Nothing Special   »   [go: up one dir, main page]

WO2020179147A1 - 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法 - Google Patents

溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2020179147A1
WO2020179147A1 PCT/JP2019/045520 JP2019045520W WO2020179147A1 WO 2020179147 A1 WO2020179147 A1 WO 2020179147A1 JP 2019045520 W JP2019045520 W JP 2019045520W WO 2020179147 A1 WO2020179147 A1 WO 2020179147A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
steel sheet
plating
plating layer
mass
Prior art date
Application number
PCT/JP2019/045520
Other languages
English (en)
French (fr)
Inventor
飛山 洋一
英徳 三宅
大居 利彦
純久 岩野
史嵩 菅野
Original Assignee
Jfe鋼板株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe鋼板株式会社 filed Critical Jfe鋼板株式会社
Priority to MYPI2021004943A priority Critical patent/MY193467A/en
Priority to KR1020217027753A priority patent/KR20210123340A/ko
Priority to KR1020237034407A priority patent/KR20230145257A/ko
Priority to CN202410170601.0A priority patent/CN117987688A/zh
Priority to JP2020511539A priority patent/JP6715399B1/ja
Priority to SG11202109471QA priority patent/SG11202109471QA/en
Priority to CN201980093481.6A priority patent/CN113631748A/zh
Publication of WO2020179147A1 publication Critical patent/WO2020179147A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a molten Al-Zn-Mg-Si-Sr plated steel sheet having good surface appearance and excellent corrosion resistance of a flat plate portion and a processed portion, and a method for producing the same.
  • Patent Document 1 discloses a hot-dip Al—Zn-based plated steel sheet containing 25 to 75 mass% of Al in the plating layer. Due to its excellent corrosion resistance, hot-dip Al-Zn plated steel sheets have been in increasing demand in recent years, mainly in the field of building materials such as roofs and walls that are exposed to the outdoors for a long period of time, and in the field of civil engineering and construction such as guardrails, wiring pipes, and soundproof walls. ing.
  • the plating layer of the molten Al-Zn-based plated steel sheet is composed of a main layer and an interfacial alloy layer existing at the interface between the base steel plate and the main layer, and the main layer is a portion ( ⁇ -) in which Al mainly containing Zn is dendrite-solidified. It is composed of an Al phase dendrite portion) and a remaining dendrite gap portion (interdendrite) containing Zn as a main component, and has a structure in which a plurality of ⁇ -Al phases are laminated in the film thickness direction of the plating layer.
  • the corrosion progress path from the surface becomes complicated, so that it becomes difficult for corrosion to easily reach the base steel sheet, and the molten Al-Zn-based plated steel sheet has the same coating layer thickness as the molten zinc. Excellent corrosion resistance can be achieved compared to plated steel sheets.
  • Patent Document 2 includes an Al-Zn-Si alloy containing Mg in a plating layer.
  • the Al-Zn-Si alloy is an alloy containing 45 to 60% by weight of elemental aluminum, 37 to 46% by weight of elemental zinc, and 1.2 to 2.3% by weight of elemental silicon, and the concentration of Mg is high.
  • An Al-Zn-Mg-Si plated steel sheet having a content of 1 to 5% by weight is disclosed.
  • the molten Al-Zg-based plated steel sheet containing Mg disclosed in the cited document 2 has excellent corrosion resistance, but it is caused by the oxide layer formed on the surface of the plated layer, and is from several mm to several hundred.
  • wrinkle-like defects having a length of about mm (hereinafter, referred to as “wrinkle-like defects”) are likely to occur and the appearance of the surface of the plating layer is impaired. Therefore, for example, Patent Document 3 discloses a technique for improving the surface appearance of a molten Al—Zn—Mg-based plated steel sheet by including Sr in the plating layer.
  • Patent Document 4 discloses a technique for improving workability of a molten Al—Zn—Mg-based plated steel sheet by including Sr in the plating layer.
  • the molten Al-Zn-Mg-based plated steel sheets of Patent Documents 3 and 4 described above contain Sr in the plating layer, the occurrence of wrinkle-like defects can be suppressed and the surface appearance can be improved. There is.
  • the content of Sr reduces the content of Mg 2 Si near the surface of the plating layer, and as a result, the corrosion resistance may decrease. was there.
  • Mg 2 Si generated in the plating layer exerts an effect of improving corrosion resistance, the plating layer is formed when bending is performed. There is a problem that the cracks are generated and the corrosion resistance of the processed portion (processed portion corrosion resistance) is poor.
  • the present invention includes a molten Al-Zn-Mg-Si-Sr plated steel sheet having good surface appearance and excellent corrosion resistance of the flat plate portion and the processed portion, and corrosion resistance of the flat plate portion and the processed portion. It is an object of the present invention to provide a method for producing a hot-dip Al-Zn-Mg-Si-Sr plated steel sheet excellent in heat resistance.
  • the present inventors preferentially dissolve Mg 2 Si existing in the plating layer when the plating layer is corroded, and the effect of improving the corrosion resistance due to the inclusion of Mg is obtained. It was noted that Mg 2 Si existing near the surface of the plating layer is more important because Mg dissolved in the corrosion product generated on the surface of the layer is expressed by being concentrated. As a result of further earnest studies, most of Mg 2 Si contained in the main layer (hereinafter, also referred to as “plating main layer” or “main layer”) forming the plating layer was plated.
  • Mg 2 Si in the plating main layer has a corrosion resistance improving effect, but becomes a propagation path to the plating main layer surface of cracks generated in the interface alloy layer during bending, We paid attention to the fact that the desired corrosion resistance of the processed part cannot be obtained because the workability is reduced.
  • the present invention has been made based on the above findings, and its gist is as follows.
  • the plating layer contains Al: 40 to 70% by mass, Si: 0.6 to 5% by mass, Mg: 0.1 to 10% by mass and Sr: 0.001 to 1.0% by mass, and the balance is Zn.
  • the plating layer consists of an interface alloy layer present at the interface with the base steel sheet and a main layer present on the alloy layer, Of Mg 2 Si observed in the cross section in the thickness direction of the plating layer, the area ratio of Mg 2 Si existing within the thickness range of 50% from the surface of the main layer is 50% or more, and The area ratio of Mg 2 Si continuously present in the interdendrite portion from the interface alloy layer to the surface of the main layer (hereinafter, may be “extended”) is 50% or less. Hot-dip Al-Zn-Mg-Si-Sr plated steel sheet.
  • the area ratio of Mg 2 Si existing in the thickness range of up to 50% from the surface of the main layer is 60% or more, and The molten Al-Zn-Mg-Si-Sr according to 1 above, wherein the area ratio of Mg 2 Si extending from the surface of the main layer to the interface alloy layer is 50% or less. Plated steel sheet.
  • the area ratio of Mg 2 Si existing in the thickness range of up to 50% from the surface of the main layer is 60% or more, and 2.
  • the molten Al-Zn-Mg-Si-Sr according to the above 2, wherein the area ratio of Mg 2 Si extending from the surface of the main layer to the interfacial alloy layer is 40% or less. Plated steel sheet.
  • the Si phase observed in the cross section in the thickness direction of the plating layer has a ratio of the area ratio of the Si phase to the total area ratio of Mg 2 Si and Si phase observed in the cross section in the thickness direction of the plating layer. , 30% or less, the molten Al-Zn-Mg-Si-Sr plated steel sheet according to any one of 1 to 3 above.
  • the main layer has an ⁇ -Al phase dendrite portion, and the average distance between dendrite arms of the dendrite portion and the thickness of the plating layer satisfy the following formula (1).
