Nothing Special   »   [go: up one dir, main page]

WO2020189288A1 - 成膜方法および成膜装置 - Google Patents

成膜方法および成膜装置 Download PDF

Info

Publication number
WO2020189288A1
WO2020189288A1 PCT/JP2020/009208 JP2020009208W WO2020189288A1 WO 2020189288 A1 WO2020189288 A1 WO 2020189288A1 JP 2020009208 W JP2020009208 W JP 2020009208W WO 2020189288 A1 WO2020189288 A1 WO 2020189288A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
region
substrate
clf
Prior art date
Application number
PCT/JP2020/009208
Other languages
English (en)
French (fr)
Inventor
河野 有美子
秀司 東雲
博紀 村上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US17/593,166 priority Critical patent/US20220189777A1/en
Priority to KR1020217031738A priority patent/KR102651019B1/ko
Publication of WO2020189288A1 publication Critical patent/WO2020189288A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs

Definitions

  • the present disclosure relates to a film forming method and a film forming apparatus.
  • Patent Document 1 discloses a technique of depositing a metal material on the first surface and an insulating material on the second surface of the first surface and the second surface of the substrate.
  • the first surface is the surface of a metal or semiconductor, and the second surface has an OH group or the like.
  • a technique for forming a Ru film on the first surface by utilizing the fact that Ru (EtCp) 2 does not react with Si—OH is disclosed.
  • One aspect of the present disclosure provides a technique capable of removing a product generated in a second region when a desired target film is selectively formed in the first region, and leaving the target film in the first region. To do.
  • the film forming method of one aspect of the present disclosure is A step of preparing a substrate having a first region where the first material is exposed and a second region where a second material different from the first material is exposed. A step of selectively forming a desired target film in the first region of the first region and the second region, and The step of removing the product generated in the second region at the time of forming the target film by supplying ClF 3 gas to the substrate is included.
  • the product generated in the second region can be removed, and the target film can be left in the first region.
  • FIG. 1 is a flowchart showing a film forming method according to the first embodiment.
  • FIG. 2 is a side view showing an example of the state of the substrate in each step shown in FIG.
  • FIG. 3 is a flowchart showing an example of forming a Ru film using the ALD method.
  • FIG. 4 is a flowchart showing an example of product removal using ClF 3 gas.
  • FIG. 5 is a flowchart showing a film forming method according to the second embodiment.
  • FIG. 6 is a side view showing an example of the state of the substrate in each step shown in FIG.
  • FIG. 7 is a cross-sectional view showing an example of a film forming apparatus that implements the film forming method shown in FIG. 1 or FIG. FIG.
  • FIG. 8 is a perspective view of the state immediately before and immediately after the removal of the product according to Example 1 taken by SEM.
  • FIG. 9 is a perspective view of the states before and after etching according to Reference Examples 1 to 4 taken by SEM.
  • FIG. 10 is a perspective view of the state after etching according to Reference Examples 5 to 10 taken by SEM.
  • FIG. 11 is a perspective view or a cross-sectional view taken by SEM of the state before and after etching according to Reference Example 11.
  • FIG. 1 is a flowchart showing a film forming method according to the first embodiment.
  • FIG. 2 is a side view showing an example of the state of the substrate in each step shown in FIG.
  • FIG. 2A shows the state of the substrate prepared in step S101
  • FIG. 2B shows the state of the substrate obtained in step S102
  • FIG. 2C shows the state of the substrate obtained in step S103. Shown.
  • the size of the Ru film 20 immediately before the step S103 is shown by a broken line
  • the size of the Ru film 20 immediately after the step S103 is shown by a solid line.
  • the film forming method includes a step S101 for preparing the substrate 10 as shown in FIG. 2A.
  • the preparation includes, for example, carrying the substrate 10 into the processing container 120 (see FIG. 7) described later.
  • the substrate 10 has a first region A1 in which the first material is exposed and a second region A2 in which a second material different from the first material is exposed.
  • the first region A1 and the second region A2 are provided on one side of the substrate 10 in the plate thickness direction.
  • the third region is a region where a third material different from the first material and the second material is exposed.
  • the third region may be arranged between the first region A1 and the second region A2, or may be arranged outside the first region A1 and the second region A2.
  • the first material is, for example, a conductive material.
  • the conductive material is Ru in this embodiment, but may be RuO 2 , Pt, Pd or Cu.
  • a Ru film 20, which is a target film, is formed on the surface of these conductive materials in step S102 described later.
  • the Ru film 20 is a conductive film.
  • the second material is, for example, an insulating material having an OH group.
  • the insulating material is a low dielectric constant material (Low-k material) having a dielectric constant lower than SiO 2 in the present embodiment, but is not limited to the Low-k material. Since OH groups are generally present on the surface of the insulating material, the formation of the Ru film 20 can be suppressed in step S102 described later. Note that before the formation of the Ru film 20, by treating the surface of the insulating material with ozone (O 3) gas, it is possible to increase the OH group.
  • O 3 ozone
  • the substrate 10 has, for example, a conductive film 11 formed of the above conductive material and an insulating film 12 formed of the above insulating material.
  • a conductive film 11 is formed in a trench of the insulating film 12, and the conductive film 11 and the insulating film 12 are flattened by polishing. Polishing is, for example, CMP (Chemical Mechanical Polishing).
  • the surface of the conductive film 11 and the surface of the insulating film 12 are flush with each other in FIG. 2A, they may be displaced in parallel. That is, a step may be formed between the surface of the conductive film 11 and the surface of the insulating film 12.
  • the recess serves as a guide when the Ru film 20 is formed.
  • the substrate 10 has a base substrate 14 on which the conductive film 11 and the insulating film 12 are formed.
  • the base substrate 14 is a semiconductor substrate such as a silicon wafer.
  • the base substrate 14 may be a glass substrate or the like.
  • the substrate 10 may further have a base film formed of a material different from the base substrate 14 and the insulating film 12 between the base substrate 14 and the insulating film 12.
  • the film forming method includes a step S102 of selectively forming a desired target film in the first region A1 of the first region A1 and the second region A2.
  • the target film is, for example, Ru film 20, and is formed by supplying Ru (EtCp) 2 gas and O 2 gas to the substrate 10.
  • the formation of the Ru film 20 is carried out inside the processing container 120 (see FIG. 7).
  • the Ru film 20 may or may not be formed in the third region.
  • the Ru film 20 is formed by a CVD (Chemical Vapor Deposition) method or an ALD (Atomic Layer Deposition) method.
  • CVD Chemical Vapor Deposition
  • ALD Advanced Layer Deposition
  • Ru (EtCp) 2 gas and O 2 gas are simultaneously supplied to the substrate 10.
  • Ru (EtCp) 2 gas and O 2 gas are alternately supplied to the substrate 10.
  • FIG. 3 is a flowchart showing an example of forming a Ru film using the ALD method.
  • the formation of the Ru film 20 includes the supply of Ru (EtCp) 2 gas (step S201), the discharge of Ru (EtCp) 2 gas (step S202), and the O 2 gas. Includes supply (step S203) and O 2 gas discharge (step S204).
  • the air pressure inside the processing container 120 is, for example, 67 Pa or more and 667 Pa or less (0.5 Torr or more and 5 Torr or less)
  • the temperature of the substrate 10 is, for example, 250 ° C. or more and 350 ° C. or less.
  • the raw material container containing the liquid Ru (EtCp) 2 is heated to 60 to 100 ° C., and the vaporized Ru (EtCp) 2 gas is supplied from the raw material container together with the carrier gas. Includes supplying to the processing container 120. Inside the processing chamber 120, in addition to Ru (EtCp) 2 gas and the carrier gas, Ru (EtCp) dilution gas for diluting the 2 gas may also be supplied. As the carrier gas and the diluent gas, an inert gas such as argon (Ar) gas is used.
  • the supply of the Ru (EtCp) 2 gas (step S201) may further include exhausting the inside of the processing container 120 with a vacuum pump in order to suppress the fluctuation of the air pressure inside the processing container 120.
  • Discharge of the Ru (EtCp) 2 gas includes exhausting the inside of the processing container 120 with a vacuum pump while the supply of the Ru (EtCp) 2 gas to the inside of the processing container 120 is stopped.
  • the discharge of the Ru (EtCp) 2 gas may further include supplying purge gas to the inside of the processing container 120 in order to suppress the pressure fluctuation inside the processing container 120.
  • purge gas an inert gas such as argon gas is used.
  • the supply of O 2 gas includes supplying an O 2 gas into the processing vessel 120. Inside the processing chamber 120, in addition to O 2 gas, O 2 gas may be supplied also dilution gas to dilute the. As the diluting gas, an inert gas such as argon (Ar) gas is used.
  • the supply of O 2 gas may further include exhausting the inside of the processing container 120 with a vacuum pump in order to suppress the fluctuation of the air pressure inside the processing container 120.
  • the O 2 gas discharge is performed inside the processing container 120 with the supply of the O 2 gas to the inside of the processing container 120 stopped. Includes exhausting with a vacuum pump. Further, the discharge of the O 2 gas (step S204) may further include supplying purge gas to the inside of the processing container 120 in order to suppress the atmospheric pressure fluctuation inside the processing container 120.
  • the purge gas an inert gas such as argon gas is used.
  • the formation of the Ru film 20 (step S102) is carried out by repeating the above steps S201 to S204 as one cycle.
  • the formation of the Ru film 20 includes a step S205 for checking whether or not the number of cycles has reached the target number of times N1.
  • the target number of times N1 is set in advance by an experiment or the like so that the film thickness of the Ru film 20 reaches the target film thickness when the number of cycles reaches the target number of times N1.
  • the Ru (EtCp) 2 gas is not adsorbed on the surface where the OH group is present, but is adsorbed on the surface where the OH group is not present.
  • FIG. 2A there is no OH group in the first region A1 and an OH group is present in the second region A2. Therefore, as shown in FIG. 2B, the Ru film 20 is selectively formed in the first region A1 of the first region A1 and the second region A2. As shown in FIG. 2B, the Ru film 20 may be formed so as to protrude from the first region A1.
  • the Ru (EtCp) 2 gas basically does not adsorb to the second region A2. However, if a defect exists in the second region A2, Ru (EtCp) 2 gas is adsorbed on the defect. Defects include metal remaining after polishing such as CMP, or damage. Since the Ru (EtCp) 2 gas is adsorbed on the defect in the second region A2, the product 21 is also formed in an island shape in the second region A2 as shown in FIG. 2 (b). This product 21 is formed of Ru in the same manner as the Ru film 20. Therefore, the conductive product 21 is formed in the region where the insulating material should be exposed.
  • the film forming method is a step of removing the product 21 generated in the second region A2 at the time of forming the Ru film 20 as shown in FIG. 2C by supplying ClF 3 gas to the substrate 10.
  • ClF 3 gas is used as the etching gas for removing the product 21 instead of O 3 gas.
  • the ClF 3 gas etches the product 21 from its surface. At this time, the ClF 3 gas also etches the Ru film 20 from the surface thereof, but the volume change of the Ru film 20 is slower than the volume change of the product 21. This is because the specific surface area (surface area per unit volume) of the Ru film 20 is smaller than the specific surface area of the product 21.
  • ClF 3 gas as compared with the O 3 gas can uniformly etch the entire surface of the Ru, it is possible to suppress the acceleration of the local etching, according to the product 21 and the Ru film 20 to each of the specific surface area volume Etching can be performed at a changing rate. Therefore, the ClF 3 gas can remove the product 21 generated in the second region A2 and leave the Ru film 20 in the first region A1.
  • the ClF 3 gas removes the product 21 by chemically reacting with the product 21.
  • the ClF 3 gas may be heated to a high temperature to promote a chemical reaction with the product 21. Further, the ClF 3 gas may be turned into plasma in order to promote the chemical reaction with the product 21, but it is not turned into plasma in this embodiment.
  • ClF 3 gas is thermally excited without being plasma-excited. Thermal excitation generates Cl radicals, F radicals, and the like, and these radicals chemically react with the product 21. Removal of product 21 is carried out inside the processing vessel 120 (see FIG. 7).
  • FIG. 4 is a flowchart showing an example of product removal using ClF 3 gas.
  • the removal of the product 21 includes the supply of ClF 3 gas (step S301) and the discharge of ClF 3 gas (step S302).
  • the air pressure inside the processing container 120 is, for example, 133 Pa or more and 1333 Pa or less (1 Torr or more and 10 Torr or less)
  • the temperature of the substrate 10 is, for example, 150 ° C. or more and 250 ° C. or less.
