Nothing Special   »   [go: up one dir, main page]

WO2020179675A1 - 電磁弁および緩衝器 - Google Patents

電磁弁および緩衝器 Download PDF

Info

Publication number
WO2020179675A1
WO2020179675A1 PCT/JP2020/008371 JP2020008371W WO2020179675A1 WO 2020179675 A1 WO2020179675 A1 WO 2020179675A1 JP 2020008371 W JP2020008371 W JP 2020008371W WO 2020179675 A1 WO2020179675 A1 WO 2020179675A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
holder
chamber
solenoid valve
valve
Prior art date
Application number
PCT/JP2020/008371
Other languages
English (en)
French (fr)
Inventor
壮大 島内
宏一郎 粟野
隆久 望月
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2020179675A1 publication Critical patent/WO2020179675A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/06Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms
    • B62K25/08Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms for front wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to an improvement of a solenoid valve and a shock absorber.
  • a solenoid valve As a solenoid valve, a cylindrical housing having a port for communicating the inside and the outside, a cylindrical spool slidably inserted into the housing, a spool spring for biasing the spool, and a spool spring
  • a solenoid that drives the spool against the urging force of the above (see, for example, Patent Document 1).
  • a solenoid drives the spool with respect to the housing, and the outer circumference of the spool faces the port to open and close the port, and the degree of opening of the port is adjusted to change the flow path area.
  • the solenoid valve configured in this way is provided in the middle of the passage through which the hydraulic oil passes when the shock absorber expands and contracts, the flow path resistance given to the flow of the hydraulic oil passing through the passage can be varied, and the damping of the shock absorber You can adjust the force.
  • the solenoid valve is highly responsive to a command to change the flow passage area and can change the flow passage area. Therefore, it is suitable for adjusting the damping force of a shock absorber incorporated in a vehicle suspension. It facilitates the implementation of active control such as control.
  • the movable parts of the spool and solenoid are only elastically supported in the axial direction, not fixedly supported. Therefore, when the damping force is adjusted by incorporating the solenoid valve into the shock absorber, when the acceleration is input to the shock absorber, the spool is displaced by the inertial force and the opening of the solenoid valve changes. There is a problem that it cannot be exhibited.
  • an object of the present invention is to provide a solenoid valve capable of suppressing a change in the flow passage area even when there is an external vibration input, and a shock absorber capable of exhibiting a desired damping force.
  • An electromagnetic valve for solving the above-mentioned problems is a holder having a tubular shape and having a port communicating between the inside and the outside, and a spool having a tubular shape and axially reciprocally inserted into the holder and capable of opening and closing the port.
  • an urging spring that urges the spool in one direction of the spool movement
  • a solenoid that can apply a thrust to move the spool in the other direction of the spool movement
  • a holder Provided between the holder and the spool, an urging spring that urges the spool in one direction of the spool movement, a solenoid that can apply a thrust to move the spool in the other direction of the spool movement, and a holder.
  • Hydraulic lock chamber that restricts movement of the spool relative to the holder in one or the other direction when closed, and is capable of reciprocating in a direction that coincides with the spool moving direction and opening and closing of the hydraulic lock chamber. It is provided with a shutter for switching the shutter and a shutter spring for positioning the shutter at a position where the shutter is urged to open the hydraulic lock chamber.
  • the solenoid valve when the vibration is input from the outside, the hydraulic lock chamber is closed by the shutter and the axial displacement of the spool with respect to the holder is suppressed.
  • a shutter may be slidably mounted on the outer circumference of the holder to form a solenoid valve.
  • the solenoid valve configured in this way, the moving directions of the shutter and the spool can be matched by the holder, so that it is not necessary to add a component that guides the movement while matching the moving direction of the shutter with the moving direction of the spool.
  • the cost can be reduced, the flow path resistance in the spool can be reduced, and unnecessary pressure loss does not occur.
  • the solenoid valve may be configured so that the hydraulic lock chamber communicates with the spool when the shutter opens the hydraulic lock chamber. According to the solenoid valve configured in this way, it is possible to prevent a route that bypasses the port and goes back and forth between the outside of the holder and the inside of the spool via the hydraulic lock chamber, and the flow passage area can be adjusted accurately. ..
  • the shock absorber is a cylinder, a piston that is movably inserted into the cylinder in the axial direction and divides the inside of the cylinder into an expansion side chamber and a compression side chamber, is connected to the piston, and has one end protruding outside the cylinder.
  • the solenoid valve provided in the above and the soft side damping element provided in series with the solenoid valve in the bypass path are provided, and the hard side damping element is configured to have an orifice and a leaf valve provided in parallel with the orifice.
  • the soft damping element has a large-diameter orifice having an opening area larger than that of the orifice. According to the shock absorber configured in this manner, even if vibration is input to the shock absorber, fluctuations in the flow passage area of the solenoid valve are suppressed, so that the desired damping force can be exerted.
  • the solenoid valve of the present invention it is possible to suppress the change of the flow passage area even if there is a vibration input from the outside, and the interference of the present invention can exert a desired damping force.
  • FIG. 1 is a vertical sectional view of a shock absorber which is a shock absorber according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a part of FIG. 1 in an enlarged manner.
  • FIG. 3 is a damping force characteristic diagram showing characteristics of the compression side damping force with respect to the piston speed of the shock absorber which is the shock absorber according to the embodiment of the present invention.
  • the shock absorber D according to the embodiment of the present invention is used for a front fork that suspends the front wheels of a saddle type vehicle.
  • the upper and lower sides with the front fork including the shock absorber D attached to the vehicle are simply referred to as “upper” and “lower” unless otherwise specified.
  • the solenoid valve V is a cylindrical holder 6 having a port 6a for communicating the inside and the outside, and is cylindrical and inserted in the holder 6 so as to be axially reciprocable.
  • a spool 7 capable of opening and closing the port 6a, an urging spring 8 for urging the spool 7 toward one of the moving directions of the spool 7, and a thrust for moving the spool 7 toward the other in the moving direction of the spool 7.
  • a solenoid 9 capable of applying pressure, a hydraulic pressure lock chamber RC provided between the holder 6 and the spool 7, a shutter 17 for switching between opening and closing of the hydraulic pressure lock chamber RC, and a liquid urging the shutter 17 for urging the liquid.
  • a shutter spring 18 for positioning the shutter 17 is provided at a position where the pressure lock chamber RC is opened.
  • the solenoid valve V is applied to the shock absorber D.
  • the shock absorber D is a one-sided shock absorber that exerts a damping force only when contracting, and the solenoid valve V is used for adjusting the pressure side damping force of the shock absorber D.
  • the shock absorber D is connected to a one-sided shock absorber that exerts a damping force only when extended by a bracket connected to the steering shaft of the saddle-type vehicle.
  • the shock absorber D and the shock absorber that exerts a damping force only when extended form a pair to form a front fork that supports the front wheels of the saddle-ride type vehicle, and cooperate to vibrate the vehicle body of the saddle-ride type vehicle.
  • the solenoid valve V may be used as a shock absorber that exerts a damping force only when it is extended.
  • the shock absorber D includes a telescopic tube member T including an outer tube 10 and an inner tube 11 slidably inserted into the outer tube 10.
  • the tube member T may be an upright type
  • the outer tube 10 may be an axle side tube
  • the inner tube 11 may be a vehicle body side tube.
  • the upper end of the outer tube 10 which is the upper end of the tube member T is closed by the cap 12.
  • the lower end of the inner tube 11 which is the lower end of the tube member T is closed by the bracket B on the axle side.
  • the cylindrical gap formed between the overlapping portion of the outer tube 10 and the inner tube 11 is closed by an annular seal member 13 that is attached to the lower end of the outer tube 10 and is in sliding contact with the outer circumference of the inner tube 11. .
  • the shock absorber body S has a cylinder 1 provided in an inner tube 11, a piston 2 slidably inserted in the cylinder 1, a lower end connected to the piston 2, and an upper end outside the cylinder 1. It has a piston rod 3 that protrudes and is connected to the cap 12.
  • the cap 12 Since the cap 12 is connected to the outer tube 10, it can be said that the piston rod 3 is connected to the outer tube 10. Further, the cylinder 1 is connected to the inner tube 11. In this way, the shock absorber body S is interposed between the outer tube 10 and the inner tube 11.
  • An annular head member 14 is attached to the upper end of the cylinder 1, and the piston rod 3 penetrates the inside of the head member 14 so as to be movable in the axial direction.
  • the head member 14 slidably supports the piston rod 3.
  • a suspension spring 15 made of a coil spring is interposed between the head member 14 and the cap 12.
  • the suspension spring 15 when the shock absorber D contracts and the piston rod 3 enters the cylinder 1, the suspension spring 15 is compressed and exerts an elastic force to urge the shock absorber D in the extending direction. In this way, the suspension spring 15 exerts an elastic force according to the amount of compression to elastically support the vehicle body.
  • the shock absorber D of the present embodiment is a single rod type, and the piston rod 3 extends from one side of the piston 2 to the outside of the cylinder 1.
  • the shock absorber D may be a double rod type, and the piston rod may extend from both sides of the piston to the outside of the cylinder.
  • the piston rod 3 may project downward from the cylinder 1 and be connected to the axle side, and the cylinder 1 may be connected to the vehicle body side.
  • the suspension spring 15 may be a spring other than a coil spring such as an air spring.
  • a liquid chamber filled with a liquid such as hydraulic oil is formed, and this liquid chamber is divided by the piston 2 into the expansion side chamber La and the compression side chamber Lb.
  • the expansion side chamber here is the one of the two chambers partitioned by the piston that is compressed by the piston when the shock absorber extends.
  • the pressure side chamber is one of the two chambers partitioned by the piston, which is compressed by the piston when the shock absorber contracts.
  • the space between the shock absorber main body S and the tube member T is a liquid reservoir R.
  • the liquid storage chamber R the same liquid as the liquid in the cylinder 1 is stored, and a gas chamber G in which a gas such as air is sealed is formed above the liquid surface.
  • the tube member T functions as an outer shell of the tank 16 for storing the liquid separately from the liquid in the cylinder 1.
  • the liquid reservoir chamber R inside the tank 16 is communicated with the expansion side chamber La, and the pressure of the expansion side chamber La is always substantially the same pressure (tank pressure) as the pressure in the tank 16 (liquid reservoir chamber R). Further, the liquid storage chamber R is separated from the compression side chamber Lb by a valve case 4 fixed to the lower end of the cylinder 1.
  • the valve case 4 is provided with a suction passage 4a that communicates the pressure side chamber Lb and the liquid storage chamber R with a suction valve 40 that opens and closes the suction passage 4a.
  • the suction valve 40 is an extension-side check valve, which opens the suction passage 4a when the shock absorber D extends, and allows the liquid to flow from the liquid reservoir chamber R to the pressure-side chamber Lb through the suction passage 4a. When the shock absorber D contracts, the suction passage 4a is kept closed.
  • the suction valve 40 of the present embodiment is a leaf valve, it may be a poppet valve or the like.
  • the piston 2 is formed with an expansion side passage 2a and a compression side passage 2b that communicate the expansion side chamber La and the compression side chamber Lb, and also includes an expansion side check valve 20 that opens and closes the expansion side passage 2a and a compression side passage 2b.
  • a hard-side damping element 21 that provides resistance to the flow of liquid from the pressure-side chamber Lb toward the extension-side chamber La is mounted.
  • the hard-side damping element 21 is configured to have a leaf valve 21a stacked on the upper side of the piston 2 and an orifice 21b provided in parallel with the leaf valve 21a.
  • the leaf valve 21a is a thin annular plate formed of metal or the like, or a laminated body formed by stacking the annular plates, has elasticity, and is attached to the piston 2 in a state in which the outer peripheral side is allowed to bend.
  • the pressure of the pressure side chamber Lb acts in a direction to bend the outer peripheral portion of the leaf valve 21a upward.
  • the orifice 21b is formed by a notch provided on the outer peripheral portion of the leaf valve 21a that is detached and seated on the valve seat (not indicated) of the piston 2R, but is formed by a stamp or the like provided on the valve seat. It may be formed.
  • the pressure side chamber Lb is compressed by the piston 2 when the shock absorber D contracts, and its internal pressure rises, and becomes higher than the pressure in the extension side chamber La.
  • the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the compression side chamber Lb and the extension side chamber La is less than the valve opening pressure of the leaf valve 21a, the liquid passes through the orifice 21b. Resistance is given to the flow of the liquid while moving from the pressure side chamber Lb to the expansion side chamber La.
  • the differential pressure becomes large and becomes equal to or higher than the valve opening pressure of the leaf valve 21a, the outer peripheral portion of the leaf valve 21a bends, and the liquid passes through the gap formed between the outer peripheral portion and the piston 2 to the pressure side chamber Lb.
  • resistance is imparted to the liquid flow.
  • the hard side damping element 21 having the orifice 21b and the leaf valve 21a parallel to the orifice 21b is a liquid that goes from the compression side chamber Lb to the extension side chamber La when the shock absorber D contracts. Is the first damping element on the pressure side that provides resistance to the flow of. The resistance of the compression-side hard damping element 21 results from the orifice 21b when the piston speed is in the low speed range, and from the leaf valve 21a when the piston speed is in the medium to high speed range.
  • the extension-side check valve 20 opens the extension-side passage 2a when the shock absorber D extends, and allows the liquid to flow through the extension-side passage 2a from the expansion-side chamber La to the compression-side chamber Lb. When D contracts, the extension side passage 2a is maintained in a closed state.
  • the extension side check valve 20 of the present embodiment is a leaf valve, but may be a poppet valve or the like. Furthermore, the extension-side passage 2a and the extension-side check valve 20 may be omitted as long as the liquid is not sufficiently sucked into the cylinder 1.
  • the piston rod 3 is provided with a damping force adjusting unit for changing the flow rate of the liquid passing through the hard side damping element 21.
  • the damping force adjusting unit includes a solenoid valve V that can change the flow path area provided in the middle of the bypass path 3a that bypasses the hard side damping element 21 and communicates the extension side chamber La and the compression side chamber Lb, and the bypass path.
  • the soft side damping element 50 provided in series with the solenoid valve V is provided in the middle of 3a.