  • the steel plate is heated at an average cooling rate of 10° C./s or more until the plate temperature reaches a temperature obtained by subtracting 150° C. from the bath temperature of the plating bath (plating bath temperature ⁇ 150° C.).
  • a molten Al-Zn-Mg-Si-Sr plated steel sheet having a good surface appearance and excellent corrosion resistance of a flat plate portion and a processed portion, and a flat plate portion and a flat plate portion and a processed portion have a good surface appearance. It is possible to provide a method for producing a molten Al-Zn-Mg-Si-Sr-plated steel sheet having excellent corrosion resistance in the processed part.
  • (A) is the figure which showed the state before and after corrosion about a hot-dip Al-Zn-Mg type plated steel plate
  • (b) is the figure which showed the state before and after corrosion about a hot-dip Al-Zn type plated steel sheet.
  • (A) shows the state of each element of the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention by energy dispersive X-ray spectroscopy (SEM-EDX) of a scanning electron microscope
  • (b) is a diagram for part of the molten Al-Zn-Mg-Si- Sr -plated steel sheet, it has been described a method for observing the Mg 2 Si and Si phases shown in (a).
  • FIG. 4 is a diagram for explaining a method of calculating the area ratio of Mg 2 Si extending from the surface of the main layer to the interface alloy layer among Mg 2 Si observed in the cross section in the thickness direction of the plating layer. .. It is a figure for demonstrating the measuring method of the distance between dendrite arms. It is a figure for demonstrating the flow of the combined cycle test (JASO-CCT) of a Japanese automobile standard.
  • JSO-CCT combined cycle test
  • the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention has a plated layer on the surface of the steel sheet, and the plated layer includes an interface alloy layer existing at the interface with the base steel sheet and the alloy layer. It consists of the main layer that exists above.
  • the plating layer contains Al: 40 to 70% by mass, Si: 0.6 to 5% by mass, Mg: 0.1 to 10% by mass, and Sr: 0.001 to 1.0% by mass, The balance has a composition of Zn and unavoidable impurities.
  • the Al content in the plating layer is 40 to 70% by mass, preferably 45 to 65% by mass, from the viewpoint of the balance between corrosion resistance and operation.
  • the main layer mainly contains Zn in a hypersaturation, and is composed of a portion where Al is dendrite solidified (a dendrite portion of the ⁇ -Al phase) and a portion of the remaining dendrite gap (interdendrite portion), and the dendrite portion is a film of a plating layer. It is possible to realize a structure having excellent corrosion resistance laminated in the thick direction.
  • the Al content in the plating layer is preferably 45% by mass or more.
  • the Al content in the plating layer exceeds 70% by mass, the content of Zn having a sacrificial anticorrosion effect on Fe decreases, and the corrosion resistance deteriorates. Therefore, the Al content in the plating layer is set to 70% by mass or less.
  • the Al content in the plating layer is 65% by mass or less, the adhesion amount of the plating is reduced, and even if the base steel sheet is easily exposed, it has a sacrificial anticorrosion action on Fe, Excellent corrosion resistance is obtained. Therefore, the Al content of the plating main layer is preferably 65% by mass or less.
  • Si in the plating layer is added to the plating bath for the purpose of suppressing the growth of the interfacial alloy layer generated at the interface with the base steel sheet, for the purpose of improving corrosion resistance and workability, and necessarily in the main layer. Contained.
  • the plating bath contains Si and the hot dip plating treatment is performed, the base steel sheet is dipped in the plating bath and at the same time the steel sheet surface Fe and Al or Si in the bath undergo an alloying reaction to produce an alloy composed of a Fe-Al-based and/or Fe-Al-Si-based compound.
  • this Fe-Al-Si-based interfacial alloy layer can suppress the growth of the interfacial alloy layer. And when Si content in the said plating layer is 0.6 mass% or more, the growth of the said interface alloy layer can be suppressed sufficiently. On the other hand, when the Si content of the plating layer exceeds 5%, the workability of the plating layer is deteriorated and the Si phase serving as the cathode site is easily deposited. The precipitation of the Si phase can be suppressed by increasing the Mg content and making a certain relationship between the Si content and the Mg content, as will be described later, but in that case, the manufacturing cost is increased and the Mg content is reduced.
  • the Si content in the plating layer is 5% or less. Furthermore, considering that the growth of the interfacial alloy layer and the precipitation of the Si phase can be more reliably suppressed, and that it is possible to deal with the case where Si is consumed as Mg 2 Si, the Si content in the plating layer is It is preferably more than 2.3 and 3.5%.
  • the plated layer contains 0.1 to 10 mass% of Mg.
  • Mg is contained in the corrosion product, the stability of the corrosion product is improved, the progress of corrosion is delayed, and as a result, the corrosion resistance is improved. .. More specifically, Mg present in the main layer of the plating layer combines with the above-mentioned Si to form Mg 2 Si. As shown in FIG. 1A, this Mg 2 Si dissolves in the initial stage when the plated steel sheet is corroded, so that Mg is contained in the corrosion product. Mg contained in this corrosion product has the effect of densifying the corrosion product, and can improve the stability of the corrosion product and the barrier property against external corrosion factors.
  • the corrosion product does not contain Mg, and desired corrosion resistance cannot be obtained.
  • the Mg content of the plating layer is set to 0.1 mass% or more, when the plating layer contains Si in the concentration range described above, the Mg concentration is 0.1 mass% or more. Then, it becomes possible to generate Mg 2 Si, and a corrosion retarding effect can be obtained. From the same viewpoint, the Mg content of the plating layer is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the content of Mg in the plating layer is set to 10% by mass or less, because when the content of Mg in the plating layer exceeds 10%, in addition to saturation of the effect of improving corrosion resistance, increase in manufacturing cost and plating This is because it is difficult to control the composition of the bath.
  • the Mg content of the plating layer is preferably 6% by mass or less.
  • the Mg content in the plating layer is set to 1% by mass or more, it is possible to improve the corrosion resistance after coating.
  • the plating layer of a conventional molten Al-Zn-based galvanized steel sheet containing no Mg comes into contact with the atmosphere, a dense and stable oxide film of Al 2 O 3 is immediately formed around the ⁇ -Al phase, and protection by this oxide film is formed. Due to the action, the solubility of the ⁇ -Al phase becomes much lower than the solubility of the Zn rich phase in the interdendrite.
  • the Mg content in the plating layer is preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the Mg 2 Si phase and the Mg—Zn compound (Mg Zn 2 , Mg 32 (Al,) precipitated in the interdent light Zn) 49, etc. melts out in the initial stage of corrosion, and Mg is incorporated in the corrosion product. Since the corrosion product containing Mg is very stable, and the corrosion is suppressed in the initial stage, the Zn-rich phase, which is a problem in the case of the coated steel sheet using the conventional Al-Zn system plated steel sheet as the base, The large swelling of the coating film due to the selective corrosion can be suppressed.
  • the hot-dip Al—Zn-based plated steel sheet containing Mg in the plating layer exhibits excellent post-coating corrosion resistance.
  • the Mg content in the plating layer is less than 1% by mass, the amount of Mg dissolved out during corrosion is small, and the corrosion resistance after coating may not be improved.
  • the Mg content in the plating layer exceeds 10% by mass, not only the effect is saturated, but also the Mg compound is severely corroded and the solubility of the entire plating layer is excessively increased. Even if the product is stabilized, its dissolution rate becomes large, so that a large swollen width may occur and the corrosion resistance after coating may deteriorate. Therefore, in order to stably obtain excellent corrosion resistance after coating, it is preferable that the Mg content in the plating layer be 10% by mass or less.
