入部69を通じて、被処理物の導入や気体などの流体の排出が行なわれながら、流出部68から排出されることにより、制限された処理空間81にて流体の処理が完了するものである。
(温度調整機構)
外壁61と内壁10とのうちの少なくとも何れか1つに温度調整機構Tを備え、冷却或いは加熱して、部材の温度を調整することによって、処理空間81を流れる流体の温度を調整してもよい。図1(A)では、温度調整機構Tとして、氷水やスチームを含む各種の熱媒体を流すための温度調整ジャケットを外壁61の円筒壁63の外周面に取り付けている。図1(A)に示すように、1つの温度調整ジャケットを外壁61に備えてもよく、後述する図5(A)に示すように、複数の温度調整ジャケット(図5(A)ではT1とT2の2つ)を外壁61に備えてもよい。また、図5(A)に示すように、複数の温度調整ジャケットを外壁61に備えた場合、これらのジャケットを同じ温度に調整してもよく、異なる温度に調整してもよい。複数の温度調整ジャケットを異なる温度に調整することで、処理空間81での流体の処理の進行に応じて処理空間81を流れる流体の温度を調整することができる。温度調整ジャケットに替えて、冷却素子や発熱素子を外壁61と内壁10とのうちの少なくとも何れか1つに取り付けてもよい。
(撹拌羽根とスクレーパ)
内壁10には撹拌羽根111やスクレーパ112を備えてもよい。高粘性の被処理物の流体の処理を行う際に効果的である。
本実施形態においては、図1(A)(B)に示すように、内壁61に設けられた突起部16と突起部16との間の突起部16のない外周面10に複数枚の板状の撹拌羽根111を周方向に間隔をあけて備える。撹拌羽根111は内壁10の外周面11に固定されていてもよいし、円盤状の突起部16に固定されていてもよい。内壁10とともに撹拌羽根111が回転することにより、処理空間81を流れる被処理物への撹拌機能を高めることができる。撹拌羽根111に着脱自在に別個の羽根を取り付けてもよい。
また、本実施の形態においては、図1(A)に示すように、内壁61に設けられた突起部16と突起部16との間にスクレーパ112を備える。図2(A)は、図1(A)のA-A線に沿う要部断面図であり、(B)は図2(A)のB-B線に沿う要部断面図である。図2(A)(B)に示すように、突起部16と突起部16との間にスクレーパ112を支持するための柱部113を設ける。図2(A)に示すように、柱部113は2枚の板状部材であって、2枚の板状部材の間にスクレーパ112を挟みスクレーパ112と2枚の板状部材とをボルト114などで固定することによって、柱部113がスクレーパ112を支持する。図2(A)(B)に示すように、スクレーパ112の先端を外壁61の円筒壁70の内周面70に密着させる。
スクレーパ112は外壁61の円筒壁63の内周面70に付着した付着物を掻き取る、掻き取り羽根である。内壁10に設けられた柱部113にスクレーパ112を固定し、スクレーパ112の先端と外壁61の円筒壁63の内周面70とを密着させ、内壁10とともにスクレーパ112が回転することにより、スクレーパ112が付着物を連続して掻き取る。
外壁61の円筒壁63の外周面に温度調整機構Tを取り付け、処理空間81内を流れる被処理物の温度を調整しながら重合反応などの流体処理を行う場合、外壁61の円筒壁63の内周面70に付着物が発生すると、伝熱面となる内周面70の伝熱効率が著しく低下し、処理空間81内の流体の温度が調整できなくなる。スクレーパ112が付着物を連続して掻き取ることにより、外壁61の円筒壁63の内周面70の伝熱効率が低下することを防ぐとともに、生成物の収率の向上を図る。
外壁61に邪魔板(バッフル)78を設けて実施することもできる。図3においては、外壁61に邪魔板(バッフル)78を取り付けた形態を示す。より詳しくは、外壁61の円筒壁63に邪魔板(バッフル)78を支持する支持部79を設け、支持部79に支持された邪魔板(バッフル)78の先端部がプール部83に向けて突出している。このように、邪魔板(バッフル)78を設けることによって、流体の撹拌を促進する。
また、この実施の形態においては、内壁10は六角柱状であって、その外周面11から径方向外側に突出する複数の突起部16を備える。内壁10は、円柱状や六角柱状、四角柱状など角柱状であってもよく、異形柱状であっても構わない。