  • the piston rod 3 is connected to the piston holding member 30 located at the tip thereof, the solenoid case member 31 connected to the terminal side thereof, and further connected to the terminal side thereof to the outside of the cylinder 1. And a cylindrical rod body 32 that extends.
  • the piston holding member 30 includes a bottomed cylindrical housing portion 30a and a shaft portion 30b protruding downward from a bottom portion of the housing portion 30a.
  • the annular piston 2 is fixed to the outer periphery of the shaft portion 30b with a nut N. Has been done.
  • a valve case 5 is fixed to the inner circumference of the cylindrical portion of the housing portion 30a to partition the inside into an upper chamber 30c and a lower chamber 30d.
  • the valve case 5 is formed with a passage 5a that communicates the upper chamber 30c and the lower chamber 30d, and the soft side damping element 50 is provided in the passage 5a.
  • the shaft portion 30b of the piston holding member 30 is formed with a vertical hole 30e that opens downward and communicates with the inside of the housing portion 30a. The vertical hole 30e connects the lower chamber 30d and the pressure side chamber Lb. ..
  • the solenoid case member 31 includes a tubular portion 31a screwed onto the outer circumference of the upper end of the housing portion 30a.
  • a lateral hole 31b that opens laterally is formed in the tubular portion 31a, and the extension side chamber La and the inside of the solenoid case member 31 are communicated with each other by the lateral hole 31b.
  • a solenoid valve V is provided in the middle of the passage connecting the lateral hole 31b and the upper chamber 30c.
  • a bypass path having a lateral hole 31b, an upper chamber 30c, a lower chamber 30d, and a vertical hole 30e formed in the solenoid case member 31 or the piston holding member 30 and bypassing the hard side damping element 21. 3a is formed.
  • the solenoid valve V and the soft side damping element 50 are provided in series in the middle of the bypass 3a.
  • the outer diameters of the solenoid case member 31 and the piston holding member 30 that house the solenoid valve V and the soft side damping element 50 are smaller than the inner diameter of the cylinder 1, so that the expansion side chamber La is not partitioned by these. ..
  • the soft-side damping element 50 is configured to have a leaf valve 50a stacked on the upper side of the valve case 5 and an orifice 50b provided in parallel with the leaf valve 50a.
  • the leaf valve 50a is a thin annular plate formed of metal or the like, or a laminated body in which the annular plates are stacked, has elasticity, and is attached to the valve case 5 in a state in which the outer peripheral side is allowed to bend. Then, the pressure of the lower chamber 30d acts in the direction of bending the outer peripheral portion of the leaf valve 50a upward. Further, the orifice 50b is formed by a notch provided on the outer peripheral portion of the leaf valve 50a which is seated on and off the valve seat of the valve case 5, but may be formed by stamping or the like provided on the valve seat. Good.
  • the pressure in the lower chamber 30d becomes higher than the pressure in the upper chamber 30c when the shock absorber D is contracted and the solenoid valve V opens the bypass passage 3a.
  • the piston speed is in the low speed range when the shock absorber D contracts and the differential pressure between the upper chamber 30c and the lower chamber 30d is less than the opening pressure of the leaf valve 50a, the liquid passes through the orifice 50b. From the lower chamber 30d to the upper chamber 30c, that is, from the pressure side chamber Lb to the extension side chamber La, resistance is imparted to the flow of the liquid.
  • the outer peripheral portion of the leaf valve 50 bends, and the liquid passes through the gap formed between the outer peripheral portion and the valve case 5 to the lower chamber. From 30d to the upper chamber 30c, that is, from the pressure side chamber Lb to the extension side chamber La, resistance is given to the flow of the liquid.
  • the soft side damping element 50 having the orifice 50b and the leaf valve 50a parallel to the orifice 50b makes the compression side bypass path 3a from the compression side chamber Lb to the extension side chamber when the shock absorber D contracts.
  • a second damping element on the pressure side that provides resistance to the flow of liquid towards La. The resistance of the soft-side damping element 50 results from the orifice 50b when the piston speed is in the low speed range, and from the leaf valve 50a when the piston speed is in the medium to high speed range.
  • the leaf valve 50a of the soft side damping element 50 is a valve having a lower valve rigidity (easy to bend) as compared with the leaf valve 21a of the hard side damping element 21, and when the flow rate is the same, it gives to the flow of liquid. Resistance (pressure loss) is small. In other words, the liquid is more likely to pass through the leaf valve 50a than the leaf valve 21a under the same conditions.
  • the orifice 50b of the soft-side damping element 50 is a large-diameter orifice having a larger opening area than the orifice 21b of the hard-side damping element 21, and when the flow rates are the same, the resistance (pressure loss) given to the liquid flow is small.
  • the solenoid valve V includes a cylindrical holder 6 fixed in the piston rod 3, a cylindrical spool 7 reciprocatingly inserted in the holder 6, and a cylindrical spool 7. Between the biasing spring 8 that biases the spool 7 upward in FIG. 2, which is one of the moving directions, the solenoid 9 that can apply thrust to the spool 7 in the other moving direction, and between the holder 6 and the spool 7.
  • the hydraulic pressure lock chamber RC provided in the above, a shutter 17 for switching between opening and closing of the hydraulic pressure lock chamber RC, and a shutter spring 18 for urging the shutter 17. Then, the solenoid valve V adjusts the position of the spool 7 in the holder 6 to adjust the opening degree.
  • the holder 6 is located above the valve case 5 in the piston rod 3, one end in the axial direction to the upper side (the solenoid case member 31 side), and the other end to the lower side (the valve case 5 side).
  • the piston rod 3 is arranged along the central axis of the piston rod 3 in the facing state.
  • the holder 6 is formed with one or more ports 6a penetrating in the radial direction.
  • the port 6a communicates with the extension side chamber La through the lateral hole 31b of the solenoid case member 31, and is opened and closed by the spool 7.
  • the holder 6 is provided at the large diameter portion 6b on the upper end side in FIG. 2, the small diameter portion 6c on the lower end side in FIG.
  • the inner diameter of the large diameter portion 6b is larger than the inner diameter of the small diameter portion 6c, and the outer diameters of the large diameter portion 6b and the small diameter portion 6c are the same.
  • the diameter is smaller than the inner diameter of the housing portion 30a.
  • a step portion 6e facing upward in FIG. 2 is formed at the boundary between the large diameter portion 6b and the small diameter portion 6c of the holder 6, a step portion 6e facing upward in FIG. 2 is formed.
  • the port 6a is provided in the large diameter portion 6b and communicates the inside and outside of the large diameter portion 6b.
  • the holder 6 is a large-diameter portion 6b, is provided near the stepped portion 6e below the installation position of the port 6a, and has a hole 6f for communicating the inside and outside of the holder 6, and a small-diameter portion 6c. And a hole 6g which is provided in the holder 6 and communicates the inside and the outside of the holder 6.
  • the spool 7 is cylindrical and is slidably inserted into the holder 6 so that it can be reciprocated in the vertical direction in FIG. More specifically, the spool 7 has a large diameter portion 7a having a large outer diameter on the upper side in FIG. 2, a small diameter portion 7b having a small outer diameter on the lower side in FIG. 7a and a small-diameter portion 7b, a stepped portion 7c, an annular groove 7d provided on the outer circumference of the large-diameter portion 7a along the circumferential direction, and an annular groove opened from the inner circumference of the large-diameter portion 7a.
  • the large-diameter portion 7a is slidably contacted with the large-diameter portion 6b having the large inner diameter of the holder 6, and the small-diameter portion 7b is slidably contacted with the small-diameter portion 6c having the small inner diameter of the holder 6. It is slidably inserted.
  • a hydraulic lock chamber RC is formed.
  • the hydraulic lock chamber RC is always opposed to the hole 6f provided in the holder 6 and communicated with the hole 6f.
  • the annular groove 7f provided in the spool 7 faces the hole 6g provided in the small diameter portion 6c of the holder 6, and even if the spool 7 moves in the axial direction with respect to the holder 6, the annular groove 7f is always provided. And the communication with the hole 6g is maintained.
  • the spool 6 opens and closes the port 6a provided in the holder 6. Specifically, when the annular groove 7d provided in the large diameter portion 7a of the spool 7 faces the port 6a of the holder 6, the spool 7 allows the port 6a to communicate with the inside of the spool 7.
  • the port 6a communicates with the extension side chamber La through a lateral hole 31b provided in the solenoid case member 31.
  • the inside of the spool 7 is communicated with the pressure side chamber Lb through the upper chamber 30c, the passage 5a provided in the valve case 5, the lower chamber 30d and the vertical hole 30e.
  • the solenoid valve V is provided in the middle of the bypass passage 3a, and when the port 6a communicates with the inside of the spool 7, the solenoid valve V is opened to open the bypass passage 3a, and the expansion side chamber La and the pressure side are opened through the bypass passage 3a. It communicates with the chamber Lb.
  • a plate 70 is laminated on the upper end of the spool 7, and a plunger 9a of the solenoid 9 which will be described later is in contact with the plate 70.
  • the biasing spring 8 contacts the lower end of the spool 7 and biases the spool 7 upward in FIG. 2, which is one of the moving directions.
  • the biasing spring 8 is a spiral spring that exerts a biasing force that returns the inner periphery to its original position when the inner periphery is displaced in the vertical direction in FIG. 2 relative to the outer periphery.
  • the urging spring 8 is sandwiched between a cylindrical collar 19 fitted to the inner periphery of the housing portion 30a of the piston holding member 30 and the flange portion 6d of the holder 6 and having an outer periphery below the urging spring 8. It is fixed to the piston rod 3.
  • the inner circumference of the biasing spring 8 is fitted into an annular recess 7h provided on the outer circumference of the lower end of the spool 7 in FIG. 2, and the biasing spring 8 moves the spool 7 upward relative to the holder 6 in FIG.
  • an urging force that returns the spool 7 to the original position is exerted.
  • the spool 7 While the spool 7 is biased by the biasing force of the biasing spring 8, it is positioned at the uppermost position as shown in FIG. 2 in a state where the spool 7 receives no thrust from the solenoid 9 that opposes the biasing force of the biasing spring 8.
  • the annular groove 7d is not opposed to the port 6a. Therefore, the solenoid valve V shuts off the bypass passage 3a when not energized.
  • the solenoid 9 of the solenoid valve V is housed in the solenoid case member 31, and although not shown in detail, a cylindrical stator including a coil and a cylindrical movable member movably inserted in the stator. It has an iron core and a plunger 9a which is attached to the inner circumference of the movable iron core and whose tip abuts on the plate 70.
  • the harness 90 that supplies electric power to the solenoid 9 projects outward through the inside of the rod body 32 and is connected to a power source.
  • the solenoid valve V is opened. Further, the relationship between the opening degree of the solenoid valve V and the energization amount to the solenoid 9 is a proportional relationship having a positive proportional constant, and the opening degree increases as the energization amount increases. Further, when the solenoid 9 is de-energized, the solenoid valve V is closed.
  • the solenoid valve V of the present embodiment is of a normally closed type, and the biasing spring 8 urges the spool 7, which is its valve element, in the closing direction, and the solenoid 9 applies thrust in the opening direction to the spool 7.
  • the opening degree increases in proportion to the energization amount of the solenoid valve V, and as the opening degree increases, the flow passage area of the bypass passage 3a increases. Therefore, it can be said that the flow passage area of the bypass passage 3a increases in proportion to the amount of electricity supplied to the solenoid valve V.
  • a shutter 17 is provided on the outer periphery of the holder 6.
  • the shutter 17 has a cylindrical shape and is slidably in contact with the outer periphery of the holder 6 and is capable of reciprocating in the vertical direction in FIG. 2, which is the direction coinciding with the moving direction of the spool 7.
  • An annular groove 17a is provided on the inner circumference of the shutter 17.
  • a C ring 24 is mounted on the outer periphery of the holder 6 as a stopper for defining the upper limit of movement of the shutter 17 in FIG.
  • An annular spring receiver 17b is provided on the outer periphery of the shutter 17, and the shutter spring 18 interposed between the spring receiver 17b and the flange portion 6d of the holder 6 causes the shutter 17 to move upward in FIG. Is biased and positioned so that the upper end abuts the C ring 24.
  • the annular groove 17a formed on the inner peripheral side faces the holes 6f and 6g provided in the holder 6.
  • the hole 6f communicates with the hydraulic lock chamber RC, and the hole 6g always faces the annular groove 7f regardless of the position of the spool 7 and communicates the hole 6g with the spool 7. Therefore, when the shutter 17 is in contact with the C ring 24, the hydraulic lock chamber RC is communicated with the spool 7 through the annular groove 17a, and the hydraulic lock chamber RC is opened by the shutter 17.
  • the hydraulic lock chamber RC is opened in this way, the spool 7 can freely move in and out of the hydraulic lock chamber RC even if the spool 7 moves vertically with respect to the holder 6 in FIG. It does not hinder the movement of 7.
  • the acceleration transmitted to the piston rod 3 is also small. It is maintained in a position where the RC is opened. In this case, the spool 7 can move freely with respect to the holder 6, but since the acceleration is small, even if the spool 7 vibrates with respect to the holder 6, the flow path area of the solenoid valve V does not fluctuate significantly. ..
  • the solenoid valve V when a large acceleration acts from below, the hydraulic lock chamber RC is closed by the shutter 17, so that the positional relationship between the spool 7 and the holder 6 does not change, and even if a large acceleration acts.
  • the flow path area does not change. Therefore, even if vibration is input to the shock absorber D, the fluctuation of the flow path area of the solenoid valve V is suppressed and the damping force generated by the shock absorber D is stabilized, so that the shock absorber D exhibits the desired damping force. it can.
  • the shock absorber D of the present embodiment in addition to the damping force adjusting unit for automatically adjusting the flow rate of the hard side damping element 21 including the solenoid valve V, the flow rate of the hard side damping element 21 is adjusted.
  • a second damping force adjusting portion for manual adjustment is provided. As shown in FIG. 1, the second damping force adjusting portion is provided in the bottom portion of the shock absorber D, and the flow passage area of the discharge passage 4b that connects the pressure side chamber Lb and the liquid reservoir R is manually set. It is configured to have a manual valve 41 that can be changed by operation.
  • the manual valve 41 includes a needle-shaped valve body 41a which is seated on and detached from an annular valve seat (not shown) provided in the middle of the discharge passage 4b.
  • an annular valve seat (not shown) provided in the middle of the discharge passage 4b.
  • the shock absorber D includes a cylinder 1 and a piston 2 that is slidably inserted into the cylinder 1 and divides the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb.
  • the piston rod 3 has a tip connected to the piston 2 and a distal end protruding outside the cylinder 1, and a tank 16 connected to the expansion side chamber La in the cylinder 1, and the pressure in the expansion side chamber La is the tank pressure. It has become.
  • the shock absorber D is provided with an extension side passage 2a, a compression side passage 2b, and a bypass passage 3a as passages for communicating the extension side chamber La and the compression side chamber Lb.
  • the expansion side passage 2a is provided with an expansion side check valve 20 that allows only one-way flow of liquid from the expansion side chamber La to the compression side chamber Lb, and the liquid from the compression side chamber Lb to the expansion side chamber La is 2b or the bypass 3a.