  • the plating layer contains 0.001 to 1.0 mass% of Sr.
  • Sr in the plating layer, it is possible to suppress the occurrence of wrinkle defects and improve the surface appearance of the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention.
  • the wrinkle-like defects are wrinkle-like irregularities formed on the surface of the plating layer, and are observed as whitish lines on the surface of the plating layer. Such streak defects are likely to occur when a large amount of Mg is added to the plating layer.
  • the Sr content in the plating layer must be 0.001 mass% or more. This is to obtain the effect of suppressing the occurrence of the above-mentioned streak-like defects.
  • the Sr content in the plating layer is preferably 0.005 mass% or more, more preferably 0.01 mass% or more, and 0.05 mass% or more. Especially preferable.
  • the Sr content in the plating layer needs to be 1.0 mass% or less. This is because if the Sr content is too large, the effect of suppressing the generation of streak-like defects is saturated, which is disadvantageous in terms of cost.
  • the Sr content in the plating layer is preferably 0.7% by mass or less, more preferably 0.5% by mass or less, and 0.3% by mass or less. Especially preferable.
  • the plating layer, the components of the base steel sheet taken into the plating during the reaction of the plating bath and the base steel sheet during the plating treatment, and unavoidable impurities contained in the ingot used when constructing the plating bath are included.
  • Fe may be contained in about several percent.
  • examples of the types of unavoidable impurities in the plating bath include Fe, Mn, P, S, C, Nb, Ti, and B as the base steel plate components.
  • examples of impurities in the ingot include Fe, Pb, Sb, Cd, As, Ga, and V.
  • the amount of Fe in the plating layer cannot be quantified by distinguishing between those taken from the base steel sheet and those in the plating bath.
  • the total content of the unavoidable impurities is not particularly limited, but the total amount of the unavoidable impurities excluding Fe is 1% by mass or less from the viewpoint of maintaining the corrosion resistance and uniform solubility of the plating. preferable.
  • the plating layer is known as a stable element of a corrosion product in Zn-Al system plating, Cr, Ni, Co, Mn, At least one or more selected from Ca, V, Ti, B, Mo, Sn, Zr, Li, Ag and the like can be further contained in a content of less than 1% of each element.
  • the content of each of these elements is less than 1%, the effect disclosed in the present invention is not impaired, and the corrosion product stabilization effect further improves the corrosion resistance.
  • the interfacial alloy layer is a layer existing at the interface with the underlying steel sheet among the plating layers, and as described above, Fe on the surface of the steel sheet and Al or Si in the bath inevitably undergo an alloying reaction. Fe-Al-based compounds and/or Fe-Al-Si-based compounds that are generated as a result. Since this interface alloy layer is hard and brittle, it grows thick and becomes a starting point of crack generation during processing. Therefore, it is preferable to thin the interface alloy layer.
  • the molten Al-Zn-Mg-Si- Sr -plated steel sheet of the present invention among the Mg 2 Si which is observed in the thickness direction of the cross section of the plating layer, to 50% from the surface of the main layer thickness
  • the area ratio of Mg 2 Si existing in the range is 50% or more, and the area ratio of Mg 2 Si extending from the surface of the main layer to the interfacial alloy layer is 50% or less.
  • the molten Al-Zn-Mg-Si- Sr -plated steel sheet of the present invention among the Mg 2 Si which is observed in the thickness direction of the cross section of the plating layer, within the thickness range of up to 50% from the surface of the main layer
  • the area ratio of Mg 2 Si present in the is 50% or more.
  • the area ratio of Mg 2 Si existing in the thickness range of up to 50% from the surface of the main layer is large (50% or more). ) Therefore, most of Mg 2 Si on the surface of the main layer is dissolved during corrosion, and the Mg concentration of corrosion products formed on the plated surface after corrosion increases. Therefore, in the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention, excellent corrosion resistance can be realized while suppressing the occurrence of wrinkle-like defects.
  • the conventional molten Al-Zn-Mg-Si-Sr plated steel sheet has a small amount of Mg 2 Si (less than 50%) existing in the thickness range of up to 50% from the surface of the main layer.
  • the amount of Mg 2 Si dissolved during corrosion is not sufficient, and the concentration of Mg in the corrosion product on the plated surface after corrosion is relatively low. Therefore, in the conventional hot-dip Al-Zn-Mg-Si-Sr plated steel sheet, wrinkle-shaped defects can be suppressed from occurring, but the corrosion resistance is reduced.
  • the above-mentioned area ratio of Mg 2 Si (area ratio of Mg 2 Si existing within a thickness range of up to 50% from the surface of the main layer) is derived by, for example, energy dispersion using a scanning electron microscope. Type X-ray spectroscopy (SEM-EDX).
  • SEM-EDX Type X-ray spectroscopy
  • FIG. 2A after obtaining the cross-sectional state of the plating layer in the thickness direction, mapping is performed for each of Mg and Si as shown in FIG. , Si is shown in blue). After that, of the mapped Mg and Si, the portion where they overlap at the same position (the portion shown in purple in FIG. 2B) can be set as Mg 2 Si.
  • the obtained Mg 2 Si as shown in FIG.
  • the area ratio (A%) of Mg 2 Si to the area of the entire main layer of the plating layer is measured. Then, the main layer is divided in half in the thickness direction, and the area ratio (B%) of Mg 2 Si existing in the thickness range from the surface to 50% of the area of the main layer is measured. Then, the ratio of the area ratio (B%) of Mg 2 Si existing in the thickness range from the surface of the main layer to 50% to the area ratio (A%) of Mg 2 Si in the entire main layer of the plating layer ( (B%) / (a% ) by calculating ⁇ 100%), of the Mg 2 Si present in the observation field, there from the surface of the main layer in the thickness range of up to 50% Mg 2 Si The area ratio (X%) occupied by can be obtained.
  • the area ratio of Mg 2 Si extending from the surface of the main layer to the interfacial alloy layer is set to 50% or less.
  • the corrosion resistance of the processed part can also be greatly improved.
  • Mg 2 Si contained in the plating main layer has an effect of improving corrosion resistance, it serves as a propagation path for cracks generated in the interfacial alloy layer as described above and reduces workability. Therefore, conventional molten Al-Zn is used. With the Mg-based plated steel sheet, sufficient workability, and thus corrosion resistance of the processed portion, could not be obtained.
  • the amount of Mg 2 Si that reaches from the interfacial alloy layer to the surface of the plating main layer is reduced (the area ratio of Mg 2 Si is 50%).
  • the derivation of the area ratio of Mg 2 Si as described above also, for example, energy dispersive using a scanning electron microscope X-ray spectroscopy (SEM-EDX) can be used.
  • SEM-EDX scanning electron microscope X-ray spectroscopy
  • the area ratio (A%) of Mg 2 Si to the area of the entire main layer of the plating layer is measured. After that, among the Mg 2 Si particles existing in the observation field, the Mg 2 Si particles (particles indicated by arrows in FIG. 4) extending from the surface of the main layer to the interfacial alloy layer of the plating layer The area ratio (C%) to the entire main layer is measured.
  • the area ratio of Mg 2 Si in the entire main layer of the plated layer to the (A%) the area ratio of the extension to Mg 2 Si to reach the interface alloy layer from the surface of the main layer in the entire main layer of the plated layer.