  • the supply of ClF 3 gas includes supplying ClF 3 gas to the inside of the processing container 120. Inside the processing chamber 120, in addition to the ClF 3 gas may be supplied also dilution gas for diluting the ClF 3 gas. As the diluting gas, an inert gas such as argon (Ar) gas is used.
  • the partial pressure of ClF 3 gas inside the processing container 120 is, for example, 67 Pa or more and 667 Pa or less (0.5 Torr or more and 5 Torr or less).
  • the supply of ClF 3 gas (step S301) may further include exhausting the inside of the processing container 120 with a vacuum pump in order to suppress the pressure fluctuation inside the processing container 120.
  • Discharge of ClF 3 gas includes exhausting the inside of the processing container 120 with a vacuum pump while the supply of ClF 3 gas to the inside of the processing container 120 is stopped.
  • the discharge of ClF 3 gas may further include supplying purge gas to the inside of the processing container 120 in order to suppress the pressure fluctuation inside the processing container 120.
  • purge gas an inert gas such as argon gas is used.
  • the supply of ClF 3 gas (step S301) and the discharge of ClF 3 gas (step S302) may have the same total flow rate of gas supplied to the inside of the processing container 120. As a result, the atmospheric pressure fluctuation inside the processing container 120 can be further suppressed.
  • the above steps S301 to S302 are set as one cycle, and the cycle is repeated.
  • the ClF 3 gas supply time T1 is, for example, 1 second or more and 20 seconds or less
  • the ClF 3 gas discharge time T2 is, for example, 1 second or more and 20 seconds or less.
  • the ratio (T1 / T) of the supply time T1 of ClF 3 gas to the time T of one cycle is, for example, 0.3 or more and 0. It is 7 or less.
  • the removal of the product 21 includes a step S303 of checking whether or not the number of cycles has reached the target number of times N2.
  • the target number of times N2 is set in advance by an experiment or the like so that the product 21 is removed when the number of cycles reaches the target number of times N2.
  • the target number of times N2 is determined by the target film thickness of the Ru film 20 (that is, the target number of times N1 in FIG. 3), and the smaller the target film thickness of the Ru film 20, the smaller the target number of times N2.
  • Removal of the product 21 includes alternating and repeating the supply of ClF 3 gas (step S301) and the discharge of ClF 3 gas (step S302), as shown in FIG. Without performing the discharge of ClF 3 gas, as compared with the case of continuously carrying out the supply of the ClF 3 gas, can be prevented from being accelerated etching at the grain boundaries of Ru, smooth Ru film 20 on the surface is obtained ..
  • the film forming method of the present embodiment includes the formation of the Ru film 20 (step S102) and the removal of the product 21 (step S103) once, but the technique of the present disclosure includes this. Not limited.
  • the film forming method may include repeating the formation of the Ru film 20 and the removal of the product 21 alternately until the film thickness of the Ru film 20 reaches the target film thickness.
  • the target number of times N1 in FIG. 3 is determined by, for example, the number of times the Ru film 20 is formed until the film thickness of the Ru film 20 reaches the target film thickness, and the target film thickness of the Ru film 20.
  • the target number of times N2 in FIG. 4 is determined by the target number of times N1 in FIG. 3 and the like as described above.
  • the size of the product 21 deposited each time can be reduced. Since the specific surface area of the product 21 is smaller as the size of the product 21 is smaller, the time required for removing the product 21 can be shortened, and the damage to the Ru film 20 that may occur when the product 21 is removed can be reduced.
  • FIG. 5 is a flowchart showing a film forming method according to the second embodiment.
  • FIG. 6 is a side view showing an example of the state of the substrate in each step shown in FIG.
  • FIG. 6A shows the state of the substrate prepared in step S101
  • FIG. 6B shows the state of the substrate obtained in step S111
  • FIG. 6C shows the state of the substrate obtained in step S112.
  • 6 (d) shows the state of the substrate obtained in step S102
  • FIG. 6 (e) shows the state of the substrate obtained in step S103.
  • the differences between the present embodiment and the first embodiment will be mainly described.
  • the film forming method includes a step S101 for preparing the substrate 10 as shown in FIG. 6A.
  • the substrate 10 has a first region A1 in which the first material is exposed and a second region A2 in which a second material different from the first material is exposed. Although only the first region A1 and the second region A2 are present in FIG. 6A, a third region may be further present.
  • the first material is, for example, a semiconductor, and more specifically, amorphous silicon (a-Si). a-Si may or may not contain a dopant. Polycrystalline silicon or the like may be used instead of amorphous silicon. Further, a metal may be used as the first material. Since no OH group is present on the surface of these materials, the formation of the self-assembled monolayer (SELf-Assembled Monolayer: SAM) 30 can be suppressed in step S112 described later.
  • SELf-Assembled Monolayer: SAM self-assembled Monolayer
  • the second material is, for example, an insulating material having an OH group.
  • the insulating material is silicon oxide in this embodiment, but is not limited to silicon oxide. Since OH groups are generally present on the surface of the insulating material, the SAM 30 is formed in step S112 described later. It is also possible to increase the number of OH groups by treating the surface of the insulating material with ozone (O3) gas before forming the SAM 30 .
  • O3 ozone
  • the substrate 10 has, for example, a semiconductor film 13 formed of the above-mentioned semiconductor and an insulating film 12 formed of the above-mentioned insulating material.
  • a metal film may be formed instead of the semiconductor film 13.
  • an oxide film is naturally formed over time in the atmosphere. In that case, the oxide film is removed before the formation of SAM30 (step S112) described later.
  • the substrate 10 has a base substrate 14 on which the semiconductor film 13 and the insulating film 12 are formed.
  • the base substrate 14 is a semiconductor substrate such as a silicon wafer.
  • the base substrate 14 may be a glass substrate or the like.
  • the substrate 10 may further have a base film formed of a material different from that of the base substrate 14 and the semiconductor film 13 between the base substrate 14 and the semiconductor film 13. Similarly, the substrate 10 may further have a base film formed of a material different from the base substrate 14 and the insulating film 12 between the base substrate 14 and the insulating film 12.
  • the film forming method includes a step S111 in which the hydrogen termination treatment of the first material is carried out as shown in FIG. 6 (b).
  • the hydrogen termination process is a process of bonding hydrogen to an unbonded hand (dumbling bond).
  • the hydrogen termination treatment is carried out, for example, by supplying hydrogen (H 2 ) gas to the substrate 10.
  • the hydrogen termination treatment may also serve as a treatment for reducing and removing the oxide film generated by the surface oxidation of the semiconductor film 13 (or the metal film).
  • Hydrogen gas may be heated to a high temperature to promote a chemical reaction. Further, the hydrogen gas may be turned into plasma in order to promote the chemical reaction.
  • the hydrogen termination treatment is a dry treatment in the present embodiment, but may be a wet treatment.
  • the hydrogen termination treatment may be carried out by immersing the substrate 10 in dilute hydrofluoric acid.
  • the second region A2 of the first region A1 and the second region A2 is selectively formed.
  • the step S112 for forming the SAM 30 is included.
  • the SAM 30 is formed by chemically adsorbing a silane compound to an OH group, and inhibits the formation of a conductive film 40, which is a target film described later.
  • the SAM 30 may or may not be formed in the third region.
  • R and R' are functional groups such as an alkyl group or a group in which at least a part of hydrogen of the alkyl group is substituted with fluorine.
  • the terminal group of the functional group may be either CH type or CF type.
  • OR is a hydrolyzable functional group such as a methoxy group or an ethoxy group.
  • the silane compound which is the material of SAM30 is chemically adsorbed on the surface having an OH group, it is selectively chemisorbed on the second region A2 of the first region A1 and the second region A2. Therefore, the SAM 30 is selectively formed in the second region A2. Further, since the silane compound is not chemically adsorbed on the surface subjected to the hydrogen termination treatment, it is selectively chemisorbed by the second region A2 of the first region A1 and the second region A2. Therefore, the second region A2 selectively forms the SAM 30.
  • the target film is selectively formed in the first region A1 of the first region A1 and the second region A2 by using the SAM 30 formed in the second region A2.
  • the step S102 for forming the conductive film 40 is included. Since the SAM 30 inhibits the formation of the conductive film 40, the conductive film 40 is selectively formed in the first region A1.
  • the conductive film 40 is formed by, for example, a CVD method or an ALD method.
  • the conductive film 40 can be laminated on the semiconductor film 13 originally existing in the first region A1.
  • the semiconductor film 13 may contain a dopant and may be provided with conductivity.
  • the conductive film 40 can be laminated on the conductive semiconductor film 13.
  • the material of the conductive film 40 is not particularly limited, but is, for example, titanium nitride.
  • titanium nitride is also referred to as TiN regardless of the composition ratio of nitrogen and titanium.
  • the treatment gas contains Ti such as tetrakisdimethylaminotitanium (TDMA: Ti [N (CH 3 ) 2 ] 4 ) gas or titanium tetrachloride (TiCl 4 ) gas.
  • TDMA tetrakisdimethylaminotitanium
  • TiCl 4 titanium tetrachloride
  • Gas and nitride gas such as ammonia (NH 3 ) gas are alternately supplied to the substrate 10.
  • a reforming gas such as hydrogen (H 2 ) gas may be supplied to the substrate 10.
  • These treatment gases may be plasmatized to facilitate the chemical reaction.
  • these processing gases may be heated in order to promote a chemical reaction.
  • the conductive film 40 is selectively formed in the first region A1 of the first region A1 and the second region A2.
  • the gas that is the material of the conductive film 40 is slightly adsorbed on the SAM 30, the product 41 is also deposited in an island shape in the second region A2 as shown in FIG. 6 (d).
  • the product 41 is made of the same material as the conductive film 40, for example TiN.
  • the film forming method is a step of removing the product 41 generated in the second region A2 during the formation of the conductive film 40 as shown in FIG. 6 (e) by supplying ClF 3 gas to the substrate 10. Includes S103.
  • the removal of the product 41 is carried out in the same manner as the removal of the product 21 of the first embodiment. Therefore, the product 41 generated in the second region A2 can be removed, and the conductive film 40 can be left in the first region A1.
  • the ClF 3 gas can not only remove the product 41 but also dilute or remove the SAM 30. Lift-off of product 41 can be performed by thinning or removing SAM 30.
  • TiN is more likely to be etched by ClF 3 gas than Ru.
  • the temperature of the substrate 10 is, for example, 70 ° C. or higher and 150 ° C. or lower.
  • the partial pressure of ClF 3 gas inside the processing container 120 is, for example, 1.3 Pa or more and 27 Pa or less (0.01 Torr or more and 0.2 Torr or less).
  • the supply time T1 of ClF 3 gas is, for example, 1 second or more and 5 seconds or less
  • the discharge time T2 of ClF 3 gas is, for example, 3 seconds or more and 20 seconds or less.
  • the removal of the product 41 includes the supply of ClF 3 gas (step S301) and the discharge of ClF 3 gas (step S302) alternately and repeatedly. Without performing the discharge of ClF 3 gas, as compared with the case of continuously carrying out the supply of the ClF 3 gas, the crystal grain boundary of the TiN possible to prevent the etching accelerates, smooth conductive 40 of the surface is obtained ..
  • the film forming method of the present embodiment includes the formation of the conductive film 40 (step S102) and the removal of the product 41 (step S103) once, but the technique of the present disclosure includes this. Not limited.
  • the film forming method may include repeating the formation of the conductive film 40 and the removal of the product 41 alternately until the film thickness of the conductive film 40 reaches the target film thickness.
  • the target number of times N1 in FIG. 3 is determined by, for example, the number of times the conductive film 40 is formed until the film thickness of the conductive film 40 reaches the target film thickness, and the target film thickness of the conductive film 40.
  • the target number of times N2 in FIG. 4 is determined by the target number of times N1 in FIG. 3 and the like as described above.
  • the size of the product 41 deposited each time can be reduced.
  • the specific surface area of the product 41 becomes smaller, so that the time required for removing the product 41 can be shortened, and the damage to the conductive film 40 that may occur when the product 41 is removed can be reduced.
  • FIG. 7 is a cross-sectional view showing an example of a film forming apparatus that implements the film forming method shown in FIG. 1 or FIG.
  • the film forming apparatus 100 includes a processing unit 110, a conveying apparatus 170, and a control apparatus 180.
  • the processing unit 110 includes a processing container 120, a substrate holding unit 130, a heater 140, a gas supply device 150, and a gas discharge device 160.
  • the plurality of processing units 110 form a so-called multi-chamber system.
