Nothing Special   »   [go: up one dir, main page]

WO2020195564A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2020195564A1
WO2020195564A1 PCT/JP2020/008597 JP2020008597W WO2020195564A1 WO 2020195564 A1 WO2020195564 A1 WO 2020195564A1 JP 2020008597 W JP2020008597 W JP 2020008597W WO 2020195564 A1 WO2020195564 A1 WO 2020195564A1
Authority
WO
WIPO (PCT)
Prior art keywords
image pickup
unit
imaging
image
imaging device
Prior art date
Application number
PCT/JP2020/008597
Other languages
English (en)
French (fr)
Inventor
英信 津川
賢一 西澤
石川 喜一
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/437,464 priority Critical patent/US20220185659A1/en
Publication of WO2020195564A1 publication Critical patent/WO2020195564A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/097Interconnects arranged on the substrate or the lid, and covered by the package seal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present disclosure relates to an image pickup device including an image pickup device.
  • An image pickup device such as a camera system is equipped with a MEMS (Micro Electro Mechanical Systems) such as an acceleration sensor and a gyro sensor together with an image sensor.
  • a MEMS Micro Electro Mechanical Systems
  • an acceleration sensor such as an acceleration sensor and a gyro sensor
  • an image sensor such as an acceleration sensor and a gyro sensor
  • Patent Document 1 describes a substrate provided with a portion that functions as an image sensor and a portion that functions as a MEMS.
  • the image pickup device is provided with an image pickup element having a photoelectric conversion unit provided for each pixel and a light receiving surface and a non-light receiving surface facing the light receiving surface, and an image pickup device provided on the non-light receiving surface side of the image pickup element. It is provided with an electric element having a support substrate facing the image pickup device, and a floating portion provided between the support substrate and the image pickup element and arranged between the support substrate and the image pickup element via a gap.
  • a support substrate for an electric element having a floating portion is provided facing the image pickup device. That is, the electric element is laminated on the image sensor. As a result, the occupied area of the image pickup device becomes approximately the area of either the image pickup element or the electric element.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a main part of the imaging device according to the first embodiment of the present disclosure
  • (B) is an example of the planar configuration of the MEMS shown in FIG. 1 (A).
  • (A) is a schematic cross-sectional view showing one step of the MEMS manufacturing method shown in FIG. 1 (A), and (B) is a schematic view showing a planar configuration of the step shown in FIG. 4 (A). is there.
  • (A) is a schematic cross-sectional view showing a process following FIG. 4 (A)
  • (B) is a schematic view showing a planar configuration of the process shown in FIG. 5 (A).
  • FIG. It is sectional drawing which shows the structure of the main part of the image pickup apparatus which concerns on modification 1.
  • FIG. It is sectional drawing which shows the structure of the main part of the image pickup apparatus which concerns on modification 2.
  • FIG. It is sectional drawing which shows the structure of the main part of the image pickup apparatus which concerns on modification 3.
  • FIG. It is a block diagram which shows an example of the functional structure of the image pickup apparatus which concerns on modification 4.
  • It is a flow chart which shows an example of the operation of the image pickup apparatus shown in FIG. It is a block diagram which shows an example of the functional structure of the image pickup apparatus which concerns on modification 5.
  • It is a flow chart which shows an example of the operation of the image pickup apparatus shown in FIG.
  • FIG. 20A It is a flow chart which shows an example of the operation of the image pickup apparatus shown in FIG. It is a perspective view which shows an example of the structure of the imaging apparatus (MEMS) which concerns on the modification 7.
  • MEMS imaging apparatus
  • FIG. 20A It is a schematic diagram which shows an example of the planar structure of MEMS shown in FIG. It is a schematic diagram which shows the cross-sectional structure along the AA' line shown in FIG. It is a schematic diagram which shows the cross-sectional structure along the line BB'shown in FIG. It is sectional drawing which shows one step of the manufacturing method of MEMS shown in FIG. 17 and the like.
  • FIG. 20A It is sectional drawing which shows the other cross-sectional structure of the process shown in FIG. 20A. It is sectional drawing which shows the process following FIG. 20A.
  • FIG. 21A It is a schematic diagram which shows the other cross-sectional structure of the process shown in FIG. 21A. It is sectional drawing which shows the process following FIG. 21A. It is a schematic diagram which shows the other cross-sectional structure of the process shown in FIG. 22A. It is sectional drawing which shows the process following FIG. 22A. It is a schematic diagram which shows the other cross-sectional structure of the process shown in FIG. 23A. It is a block diagram which shows an example of the functional structure of the image pickup apparatus shown in FIG. It is a block diagram which shows another example of the functional structure of the image pickup apparatus shown in FIG. It is sectional drawing which shows the structure of the main part of the image pickup apparatus which concerns on 2nd Embodiment of this disclosure.
  • FIG. 28 It is a schematic diagram which shows an example of the planar structure of the image pickup device shown in FIG. 28 is a schematic diagram which shows an example of the plane structure of the infrared detection element shown in FIG. 28 is a schematic diagram which shows another example of the cross-sectional structure of the image pickup apparatus shown in FIG. It is a schematic diagram which shows an example of the planar structure of the image pickup device shown in FIG. 28. It is a schematic diagram which shows an example of the plane structure of the infrared detection element shown in FIG. 28. It is a block diagram which shows an example of the schematic structure of the body information acquisition system. It is a figure which shows an example of the schematic structure of the endoscopic surgery system.
  • FIG. 1A shows a cross-sectional configuration of the image pickup apparatus 1.
  • the image pickup device 1 has an image pickup device 10 and a MEMS 20.
  • FIG. 1B shows an example of the planar configuration of the MEMS 20 shown in FIG. 1A.
  • MEMS 20 corresponds to a specific example of the electric element of the present disclosure.
  • the image sensor 10 is, for example, a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the image pickup device 10 is provided with a pixel unit 50P including a plurality of pixels 50.
  • the image sensor 10 has a laminated structure of a sensor chip 11 and a logic chip 12.
  • the sensor chip 11 has a semiconductor substrate 11S and a multilayer wiring layer 11W.
  • the logic chip 12 faces the semiconductor substrate 11S with the multilayer wiring layer 11W in between.
  • the image sensor 10 has a color filter 41 and an on-chip lens 42 on the light receiving surface (light receiving surface S1 described later) side of the sensor chip 11.
  • the semiconductor substrate 11S corresponds to a specific example of the first semiconductor substrate of the present disclosure.
  • MEMS20 is a microelectromechanical element, a so-called micromachine.
  • the MEMS 20 detects inertial force, vibration, or the like, and specifically, a gyro sensor, an acceleration sensor, or the like.
  • the MEMS 20 has, for example, a support substrate 21, a movable portion 22, a fixing portion 23, an enclosure wall 24, and a pad electrode 25.
  • FIG. 2 shows an example of the functional configuration of the imaging device 1.
  • the image pickup apparatus 1 includes, for example, a pixel unit 50P, a drive unit 51, and a control unit 52.
  • pixel unit 50P for example, a plurality of pixels 50 (FIG. 1) are arranged in a matrix.
  • pixel drive lines pixel drive lines L2, L3, L4, etc. in FIG. 27A and the like described later
  • Vertical signal lines vertical signal lines L1 and the like in FIG. 27A and the like described later
  • the pixel drive line is for transmitting a drive signal to each pixel 50.
  • This drive signal is output from the drive unit 51 in units of lines.
  • the control unit 52 inputs a control signal to the drive unit 51.
  • the drive unit 51 transmits a drive signal to the pixel unit 50P based on the control signal input from the control unit 52.
  • the sensor chip 11 is a chip having a photoelectric conversion function and has a sensor circuit.
  • the sensor chip 11 has a multilayer wiring layer 11W and a semiconductor substrate 11S in this order from the logic chip 12 side.
  • the semiconductor substrate 11S of the sensor chip 11 has a light receiving surface S1 and a non-light receiving surface S2 facing the light receiving surface S1.
  • the multilayer wiring layer 11W is provided on the non-light receiving surface S2 side of the semiconductor substrate 11S.
  • the semiconductor substrate 11S between the multilayer wiring layer 11W and the color filter 41 is made of, for example, a silicon (Si) substrate.
  • the semiconductor substrate 11S is provided with a PD (PhotoDiode) 11P for each pixel 50.
  • the multilayer wiring layer 11W between the semiconductor substrate 11S and the logic chip 12 includes an interlayer insulating film and a plurality of wirings.
  • the interlayer insulating film is for separating a plurality of wirings of the multilayer wiring layer 11W, and is made of, for example, silicon oxide (SiO) or the like.
  • a plurality of wirings provided in the multilayer wiring layer 11W form, for example, a sensor circuit.
  • the logic chip 12 provided facing the sensor chip 11 has, for example, a logic circuit 12C electrically connected to the PD 11P of the sensor chip 11.
  • the PD 11P is electrically connected to the logic circuit 12C via the sensor circuit of the multilayer wiring layer 11W.
  • the logic chip 12 has, for example, a semiconductor substrate, and a plurality of MOS (Metal Oxide Semiconductor) transistors are provided in the p-type semiconductor well region of the semiconductor substrate.
  • the logic circuit 12C is configured by using, for example, the plurality of MOS transistors.
  • the semiconductor substrate is composed of, for example, a silicon substrate.
  • the multilayer wiring layer 11W of the sensor chip 11 and the logic chip 12 (logic circuit 12C) are electrically connected to each other.
  • the multilayer wiring layer 11W and the logic chip 12 are connected by a metal joint such as a Cu-Cu joint. Alternatively, the multilayer wiring layer 11W and the logic chip 12 may be connected by using through electrodes.
  • the semiconductor substrate of the logic chip 12 corresponds to a specific example of the second semiconductor substrate of the present disclosure.
  • a rewiring layer 13 and micro bumps 14 are provided on the surface of the logic chip 12 opposite to the joint surface with the sensor chip 11 (multilayer wiring layer 11W) (hereinafter referred to as the back surface of the logic chip 12).
  • the rewiring layer 13 is for connecting the logic circuit 12C of the logic chip 12 and the micro bump 14.
  • the micro bump 14 is for electrically connecting the rewiring layer 13 and the MEMS 20 (specifically, the pad electrode 25). That is, the image sensor 10 is electrically connected to the MEMS 20 via the micro bump 14 and the rewiring layer 13.
  • a color filter 41 and an on-chip lens 42 are provided in this order on the light receiving surface S1 of the semiconductor substrate 11S.
  • the color filter 41 is, for example, one of a red (R) filter, a green (G) filter, a blue (B) filter, and a white filter (W), and is provided for each pixel 50, for example.
  • These color filters 41 are provided with a regular color arrangement (for example, a Bayer arrangement). By providing such a color filter 41, the image sensor 10 can obtain color light receiving data corresponding to the color arrangement.
  • the on-chip lens 42 on the color filter 41 is provided at a position facing the PD11P of the sensor chip 11 for each pixel 50.
  • the light incident on the on-chip lens 42 is focused on the PD11P for each pixel 50.
  • the lens system of the on-chip lens 42 is set to a value according to the pixel size.
  • Examples of the lens material of the on-chip lens 42 include an organic material and a silicon oxide film (SiO).
  • the MEMS 20 is provided facing the image sensor 10. That is, in the image pickup device 1, the image pickup device 10 and the MEMS 20 are laminated and provided. Details will be described later, but this makes it possible to reduce the occupied area as compared with the case where the image pickup element and the MEMS are provided side by side on the same substrate (the image pickup apparatus 100 of FIG. 7 described later).
  • the MEMS 20 faces the sensor chip 11 with the logic chip 12 in between.
  • the MEMS 20 is provided on the non-light receiving surface S2 side of the image sensor 10.
  • the support substrate 21 of the MEMS 20 faces the logic chip 12 (image sensor 10).
  • a movable portion 22 is provided between the support substrate 21 and the logic chip 12.
  • the movable portion 22 corresponds to a specific example of the floating portion of the present disclosure.
  • a fixing portion 23 is provided between the movable portion 22 and the support substrate 21, and a part of the movable portion 22 is fixed to the support substrate 21 by the fixing portion 23.
  • a plurality of connecting portions 20C are provided around the movable portion 22 in a plan view (XY plane of FIG. 1B).
  • Each of the plurality of connecting portions 20C connects the support substrate 21 and the micro bump 14 (imaging element 10) in the stacking direction of the image sensor 10 and the MEMS 20 (Z direction in FIG. 1A).
  • the connecting portion 20C includes, for example, the surrounding wall 24 and the pad electrode 25 in this order from the support substrate 21 side.
  • a resin layer 31 is provided around the MEMS 20.
  • the substrate area of the support substrate 21 is smaller than, for example, the chip area of the sensor chip 11 and the logic chip 12 of the image sensor 10.
  • the support substrate 21 is arranged at a position corresponding to the central portion of the image pickup device 10 in a plan view.
  • the support substrate 21 is made of, for example, a silicon (Si) substrate or the like.
  • the support substrate 21 is provided with a MEMS circuit (not shown).
  • a hollow portion H is provided between the support substrate 21 and the image sensor 10 (logic chip 12).
  • the hollow portion H is a space surrounded by the support substrate 21, the image sensor 10, and the connection portion 20C.
  • the movable portion 22 is provided in the hollow portion H between the support substrate 21 and the image sensor 10. That is, since one of the movable portions 22 is sealed in the image sensor 10, it is not necessary to separately provide a member for packaging the MEMS 20. This makes it possible to reduce the cost.
  • the movable portion 22 is arranged in the hollow portion H with a gap between the support substrate 21 and the image sensor 10 (logic chip 12).
  • the hollow portion H is provided with, for example, a plurality of movable portions 22 extending in a predetermined direction (for example, the X-axis direction in FIGS. 1A and 1B).
  • a predetermined direction for example, the X-axis direction in FIGS. 1A and 1B.
  • FIG. 1B shows four movable portions 22, one of which of the two movable portions 22 is fixed to the support substrate 21 by the fixing portion 23.
  • the other ends of the other two movable portions are fixed to the support substrate 21 by the fixing portion 23.
  • the movable portion 22 is displaced according to, for example, an inertial force or vibration received by the image pickup apparatus 1.
  • the movable portion 22 is made of, for example, a metal such as aluminum.
  • the movable portion 22 may be made of polysilicon or the like, or the support substrate 21 may be processed to form the movable portion 22.
  • the fixing portion 23 provided between the movable portion 22 and the support substrate 21 is made of, for example, silicon oxide (SiO) or the like.
  • the surrounding wall 24 is provided apart from one end and the other end of the movable portion 22, and is arranged near the peripheral edge of the support substrate 21.
  • the enclosure wall 24 is continuously provided in a frame shape so as to surround the movable portion 22 in a plan view, for example.
  • the height of the enclosure wall 24 (the size in the Z-axis direction of FIG. 1A) is sufficiently larger than the height of the fixed portion 23.
  • the pad electrode 25 on the enclosure wall 24 is arranged at a position closer to the image sensor 10 than the movable portion 22 in the Z-axis direction.
  • the enclosure wall 24 is made of, for example, silicon oxide (SiO) or the like.
  • the lower surface of the enclosure wall 24 (the surface on the support substrate 21 side) is in contact with the support substrate 21.
  • a plurality of pad electrodes 25 are provided on the upper surface of the surrounding wall 24 so as to be separated from each other. It is preferable that the pad electrodes 25 are arranged at positions facing each other in the vicinity of the peripheral edge of the support substrate 21, as in the case of the surrounding wall 24, and the intervals between the plurality of pad electrodes 25 are substantially even.
  • a plurality of connecting portions 20C including the pad electrodes 25 and the surrounding wall 24 are formed around the movable portion 22 at substantially equal intervals.
  • the resin layer 31 surrounding the MEMS 20 is less likely to penetrate into the hollow portion H.
  • a plurality of pad electrodes 25 are arranged at positions corresponding to the corners and sides of the rectangular support substrate 21.
  • a part of the plurality of pad electrodes 25 may be dummy electrodes that do not function as electrodes. This dummy electrode is used, for example, to form the connecting portion 20C around the movable portion 22 with an even feeling.
  • each of the plurality of pad electrodes 25 is connected to the logic chip 12 via the micro bump 14 and the rewiring layer 13.
  • the lower surfaces of the plurality of pad electrodes 25 are connected to a MEMS circuit (not shown) via, for example, wiring and vias inside the enclosure wall 24.
  • the upper surface of the pad electrode 25 is arranged at a position closer to the image sensor 10 than the upper surface of the movable portion 22. As a result, a gap is formed between the image sensor 10 (logic chip 12) and the movable portion 22.
  • a resin layer 31 is provided around the MEMS 20 so as to specifically surround the support substrate 21 and the connection portion 20C.
  • the resin layer 31 is for sealing the MEMS 20 to the image sensor 10, and is provided in a region overlapping the image sensor 10 in a portion widened from the MEMS 20 in a plan view.
  • the thickness of the resin layer 31 (the size in the Z direction of FIG. 1B) is substantially the same as the thickness of the MEMS 20.
  • the resin layer 31 is provided outside the region (hollow portion H) surrounded by the plurality of connecting portions 20C.
  • the image pickup device 1 is configured such that signals are input and output from and to the outside via, for example, the external connection terminal 10T.
  • the external connection terminal 10T is, for example, the sensor chip 11 of the logic chips 12. It is provided near the joint surface with.
  • a connection hole V reaching the external connection terminal 10T is provided on the outside of the pixel portion 50P of the sensor chip 11.
  • Imaging device 1 Manufacturing method of imaging device 1
  • Such an imaging device 1 can be manufactured, for example, as follows (FIGS. 3A to 6C).
  • the color filter 41 and the on-chip lens 42 are formed on the light receiving surface S1 of the semiconductor substrate 11S.
  • the logic board 12m includes a logic circuit 12C, and the logic chip 12 is formed by the logic board 12m in a later step.
  • the temporary substrate 44 is attached to the logic substrate 12m using the packing layer 43.
  • the temporary substrate 44 is arranged so as to face the logic substrate 12m with the color filter 41 and the on-chip lens 42 in between.
  • the packing layer 43 is formed by using, for example, a resin material or the like.
  • the logic substrate 12m is polished from one side to form the logic chip 12.
  • the surface of the logic substrate 12 m opposite to the joint surface with the sensor chip 11 is polished by, for example, a grinder or the like.
  • the logic substrate 12m is thinned and the logic chip 12 is formed.
  • the rewiring layer 13 and the micro bump 14 are formed in this order on the back surface of the logic chip 12 as shown in FIGS. 3D and 3E.
  • the rewiring layer 13 is formed so as to connect to the wiring in the logic chip 12 through, for example, a connection hole from the back surface of the logic chip 12 to the inside of the logic chip 12.
  • the micro bump 14 is formed on the rewiring layer 13. As a result, the image sensor 10 is formed.
  • FIGS. 4 (A) and 5 (A) are cross-sectional views showing each process of manufacturing the MEMS 20, and FIGS. 4 (B) and 5 (B) are FIGS. 4 (A) and 5 (A). It is a top view corresponding to the process shown in. 4 (A) and 5 (A) show the cross-sectional configuration along the AA'line shown in FIGS. 4 (B) and 5 (B).
  • an insulating film 26, a metal film 22M, and a pad electrode 25 are formed on a support substrate 21 made of, for example, a silicon (Si) substrate.
  • the insulating film 26 is formed over, for example, the entire surface of the support substrate 21.
  • the insulating film 26 is formed between the support substrate 21 and the metal film 22M and is formed so as to cover the metal film 22M.
  • the metal film 22M is formed in a selective region on the insulating film 26.
  • the metal film 22M is formed, for example, in the central portion of the support substrate 21.
  • the movable portion 22 is formed by the metal film 22M.
  • the movable portion 22 may be formed by a part of the support substrate 21.
  • the pad electrode 25 is formed on the insulating film 26 that covers the metal film 22M.
  • the pad electrode 25 is formed outside the region where the metal film 22M is formed, for example, along the corners and sides of the support substrate 21.
  • the metal film 22M is patterned to form the movable portion 22, and the insulating film 26 in the unnecessary portion is removed. ..
  • a lithography technique is used for the patterning of the metal film 22M.
  • the fixing portion 23 between the movable portion 22 and the support substrate 21 and the surrounding wall 24 around the movable portion 22 are formed.
  • the support substrate 21 is individualized (not shown). As a result, MEMS 20 is formed.
  • the MEMS 20 is laminated on the image sensor 10 as shown in FIG. 6A. At this time, the pad electrode 25 of the MEMS 20 is connected to the micro bump 14 of the image sensor 10.
  • the resin layer 31 is formed on the outside of the MEMS 20 (enclosure wall 24).
  • the movable portion 22 of the MEMS 20 is sealed in the image pickup element 10, and the hollow portion H is formed between the image pickup element 10 and the support substrate 21.
  • the resin layer 31 and the support substrate 21 are polished to a desired thickness as shown in FIG. 6C.
  • the resin layer 31 and the support substrate 21 are polished using CMP (Chemical Mechanical Polishing) technology or the like.
  • CMP Chemical Mechanical Polishing
  • the packed bed 43 and the temporary substrate 44 are peeled off.
  • the image pickup apparatus 1 can be manufactured in this way.
  • a signal charge for example, an electron
  • a signal charge is acquired as follows, for example.
  • the on-chip lens 42, the color filter 41, and the like and enters the sensor chip 11 this light is detected (absorbed) by the PD11P of each pixel, and red, green, or blue colored light is photoelectrically converted.
  • signal charges for example, electrons
  • a signal corresponding to the displacement of the movable portion 22 of the MEMS 20 is input to, for example, a signal processing unit (a signal processing unit 62 such as FIG. 24 described later).
  • the support substrate 21 of the MEMS 20 having the movable portion 22 is provided so as to face the image sensor 10. That is, the MEMS 20 is laminated on the image sensor 10.