  • the Mg 2 Si in the present invention “extends from the surface of the main layer to the interface alloy layer”, the Mg 2 Si reaches (contacts) the interface alloy layer from the surface of the main layer. ), the distance between the lower end of the Mg 2 Si and the upper end of the interface alloy layer is very small and substantially reaches the interface layer (for example, in the thickness direction of the plating layer).
  • the case where the distance between the lower end of the Mg 2 Si and the upper end of the interface alloy layer when observed in the cross section is 1.0 ⁇ m or less). Also in this case, when cracks originate from the interface alloy layer, most of them reach the surface of the plating main layer.
  • Mg 2 Si observed in the cross section in the thickness direction of the plating layer from the viewpoint of being able to realize more excellent corrosion resistance, Mg 2 Si existing in the thickness range of 50% from the surface of the main layer is used.
  • the area ratio is preferably 60% or more.
  • the Mg 2 Si observed in the cross section in the thickness direction of the plating layer extends from the surface of the main layer to the interfacial alloy layer from the viewpoint of realizing better corrosion resistance of the processed portion.
  • the area ratio of Mg 2 Si is preferably 40% or less.
  • the Mg 2 Si observed in the cross section of the plating layer in the thickness direction is within the thickness range of up to 50% from the surface of the main layer from the viewpoint of realizing better corrosion resistance and corrosion resistance of the processed portion.
  • the area ratio of Mg 2 Si existing in the surface layer is 60% or more, and the area ratio of Mg 2 Si extending from the surface of the main layer to the interface alloy layer is from the surface of the main layer to the interface alloy. More preferably, the area ratio of Mg 2 Si extending to reach the layer is 40% or less.
  • the plating layer contains Si as a composition component
  • a Si phase may be formed in the plating layer depending on the composition of Si and Mg in the plating layer as described above.
  • the content ratio of Mg 2 Si that improves corrosion resistance and the Si phase that becomes a cathode site during corrosion of the plating layer and deteriorates corrosion resistance is important.
  • the essence of the present invention is that even if the absolute amount of Mg2Si that improves corrosion resistance is large, good corrosion resistance cannot be ensured if the amount of Si phase that deteriorates corrosion resistance is large, so the ratio is controlled to a certain value or less. Especially.
  • the area ratio of Mg 2 Si and Si phase observed in the cross section in the thickness direction of the plated layer measured by the method shown below The area ratio of Si phase (area ratio of Si phase/total area ratio of Mg 2 Si and Si phase) observed in the cross section in the thickness direction of the plating layer is preferably 30% or less with respect to the total of More preferably, it is 10% or less.
  • the method of deriving the area ratio of the Si phase may be performed by energy dispersive X-ray spectroscopy (SEM-EDX) using a scanning electron microscope, as in the case of Mg 2 Si described above.
  • mapping is performed for each of Mg and Si (FIG. 2B).
  • the portion shown in blue in FIG. 2B in which Mg does not exist at the position where Si exists can be regarded as the Si phase.
  • the area ratio (D%) of the Si phase can be calculated from the ratio of the total area of the blue portion and the area of the plating layer in the observed visual field.
  • the area ratio of the Si phase observed in the cross section in the thickness direction of the plating layer with respect to the total area ratio of the Mg 2 Si and Si phases area ratio of Si phase/total area ratio of Mg 2 Si and Si phase).
  • the area ratio of the Si phase to the total area of the Mg 2 Si and Si phases observed in the cross section of the plating layer in the thickness direction is observed in 10 randomly selected cross sections of the plating layer. It is an average of the area ratios of the Si phases to be formed.
  • the area ratio of the Si phase observed in the cross section in the thickness direction of the plating layer (area ratio of the Si phase in the observation visual field: D%) is preferably 10% or less, and preferably 3% or less. Is more preferable.
  • the area ratio of the Si phase observed in the cross section of the plating layer in the thickness direction the area ratio of the Si phase observed in 10 randomly selected cross sections of the plating layer is averaged. Is.
  • the area ratio of the Si phase observed on the surface of the plated layer is preferably 1% or less, and 0 More preferably, it is 5.5% or less.
  • the method of deriving the area ratio of the Si phase on the surface of the plating layer energy dispersive X-ray spectroscopy (SEM-EDX) is performed using a scanning electron microscope as in the case of observing the cross section. Can be done using.
  • the area ratio can be determined according to the cross-sectional observation method, and the area ratio of the Si phase observed on the randomly selected 10 surfaces of the plating layer can be averaged.
  • the area of the Si phase observed in the cross section in the thickness direction of the plating layer with respect to the total area of Mg 2 Si and the Si phase observed on the surface of the plating layer is preferably 20% or less, and more preferably 10% or less.
  • the actual observation method and the method of obtaining the area ratio are in accordance with the cross-section observation method described above.
  • the cross section or the surface of the plating layer is polished and/or etched and then observed.
  • There are several kinds of methods for polishing or etching the cross section or the surface but there is no particular limitation as long as they are generally used when observing the cross section or the surface of the plating layer.
  • the observation conditions with a scanning electron microscope are, for example, an acceleration voltage of 5 to 20 kV, and a cross-section of the plating layer is clearly defined if the magnification is about 500 to 5000 times in a secondary electron beam image or a backscattered electron image. It is possible to observe.
  • mapping with EDX the above area ratio can be obtained by analyzing with the same magnification.
  • the main layer of the plating layer has an ⁇ -Al phase dendrite portion, and the average distance between the dendrite arms of the dendrite portion and the thickness of the plating layer satisfy the following formula (1).
  • t thickness of plating layer ( ⁇ m)
  • d average distance between dendrite arms ( ⁇ m)
  • the distance between the dendrite arms of the dendrite part means the center distance between adjacent dendrite arms (dendritic arm spacing).
  • the surface of the plating layer main layer is magnified and observed (for example, observed at 200 times) using a scanning electron microscope (SEM) or the like, and a randomly selected field of view is observed.
  • the interval of the second widest dendrite arm (secondary dendrite arm) is measured as follows. A portion where three or more secondary dendrite arms are aligned is selected (in FIG. 5, three between A and B are selected), and a distance is set along the direction in which the arms are aligned (see FIG. 5). Now, the distance L) is measured.
  • the measured distance is divided by the number of dendrite arms (L / 3 in FIG. 5) to calculate the distance between the dendrite arms.
  • the distance between dendrite arms is measured at three or more points in one visual field, and the average of the obtained distances between dendrite arms is calculated as the average distance between dendrite arms.
  • the thickness of the plating layer is preferably 10 to 30 ⁇ m, and more preferably 20 to 25 ⁇ m from the viewpoint of achieving both a high level of workability and corrosion resistance. This is because when the plating layer is 10 ⁇ m or more, sufficient corrosion resistance can be ensured, and when the plating layer is 30 ⁇ m or less, workability can be sufficiently ensured.
  • the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention may be a surface-treated steel sheet further provided with a chemical conversion treatment film and/or a coating film on its surface.
  • the manufacturing method of the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention is Al: 40 to 70% by mass, Si: 0.6 to 5% by mass, Mg: 0.1 to 10% by mass and Sr: When hot-dip galvanizing a steel sheet using a plating bath containing 0.001 to 1.0% by mass, the balance of which is Zn and unavoidable impurities, and a bath temperature of 585 ° C. or lower, the plating is performed.
  • the steel plate temperature at the time of bath entry is set to a temperature (plating bath temperature + 20 ° C.) or less obtained by adding 20 ° C. from the bath temperature of the plating bath.