  • the plurality of processing units 110 are arranged so as to surround the vacuum transfer chamber 101.
  • the vacuum transfer chamber 101 is exhausted by a vacuum pump and maintained at a preset degree of vacuum.
  • the transfer device 170 is arranged so as to be movable in the vertical direction and the horizontal direction and rotatably around the vertical axis.
  • the transport device 170 transports the substrate 10 to the plurality of processing containers 120.
  • the processing chamber 121 inside the processing container 120 and the vacuum transfer chamber 101 communicate with each other when the atmospheric pressure is lower than the atmospheric pressure, and the substrate 10 is carried in and out.
  • the air transport chamber is provided instead of the vacuum transport chamber 101, it is possible to prevent the air from flowing from the air transport chamber into the inside of the processing chamber 121 when the substrate 10 is carried in and out.
  • the waiting time for lowering the air pressure in the processing chamber 121 can be reduced, and the processing speed of the substrate 10 can be improved.
  • the processing container 120 has a carry-in outlet 122 through which the substrate 10 passes.
  • the carry-in outlet 122 is provided with a gate G that opens and closes the carry-in outlet 122.
  • the gate G basically closes the carry-in outlet 122, and opens the carry-in outlet 122 when the substrate 10 passes through the carry-in outlet 122.
  • the substrate holding unit 130 holds the substrate 10 inside the processing container 120.
  • the substrate holding portion 130 holds the substrate 10 horizontally from below with the surface of the substrate 10 exposed to the processing gas facing upward.
  • the substrate holding portion 130 is a single-wafer type and holds one substrate 10.
  • the substrate holding unit 130 may be a batch type, or may hold a plurality of substrates 10 at the same time.
  • the batch-type substrate holding unit 130 may hold a plurality of substrates 10 at intervals in the vertical direction or at intervals in the horizontal direction.
  • the heater 140 heats the substrate 10 held by the substrate holding portion 130.
  • the heater 140 is, for example, an electric heater, and generates heat by supplying electric power.
  • the heater 140 is embedded in the substrate holding portion 130, for example, and heats the substrate holding portion 130 to heat the substrate 10 to a desired temperature.
  • the heater 140 may include a lamp that heats the substrate holding portion 130 through the quartz window. In this case, an inert gas such as argon gas may be supplied between the substrate holding portion 130 and the quartz window in order to prevent the quartz window from becoming opaque due to deposits. Further, the heater 140 may heat the substrate 10 arranged inside the processing container 120 from the outside of the processing container 120.
  • the processing unit 110 may further include not only a heater 140 that heats the substrate 10 but also a cooler that cools the substrate 10. Not only can the temperature of the substrate 10 be raised at high speed, but the temperature of the substrate 10 can be lowered at high speed. On the other hand, when the processing of the substrate 10 is performed at room temperature, the processing unit 110 does not have to have a heater 140 and a cooler.
  • the gas supply device 150 supplies a preset processing gas to the substrate 10.
  • the processing gas is prepared for each process S102, S103 (or process S111, S112, S102, S103), for example. These steps may be carried out inside different processing containers 120, or two or more of any combinations may be carried out continuously inside the same processing container 120. In the latter case, the gas supply device 150 supplies a plurality of types of processing gases to the substrate 10 in a preset order according to the order of the steps.
  • the gas supply device 150 is connected to the processing container 120 via, for example, the gas supply pipe 151.
  • the gas supply device 150 includes a processing gas supply source, individual pipes individually extending from each supply source to the gas supply pipe 151, an on-off valve provided in the middle of the individual pipes, and a flow rate controller provided in the middle of the individual pipes. And have.
  • the on-off valve opens the individual pipe, the processing gas is supplied from the supply source to the gas supply pipe 151.
  • the supply amount is controlled by the flow controller.
  • the on-off valve closes the individual pipes, the supply of the processing gas from the supply source to the gas supply pipe 151 is stopped.
  • the gas supply pipe 151 supplies the processing gas supplied from the gas supply device 150 to the inside of the processing container 120, for example, the shower head 152.
  • the shower head 152 is provided above the substrate holding portion 130.
  • the shower head 152 has a space 153 inside, and discharges the processing gas stored in the space 153 vertically downward from a large number of gas discharge holes 154.
  • a shower-like processing gas is supplied to the substrate 10.
  • the gas discharge device 160 discharges gas from the inside of the processing container 120.
  • the gas discharge device 160 is connected to the processing container 120 via the exhaust pipe 161.
  • the gas discharge device 160 has an exhaust source such as a vacuum pump and a pressure controller. When the exhaust source is operated, gas is discharged from the inside of the processing container 120.
  • the air pressure inside the processing container 120 is controlled by a pressure controller.
  • the control device 180 is composed of, for example, a computer, and includes a CPU (Central Processing Unit) 181 and a storage medium 182 such as a memory.
  • the storage medium 182 stores programs that control various processes executed by the film forming apparatus 100.
  • the control device 180 controls the operation of the film forming apparatus 100 by causing the CPU 181 to execute the program stored in the storage medium 182.
  • the control device 180 includes an input interface 183 and an output interface 184.
  • the control device 180 receives a signal from the outside through the input interface 183 and transmits the signal to the outside through the output interface 184.
  • the control device 180 controls the heater 140, the gas supply device 150, the gas discharge device 160, and the transfer device 170 so as to carry out the film forming method shown in FIG. 1 or FIG.
  • the control device 180 also controls the gate G.
  • Example 1 In the first embodiment, the substrate 10 shown in FIG. 2A was prepared. In the prepared substrate 10, a conductive film 11 made of Ru was formed in a trench of an insulating film 12 made of Low-k material, and the conductive film 11 and the insulating film 12 were flattened by CMP.
  • step S102 the formation of the Ru film 20 (step S102) was performed by the ALD method shown in FIG.
  • steps S201 to S204 shown in FIG. 3 the air pressure inside the processing container 120 was 267 Pa (2 Torr), and the temperature of the substrate 10 was 320 ° C.
  • the total flow rate of the Ru (EtCp) 2 gas and the argon gas as the carrier gas was 150 sccm, and the flow rate of the argon gas as the dilution gas was 250 sccm.
  • the flow rate of argon gas which is a purge gas, was 400 sccm.
  • the flow rate of O 2 gas was 180 sccm, and the flow rate of argon gas, which is a diluting gas, was 220 sccm.
  • the flow rate of argon gas, which is a purge gas was 400 sccm.
  • Ru (EtCp) 2 gas supply time is 5 seconds
  • Ru (EtCp) discharge time of 2 gas was 5 seconds
  • the O 2 gas supply time is 5 seconds
  • the O 2 gas The discharge time was 5 seconds. That is, the time of one cycle was 20 seconds.
  • the target number of cycles N1 was 120.
  • FIG. 8A is a perspective view of the state immediately before the removal of the product according to Example 1 taken by SEM (Scanning Electron Microscope). Since the Ru (EtCp) 2 gas selectively adsorbs to Ru among the Ru and Low-k materials, a Ru film 20 is formed on the conductive film 11 as shown in FIG. 8 (a). The Ru film 20 was formed so as to protrude from the conductive film 11. During the formation of the Ru film 20, small products 21 were formed on the exposed surface of the insulating film 12.
  • step S103 The product 21 was then removed (step S103) by the method shown in FIG.
  • steps S301 to S302 shown in FIG. 4 the air pressure inside the processing container 120 was 600a (4.5 Torr), and the temperature of the substrate 10 was 250 ° C.
  • the flow rate of ClF 3 gas was 400 sccm
  • the flow rate of argon gas as a dilution gas was 400 sccm
  • the partial pressure of ClF 3 gas was 300 Pa (2.25 Torr).
  • step S302 the flow rate of argon gas, which is a purge gas, was 800 sccm.
  • the ClF 3 gas supply time T1 was 10 seconds, and the ClF 3 gas discharge time T2 was 10 seconds.
  • the target number of cycles N2 was 6.
  • FIG. 8B is a perspective view of the state immediately after the removal of the product according to Example 1 taken by SEM.
  • the product 21 By supplying ClF 3 gas to the substrate 10, the product 21 could be removed and the Ru film 20 could be left, as shown in FIG. 8 (b).
  • no damage to the extent that can be discerned in the SEM photograph was observed in the Ru film 20.
  • Reference Examples 1 to 4 a substrate in which a Ru film 20 having a thickness of 24.8 nm is formed on the entire surface of a silicon single crystal substrate as a base substrate 14 by a CVD method is prepared, and the same conditions are used except for the conditions shown in Table 1.
  • the Ru film 20 was etched with ClF 3 gas under the conditions. Table 1 shows the etching conditions, the film thickness of the Ru film 20 after etching, and the etching rate of the Ru film 20.
  • FIG. 9 shows a perspective view of the state before and after etching according to Reference Examples 1 to 4 taken by SEM.
  • 9 (a) shows the state before etching according to Reference Example 1
  • FIG. 9 (b) shows the state after etching according to Reference Example 1
  • FIG. 9 (c) shows the state after etching according to Reference Example 2.
  • 9 (d) shows the state after etching according to Reference Example 3
  • FIG. 9 (e) shows the state after etching according to Reference Example 4.
  • the state before etching according to Reference Examples 2 to 4 is the same as the state before etching according to Reference Example 1 shown in FIG. 9A, and thus the illustration is omitted.
  • the ClF 3 gas was able to evenly etch the entire surface of the Ru film 20 and suppress the acceleration of local etching.
  • the surface of the Ru film 20 after etching was smooth.
  • the surface roughness (Rq) of the Ru film 20 after the supply of ClF 3 gas (step S301) and the discharge of ClF 3 gas (step S302) were alternately repeated was 0.79 nm. there were.
  • the surface roughness of the Ru film 20 after etching in the same conditions (Rq) was 1.10 nm. It was found that the smaller the Rq, the shorter the period of unevenness on the surface and the smoother the surface. Therefore, it was found that the Ru film 20 having a smooth surface can be obtained by repeating the supply and discharge of the ClF 3 gas.
  • Reference Examples 5 to 10 In Reference Examples 5 to 10, similarly to Reference Examples 1 to 4, a substrate in which a Ru film 20 having a film thickness of 24.8 nm is formed on the entire surface of a silicon single crystal substrate which is a base substrate 14 by a CVD method is prepared. except the conditions shown in Table 2, it was etched the Ru film 20 by the O 3 gas under the same conditions. The etching conditions are summarized in Table 2.
  • O 3 gas generated from the O 2 gas was fed a mixed gas of O 2 gas and the O 3 gas into the processing container 120.
  • the O 3 gas concentration in the mixed gas was 250 g / m 3 as shown in Table 2. While the Ru film 20 was etched, the mixed gas was continuously supplied, and the mixed gas was not discharged.
  • FIG. 10 shows a perspective view of the state after etching according to Reference Examples 5 to 10 taken by SEM.
  • FIG. 10A shows the state after etching according to Reference Example 5
  • FIG. 10B shows the state after etching according to Reference Example 6
  • FIG. 10C shows the state after etching according to Reference Example 7.
  • 10 (e) shows the state after etching according to Reference Example 8
  • FIG. 10 (f) shows the state after etching according to Reference Example 10.
  • the state before etching according to Reference Examples 5 to 10 is the same as the state before etching according to Reference Example 1 shown in FIG. 9A, and thus the illustration is omitted.
  • O 3 gas will be unevenly etching the entire surface of the Ru film 20, it is understood that become locally etching the Ru film 20. Therefore, unlike ClF 3 gas, the O 3 gas cannot etch the product 21 and the Ru film 20 at a volume change rate corresponding to the specific surface area of each, so that the Ru film 20 is also removed when the product 21 is removed. It is thought that it will cause damage.
  • Reference Example 11 a substrate in which the TiN film as the conductive film 40 was formed on the entire surface of the silicon single crystal substrate as the base substrate 14 by the ALD method was prepared, and the TiN film was etched by the method shown in FIG.
  • the air pressure inside the processing container 120 was 533a (4 Torr), and the temperature of the substrate was 100 ° C.
  • the flow rate of ClF 3 gas was 20 sccm
  • the flow rate of nitrogen gas as a dilution gas was 2000 sccm
  • the partial pressure of ClF 3 gas was 5 Pa (0.04 Torr). ..
  • the flow rate of nitrogen gas which is a purge gas, was 2020 sccm.
  • the ClF 3 gas supply time T1 was 2 seconds
  • the target number of cycles N2 was 5.
  • FIG. 11A is a perspective view of the state before etching according to Reference Example 11 taken by SEM.
  • FIG. 11B is a cross-sectional view taken by SEM of the state after etching according to Reference Example 11.
  • the ClF 3 gas was able to evenly etch the entire surface of the TiN film which is the conductive film 40, and was able to suppress the acceleration of local etching.
  • the surface of the TiN film after etching was smooth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