  • the occupied area can be reduced as compared with the case where the imaging unit and the movable unit are provided side by side on the same substrate.
  • FIG. 7 shows a schematic cross-sectional configuration of a main part of the imaging device (imaging device 100) according to the comparative example.
  • the image pickup apparatus 100 has an image pickup section 110 and a MEMS section 120 on one substrate (board 100S).
  • the imaging unit 110 is provided with a PD (for example, PD11P in FIG. 1) for each pixel, and the MEMS unit 120 is provided with a movable unit (for example, the movable unit 22 in FIG. 1). That is, in the image pickup apparatus 100, the image pickup section 110 and the MEMS section 120 are arranged side by side on the same substrate (board 100S).
  • the occupied area that is, the so-called chip area
  • the imaging device 100 shares the substrate 100S between the imaging unit 110 and the MEMS unit 120, it is likely to be restricted in the manufacturing process and the degree of freedom in design is likely to be low.
  • the occupied area is the area of either the image pickup device 10 or the MEMS 20.
  • the occupied area of the image pickup device 1 is substantially equal to the occupied area of the image sensor 10. Therefore, the image pickup device 1 tends to have a smaller chip area than the image pickup device 100.
  • the MEMS 20 can be designed more freely than the image pickup apparatus 100.
  • the movable portion 22 of the MEMS 20 can be formed by three-dimensional processing of the support substrate 21.
  • the imaging unit 110 and the MEMS unit 120 are provided side by side on the same substrate (board 100S).
  • the occupied area can be reduced as compared with the case. Therefore, the occupied area can be reduced.
  • the image sensor 10 and the MEMS 20 can be laminated after being formed respectively. Therefore, the restrictions on the manufacturing process are reduced, and the MEMS 20 can be designed more freely.
  • the movable portion 22 is provided in the hollow portion H between the image sensor 10 and the support substrate 21, it is not necessary to separately provide a member for packaging the MEMS 20. Therefore, it is possible to reduce the cost.
  • the number of connecting portions 20C can be increased by including the dummy electrode in the pad electrode 25. This makes it easier to prevent the resin layer 31 from infiltrating the hollow portion H.
  • the rotation direction and the movement direction of the image sensor 10 and the rotation direction and the movement direction of the MEMS 20 match.
  • the rotation direction and the moving direction thereof may be deviated from each other. Therefore, when the MEMS 20 is, for example, an acceleration sensor or a gyro sensor, the image pickup apparatus 1 can perform more accurate image stabilization.
  • the image pickup device 10 and the MEMS 20 are electrically connected by the micro bump 14 and the pad electrode 25. Therefore, a wiring board or the like for electrically connecting the chip having the imaging function and the chip having the MEMS function is not required, and the mounting area can be reduced. Further, it is possible to suppress the cost caused by the wiring board and the like.
  • FIG. 8 shows a schematic cross-sectional configuration of a main part of the image pickup apparatus (imaging apparatus 1A) according to the first modification of the first embodiment.
  • the external connection terminal 10T is provided on the back surface of the logic chip 12.
  • the image pickup apparatus 1A according to the first modification has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 8 corresponds to FIG. 1 (A) showing the image pickup apparatus 1.
  • the external connection terminal 10T provided on the back surface of the logic chip 12 is electrically connected to the wiring inside the logic chip 12 via, for example, a connection via.
  • the external connection terminal 10T is provided in a region that does not overlap with the MEMS 20 in a plan view, and the resin layer 31 is provided inside the external connection terminal 10T in a plan view.
  • Such an external connection terminal 10T can be formed, for example, in the same process as the process of forming the micro bump 14 (see FIG. 3E). Further, the resin layer 31 covering the external connection terminal 10T may be removed in the step of polishing the support substrate 21 and the resin layer 31 (see FIG. 6C). As described above, the external connection terminal 10T on the back surface of the logic chip 12 can be easily formed.
  • the occupied area can be reduced because the MEMS 20 having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10. Further, since the external connection terminal 10T is provided on the back surface of the logic chip 12, it becomes easy to supply power to the logic chip 12.
  • FIG. 9 shows a schematic cross-sectional configuration of a main part of the image pickup apparatus (imaging apparatus 1B) according to the second modification of the first embodiment.
  • an external connection terminal 10T is provided on the support substrate 21 of the MEMS 20.
  • the image pickup apparatus 1B according to the modified example 2 has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 9 corresponds to FIG. 1A showing the image pickup apparatus 1.
  • the external connection terminal 10T is provided on one surface of the support substrate 21 (the surface opposite to the surface on the image sensor 10 side).
  • the external connection terminal 10T is electrically connected to the image sensor 10 via, for example, a connection electrode 27 and a pad electrode 25 provided on the MEMS 20.
  • the connection electrode 27 is provided on the surrounding wall 24, for example.
  • One surface of the connection electrode 27 is connected to the pad electrode 25 via a via provided on the enclosure wall 24, and the other surface of the connection electrode 27 is a via provided on the enclosure wall 24 and the support substrate 21. It is connected to the external connection terminal 10T via.
  • the connection electrode 27 is provided, for example, in the same layer as the movable portion 22.
  • the pad electrode 25 electrically connected to the connection electrode 27 is electrically connected to the wiring in the logic chip 12 via the micro bump 14 and the rewiring layer 13.
  • connection electrode 27 is formed in the same process as the process of forming the movable portion 22. Then, after the step of polishing the support substrate 21 and the resin layer 31 (see FIG. 6C), vias reaching the connection electrode 27 from one surface of the support substrate 21 are formed. After that, the external connection terminal 10T is formed on one surface of the support substrate 21.
  • the occupied area can be reduced because the MEMS 20 having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10.
  • FIG. 10 shows a schematic cross-sectional configuration of a main part of the image pickup apparatus (imaging apparatus 1C) according to the third modification of the first embodiment.
  • the image pickup device 1C has a relay board 45 between the image pickup device 10 and the MEMS 20. Except for this point, the image pickup apparatus 1C according to the third modification has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 10 corresponds to FIG. 1A showing the image pickup apparatus 1.
  • the relay board 45 is composed of, for example, a silicon (Si) interposer board.
  • the image pickup device 10 and the MEMS 20 are electrically connected via the relay board 45.
  • the micro bumps 14 provided on the back surface of the logic chip 12 and the micro bumps 28 provided on the pad electrode 25 are electrically connected via the relay board 45.
  • the micro bump 14 is electrically connected to the wiring in the logic chip 12, and the micro bump 28 is electrically connected to the pad electrode 25.
  • the occupied area can be reduced because the MEMS 20 having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10. Further, since the image sensor 10 and the MEMS 20 are electrically connected via the relay board 45, it is not necessary to accurately align the micro bump 14 of the image sensor 10 with the pad electrode 25 on the MEMS 20 side. .. Therefore, in the image pickup device 1C, the image pickup device 10 and the MEMS 20 can be arranged more freely.
  • FIG. 11 shows the functional configuration of the image pickup apparatus (imaging apparatus 1D) according to the modified example 4 of the first embodiment.
  • the control unit 52 includes an image pickup determination unit 52A.
  • the image pickup apparatus 1D according to the modified example 4 has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 11 corresponds to FIG. 2 showing the image pickup apparatus 1.
  • the image pickup device 1D is used, for example, for monitoring purposes, and when the image pickup device 1D detects an abnormality due to vibration (displacement of the movable portion 22), an image is acquired.
  • the image pickup apparatus 1D has a detection unit 61 that detects the displacement of the movable unit 22.
  • the detection unit 61 sends a detection signal based on the displacement of the movable unit 22 to the image pickup determination unit 52A.
  • the imaging determination unit 52A determines whether or not to acquire an image based on the detection signal sent from the detection unit 61.
  • the control unit 52 sends a control signal to the drive unit 51.
  • the drive unit 51 inputs a drive signal to each pixel 50 of the pixel unit 50P based on the control signal.
  • FIG. 12 shows an example of the operation of the image pickup apparatus 1D.
  • the detection unit 61 is activated (step S101). As a result, the displacement of the movable portion 22 is monitored by the detection unit 61. Next, the detection unit 61 determines whether or not the movable unit 22 has been displaced (step S102). When the detection unit 61 detects the displacement of the movable unit 22, a detection signal based on this displacement is input to the imaging determination unit 52A.
  • the imaging determination unit 52A determines whether or not to perform imaging based on the signal input from the detection unit 61 (step S103). For example, when the detection unit 61 detects a displacement of a predetermined size or more, the image pickup determination unit 52A decides to perform imaging. When the imaging determination unit 52A decides not to perform imaging, the process returns to step S101.
  • a control signal is input from the control unit 52 to the drive unit 51, and the drive unit 51 sends a drive signal to each pixel 50 of the pixel unit 50P based on this control signal.
  • Input step S104.
  • imaging is performed (step S105), and an image is acquired.
  • the observer determines whether or not to monitor by the imaging device 1D.
  • the process returns to step S101.
  • the monitoring is stopped after the image acquisition, the operation of the imaging device 1D ends.
  • the occupied area can be reduced because the MEMS 20 having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10. Further, since the displacement of the movable portion 22 and the image pickup operation of the image pickup device 10 are linked, the image pickup device 1D can be suitably used for monitoring applications. Further, since the control unit 52 includes the image pickup determination unit 52A, it is possible to cause the image sensor 10 to perform an image pickup operation only when the detection unit 61 detects an abnormality. Therefore, in the image pickup device 1D, it is possible to suppress the power consumption as compared with the case where the image pickup device 10 constantly performs the image pickup operation.
  • FIG. 13 shows the functional configuration of the image pickup apparatus (imaging apparatus 1E) according to the modified example 5 of the first embodiment.
  • the control unit 52 includes an image pickup determination unit 52A and an image pickup mode selection unit 52B. Except for this point, the image pickup apparatus 1E according to the modified example 5 has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 13 corresponds to FIG. 2 showing the image pickup apparatus 1.
  • the image pickup device 1E is used for, for example, a monitoring application, and has a detection unit 61 for detecting the displacement of the movable portion 22.
  • the detection unit 61 sends a detection signal based on the displacement of the movable unit 22 to the image pickup determination unit 52A.
  • the imaging determination unit 52A determines whether or not to acquire an image based on the detection signal sent from the detection unit 61.
  • the image pickup determination unit 52A sends a signal to the image pickup mode selection unit 52B. Based on this signal or information input from the outside, the imaging mode selection unit 52B selects the optimum imaging mode according to the situation.
  • the frame rate, the number of pixels, the number of pitches, and the like can be selected. That is, the image pickup mode selection unit 52B can increase the frame rate, increase the number of pixels, and increase the number of pitches.
  • the control unit 52 sends a control signal to the drive unit 51 based on the information of the image pickup mode selected by the image pickup mode selection unit 52B.
  • the drive unit 51 inputs a drive signal to each pixel 50 of the pixel unit 50P based on the control signal.
  • FIG. 14 shows an example of the operation of the image pickup apparatus 1E.
  • the detection unit 61 is activated (step S101). As a result, the displacement of the movable portion 22 is monitored by the detection unit 61. Next, the detection unit 61 determines whether or not the movable unit 22 has been displaced (step S102). When the detection unit 61 detects the displacement of the movable unit 22, a detection signal based on this displacement is input to the imaging determination unit 52A.
  • the imaging determination unit 52A determines whether or not to perform imaging based on the signal input from the detection unit 61 (step S103). For example, when the detection unit 61 detects a displacement of a predetermined size or more, the image pickup determination unit 52A decides to perform imaging. When the imaging determination unit 52A decides not to perform imaging, the process returns to step S101.
  • a signal is input from the imaging determination unit 52A to the imaging mode selection unit 52B, and the imaging mode selection unit 52B selects the optimum imaging mode according to the situation (step). S107).
  • the control unit 52 inputs a control signal to the drive unit 51, and the drive unit 51 inputs a drive signal to each pixel 50 of the pixel unit 50P based on this control signal.
  • Step S104 imaging is performed (step S105), and an image is acquired.
  • the observer determines whether or not to monitor by the image pickup apparatus 1E.
  • the process returns to step S101.
  • the operation of the imaging device 1E ends.
  • the occupied area can be reduced because the MEMS 20 having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10. Further, since the displacement of the movable portion 22 and the image pickup operation of the image pickup device 10 are linked, the image pickup device 1D can be suitably used for monitoring applications. Further, since the control unit 52 includes the image pickup determination unit 52A, it is possible to cause the image sensor 10 to perform an image pickup operation only when the detection unit 61 detects an abnormality. Therefore, in the image pickup device 1D, it is possible to suppress the power consumption as compared with the case where the image pickup device 10 constantly performs the image pickup operation. In addition, since the control unit 52 includes the image pickup mode selection unit 52B, it is possible to acquire an image by using the optimum image pickup mode according to the situation.
  • FIG. 15 shows the functional configuration of the image pickup apparatus (imaging apparatus 1F) according to the modification 6 of the first embodiment.
  • the control unit 52 includes an image pickup mode switching determination unit 52C. Except for this point, the image pickup apparatus 1F according to the modified example 6 has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 15 corresponds to FIG. 2 showing the image pickup apparatus 1.
  • the image pickup device 1F is used for monitoring purposes, for example, and has a detection unit 61 for detecting the displacement of the movable portion 22.
  • the detection unit 61 sends a detection signal based on the displacement of the movable unit 22 to the image pickup mode switching determination unit 52C.
  • the imaging mode switching determination unit 52C determines whether or not it is necessary to switch the imaging mode based on the detection signal sent from the detection unit 61. For example, the image pickup mode switching determination unit 52C determines whether or not it is necessary to switch from the moving image shooting mode to the still image shooting mode.
  • the drive unit 51 changes the drive signal sent to each pixel 50 of the pixel unit 50P based on the control signal from the control unit 52.
  • FIG. 16 shows an example of the operation of the imaging device 1F.
  • the pixel unit 60P and the detection unit 61 are activated (step S201).
  • the image sensor 10 starts image acquisition in the moving image mode, and the detection unit 61 monitors the displacement of the movable unit 22.
  • the detection unit 61 determines whether or not the movable unit 22 has been displaced (step S202).
  • the detection unit 61 detects the displacement of the movable unit 22, the detection unit 61 further determines whether or not the magnitude of the displacement is greater than or equal to a predetermined magnitude (step S203).
  • a detection signal based on this displacement is input to the imaging mode switching determination unit 52C.
  • the image pickup mode switching determination unit 52C determines to switch the image pickup mode from the moving image shooting mode to the still image shooting mode based on the detection signal of the detection unit 61.
  • the drive unit 51 changes the drive signal sent to each pixel 50 of the pixel unit 50P based on the control signal from the control unit 52.
  • the moving image shooting mode is switched to the still image shooting mode (step S204), and the still image is acquired (step S205).
  • This still image has, for example, a high resolution and is acquired at a high scanning speed.
  • the observer determines whether or not to monitor by the imaging device 1F. When monitoring is continued, the process returns to step S201. When the monitoring is stopped after the image acquisition, the operation of the imaging device 1F ends.
  • the occupied area can be reduced because the MEMS 20 having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10. Further, since the displacement of the movable portion 22 and the image pickup operation of the image pickup device 10 are linked, the image pickup device 1F can be suitably used for monitoring applications. Further, since the control unit 52 includes the image pickup mode switching determination unit 52C, the image sensor 10 is stationary at a high resolution and a high scan speed only when the movable unit 22 is displaced by a predetermined size or more. It is possible to perform an image imaging operation. Therefore, in the image pickup device 1F, it is possible to acquire a high-quality image in which the influence of vibration is suppressed when an abnormality occurs, as compared with the case where the image pickup device 10 constantly performs the moving image imaging operation.
  • FIG. 17 shows an example of the configuration of the MEMS (MEMS20G) of the imaging device (imaging device 1G) according to the modified example 7 of the first embodiment.
  • This imaging device 1G has a MEMS 20G that functions as a magnetic sensor. That is, in this MEMS 20G, the movable portion 22 is displaced according to the magnetic field. Except for this point, the image pickup apparatus 1G according to the modified example 7 has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 18 is a schematic representation of the planar configuration of the MEMS 20G shown in FIG. 19A and 19B schematically show the cross-sectional structure of the MEMS 20G.
  • FIG. 19A represents a cross-sectional configuration along the AA'line shown in FIG. 18, and
  • FIG. 19B represents a cross-sectional configuration along the BB'line shown in FIG.
  • the movable portion 22 is displaced according to the magnitude and direction of the magnetic field (magnetic field).
  • the MEMS 20G has electrodes 29A, 29B, 29C, and 29D in addition to, for example, a support substrate 21, a movable portion 22, a fixing portion 23, an enclosure wall 24, and a pad electrode 25 (FIGS. 17 and 18).
  • the enclosure wall 24 has, for example, a laminated structure of a first enclosure wall 24A on the pad electrode 25 side and a second enclosure wall 24B between the first enclosure wall 24A and the support substrate 21.
  • the MEMS20G is, for example, a capacitive Lorentz force magnetic sensor.
  • the movable portion 22 includes, for example, two laterally extending portions 22H and one vertically extending portion 22V.
  • the two laterally extending portions 22H are provided substantially in parallel and extend linearly in the X-axis direction.
  • the vertically extending portion 22V is provided so as to connect the central portions of the two laterally extending portions 22H, and extends linearly in the Y-axis direction.
  • both ends of each of the two laterally extending portions 22H in the extending direction are fixed to the support substrate 21 by the fixing portion 23.
  • the movable portion 22 is made of, for example, silicon (Si) or the like.
  • the electrodes 29A, 29B, 29C, and 29D are linear electrodes extending substantially parallel to the laterally extending portion 22H.
  • the electrodes 29A and 29B are arranged in the vicinity of one laterally extending portion 22H, and the electrodes 29C and 29D are arranged in the vicinity of the other laterally extending portion 22H.
  • the electrodes 29A and 29C are arranged at positions that do not overlap the laterally extending portion 22H in a plan view, and the electrodes 29A and 29C have two laterally extending portions 22H and a vertically extending portion 22V. They are facing each other in between.
  • the thickness of the electrodes 29A and 29C is larger than the thickness of the electrodes 29B and 29D, and in the thickness direction (Z-axis direction), the upper surface of the electrodes 29A and 29C (the surface opposite to the surface on the support substrate 21 side) is It is arranged at substantially the same position as the upper surface of the movable portion 22.
  • the electrodes 29B and 29D are arranged, for example, at positions overlapping the laterally extending portion 22H in a plan view (FIG. 17).
  • the size of the electrodes 29B and 29D in the extending direction (X-axis direction) is smaller than the size of the laterally extending portion 22H, and the electrodes 29B and 29D have the laterally extending portion 22H and the support substrate 21. It is placed between.
  • the electrodes 29A, 29B, 29C, and 29D are made of, for example, silicon (Si) or the like.
  • An insulating film 23I is provided between each of the electrodes 29A, 29B, 29C, and 29D and the support substrate 21.
  • the insulating film 23I is made of, for example, silicon oxide (SiO) or the like.
  • the enclosure wall 24 includes, for example, the second enclosure wall 24B and the first enclosure wall 24A in order from the support substrate 21 side.
  • the first enclosure wall 24A is made of, for example, the same material as the constituent material of the movable portion 22.
  • the second enclosure wall 24B is made of, for example, the same material as the constituent material of the fixing portion 23.
  • FIGS. 20A to 23B An example of such a manufacturing method of MEMS20G will be described with reference to FIGS. 20A to 23B.
  • 20A, 21A, and 22A show the manufacturing process of the portion corresponding to the cross section along the line AA'of FIG. 18, and FIGS. 20B, 21B, and 22B are the lines BB'of FIG. Represents the manufacturing process of the portion corresponding to the cross section along.
  • an insulating film 23M and electrodes 29A, 29B, 29C and 29D are formed in this order on the support substrate 21 (electrodes 29C and 29D are not shown.
  • the thickness of the electrodes 29A and 29C is made larger than the thickness of the electrodes 29B and 29D.
  • an insulating film 23M is formed so as to cover the electrodes 29B and 29D.
  • the movable portion 22 and the first enclosure wall 24A are formed.
  • the movable portion 22 and the first enclosure wall 24A may be formed in the same process.
  • the pad electrode 25 is formed on the first enclosure wall 24A.
  • anisotropic etching and isotropic etching of the insulating film 23M are performed in this order.