  • the hot-dip Al-Zn-Mg-Si-Sr plated steel sheet obtained by the above-described manufacturing method has a favorable surface appearance and also has excellent corrosion resistance in the flat plate portion and the processed portion.
  • the method for producing a hot-dip Al-Zn-Mg-Si-Sr plated steel sheet of the present invention is not particularly limited, but a continuous hot-dip galvanizing facility is usually adopted from the viewpoint of production efficiency and quality stability.
  • the type of base steel sheet used for the molten Al-Zn-Mg-Si-Sr plated steel sheet of the present invention is not particularly limited.
  • a hot rolled steel sheet or steel strip that has been pickled and descaled, or a cold rolled steel sheet or steel strip obtained by cold rolling them can be used.
  • the conditions of the pretreatment step and the annealing step are not particularly limited, and any method can be adopted.
  • the plating bath contains Al: 40 to 70% by mass, Si: 0.6 to 5% by mass, and Mg: 0.1 to 10% by mass. %, and Sr: 0.001 to 1.0% by mass, with the balance being Zn and inevitable impurities.
  • a molten Al-Zn-Mg-Si-Sr plated steel sheet having a desired composition can be obtained.
  • the type, content, and action of each element contained in the plating bath are described in the above-mentioned molten Al—Zn—Mg—Si—Sr plated steel sheet of the present invention.
  • the molten Al-Zn-Mg-Si-Sr plated steel sheet obtained by the production method of the present invention has almost the same composition as the plating bath as a whole. Therefore, the composition of the main layer can be accurately controlled by controlling the composition of the plating bath.
  • the contents of Mg and Si in the plating bath satisfy the following formula (2).
  • M Si Si content (mass %)
  • the formed plating layer suppresses the generation of Si phase (for example, is observed in the cross section in the thickness direction of the plating layer).
  • the area ratio of the Si phase is 10% or less, the area ratio of the Si phase observed on the surface of the plating layer is 1% or less), and the workability and corrosion resistance can be further improved.
  • M Mg /(M Si ⁇ 0.6) is more preferably 2.0 or more, and further preferably 3.0 or more.
  • the bath temperature of the plating bath is 585°C or lower, and preferably 580°C or lower.
  • the bath temperature By setting the bath temperature, a large amount of Mg 2 Si that reaches the interface alloy layer from the surface of the main layer of the plating layer can be reduced. It also has the effect of suppressing the growth of the interface alloy layer.
  • the reason why the low bath temperature effectively works is that the time period during which the steel sheet stays in the high temperature region where the Mg 2 Si and the interface alloy layer grow can be shortened.
  • the bath temperature of the plating bath exceeds 585° C., even if the steel plate temperature at the time of entering the plating bath is optimized, a large amount of Mg 2 Si that reaches the interface alloy layer from the surface of the main layer is obtained. However, since the interface alloy layer grows thicker, the desired workability and corrosion resistance of the processed portion cannot be obtained.
  • the temperature of the steel sheet at the time of entering the plating bath is added by 20 ° C. from the bath temperature of the plating bath ( Plating bath temperature +20°C) or less.
  • This can reduce a large amount of Mg 2 Si that reaches the interface alloy layer from the surface of the main layer of the plating layer.
  • the reason why the amount of large Mg 2 Si can be reduced by reducing the approach plate temperature is that the Mg 2 Si and the interfacial alloy layer grow in the high temperature region, similar to the effect of lowering the bath temperature. This is because it is possible to shorten the time that the steel sheet stays.
  • the entry plate temperature of the steel sheet is preferably equal to or lower than the temperature obtained by adding 10° C. to the bath temperature of the plating bath (plating bath temperature+10° C.) and is equal to or lower than the bath temperature of the plating bath. preferable.
  • the plate temperature of the plating bath is 10°C/s or more at an average cooling rate. It is preferable to cool the steel sheet until a temperature obtained by subtracting 150°C from the bath temperature (plating bath temperature-150°C) is reached. It is known that Mg 2 Si formed in the above-mentioned plating layer is easily generated in a temperature range up to a temperature obtained by subtracting 150° C. from the bath temperature of the plating bath (plating bath temperature ⁇ 150° C.).
  • the average cooling rate is determined by determining the time required for the steel sheet to reach a temperature obtained by subtracting 150°C from the plating bath temperature, and dividing 150°C by that time.
  • the amount of Mg 2 Si existing near the surface of the plating main layer can be increased to 50% or more of the whole. ..
  • the reason for this is as follows.
  • the interface alloy layer is generated by a solid-liquid reaction (reaction between Al in the bath and the steel sheet) in the plating bath, and Si is also incorporated in the interface alloy layer during this reaction. Therefore, the Si concentration near the interface alloy layer when the interdendrite is solidified is lower than the average Si concentration of the plating main layer, and the distribution of Mg 2 Si is closer to the surface of the plating main layer than to the interface alloy layer side. Is more.
  • cooling of the steel sheet after the hot dip coating is more preferably performed at an average cooling rate of 20° C./sec or more, further preferably at an average cooling rate of 30° C./sec or more, and 40° C./sec. It is particularly preferable to perform the cooling at an average cooling rate of sec or more.
  • the production method of the present invention is not particularly limited except for the bath temperature and the temperature of the approach plate at the time of hot-dip galvanizing and the cooling conditions after hot-dip galvanizing, and the hot-dip Al-Zn-Mg-Si is according to a conventional method.
  • -Sr plated steel sheet can be manufactured.
  • a chemical conversion treatment film is further formed on the surface thereof (chemical conversion treatment step), or a coating film is further formed in a separate coating facility. It can also be formed (coating film forming step).
  • the chemical conversion coating is subjected to, for example, a chromate treatment or a chromate-free chemical conversion treatment in which a chromate treatment liquid or a chromate-free chemical conversion treatment liquid is applied and a drying treatment is performed to bring the steel sheet temperature to 80 to 300 ° C. without washing with water. It is possible to form.
  • These chemical conversion treatment films may be a single layer or multiple layers, and in the case of multiple layers, a plurality of chemical conversion treatments may be sequentially performed.
  • the coating film may be formed by roll coater coating, curtain flow coating, spray coating or the like. After coating a coating material containing an organic resin, it is possible to form a coating film by heating and drying by means of hot air drying, infrared heating, induction heating or the like.
  • Samples 1 to 25 A cold-rolled steel sheet having a plate thickness of 0.5 mm produced by a conventional method was used as a base steel sheet, and hot-dip Al—Zn system plated steel sheets of Samples 1 to 25 were produced in a continuous hot-dip plating facility.
  • the composition of the plating bath used for production is almost the same as the composition of the plating layer of each sample shown in Table 1, and the bath temperature of the plating bath, the entry plate temperature of the steel plate, and the bath temperature of the plating bath are 150°C.
  • the cooling rate up to the subtracted temperature is shown in Table 1.
  • Corrosion resistance evaluation corrosion resistance of flat plate part
  • the combined cycle test (JASO-CCT) of the Japanese automobile standard was conducted for each sample of the molten Al-Zn-based plated steel sheet.
  • JASO-CCT as shown in FIG. 6, it is a test in which salt spray, drying and wetting are one cycle under specific conditions. The number of cycles until red rust was generated in each sample was measured and evaluated according to the following criteria.