第1材料が露出する第1領域、および前記第1材料とは異なる第2材料が露出する第2領域を有する基板を準備する工程と、前記第1領域および前記第2領域のうちの前記第1領域に選択的に所望の対象膜を形成する工程と、前記基板に対してClFガスを供給することにより、前記対象膜の形成時に前記第2領域に生じた生成物を除去する工程とを含む、成膜方法。

Description

成膜方法および成膜装置
 本開示は、成膜方法および成膜装置に関する。
 特許文献1には、基板の第1表面および第2表面のうちの、第1表面には金属材料を堆積し、第2表面には絶縁材料を堆積する技術が開示されている。第1表面は金属または半導体の表面であり、第2表面はOH基等を有する。具体例として、Ru(EtCp)がSi-OHと反応しないことを利用し、Ru膜を第1表面に形成する技術が開示されている。
米国特許出願公開第2015/0299848号明細書
 本開示の一態様は、第1領域に選択的に所望の対象膜を形成した時に第2領域に生じた生成物を除去でき、且つ第1領域に対象膜を残すことができる、技術を提供する。
 本開示の一態様の成膜方法は、
 第1材料が露出する第1領域、および前記第1材料とは異なる第2材料が露出する第2領域を有する基板を準備する工程と、
 前記第1領域および前記第2領域のうちの前記第1領域に選択的に所望の対象膜を形成する工程と、
 前記基板に対してClFガスを供給することにより、前記対象膜の形成時に前記第2領域に生じた生成物を除去する工程とを含む。
 本開示の一態様によれば、第1領域に選択的に所望の対象膜を形成した時に第2領域に生じた生成物を除去でき、且つ第1領域に対象膜を残すことができる。
図1は、第1実施形態に係る成膜方法を示すフローチャートである。 図2は、図1に示す各工程での基板の状態の一例を示す側面図である。 図3は、ALD法を用いたRu膜の形成の一例を示すフローチャートである。 図4は、ClFガスを用いた生成物の除去の一例を示すフローチャートである。 図5は、第2実施形態に係る成膜方法を示すフローチャートである。 図6は、図5に示す各工程での基板の状態の一例を示す側面図である。 図7は、図1または図5に示す成膜方法を実施する成膜装置の一例を示す断面図である。 図8は、実施例1に係る生成物の除去直前と除去直後の状態をSEMで撮像した斜視図である。 図9は、参考例1~4に係るエッチング前後の状態をSEMで撮像した斜視図である。 図10は、参考例5~10に係るエッチング後の状態をSEMで撮像した斜視図である。 図11は、参考例11に係るエッチング前後の状態をSEMで撮像した斜視図または断面図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。
 図1は、第1実施形態に係る成膜方法を示すフローチャートである。図2は、図1に示す各工程での基板の状態の一例を示す側面図である。図2(a)は工程S101で準備される基板の状態を示し、図2(b)は工程S102で得られる基板の状態を示し、図2(c)は工程S103で得られる基板の状態を示す。図2(c)において、工程S103の直前のRu膜20の大きさを破線で示し、工程S103の直後のRu膜20の大きさを実線で示す。
 成膜方法は、図2(a)に示すように基板10を準備する工程S101を含む。準備することは、例えば、後述する処理容器120(図7参照)の内部に基板10を搬入することを含む。基板10は、第1材料が露出する第1領域A1と、第1材料とは異なる第2材料が露出する第2領域A2とを有する。第1領域A1と第2領域A2とは、基板10の板厚方向片側に設けられる。
 なお、図2(a)では第1領域A1および第2領域A2のみが存在するが、第3領域がさらに存在してもよい。第3領域は、第1材料および第2材料とは異なる第3材料が露出する領域である。第3領域は、第1領域A1と第2領域A2との間に配置されてもよいし、第1領域A1および第2領域A2の外に配置されてもよい。
 第1材料は、例えば導電材料である。その導電材料は、本実施形態ではRuであるが、RuO、Pt、PdまたはCuであってもよい。これらの導電材料の表面には、後述する工程S102で対象膜であるRu膜20が形成される。Ru膜20は導電膜である。
 第2材料は、例えばOH基を有する絶縁材料である。その絶縁材料は、本実施形態ではSiOよりも誘電率の低い低誘電率材料(Low-k材料)であるが、Low-k材料には限定されない。絶縁材料の表面には一般的にOH基が存在するので、後述する工程S102でRu膜20の形成を抑制できる。なお、Ru膜20の形成の前に、絶縁材料の表面をオゾン(O)ガスで処理することにより、OH基を増やすことも可能である。
 基板10は、例えば、上記の導電材料で形成される導電膜11と、上記の絶縁材料で形成される絶縁膜12とを有する。基板10は、例えば、絶縁膜12のトレンチに導電膜11を形成し、導電膜11と絶縁膜12とを研磨によって平坦化したものである。研磨は、例えばCMP(Chemical Mechanical Polishing)である。
 なお、導電膜11の表面と絶縁膜12の表面とは、図2(a)では面一であるが、平行にずれていてもよい。つまり、導電膜11の表面と、絶縁膜12の表面との間には、段差が形成されてもよい。導電膜11の表面が絶縁膜12の表面に比べて凹む場合、その凹みがRu膜20の形成時にガイドとしての役割を果たす。
 また、基板10は、導電膜11と絶縁膜12が形成される下地基板14を有する。下地基板14は、例えばシリコンウェハなどの半導体基板である。なお、下地基板14は、ガラス基板などであってもよい。なお、基板10は、下地基板14と絶縁膜12との間に、下地基板14および絶縁膜12とは異なる材料で形成される下地膜をさらに有してもよい。
 成膜方法は、図2(b)に示すように第1領域A1および第2領域A2のうちの第1領域A1に選択的に所望の対象膜を形成する工程S102を含む。対象膜は、例えばRu膜20であり、Ru(EtCp)ガスとOガスとを基板10に対して供給することにより形成される。Ru膜20の形成は、処理容器120(図7参照)の内部で実施される。なお、第1領域A1および第2領域A2に加えて第3領域が存在する場合、第3領域にはRu膜20が形成されてもよいし、形成されなくてもよい。
 Ru膜20は、CVD(Chemical Vapor Deposition)法またはALD(Atomic Layer Deposition)法で形成される。CVD法は、基板10に対してRu(EtCp)ガスとOガスとを同時に供給する。ALD法は、基板10に対してRu(EtCp)ガスとOガスとを交互に供給する。
 図3は、ALD法を用いたRu膜の形成の一例を示すフローチャートである。図3に示すように、Ru膜20の形成(工程S102)は、Ru(EtCp)ガスの供給(工程S201)と、Ru(EtCp)ガスの排出(工程S202)と、Oガスの供給(工程S203)と、Oガスの排出(工程S204)とを含む。これらの工程S201~S204において、処理容器120の内部の気圧は例えば67Pa以上667Pa以下(0.5Torr以上5Torr以下)であり、基板10の温度は例えば250℃以上350℃以下である。
 Ru(EtCp)ガスの供給(工程S201)は、液体のRu(EtCp)を収容する原料容器を60~100℃に加熱し、気化したRu(EtCp)ガスをキャリアガスと共に原料容器から処理容器120に供給することを含む。処理容器120の内部には、Ru(EtCp)ガスおよびキャリアガスに加えて、Ru(EtCp)ガスを希釈する希釈ガスも供給されてもよい。キャリアガスおよび希釈ガスとして、アルゴン(Ar)ガスなどの不活性ガスが用いられる。Ru(EtCp)ガスの供給(工程S201)は、処理容器120の内部の気圧変動を抑制すべく、処理容器120の内部を真空ポンプで排気することをさらに含んでもよい。
 Ru(EtCp)ガスの排出(工程S202)は、処理容器120の内部へのRu(EtCp)ガスの供給を停止した状態で、処理容器120の内部を真空ポンプで排気することを含む。Ru(EtCp)ガスの排出(工程S202)は、処理容器120の内部の気圧変動を抑制すべく、処理容器120の内部にパージガスを供給することをさらに含んでもよい。パージガスとして、アルゴンガスなどの不活性ガスが用いられる。
 Oガスの供給(工程S203)は、処理容器120にOガスを供給することを含む。処理容器120の内部には、Oガスに加えて、Oガスを希釈する希釈ガスも供給されてもよい。希釈ガスとして、アルゴン(Ar)ガスなどの不活性ガスが用いられる。Oガスの供給(工程S203)は、処理容器120の内部の気圧変動を抑制すべく、処理容器120の内部を真空ポンプで排気することをさらに含んでもよい。
 Oガスの排出(工程S204)は、Ru(EtCp)ガスの排出(工程S202)と同様に、処理容器120の内部へのOガスの供給を停止した状態で、処理容器120の内部を真空ポンプで排気することを含む。また、Oガスの排出(工程S204)は、処理容器120の内部の気圧変動を抑制すべく、処理容器120の内部にパージガスを供給することをさらに含んでもよい。パージガスとして、アルゴンガスなどの不活性ガスが用いられる。
 Ru(EtCp)ガスの供給(工程S201)と、Ru(EtCp)ガスの排出(工程S202)と、Oガスの供給(工程S203)と、Oガスの排出(工程S204)とは、処理容器120の内部に供給されるガスの合計流量が同じであってよい。これにより、処理容器120の内部の気圧変動をより抑制できる。
 Ru膜20の形成(工程S102)は、上記の工程S201~S204を1サイクルとし、そのサイクルを繰り返し実施する。Ru膜20の形成は、サイクル回数が目標回数N1に達したか否かをチェックする工程S205を含む。目標回数N1は、サイクル回数が目標回数N1に達した時にRu膜20の膜厚が目標膜厚に達するように予め実験等で設定される。
 サイクル回数が目標回数N1未満である場合、Ru膜20の膜厚が目標膜厚に達していないので、上記の工程S201~S204が再び実施される。一方、サイクル回数が目標回数N1である場合、Ru膜20の膜厚が目標膜厚に達しているので、今回の処理が終了する。
 ところで、Ru(EtCp)ガスは、OH基の存在する表面に吸着することなく、OH基の存在しない表面に吸着する。図2(a)に示すように、第1領域A1にはOH基が存在せず、第2領域A2にはOH基が存在する。それゆえ、図2(b)に示すように、Ru膜20は、第1領域A1および第2領域A2のうちの第1領域A1に選択的に形成される。Ru膜20は、図2(b)に示すように、第1領域A1からはみ出すように形成されてもよい。