  • an unnecessary portion of the insulating film 23M is removed, and the fixing portion 23, the second surrounding wall 23B, and the insulating film 23I are formed.
  • MEMS20G can be formed in this way.
  • FIG. 24 shows an example of the functional configuration of the image pickup apparatus 1G.
  • the image pickup apparatus 1G has, for example, a signal processing unit 62 that processes a signal sent from the detection unit 61.
  • the signal processing unit 62 may include, for example, an imaging direction specifying unit 62A.
  • the imaging direction specifying unit 62A specifies the direction of the light receiving surface (light receiving surface S1 in FIG. 1 and the like) by, for example, the direction of displacement of the movable unit 22 detected by the detection unit 61.
  • the imaging direction of the imaging device 1G can be easily specified even when the imaging device 1G is in a stationary state or the like. Can be done.
  • FIG. 25 shows another example of the functional configuration of the image pickup apparatus 1G.
  • the signal processing unit 62 may include a data storage unit 62B.
  • the data storage unit 62B for example, information on the displacement of the movable unit 22, that is, information on the magnitude of the magnetic field and the direction of the magnetic field is stored at predetermined time intervals via the detection unit 61. .. This makes it possible for the image pickup apparatus 1G to identify the time change of the magnetic field.
  • the occupied area can be reduced because the MEMS 20G having the movable portion 22 is provided by stacking the image sensor 10 on the image sensor 10. Further, since the MEMS 20G functioning as a magnetic sensor is laminated on the image sensor 10, the imaging location and the direction of the light receiving surface (light receiving surface S1 in FIG. 1 and the like) can be easily determined even when the image sensor 1G is in a stationary state. It becomes possible to identify. Hereinafter, this action and effect will be described.
  • GPS Global Positioning System
  • the shooting location and the direction of the light receiving surface can be specified even when the positioning information using GPS cannot be used. Becomes possible. However, in this case, since a plurality of sensors are required, it becomes difficult to miniaturize the imaging device. Further, when the image sensor and the geomagnetic sensor are connected by a wiring board or the like, the direction of the image sensor and the direction of the geomagnetic sensor may deviate from each other. Therefore, it is difficult to directly use the information obtained from the geomagnetic sensor to specify the direction of the light receiving surface.
  • sensors such as a gyro, an acceleration sensor, and a geomagnetic sensor
  • the image pickup device 1G since the MEMS 20G functioning as a magnetic sensor is laminated on the image pickup element 10, the geomagnetic information is acquired by the MEMS 20G. Therefore, even when the positioning information using GPS is not available, it is possible to specify the imaging location of the image pickup apparatus 1G and the direction of the light receiving surface.
  • the image pickup apparatus 1G has the image pickup direction specifying unit 62A, the photographer can easily specify the image pickup direction.
  • the identification of the shooting direction can also be used, for example, as follows. Some of the map information published on the WEB has captured images added. The user can also specify the shooting direction together with the position information and post the shot image. This shooting direction is specified by an arrow ( ⁇ ) symbol on the WEB, for example. By using the image pickup device 1G, it is possible to automatically add the shooting direction on the WEB.
  • the shooting direction can be easily specified even when the photographer cannot visually recognize the image pickup device 1G.
  • the imaging device 1G can be suitably applied to an endoscope or the like. Even when the photographer cannot visually recognize the image pickup device 1G, a magnetic force is applied from the outside, and the MEMS20G (detection unit 61) detects this magnetic force to change the shooting direction (direction of the light receiving surface of the image pickup device 1G). Be identified.
  • the imaging device 1G includes the MEMS 20G that functions as a magnetic sensor, it is possible to specify the imaging location and the direction of the light receiving surface without mounting a plurality of sensors. Therefore, the image pickup apparatus 1G can be miniaturized.
  • the imaging device 1G includes the data storage unit 62B, which makes it possible to measure the time change of the geomagnetism.
  • the image pickup device 1G can be suitably applied to a wearable camera (portable camera) for the purpose of watching over the elderly or preventing crime of children.
  • the time transition of the geomagnetic direction can be specified by the MEMS 20G, so that the behavior of the wearable camera carrier can be easily estimated.
  • FIG. 26 shows a schematic cross-sectional configuration of a main part of the image pickup apparatus (imaging apparatus 2) according to the second embodiment of the present disclosure.
  • an infrared detection element 70 is laminated on the image pickup device 10.
  • the infrared detection element 70 corresponds to a specific example of the electronic element of the present disclosure.
  • the image pickup apparatus 2 according to the second embodiment has the same configuration as the image pickup apparatus 1 of the first embodiment, and its action and effect are also the same.
  • FIG. 26 corresponds to FIG. 1A showing the image pickup apparatus 1.
  • the image sensor 10 has, for example, a logic circuit unit 12R outside the pixel unit 50P instead of the logic chip (logic chip 12 in FIG. 1A). That is, the image sensor 10 of the image sensor 2 is a non-stacked image sensor.
  • the infrared detection element 70 has, for example, a detection film 22B in place of the movable portion (movable portion 22 in FIG. 1A).
  • the detection film 22B is for detecting light having a wavelength in the infrared region (for example, a wavelength of 5 ⁇ m to 8 ⁇ m), and is composed of, for example, a bolometer film or the like.
  • a bolometer film or the like for example, vanadium oxide (VO) or titanium oxide (TIO) can be used.
  • VO vanadium oxide
  • TIO titanium oxide
  • the detection film 22B corresponds to a specific example of the floating portion of the present disclosure.
  • the detection film 22B is provided apart from the support substrate 21 and the image pickup element 10 (multilayer wiring layer 11W), and is fixed to the support substrate 21 by the fixing portion 23.
  • the fixing portion 23, for example, fixes the vicinity of the peripheral edge of the detection film 22B to the support substrate 21.
  • the infrared detection element 70 is provided with, for example, a plurality of detection films 22B.
  • a plurality of connection portions 20C are provided so as to surround the plurality of detection films 22B in a plan view.
  • the pad electrode 25 of the connecting portion 20C is electrically connected to the multilayer wiring layer 11W via the micro bump 14 and the rewiring layer 13.
  • the image pickup apparatus 2 has a resin layer 31 around the infrared detection element 70.
  • the plurality of detection films 22B are arranged in the infrared detection element 70 for each detection unit region 70B, for example.
  • one detection unit area 70B is arranged corresponding to one pixel 50.
  • FIG. 27A shows an example of the planar configuration of the image pickup device 10
  • FIG. 27B shows an example of the planar configuration of the infrared detection element 70.
  • 27A and 27B show regions corresponding to the four pixels 50 (four detection unit regions 70B).
  • pixel transistors Tr1, Tr2, Tr3, and Tr4 are provided around each PD11P.
  • the pixel transistors Tr1, Tr2, Tr3, and Tr4 are, for example, transfer transistors, reset transistors, amplification transistors, selection transistors, and the like.
  • pixel drive lines L2, L3, and L4 are wired along the row direction for each pixel row, and vertical signal lines L1 are wired along the column direction for each pixel row. It is preferable to provide the wiring of the image pickup device 10 except for the region overlapping the detection film 22B in a plan view. As a result, light having a wavelength in the infrared region can be efficiently incident on the infrared detection element 70.
  • a readout circuit 71 is provided around the detection film 22B.
  • the drive line L6 is provided in parallel with the pixel drive lines L2, L3, and L4, and the signal line L5 is provided in parallel with the vertical signal line L1.
  • the center of the detection film 22B is arranged at a position overlapping substantially the center of PD11P in a plan view.
  • FIG. 28 shows another example of the cross-sectional configuration of the image pickup apparatus 2 shown in FIG. 27.
  • FIG. 29A shows an example of the planar configuration of the image pickup device 10 shown in FIG. 28, and
  • FIG. 29B shows an example of the planar configuration of the infrared detection element 70 shown in FIG. 28.
  • 27A and 27B show regions corresponding to four pixels 50 (one detection unit region 70B). In this way, one detection unit region 70B (one detection film 22B) may be arranged corresponding to the plurality of pixels 50.
  • 28, 29A, and 29B show an example in which one detection unit region 70B is arranged corresponding to the four pixels 50.
  • the center of the detection film 22B is arranged at a position overlapping substantially the center of the four PD11Ps in a plan view, and the wiring of the image sensor 10 is provided around the four PD11Ps.
  • the image pickup device 2 of the present embodiment is also laminated on the image pickup device 10 to provide the infrared detection element 70 having the detection film 22B, the occupied area can be reduced. Further, in the image pickup apparatus 2, it is possible to design the size of the detection unit region 70B regardless of the size of the pixel 50. Therefore, it is possible to achieve both miniaturization of the pixel 50 and improvement of the sensitivity of the infrared detection element 70.
  • the technology according to the present disclosure can be applied to various products.
  • the techniques according to the present disclosure may be applied to endoscopic surgery systems.
  • FIG. 30 is a block diagram showing an example of a schematic configuration of a patient's internal information acquisition system using a capsule endoscope to which the technique according to the present disclosure (the present technique) can be applied.
  • the internal information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
  • the capsule endoscope 10100 is swallowed by the patient at the time of examination.
  • the capsule-type endoscope 10100 has an imaging function and a wireless communication function, and moves inside an organ such as the stomach or intestine by peristaltic movement or the like until it is naturally excreted from the patient, and inside the organ.
  • Images (hereinafter, also referred to as internal organ images) are sequentially imaged at predetermined intervals, and information about the internal organ images is sequentially wirelessly transmitted to an external control device 10200 outside the body.
  • the external control device 10200 comprehensively controls the operation of the internal information acquisition system 10001. Further, the external control device 10200 receives the information about the internal image transmitted from the capsule endoscope 10100, and based on the information about the received internal image, the internal image is displayed on the display device (not shown). Generate image data to display.
  • the internal information acquisition system 10001 can obtain an internal image of the patient's internal state at any time from the time the capsule endoscope 10100 is swallowed until it is discharged.
  • the capsule-type endoscope 10100 has a capsule-type housing 10101, and in the housing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power feeding unit 10115, and a power supply unit.
  • the 10116 and the control unit 10117 are housed.
  • the light source unit 10111 is composed of, for example, a light source such as an LED (light emission diode), and irradiates the imaging field of view of the imaging unit 10112 with light.
  • a light source such as an LED (light emission diode)
  • the image pickup unit 10112 is composed of an image pickup element and an optical system including a plurality of lenses provided in front of the image pickup element.
  • the reflected light (hereinafter referred to as observation light) of the light applied to the body tissue to be observed is collected by the optical system and incident on the image sensor.
  • the observation light incident on the image sensor is photoelectrically converted, and an image signal corresponding to the observation light is generated.
  • the image signal generated by the image capturing unit 10112 is provided to the image processing unit 10113.
  • the image processing unit 10113 is composed of a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112.
  • the image processing unit 10113 provides the signal-processed image signal to the wireless communication unit 10114 as RAW data.
  • the wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been signal-processed by the image processing unit 10113, and transmits the image signal to the external control device 10200 via the antenna 10114A. Further, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides the control unit 10117 with a control signal received from the external control device 10200.
  • the power feeding unit 10115 is composed of an antenna coil for receiving power, a power regeneration circuit that regenerates power from the current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using the so-called non-contact charging principle.
  • the power supply unit 10116 is composed of a secondary battery and stores the electric power generated by the power supply unit 10115.
  • FIG. 30 in order to avoid complicating the drawings, illustrations such as arrows indicating the power supply destinations from the power supply unit 10116 are omitted, but the power stored in the power supply unit 10116 is the light source unit 10111. , Is supplied to the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117, and can be used to drive these.
  • the control unit 10117 is composed of a processor such as a CPU, and is a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the image pickup unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power supply unit 10115. Control as appropriate according to.
  • the external control device 10200 is composed of a processor such as a CPU or GPU, or a microcomputer or a control board on which a processor and a storage element such as a memory are mixedly mounted.
  • the external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A.
  • a control signal from the external control device 10200 can change the light irradiation conditions for the observation target in the light source unit 10111.
  • the imaging conditions for example, the frame rate in the imaging unit 10112, the exposure value, etc.
  • the content of processing in the image processing unit 10113 and the conditions for the wireless communication unit 10114 to transmit the image signal may be changed by the control signal from the external control device 10200. ..
  • the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured internal image on the display device.
  • the image processing includes, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing) can be performed.
  • the external control device 10200 controls the drive of the display device to display an in-vivo image captured based on the generated image data.
  • the external control device 10200 may have the generated image data recorded in a recording device (not shown) or printed out in a printing device (not shown).
  • the above is an example of an in-vivo information acquisition system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging unit 10112 among the configurations described above. This improves the detection accuracy.
  • the technology according to the present disclosure (the present technology) can be applied to various products.
  • the techniques according to the present disclosure may be applied to endoscopic surgery systems.
  • FIG. 31 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
  • FIG. 31 illustrates how the surgeon (doctor) 11131 is performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. Good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processes on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal that has been image-processed by the CCU11201 under the control of the CCU11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (light emission diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
  • a light source such as an LED (light emission diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for ablation of tissue, incision, sealing of blood vessels, and the like.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator.
  • the recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as texts, images, and graphs.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to support each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-division manner and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the mucosal surface layer.
  • Narrow band imaging in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating with excitation light may be performed.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 32 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG. 31.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and the focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU11201 based on the acquired image signal. Good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunication, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape and color of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the operation support information and presenting it to the operator 11131, it is possible to reduce the burden on the operator 11131 and to allow the operator 11131 to proceed with the operation reliably.
  • the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
  • the communication was performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the imaging unit 11402 among the configurations described above. By applying the technique according to the present disclosure to the imaging unit 11402, the detection accuracy is improved.
  • the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure includes any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), and the like. It may be realized as a device mounted on the body.
  • FIG. 33 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a moving body control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • an imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 34 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, 12105.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 34 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. By applying the technique according to the present disclosure to the imaging unit 12031, it is possible to obtain a photographed image that is easier to see, and thus it is possible to reduce driver fatigue.
  • the present disclosure has been described above with reference to the embodiments and modifications, the contents of the disclosure are not limited to the above embodiments, and various modifications are possible.
  • the configuration of the imaging device described in the above-described embodiment is an example, and other layers may be provided.
  • the material and thickness of each layer are also examples, and are not limited to those described above.
  • the image sensor 10 has the sensor chip 11 and the logic chip 12 (or the logic circuit unit 12R) has been described, but the image sensor 10 further includes a chip having another function. It may have, or instead of the logic chip 12, it may have a chip having another function.
  • the image sensor 10 is a back-illuminated image sensor
  • the image sensor 10 may be a front-illuminated image sensor.
  • the image pickup device 10 may be an image pickup device using an organic semiconductor.
  • the MEMS 20 may have another configuration.
  • the effect described in the above-described embodiment or the like is an example, and may be another effect, or may further include another effect.
  • the present disclosure may have the following configuration.
  • the image pickup apparatus having the following configuration, since the electric element having the floating part is provided by being laminated on the image pickup element, the image pickup part and the electric element part including the floating part are provided side by side on the same substrate.
  • the occupied area can be reduced as compared with the case. Therefore, the occupied area can be reduced.
  • An image pickup element in which a photoelectric conversion unit is provided for each pixel and has a light receiving surface and a non-light receiving surface facing the light receiving surface.
  • a support substrate provided on the non-light receiving surface side of the image pickup element and facing the image pickup element, and provided between the support substrate and the image pickup element, and arranged via a gap between the support substrate and the image pickup element.
  • An image pickup device including an electric element having a floating portion. (2) Further, it is provided around the floating portion and has a plurality of connecting portions connecting the support substrate and the image pickup device.
  • the image pickup apparatus according to (1) wherein the floating portion is provided in a hollow portion surrounded by the image pickup device, the support substrate, and the plurality of connection portions.
  • Each of the plurality of connection portions is provided with a position in the stacking direction of the electric element and the image pickup element closer to the image pickup element than the floating portion, and is electrically connected to the image pickup element.
  • the image pickup apparatus according to (2) above which includes a pad electrode of the electric element.
  • the imaging device according to any one of (2) to (4), which has a resin layer surrounding the connection portion.
  • the imaging device according to any one of (1) to (5) above, wherein the floating portion is a movable portion.
  • a drive unit that drives each of the pixels,
  • the imaging device which includes a control unit that inputs a control signal to the drive unit.
  • (8) Further, it has a detection unit that detects the displacement of the movable portion.
  • the imaging device according to (7), wherein the control unit inputs the control signal to the drive unit based on the detection signal sent from the detection unit.
  • the control unit includes an imaging determination unit.
  • the imaging device wherein the imaging determination unit inputs the control signal to the driving unit based on a detection signal sent from the detection unit.
  • the control unit includes an imaging mode switching determination unit that determines whether or not switching of the imaging mode is necessary.
  • the control unit includes an imaging mode selection unit that selects an imaging mode.
  • the imaging device according to any one of (1) to (8) above, wherein the electric element is a magnetic sensor in which the floating portion is displaced according to a magnetic field.
  • the image pickup apparatus according to (13), further comprising an image pickup direction specifying unit that specifies the direction of the light receiving surface of the image pickup element based on the direction of the magnetic field detected by the magnetic sensor.
  • the imaging device according to (13), further comprising a data storage unit that stores information on the magnetic field detected by the magnetic sensor.
  • the image pickup element is a multilayer including a first semiconductor substrate provided with the photoelectric conversion unit and wiring laminated on the first semiconductor substrate and electrically connected to the photoelectric conversion unit from the light receiving surface side.
  • the imaging device according to any one of (1) to (15), which has a wiring layer.
  • the image pickup device further includes a second semiconductor substrate that is provided between the multilayer wiring layer and the electrical element and is electrically connected to the first semiconductor substrate via the multilayer wiring layer.
  • the electric element has a plurality of the floating portions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Micromachines (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