プール部83に触媒部115を設けて実施することもできる。図4においては、触媒部115として担体に担持された触媒を取り付けた形態を示すことができ、より詳しくは、内壁61に設けられた突起部16と突起部16との間の突起部16のない外周面11に、外径が突起部16と略同じ触媒部115が取り付けられている。触媒部115の外径は突起部16よりも短くてもよい。ここで、触媒部115の外径とは、触媒を担持された担体全体の外径を指す。触媒部115を円盤状の突起部16に取り付けてもよく、その際、内壁10の外周面11と触媒部115との間に空間を設けて触媒部115を円盤状の突起部16に取り付けてもよい。内壁10の外周面11に触媒部115として複数の担体に担持された触媒を周方向に間隔をあけて取り付けてもよい。内壁10とともに触媒部115が回転することから、触媒が担持された担体は回転に耐えうる強度を有するものがよい。また、触媒が担持された担体は、流体を流すためにハニカム状や網目状のものが良く、必要以上に処理空間81を流れる流体に抵抗を生じさせるものは好ましくない。担体に担持された触媒もしくは触媒自体は、固形であって、被処理物の種類や反応の種類により必要に応じて選択して実施することができる。このようにプール部83に触媒部115を備えることにより、効率よく反応を行うことができる。
なお、それぞれの実施の形態は、先の実施の形態と組み合わせて実施することができる。
(材質)
内壁10や外壁61は、単一の部材または複数の部材を組み合わせて構成することができ、その材質は、各種の金属の他、シリコンカーバイド(SiC)などのセラミックスや焼結金属、耐磨耗鋼、サファイア、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用することができる。
(変形例)
次に、図5(A)を参照して、連続撹拌装置Fの変形例について説明する。なお、以下の説明においても連続撹拌装置Fの基本的な構造や作用は同じであり、異なる部分を中心に説明するが、説明のない点については、前記の実施の形態の説明がそのまま適用されるものとする。この変形例にあっても、ラビリンスシール機構を備えその機能を奏する。
図5(A)においては、外壁61と内壁10とは共に円錐台筒状であって、外壁61と内壁10とが同心に配置された形態を示すことができる。この例では、図5(A)の下方が被処理物の流れの上流側であり、図5(A)の上方が被処理物の流れの下流側である。例えば、乳化重合反応や懸濁重合反応を行うときに、前処理で好適な乳化状態や懸濁状態とされた流体に対し、処理空間81内において重合反応を行う際に反応中に発生するガスを系外(装置外)に排出する場合に適している。ここで、円錐台筒状とは、断面円形の筒状であって、その径が被処理物の流れの上流側から下流側に向けて漸次大きくなる又は漸次小さくなるものであるが、その径が一定となる部分があってもよい。例えば、後述するように、外壁61と内壁10とのうちの少なくとも一つを間隙調整機構(図示せず)により移動可能に備える場合、被処理物の流れの上流側と下流側においてその径が一定となる部分を設けてもよい。また、ラビリンスシール機構を作用させる部分においてもその径が漸次大きくなる又は漸次小さくなる部分とその径が一定となる部分とがあってもよい。本実施の形態においては、外壁61と内壁10とは共に断面円形の筒状であって、その径が被処理物の流れの上流側から下流側に向けて漸次大きくなるものである。
外壁61は、底部62を有する円錐台筒状であって、その開口端には径方向外側に突出するフランジが形成され、外壁61とは別部材である天部76とフランジ67とが固定されることによって閉鎖されている。
内壁10は、円錐台筒状であって、その外周面11から径方向外側に突出する複数の突起部16を備える。本実施の形態においては、突起部16は、平面視円周状をなし、軸方向において所定の間隔をあけて設けられ、突起部16の基端から先端に向けてすぼまっており、径方向において厚みが変化するものである。内壁10は中実の円錐台形状であってもよい。
(間隙調整機構)
外壁61と内壁10とのうちの少なくとも一つを間隙調整機構(図示せず)により移動可能に備えてもよい。外壁61と内壁10とのうちの少なくとも一つを移動可能に備えることにより、シール部84の広さを調整可能としている。この実施の形態においては、内壁10を間隙調整機構(図示せず)により同心上で即ち中心軸方向に移動可能に備える。中心軸の位置が変化しないことが好ましい。内壁10を同心上で移動可能に備えることにより、シール部84の広さを調整可能としている。この実施の形態においては、外壁61は円錐台筒状であり、内壁10を同心上で移動可能に備えることにより、突起部16の先端と外壁61の円筒壁63の内周面70との間の微小な間隙を調整可能としている。反応中に発生するガスを抜きたいときや高粘性の被処理物を処理する際にシール部84の広さを調整して比較的広いシール部84を備えることができ有利である。図5(B)(C)は、連続撹拌装置Fの要部説明図であって、内壁10を間隙調整機構(図示せず)により同心上で移動させた際のシール部の広さの変化を示す。実線で内壁10が下降している状態を描き、二点鎖線で内壁10が上昇している状態を描いている。なお、図5(C)は、円柱状である内壁10を間隙調整機構(図示せず)により同心上に移動させた際の要部断面図である。図5(B)(C)に示すように、内壁10を間隙調整機構(図示せず)により同心上で上昇させると、シール部84の広さが広くなる。間隙調整機構の具体的構成は、特に限定されるものではなく、ネジによる送り機構、エアーや油圧などの流体圧駆動機構など、直線的な送り手段を適宜選択して採用することができる。