 Ru(EtCp)ガスは、基本的には第2領域A2には吸着しない。しかし、第2領域A2に欠陥が存在すると、その欠陥にRu(EtCp)ガスが吸着してしまう。欠陥として、CMPなどの研磨で残る金属、またはダメージが挙げられる。第2領域A2の欠陥にRu(EtCp)ガスが吸着してしまうので、図2(b)に示すように、第2領域A2にも生成物21が島状に形成されてしまう。この生成物21は、Ru膜20と同様にRuで形成される。従って、絶縁材料が露出すべき領域に、導電性の生成物21が形成されてしまう。
 そこで、成膜方法は、基板10に対してClFガスを供給することにより、図2(c)に示すようにRu膜20の形成時に第2領域A2に生じた生成物21を除去する工程S103を含む。この工程S103では、生成物21を除去するエッチングガスとして、Oガスではなく、ClFガスを用いる。
 ClFガスは、生成物21をその表面からエッチングする。この時、ClFガスはRu膜20をもその表面からエッチングするが、Ru膜20の体積変化は生成物21の体積変化に比べて緩やかである。Ru膜20の比表面積(単位体積当たりの表面積)は、生成物21の比表面積に比べて小さいからである。
 ClFガスは、Oガスに比べて、Ruの表面全体を均等にエッチングでき、局所的なエッチングの加速を抑制できるので、生成物21とRu膜20とをそれぞれの比表面積に応じた体積変化速度でエッチングできる。従って、ClFガスは、第2領域A2に生じた生成物21を除去でき、且つ第1領域A1にRu膜20を残すことができる。
 ClFガスは、生成物21と化学反応することにより、生成物21を除去する。ClFガスは、生成物21との化学反応を促進すべく、高温に加熱されてもよい。また、ClFガスは、生成物21との化学反応を促進すべく、プラズマ化されてもよいが、本実施形態ではプラズマ化しない。本実施形態では、Ru膜20のダメージ低減の観点から、ClFガスをプラズマ励起することなく、熱励起する。熱励起によってClラジカルまたはFラジカルなどが発生し、これらのラジカルが生成物21と化学反応する。生成物21の除去は、処理容器120(図7参照)の内部で実施される。
 図4は、ClFガスを用いた生成物の除去の一例を示すフローチャートである。図4に示すように、生成物21の除去(工程S103)は、ClFガスの供給(工程S301)と、ClFガスの排出(工程S302)とを含む。これらの工程S301~S302において、処理容器120の内部の気圧は例えば133Pa以上1333Pa以下(1Torr以上10Torr以下)であり、基板10の温度は例えば150℃以上250℃以下である。
 ClFガスの供給(工程S301)は、処理容器120の内部にClFガスを供給することを含む。処理容器120の内部には、ClFガスに加えて、ClFガスを希釈する希釈ガスも供給されてもよい。希釈ガスとして、アルゴン(Ar)ガスなどの不活性ガスが用いられる。処理容器120の内部のClFガスの分圧は、例えば67Pa以上667Pa以下(0.5Torr以上5Torr以下)である。ClFガスの供給(工程S301)は、処理容器120の内部の気圧変動を抑制すべく、処理容器120の内部を真空ポンプで排気することをさらに含んでもよい。
 ClFガスの排出(工程S302)は、処理容器120の内部へのClFガスの供給を停止した状態で、処理容器120の内部を真空ポンプで排気することを含む。ClFガスの排出(工程S302)は、処理容器120の内部の気圧変動を抑制すべく、処理容器120の内部にパージガスを供給することをさらに含んでもよい。パージガスとして、アルゴンガスなどの不活性ガスが用いられる。
 ClFガスの供給(工程S301)と、ClFガスの排出(工程S302)とは、処理容器120の内部に供給されるガスの合計流量が同じであってよい。これにより、処理容器120の内部の気圧変動をより抑制できる。
 生成物21の除去(工程S103)は、上記の工程S301~S302を1サイクルとし、そのサイクルを繰り返し実施する。1サイクル中、ClFガスの供給時間T1は例えば1秒以上20秒以下であり、ClFガスの排出時間T2は例えば1秒以上20秒以下である。1サイクルの時間T(T=T1+T2)は例えば5秒以上40秒以下であり、1サイクルの時間Tに占めるClFガスの供給時間T1の割合(T1/T)は例えば0.3以上0.7以下である。
 生成物21の除去(工程S103)は、サイクル回数が目標回数N2に達したか否かをチェックする工程S303を含む。目標回数N2は、サイクル回数が目標回数N2に達した時に生成物21が除去されるように予め実験等で設定される。目標回数N2はRu膜20の目標膜厚(つまり、図3の目標回数N1)などで決まり、Ru膜20の目標膜厚が小さいほど目標回数N2が小さい。
 サイクル回数が目標回数N2未満である場合、生成物21の一部が残っているので、上記の工程S301~S302が再び実施される。一方、サイクル回数が目標回数N1である場合、生成物21が除去済みであるので、今回の処理が終了する。
 生成物21の除去(工程S103)は、図4に示すように、ClFガスの供給(工程S301)と、ClFガスの排出(工程S302)とを交互に繰り返し実施することを含む。ClFガスの排出を実施することなく、ClFガスの供給を実施し続ける場合に比べて、Ruの結晶粒界でエッチングが加速するのを防止でき、表面の滑らかなRu膜20が得られる。
 ところで、本実施形態の成膜方法は図1に示すようにRu膜20の形成(工程S102)と生成物21の除去(工程S103)とを1回ずつ含むが、本開示の技術はこれに限定されない。成膜方法は、Ru膜20の膜厚が目標膜厚になるまで、Ru膜20の形成と、生成物21の除去とを交互に繰り返し実施することを含んでもよい。この場合、図3の目標回数N1は、例えば、Ru膜20の膜厚が目標膜厚になるまでのRu膜20の形成回数と、Ru膜20の目標膜厚とで決まる。また、図4の目標回数N2は、上記の通り、図3の目標回数N1などで決まる。
 Ru膜20の形成を複数回に分けて実施することで、1回毎に堆積する生成物21のサイズを小さくできる。生成物21のサイズが小さいほど、生成物21の比表面積が小さくなるので、生成物21の除去に要する時間を短縮でき、生成物21の除去時に生じうるRu膜20のダメージを軽減できる。
 図5は、第2実施形態に係る成膜方法を示すフローチャートである。図6は、図5に示す各工程での基板の状態の一例を示す側面図である。図6(a)は工程S101で準備される基板の状態を示し、図6(b)は工程S111で得られる基板の状態を示し、図6(c)は工程S112で得られる基板の状態を示し、図6(d)は工程S102で得られる基板の状態を示し、図6(e)は工程S103で得られる基板の状態を示す。以下、本実施形態と上記第1実施形態との相違点について主に説明する。
 成膜方法は、図6(a)に示すように基板10を準備する工程S101を含む。基板10は、第1材料が露出する第1領域A1と、第1材料とは異なる第2材料が露出する第2領域A2とを有する。なお、図6(a)では第1領域A1および第2領域A2のみが存在するが、第3領域がさらに存在してもよい。
 第1材料は、例えば半導体であり、より詳細にはアモルファスシリコン(a-Si)である。a-Siは、ドーパントを含んでもよいし、含まなくてもよい。アモルファスシリコンの代わりに、多結晶シリコンなどが用いられてもよい。また、第1材料として、金属が用いられてもよい。これらの材料の表面にはOH基が存在しないので、後述する工程S112で自己組織化単分子膜(Self-Assembled Monolayer:SAM)30の形成を抑制できる。
 第2材料は、例えばOH基を有する絶縁材料である。その絶縁材料は、本実施形態では酸化ケイ素であるが、酸化ケイ素には限定されない。絶縁材料の表面には、一般的にOH基が存在するので、後述する工程S112でSAM30が形成される。なお、SAM30の形成の前に、絶縁材料の表面をオゾン(O)ガスで処理することにより、OH基を増やすことも可能である。
 基板10は、例えば、上記の半導体で形成される半導体膜13と、上記の絶縁材料で形成される絶縁膜12とを有する。なお、半導体膜13の代わりに、金属膜が形成されてもよい。半導体膜13(または金属膜)の表面には、大気中で、酸化膜が時間の経過と共に自然に形成される。その場合、酸化膜は、後述するSAM30の形成(工程S112)の前に除去される。
 また、基板10は、半導体膜13と絶縁膜12が形成される下地基板14を有する。下地基板14は、例えばシリコンウェハなどの半導体基板である。なお、下地基板14は、ガラス基板などであってもよい。
 なお、基板10は、下地基板14と半導体膜13との間に、下地基板14および半導体膜13とは異なる材料で形成される下地膜をさらに有してもよい。同様に、基板10は、下地基板14と絶縁膜12との間に、下地基板14および絶縁膜12とは異なる材料で形成される下地膜をさらに有してもよい。
 成膜方法は、図6(b)に示すように第1材料の水素終端処理を実施する工程S111を含む。水素終端処理は、未結合手(ダンブリングボンド)に水素を結合する処理である。第1材料の水素終端処理によって、後述する工程S112において、第1領域A1におけるSAM30の形成をより抑制できる。第1材料の水素終端処理の後も、第2材料の表面にはOH基が存在する。それゆえ、後述する工程S112において、第2領域A2にはSAM30が形成される。
 水素終端処理は、例えば、基板10に対して水素(H)ガスを供給することにより実施される。水素終端処理は、半導体膜13(または金属膜)の表面酸化によって生じた酸化膜を還元し、除去する処理を兼ねてもよい。水素ガスは、化学反応を促進すべく、高温に加熱されてもよい。また、水素ガスは、化学反応を促進すべく、プラズマ化されてもよい。水素終端処理は、本実施形態ではドライ処理であるが、ウェット処理であってもよい。例えば、水素終端処理は、基板10を希フッ酸に浸漬することにより実施されてもよい。
 成膜方法は、シラン系化合物ガスを基板10に対して供給することにより、図6(c)に示すように、第1領域A1および第2領域A2のうちの第2領域A2に選択的にSAM30を形成する工程S112を含む。SAM30は、シラン系化合物がOH基に化学吸着することにより形成され、後述する対象膜である導電膜40の形成を阻害する。なお、第1領域A1および第2領域A2に加えて第3領域が存在する場合、第3領域にはSAM30が形成されてもよいし、形成されなくてもよい。