  • the pressure side passage 2b is provided with an orifice 21b and a leaf valve 21a arranged in parallel with the orifice 21b, and a hard side damping element 21 that gives resistance to the flow of liquid.
  • the bypass passage 3a is configured to have an orifice 50b having a larger opening area than the orifice 21b and a leaf valve 50a arranged in parallel with the leaf valve 21a and having a valve rigidity lower than that of the leaf valve 21a.
  • a soft side damping element 50 having a reduced resistance is provided.
  • bypass path 3a is provided with a solenoid valve V in series with the soft side damping element 50, and the flow path area of the bypass path 3a can be changed by adjusting the amount of electricity supplied to the solenoid valve V. ing.
  • the solenoid valve V is a normally closed type and is set so as to increase the flow passage area of the bypass passage 3a in proportion to the energization amount.
  • the shock absorber D is provided with a suction passage 4a and a discharge passage 4b as passages that connect the pressure side chamber Lb and the tank 16 to each other.
  • the suction passage 4a is provided with a suction valve 40 that allows only one-way flow of the liquid from the tank 16 to the pressure side chamber Lb.
  • the discharge passage 4b is provided with a normally closed manual valve 41 that is opened and closed by manual operation.
  • the shock absorber D is configured as described above, and when the shock absorber D contracts, the piston rod 3 invades into the cylinder 1 and the piston 2 compresses the compression side chamber Lb. Normally, the manual valve 41 closes the discharge passage 4b. Therefore, when the shock absorber D contracts, the liquid in the pressure side chamber Lb moves to the extension side chamber La through the pressure side passage 2b or the bypass passage 3a. A resistance is given to the flow of the liquid by the hard side damping element 21 or the soft side damping element 50, and a compression side damping force due to the resistance is generated.
  • the shock absorber D contracts in a normal state
  • the distribution ratio of the liquid passing through the hard damping element 21 and the soft damping element 50 changes depending on the flow passage area of the bypass passage 3a, whereby the damping coefficient is large or small.
  • the compression-side damping force generated as a result is adjusted in magnitude.
  • the hard-side damping element 21 and the soft-side damping element 50 are configured to have the orifices 21b and 50b and the leaf valves 21a and 50a arranged in parallel with the orifices 21b and 50b, respectively. Therefore, the damping force characteristic becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and becomes the piston speed peculiar to the leaf valve when the piston speed is in the medium to high speed range.
  • the valve characteristics are proportional.
  • the damping coefficient is increased in the soft mode in which the proportion of the liquid toward the soft side damping element 50 increases. Becomes smaller in both the low speed range and the medium and high speed range, and the compression side damping force generated with respect to the piston speed becomes small.
  • the damping coefficient becomes large and small, as shown in FIG.
  • the slope of the characteristic line showing the damping force characteristic on the compression side changes.
  • the compression side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
  • the slope of the characteristic line showing the damping force characteristic becomes smaller in both the low speed region and in the middle/high speed region
  • the slope of the characteristic line showing the damping force property becomes smaller in the low speed region and the middle/high speed region. It gets bigger in both. Therefore, the change in the damping force characteristic from the orifice characteristic to the valve characteristic is gradual in any mode.
  • the soft side damping element 50 has a leaf valve 50a having low valve rigidity in parallel with the orifice 50b. Therefore, even if a valve with high valve rigidity and high valve opening pressure is adopted as the leaf valve 21a of the hard side damping element 21 and the adjustment range in the direction of increasing the compression side damping force is increased, the damping force in the soft mode is increased. Does not become too large.
  • the energization of the solenoid valve V is cut off and the mode is switched to the hard mode.
  • the manual valve 41 is opened, the liquid in the compression side chamber Lb passes through not only the compression side passage 2b but also the discharge passage 4b, so that the flow rate of the liquid passing through the hard side damping element 21 is reduced. The compression side damping force is reduced.
  • the liquid equivalent to 3 volumes of the piston rod that has entered the cylinder 1 when the shock absorber D contracts is discharged from the expansion side chamber La to the tank 16.
  • the extension side check valve 20 opens, and the liquid in the extension side chamber La moves to the compression side chamber Lb through the extension side passage 2a. At this time, the liquid can pass through the extension check valve 20 without any resistance. Further, the extension side chamber La is communicated with the tank 16 and is maintained at the tank pressure. Therefore, the shock absorber D does not exert a damping force on the extension side. As described above, the shock absorber D forms a front fork by forming a pair with a shock absorber that generates a damping force only when the vehicle is extended. Therefore, when the front wheels are separated from the vehicle body, the damping is performed only when the vehicle is extended. A shock absorber that exerts power suppresses vibration of the vehicle body.
  • the solenoid valve V includes a holder 6 having a port 6a that is tubular and communicates the inside and the outside, a spool 7 that is axially reciprocally inserted into the holder 6 and that can open and close the port 6a, and a spool 7.
  • An urging spring 8 that urges the spool 7 toward one of the moving directions
  • a solenoid 9 that can apply a thrust to move the spool 7 toward the other in the moving direction of the spool 7, and a holder 6 and the spool 7.
  • the hydraulic lock chamber RC that restricts the movement of the spool 7 with respect to the holder 6 in one or the other movement direction, and is reciprocable in a direction that matches the movement direction of the spool 7.
  • a shutter 17 for switching between opening and closing of the hydraulic lock chamber RC and a shutter spring 18 for urging the shutter 17 to position the shutter 17 at a position where the hydraulic lock chamber RC is opened are provided.
  • the solenoid valve V configured in this manner, when the vibration is input from the outside, the hydraulic lock chamber RC is closed by the shutter 17 and the axial displacement of the spool 7 with respect to the holder 6 is suppressed. The change in area can be suppressed. Therefore, according to the shock absorber D to which the solenoid valve V is applied, even if vibration is input to the shock absorber D, the fluctuation of the flow passage area of the solenoid valve V is suppressed and the damping force generated by the shock absorber D is stabilized.
  • the shock absorber D can exhibit the desired damping force.
  • the direction in which the shutter spring 18 urges the shutter 17 is the upper part in FIG. 2, but the direction in which the shutter spring 18 urges the shutter 17 is the lower part in FIG.
  • the hydraulic lock chamber RC may be closed when 17 moves upward with respect to the holder 6 due to vibration input.
  • the solenoid valve V is configured in this manner, the shutter 17 closes the hydraulic lock chamber RC against a vibration input that pushes the solenoid valve V and the shock absorber downward. Therefore, depending on whether the shutter 17 moves in one or the other moving direction of the spool 7, the hydraulic lock chamber RC is closed depending on the direction of the acceleration input to the solenoid valve V and the shock absorber. You just have to decide.
  • the shutter 17 is slidably mounted on the outer periphery of the holder 6.
  • the holder 6 can cause the shutter 17 and the spool 7 to move in the same direction. Therefore, a component for guiding the movement of the shutter 17 while matching the movement direction of the shutter 17 with the movement direction of the spool 7. The cost can be reduced because no additional is required.
  • the shutter 17 is provided on the outer circumference of the holder 6, the inner peripheral diameter of the holder 6 and the inner peripheral diameter of the spool 7 can be largely secured, so that the flow path resistance in the spool 7 can be reduced, and an extra pressure loss is caused. You don't have to.
  • the annular groove 17a of the shutter 17 is abolished and a hole for communicating inside and outside is provided instead, the hole 6g of the holder 6 and the annular groove 7f and the through hole 7g of the spool 7 are abolished, and the hydraulic lock chamber RC is opened.
  • the hole of the shutter 17 may be opposed to the hole 6f and the inner circumference of the shutter 17 may be opposed to the hole 6f when closing the hydraulic lock chamber RC.
  • the hydraulic lock chamber RC may be communicated with the outside of the holder 6, but in the solenoid valve V of the present embodiment, the hydraulic lock chamber RC has a state in which the shutter 17 opens the hydraulic lock chamber RC. At the spool 7 communicates with.
  • the hydraulic lock chamber RC formed between the holder 6 and the spool 7 is not communicated with the outside of the holder 6, so that a sliding gap is generated between the holder 6 and the spool 7. Does not communicate with the outside of the holder 6 via the hydraulic lock chamber RC. Therefore, the sliding gap between the holder 6 and the spool 7 is communicated with the outside of the holder 6 via the hydraulic lock chamber RC, and the liquid passes through the port 6 a when moving between the outside of the holder 6 and the inside of the spool 7. It is possible to prevent a route other than the route from being formed, and it is possible to accurately adjust the flow passage area.
  • the shock absorber D includes a cylinder 1, a piston 2 that is movably inserted into the cylinder 1 in the axial direction and divides the inside of the cylinder 1 into an extension side chamber La and a compression side chamber Lb.
  • a piston rod 3 which is connected to the piston 2 and has one end protruding outside the cylinder 1 is provided.
  • the shock absorber D separates the hard side damping element 21 that imparts resistance to the flow of the liquid from the compression side chamber Lb toward the expansion side chamber La, and the pressure side chamber Lb and the expansion side chamber La by bypassing the hard side damping element 21.
  • the bypass valve 3a is provided with a solenoid valve V capable of changing the passage area of the bypass passage 3a and a soft damping element 50 provided in the bypass passage 3a in series with the solenoid valve V.
  • the hard damping element 21 has an orifice 21b and a leaf valve 21a provided in parallel with the orifice 21b.
  • the soft side damping element 50 has an orifice (large diameter orifice) 50b having an opening area larger than that of the orifice 21b.
  • the characteristic of the damping force generated when the shock absorber D contracts is the orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and when the piston speed is in the medium to high speed range,
  • the valve characteristics are unique to leaf valves.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be freely set, and the piston speed can be set to the medium and high speed range.
  • the adjustment range of the compression side damping force in a certain case can be increased.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range become small.
  • both the damping coefficient when the piston speed is in the low speed region and the damping coefficient when the piston speed is in the medium and high speed region are large. Therefore, when the characteristic of the compression side damping force changes from the orifice characteristic in the low speed region to the valve characteristic in the medium and high speed region, the change in the slope of the characteristic line becomes gentle in any mode.
  • the shock absorber D according to the present embodiment is mounted on a vehicle, it is possible to reduce the discomfort caused by the change in the inclination and improve the ride comfort of the vehicle.
  • the soft side damping element 50 is configured to have the orifice (large diameter orifice) 50b and a leaf valve 50a provided in parallel with the orifice 50b.
  • the soft-side damping element 50 is also provided with the leaf valve 50a, even if the leaf valve 21a of the hard-side damping element 21 has a high valve rigidity and a high valve opening pressure, the damping force in the soft mode is high. It doesn't become excessive. That is, according to the above configuration, a valve having high valve rigidity can be used as the leaf valve 21a of the hard damping element 21. Then, since the adjustment range of the damping force increases in the direction of increasing the compression side damping force, the adjustment range of the compression side damping force can be further increased when the piston speed is in the middle and high speed range.
  • the piston 2 is connected to the other end of the piston rod 3 to form a single rod type.
  • the shock absorber D includes a tank 16 connected to the extension side chamber La, and a suction valve 40 that allows only the flow of liquid from the tank 16 to the compression side chamber Lb. With this configuration, the tank 16 can compensate for the volume of the piston rod 3 that moves in and out of the cylinder 1.
  • the shock absorber D can be a one-sided shock absorber that exerts a damping force only in the compression stroke.
  • the solenoid valve V is set so that the opening degree changes in proportion to the energization amount. With this configuration, the opening area of the bypass 3a can be changed steplessly.
  • the shock absorber D of the present embodiment is provided with a manual valve 41 capable of manually changing the flow passage area of the discharge passage 4b that connects the pressure side chamber Lb and the tank 16. According to this configuration, even if the solenoid valve V is closed at the time of failure, the compression side damping force generated by manually opening the manual valve 41 is reduced. For this reason, it is possible to prevent the compression side damping force in the fail mode from becoming excessive, and it is possible to improve the ride comfort of the vehicle.
  • a cylindrical holder 6 in which a port 6a for connecting the solenoid valve V to the bypass 3a is formed, and a port 6a inserted in the holder 6 so as to be reciprocally movable.
  • a cylindrical spool 7 that can be opened and closed, an urging spring 8 that urges the spool 7 in one of the moving directions of the spool 7, and a thrust in the direction opposite to the urging force of the urging spring 8 to the spool 7.
  • a solenoid 9 for giving it.
  • a needle valve that can reciprocate as a valve body is provided, and the opening degree is increased or decreased by increasing or decreasing the gap formed between the tip of the needle valve and the valve seat.
  • the stroke amount of the valve element must be increased in order to increase the adjustment range of the opening, but this may not be possible.
  • the stroke amount of the needle valve is increased, the movable space of the needle valve increases and it becomes difficult to secure the accommodation space.
  • the stroke amount of the solenoid plunger is increased in order to increase the stroke amount of the needle valve, the solenoid design must be changed, which is complicated.
  • parts are needed to increase the travel of the needle valve relative to the travel of the plunger, increasing the number of parts and accommodating space. It becomes difficult to secure.
  • the port 6a formed in the holder 6 is opened and closed by the spool 7 that is reciprocally inserted in the cylindrical holder 6, whereby the solenoid valve V Is designed to open and close. Therefore, if a plurality of ports 6a are formed in the circumferential direction of the holder 6 or have a shape that is long in the circumferential direction, the stroke of the spool 7 that is the valve body of the solenoid valve V can be increased without increasing the stroke amount of the solenoid valve V. The opening can be increased. Therefore, the adjustment range of the opening degree of the solenoid valve V can be increased, and the adjustment range of the compression side damping force can be easily increased.
  • the relationship between the opening degree of the solenoid valve V and the energization amount can be easily changed.
  • the port 6a is located at a position where the port 6a is opened to the maximum when deenergized.
  • an annular groove 7d for opening the port 6a may be arranged.
  • the relationship between the opening degree of the solenoid valve V and the energization amount can be freely changed, and the presence or absence of the manual valve 41 can be selected according to the change.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