(マイクロウェーブ照射機構)
外壁61や内壁10には、少なくとも何れか1つにマイクロウェーブを照射する為の、マグネトロンなどのマイクロ波発生装置をマイクロウェーブ照射機構として備え、処理空間81を流れる流体の加熱、化学反応の促進を行ってもよい。
(圧力調整機構)
内壁10や外壁61に、処理空間81を流れる流体の圧力を調整するために、圧力調整機構を備えてもよい。例えば、圧力調整機構として、種々のポンプを用いることができる。処理空間81に負圧をかけてもよい。具体的には、窒素ガスを用いて処理空間81を加圧状態としたり、真空ポンプによる処理空間81の真空度を制御することが挙げられる。
処理空間81内で流体の処理が予定される被処理物が供給部75から処理空間81に供給される。供給部75から処理空間81へ供給された被処理物は、処理空間81を流れながら流体の処理がなされ、流出部68から系外(装置外)に排出される。流体の処理とは、反応処理であって、原料の混合と、それに続く反応の進行及び反応生成物を得る処理であり、次のような処理を行うことができる。例えば、流体の滞留、流体の撹拌、流体の混合、熱処理、pH調整、熟成等が挙げられる。この反応処理は、晶出、晶析、析出などを伴うものであってもよく、伴わないものであってもかまわない。例えば、有機反応の場合、滞留処理によって反応の完結を行ってもよいし、その際に撹拌処理を加えても構わない。
本発明に係る連続撹拌装置Fは、上述で例示した、第一の流体処理(原料Aと原料Bの混合)と第二の流体処理(原料Aと原料Bとの反応の進行)とを実施するものとして用いてもよい。第一の流体処理を本発明に係る連続撹拌装置Fとは異なる装置で実施し、第一の流体処理に続く第二の流体処理を本発明に係る連続撹拌装置Fで実施するものとしてもよく、第一の流体処理を本発明に係る連続撹拌装置Fで実施し、第一の流体処理に続く第二の流体処理を本発明に係る連続撹拌装置Fとは異なる装置で実施してもよい。
また、本発明に係る連続処理装置Fとは異なる装置を用いてプレ分散、プレ乳化、プレ粉砕などの前処理を行った流体に対する流体の処理を行ったり、前処理を行わずにダイレクトに流体の処理を行うなどの展開が可能である。
(処理特性の制御)
本発明の連続撹拌装置Fを用いて、流体処理を行うことによって、反応場の温度条件、圧力条件や撹拌条件、反応時間といった反応条件を調整することができることから、例えば、原料の反応率、選択率、生成物の収率といった処理特性の制御を行うことができるものであり、原料の反応率は、供給された原料に対する反応により消費された原料の割合であり、選択率は、反応により消費された原料が目的生成物の生成に消費された割合であり、生成物の収率は反応率と選択率とを乗じたものである。
(非層流条件下)
本発明においては、処理空間81内での流体処理を非層流条件下で行うことが好ましい。供給部75から処理空間81へ供給された流体に対してせん断力を付与したり、下記の式(1)に記載の代表長さLを大きくするなどして乱流状態とし、流体中の分子同士が接触したり衝突したりする頻度を増加させることにより、生成物を得ることもできる。例えば、顔料粒子を含む流体を分散させて顔料分散液を得たい場合に乱流条件下での撹拌は有用である。また、乱流条件下では、温度調整機構Tを流れる熱媒体と処理空間81を流れる流体との熱交換率のアップが期待できる。
流体の運動において、慣性力と粘性力の比を表す無次元数をレイノルズ数と呼び、以下の式(1)で表される。
  レイノルズ数Re=慣性力/粘性力=ρVL/μ=VL/ν  式(1)
ここで、ν=μ/ρは動粘度、Vは代表速度、Lは代表長さ、ρは密度、μは粘度を示す。そして、流体の流れは、臨界レイノルズ数を境界とし、臨界レイノルズ数以下では層流、臨界レイノルズ数以上では乱流となる。
 本願発明に係る連続撹拌装置Fを用いた流体処理方法においては、1の流体の流体処理を行ってもよく2以上の流体の流体処理を行ってもよい。本願発明に係る連続撹拌装置Fを用いた流体処理方法は、乳化、分散、混合、粉砕、反応等の種々の処理に適用することができ、流体処理が反応の場合、例えば特開2009-082902号公報に示された種々の被処理物に対して適用することができ、種々の反応に適用することができるものである。
10 内壁
61 外壁
81 処理空間
83 プール部
84 シール部
F 連続撹拌装置