画素毎に光電変換部が設けられるとともに受光面および前記受光面に対向する非受光面を有する撮像素子と、前記撮像素子の非受光面側に設けられるとともに前記撮像素子に対向する支持基板と、前記支持基板と前記撮像素子との間に設けられるとともに前記支持基板および前記撮像素子と間隙を介して配置された浮遊部とを有する電気素子とを備えた撮像装置。

Description

撮像装置
 本開示は、撮像素子を含む撮像装置に関する。
 カメラシステム等の撮像装置は、撮像素子とともに、加速度センサおよびジャイロセンサ等のMEMS(Micro Electro Mechanical Systems)を搭載している。これにより、手ぶれ補正等を行うことができる。
 例えば、特許文献1では、撮像素子として機能する部分と、MEMSとして機能する部分とが設けられた基板が記載されている。
特開2012-4540号公報
 このような撮像装置では、占有面積を小さくすることが望まれている。
 したがって、占有面積を小さくすることが可能な撮像装置を提供することが望ましい。
 本開示の一実施の形態に係る撮像装置は、画素毎に光電変換部が設けられるとともに受光面および受光面に対向する非受光面を有する撮像素子と、撮像素子の非受光面側に設けられるとともに撮像素子に対向する支持基板と、支持基板と撮像素子との間に設けられるとともに支持基板および撮像素子と間隙を介して配置された浮遊部とを有する電気素子とを備えたものである。
 本開示の一実施の形態に係る撮像装置では、浮遊部を有する電気素子の支持基板が撮像素子に対向して設けられている。即ち、電気素子は、撮像素子に積層されている。これにより、撮像装置の占有面積は、ほぼ、撮像素子および電気素子のどちらか一方の面積となる。
(A)は、本開示の第1の実施の形態に係る撮像装置の要部の構成を表す断面模式図であり、(B)は、図1(A)に示したMEMSの平面構成の一例を表す模式図である。 図1に示した撮像装置の機能構成の一例を表すブロック図である。 図1(A)に示した撮像素子の製造方法の一工程を表す断面模式図である。 図3Aに続く工程を表す断面模式図である。 図3Bに続く工程を表す断面模式図である。 図3Cに続く工程を表す断面模式図である。 図3Dに続く工程を表す断面模式図である。 (A)は、図1(A)に示したMEMSの製造方法の一工程を表す断面模式図であり、(B)は、図4(A)に示した工程の平面構成を表す模式図である。 (A)は、図4(A)に続く工程を表す断面模式図であり、(B)は、図5(A)に示した工程の平面構成を表す模式図である。 図3Eに続く工程を表す断面模式図である。 図6Aに続く工程を表す断面模式図である。 図6Bに続く工程を表す断面模式図である。 比較例に係る撮像装置の要部の構成を表す断面模式図である。 変形例1に係る撮像装置の要部の構成を表す断面模式図である。 変形例2に係る撮像装置の要部の構成を表す断面模式図である。 変形例3に係る撮像装置の要部の構成を表す断面模式図である。 変形例4に係る撮像装置の機能構成の一例を表すブロック図である。 図11に示した撮像装置の動作の一例を表す流れ図である。 変形例5に係る撮像装置の機能構成の一例を表すブロック図である。 図13に示した撮像装置の動作の一例を表す流れ図である。 変形例6に係る撮像装置の機能構成の一例を表すブロック図である。 図15に示した撮像装置の動作の一例を表す流れ図である。 変形例7に係る撮像装置(MEMS)の構成の一例を模式的に表す斜視図である。 図17に示したMEMSの平面構成の一例を表す模式図である。 図18に示したA-A’線に沿った断面構成を表す模式図である。 図18に示したB-B’線に沿った断面構成を表す模式図である。 図17等に示したMEMSの製造方法の一工程を表す断面模式図である。 図20Aに示した工程の他の断面構成を表す模式図である。 図20Aに続く工程を表す断面模式図である。 図21Aに示した工程の他の断面構成を表す模式図である。 図21Aに続く工程を表す断面模式図である。 図22Aに示した工程の他の断面構成を表す模式図である。 図22Aに続く工程を表す断面模式図である。 図23Aに示した工程の他の断面構成を表す模式図である。 図17に示した撮像装置の機能構成の一例を表すブロック図である。 図17に示した撮像装置の機能構成の他の例を表すブロック図である。 本開示の第2の実施の形態に係る撮像装置の要部の構成を表す断面模式図である。 図26に示した撮像素子の平面構成の一例を表す模式図である。 図26に示した赤外検出素子の平面構成の一例を表す模式図である。 図26に示した撮像装置の断面構成の他の例を表す模式図である。 図28に示した撮像素子の平面構成の一例を表す模式図である。 図28に示した赤外検出素子の平面構成の一例を表す模式図である。 体内情報取得システムの概略的な構成の一例を示すブロック図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本開示における実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.第1の実施の形態(撮像素子およびMEMSが積層された撮像装置)
2.変形例1(ロジックチップに外部接続端子が設けられた例)
3.変形例2(MEMSに外部接続端子が設けられた例)
4.変形例3(撮像素子とMEMSとの間に中継基板を設けた例)
5.変形例4(撮像判断部を有する例)
6.変形例5(撮像モード選択部を有する例)
7.変形例6(撮像モード切替判断部を有する例)
8.変形例7(MEMSが磁気センサとして機能する例)
9.第2の実施の形態(撮像素子および赤外検出素子が積層された撮像装置)
10.応用例
<第1の実施の形態>
(撮像装置1の構成)
 図1(A)(B)は、本開示の第1の実施の形態に係る固体撮像装置(撮像装置1)の要部の構成を模式的に表したものである。図1(A)は、撮像装置1の断面構成を表している。この撮像装置1は、撮像素子10およびMEMS20を有している。図1(B)は、図1(A)に示したMEMS20の平面構成の一例を表している。ここでは、MEMS20が本開示の電気素子の一具体例に対応する。
 撮像素子10は、例えば、裏面照射型CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。撮像素子10には、複数の画素50を含む画素部50Pが設けられている。撮像素子10は、センサチップ11およびロジックチップ12の積層構造を有している。センサチップ11は、半導体基板11Sと多層配線層11Wとを有している。ロジックチップ12は、多層配線層11Wを間にして半導体基板11Sに対向している。撮像素子10は、センサチップ11の受光面(後述の受光面S1)側に、カラーフィルタ41およびオンチップレンズ42を有している。半導体基板11Sは、本開示の第1半導体基板の一具体例に対応する。
 MEMS20は、微小電気機械素子、いわゆる、マイクロマシンである。例えば、MEMS20は、慣性力または振動等を検知するものであり、具体的には、ジャイロセンサおよび加速度センサ等である。MEMS20は、例えば、支持基板21、可動部22、固定部23、囲い壁24およびパッド電極25を有している。
 図2は、撮像装置1の機能構成の一例を表している。撮像装置1は、例えば、画素部50P、駆動部51および制御部52を含んでいる。画素部50Pには、例えば、複数の画素50(図1)が行列状に配列されている。この画素配列に対して、画素部50Pには、画素行毎に画素駆動線(後述の図27A等の画素駆動線L2,L3,L4等)が行方向に沿って配線され、画素列毎に垂直信号線(後述の図27A等の垂直信号線L1等)が列方向に沿って配線されている。画素駆動線は、各画素50に、駆動信号を伝送するためのものである。この駆動信号は、駆動部51から行単位で出力されるようになっている。制御部52は、この駆動部51に制御信号を入力するものである。駆動部51は、制御部52から入力される制御信号に基づいて、画素部50Pに駆動信号を伝送する。
 以下、図1(A)(B)を用いて、撮像装置1の具体的な構成について説明する。
 センサチップ11は、光電変換機能を有するチップであり、センサ回路を有している。センサチップ11は、ロジックチップ12側から順に、多層配線層11Wおよび半導体基板11Sを有している。センサチップ11の半導体基板11Sは、受光面S1、および受光面S1に対向する非受光面S2を有している。センサチップ11では、例えば、半導体基板11Sの非受光面S2側に、多層配線層11Wが設けられている。多層配線層11Wとカラーフィルタ41との間の半導体基板11Sは、例えば、シリコン(Si)基板により構成されている。半導体基板11Sには、画素50毎にPD(Photo Diode)11Pが設けられている。このPD11Pが、本開示の光電変換部の一具体例に対応する。半導体基板11Sとロジックチップ12との間の多層配線層11Wは、層間絶縁膜および複数の配線を含んでいる。層間絶縁膜は、多層配線層11Wの複数の配線の間を分離するためのものであり、例えば、酸化シリコン(SiO)等により構成されている。多層配線層11Wに設けられた複数の配線は、例えば、センサ回路を構成している。
 センサチップ11に対向して設けられたロジックチップ12は、例えば、センサチップ11のPD11Pに電気的に接続されたロジック回路12Cを有している。例えば、PD11Pは、多層配線層11Wのセンサ回路を介してロジック回路12Cに電気的に接続されている。ロジックチップ12は、例えば、半導体基板を有しており、この半導体基板のp型の半導体ウェル領域に、複数のMOS(Metal Oxide Semiconductor)トランジスタが設けられている。ロジック回路12Cは、例えば、この複数のMOSトランジスタを用いて構成されている。半導体基板は、例えば、シリコン基板により構成されている。センサチップ11の多層配線層11Wと、ロジックチップ12(ロジック回路12C)とは、電気的に接続されている。多層配線層11Wとロジックチップ12とは、例えばCu-Cu接合等の金属接合により接続されている。あるいは、貫通電極を用いて多層配線層11Wとロジックチップ12とが接続されていてもよい。ロジックチップ12の半導体基板が、本開示の第2半導体基板の一具体例に対応する。
 ロジックチップ12の、センサチップ11(多層配線層11W)との接合面と反対側の面(以下、ロジックチップ12の裏面という)には、再配線層13およびマイクロバンプ14が設けられている。再配線層13は、ロジックチップ12のロジック回路12Cとマイクロバンプ14とを接続するためのものである。マイクロバンプ14は、再配線層13とMEMS20(具体的には、パッド電極25)とを電気的に接続するためのものである。即ち、撮像素子10は、マイクロバンプ14および再配線層13を介してMEMS20に電気的に接続されている。
 半導体基板11Sの受光面S1上には、カラーフィルタ41およびオンチップレンズ42がこの順に設けられている。カラーフィルタ41は、例えば赤色(R)フィルタ、緑色(G)フィルタ、青色(B)フィルタおよび白色フィルタ(W)のいずれかであり、例えば画素50毎に設けられている。これらのカラーフィルタ41は、規則的な色配列(例えばベイヤー配列)で設けられている。このようなカラーフィルタ41を設けることにより、撮像素子10では、その色配列に対応したカラーの受光データが得られる。
 カラーフィルタ41上のオンチップレンズ42は、画素50毎に、センサチップ11のPD11Pに対向する位置に設けられている。このオンチップレンズ42に入射した光は、画素50毎にPD11Pに集光されるようになっている。このオンチップレンズ42のレンズ系は、画素のサイズに応じた値に設定されている。オンチップレンズ42のレンズ材料としては、例えば有機材料やシリコン酸化膜(SiO)等が挙げられる。
 本実施の形態では、このような撮像素子10に対向してMEMS20が設けられている。即ち、撮像装置1では、撮像素子10およびMEMS20が積層して設けられている。詳細は後述するが、これにより、同一基板上に撮像素子およびMEMSを並べて設ける場合(後述の図7の撮像装置100)に比べて、占有面積を小さくすることができる。
 MEMS20は、ロジックチップ12を間にしてセンサチップ11に対向している。換言すれば、MEMS20は、撮像素子10の非受光面S2側に設けられている。MEMS20の支持基板21は、ロジックチップ12(撮像素子10)に対向している。この支持基板21とロジックチップ12との間に可動部22が設けられている。ここでは、可動部22が、本開示の浮遊部の一具体例に対応する。可動部22と支持基板21との間に固定部23が設けられており、可動部22の一部が固定部23により支持基板21に固定されている。平面(図1(B)のXY平面)視で、可動部22の周囲には、複数の接続部20Cが設けられている。この複数の接続部20Cは各々、撮像素子10およびMEMS20の積層方向(図1(A)のZ方向)で、支持基板21とマイクロバンプ14(撮像素子10)とを接続している。接続部20Cは、例えば支持基板21側から順に、囲い壁24およびパッド電極25を含んでいる。MEMS20の周囲には樹脂層31が設けられている。
 支持基板21の基板面積は、例えば、撮像素子10のセンサチップ11およびロジックチップ12のチップ面積よりも小さくなっている。例えば、平面視で撮像素子10の中央部に対応する位置に、支持基板21が配置されている。この支持基板21は、例えば、シリコン(Si)基板等により構成されている。支持基板21には、MEMS回路(図示せず)が設けられている。
 支持基板21と撮像素子10(ロジックチップ12)との間には、中空部Hが設けられている。この中空部Hは、支持基板21、撮像素子10および接続部20Cで囲まれた空間である。ここでは、この支持基板21と撮像素子10との間の中空部Hに、可動部22が設けられている。即ち、可動部22の一方は、撮像素子10に封止されているので、MEMS20をパッケージするための部材を別に設ける必要がない。これにより、コストを下げることが可能となる。
 可動部22は、中空部Hに、支持基板21、撮像素子10(ロジックチップ12)各々と間隙を介して配置されている。中空部Hには、例えば、所定の方向(例えば、図1(A)(B)のX軸方向)に延在する可動部22が複数設けられている。例えば、この直線状に延びる可動部22の一端または他端が固定部23により支持基板21に固定されている。図1(B)には、4つの可動部22を図示しており、このうちの2つの可動部22は、その一端が、固定部23により支持基板21に固定されている。他の2つの可動部は、その他端が、固定部23により支持基板21に固定されている。この可動部22は、例えば、撮像装置1が受ける慣性力または振動等に応じて変位するようになっている。可動部22は、例えば、アルミニウム等の金属により構成されている。可動部22は、ポリシリコン等により構成されていてもよく、あるいは、支持基板21を加工して可動部22を形成するようにしてもよい。可動部22と支持基板21との間に設けられた固定部23は、例えば、酸化シリコン(SiO)等により構成されている。
 囲い壁24は、可動部22の一端および他端から離間して設けられ、支持基板21の周縁近傍に配置されている。この囲い壁24は、例えば、平面視で可動部22を囲むように枠状に連続して設けられている。囲い壁24の高さ(図1(A)のZ軸方向の大きさ)は、固定部23の高さよりも十分に大きくなっている。これにより、Z軸方向において、囲い壁24上のパッド電極25が、可動部22よりも撮像素子10に近い位置に配置される。囲い壁24は、例えば、酸化シリコン(SiO)等により構成されている。囲い壁24の下面(支持基板21側の面)は、支持基板21に接している。
 囲い壁24の上面には、複数のパッド電極25が互いに離間して設けられている。パッド電極25は、例えば、囲い壁24と同様に、支持基板21の周縁近傍に対向する位置に配置されており、複数のパッド電極25の互いの間隔は略均等であることが好ましい。複数のパッド電極25の間隔を略均等にすることにより、可動部22の周囲に、パッド電極25および囲い壁24を含む接続部20Cが、略均等の間隔で複数形成される。これにより、MEMS20を囲む樹脂層31が、中空部Hに浸入しにくくなる。例えば、四角形状の支持基板21の角部および辺に対応する位置に、複数のパッド電極25が配置されている。複数のパッド電極25の一部は、電極として機能しないダミー電極であってもよい。このダミー電極は、例えば、可動部22の周囲に均等な感覚で接続部20Cを形成するために用いられる。
 この複数のパッド電極25各々の上面(撮像素子10側の面)は、マイクロバンプ14および再配線層13を介してロジックチップ12に接続されている。複数のパッド電極25の下面は、例えば、囲い壁24内部の配線およびビア等を介してMEMS回路(図示せず)に接続されている。Z軸方向において、パッド電極25の上面は、可動部22の上面よりも撮像素子10に近い位置に配置されている。これにより、撮像素子10(ロジックチップ12)と可動部22との間に間隙が形成されている。
 このようなMEMS20の周囲に、具体的には支持基板21および接続部20Cを囲むように樹脂層31が設けられている。樹脂層31は、MEMS20を撮像素子10に封止するためのものであり、平面視で、MEMS20から拡幅した部分の撮像素子10に重なる領域に設けられている。樹脂層31の厚み(図1(B)のZ方向の大きさ)は、MEMS20の厚みと略同じである。樹脂層31は、複数の接続部20Cで囲まれた領域(中空部H)の外側に設けられている。
 撮像装置1は、例えば、外部接続端子10Tを介して、外部との間で信号の出入力がなされるようになっている、外部接続端子10Tは、例えば、ロジックチップ12のうち、センサチップ11との接合面近傍に設けられている。センサチップ11のうち、画素部50Pの外側には、この外部接続端子10Tに達する接続孔Vが設けられている。
(撮像装置1の製造方法)
 このような撮像装置1は、例えば以下のようにして製造することができる(図3A~図6C)。
 まず、センサチップ11を形成した後、半導体基板11Sの受光面S1上にカラーフィルタ41およびオンチップレンズ42を形成する。
 次いで、図3Aに示したように、このセンサチップ11の多層配線層11Wをロジック基板12mに接合する。ロジック基板12mは、ロジック回路12Cを含んでおり、後の工程で、このロジック基板12mによりロジックチップ12が形成される。
 センサチップ11をロジック基板12mに接合した後、図3Bに示したように、充填層43を用いて、ロジック基板12mに仮基板44を貼り合わせる。仮基板44は、カラーフィルタ41およびオンチップレンズ42を間にしてロジック基板12mに対向するように配置する。充填層43は、例えば、樹脂材料等を用いて形成する。
 続いて、図3Cに示したように、ロジック基板12mを一方の面側から研磨して、ロジックチップ12を形成する。例えば、ロジック基板12mの、センサチップ11との接合面と反対側の面を、例えば、グラインダ等により研磨する。これにより、ロジック基板12mが薄肉化され、ロジックチップ12が形成される。
 ロジックチップ12を形成した後、図3D,図3Eに示したように、ロジックチップ12の裏面に、再配線層13およびマイクロバンプ14をこの順に形成する。再配線層13は、例えば、ロジックチップ12の裏面からロジックチップ12内部への接続孔を介して、ロジックチップ12内の配線に接続するように形成する。マイクロバンプ14は、再配線層13上に形成する。これにより、撮像素子10が形成される。
 次に、図4,図5を用いて、撮像素子10に積層するMEMS20の製造方法について説明する。図4(A),図5(A)は、MEMS20を製造する各工程を表す断面図であり、図4(B),図5(B)は、図4(A),図5(A)に示した工程に対応する平面図である。図4(A),図5(A)は図4(B),図5(B)に示したA-A’線に沿った断面構成を表している。
 まず、図4(A),図4(B)に示したように、例えばシリコン(Si)基板からなる支持基板21上に、絶縁膜26、金属膜22Mおよびパッド電極25を形成する。絶縁膜26は、例えば、支持基板21の全面にわたって形成する。この絶縁膜26は、支持基板21と金属膜22Mとの間に形成するとともに、金属膜22Mを覆うように形成する。金属膜22Mは、絶縁膜26上の選択的な領域に形成する。金属膜22Mは、例えば、支持基板21の中央部に形成する。後のパターニング工程により、金属膜22Mにより可動部22が形成される。可動部22は、支持基板21の一部により形成するようにしてもよい。パッド電極25は、金属膜22Mを覆う絶縁膜26上に形成する。パッド電極25は、例えば、支持基板21の角部および辺に沿うように、金属膜22Mが形成された領域よりも外側に形成する。
 パッド電極25を形成した後、図5(A),図5(B)に示したように、金属膜22Mをパターニングして可動部22を形成するとともに、不要な部分の絶縁膜26を除去する。金属膜22Mのパターニングには、例えばリソグラフィ技術を用いる。不要な部分の絶縁膜26を除去することにより、可動部22と支持基板21との間の固定部23と、可動部22の周囲の囲い壁24とが形成される。このようにして、支持基板21上に、可動部22および可動部22を囲む接続部20Cを形成した後、支持基板21の個片化を行う(図示せず)。これにより、MEMS20が形成される。