電磁弁(V)は、筒状でポート(6a)を有するホルダ(6)と、ホルダ(6)内に軸方向に往復動可能に挿入されるスプール(7)と、スプール(7)をスプール(7)の移動方向の一方へ向けて付勢する付勢ばね(8)と、スプール(7)へスプール(7)の移動方向の他方へ向けて移動させる推力を付与可能なソレノイド(9)と、ホルダ(6)とスプール(7)との間に設けられて閉鎖されるとホルダ(6)に対するスプール(7)の移動を抑制する液圧ロック室(RC)と、スプール(7)の移動方向に一致する方向へ往復動可能であって液圧ロック室(RC)の開放と閉鎖を切換えるシャッタ(17)と、シャッタ(17)を付勢して液圧ロック室(RC)を開放する位置にシャッタ(17)を位置決めするシャッタばね(18)とを備えている。

Description

電磁弁および緩衝器
 本発明は、電磁弁および緩衝器の改良に関する。
 従来、電磁弁としては、筒状であって内外を連通するポートを備えたハウジングと、ハウジング内に摺動自在に挿入される筒状のスプールと、スプールを付勢するスプールばねと、スプールばねの付勢力に抗してスプールを駆動するソレノイドとを備えたものが知られている(たとえば、特許文献1参照)。
 このような電磁弁では、ソレノイドでハウジングに対してスプールを駆動して、スプールの外周をポートに対向させてポートを開閉したり、ポートの開き度合を調節したりして、流路面積を可変にする。このように構成された電磁弁を緩衝器の伸縮時に作動油が通過する通路との途中に設ければ、通路を通過する作動油の流れに与える流路抵抗を可変にでき、緩衝器の減衰力を調節できる。
JP2010-19319A
 電磁弁は、流路面積の変更の指令に対して応答性よく、流路面積を変更できるから、たとえば、車両のサスペンションに組み込まれる緩衝器の減衰力を調節するのに向いており、スカイフック制御等といったアクティブ制御の実施を容易ならしめる。
 しかしながら、車両のサスペンションに組み込まれる緩衝器の減衰力を可変にする場合、電磁弁を緩衝器に組み込む必要があるが、当該緩衝器には、車両の走行中に上下方向の振動が絶えず入力されており、特に、悪路等を走行する場合には、緩衝器に対して下から突上げる大きな加速度が作用する。
 他方、電磁弁では、スプールやソレノイドの可動部が軸方向に弾性支持されるのみで固定的に支持されない。そのため、電磁弁を緩衝器に組み込んで減衰力を調整する場合、緩衝器に加速度が入力されると慣性力によってスプールが変位して電磁弁の開度が変化してしまい、狙った減衰力を発揮できなくなるという問題がある。
 そこで、本発明は、外部からの振動入力があっても流路面積の変化を抑制できる電磁弁および狙い通りの減衰力を発揮できる緩衝器の提供を目的としている。
 上記課題を解決する電磁弁は、筒状であって内外を連通するポートを有するホルダと、筒状であってホルダ内に軸方向に往復動可能に挿入されるとともにポートを開閉可能なスプールと、スプールをスプールの移動方向の一方へ向けて付勢する付勢ばねと、スプールへスプールの移動方向の他方へ向けて移動させる推力を付与可能なソレノイドと、ホルダとスプールとの間に設けられて閉鎖されるとホルダに対するスプールの移動方向の一方或いは他方への移動を抑制する液圧ロック室と、スプールの移動方向に一致する方向へ往復動可能であるとともに液圧ロック室の開放と閉鎖を切換えるシャッタと、シャッタを付勢して液圧ロック室を開放する位置にシャッタを位置決めするシャッタばねとを備えている。
 このように構成された電磁弁によれば、外部から振動入力されるとシャッタによって液圧ロック室が閉鎖されてスプールのホルダに対する軸方向の変位が抑制される。
 また、シャッタをホルダの外周に摺動自在に装着して電磁弁を構成してもよい。このように構成された電磁弁によれば、ホルダによってシャッタとスプールの移動方向を一致させ得るので、シャッタの移動方向をスプールの移動方向に一致させつつその移動を案内する部品の追加が不要となりコストを低減できるとともに、スプール内の流路抵抗を小さくでき、余計は圧力損失を生じさせずに済む。
 さらに、シャッタが液圧ロック室を開放する状態において液圧ロック室がスプール内に連通するように電磁弁を構成してもよい。このように構成された電磁弁によれば、ポートを迂回して液圧ロック室を介してホルダ外とスプール内を行き来するルートができてしまうのを防止でき、流路面積を精度よく調整できる。
 また、緩衝器は、シリンダと、シリンダ内に軸方向へ移動可能に挿入されてシリンダ内を伸側室と圧側室とに区画するピストンと、ピストンに連結されるとともに一端がシリンダ外へと突出するピストンロッドと、圧側室から伸側室へ向かう液体の流れに抵抗を与えるハード側減衰要素と、ハード側減衰要素を迂回して圧側室と前記伸側室とを連通するバイパス路と、バイパス路の途中に設けられる電磁弁と、バイパス路に電磁弁と直列に設けられるソフト側減衰要素とを備え、ハード側減衰要素はオリフィスとこのオリフィスと並列に設けられるリーフバルブとを有して構成されており、ソフト側減衰要素は前記オリフィスよりも開口面積の大きい大径オリフィスを有して構成されている。このように構成された緩衝器によれば、緩衝器に振動が入力されても電磁弁の流路面積の変動が抑制されるので狙い通りの減衰力を発揮できる。
 本発明に係る電磁弁によれば、外部からの振動入力があっても流路面積の変化を抑制でき、本発明の干渉によれば狙い通りの減衰力を発揮できる。
図1は、本発明の一実施の形態に係る緩衝器である緩衝器の縦断面図である。 図2は、図1の一部を拡大して示した縦断面図である。 図3は、本発明の一実施の形態に係る緩衝器である緩衝器のピストン速度に対する圧側減衰力の特性を示した減衰力特性図である。
 以下に本発明の実施の形態の電磁弁Vおよび緩衝器Dについて、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品或いは対応する部品を示す。また、本発明の実施の形態に係る緩衝器Dは、鞍乗型車両の前輪を懸架するフロントフォークに利用されている。以下の説明では、その緩衝器Dを含むフロントフォークが車両に取り付けられた状態での上下を、特別な説明がない限り、単に「上」「下」という。
 電磁弁Vは、図1および図2に示すように、筒状であって内外を連通するポート6aを有するホルダ6と、筒状であってホルダ6内に軸方向に往復動可能に挿入されるとともにポート6aを開閉可能なスプール7と、スプール7をスプール7の移動方向の一方へ向けて付勢する付勢ばね8と、スプール7へスプール7の移動方向の他方へ向けて移動させる推力を付与可能なソレノイド9と、ホルダ6とスプール7との間に設けられた液圧ロック室RCと、液圧ロック室RCの開放と閉鎖を切換えるシャッタ17と、シャッタ17を付勢して液圧ロック室RCを開放する位置にシャッタ17を位置決めするシャッタばね18とを備えて構成されている。
 そして、図1に示すように、電磁弁Vは、緩衝器Dに適用されている。本実施の形態では、緩衝器Dは、収縮時にのみ減衰力を発揮する片効きの緩衝器とされており、電磁弁Vは緩衝器Dの圧側減衰力の調節に利用されている。なお、図示はしないが、緩衝器Dは、鞍乗型車両のステアリングシャフトに連結されるブラケットによって伸長時にのみ減衰力を発揮する片効きの緩衝器と連結されている。よって、緩衝器Dと伸長時にのみ減衰力を発揮する緩衝器は、対を成して鞍乗型車両の前輪を支持するフロントフォークを形成し、協働して鞍乗型車両の車体の振動を抑制する。なお、電磁弁Vは、伸長時にのみ減衰力を発揮する緩衝器に利用されてもよい。
 まず、本発明の一実施の形態の緩衝器Dについて具体的に説明する。図2に示すように、緩衝器Dは、アウターチューブ10と、アウターチューブ10内に摺動自在に挿入されるインナーチューブ11とを有して構成されるテレスコピック型のチューブ部材Tを備える。
 そして、鞍乗型車両が凹凸のある路面を走行するなどして前輪が上下に振動すると、インナーチューブ11がアウターチューブ10に出入りしてチューブ部材Tが伸縮する。このように、チューブ部材Tが伸縮することを、緩衝器Dが伸縮するともいう。なお、チューブ部材Tは、正立型になっていて、アウターチューブ10が車軸側チューブ、インナーチューブ11が車体側チューブとなっていてもよい。
 つづいて、チューブ部材Tの上端となるアウターチューブ10の上端は、キャップ12で塞がれている。その一方、チューブ部材Tの下端となるインナーチューブ11の下端は、車軸側のブラケットBで塞がれている。さらに、アウターチューブ10とインナーチューブ11の重複部の間にできる筒状の隙間は、アウターチューブ10の下端に装着されてインナーチューブ11の外周に摺接する環状のシール部材13で塞がれている。
 このようにしてチューブ部材T内は密閉空間とされており、そのチューブ部材T内に緩衝器本体Sが収容されている。この緩衝器本体Sは、インナーチューブ11内に設けられるシリンダ1と、このシリンダ1内に摺動自在に挿入されるピストン2と、下端がピストン2に連結されるとともに上端がシリンダ1外へと突出してキャップ12に連結されるピストンロッド3とを有している。
 キャップ12は、アウターチューブ10に連結されているので、ピストンロッド3はアウターチューブ10に連結されているともいえる。さらに、シリンダ1は、インナーチューブ11に連結されている。このように、緩衝器本体Sは、アウターチューブ10とインナーチューブ11との間に介装されている。
 また、シリンダ1の上端には、環状のヘッド部材14が装着されており、このヘッド部材14の内側をピストンロッド3が軸方向へ移動自在に貫通する。ヘッド部材14は、ピストンロッド3を摺動自在に支えている。ヘッド部材14とキャップ12との間に、コイルばねからなる懸架ばね15が介装されている。
 そして、緩衝器Dが伸縮してインナーチューブ11がアウターチューブ10に出入りすると、ピストンロッド3がシリンダ1に出入りしてピストン2がシリンダ1内を上下(軸方向)に移動する。
 また、緩衝器Dが収縮してピストンロッド3がシリンダ1内へと侵入すると、懸架ばね15が圧縮されて弾性力を発揮して緩衝器Dを伸長方向へ付勢する。このように、懸架ばね15は圧縮量に応じた弾性力を発揮して、車体を弾性支持する。
 なお、本実施の形態の緩衝器Dは片ロッド型で、ピストンロッド3がピストン2の片側からシリンダ1外へ延びている。しかし、緩衝器Dが両ロッド型になっていて、ピストンロッドがピストンの両側からシリンダ外へ延びていてもよい。さらには、ピストンロッド3がシリンダ1から下方へ突出して車軸側に連結されるとともに、シリンダ1が車体側に連結されていてもよい。また、懸架ばね15は、エアばね等のコイルばね以外のばねであってもよい。
 つづいて、シリンダ1内には、作動油等の液体が充填された液室が形成されており、この液室がピストン2で伸側室Laと圧側室Lbとに区画されている。ここでいう伸側室とは、ピストンで区画された二室のうち、緩衝器の伸長時にピストンで圧縮される方の部屋のことである。その一方、圧側室とは、ピストンで区画された二室のうち、緩衝器の収縮時にピストンで圧縮される方の部屋のことである。
 また、シリンダ1外、より詳しくは、緩衝器本体Sとチューブ部材Tとの間の空間は液溜室Rとされている。この液溜室Rには、シリンダ1内の液体と同じ液体が貯留されるとともに、その液面上側にエア等の気体の封入されたガス室Gが形成されている。このように、チューブ部材Tは、シリンダ1内の液体とは別に、液体を貯留するタンク16の外殻として機能する。
 そのタンク16内となる液溜室Rは、伸側室Laと連通されており、伸側室Laの圧力がタンク16内(液溜室R)の圧力と常に略同圧(タンク圧)となる。さらに、液溜室Rは、シリンダ1の下端に固定されたバルブケース4で圧側室Lbと仕切られている。このバルブケース4には、圧側室Lbと液溜室Rとを連通する吸込通路4aが形成されるとともに、この吸込通路4aを開閉する吸込バルブ40が装着されている。
 その吸込バルブ40は、伸側チェックバルブであり、緩衝器Dの伸長時に吸込通路4aを開いて、その吸込通路4aを液溜室Rから圧側室Lbへと向かう液体の流れを許容するが、緩衝器Dの収縮時には吸込通路4aを閉塞した状態に維持する。なお、本実施の形態の吸込バルブ40は、リーフバルブであるが、ポペットバルブ等であってもよい。