Claims (14)

  1. 外壁と前記外壁の内側に配置された内壁とを同心で有し、
    前記外壁と前記内壁とのうち少なくとも一方が他方に対して回転し、
    前記外壁と前記内壁との間に形成される処理空間内に被処理物を通過させ攪拌する攪拌装置において、
    前記処理空間に複数のラビリンスシールが敷設され、
    前記ラビリンスシールの上流側の前記被処理物の滞留と、その後の前記被処理物の前記ラビリンスシールの通過とが繰り返し行われ、前記被処理物を攪拌するように構成されたことを特徴とする連続攪拌装置。
  2. 外壁と前記外壁の内側に配置された内壁とを同心で有し、
    前記外壁と前記内壁とのうち少なくとも一方が他方に対して回転し、
    前記外壁と前記内壁との間に形成される処理空間内に被処理物を通過させ攪拌する攪拌装置において、
    前記処理空間に複数のラビリンスシールが敷設され、
    前記ラビリンスシールの上流側の前記被処理物の滞留と、その後の前記被処理物の前記ラビリンスシールの通過とが繰り返し行われ、前記被処理物の滞留時間を制御し攪拌するように構成された事を特徴とする連続攪拌装置。
  3. 前記処理空間は、狭溢なシール空間と前記シール空間の上流側に配置され且つ前記シール空間よりも広い滞留空間とを一組として、前記被処理物の流れの上流から下流にかけて前記シール空間と前記滞留空間とを複数組連続的に備えた事を特徴とする請求項1又は2に記載の連続攪拌装置。
  4. 前記外壁は円筒壁であることを特徴とする、請求項1~3の何れかに記載の連続撹拌装置。
  5. 前記内壁は円筒壁であることを特徴とする、請求項1~4の何れかに記載の連続撹拌装置。
  6. 前記処理空間内の被処理物の温度制御を目的として温度調整機構が敷設されたことを特徴とする請求項1又は2に記載の連続攪拌装置。
  7. 前記温度調整機構が複数敷設され、複数の前記温度調整機構により前記処理空間内の被処理物を異なる温度に調整するように構成された事を特徴とする請求項6に記載の連続攪拌装置。
  8. 前記被処理物を前記処理空間内に供給する供給口を備え、
    前記供給口の一端が前記連続撹拌装置の外部に接続され、
    前記供給口の他端が前記処理空間に連通していることを特徴とする請求項1又は2に記載の連続攪拌装置。
  9. 前記供給口から供給される前記被処理物とは別経路で、前記被処理物を前記処理空間内に導入する導入口が設けられたことを特徴とする請求項8に記載の連続攪拌装置。
  10. 前記処理空間から前記被処理物を異なる処理時間ごとに排出する排出口が複数設けられたことを特徴とする請求項1又は2に記載の連続攪拌装置。
  11. 前記処理空間内の被処理物に対するマイクロウェーブ照射機構が敷設されたことを特徴とする請求項1又は2に記載の連続攪拌装置。
  12. 前記シール空間の広さを調整する間隙調整機構が敷設されたことを特徴とする請求項3に記載の連続攪拌装置。
  13. 前記外壁と前記内壁とは円錐台筒状であり、
    前記シール空間の広さを調整する事を目的として、前記外壁と前記内壁とのうちの少なくとも一方を同心上で移動させる間隙調整機構が敷設されたことを特徴とする請求項3に記載の連続攪拌装置。
  14. 外壁と前記外壁の内側に配置された内壁とを備えた処理部を備え、
    前記外壁と前記内壁とは同心であり、
    前記処理部は処理空間を備え、
    前記処理空間は、前記外壁と前記内壁との間の空間であって、
    前記外壁と前記内壁のうちの少なくとも一方に、複数のラビリンスシールを含むラビリンスシール機構を構成する部材を備え、前記外壁と前記内壁のうちの少なくとも一方が他方に対して回転し、前記ラビリンスシールの上流側の被処理物の滞留と、その後の前記被処理物の前記ラビリンスシールの通過とが繰り返し行われるよう構成され、
    前記処理空間は被処理物を攪拌する空間であることを特徴とする連続攪拌装置。
PCT/JP2019/007646 2018-12-26 2019-02-27 連続攪拌装置 WO2020136923A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2020562311A JP7292744B2 (ja) 2018-12-26 2019-02-27 連続撹拌装置
PCT/JP2019/051345 WO2020138387A1 (ja) 2018-12-26 2019-12-26 有機化合物の製造方法
EP19902614.7A EP3904321A4 (en) 2018-12-26 2019-12-26 PROCESS FOR THE PRODUCTION OF AN ORGANIC COMPOUND
CN201980086310.0A CN113227027A (zh) 2018-12-26 2019-12-26 有机化合物的制造方法
KR1020217018686A KR20210107666A (ko) 2018-12-26 2019-12-26 유기 화합물의 제조 방법
US17/418,724 US20220056004A1 (en) 2018-12-26 2019-12-26 Method for producing organic compound
JP2020529779A JP6783494B1 (ja) 2018-12-26 2019-12-26 有機化合物の製造方法
JP2020102329A JP6762058B1 (ja) 2018-12-26 2020-06-12 有機化合物の製造方法
JP2020172773A JP7442186B2 (ja) 2018-12-26 2020-10-13 有機化合物の製造方法
JP2023056088A JP2023073454A (ja) 2018-12-26 2023-03-30 連続攪拌装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/047985 2018-12-26
PCT/JP2018/047984 WO2020136780A1 (ja) 2018-12-26 2018-12-26 流体処理装置
JPPCT/JP2018/047984 2018-12-26
PCT/JP2018/047985 WO2020136781A1 (ja) 2018-12-26 2018-12-26 流体処理装置