 撮像素子10およびMEMS20を形成した後、図6Aに示したように、撮像素子10にMEMS20を積層させる。このとき、撮像素子10のマイクロバンプ14に、MEMS20のパッド電極25を接続する。
 次いで、図6Bに示したように、MEMS20(囲い壁24)の外側に樹脂層31を形成する。これにより、MEMS20の可動部22が、撮像素子10に封止され、撮像素子10と支持基板21との間に中空部Hが形成される。
 樹脂層31を形成した後、図6Cに示したように、所望の厚みまで樹脂層31および支持基板21を研磨する。例えば、CMP(Chemical Mechanical Polishing)技術等を用いて樹脂層31および支持基板21を研磨する。最後に、充填層43および仮基板44を剥離する。例えば、このようにして撮像装置1を製造することができる。
(撮像装置1の動作)
 このような撮像装置1では、例えば次のようにして信号電荷(例えば、電子)が取得される。光が、オンチップレンズ42およびカラーフィルタ41等を通過してセンサチップ11に入射すると、この光は各画素のPD11Pで検出(吸収)され、赤,緑または青の色光が光電変換される。PD11Pで発生した電子-正孔対のうち、信号電荷(例えば、電子)が、撮像信号に変換され、ロジックチップ12のロジック回路12Cで処理される。一方、MEMS20の可動部22の変位に応じた信号は、例えば、信号処理部(後述の図24等の信号処理部62)に入力される。
(撮像装置1の作用・効果)
 本実施の形態では、可動部22を有するMEMS20の支持基板21が撮像素子10に対向して設けられている。即ち、MEMS20は、撮像素子10に積層されている。これにより、同一基板上に撮像部および可動部を並べて設ける場合に比べて、占有面積を小さくすることができる。以下、比較例を用いて、この作用効果について説明する。
 図7は、比較例に係る撮像装置(撮像装置100)の要部の模式的な断面構成を表している。この撮像装置100は、1つの基板(基板100S)に、撮像部110およびMEMS部120を有している。撮像部110には、画素毎にPD(例えば、図1のPD11P)が設けられており、MEMS部120には、可動部(例えば、図1の可動部22)が設けられている。即ち、撮像装置100では、同一基板(基板100S)上に、撮像部110およびMEMS部120が並んで配置されている。
 このような撮像装置100では、その占有面積、いわゆるチップ面積は、撮像部110の面積と、MEMS部120の面積との和となる。したがって、チップ面積を小さくすることが困難である。また、撮像装置100は、撮像部110とMEMS部120とで基板100Sを共有しているので、製造工程での制限を受けやすく、設計の自由度が低くなりやすい。例えば、撮像装置100のMEMS部120には、シリコン(Si)からなる可動部を形成することは困難である。つまり、撮像装置100には、バルクマイクロマシンを搭載することは困難である。
 これに対し、撮像装置1では、撮像素子10にMEMS20が積層されているので、その占有面積(チップ面積)は、撮像素子10およびMEMS20のどちらか一方の面積となる。例えば、撮像素子10の占有面積が、MEMS20の占有面積よりも大きいとき、撮像装置1の占有面積は、ほぼ、撮像素子10の占有面積に等しくなる。よって、撮像装置1では、撮像装置100に比べて、チップ面積を小さくしやすい。
 また、撮像装置1の製造工程では、撮像素子10、MEMS20各々を形成した後、これらを積層することが可能である。したがって、撮像装置100に比べて、MEMS20をより自由に設計することができる。例えば、MEMS20の可動部22を、支持基板21の3次元加工により形成することも可能である。
 以上のように、本実施の形態では、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、同一基板(基板100S)上に撮像部110およびMEMS部120を並べて設ける場合に比べて、占有面積を小さくすることができる。よって、占有面積を小さくすることが可能となる。
 また、撮像素子10、MEMS20は各々形成した後、積層することが可能である。したがって、製造工程の制限が少なくなり、MEMS20をより自由に設計することができる。
 更に、撮像素子10と支持基板21との間の中空部Hに、可動部22が設けられているので、MEMS20をパッケージするための部材を、別に設ける必要がない。したがって、コストを下げることが可能となる。
 また、パッド電極25が、ダミー電極を含むことにより、接続部20Cの数を増やすことができる。これにより、中空部Hに樹脂層31が浸入するのを抑えやすくなる。
 また、撮像素子10およびMEMS20が一体化されているので、撮像素子10の回転方向および移動方向等と、MEMS20の回転方向および移動方向等とが一致する。例えば、撮像機能を有するチップと、MEMS機能を有するチップとを配線基板により接続する場合には、これらの回転方向および移動方向等がずれるおそれがある。したがって、MEMS20が、例えば、加速度センサまたはジャイロセンサ等であるとき、撮像装置1では、より精度の高い手ぶれ補正を行うことが可能となる。
 また、撮像装置1では、撮像素子10およびMEMS20が、マイクロバンプ14およびパッド電極25により電気的に接続されている。したがって、撮像機能を有するチップおよびMEMS機能を有するチップを電気的に接続するための、配線基板等は不要となり、実装面積を小さくすることができる。更に、配線基板等に起因するコストを抑えることが可能となる。
 以下、上記実施の形態の変形例および他の実施の形態について説明するが、以降の説明において上記実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。
<変形例1>
 図8は、上記第1の実施の形態の変形例1に係る撮像装置(撮像装置1A)の要部の模式的な断面構成を表したものである。この撮像装置1Aでは、外部接続端子10Tがロジックチップ12の裏面上に設けられている。この点を除き、変形例1に係る撮像装置1Aは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図8は、撮像装置1を表す図1(A)に対応する。
 ロジックチップ12の裏面に設けられた外部接続端子10Tは、例えば、接続ビアを介してロジックチップ12内の配線に電気的に接続されている。この外部接続端子10Tは、平面視でMEMS20と重ならない領域に設けられており、樹脂層31は、平面視で外部接続端子10Tよりも内側に設けられている。
 このような外部接続端子10Tは、例えば、マイクロバンプ14の形成工程と同じ工程で形成することができる(図3E参照)。また、外部接続端子10Tを覆う樹脂層31は、支持基板21および樹脂層31を研磨する工程(図6C参照)で除去するようにすればよい。このようにロジックチップ12の裏面上の外部接続端子10Tは、簡便に形成することができる。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、占有面積を小さくすることができる。また、ロジックチップ12の裏面上に外部接続端子10Tを設けるようにしたので、ロジックチップ12への電源供給等が容易となる。
<変形例2>
 図9は、上記第1の実施の形態の変形例2に係る撮像装置(撮像装置1B)の要部の模式的な断面構成を表したものである。この撮像装置1Bは、外部接続端子10Tが、MEMS20の支持基板21に設けられている。この点を除き、変形例2に係る撮像装置1Bは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図9は、撮像装置1を表す図1(A)に対応する。
 撮像装置1Bでは、支持基板21の一方の面(撮像素子10側の面と反対側の面)上に外部接続端子10Tが設けられている。この外部接続端子10Tは、例えば、MEMS20に設けられた接続電極27およびパッド電極25を介して撮像素子10に電気的に接続されている。接続電極27は、例えば、囲い壁24に設けられている。接続電極27の一方の面は、囲い壁24に設けられたビアを介してパッド電極25に接続されており、接続電極27の他方の面は、囲い壁24および支持基板21に設けられたビアを介して外部接続端子10Tに接続されている。接続電極27は、例えば、可動部22と同層に設けられている。接続電極27に電気的に接続されたパッド電極25は、マイクロバンプ14および再配線層13を介してロジックチップ12内の配線に電気的に接続されている。
 撮像装置1Bの製造工程では、まず、可動部22の形成工程と同一工程で、接続電極27を形成する。そして、支持基板21および樹脂層31を研磨する工程(図6C参照)の後、支持基板21の一方の面から接続電極27に達するビアを形成する。この後、支持基板21の一方の面上に外部接続端子10Tを形成する。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、占有面積を小さくすることができる。
<変形例3>
 図10は、上記第1の実施の形態の変形例3に係る撮像装置(撮像装置1C)の要部の模式的な断面構成を表したものである。この撮像装置1Cは、撮像素子10とMEMS20との間に中継基板45を有している。この点を除き、変形例3に係る撮像装置1Cは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図10は、撮像装置1を表す図1(A)に対応する。
 中継基板45は、例えばシリコン(Si)インターポーザー基板により構成されている。この撮像装置1Cでは、中継基板45を介して、撮像素子10とMEMS20とが電気的に接続されている。具体的には、ロジックチップ12の裏面に設けられたマイクロバンプ14と、パッド電極25上に設けられたマイクロバンプ28とが中継基板45を介して電気的に接続されている。マイクロバンプ14は、ロジックチップ12内の配線に電気的に接続されており、マイクロバンプ28は、パッド電極25に電気的に接続されている。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、占有面積を小さくすることができる。また、中継基板45を介して、撮像素子10とMEMS20とを電気的に接続しているので、撮像素子10のマイクロバンプ14と、MEMS20側のパッド電極25との精確な位置合わせが不要となる。したがって、撮像装置1Cでは、撮像素子10およびMEMS20を、より自由に配置することが可能となる。
<変形例4>
 図11は、上記第1の実施の形態の変形例4に係る撮像装置(撮像装置1D)の機能構成を表したものである。この撮像装置1Dは、制御部52が撮像判断部52Aを含んでいる。この点を除き、変形例4に係る撮像装置1Dは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図11は、撮像装置1を表す図2に対応する。
 撮像装置1Dは、例えば、監視用途に用いられるものであり、撮像装置1Dが振動(可動部22の変位)により異常を検知したときに、映像取得がなされるようになっている。撮像装置1Dは、可動部22の変位を検知する検知部61を有している。検知部61は、可動部22の変位に基づく検知信号を撮像判断部52Aに送るようになっている。撮像判断部52Aでは、検知部61から送られる検知信号により、映像取得を行うか否かの判断が行われる。撮像判断部52Aが映像取得を行うと判断したとき、制御部52から駆動部51に制御信号が送られる。駆動部51は、制御信号に基づいて、画素部50Pの各画素50に駆動信号を入力する。
 図12は、撮像装置1Dの動作の一例を表している。
 まず、検知部61を起動する(ステップS101)。これにより、検知部61により、可動部22の変位が監視される。次に、検知部61は、可動部22の変位があったかどうかを判断する(ステップS102)。検知部61が、可動部22の変位を検知したとき、この変位に基づく検知信号が撮像判断部52Aに入力される。
 撮像判断部52Aは、検知部61から入力された信号により、撮像するかどうかを判断する(ステップS103)。例えば、検知部61が、所定の大きさ以上の変位を検知したとき、撮像判断部52Aは撮像を行うことを決定する。撮像判断部52Aが撮像を行わないことを決定したとき、ステップS101に戻る。
 撮像判断部52Aが撮像を行うことを決定したとき、制御部52から駆動部51に制御信号が入力され、駆動部51は、この制御信号に基づいて画素部50Pの各画素50に駆動信号を入力する(ステップS104)。これにより、撮像がなされて(ステップS105)、映像が取得される。映像取得後、監視者は、撮像装置1Dによる監視を行うかどうかを判断する。引き続き、監視を行うとき、ステップS101に戻る。映像取得後、監視を中止するとき、撮像装置1Dの動作が終了する。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、占有面積を小さくすることができる。また、可動部22の変位と、撮像素子10の撮像動作とを連動させるようにしたので、撮像装置1Dは、監視用途に好適に用いることができる。更に、制御部52が、撮像判断部52Aを含んでいるので、検知部61が異常を検知したときのみ、撮像素子10に撮像動作を行わせることが可能となる。したがって、撮像装置1Dでは、常時撮像素子10に撮像動作を行わせる場合に比べて、消費電力を抑えることが可能となる。
<変形例5>
 図13は、上記第1の実施の形態の変形例5に係る撮像装置(撮像装置1E)の機能構成を表したものである。この撮像装置1Eは、制御部52が撮像判断部52Aおよび撮像モード選択部52Bを含んでいる。この点を除き、変形例5に係る撮像装置1Eは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図13は、撮像装置1を表す図2に対応する。
 撮像装置1Eは、上記撮像装置1Dと同様に、例えば、監視用途に用いられるものであり、可動部22の変位を検知する検知部61を有している。検知部61は、可動部22の変位に基づく検知信号を撮像判断部52Aに送るようになっている。撮像判断部52Aでは、検知部61から送られる検知信号により、映像取得を行うか否かの判断が行われる。撮像判断部52Aが映像取得を行うと判断したとき、撮像判断部52Aから撮像モード選択部52Bに信号が送られる。この信号、あるいは外部から入力された情報に基づいて、撮像モード選択部52Bは、状況に応じた最適な撮像モードを選択する。撮像モード選択部52Bでは、例えば、フレームレート、画素数およびピッチ数等が選択可能になっている。即ち、撮像モード選択部52Bでは、高フレームレート化、多画素化および高ピッチ数化を行うことができる。撮像モード選択部52Bで選択された撮像モードの情報に基づいて、制御部52は駆動部51に制御信号を送る。駆動部51は、制御信号に基づいて、画素部50Pの各画素50に駆動信号を入力する。
 図14は、撮像装置1Eの動作の一例を表している。
 まず、検知部61を起動する(ステップS101)。これにより、検知部61により、可動部22の変位が監視される。次に、検知部61は、可動部22の変位があったかどうかを判断する(ステップS102)。検知部61が、可動部22の変位を検知したとき、この変位に基づく検知信号が撮像判断部52Aに入力される。
 撮像判断部52Aは、検知部61から入力された信号により、撮像するかどうかを判断する(ステップS103)。例えば、検知部61が、所定の大きさ以上の変位を検知したとき、撮像判断部52Aは撮像を行うことを決定する。撮像判断部52Aが撮像を行わないことを決定したとき、ステップS101に戻る。
 撮像判断部52Aが撮像を行うことを決定したとき、撮像判断部52Aから撮像モード選択部52Bに信号が入力され、撮像モード選択部52Bは、状況に応じた最適な撮像モードを選択する(ステップS107)。この撮像モード選択部52Bの情報に基づいて、制御部52は駆動部51に制御信号を入力し、駆動部51は、この制御信号に基づいて画素部50Pの各画素50に駆動信号を入力する(ステップS104)。これにより、撮像がなされて(ステップS105)、映像が取得される。映像取得後、監視者は、撮像装置1Eによる監視を行うかどうかを判断する。引き続き、監視を行うとき、ステップS101に戻る。映像取得後、監視を中止するとき、撮像装置1Eの動作が終了する。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、占有面積を小さくすることができる。また、可動部22の変位と、撮像素子10の撮像動作とを連動させるようにしたので、撮像装置1Dは、監視用用途に好適に用いることができる。更に、制御部52が、撮像判断部52Aを含んでいるので、検知部61が異常を検知したときのみ、撮像素子10に撮像動作を行わせることが可能となる。したがって、撮像装置1Dでは、常時撮像素子10に撮像動作を行わせる場合に比べて、消費電力を抑えることが可能となる。加えて、制御部52が、撮像モード選択部52Bを含んでいるので、状況に応じた最適な撮像モードを用いて、映像を取得することができる。
<変形例6>
 図15は、上記第1の実施の形態の変形例6に係る撮像装置(撮像装置1F)の機能構成を表したものである。この撮像装置1Fは、制御部52が撮像モード切替判断部52Cを含んでいる。この点を除き、変形例6に係る撮像装置1Fは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図15は、撮像装置1を表す図2に対応する。
 撮像装置1Fは、上記撮像装置1Dと同様に、例えば、監視用途に用いられるものであり、可動部22の変位を検知する検知部61を有している。検知部61は、可動部22の変位に基づく検知信号を撮像モード切替判断部52Cに送るようになっている。撮像モード切替判断部52Cでは、検知部61から送られる検知信号により、撮像モードの切替が必要か否かの判断が行われる。例えば、撮像モード切替判断部52Cは、動画撮影モードから静止画撮影モードの切替が必要か否かを判断する。撮像モード切替判断部52Cが撮像モードの切替を行うと判断したとき、制御部52からの制御信号に基づいて、駆動部51は、画素部50Pの各画素50に送る駆動信号を変更する。
 図16は、撮像装置1Fの動作の一例を表している。
 まず、画素部60Pおよび検知部61を起動する(ステップS201)。これにより、例えば、撮像素子10が動画モードでの映像取得を開始するとともに、検知部61により、可動部22の変位が監視される。次に、検知部61は、可動部22の変位があったかどうかを判断する(ステップS202)。検知部61が可動部22の変位を検知したとき、検知部61は、更に、この変位の大きさが、所定の大きさ以上のものであったかどうかを判断する(ステップS203)。可動部22の変位が所定の大きさ以上のものであったとき、この変位に基づく検知信号が撮像モード切替判断部52Cに入力される。撮像モード切替判断部52Cは、この検知部61の検知信号に基づいて、撮像モードを動画撮影モードから静止画撮影モードに切り替えることを決定する。
 撮像モード切替判断部52Cが撮像モードの切替を行うことを決定したとき、駆動部51は、制御部52からの制御信号に基づいて画素部50Pの各画素50に送る駆動信号を変更する。これにより、動画撮影モードから静止画撮影モードへの切り替えがなされ(ステップS204)、静止画像が取得される(ステップS205)。この静止画像は、例えば、高い解像度を有し、かつ、高スキャン速度で取得される。静止画像取得後、監視者は、撮像装置1Fによる監視を行うかどうかを判断する。引き続き、監視を行うとき、ステップS201に戻る。映像取得後、監視を中止するとき、撮像装置1Fの動作が終了する。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20を設けるようにしたので、占有面積を小さくすることができる。また、可動部22の変位と、撮像素子10の撮像動作とを連動させるようにしたので、撮像装置1Fは、監視用用途に好適に用いることができる。更に、制御部52が、撮像モード切替判断部52Cを含んでいるので、可動部22が所定の大きさ以上の変位をしたときのみ、撮像素子10に高解像度、かつ、高スキャン速度での静止画撮像動作を行わせることが可能となる。したがって、撮像装置1Fでは、常時撮像素子10に動画撮像動作を行わせる場合に比べて、異常発生時に、振動の影響を抑えた高画質の映像を取得することが可能となる。
<変形例7>
 図17は、上記第1の実施の形態の変形例7に係る撮像装置(撮像装置1G)のMEMS(MEMS20G)の構成の一例を表したものである。この撮像装置1Gは、磁気センサとして機能するMEMS20Gを有している。即ち、このMEMS20Gでは、磁場に応じて可動部22が変位する。この点を除き、変形例7に係る撮像装置1Gは、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。