 また、ピストン2には、伸側室Laと圧側室Lbとを連通する伸側通路2aと圧側通路2bが形成されるとともに、伸側通路2aを開閉する伸側チェックバルブ20と、圧側通路2bを圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与えるハード側減衰要素21が装着されている。
 ハード側減衰要素21は、ピストン2の上側に積層されるリーフバルブ21aと、このリーフバルブ21aと並列に設けられるオリフィス21bとを有して構成されている。
 リーフバルブ21aは、金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有し、外周側の撓みを許容された状態でピストン2に装着されている。そして、圧側室Lbの圧力が、リーフバルブ21aの外周部を上側へ撓ませる方向へ作用するようになっている。また、オリフィス21bは、ピストン2Rの弁座(符示せず)に離着座するリーフバルブ21aの外周部に設けられた切欠きで形成されているが、前記弁座に設けられた打刻等によって形成されてもよい。
 圧側室Lbは、緩衝器Dの収縮時にピストン2で圧縮されてその内圧が上昇し、伸側室Laの圧力よりも高くなる。このような緩衝器Dの収縮時にピストン速度が低速域にあり、圧側室Lbと伸側室Laとの差圧がリーフバルブ21aの開弁圧に満たない場合には、液体がオリフィス21bを通って圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。また、上記差圧が大きくなってリーフバルブ21aの開弁圧以上になると、リーフバルブ21aの外周部が撓んで、液体がその外周部とピストン2との間にできる隙間を通って圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。
 このように、オリフィス21bと、このオリフィス21bと並列されるリーフバルブ21aとを有して構成されるハード側減衰要素21は、緩衝器Dの収縮時に圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与える圧側の第一の減衰要素である。そして、この圧側のハード側減衰要素21による抵抗は、ピストン速度が低速域にある場合にはオリフィス21bに起因し、中高速域にある場合にはリーフバルブ21aに起因する。
 その一方、伸側チェックバルブ20は、緩衝器Dの伸長時に伸側通路2aを開いて、その伸側通路2aを伸側室Laから圧側室Lbへと向かう液体の流れを許容するが、緩衝器Dの収縮時には伸側通路2aを閉塞した状態に維持する。なお、本実施の形態の伸側チェックバルブ20は、リーフバルブであるが、ポペットバルブ等であってもよい。さらには、シリンダ1内での液体の吸込不足が生じなければ、伸側通路2aと伸側チェックバルブ20を省略してもよい。
 つづいて、ピストンロッド3には、ハード側減衰要素21を通過する液体の流量を変更するための減衰力調整部が設けられている。この減衰力調整部は、ハード側減衰要素21を迂回して伸側室Laと圧側室Lbとを連通するバイパス路3aの途中に設けられた流路面積を変更可能な電磁弁Vと、バイパス路3aの途中に電磁弁Vと直列に設けられるソフト側減衰要素50とを有している。
 より詳しくは、図2に示すように、ピストンロッド3は、その先端に位置するピストン保持部材30と、その末端側に連なるソレノイドケース部材31と、さらにその末端側に連なり、シリンダ1外へと延びる筒状のロッド本体32とを有する。ピストン保持部材30は、有底筒状のハウジング部30aと、このハウジング部30aの底部分から下方へ突出する軸部30bとを含み、この軸部30bの外周に環状のピストン2がナットNで固定されている。
 また、ハウジング部30aの筒部分の内周には、その内側を上室30cと下室30dとに仕切るバルブケース5が固定されている。そのバルブケース5には、上室30cと下室30dを連通する通路5aが形成されており、その通路5aにソフト側減衰要素50が設けられている。さらに、ピストン保持部材30の軸部30bには、下方へ開口してハウジング部30a内に通じる縦孔30eが形成されており、この縦孔30eによって下室30dと圧側室Lbとが連通される。
 つづいて、ソレノイドケース部材31は、ハウジング部30aの上端外周に螺合する筒部31aを含む。その筒部31aには、側方へ開口する横孔31bが形成されており、この横孔31bによって伸側室Laとソレノイドケース部材31の内側が連通されている。そして、その横孔31bと上室30cとをつなぐ通路の途中に電磁弁Vが設けられている。
 本実施の形態では、前述のソレノイドケース部材31またはピストン保持部材30に形成された横孔31b、上室30c、下室30dおよび縦孔30eを有してハード側減衰要素21を迂回するバイパス路3aが形成されている。そして、このバイパス路3aの途中に電磁弁Vとソフト側減衰要素50が直列に設けられている。
 また、電磁弁Vとソフト側減衰要素50を収容するソレノイドケース部材31およびピストン保持部材30の外径は、シリンダ1の内径よりも小さく、これらで伸側室Laを仕切らないように配慮されている。
 ソフト側減衰要素50は、バルブケース5の上側に積層されるリーフバルブ50aと、このリーフバルブ50aと並列に設けられるオリフィス50bとを有して構成されている。
 リーフバルブ50aは、金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有し、外周側の撓みを許容された状態でバルブケース5に装着される。そして、下室30dの圧力が、リーフバルブ50aの外周部を上側へ撓ませる方向へ作用するようになっている。また、オリフィス50bは、バルブケース5の弁座に離着座するリーフバルブ50aの外周部に設けられた切欠きで形成されているが、前記弁座に設けられた打刻等によって形成されてもよい。
 下室30dの圧力は、緩衝器Dの収縮時であって電磁弁Vがバイパス路3aを開いているときに上室30cの圧力よりも高くなる。そして、このような緩衝器Dの収縮時にピストン速度が低速域にあり、上室30cと下室30dの差圧がリーフバルブ50aの開弁圧に満たない場合には、液体がオリフィス50bを通って下室30dから上室30c、即ち、圧側室Lbから伸側室Laへ向かうとともに、この液体の流れに対して抵抗が付与される。また、上記差圧が大きくなってリーフバルブ50aの開弁圧以上になると、リーフバルブ50の外周部が撓んで、液体がその外周部とバルブケース5との間にできる隙間を通って下室30dから上室30c、即ち、圧側室Lbから伸側室Laへと向かうとともに、この液体の流れに対して抵抗が付与される。
 このように、オリフィス50bと、このオリフィス50bと並列されるリーフバルブ50aとを有して構成されるソフト側減衰要素50は、緩衝器Dの収縮時に圧側バイパス路3aを圧側室Lbから伸側室Laへと向かう液体の流れに抵抗を与える圧側の第二の減衰要素である。そして、このソフト側減衰要素50による抵抗は、ピストン速度が低速域にある場合にはオリフィス50bに起因し、中高速域にある場合にはリーフバルブ50aに起因する。
 また、ソフト側減衰要素50のリーフバルブ50aは、ハード側減衰要素21のリーフバルブ21aと比較してバルブ剛性の低い(撓みやすい)バルブであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。換言すると、液体は、同一条件下において、リーフバルブ21aよりもリーフバルブ50aの方を通過しやすい。また、ソフト側減衰要素50のオリフィス50bは、ハード側減衰要素21のオリフィス21bよりも開口面積が大きい大径オリフィスであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。
 つづいて、電磁弁Vは、図2に示すように、ピストンロッド3内に固定される筒状のホルダ6と、このホルダ6内に往復動可能に挿入される筒状のスプール7と、このスプール7を移動方向の一方である図2中上方へ付勢する付勢ばね8と、このスプール7に対して移動方向の他方へ推力を与え得るソレノイド9と、ホルダ6とスプール7との間に設けられた液圧ロック室RCと、液圧ロック室RCの開放と閉鎖を切換えるシャッタ17と、シャッタ17を付勢するシャッタばね18と備えている。そして、電磁弁Vは、ホルダ6内におけるスプール7の位置を調節して開度を大小調節する。
 より具体的には、ホルダ6は、ピストンロッド3内のバルブケース5よりも上側に、軸方向の一端を上側(ソレノイドケース部材31側)へ、他端を下側(バルブケース5側)へ向けた状態で、ピストンロッド3の中心軸に沿って配置されている。さらに、ホルダ6には、径方向に貫通する一以上のポート6aが形成されている。そのポート6aは、ソレノイドケース部材31の横孔31bを介して伸側室Laに連通されており、スプール7で開閉される。また、ホルダ6は、図2中上端側の大径部6bと、図2中下端側の小径部6cと、小径部6cの下端に設けられてピストン保持部材30のハウジング部30aの内周に嵌合するフランジ部6dとを備えており、大径部6bの内周は小径部6cの内径よりも大径とされるとともに大径部6bおよび小径部6cの外径は、同径とされてハウジング部30aの内径よりも小径とされている。また、ホルダ6の大径部6bと小径部6cとの境には、図2中上方側を向く段部6eが形成されている。ポート6aは、大径部6bに設けられており、大径部6bの内外を連通している。また、ホルダ6は、ポート6aの他に大径部6bであってポート6aの設置位置よりも下方の段部6eの近傍に設けられてホルダ6の内外を連通する孔6fと、小径部6cに設けられてホルダ6の内外を連通する孔6gとを備えている。
 スプール7は、筒状で、ホルダ6内に摺動自在に挿入されており、図2中上下方向に往復動可能とされている。より詳細には、スプール7は、図2中上方側の外径が大径な大径部7aと、図2中下方側の外径が小径な小径部7bと、外周であって大径部7aと小径部7bとの境に形成される段部7cと、大径部7aの外周に周方向に沿って設けられた環状溝7dと、大径部7aの内周から開口して環状溝7dに連通される透孔7eと、小径部7bの外周に周方向に沿って設けられた環状溝7fと、小径部7bの内周から開口して環状溝7fに連通される透孔7gとを備えて構成されている。そして、スプール7は、ホルダ6の内径が大きな大径部6bに大径部7aを摺接させるともに、ホルダ6の内径が小さな小径部6cに小径部7bを摺接させて、ホルダ6内に摺動自在に挿入されている。このようにスプール7をホルダ6内に挿入すると、スプール7の小径部7bの内周とホルダ6の大径部6bの内周との間のであって段部6eと段部7cとの間に液圧ロック室RCが形成される。液圧ロック室RCは、常時、ホルダ6に設けられた孔6fに対向して、孔6fに連通されている。また、スプール7に設けられた環状溝7fは、ホルダ6の小径部6cに設けられた孔6gに対向しており、スプール7がホルダ6に対して軸方向に移動しても常に環状溝7fと孔6gとの連通が維持される。
 また、スプール7は、ホルダ6内に挿入されると、ホルダ6に設けられたポート6aを開閉する。具体的には、スプール7の大径部7aに設けた環状溝7dがホルダ6のポート6aに対向する状態では、スプール7は、ポート6aをスプール7内に連通させる。ポート6aは、ソレノイドケース部材31に設けた横孔31bを通じて伸側室Laに連通されている。他方、スプール7内は、上室30c、バルブケース5に設けた通路5a、下室30dおよび縦孔30eを介して圧側室Lbに連通されている。よって、バイパス路3aの途中に電磁弁Vが設けられており、ポート6aがスプール7内に連通すると電磁弁Vが開弁してバイパス路3aが開放され、バイパス路3aを通じて伸側室Laと圧側室Lbとが連通される。
 そして、ホルダ6に対してスプール7が移動すると、ポート6aが環状溝7dに対向する面積が変化するので、スプール7のホルダ6に対する軸方向位置に応じて流路面積を変更できる。スプール7がホルダ6に対して図2中下方に移動してポート6aが環状溝7dに完全に対向しなくなってスプール7の大径部7aの外周で閉塞されると、ポート6aとスプール7内との連通が絶たれてバイパス路3aが遮断される。