  • each sample of the present invention example is superior in balance with respect to surface appearance, corrosion resistance, and processed portion corrosion resistance as compared with each comparative example sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板を提供することを目的とする。 上記目的を達成するべく、本発明は、めっき層が、Al:40〜70質量%、Si:0.6〜5質量%、Mg:0.1〜10質量%及びSr:0.001〜1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、前記めっき層は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなり、前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が50%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が50%以下であることを特徴とする。

Description

溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
 本発明は、良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法に関するものである。
 溶融Al−Zn系めっき鋼板は、Znの犠牲防食性とAlの高い耐食性とが両立できているため、溶融亜鉛めっき鋼板の中でも高い耐食性を示す。例えば、特許文献1には、めっき層中にAlを25~75質量%含有する溶融Al−Zn系めっき鋼板が開示されている。そして、溶融Al−Znめっき鋼板は、その優れた耐食性から、長期間屋外に曝される屋根や壁等の建材分野、ガードレール、配線配管、防音壁等の土木建築分野を中心に近年需要が伸びている。
 溶融Al−Zn系めっき鋼板のめっき層は、主層及び下地鋼板と主層との界面に存在する界面合金層からなり、主層は、主としてZnを含有したAlがデンドライト凝固した部分(α−Al相のデンドライト部分)と、Znを主成分とした残りのデンドライト間隙の部分(インターデンドライト)とから構成され、α−Al相がめっき層の膜厚方向に複数積層した構造を有する。このような特徴的な皮膜構造により、表面からの腐食進行経路が複雑になるため、腐食が容易に下地鋼板に到達しにくくなり、溶融Al−Zn系めっき鋼板はめっき層厚が同一の溶融亜鉛めっき鋼板に比べ優れた耐食性を実現できる。
 また、溶融Al−Zn系めっきのめっき層中にMgを含有することで、耐食性のさらなる向上を目的とした技術が知られている。Mgを含有する溶融Al−Zn系めっき鋼板(溶融Al−Zn−Mg−Siめっき鋼板)に関する技術として、例えば特許文献2には、めっき層にMgを含むAl−Zn−Si合金を含み、該Al−Zn−Si合金が、45~60重量%の元素アルミニウム、37~46重量%の元素亜鉛及び1.2~2.3重量%の元素ケイ素を含有する合金であり、該Mgの濃度が1~5重量%である、Al−Zn−Mg−Siめっき鋼板が開示されている。
 ただし、引用文献2に開示されたMgを含有する溶融Al−Zg系めっき鋼板については、優れた耐食性を有するものの、めっき層の表面に生成される酸化物層に起因した、数mm~数百mmの程度の長さのシワ状の欠陥(以下、「シワ状欠陥」という。)が発生しやすくなり、めっき層表面の外観を損ねるという問題があった。
 そのため、例えば特許文献3には、溶融Al−Zn−Mg系めっき鋼板について、めっき層中にSrを含有させることによって、表面外観性の向上を図る技術が開示されている。
 また、特許文献4には、溶融Al−Zn−Mg系めっき鋼板について、めっき層中にSrを含有させることによって、加工性の向上を図る技術が開示されている。
特公昭46−7161号公報 特許5020228号公報 特許3983932号公報 特許6368730号公報
 上述した特許文献3及び4の溶融Al−Zn−Mg系めっき鋼板は、めっき層中にSrを含有させているため、シワ状欠陥の発生を抑制でき、表面外観性の向上が可能となっている。
 しかしながら、引用文献3及び4のSr含有溶融Al−Zn−Mg系めっき鋼板については、Srの含有によって、めっき層表面近傍のMgSiの含有量が減少し、その結果として耐食性が低下するおそれがあった。
 また、特許文献2及び3に開示された溶融Al−Zn系めっき鋼板では、めっき層中に生成したMgSiが、耐食性の向上効果を発揮するものの、曲げ加工を行った際にめっき層が割れてクラックを生じ、結果として加工部の耐食性(加工部耐食性)が劣るという問題があった。
 本発明は、かかる事情に鑑み、良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板、並びに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく検討を行った結果、Mg含有による耐食性向上効果は、めっき層の腐食時、めっき層中に存在するMgSiが優先的に溶解し、めっき層表面に生成される腐食生成物中に溶解したMgが濃化することによって発現することから、めっき層の表面近傍に存在するMgSiがより重要であることに着目した。そして、さらに鋭意研究を重ねた結果、めっき層を構成する主層(以後、「めっき主層」又は「主層」ということもある。)に含有されるMgSiのうちの多くを、めっき主層の表面近傍に集めることによって、めっき層中にSrを含有させた場合であっても、めっき層表面では十分なMgSiが存在するため、シワ状欠陥の発生を抑制できるだけでなく、優れた耐食性も実現できることを見出した。
 また、本発明者らは、前記めっき主層中のMgSiには、耐食性向上効果があるものの、曲げ加工時に界面合金層内で発生したクラックのめっき主層表面への伝播経路になり、加工性を低下させるため、所望の加工部の耐食性が得られないことに着目した。そして、界面合金層からめっき主層表面まで達するようなMgSiの量を減らすことによって、鋼板の加工時、界面合金層を起点に発生したクラックが、めっき主層を貫通してめっき主層表面まで伝搬することを抑制することができるため、加工部の耐食性についても向上できることを見出した。
 本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.めっき層が、Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
 前記めっき層は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなり、
 前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が50%以上であり、且つ、前記界面合金層から前記主層表面までインターデンドライト部に連続的に存在する(以下、「延在する」ということがある。)MgSiの面積割合が50%以下であることを特徴とする、溶融Al−Zn−Mg−Si−Srめっき鋼板。
2.前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が60%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が50%以下であることを特徴とする、前記1に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
3.前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が60%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が40%以下であることを特徴とする、前記2に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
4.前記めっき層の厚さ方向の断面において観察されるSi相は、前記めっき層の厚さ方向の断面において観察されるMgSi及びSi相の面積率の合計に対するSi相の面積率の割合が、30%以下であることを特徴とする、前記1~3のいずれか1項に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
5.前記主層がα−Al相のデンドライト部分を有し、該デンドライト部分の平均デンドライトアーム間距離と、前記めっき層の厚さとが、以下の式(1)を満足することを特徴とする、前記1~4のいずれか1項に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
t/d≧1.5 ・・・(1)
t:めっき層の厚さ(μm)、d:平均デンドライトアーム間距離(μm)
6.Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、浴温が585℃以下であるめっき浴を用い、