 シラン系化合物は、例えば、一般式R-SiH3-xCl(x=1、2、3)で表される化合物、またはR´-Si(O-R)で表される化合物(シランカップリング剤)である。ここで、R、R´は、アルキル基またはアルキル基の水素の少なくとも一部をフッ素に置換した基等の官能基である。その官能基の末端基は、CH系、CF系のいずれでもよい。また、O-Rは、加水分解可能な官能基、例えばメトキシ基、エトキシ基である。
 SAM30の材料であるシラン系化合物は、OH基を有する表面に化学吸着するので、第1領域A1および第2領域A2のうちの第2領域A2に選択的に化学吸着する。従って、第2領域A2に選択的にSAM30が形成される。また、シラン系化合物は、水素終端処理が施された表面に化学吸着しないので、第1領域A1および第2領域A2のうちの第2領域A2により選択的に化学吸着する。従って、第2領域A2により選択的にSAM30が形成される。
 成膜方法は、図6(d)に示すように、第2領域A2に形成したSAM30を用いて、第1領域A1および第2領域A2のうちの第1領域A1に選択的に、対象膜である導電膜40を形成する工程S102を含む。SAM30は導電膜40の形成を阻害するので、導電膜40は第1領域A1に選択的に形成される。
 導電膜40は、例えばCVD法またはALD法で形成される。第1領域A1に元々存在する半導体膜13に、導電膜40を積層できる。半導体膜13は、ドーパントを含む物であってよく、導電性を付与されたものであってよい。導電性の半導体膜13に、導電膜40を積層できる。導電膜40の材料は、特に限定されないが、例えば窒化チタンである。以下、窒化チタンを、窒素とチタンとの組成比に関係なくTiNとも表記する。
 導電膜40としてTiN膜をALD法で形成する場合、処理ガスとして、テトラキスジメチルアミノチタン(TDMA:Ti[N(CH)ガスまたは四塩化チタン(TiCl)ガスなどのTi含有ガスと、アンモニア(NH)ガスなどの窒化ガスとが、基板10に対して交互に供給される。Ti含有ガスおよび窒化ガスの他に、水素(H)ガスなどの改質ガスが基板10に対して供給されてもよい。これらの処理ガスは、化学反応を促進すべく、プラズマ化されてもよい。また、これらの処理ガスは、化学反応を促進すべく、加熱されてもよい。
 ところで、SAM30は導電膜40の形成を阻害するので、導電膜40は第1領域A1および第2領域A2のうちの第1領域A1に選択的に形成される。しかし、導電膜40の材料であるガスがSAM30にも僅かに吸着してしまうので、図6(d)に示すように、第2領域A2にも生成物41が島状に堆積してしまう。この生成物41は、導電膜40と同じ材料、例えばTiNで形成される。
 そこで、成膜方法は、基板10に対してClFガスを供給することにより、図6(e)に示すように導電膜40の形成時に第2領域A2に生じた生成物41を除去する工程S103を含む。生成物41の除去は、上記第1実施形態の生成物21の除去と同様に行われる。従って、第2領域A2に生じた生成物41を除去でき、且つ第1領域A1に導電膜40を残すことができる。
 なお、ClFガスは、生成物41の除去だけではなく、SAM30の薄化または除去も可能である。SAM30の薄化または除去によって、生成物41のリフトオフを実施できる。
 TiNは、Ruに比べて、ClFガスによってエッチングされやすい。エッチングの局所的な加速を抑制すべく、生成物41の除去は、生成物21の除去とは異なる条件で実施されてよい。具体的には、TiNのエッチングが緩やかになるように、基板10の温度は低く、ClFガスの分圧は低く、1サイクルの時間T(T=T1+T2)に占めるClFガスの供給時間T1の割合(T1/T)は小さい。
 例えば、ClFガスの供給(工程S301)およびClFガスの排出(工程S302)において、基板10の温度は例えば70℃以上150℃以下である。また、ClFガスの供給(工程S301)において、処理容器120の内部のClFガスの分圧は、例えば1.3Pa以上27Pa以下(0.01Torr以上0.2Torr以下)である。さらに、1サイクル中、ClFガスの供給時間T1は例えば1秒以上5秒以下であり、ClFガスの排出時間T2は例えば3秒以上20秒以下である。1サイクルの時間T(T=T1+T2)は例えば4秒以上25秒以下であり、1サイクルの時間Tに占めるClFガスの供給時間T1の割合(T1/T)は例えば0.1以上0.5以下である。
 生成物41の除去(工程S103)は、図4に示すように、ClFガスの供給(工程S301)と、ClFガスの排出(工程S302)とを交互に繰り返し実施することを含む。ClFガスの排出を実施することなく、ClFガスの供給を実施し続ける場合に比べて、TiNの結晶粒界でエッチングが加速するのを防止でき、表面の滑らかな導電膜40が得られる。
 ところで、本実施形態の成膜方法は図5に示すように導電膜40の形成(工程S102)と生成物41の除去(工程S103)とを1回ずつ含むが、本開示の技術はこれに限定されない。成膜方法は、導電膜40の膜厚が目標膜厚になるまで、導電膜40の形成と、生成物41の除去とを交互に繰り返し実施することを含んでもよい。この場合、図3の目標回数N1は、例えば、導電膜40の膜厚が目標膜厚になるまでの導電膜40の形成回数と、導電膜40の目標膜厚とで決まる。また、図4の目標回数N2は、上記の通り、図3の目標回数N1などで決まる。
 導電膜40の形成を複数回に分けて実施することで、1回毎に堆積する生成物41のサイズを小さくできる。生成物41のサイズが小さいほど、生成物41の比表面積が小さくなるので、生成物41の除去に要する時間を短縮でき、生成物41の除去時に生じうる導電膜40のダメージを軽減できる。
 図7は、図1または図5に示す成膜方法を実施する成膜装置の一例を示す断面図である。成膜装置100は、処理ユニット110と、搬送装置170と、制御装置180とを備える。処理ユニット110は、処理容器120と、基板保持部130と、加熱器140と、ガス供給装置150と、ガス排出装置160とを有する。
 処理ユニット110は、図7には1つのみ図示するが、複数であってもよい。複数の処理ユニット110は、いわゆるマルチチャンバーシステムを形成する。複数の処理ユニット110は、真空搬送室101を囲むように配置される。真空搬送室101は、真空ポンプによって排気され、予め設定された真空度に保持される。真空搬送室101には、搬送装置170が鉛直方向および水平方向に移動可能に、且つ鉛直軸周りに回転可能に配置される。搬送装置170は、複数の処理容器120に対して基板10を搬送する。処理容器120の内部の処理室121と、真空搬送室101とは、これらの気圧がいずれも大気圧よりも低い気圧である時に連通し、基板10の搬入出が行われる。真空搬送室101の代わりに大気搬送室が設けられる場合とは異なり、基板10の搬入出時に大気が大気搬送室から処理室121の内部に流れ込むのを防止できる。処理室121の気圧を下げるための待ち時間を削減でき、基板10の処理速度を向上できる。
 処理容器120は、基板10が通過する搬入出口122を有する。搬入出口122には、搬入出口122を開閉するゲートGが設けられる。ゲートGは、基本的に搬入出口122を閉じており、基板10が搬入出口122を通る時に搬入出口122を開く。搬入出口122の開放時に、処理容器120の内部の処理室121と、真空搬送室101とが連通する。搬入出口122の開放前に、処理室121と真空搬送室101とは、いずれも、真空ポンプ等によって排気され、予め設定された気圧に維持される。
 基板保持部130は、処理容器120の内部で基板10を保持する。基板保持部130は、基板10の処理ガスに曝される表面を上に向けて、基板10を下方から水平に保持する。基板保持部130は、枚葉式であって、一枚の基板10を保持する。なお、基板保持部130は、バッチ式でもよく、同時に複数枚の基板10を保持してもよい。バッチ式の基板保持部130は、複数枚の基板10を、鉛直方向に間隔をおいて保持してもよいし、水平方向に間隔をおいて保持してもよい。
 加熱器140は、基板保持部130で保持されている基板10を加熱する。加熱器140は、例えば電気ヒータであり、電力供給によって発熱する。加熱器140は、例えば、基板保持部130の内部に埋め込まれ、基板保持部130を加熱することにより、基板10を所望の温度に加熱する。なお、加熱器140は、石英窓を介して基板保持部130を加熱するランプを含んでもよい。この場合、石英窓が堆積物で不透明になるのを防止すべく、基板保持部130と石英窓との間にアルゴンガスなどの不活性ガスが供給されてもよい。また、加熱器140は、処理容器120の外部から処理容器120の内部に配置される基板10を加熱してもよい。
 なお、処理ユニット110は、基板10を加熱する加熱器140だけではなく、基板10を冷却する冷却器をさらに有してもよい。基板10の温度を高速で昇温できるだけではなく、基板10の温度を高速で降温できる。一方、基板10の処理が室温で行われる場合、処理ユニット110は加熱器140および冷却器を有しなくてもよい。
 ガス供給装置150は、基板10に対して予め設定された処理ガスを供給する。処理ガスは、例えば、工程S102、S103(または工程S111、S112、S102、S103)毎に用意される。これらの工程は、それぞれが互いに異なる処理容器120の内部で実施されてもよいし、任意の組合せの2つ以上が同じ処理容器120の内部で連続的に実施されてもよい。後者の場合、ガス供給装置150は、工程の順番に従って、複数種類の処理ガスを、予め設定された順番で基板10に対して供給する。
 ガス供給装置150は、例えば、ガス供給管151を介して処理容器120と接続される。ガス供給装置150は、処理ガスの供給源と、各供給源から個別にガス供給管151まで延びる個別配管と、個別配管の途中に設けられる開閉バルブと、個別配管の途中に設けられる流量制御器とを有する。開閉バルブが個別配管を開くと、供給源からガス供給管151に処理ガスが供給される。その供給量は流量制御器によって制御される。一方、開閉バルブが個別配管を閉じると、供給源からガス供給管151への処理ガスの供給が停止される。