Publications (1)

Publication Number Publication Date
WO2020136923A1 true WO2020136923A1 (ja) 2020-07-02

Family

ID=71128867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007646 WO2020136923A1 (ja) 2018-12-26 2019-02-27 連続攪拌装置

Country Status (5)

Country Link
US (1) US20220056004A1 (ja)
JP (4) JP7292744B2 (ja)
KR (1) KR20210107666A (ja)
CN (1) CN113227027A (ja)
WO (1) WO2020136923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031391A1 (en) 2021-09-03 2023-03-09 Stoli Catalysts Ltd. Continuous flow reactor with removable insert with baffles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117776202B (zh) * 2024-02-28 2024-05-10 南京化学试剂股份有限公司 一种高纯硼酸镁的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189348A (ja) * 2007-07-06 2011-09-29 M Technique Co Ltd 強制超薄膜回転式処理法を用いた微粒子の製造方法
KR101171333B1 (ko) * 2010-07-26 2012-08-10 경희대학교 산학협력단 경사원통을 이용하는 와류 반응장치
KR20140083854A (ko) * 2012-12-24 2014-07-04 주식회사 포스코 이차전지용 양극 전구체 제조방법
JP2016087485A (ja) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 テイラー反応装置
KR20160098662A (ko) * 2015-02-10 2016-08-19 서울대학교산학협력단 쿠에트-테일러 반응기를 이용한 기체의 환원방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142926B2 (ja) * 1991-11-01 2001-03-07 関西化学機械製作株式会社 液液接触塔
JPH08109208A (ja) 1994-10-07 1996-04-30 Mamoru Nomura 乳化重合用シード粒子製造方法及び連続多段乳化重合方法
JP2005060281A (ja) 2003-07-29 2005-03-10 Idemitsu Kosan Co Ltd ビニル化合物又はビニリデン化合物の二量化方法
JP2005279619A (ja) * 2004-03-26 2005-10-13 Hironari Kikura 回転反応装置および回転反応方法
JP2006239638A (ja) 2005-03-07 2006-09-14 Ebara Corp 混合器および混合方法
JP4939010B2 (ja) 2005-08-18 2012-05-23 独立行政法人産業技術総合研究所 マイクロミキサー及びこれを用いたアルデヒドの製造方法
DE102007050284A1 (de) * 2007-10-18 2009-04-23 Evonik Röhm Gmbh Verfahren zur Amidierung von Nitrilen in Gegenwart von Schwefelsäure
JP4654450B2 (ja) 2007-11-09 2011-03-23 エム・テクニック株式会社 有機化合物の製造方法
JP2014023997A (ja) 2012-07-26 2014-02-06 M Technique Co Ltd 微粒子の製造方法
WO2018001474A1 (de) * 2016-06-29 2018-01-04 Wacker Chemie Ag Verfahren zur herstellung von vinylacetat-ethylen-copolymerisaten mittels emulsionspolymerisation
US11439973B2 (en) * 2016-10-12 2022-09-13 M. Technique Co., Ltd. Immediately-before-stirring-type fluid processing device and processing method