 鋼板に溶融めっきを施す際、前記めっき浴進入時の鋼板温度(進入板温)を、前記めっき浴の浴温から20℃加算した温度(めっき浴温+20℃)以下とすることを特徴とする、溶融Al−Zn−Mg−Si−Sriめっき鋼板の製造方法。
7.前記鋼板の進入板温が、前記めっき浴の浴温以下であることを特徴とする、前記6に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法。
8.前記鋼板に溶融めっきを施した後、10℃/s以上の平均冷却速度で、板温が前記めっき浴の浴温から150℃減算した温度(めっき浴温−150℃)になるまで、前記鋼板を冷却することを特徴とする、前記6又は7に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法。
 本発明により、良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板、並びに、良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法を提供できる。
(a)は、溶融Al−Zn−Mg系めっき鋼板について腐食前後の状態を示した図であり、(b)は、溶融Al−Zn系めっき鋼板について腐食前後の状態を示した図である。 (a)は、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の、各元素の状態を走査電子顕微鏡のエネルギー分散型X線分光法(SEM−EDX)により示したものであり、(b)は、(a)で示した溶融Al−Zn−Mg−Si−Srめっき鋼板の一部について、MgSi及びSi相を観察するための方法を説明した図である。 めっき層の厚さ方向の断面において観察されるMgSiのうち、主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合を算出する方法を説明するための図である。 めっき層の厚さ方向の断面において観察されるMgSiのうち、主層の表面から界面合金層に達するまで延在するMgSiの面積割合を算出する方法を説明するための図である。 デンドライトアーム間距離の測定方法を説明するための図である。 日本自動車規格の複合サイクル試験(JASO−CCT)の流れを説明するための図である。
(溶融Al−Zn−Mg−Si−Srめっき鋼板)
 本発明の対象とする溶融Al−Zn−Mg−Si−Srめっき鋼板は、鋼板表面にめっき層を有し、該めっき層は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなる。また、前記めっき層は、Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有する。
 前記めっき層中のAl含有量は、耐食性と操業面のバランスから、40~70質量%とし、好ましくは45~65質量%である。前記めっき層の主層のAl含有量が40質量%以上であれば、良好な耐食性が確保できる。前記主層は主としてZnを過飽和に含有し、Alがデンドライト凝固した部分(α−Al相のデンドライト部分)と残りのデンドライト間隙の部分(インターデンドライト部分)からなり且つ該デンドライト部分がめっき層の膜厚方向に積層した耐食性に優れる構造を実現できる。またこのα−Al相のデンドライト部分が、多く積層するほど、腐食進行経路が複雑になり、腐食が容易に下地鋼板に到達しにくくなるので、耐食性が向上する。同様の観点から、前記めっき層中のAl含有量は45質量%以上とすることが好ましい。一方、前記めっき層中のAl含有量が70質量%を超えると、Feに対して犠牲防食作用をもつZnの含有量が少なくなり、耐食性が劣化する。このため、前記めっき層中のAl含有量は70質量%以下とする。また、前記めっき層中のAl含有量が65質量%以下であれば、めっきの付着量が少なくなり、下地鋼板が露出しやすくなった場合にもFeに対して犠牲防食作用を有し、十分な耐食性が得られる。そのため、めっき主層のAl含有量は65質量%以下とすることが好ましい。
 前記めっき層中のSiは、下地鋼板との界面に生成する界面合金層の成長を抑制する目的で、耐食性や加工性の向上を目的にめっき浴中に添加され、必然的に前記主層に含有される。本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の場合、めっき浴中にSiを含有させて溶融めっき処理を行うと、下地鋼板がめっき浴中に浸漬されると同時に、鋼板表面のFeと浴中のAlやSiが合金化反応し、Fe−Al系及び/又はFe−Al−Si系の化合物からなる合金を生成する。このFe−Al−Si系界面合金層の生成によって、界面合金層の成長を抑制することができる。そして、前記めっき層中のSi含有量が0.6質量%以上の場合には、前記界面合金層の成長を十分に抑制できる。一方、めっき層のSi含有量が、5%を超えた場合、めっき層において、加工性を低下させ、カソードサイトとなるSi相が析出し易くなる。このSi相の析出は、後述するようにMg含有量を増やし、Si含有量とMg含有量との間に一定の関係を持たせることで抑制できるが、その場合、製造コストの上昇や、MgSiの量が多くなることに起因した加工性の低下を招き、まためっき浴の組成管理をより困難にしてしまう。このため、めっき層中のSi含有量は5%以下とする。さらにまた、界面合金層の成長及びSi相の析出をより確実に抑制できる点や、MgSiとしてSiが消費された場合に対応できるという点を考慮すると、前記めっき層中のSi含有量を2.3超え~3.5%とすることが好ましい。
 前記めっき層は、Mgを0.1~10質量%含有する。前記めっき層の主層が腐食した際、腐食生成物中にMgが含まれることとなり、腐食生成物の安定性が向上し、腐食の進行が遅延する結果、耐食性が向上するという効果が得られる。より具体的には、前記めっき層の主層中に存在するMgは上述したSiと結合し、MgSiを生成する。このMgSiは、図1(a)に示すように、めっき鋼板が腐食した際、初期に溶解するためMgが腐食生成物に含まれることになる。この腐食生成物中に含まれるMgは、腐食生成物を緻密化させる効果があり、腐食生成物の安定性及び外来腐食因子に対するバリア性を向上できる。一方、めっき層中にMgを含有しない場合には、図1(b)に示すように、腐食生成物中にMgが含まれることはなく、所望の耐食性が得られない。
 ここで、前記めっき層のMg含有量を0.1質量%以上としたのは、前記めっき層が、上述した濃度範囲でSiを含有した場合、Mg濃度を0.1質量%以上とすることで、MgSiを生成できるようになり、腐食遅延効果を得ることができるからである。同様の観点から、前記めっき層のMg含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましい。一方、前記めっき層のMgの含有量を10質量%以下としたのは、前記めっき層のMgの含有量が10%を超える場合、耐食性の向上効果の飽和に加え、製造コストの上昇とめっき浴の組成管理が難しくなるためである。同様の観点から、前記めっき層のMg含有量は、6質量%以下であることが好ましい。
 また、前記めっき層中のMg含有量を1質量%以上とすることで、塗装後耐食性の改善も可能となる。Mgを含まない従来の溶融Al−Zn系めっき鋼板のめっき層が大気に触れると、α−Al相の周囲に緻密且つ安定なAlの酸化膜が直ぐに形成され、この酸化膜による保護作用によってα−Al相の溶解性はインターデンドライト中のZnリッチ相の溶解性に比べ非常に低くなる。この結果、従来のAl−Zn系めっき鋼板を下地に用いた塗装鋼板は、塗膜に損傷が生じた場合、傷部を起点に塗膜/めっき界面でZnリッチ相の選択腐食を起こし、塗装健全部の奥深くに向けて進行して大きな塗膜膨れを起こすことから、塗装後耐食性が劣る。そのため、優れた塗装後耐食性を得る観点からは、前記めっき層中のMg含有量を1質量%以上とすることが好ましく、3質量%以上とすることがより好ましい。
 一方、前記めっき層中にMgを含有した溶融Al−Zn系めっき鋼板を用いた塗装鋼板の場合、インターデンドライト中に析出するMgSi相やMg−Zn化合物(MgZn、Mg32(Al,Zn)49等)が腐食の初期段階で溶け出し、腐食生成物中にMgが取込まれる。Mgを含有した腐食生成物は非常に安定であり、これにより腐食が初期段階で抑制されるため、従来のAl−Zn系めっき鋼板を下地に用いた塗装鋼板の場合に問題となるZnリッチ相の選択腐食による大きな塗膜膨れを抑制できる。その結果、めっき層にMgを含有させた溶融Al−Zn系めっき鋼板は優れた塗装後耐食性を示す。前記めっき層中のMgが1質量%未満の場合には、腐食時に溶け出すMgの量が少なく、塗装後耐食性が向上しないおそれがある。なお、前記めっき層中のMg含有量が10質量%を超える場合には、効果が飽和するだけでなく、Mg化合物の腐食が激しく起こり、めっき層全体の溶解性が過度に上昇する結果、腐食生成物を安定化させても、その溶解速度が大きくなるため、大きな膨れ幅を生じ、塗装後耐食性が劣化するおそれがある。そのため、優れた塗装後耐食性を安定的に得るためには、前記めっき層中のMg含有量を10質量%以下とすることが好ましい。