 ガス供給管151は、ガス供給装置150から供給される処理ガスを、処理容器120の内部、例えばシャワーヘッド152に供給する。シャワーヘッド152は、基板保持部130の上方に設けられる。シャワーヘッド152は、内部に空間153を有し、空間153に溜めた処理ガスを多数のガス吐出孔154から鉛直下方に向けて吐出する。シャワー状の処理ガスが、基板10に対して供給される。
 ガス排出装置160は、処理容器120の内部からガスを排出する。ガス排出装置160は、排気管161を介して処理容器120と接続される。ガス排出装置160は、真空ポンプなどの排気源と、圧力制御器とを有する。排気源を作動させると、処理容器120の内部からガスが排出される。処理容器120の内部の気圧は、圧力制御器によって制御される。
 制御装置180は、例えばコンピュータで構成され、CPU(Central Processing Unit)181と、メモリなどの記憶媒体182とを備える。記憶媒体182には、成膜装置100において実行される各種の処理を制御するプログラムが格納される。制御装置180は、記憶媒体182に記憶されたプログラムをCPU181に実行させることにより、成膜装置100の動作を制御する。また、制御装置180は、入力インターフェース183と、出力インターフェース184とを備える。制御装置180は、入力インターフェース183で外部からの信号を受信し、出力インターフェース184で外部に信号を送信する。
 制御装置180は、図1または図5に示す成膜方法を実施するように、加熱器140、ガス供給装置150、ガス排出装置160、および搬送装置170を制御する。制御装置180は、ゲートGも制御する。
 (実施例1)
 実施例1では、図2(a)に示す基板10を用意した。用意した基板10は、Low-k材料製の絶縁膜12のトレンチにRu製の導電膜11を形成し、導電膜11と絶縁膜12とをCMPによって平坦化したものであった。
 次いで、Ru膜20の形成(工程S102)は、図3に示すALD法で行った。図3に示す工程S201~S204において、処理容器120の内部の気圧は267Pa(2Torr)であり、基板10の温度は320℃であった。Ru(EtCp)ガスの供給(工程S201)において、Ru(EtCp)ガスとキャリアガスであるアルゴンガスの合計流量は150sccmであり、希釈ガスであるアルゴンガスの流量は250sccmであった。Ru(EtCp)ガスの排出(工程S202)において、パージガスであるアルゴンガスの流量は400sccmであった。Oガスの供給(工程S203)において、Oガスの流量は180sccmであり、希釈ガスであるアルゴンガスの流量は220sccmであった。Oガスの排出(工程S204)において、パージガスであるアルゴンガスの流量は400sccmであった。1サイクル中、Ru(EtCp)ガスの供給時間は5秒であり、Ru(EtCp)ガスの排出時間は5秒であり、Oガスの供給時間は5秒であり、Oガスの排出時間は5秒であった。つまり、1サイクルの時間は20秒であった。サイクルの目標回数N1は120回であった。
 図8(a)は、実施例1に係る生成物の除去直前の状態をSEM(Scanning Electron Microscope)で撮像した斜視図である。Ru(EtCp)ガスはRuとLow-k材料のうちのRuに選択的に吸着するので、図8(a)に示すように、導電膜11上にRu膜20が生じた。Ru膜20は導電膜11からはみ出すように生じた。Ru膜20の形成時に、小さな生成物21が絶縁膜12の露出面に生じた。
 次いで、生成物21の除去(工程S103)は、図4に示す方法で行った。図4に示す工程S301~S302において、処理容器120の内部の気圧は600a(4.5Torr)であり、基板10の温度は250℃であった。ClFガスの供給(工程S301)において、ClFガスの流量は400sccmであり、希釈ガスであるアルゴンガスの流量は400sccmであり、ClFガスの分圧は300Pa(2.25Torr)であった。ClFガスの排出(工程S302)において、パージガスであるアルゴンガスの流量は800sccmであった。1サイクル中、ClFガスの供給時間T1は10秒であり、ClFガスの排出時間T2は10秒であった。1サイクルの時間T(T=T1+T2)は20秒であり、1サイクルの時間Tに占めるClFガスの供給時間T1の割合(T1/T)は0.5であった。サイクルの目標回数N2は6回であった。
 図8(b)は、実施例1に係る生成物の除去直後の状態をSEMで撮像した斜視図である。ClFガスを基板10に対して供給することにより、図8(b)に示すように、生成物21を除去でき、Ru膜20を残すことができた。また、SEM写真で判別できる程度のダメージは、Ru膜20に認められなかった。
 (参考例1~4)
 参考例1~4では、膜厚24.8nmのRu膜20を、下地基板14であるシリコン単結晶基板の表面全体にCVD法で形成した基板を用意し、表1に示す条件以外、同一の条件でClFガスによってRu膜20をエッチングした。エッチング条件と、エッチング後のRu膜20の膜厚と、Ru膜20のエッチング速度とを表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、基板の温度が高いほど、また、ClFガス供給時のClFガスの分圧が高いほど、エッチング速度が速いことがわかる。
 参考例1~4に係るエッチング前後の状態をSEMで撮像した斜視図を、図9に示す。図9(a)は参考例1に係るエッチング前の状態を、図9(b)は参考例1に係るエッチング後の状態を、図9(c)は参考例2に係るエッチング後の状態を、図9(d)は参考例3に係るエッチング後の状態を、図9(e)は参考例4に係るエッチング後の状態を、それぞれ示す。なお、参考例2~4に係るエッチング前の状態は、図9(a)に示す参考例1に係るエッチング前の状態と同様であるので、図示を省略する。
 図9から明らかなように、ClFガスは、Ru膜20の表面全体を均等にエッチングでき、局所的なエッチングの加速を抑制できた。エッチング後のRu膜20の表面は滑らかであった。
 なお、一例として、ClFガスの供給(工程S301)と、ClFガスの排出(工程S302)とを交互に繰り返し実施した後のRu膜20の表面粗さ(Rq)は、0.79nmであった。一方、ClFガスの排出を実施することなく、ClFガスの供給を実施し続けた以外、同じ条件でエッチングした後のRu膜20の表面粗さ(Rq)は1.10nmであった。Rqが小さいほど表面の凹凸の周期が短く、表面が滑らかであったので、ClFガスの供給と排出とを繰り返すことにより、表面の滑らかなRu膜20を得られることがわかった。
 (参考例5~10)
 参考例5~10では、参考例1~4と同様に、膜厚24.8nmのRu膜20を、下地基板14であるシリコン単結晶基板の表面全体にCVD法で形成した基板を用意し、表2に示す条件以外、同一の条件でOガスによってRu膜20をエッチングした。エッチング条件を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 OガスはOガスから発生し、OガスとOガスの混合ガスを処理容器120の内部に供給した。混合ガスに占めるOガス濃度は、表2に示すように250g/mであった。なお、Ru膜20をエッチングする間、混合ガスの供給を連続的に行い、混合ガスの排出は行わなかった。
 参考例5~10に係るエッチング後の状態をSEMで撮像した斜視図を、図10に示す。図10(a)は参考例5に係るエッチング後の状態を、図10(b)は参考例6に係るエッチング後の状態を、図10(c)は参考例7に係るエッチング後の状態を、参考例8に係るエッチング後の状態を、図10(e)は参考例9に係るエッチング後の状態を、図10(f)は参考例10に係るエッチング後の状態を、それぞれ示す。なお、参考例5~10に係るエッチング前の状態は、図9(a)に示す参考例1に係るエッチング前の状態と同様であるので、図示を省略する。
 図10から明らかなように、Oガスは、Ru膜20の表面全体を不均等にエッチングしてしまい、Ru膜20を局所的にエッチングしてしまうことがわかる。それゆえ、Oガスは、ClFガスとは異なり、生成物21とRu膜20とをそれぞれの比表面積に応じた体積変化速度でエッチングできないので、生成物21の除去時にRu膜20にもダメージを与えてしまうと考えられる。
 (参考例11)
 参考例11では、導電膜40であるTiN膜を、下地基板14であるシリコン単結晶基板の表面全体にALD法で形成した基板を用意し、図4に示す方法でTiN膜をエッチングした。図4に示す工程S301~S302において、処理容器120の内部の気圧は533a(4Torr)であり、基板の温度は100℃であった。ClFガスの供給(工程S301)において、ClFガスの流量は20sccmであり、希釈ガスである窒素ガスの流量は2000sccmであり、ClFガスの分圧は5Pa(0.04Torr)であった。ClFガスの排出(工程S302)において、パージガスである窒素ガスの流量は2020sccmであった。1サイクル中、ClFガスの供給時間T1は2秒であり、ClFガスの排出時間T2は5秒であった。つまり、1サイクルの時間T(T=T1+T2)は7秒であり、1サイクルの時間Tに占めるClFガスの供給時間T1の割合(T1/T)は0.29であった。サイクルの目標回数N2は5回であった。
 図11(a)は、参考例11に係るエッチング前の状態をSEMで撮像した斜視図である。図11(b)は、参考例11に係るエッチング後の状態をSEMで撮像した断面図である。図11から明らかなように、ClFガスは、導電膜40であるTiN膜の表面全体を均等にエッチングでき、局所的なエッチングの加速を抑制できた。エッチング後のTiN膜の表面は滑らかであった。
 以上、本開示に係る成膜方法および成膜装置の実施形態について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、および組合わせが可能である。それらについても当然に本開示の技術的範囲に属する。
 本出願は、2019年3月15日に日本国特許庁に出願した特願2019-048532号に基づく優先権を主張するものであり、特願2019-048532号の全内容を本出願に援用する。
10  基板
11  導電膜
12  絶縁膜
14  下地基板
20  Ru膜
21  生成物
30  SAM(自己組織化単分子膜)
40  導電膜
41  生成物
100 成膜装置
110 処理ユニット
120 処理容器
130 基板保持部
140 加熱器
150 ガス供給装置
160 ガス排出装置
170 搬送装置
180 制御装置