 図18は、図17に示したMEMS20Gの平面構成を模式的に表したものであり。図19A,図19Bは、MEMS20Gの断面構成を模式的に表したものである。図19Aは、図18に示したA-A’線に沿った断面構成を表し、図19Bは、図18に示したB-B’線に沿った断面構成を表す。MEMS20Gは、磁界(磁場)の大きさおよび方向に応じて、可動部22が変位するようになっている。MEMS20Gは、例えば、支持基板21、可動部22、固定部23、囲い壁24およびパッド電極25に加えて、電極29A,29B,29C,29Dを有している(図17,図18)。囲い壁24は、例えば、パッド電極25側の第1囲い壁24Aと、第1囲い壁24Aと支持基板21との間の第2囲い壁24Bとの積層構造を有している。MEMS20Gは、例えば、容量式ローレンツ力磁気センサである。
 可動部22は、例えば、2つの横方向延在部分22Hと、1つの縦方向延在部分22Vとを含んでいる。2つの横方向延在部分22Hは、略平行に設けられ、X軸方向に直線状に延在している。縦方向延在部分22Vは、2つの横方向延在部分22Hの中央部を繋ぐように設けられ、Y軸方向に直線状に延在している。例えば、2つの横方向延在部分22H各々の延在方向の両端部が、固定部23により支持基板21に固定されている。可動部22は、例えば、シリコン(Si)等により構成されている。
 電極29A,29B,29C,29Dは、横方向延在部分22Hと略平行に延在する直線状の電極である。電極29A,29Bは、一方の横方向延在部分22H近傍に配置され、電極29C,29Dは、他方の横方向延在部分22H近傍に配置されている。電極29A,29Cは、平面視で、横方向延在部分22Hに重ならない位置に配置されており、電極29Aと電極29Cとは、2つの横方向延在部分22Hおよび縦方向延在部分22Vを間にして対向している。電極29A,29Cの厚みは、電極29B,29Dの厚みよりも大きくなっており、厚み方向(Z軸方向)では、電極29A,29Cの上面(支持基板21側の面と反対の面)は、可動部22の上面と、略同じ位置に配置されている。電極29B,29Dは、例えば、平面視で横方向延在部分22Hに重なる位置に配置されている(図17)。電極29B,29Dの延在方向(X軸方向)の大きさは、横方向延在部分22Hの大きさよりも小さくなっており、電極29B,29Dは、横方向延在部分22Hと支持基板21との間に配置されている。電極29A,29B,29C,29Dは、例えば、シリコン(Si)等により構成されている。
 電極29A,29B,29C,29D各々と、支持基板21との間には、絶縁膜23Iが設けられている。絶縁膜23Iは、例えば酸化シリコン(SiO)等により構成されている。
 囲い壁24は、例えば、支持基板21側から順に、第2囲い壁24Bおよび第1囲い壁24Aを含んでいる。第1囲い壁24Aは、例えば、可動部22の構成材料と同じ材料により構成されている。第2囲い壁24Bは、例えば、固定部23の構成材料と同じ材料により構成されている。
 このようなMEMS20Gの製造方法の一例について、図20A~図23Bを用いて説明する。図20A,図21A,図22Aは、図18のA-A’線に沿った断面に対応する部分の製造工程を表し、図20B,図21B,図22Bは、図18のB-B’線に沿った断面に対応する部分の製造工程を表す。
 まず、図20A,20Bに示したように、支持基板21上に、絶縁膜23Mおよび電極29A,29B,29C,29Dをこの順に形成する(電極29C,29Dは図示せず。以下、図21A~図23Bについても同様)。このとき、電極29A,29Cの厚みを電極29B,29Dの厚みよりも大きくする。
 次いで、図21A,21Bに示したように、電極29B,29Dを覆うように、絶縁膜23Mを成膜する。続いて、図22A,22Bに示したように、可動部22および第1囲い壁24Aを形成する。可動部22および第1囲い壁24Aは、同一工程で形成するようにしてもよい。
 この後、図23A,23Bに示したように、第1囲い壁24A上に、パッド電極25を形成する。パッド電極25を形成した後、絶縁膜23Mの異方性エッチングおよび等方性エッチングをこの順に行う。これにより、絶縁膜23Mの不要な部分が除去され、固定部23、第2囲い壁23Bおよび絶縁膜23Iが形成される。例えば、このようにしてMEMS20Gを形成することができる。
 図24は、撮像装置1Gの機能構成の一例を表している。撮像装置1Gは、例えば、検知部61から送られた信号を処理する、信号処理部62を有している。この信号処理部62は、例えば、撮像方向特定部62Aを含んでいてもよい。撮像方向特定部62Aは、例えば、検知部61で検知された可動部22の変位の方向により、受光面(図1等の受光面S1)の方向を特定する。詳細は後述するが、撮像装置1Gが、このような撮像方向特定部62Aを有することにより、撮像装置1Gが、静止状態等にあるときにも、撮像装置1Gの撮影方向を容易に特定することができる。
 図25は、撮像装置1Gの機能構成の他の例を表している。信号処理部62は、データ蓄積部62Bを含んでいてもよい。データ蓄積部62Bには、例えば、検知部61を介して、可動部22の変位の情報、即ち、磁場の大きさおよび磁場の方向に関する情報が所定の時間毎に蓄積されるようになっている。これにより、撮像装置1Gでは、磁場の時間変化を特定することが可能となる。
 本変形例も、撮像素子10に積層して、可動部22を有するMEMS20Gを設けるようにしたので、占有面積を小さくすることができる。また、撮像素子10に、磁気センサとして機能するMEMS20Gを積層しているので、撮像装置1Gが静止状態であっても、撮影場所および受光面(図1等の受光面S1)の方向を容易に特定することが可能となる。以下、この作用効果について説明する。
 例えば、撮像装置の撮影場所および受光面の方向を特定する方法としては、全地球測位システム(GPS:Global Positioning System)を用いることが考え得る。しかし、GPSでは、撮像装置が移動状態にあるとき、撮影場所および受光面の方向を特定することが可能であるものの、撮像装置が静止状態にあるとき、撮影場所および受光面の方向を特定することができない。また、撮像装置が、GPS信号を受信できない場所にあるときも、撮影場所および受光面の方向を特定することができない。一方、撮像装置に、ジャイロ、加速度センサおよび地磁気センサ等の複数のセンサを搭載することにより、GPSを用いた測位情報が利用できない場合であっても、撮影場所および受光面の方向を特定することが可能になる。しかし、この場合には、複数のセンサを要するため、撮像装置の小型化が困難となる。また、撮像素子と地磁気センサとが、配線基板等により接続されている場合には、撮像素子の方向と地磁気センサの方向とがずれる可能性がある。したがって、地磁気センサから得られた情報を、直接、受光面の方向の特定に用いることが困難である。
 これに対し、撮像装置1Gでは、撮像素子10に、磁気センサとして機能するMEMS20Gが積層されているので、MEMS20Gにより地磁気の情報が取得される。したがって、GPSを用いた測位情報が利用できない場合であっても、撮像装置1Gの撮影場所および受光面の方向を特定することができる。例えば、撮像装置1Gが、撮像方向特定部62Aを有することにより、撮影者は、容易に撮影方向を特定することができる。この撮影方向の特定は、例えば、以下のように利用することもできる。WEBで公開されている地図情報には、撮影画像が付加されているものがある。ユーザは、位置情報とともに撮影方向を特定して撮影画像を投稿することも可能である。この撮影方向は、例えば、WEB上に矢印(→)記号で指定される。撮像装置1Gを用いることにより、自動的に、WEB上に撮影方向を付加することが可能となる。
 また、撮像装置1Gでは、撮影者が撮像装置1Gを視認できない状態のときにも、容易に撮影方向を特定することができる。例えば、撮像装置1Gは、内視鏡等にも好適に適用することができる。撮影者が、撮像装置1Gを視認できない状態のときにも、外部から磁力を加え、この磁力をMEMS20G(検知部61)が検知することにより、撮影方向(撮像装置1Gの受光面の方向)が特定される。
 また、撮像装置1Gは、磁気センサとして機能するMEMS20Gを含んでいるので、複数のセンサを搭載することなく、撮影場所および受光面の方向を特定することができる。よって、撮像装置1Gでは、小型化が可能となる。
 更に、撮像装置1Gが、データ蓄積部62Bを含むことにより、地磁気の時間変化を測定することが可能となる。例えば、撮像装置1Gを、高齢者の見守りまたは子供の防犯を目的としたウェアラブルカメラ(携帯型カメラ)に好適に適用することができる。この場合には、仮に、撮影に十分な照度が確保できない状況にあるときにもMEMS20Gにより地磁気方位の時間推移が特定できるので、ウェアラブルカメラの携帯者の行動が推定しやすくなる。
<第2の実施の形態>
 図26は、本開示の第2の実施の形態に係る撮像装置(撮像装置2)の要部の模式的な断面構成を表したものである。この撮像装置2では、撮像素子10に赤外検出素子70が積層されている。ここでは、赤外検出素子70が、本開示の電子素子の一具体例に対応する。この点を除き、第2の実施の形態に係る撮像装置2は、上記第1の実施の形態の撮像装置1と同様の構成を有し、その作用および効果も同様である。図26は、撮像装置1を表す図1(A)に対応する。
 撮像素子10は、例えば、ロジックチップ(図1(A)のロジックチップ12)に代えて、画素部50Pの外側にロジック回路部12Rを有している。即ち、撮像装置2の撮像素子10は、非積層型の撮像素子である。
 赤外検出素子70は、例えば、可動部(図1(A)の可動部22)に代えて、検出膜22Bを有している。検出膜22Bは、赤外領域の波長(例えば、波長5μm~8μm)の光を検出するためのものであり、例えば、ボロメータ膜等により構成されている。検出膜22Bには、例えば、酸化バナジウム(VO)または酸化チタン(TiO)等を用いることができる。ここでは、検出膜22Bが、本開示の浮遊部の一具体例に対応する。
 この検出膜22Bは、支持基板21および撮像素子10(多層配線層11W)と離間して設けられており、固定部23により支持基板21に固定されている。固定部23は、例えば、検出膜22Bの周縁近傍を支持基板21に固定している。赤外検出素子70には、例えば、複数の検出膜22Bが設けられている。赤外検出素子70では、平面視で、複数の検出膜22Bを囲むように、複数の接続部20Cが設けられている。接続部20Cのパッド電極25は、マイクロバンプ14および再配線層13を介して多層配線層11Wに電気的に接続されている。撮像装置2は、赤外検出素子70の周囲に樹脂層31を有している。
 複数の検出膜22Bは、例えば、赤外検出素子70に、検出単位領域70B毎に配置されている。例えば、1つの画素50に対応して、1つの検出単位領域70Bが配置されている。
 図27Aは撮像素子10の平面構成の一例を表し、図27Bは赤外検出素子70の平面構成の一例を表している。図27A,図27Bには4つの画素50(4つの検出単位領域70B)に対応する領域が表されている。
 撮像素子10では、各々のPD11Pの周囲に、画素トランジスタTr1,Tr2,Tr3,Tr4が設けられている。画素トランジスタTr1,Tr2,Tr3,Tr4は、例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタおよび選択トランジスタ等である。撮像素子10では、画素行毎に画素駆動線L2,L3,L4が行方向に沿って配線され、画素列毎に垂直信号線L1が列方向に沿って配線されている。平面視で検出膜22Bに重なる領域を除けて、撮像素子10の配線を設けることが好ましい。これにより、赤外領域の波長の光を効率的に、赤外検出素子70に入射させることが可能となる。
 赤外検出素子70では、検出膜22Bの周囲に読み出し回路71が設けられている。赤外検出素子70では、画素駆動線L2,L3,L4と平行に駆動線L6が設けられ、垂直信号線L1と平行に信号線L5が設けられている。例えば、平面視でPD11Pの略中心に重なる位置に、検出膜22Bの中心が配置されている。
 図28は、図27に示した撮像装置2の断面構成の他の例を表している。図29Aは図28に示した撮像素子10の平面構成の一例を表し、図29Bは図28に示した赤外検出素子70の平面構成の一例を表している。図27A,図27Bには4つの画素50(1つの検出単位領域70B)に対応する領域が表されている。このように、複数の画素50に対応して、1つの検出単位領域70B(1つの検出膜22B)を配置するようにしてもよい。図28,図29A,図29Bには、4つの画素50に対応して、1つの検出単位領域70Bを配置する例を図示している。このとき、例えば、平面視で4つのPD11Pの略中心に重なる位置に検出膜22Bの中心が配置されており、4つのPD11Pの周囲に撮像素子10の配線を設けることが好ましい。複数の画素50に対応して、1つの検出単位領域70Bを配置することにより、画素50の大きさに関わらず、検出膜22Bの面積を設計することができる。したがって、画素50の微細化と赤外検出素子70の感度の向上とを両立しやすくなる。
 本実施の形態の撮像装置2も、撮像素子10に積層して、検出膜22Bを有する赤外検出素子70を設けるようにしたので、占有面積を小さくすることができる。また、撮像装置2では、画素50の大きさに関わらず、検出単位領域70Bの大きさを設計することが可能となる。したがって、画素50の微細化と赤外検出素子70の感度の向上とを両立することが可能となる。
<体内情報取得システムへの応用例>
 更に、本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図30は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。
 光源部10111は、例えばLED(light emitting diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成され
た画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図30では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部10112に適用され得る。これにより、検出精度が向上する。
<内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図31は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図31では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統
括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図32は、図31に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部11402に適用され得る。撮像部11402に本開示に係る技術を適用することにより、検出精度が向上する。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
<移動体への応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図33は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図33に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図33の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図34は、撮像部12031の設置位置の例を示す図である。
 図34では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図34には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。撮像部12031に本開示に係る技術を適用することにより、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。
 以上、実施の形態および変形例を挙げて本開示を説明したが、本開示内容は上記実施の形態に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等において説明した撮像装置の構成は一例であり、更に他の層を備えていてもよい。また、各層の材料や厚みも一例であって、上述のものに限定されるものではない。
 また、上記実施の形態等では、撮像素子10が、センサチップ11およびロジックチップ12(またはロジック回路部12R)を有する例について説明したが、撮像素子10は、更に、他の機能を有するチップを有していてもよく、あるいは、ロジックチップ12に代えて、他の機能を有するチップを有していてもよい。
 また、上記実施の形態等では、撮像素子10が裏面照射型の撮像素子である場合について説明したが、撮像素子10は表面照射型の撮像素子であってもよい。また、撮像素子10は、有機半導体を用いた撮像素子であってもよい。
 また、図1等でMEMS20の構成の一例を図示したが、MEMS20は、他の構成を有していてもよい。
 上記実施の形態等において説明した効果は一例であり、他の効果であってもよいし、更に他の効果を含んでいてもよい。
 尚、本開示は、以下のような構成であってもよい。以下の構成を有する撮像装置によれば、撮像素子に積層して、浮遊部を有する電気素子を設けるようにしたので、同一基板上に撮像部と、浮遊部を含む電気素子部とを並べて設ける場合に比べて、占有面積を小さくすることができる。よって、占有面積を小さくすることが可能となる。
(1)
 画素毎に光電変換部が設けられるとともに受光面および前記受光面に対向する非受光面を有する撮像素子と、
 前記撮像素子の非受光面側に設けられるとともに前記撮像素子に対向する支持基板と、前記支持基板と前記撮像素子との間に設けられるとともに前記支持基板および前記撮像素子と間隙を介して配置された浮遊部とを有する電気素子と
 を備えた撮像装置。
(2)
 更に、前記浮遊部の周囲に設けられるとともに、前記支持基板と前記撮像素子とを繋ぐ接続部を複数有し、
 前記撮像素子、前記支持基板および複数の前記接続部で囲まれた中空部に前記浮遊部が設けられている
 前記(1)に記載の撮像装置。
(3)
 複数の前記接続部はそれぞれ、前記電気素子および前記撮像素子の積層方向の位置が、前記浮遊部よりも前記撮像素子に近い位置に設けられ、かつ、前記撮像素子に電気的に接続された、前記電気素子のパッド電極を含む
 前記(2)に記載の撮像装置。
(4)
 前記パッド電極はダミーを含む
 前記(3)に記載の撮像装置。
(5)
 更に、前記接続部を囲む樹脂層を有する
 前記(2)ないし(4)のうちいずれか1つに記載の撮像装置。
(6)
 前記浮遊部は可動部である
 前記(1)ないし(5)のうちいずれか1つに記載の撮像装置。
(7)
 更に、
 各々の前記画素を駆動する駆動部と、
 前記駆動部に制御信号を入力する制御部とを含む
 前記(6)に記載の撮像装置。
(8)
 更に、前記可動部の変位を検知する検知部を有し、
 前記制御部は、前記検知部から送られる検知信号に基づいて前記駆動部に前記制御信号を入力する
 前記(7)に記載の撮像装置。
(9)
 前記制御部は撮像判断部を含み、
 前記撮像判断部は、前記検知部から送られる検知信号に基づいて前記制御部は前記駆動部に前記制御信号を入力する
 前記(8)に記載の撮像装置。
(10)
 前記検知部で検知された前記可動部の変位の大きさが、所定の大きさ以上であるときに、前記制御部は前記制御信号により各々の前記画素を駆動する
 前記(9)に記載の撮像装置。
(11)
 前記制御部は、撮像モードの切り替えの要否を判断する、撮像モード切替判断部を含む
 前記(8)に記載の撮像装置。
(12)
 前記制御部は、撮像モードを選択する、撮像モード選択部を含む
 前記(8)に記載の撮像装置。
(13)
 前記電気素子は、磁場に応じて前記浮遊部が変位する磁気センサである
 前記(1)ないし(8)のうちいずれか1つに記載の撮像装置。
(14)
 更に、前記磁気センサで検知された磁場の方向により、前記撮像素子の前記受光面の向きを特定する撮像方向特定部を有する
 前記(13)に記載の撮像装置。
(15)
 更に、前記磁気センサで検知された磁場の情報を蓄積する、データ蓄積部を有する
 前記(13)に記載の撮像装置。
(16)
 前記撮像素子は、前記受光面側から、前記光電変換部が設けられた第1半導体基板と、前記第1半導体基板に積層されるとともに前記光電変換部に電気的に接続された配線を含む多層配線層とを有する
 前記(1)ないし(15)のうちいずれか1つに記載の撮像装置。
(17)
 前記撮像素子は、更に、前記多層配線層と前記電気素子との間に設けられるとともに、前記多層配線層を介して前記第1半導体基板に電気的に接続された第2半導体基板を含む
 前記(16)に記載の撮像装置。
(18)
 前記浮遊部はボロメータ膜を含む
 前記(1)ないし(5)のうちいずれか1つに記載の撮像装置。
(19)
 前記電気素子は複数の前記浮遊部を有し、
 複数の前記画素に対応する領域に、1の前記浮遊部が配置されている
 前記(18)に記載の撮像装置。
 本出願は、日本国特許庁において2019年3月25日に出願された日本特許出願番号第2019-056134号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (19)