 また、スプール7の上端にはプレート70が積層されており、そのプレート70にソレノイド9の後述するプランジャ9aが当接している。その一方、スプール7の下端には、付勢ばね8が当接し、スプール7を移動方向の一方である図2中上方へ向けて付勢している。付勢ばね8は、外周に対して内周が図2中上下方向に変位すると内周を元の位置へ戻す付勢力を発揮する螺旋形状をしたばねとされている。付勢ばね8は、外周が付勢ばね8の下方であってピストン保持部材30のハウジング部30aの内周に嵌合される筒状のカラー19とホルダ6のフランジ部6dとにより挟持されてピストンロッド3に固定されている。そして、付勢ばね8の内周はスプール7の図2中下端外周に設けた環状凹部7hに嵌合しており、付勢ばね8は、ホルダ6に対してスプール7を図2中上方となる移動方向の一方へ向けて付勢しており、スプール7がホルダ6に対して図2中下方へ変位するとスプール7を元の位置へ戻す付勢力を発揮する。スプール7は、付勢ばね8の付勢力によって附勢される一方、ソレノイド9から付勢ばね8の付勢力に対向する推力を受けない状態では、図2に示すように、最も上方に位置決めされて環状溝7dをポート6aに対向させない。よって、電磁弁Vは、非通電時には、バイパス路3aを遮断する。
 また、電磁弁Vのソレノイド9は、ソレノイドケース部材31内に収容されており、詳しくは図示しないが、コイルを含む筒状のステータと、このステータ内に移動自在に挿入される筒状の可動鉄心と、可動鉄心の内周に装着されて先端がプレート70に当接するプランジャ9aとを有している。このソレノイド9に電力供給するハーネス90は、ロッド本体32の内側を通って外方へ突出し、電源に接続されている。
 そして、そのハーネス90を通じてソレノイド9へ通電すると、可動鉄心が下側へ引き寄せられてプランジャ9aが下向きに移動し、スプール7が付勢ばね8の付勢力に抗して押し下げられる。すると、環状溝7dとポート6aが対向するようになって電磁弁Vが開く。また、その電磁弁Vの開度とソレノイド9への通電量との関係は正の比例定数をもつ比例関係となり、通電量を増やすほど開度が大きくなる。さらに、ソレノイド9への通電を断つと電磁弁Vが閉じる。
 このように、本実施の形態の電磁弁Vは、常閉型で、その弁体となるスプール7を付勢ばね8で閉方向へ付勢するとともに、ソレノイド9で開方向の推力をスプール7に与えるようになっている。また、電磁弁Vの通電量に比例して開度が大きくなり、その開度の増加に伴いバイパス路3aの流路面積が大きくなる。よって、電磁弁Vへの通電量に比例してバイパス路3aの流路面積が大きくなるともいえる。
 次に、ホルダ6の外周には、シャッタ17が設けられている。シャッタ17は、筒状であって、ホルダ6の外周に摺接してスプール7の移動方向に一致する方向である図2中上下方向へ往復動可能とされている。また、シャッタ17の内周には、環状溝17aが設けられている。ホルダ6の外周にはシャッタ17の図2中上方の移動限界を画するストッパとしてCリング24が装着されている。また、シャッタ17の外周には環状のばね受17bが設けられており、ばね受17bとホルダ6のフランジ部6dとの間に介装されたシャッタばね18によってシャッタ17は図2中上方へ向けて付勢されて上端がCリング24に当接する位置に位置決めされている。
 シャッタ17がCリング24に当接する上限位置に位置する状態では、内周側に形成された環状溝17aがホルダ6に設けた孔6fおよび孔6gに対向する。孔6fは、液圧ロック室RCに通じており、孔6gはスプール7の位置によらず環状溝7fに常時対向して孔6gをスプール7内に連通している。よって、シャッタ17がCリング24に当接した状態では、液圧ロック室RCが環状溝17aを通じてスプール7内に連通されて、液圧ロック室RCがシャッタ17によって開放される。このように液圧ロック室RCが開放される場合、スプール7がホルダ6に対して図2中上下方向へ移動しても液圧ロック室RC内への液体の出入りが自由であるので、スプール7の移動を妨げない。
 他方、シャッタ17がシャッタばね18の付勢力に抗して図2中下方へ移動して、環状溝7fが孔6fに対向し得なくなると、孔6fがシャッタ17の内周によって閉塞されて液圧ロック室RCが閉鎖される。液圧ロック室RCが閉鎖される場合、スプール7がホルダ6に対して図2中上下方向へ移動しようとしても、液圧ロック室RC内への液体の出入りが不能となる。スプール7が液圧ロック室RCを圧縮する方向へ移動する場合、液圧ロック室RC内の圧力が上昇してスプール7の移動を抑制し、反対に、スプール7が液圧ロック室RCを拡大する方向へ移動する場合、液圧ロック室RC内の圧力が減少してスプール7の移動を抑制する。よって、液圧ロック室RCがシャッタ17によって開放される場合、スプール7はホルダ6に対して軸方向へ自由に移動できるが、液圧ロック室RCがシャッタ17によって閉鎖される場合、スプール7はホルダ6に対して軸方向への移動が抑制される。
 緩衝器Dに下方から突上げる方向の加速度が作用しないか、作用しても当該加速度が極小さい場合、ピストンロッド3に伝達される加速度も小さいので、シャッタ17はシャッタばね18によって液圧ロック室RCを開放する位置に位置決めされた状態に維持される。この場合、スプール7は、ホルダ6に対して自由に移動できるが、加速度が小さいのでスプール7がホルダ6に対して振動しても僅かであるので、電磁弁Vの流路面積が大きく変動しない。
 これに対して、緩衝器Dに下方から突上げる振動が入力されて緩衝器Dが収縮する際、ピストンロッド3にも振動が伝達されて上方側へ向く加速度が作用する。よって、ピストンロッド3に組付けられているホルダ6は上方へ移動するが、シャッタ17はシャッタばね18で弾性支持されてホルダ6に対して軸方向の移動が許容されているので、シャッタ17は慣性力によってその場に留まろうとする。これによって、シャッタ17は、ホルダ6に対して相対的に図2中下方へ移動して、液圧ロック室RCを閉鎖するのでスプール7のホルダ6に対する軸方向の変位が抑制される。このように、電磁弁Vでは、下方から大きな加速度が作用すると液圧ロック室RCがシャッタ17によって閉鎖されるので、スプール7とホルダ6の位置関係が変化しなくなり、大きな加速度が作用しても流路面積が変動しない。したがって、緩衝器Dに振動が入力されても電磁弁Vの流路面積の変動が抑制されて緩衝器Dが発生する減衰力が安定するので、緩衝器Dは、狙い通りの減衰力を発揮できる。
 つづいて、本実施の形態の緩衝器Dは、上記電磁弁Vを含んでハード側減衰要素21の流量を自動で調節するための減衰力調整部の他に、ハード側減衰要素21の流量を手動で調節するための第二の減衰力調整部を備えている。その第二の減衰力調整部は、図1に示すように、緩衝器Dのボトム部分に設けられており、圧側室Lbと液溜室Rとを連通する排出通路4bの流路面積を手動操作によって変更可能な手動バルブ41を有して構成されている。
 この手動バルブ41は、排出通路4bの途中に設けられた環状の弁座(符示せず)に離着座するニードル状の弁体41aを含む。そして、手動バルブ41を回転操作すると、その回転方向により弁体41aが弁座に遠近して排出通路4bの流路面積が大小調節される。本実施の形態では、電磁弁Vへの通電が正常になされる正常時には、弁体41aを弁座に着座させ、手動バルブ41で排出通路4bの連通を遮断した状態とする。
 以上をまとめると、緩衝器Dは、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、先端がピストン2に連結されるとともに末端がシリンダ1外へと突出するピストンロッド3と、シリンダ1内の伸側室Laに接続されるタンク16とを備え、伸側室Laの圧力がタンク圧となっている。
 さらに、緩衝器Dには、伸側室Laと圧側室Lbとを連通する通路として、伸側通路2a、圧側通路2b、およびバイパス路3aが設けられている。伸側通路2aには、伸側室Laから圧側室Lbへ向かう液体の一方向流れのみを許容する伸側チェックバルブ20が設けられており、圧側室Lbから伸側室Laへ向かう液体は、圧側通路2bまたはバイパス路3aを通るようになっている。
 そして、圧側通路2bには、オリフィス21bと、これに並列されるリーフバルブ21aを有して構成されていて、液体の流れに抵抗を与えるハード側減衰要素21が設けられている。その一方、バイパス路3aには、オリフィス21bより開口面積の大きいオリフィス50bと、これに並列されるリーフバルブ21aよりもバルブ剛性の低いリーフバルブ50aを有して構成されていて、液体の流れに与える抵抗を小さくしたソフト側減衰要素50が設けられている。
 さらに、そのバイパス路3aには、ソフト側減衰要素50と直列に電磁弁Vが設けられており、その電磁弁Vへの通電量の調節によりバイパス路3aの流路面積を変更できるようになっている。そして、電磁弁Vは、常閉型で、通電量に比例してバイパス路3aの流路面積を大きくするように設定されている。
 また、緩衝器Dには、圧側室Lbとタンク16とを連通する通路として、吸込通路4aと排出通路4bが設けられている。吸込通路4aには、タンク16から圧側室Lbへ向かう液体の一方向流れのみを許容する吸込バルブ40が設けられている。その一方、排出通路4bには、手動操作により開閉される常閉型の手動バルブ41が設けられている。
 緩衝器Dは、以上のように構成されており、緩衝器Dの収縮時には、ピストンロッド3がシリンダ1内へ侵入してピストン2が圧側室Lbを圧縮する。正常時には手動バルブ41が排出通路4bを閉じている。このため、緩衝器Dの収縮時には、圧側室Lbの液体が圧側通路2bまたはバイパス路3aを通って伸側室Laへと移動する。当該液体の流れに対しては、ハード側減衰要素21またはソフト側減衰要素50によって抵抗が付与されて、その抵抗に起因する圧側減衰力が発生する。
 また、正常時における緩衝器Dの収縮時に、ハード側減衰要素21とソフト側減衰要素50を通過する液体の分配比は、バイパス路3aの流路面積に応じて変わり、これにより減衰係数が大小して発生する圧側減衰力が大小調節される。
 具体的には、前述のように、ハード側減衰要素21およびソフト側減衰要素50は、それぞれオリフィス21b,50bと、これに並列されるリーフバルブ21a,50aとを有して構成されている。このため、減衰力特性は、ピストン速度が低速域にある場合、オリフィス特有のピストン速度の二乗に比例するオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のピストン速度に比例するバルブ特性となる。
 そして、電磁弁Vへの通電量を増やして開度を大きくすると、バイパス路3aの流量が増えてハード側減衰要素21を通過する液体の割合が減るとともに、ソフト側減衰要素50を通過する液体の割合が増える。ソフト側減衰要素50のオリフィス50bは、ハード側減衰要素21のオリフィス21bよりも開口面積の大きい大径オリフィスであるので、ソフト側減衰要素50側へ向かう液体の割合が増えるソフトモードでは、減衰係数が低速域と中高速域の両方で小さくなってピストン速度に対して発生する圧側減衰力が小さくなる。そして、電磁弁Vへ供給する電流量を最大にしたときに、減衰係数が最小になってピストン速度に対して発生する圧側減衰力が最小となる。
 これとは逆に、電磁弁Vへの通電量を減らして開度を小さくすると、バイパス路3aの流量が減ってハード側減衰要素21を通過する液体の割合が増えるとともに、ソフト側減衰要素50を通過する液体の割合が減る。すると、減衰係数が低速域と中高速域の両方で大きくなってピストン速度に対する圧側減衰力が大きくなる。そして、電磁弁Vへの通電を断って電磁弁Vを閉じるとバイパス路3aの連通が遮断されるので、全流量がハード側減衰要素21を通過するようになる。すると、減衰係数が最大になって、ピストン速度に対して発生する圧側減衰力が最大となる。
 このように、第一、第二の減衰要素であるハード側減衰要素21とソフト側減衰要素50を通過する液体の分配比を電磁弁Vで変えると減衰係数が大小し、図3に示すように、圧側の減衰力特性を示す特性線の傾きが変わる。そして、その特性線の傾きを最大にして発生する減衰力を大きくするハードモードと、傾きを最小にして発生する減衰力を小さくするソフトモードとの間で圧側減衰力が調節される。
 そして、ソフトモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で小さくなるとともに、ハードモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で大きくなる。このため、減衰力特性がオリフィス特性からバルブ特性へと移行する際の変化がどのモードでも緩やかである。