Claims (7)

  1.  第1材料が露出する第1領域、および前記第1材料とは異なる第2材料が露出する第2領域を有する基板を準備する工程と、
     前記第1領域および前記第2領域のうちの前記第1領域に選択的に所望の対象膜を形成する工程と、
     前記基板に対してClFガスを供給することにより、前記対象膜の形成時に前記第2領域に生じた生成物を除去する工程とを含む、成膜方法。
  2.  前記第1材料は、導電材料であって、Ru、RuO、Pt、PdまたはCuであり、
     前記第2材料は、OH基を有する絶縁材料であり、
     前記対象膜を形成する工程は、前記基板に対してRu(EtCp)ガスとOガスとを供給することにより、前記対象膜としてRu膜を形成することを含む、請求項1に記載の成膜方法。
  3.  前記第1材料は、金属または半導体であり、
     前記第2材料は、OH基を有する絶縁材料であり、
     前記第1領域および前記第2領域のうちの前記第2領域に選択的に自己組織化単分子膜を形成する工程を含み、
     前記対象膜を形成する工程は、前記第2領域に形成した前記自己組織化単分子膜を用いて、前記第1領域および前記第2領域のうちの前記第1領域に前記対象膜を形成することを含む、請求項1に記載の成膜方法。
  4.  前記自己組織化単分子膜の形成前に、前記第1材料の水素終端処理を実施する工程を含む、請求項3に記載の成膜方法。
  5.  前記生成物を除去する工程は、前記基板を収容した処理容器の内部に前記ClFガスを供給することと、前記処理容器の内部への前記ClFガスの供給を停止した状態で前記処理容器の内部から前記ClFガスを排出することとを交互に繰り返し実施することを含む、請求項1~4のいずれか1項に記載の成膜方法。
  6.  前記対象膜の膜厚が目標膜厚になるまで、前記対象膜を形成する工程と前記生成物を除去する工程とが交互に繰り返される、請求項1~5のいずれか1項に記載の成膜方法。
  7.  処理容器と、
     前記処理容器の内部で前記基板を保持する基板保持部と、
     前記基板保持部で保持されている前記基板を加熱する加熱器と、
     前記処理容器の内部にガスを供給するガス供給装置と、
     前記処理容器の内部からガスを排出するガス排出装置と、
     前記処理容器に対して前記基板を搬入出する搬送装置と、
     請求項1~6のいずれか1項に記載の成膜方法を実施するように、前記加熱器、前記ガス供給装置、前記ガス排出装置および前記搬送装置を制御する制御装置とを備える、成膜装置。
PCT/JP2020/009208 2019-03-15 2020-03-04 成膜方法および成膜装置 WO2020189288A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/593,166 US20220189777A1 (en) 2019-03-15 2020-03-04 Film formation method and film formation apparatus
KR1020217031738A KR102651019B1 (ko) 2019-03-15 2020-03-04 성막 방법 및 성막 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048532A JP7154159B2 (ja) 2019-03-15 2019-03-15 成膜方法および成膜装置
JP2019-048532 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189288A1 true WO2020189288A1 (ja) 2020-09-24

Family

ID=72430284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009208 WO2020189288A1 (ja) 2019-03-15 2020-03-04 成膜方法および成膜装置

Country Status (5)

Country Link
US (1) US20220189777A1 (ja)
JP (1) JP7154159B2 (ja)
KR (1) KR102651019B1 (ja)
TW (1) TW202104636A (ja)
WO (1) WO2020189288A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070909A1 (ja) * 2020-09-29 2022-04-07 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2022220190A1 (ja) * 2021-04-15 2022-10-20 東京エレクトロン株式会社 表面処理方法及び基板処理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022185487A (ja) 2021-06-02 2022-12-14 東京エレクトロン株式会社 成膜方法及び成膜装置
JP7552906B2 (ja) 2021-06-30 2024-09-18 三菱電機株式会社 電力増幅器および高周波モジュール
JP7039085B1 (ja) * 2021-08-30 2022-03-22 株式会社クリエイティブコーティングス 成膜装置
JP2023117899A (ja) 2022-02-14 2023-08-24 東京エレクトロン株式会社 凹部にルテニウムを埋め込む方法、及び装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197434A (ja) * 1997-07-23 1999-04-09 Hitachi Ltd 成膜装置、クリーニング方法、及び成膜方法
JP2006257551A (ja) * 2005-03-15 2006-09-28 Asm Internatl Nv Aldによる貴金属の促進された堆積
WO2014007028A1 (ja) * 2012-07-04 2014-01-09 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2018059182A (ja) * 2016-07-19 2018-04-12 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ タングステンの選択堆積
JP2019062142A (ja) * 2017-09-28 2019-04-18 東京エレクトロン株式会社 選択成膜方法および半導体装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047435B2 (en) 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197434A (ja) * 1997-07-23 1999-04-09 Hitachi Ltd 成膜装置、クリーニング方法、及び成膜方法
JP2006257551A (ja) * 2005-03-15 2006-09-28 Asm Internatl Nv Aldによる貴金属の促進された堆積
WO2014007028A1 (ja) * 2012-07-04 2014-01-09 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2018059182A (ja) * 2016-07-19 2018-04-12 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ タングステンの選択堆積
JP2019062142A (ja) * 2017-09-28 2019-04-18 東京エレクトロン株式会社 選択成膜方法および半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070909A1 (ja) * 2020-09-29 2022-04-07 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2022220190A1 (ja) * 2021-04-15 2022-10-20 東京エレクトロン株式会社 表面処理方法及び基板処理装置

Also Published As

Publication number Publication date
US20220189777A1 (en) 2022-06-16
JP2020147829A (ja) 2020-09-17
TW202104636A (zh) 2021-02-01
KR20210134737A (ko) 2021-11-10
KR102651019B1 (ko) 2024-03-26
JP7154159B2 (ja) 2022-10-17

Similar Documents

Publication Publication Date Title
WO2020189288A1 (ja) 成膜方法および成膜装置
JP5495847B2 (ja) 半導体装置の製造方法、基板処理装置および基板処理方法
US9666430B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2017069230A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20090117743A1 (en) Film formation apparatus and method for using same
TW202013479A (zh) 蝕刻方法及蝕刻裝置
TW201616577A (zh) 蝕刻方法
WO2004095559A1 (ja) シリコン酸化膜の除去方法及び処理装置
TWI608536B (zh) Etching method and memory medium
TWI796388B (zh) 減少或消除鎢膜中缺陷的方法
WO2021132163A1 (ja) 成膜方法及び成膜装置
WO2020184284A1 (ja) 成膜方法および成膜装置
WO2020195903A1 (ja) 成膜方法および成膜装置
WO2017199570A1 (ja) クリーニング方法、半導体装置の製造方法、基板処理装置およびプログラム
KR20210123370A (ko) 반도체 장치의 제조 방법, 프로그램, 기판 처리 장치 및 기판 처리 방법
US9646818B2 (en) Method of forming planar carbon layer by applying plasma power to a combination of hydrocarbon precursor and hydrogen-containing precursor
JP2004296820A (ja) 半導体装置の製造方法及び基板処理装置
US20240105443A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing system, and recording medium
US20220254629A1 (en) Deposition method
WO2022059325A1 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
KR20240022988A (ko) 성막 방법 및 성막 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031738

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20774212

Country of ref document: EP

Kind code of ref document: A1