  1.  画素毎に光電変換部が設けられるとともに受光面および前記受光面に対向する非受光面を有する撮像素子と、
     前記撮像素子の非受光面側に設けられるとともに前記撮像素子に対向する支持基板と、前記支持基板と前記撮像素子との間に設けられるとともに前記支持基板および前記撮像素子と間隙を介して配置された浮遊部とを有する電気素子と
     を備えた撮像装置。
  2.  更に、前記浮遊部の周囲に設けられるとともに、前記支持基板と前記撮像素子とを繋ぐ接続部を複数有し、
     前記撮像素子、前記支持基板および複数の前記接続部で囲まれた中空部に前記浮遊部が設けられている
     請求項1に記載の撮像装置。
  3.  複数の前記接続部はそれぞれ、前記電気素子および前記撮像素子の積層方向の位置が、前記浮遊部よりも前記撮像素子に近い位置に設けられ、かつ、前記撮像素子に電気的に接続された、前記電気素子のパッド電極を含む
     請求項2に記載の撮像装置。
  4.  前記パッド電極はダミーを含む
     請求項3に記載の撮像装置。
  5.  更に、前記接続部を囲む樹脂層を有する
     請求項2に記載の撮像装置。
  6.  前記浮遊部は可動部である
     請求項1に記載の撮像装置。
  7.  更に、
     各々の前記画素を駆動する駆動部と、
     前記駆動部に制御信号を入力する制御部とを含む
     請求項6に記載の撮像装置。
  8.  更に、前記可動部の変位を検知する検知部を有し、
     前記制御部は、前記検知部から送られる検知信号に基づいて前記駆動部に前記制御信号を入力する
     請求項7に記載の撮像装置。
  9.  前記制御部は撮像判断部を含み、
     前記撮像判断部は、前記検知部から送られる検知信号に基づいて前記制御部は前記駆動部に前記制御信号を入力する
     請求項8に記載の撮像装置。
  10.  前記検知部で検知された前記可動部の変位の大きさが、所定の大きさ以上であるときに、前記制御部は前記制御信号により各々の前記画素を駆動する
     請求項9に記載の撮像装置。
  11.  前記制御部は、撮像モードの切り替えの要否を判断する、撮像モード切替判断部を含む
     請求項8に記載の撮像装置。
  12.  前記制御部は、撮像モードを選択する、撮像モード選択部を含む
     請求項8に記載の撮像装置。
  13.  前記電気素子は、磁場に応じて前記浮遊部が変位する磁気センサである
     請求項1に記載の撮像装置。
  14.  更に、前記磁気センサで検知された磁場の方向により、前記撮像素子の前記受光面の向きを特定する撮像方向特定部を有する
     請求項13に記載の撮像装置。
  15.  更に、前記磁気センサで検知された磁場の情報を蓄積する、データ蓄積部を有する
     請求項13に記載の撮像装置。
  16.  前記撮像素子は、前記受光面側から、前記光電変換部が設けられた第1半導体基板と、前記第1半導体基板に積層されるとともに前記光電変換部に電気的に接続された配線を含む多層配線層とを有する
     請求項1に記載の撮像装置。
  17.  前記撮像素子は、更に、前記多層配線層と前記電気素子との間に設けられるとともに、前記多層配線層を介して前記第1半導体基板に電気的に接続された第2半導体基板を含む
     請求項16に記載の撮像装置。
  18.  前記浮遊部はボロメータ膜を含む
     請求項1に記載の撮像装置。
  19.  前記電気素子は複数の前記浮遊部を有し、
     複数の前記画素に対応する領域に、1の前記浮遊部が配置されている
     請求項18に記載の撮像装置。
PCT/JP2020/008597 2019-03-25 2020-03-02 撮像装置 WO2020195564A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/437,464 US20220185659A1 (en) 2019-03-25 2020-03-02 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-056134 2019-03-25
JP2019056134A JP2020161520A (ja) 2019-03-25 2019-03-25 撮像装置