 さらに、ソフト側減衰要素50は、オリフィス50bと並列に、バルブ剛性の低いリーフバルブ50aを有している。このため、ハード側減衰要素21のリーフバルブ21aとしてバルブ剛性が高く、開弁圧の高いバルブを採用し、圧側減衰力を大きくする方向の調整幅を大きくしても、ソフトモードでの減衰力が過大にならない。
 また、フェール時(非正常時)には、電磁弁Vへの通電が断たれてハードモードに切り替わる。このとき、手動バルブ41を開けば、圧側室Lbの液体が圧側通路2bのみならず排出通路4bをも通過するようになるので、ハード側減衰要素21を通過する液体の流量が減って発生する圧側減衰力が低減される。
 また、緩衝器Dの収縮時にシリンダ1内に侵入したピストンロッド3体積分の液体は、伸側室Laからタンク16へと排出される。
 反対に、緩衝器Dの伸長時には、伸側チェックバルブ20が開き、伸側室Laの液体が伸側通路2aを通って圧側室Lbへと移動する。このとき、液体は伸側チェックバルブ20を比較的抵抗なく通過できる。さらに、伸側室Laは、タンク16と連通されていてタンク圧に維持される。よって、緩衝器Dは、伸長側の減衰力を発揮しない。なお、前述したように、緩衝器Dは、伸長時にのみ減衰力を発生する緩衝器と対を成してフロントフォークを構成しているので、前輪と車体が離間する場合には伸長時にのみ減衰力を発揮する緩衝器が車体の振動を抑制する。
 以下に、本発明の一実施の形態に係る電磁弁Vと電磁弁Vを備えた緩衝器Dの作用効果について説明する。
 電磁弁Vは、筒状であって内外を連通するポート6aを有するホルダ6と、ホルダ6内に軸方向に往復動可能に挿入されるとともにポート6aを開閉可能なスプール7と、スプール7をスプール7の移動方向の一方へ向けて付勢する付勢ばね8と、スプール7へスプール7の移動方向の他方へ向けて移動させる推力を付与可能なソレノイド9と、ホルダ6とスプール7との間に設けられて閉鎖されるとホルダ6に対するスプール7の移動方向の一方或いは他方への移動を抑制する液圧ロック室RCと、スプール7の移動方向に一致する方向へ往復動可能であるとともに液圧ロック室RCの開放と閉鎖を切換えるシャッタ17と、シャッタ17を付勢して液圧ロック室RCを開放する位置にシャッタ17を位置決めするシャッタばね18とを備えている。
 このように構成された電磁弁Vによれば、外部から振動入力されるとシャッタ17によって液圧ロック室RCが閉鎖されてスプール7のホルダ6に対する軸方向の変位が抑制されるので、流路面積の変化を抑制できる。よって、電磁弁Vを適用した緩衝器Dによれば、緩衝器Dに振動が入力されても電磁弁Vの流路面積の変動が抑制されて緩衝器Dが発生する減衰力が安定するので、緩衝器Dは、狙い通りの減衰力を発揮できる。
 なお、本実施の形態の電磁弁Vでは、シャッタばね18がシャッタ17を付勢する方向が図2中上方であるが、シャッタばね18がシャッタ17を付勢する方向を図2中下方としてシャッタ17が振動入力によってホルダ6に対して上方へ移動すると液圧ロック室RCを閉鎖するようにしてもよい。このように電磁弁Vが構成されると、電磁弁Vおよび緩衝器に対して下方へ押下げる方向の振動入力に対してシャッタ17が液圧ロック室RCを閉鎖する。よって、電磁弁Vおよび緩衝器に対して入力される加速度の方向の指向によって、シャッタ17がスプール7の移動方向の一方または他方のどちらに移動する場合に液圧ロック室RCを閉鎖するのかを決めればよい。
 また、本実施の形態の電磁弁Vでは、シャッタ17がホルダ6の外周に摺動自在に装着されている。このように構成された電磁弁Vでは、ホルダ6によってシャッタ17とスプール7の移動方向を一致させ得るので、シャッタ17の移動方向をスプール7の移動方向に一致させつつその移動を案内する部品の追加が不要であるので、コストを低減できる。また、シャッタ17をホルダ6の外周に設けると、ホルダ6の内周径とスプール7の内周径を大きく確保できるので、スプール7内の流路抵抗を小さくでき、余計は圧力損失を生じさせずに済む。
 なお、シャッタ17の環状溝17aを廃止して代わりに内外を連通する孔を設け、ホルダ6の孔6gとスプール7の環状溝7fと透孔7gを廃止し、液圧ロック室RCを開放する際にはシャッタ17の孔を孔6fに対向させて液圧ロック室RCを閉鎖する際にはシャッタ17の内周を孔6fに対向させるようにしてもよい。このように、液圧ロック室RCをホルダ6外に連通してもよいが、本実施の形態の電磁弁Vでは、液圧ロック室RCは、シャッタ17が液圧ロック室RCを開放する状態においてスプール7内に連通している。このように構成された電磁弁Vでは、ホルダ6とスプール7との間に形成される液圧ロック室RCがホルダ6の外部へ連通されないので、ホルダ6とスプール7との間に摺動隙間が液圧ロック室RCを介してホルダ6の外方と連通することが無い。よって、液圧ロック室RCを介してホルダ6とスプール7との間の摺動隙間がホルダ6外に連通されて、液体がホルダ6外とスプール7内を行き来する際にポート6aを通過するルート以外のルートができてしまうのを防止でき、流路面積を精度よく調整できる。
 また、本実施の形態に係る緩衝器Dは、シリンダ1と、このシリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室Laと圧側室Lbとに区画するピストン2と、このピストン2に連結されるとともに一端がシリンダ1外へと突出するピストンロッド3とを備えている。
 さらに、上記緩衝器Dは、圧側室Lbから伸側室Laへ向かう液体の流れに抵抗を与えるハード側減衰要素21と、このハード側減衰要素21を迂回して圧側室Lbと伸側室Laとを連通するバイパス路3aの流路面積を変更可能な電磁弁Vと、バイパス路3aに電磁弁Vと直列に設けられるソフト側減衰要素50とを備えている。そして、ハード側減衰要素21がオリフィス21bと、このオリフィス21bと並列に設けられるリーフバルブ21aとを有して構成されている。その一方、ソフト側減衰要素50は、オリフィス21bよりも開口面積の大きいオリフィス(大径オリフィス)50bを有して構成されている。
 上記構成によれば、緩衝器Dの収縮時に発生する減衰力の特性は、ピストン速度が低速域にある場合には、オリフィス特有のオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のバルブ特性となる。そして、電磁弁Vでバイパス路3aの開口面積を変更すれば、緩衝器Dの収縮時に圧側室Lbから伸側室Laへと移動する液体のうち、ハード側減衰要素21とソフト側減衰要素50のそれぞれを通過する流量の分配比が変わるので、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を自由に設定できて、ピストン速度が中高速域にある場合の圧側減衰力の調整幅を大きくできる。
 さらに、バイパス路3aの開口面積を大きくするソフトモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が小さくなる。その一方、バイパス路3aの開口面積を小さくするハードモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が大きくなる。このため、圧側減衰力の特性が低速域でのオリフィス特性から中高速域でのバルブ特性に変化する際に、その特性線の傾きの変化は、どのモードにおいても緩やかになる。これにより、本実施の形態に係る緩衝器Dを車両に搭載した場合には、上記傾きの変化に起因する違和感を軽減し、車両の乗り心地を良好にできる。
 また、本実施の形態の緩衝器Dでは、ソフト側減衰要素50が前記オリフィス(大径オリフィス)50bと、このオリフィス50bと並列に設けられるリーフバルブ50aを有して構成されている。このように、ソフト側減衰要素50にもリーフバルブ50aを設けると、ハード側減衰要素21のリーフバルブ21aをバルブ剛性が高く、開弁圧の高いバルブにしても、ソフトモードでの減衰力が過大にならない。つまり、上記構成によれば、ハード側減衰要素21のリーフバルブ21aとしてバルブ剛性の高いバルブを採用できる。そして、そのようにすると、圧側減衰力を大きくする方向へ減衰力の調整幅が大きくなるので、ピストン速度が中高速域にある場合の圧側減衰力の調整幅を一層大きくできる。
 また、本実施の形態の緩衝器Dでは、ピストン2がピストンロッド3の他端に連結されて片ロッド型になっている。さらに、緩衝器Dは、伸側室Laに接続されるタンク16と、このタンク16から圧側室Lbへ向かう液体の流れのみを許容する吸込バルブ40とを備えている。当該構成によれば、シリンダ1に出入りするピストンロッド3の体積分をタンク16で補償できる。さらには、緩衝器Dを圧縮行程でのみ減衰力を発揮する片効きの緩衝器にできる。
 また、本実施の形態の緩衝器Dでは、電磁弁Vは、通電量に比例して開度が変化するように設定されている。当該構成によれば、バイパス路3aの開口面積を無段階で変更できる。
 また、本実施の形態の緩衝器Dは、圧側室Lbとタンク16とを連通する排出通路4bの流路面積を手動操作によって変更可能な手動バルブ41を備えている。当該構成によれば、フェール時に電磁弁Vを閉じるようにしても、手動バルブ41を手動で開けば発生する圧側減衰力が低減される。このため、フェールモードでの圧側減衰力が過大になるのを防止でき、車両の乗り心地を良好にできる。
 また、本実施の形態の緩衝器Dでは、電磁弁Vがバイパス路3aに接続されるポート6aが形成される筒状のホルダ6と、このホルダ6内に往復動可能に挿入されてポート6aを開閉可能な筒状のスプール7と、このスプール7の移動方向の一方へスプール7を付勢する付勢ばね8と、この付勢ばね8の付勢力とは反対方向の推力をスプール7に与えるソレノイド9とを有する。
 ここで、例えば、JP2010-7758Aに記載の電磁弁のように、弁体として往復動可能なニードルバルブを有し、そのニードルバルブの尖端と弁座との間にできる隙間を大小させて開度を変更する場合、開度の調整幅を大きくするには弁体のストローク量を大きくする必要があるが、そのようにはできない場合がある。
 具体的には、ニードルバルブのストローク量を大きくすると、そのニードルバルブの可動スペースが大きくなって収容スペースの確保が難しくなる。また、ニードルバルブのストローク量を大きくするため、ソレノイドのプランジャのストローク量を大きくしようとすると、ソレノイドの設計変更が必要になって煩雑である。さらには、ソレノイドの設計変更をせずにニードルバルブのストローク量を大きくしようとすると、プランジャの移動量に対するニードルバルブの移動量を大きくするための部品が必要になって部品数が増えるとともに収容スペースを確保するのが難しくなる。
 これに対して、本実施の形態の電磁弁Vでは、筒状のホルダ6内に往復動可能に挿入されるスプール7で、ホルダ6に形成されたポート6aを開閉し、これにより電磁弁Vが開閉するようになっている。このため、ポート6aをホルダ6の周方向に複数形成したり、周方向に長い形状にしたりすれば、電磁弁Vの弁体であるスプール7のストローク量を大きくしなくても電磁弁Vの開度を大きくできる。よって、電磁弁Vの開度の調整幅を大きくして、圧側減衰力の調整幅を容易に大きくできる。
 さらに、上記構成によれば、電磁弁Vの開度と通電量との関係を容易に変更できる。例えば、電磁弁Vの開度と通電量との関係を負の比例関係にして、通電量が大きくなるほど開度を小さくしたい場合には、非通電時にポート6aが最大限に開く位置にポート6a、またはこのポート6aを開くための環状溝7dを配置すればよい。このように、電磁弁Vの開度と通電量との関係は、自由に変更できるとともに、これに合わせて手動バルブ41の設置の有無の選択できる。
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。本願は、2019年3月4日に日本国特許庁に出願された特願2019-038122に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
1・・・シリンダ、2・・・ピストン、3・・・ピストンロッド、3a・・・バイパス路、6・・・ホルダ、6a・・・ポート、7・・・スプール、8・・・付勢ばね、9・・・ソレノイド、17・・・シャッタ、18・・・シャッタばね、20・・・ハード側減衰要素、50・・・ソフト側減衰要素、D・・・緩衝器、La・・・伸側室、Lb・・・圧側室、V・・・電磁弁
 