US11583823B2 (en) * 2017-05-30 2023-02-21 M. Technique Co., Ltd. Forced thin film-type flow reactor and method for operating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189348A (ja) * 2007-07-06 2011-09-29 M Technique Co Ltd 強制超薄膜回転式処理法を用いた微粒子の製造方法
KR101171333B1 (ko) * 2010-07-26 2012-08-10 경희대학교 산학협력단 경사원통을 이용하는 와류 반응장치
KR20140083854A (ko) * 2012-12-24 2014-07-04 주식회사 포스코 이차전지용 양극 전구체 제조방법
JP2016087485A (ja) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 テイラー反応装置
KR20160098662A (ko) * 2015-02-10 2016-08-19 서울대학교산학협력단 쿠에트-테일러 반응기를 이용한 기체의 환원방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031391A1 (en) 2021-09-03 2023-03-09 Stoli Catalysts Ltd. Continuous flow reactor with removable insert with baffles
GB2610558A (en) * 2021-09-03 2023-03-15 Stoli Catalysts Ltd Continuous flow reactor

Also Published As

Publication number Publication date
JP7292744B2 (ja) 2023-06-19
JP2021045745A (ja) 2021-03-25
KR20210107666A (ko) 2021-09-01
JP2023073454A (ja) 2023-05-25
JP6783494B1 (ja) 2020-11-11
US20220056004A1 (en) 2022-02-24
CN113227027A (zh) 2021-08-06
JPWO2020138387A1 (ja) 2021-02-18
JPWO2020136923A1 (ja) 2021-11-04
JP7442186B2 (ja) 2024-03-04

Similar Documents

Publication Publication Date Title
JP2023073454A (ja) 連続攪拌装置
US6471392B1 (en) Methods and apparatus for materials processing
JP7228920B2 (ja) 流体処理装置
RU2358795C2 (ru) Способ непрерывного получения эмульсий
NL2017029B1 (en) Spinning disc reactor
JP7292743B2 (ja) 流体処理装置
KR20170131152A (ko) 화학 반응기 및 이를 이용한 올레핀 제조 방법
JP6762058B1 (ja) 有機化合物の製造方法
US12138612B2 (en) Fluid processing apparatus
WO2023031391A1 (en) Continuous flow reactor with removable insert with baffles
JP4958298B2 (ja) 流体処理装置
CA2619003A1 (en) Horizontal boiling plug flow reactor
EP4132700B1 (en) Tubular reactor with mixing means
AU2002247197B2 (en) Methods and apparatus for materials processing
GB2603456A (en) Improved method and apparatus plug flow system
WO2007036157A1 (fr) Appareil de mélange et de réaction
AU2002247197A1 (en) Methods and apparatus for materials processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904792

Country of ref document: EP

Kind code of ref document: A1