Publications (1)

Publication Number Publication Date
WO2020195564A1 true WO2020195564A1 (ja) 2020-10-01

Family

ID=72610005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008597 WO2020195564A1 (ja) 2019-03-25 2020-03-02 撮像装置

Country Status (3)

Country Link
US (1) US20220185659A1 (ja)
JP (1) JP2020161520A (ja)
WO (1) WO2020195564A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130776A1 (ja) * 2020-12-16 2022-06-23 ソニーセミコンダクタソリューションズ株式会社 光検出装置、光検出システム、電子機器および移動体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118043965A (zh) * 2021-10-08 2024-05-14 索尼半导体解决方案公司 半导体装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208298A (ja) * 2005-01-31 2006-08-10 Konica Minolta Medical & Graphic Inc 放射線画像撮影システム及び放射線画像検出器
JP2008039570A (ja) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd 熱型赤外線固体撮像装置及び赤外線カメラ
JP2008288384A (ja) * 2007-05-17 2008-11-27 Sony Corp 3次元積層デバイスとその製造方法、及び3次元積層デバイスの接合方法
JP2009094973A (ja) * 2007-10-12 2009-04-30 Sharp Corp 携帯電話機
JP2010161266A (ja) * 2009-01-09 2010-07-22 Denso Corp 半導体装置およびその製造方法
JP2012004540A (ja) * 2010-05-20 2012-01-05 Sony Corp 固体撮像装置及びその製造方法並びに電子機器
JP2017034074A (ja) * 2015-07-31 2017-02-09 株式会社東芝 半導体装置
JP2017068681A (ja) * 2015-09-30 2017-04-06 ソフトバンク株式会社 サービス提供システム
JP2017130610A (ja) * 2016-01-22 2017-07-27 ソニー株式会社 イメージセンサ、製造方法、及び、電子機器
JP2017143092A (ja) * 2016-02-08 2017-08-17 ソニー株式会社 ガラスインタポーザモジュール、撮像装置、および電子機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238724B2 (ja) * 2003-03-27 2009-03-18 株式会社デンソー 半導体装置
US7728896B2 (en) * 2005-07-12 2010-06-01 Micron Technology, Inc. Dual conversion gain gate and capacitor and HDR combination
JP4289377B2 (ja) * 2006-08-21 2009-07-01 ソニー株式会社 物理量検出装置及び撮像装置
JP2008101980A (ja) * 2006-10-18 2008-05-01 Denso Corp 容量式半導体センサ装置
US8207586B2 (en) * 2008-09-22 2012-06-26 Alps Electric Co., Ltd. Substrate bonded MEMS sensor
JP5300558B2 (ja) * 2009-03-27 2013-09-25 日東電工株式会社 半導体装置の製造方法
JP2011130220A (ja) * 2009-12-18 2011-06-30 Sanyo Electric Co Ltd 電子カメラ
WO2012120659A1 (ja) * 2011-03-09 2012-09-13 国立大学法人東京大学 半導体装置の製造方法
CN105938825B (zh) * 2011-05-24 2019-04-05 索尼公司 半导体图像接收装置
US8847137B2 (en) * 2012-02-29 2014-09-30 Blackberry Limited Single package imaging and inertial navigation sensors, and methods of manufacturing the same
FR3008965B1 (fr) * 2013-07-26 2017-03-03 Commissariat Energie Atomique Structure d'encapsulation comprenant un capot renforce mecaniquement et a effet getter
KR20160135476A (ko) * 2015-05-18 2016-11-28 삼성전자주식회사 전자 장치 및 그의 카메라 제어 방법
US20170088417A1 (en) * 2015-09-29 2017-03-30 Xintec Inc. Electronic device and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208298A (ja) * 2005-01-31 2006-08-10 Konica Minolta Medical & Graphic Inc 放射線画像撮影システム及び放射線画像検出器
JP2008039570A (ja) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd 熱型赤外線固体撮像装置及び赤外線カメラ
JP2008288384A (ja) * 2007-05-17 2008-11-27 Sony Corp 3次元積層デバイスとその製造方法、及び3次元積層デバイスの接合方法
JP2009094973A (ja) * 2007-10-12 2009-04-30 Sharp Corp 携帯電話機
JP2010161266A (ja) * 2009-01-09 2010-07-22 Denso Corp 半導体装置およびその製造方法
JP2012004540A (ja) * 2010-05-20 2012-01-05 Sony Corp 固体撮像装置及びその製造方法並びに電子機器
JP2017034074A (ja) * 2015-07-31 2017-02-09 株式会社東芝 半導体装置
JP2017068681A (ja) * 2015-09-30 2017-04-06 ソフトバンク株式会社 サービス提供システム
JP2017130610A (ja) * 2016-01-22 2017-07-27 ソニー株式会社 イメージセンサ、製造方法、及び、電子機器
JP2017143092A (ja) * 2016-02-08 2017-08-17 ソニー株式会社 ガラスインタポーザモジュール、撮像装置、および電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130776A1 (ja) * 2020-12-16 2022-06-23 ソニーセミコンダクタソリューションズ株式会社 光検出装置、光検出システム、電子機器および移動体

Also Published As

Publication number Publication date
US20220185659A1 (en) 2022-06-16
JP2020161520A (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7270616B2 (ja) 固体撮像素子および固体撮像装置
WO2017163927A1 (ja) チップサイズパッケージ、製造方法、電子機器、および内視鏡
JP7272969B2 (ja) 固体撮像素子および撮像装置
JPWO2018180569A1 (ja) 固体撮像装置、および電子機器
WO2018135261A1 (ja) 固体撮像素子、電子装置、および、固体撮像素子の製造方法
WO2020179290A1 (ja) センサおよび測距装置
WO2020246323A1 (ja) 撮像装置
CN111133581A (zh) 摄像元件、其制造方法和电子设备
US12087796B2 (en) Imaging device
WO2020195564A1 (ja) 撮像装置
WO2020100709A1 (ja) 固体撮像装置及び電子機器
WO2019188131A1 (ja) 半導体装置および半導体装置の製造方法
JP7422676B2 (ja) 撮像装置
US20220005853A1 (en) Semiconductor device, solid-state imaging device, and electronic equipment
WO2017169822A1 (ja) 固体撮像素子、撮像装置、内視鏡装置、および電子機器
JP2022089275A (ja) 撮像装置、電子機器、製造方法
WO2024024269A1 (ja) 固体撮像装置およびその製造方法
US20230335574A1 (en) Imaging device
WO2019230243A1 (ja) 撮像装置
WO2022138097A1 (ja) 固体撮像装置およびその製造方法
US20210272995A1 (en) Imaging element and electronic apparatus
WO2019097949A1 (ja) 半導体装置および半導体の製造方法、並びに撮像装置
CN114730782A (zh) 光接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778439

Country of ref document: EP

Kind code of ref document: A1