Claims (4)

  1.  電磁弁であって、
     筒状であって内外を連通するポートを有するホルダと、
     筒状であって前記ホルダ内に軸方向に往復動可能に挿入されるとともに前記ポートを開閉可能なスプールと、
     前記スプールを前記スプールの移動方向の一方へ向けて付勢する付勢ばねと、
     前記スプールへ前記スプールの前記移動方向の他方へ向けて移動させる推力を付与可能なソレノイドと、
     前記ホルダと前記スプールとの間に設けられて閉鎖されると、前記ホルダに対する前記スプールの前記移動方向の一方或いは他方への移動を抑制する液圧ロック室と、
     前記スプールの移動方向に一致する方向へ往復動可能であるとともに、前記液圧ロック室の開放と閉鎖を切換えるシャッタと、
     前記シャッタを付勢して、液圧ロック室を開放する位置に前記シャッタを位置決めするシャッタばねとを備えた
     電磁弁。
  2.  請求項1に記載の電磁弁であって、
     前記シャッタは、前記ホルダの外周に摺動自在に装着されている
     電磁弁。
  3.  請求項1に記載の電磁弁であって、
     前記液圧ロック室は、前記シャッタが前記液圧ロック室を開放する状態において、前記スプール内に連通される
     電磁弁。
  4.  緩衝器であって、
     シリンダと、
     前記シリンダ内に軸方向へ移動可能に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
     前記ピストンに連結されるとともに一端が前記シリンダ外へと突出するピストンロッドと、
     前記圧側室から前記伸側室へ向かう液体の流れに抵抗を与えるハード側減衰要素と、
     前記ハード側減衰要素を迂回して前記圧側室と前記伸側室とを連通するバイパス路と、
     前記バイパス路の途中に設けられる請求項1から3のいずれか一項に記載の電磁弁と、
     前記バイパス路に前記電磁弁と直列に設けられるソフト側減衰要素とを備え、
     前記ハード側減衰要素は、オリフィスと、前記オリフィスと並列に設けられるリーフバルブとを有して構成されており、
     前記ソフト側減衰要素は、前記オリフィスよりも開口面積の大きい大径オリフィスを有して構成されている
     緩衝器。 
     
PCT/JP2020/008371 2019-03-04 2020-02-28 電磁弁および緩衝器 WO2020179675A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038122 2019-03-04
JP2019038122A JP2020143676A (ja) 2019-03-04 2019-03-04 電磁弁および緩衝器

Publications (1)

Publication Number Publication Date
WO2020179675A1 true WO2020179675A1 (ja) 2020-09-10

Family

ID=72337070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008371 WO2020179675A1 (ja) 2019-03-04 2020-02-28 電磁弁および緩衝器

Country Status (2)

Country Link
JP (1) JP2020143676A (ja)
WO (1) WO2020179675A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261547A (ja) * 2009-05-11 2010-11-18 Kayaba Ind Co Ltd バルブ構造
JP2011033125A (ja) * 2009-07-31 2011-02-17 Hitachi Automotive Systems Ltd 緩衝器
JP2014199098A (ja) * 2013-03-29 2014-10-23 アイシン・エィ・ダブリュ株式会社 リニアソレノイドバルブ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261547A (ja) * 2009-05-11 2010-11-18 Kayaba Ind Co Ltd バルブ構造
JP2011033125A (ja) * 2009-07-31 2011-02-17 Hitachi Automotive Systems Ltd 緩衝器
JP2014199098A (ja) * 2013-03-29 2014-10-23 アイシン・エィ・ダブリュ株式会社 リニアソレノイドバルブ

Also Published As

Publication number Publication date
JP2020143676A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2012132730A1 (ja) フロントフォーク
JP7212552B2 (ja) 緩衝器
WO2017047499A1 (ja) 減衰弁及び緩衝器
CN111630295B (zh) 阻尼阀和缓冲器
JP5559713B2 (ja) 鞍乗車両用緩衝器
CN114585841A (zh) 螺线管、电磁阀以及缓冲器
WO2020179678A1 (ja) 緩衝器
WO2020179682A1 (ja) 緩衝器
WO2020179684A1 (ja) 緩衝器
JP2018004026A (ja) 減衰弁および緩衝器
WO2020179675A1 (ja) 電磁弁および緩衝器
WO2020179680A1 (ja) 緩衝器
WO2020179683A1 (ja) 緩衝器
WO2020179677A1 (ja) スプール弁および緩衝器
WO2020179681A1 (ja) 緩衝器
JP2012082850A (ja) 懸架装置
WO2020179679A1 (ja) 緩衝器
JP5771067B2 (ja) ソレノイドバルブおよびフロントフォーク
JP2004340174A (ja) 空圧緩衝器
JP2012197859A (ja) 減衰バルブ
JP2018004025A (ja) 減衰弁および緩衝器
JP2004225834A (ja) 緩衝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766621

Country of ref document: EP

Kind code of ref document: A1