 また、前記めっき層は、0.001~1.0質量%のSrを含有する。前記めっき層にSrを含有することで、シワ状欠陥の発生を抑制し、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の表面外観性を向上させることができる。
 前記シワ状欠陥とは、前記めっき層の表面に形成されたシワ状の凹凸になった欠陥であり、前記めっき層表面において白っぽい筋として観察される。このようなスジ状欠陥は、前記めっき層中にMgを多く添加した場合に、発生しやすくなる。そのため、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記めっき層中にSrを含有させることによって、前記めっき層表層においてSrをMgよりも優先的に酸化させ、Mgの酸化反応を抑制することで、前記スジ状欠陥の発生を抑えることが可能となる。
 前記めっき層中のSr含有量については、0.001質量%以上であることを要する。上述したスジ状欠陥の発生を抑制する効果を得るためである。同様の観点から、前記めっき層中のSr含有量は、0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.05質量%以上であることが特に好ましい。一方、前記めっき層中のSr含有量については、1.0質量%以下であることを要する。Srの含有量が多くなりすぎると、スジ状欠陥発生の抑制効果が飽和するため、コスト的に不利になるためである。同様の観点から、前記めっき層中のSr含有量は、0.7質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.3質量%以下であることが特に好ましい。
 なお、前記めっき層は、めっき処理中にめっき浴と下地鋼板の反応でめっき中に取り込まれる下地鋼板成分や、めっき浴を建浴する際に使用するインゴット中に含有されている不可避的不純物が含まれる。前記めっき中に取り込まれる下地鋼板成分としては、Feが数%程度含まれることがある。めっき浴中の不可避的不純物の種類としては、例えば、下地鋼板成分としては、Fe、Mn、P、S、C、Nb、Ti、B等が挙げられる。また、インゴット中の不純物としては、Fe、Pb、Sb、Cd、As、Ga、V等が挙げられる。なお、前記めっき層中のFeについては、下地鋼板から取り込まれるものと、めっき浴中にあるものとを区別して定量することはできない。前記不可避的不純物の総含有量は、特に限定はしないが、めっきの耐食性と均一な溶解性を維持するという観点から、Feを除いた不可避的不純物量は合計で1質量%以下であることが好ましい。
 また、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記めっき層が、Zn−Al系めっきで腐食生成物の安定元素として知られている、Cr、Ni、Co、Mn、Ca、V、Ti、B、Mo、Sn、Zr、Li、Ag等から選ばれた少なくとも一種以上を、各元素1%未満の含有量で、さらに含むこともできる。これら元素のそれぞれの含有率が1%未満であれば、本発明で開示されている効果を阻害せず且つ腐食生成物安定効果によりさらなる耐食性向上が可能となる。
 なお、前記界面合金層については、前記めっき層のうち、下地鋼板との界面に存在する層であり、上述したように、鋼板表面のFeと浴中のAlやSiが合金化反応して必然的に生成するFe−Al系及び/又はFe−Al−Si系の化合物である。この界面合金層は、硬くて脆いため、厚く成長すると加工時のクラック発生の起点となることから、薄くすることが好ましい。
 そして、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が50%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が50%以下であることを特徴とする。
 これによって、良好な表面外観性を実現できるとともに、平板部及び加工部の耐食性についても向上できる。
 本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が50%以上とする。前記めっき層中にMgSiを含有することによって、めっき層の腐食時、このMgSiが優先的に溶解し、めっき層表面に生成される腐食生成物中に溶解したMgが濃化することによって、優れた耐食性を発現することが可能となる。ただし、シワ状欠陥の抑制等を目的として、前記めっき層中にSrを含有させた場合、前記めっき層主層の表面に十分なMgSiが存在せず、前記腐食生成物中にMgを濃化させることが難しくなり、耐食性を低下させるという問題があった。そのため、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記めっき層主層に含有されるMgSiのうちの大部分(具体的には、50%以上)を、めっき主層の表面近傍に集めることによって、めっき層中にSrを含有させた場合でも、主層表面では十分なMgSiが存在できることになるため、腐食時に十分な量のMgSiを溶解させ、腐食生成物中にMgを濃化させることができる結果、シワ状欠陥の発生を抑制しつつも、優れた耐食性を実現できる。
 すなわち、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が大きい(50%以上である)ことから、腐食時に主層の表面にあるMgSiの多くが溶解し、腐食後のめっき表面に形成された腐食生成物のMg濃度が高くなる。そのため、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、シワ状欠陥の発生を抑制しつつも、優れた耐食性を実現できる。
 一方、従来の溶融Al−Zn−Mg−Si−Srめっき鋼板は、前記主層の表面から50%までの厚さ範囲内に存在するMgSiが少ない(50%未満である)ことから、腐食時に溶解するMgSiの量が十分でなく、腐食後のめっき表面の腐食生成物のMg濃度が相対的に低くなる。そのため、従来の溶融Al−Zn−Mg−Si−Srめっき鋼板では、シワ状欠陥の発生を抑制できるものの、耐食性は低下することとなる。
 なお、上述したMgSiの面積割合(前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合)の導出は、例えば、走査型電子顕微鏡を用いてエネルギー分散型X線分光法(SEM−EDX)を用いて行うことができる。
 例えば、図2(a)に示すように、前記めっき層の厚さ方向の断面状態を取得した後、図2(b)に示すように、Mg及びSiのそれぞれについてマッピングを行う(Mgは赤、Siは青で示している)。その後、マッピングしたMg及びSiのうち、これらが同じ位置で重なった部分(図2(b)では紫で示されている部分)をMgSiとすることができる。
 ここで、得られたMgSiについては、図3に示すように、前記めっき層の主層全体の面積に対するMgSiの面積率(A%)を測定する。その後、前記主層を厚さ方向に半分に分割し、前記主層全体の面積に対する表面から50%までの厚さ範囲に存在するMgSiの面積率(B%)を測定する。そして、前記めっき層の主層全体におけるMgSiの面積率(A%)に対する、主層の表面から50%までの厚さ範囲に存在するMgSiの面積率(B%)の割合((B%)/(A%)×100%)を算出することによって、観察視野中に存在するMgSiのうち、主層の表面から50%までの厚さ範囲内に存在するMgSiの占める面積割合(X%)を得ることができる。
 また、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合を50%以下とすることによって、加工部の耐食性についても大きく向上できる。前記めっき主層中に含まれるMgSiは、耐食性向上効果があるものの、前述のように界面合金層で発生したクラックの伝播経路となり、加工性を低下させることから、従来の溶融Al−Zn−Mg系めっき鋼板では、十分な加工性ひいては加工部の耐食性を得ることができなかった。そのため、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、前記界面合金層から前記めっき主層表面まで達するようなMgSiの量を減らす(MgSiの面積割合を50%以下とする)ことによって、鋼板を加工する際、硬い界面合金層にクラックが発生した場合であっても、そのクラックの多くが界面合金層近傍のみで伝搬し、前記めっき層の主層表面まで到達しない。その結果、良好な加工性及び加工後の耐食性を確保することができる。
 一方、従来の溶融Al−Zn−Mg系めっき鋼板では、前記界面合金層を起点にクラックが発生した場合、それらの多くがめっき主層の表面にまで達することになるため、十分な加工部の耐食性を得ることができない。
 また、上述したMgSiの面積割合(主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合)の導出についても、例えば、走査型電子顕微鏡を用いてエネルギー分散型X線分光法(SEM−EDX)によりを用いて行うことができる。
 上述したように、前記めっき層の厚さ方向の断面状態を取得した後(図2(a))、Mg及びSiのそれぞれについてマッピングを行う(図2(b))。その後、マッピングしたMg及びSiのうち、これらが同じ位置で重なった部分をMgSiとすることができる(図2(b))。
 ここで、得られたMgSiについては、図4に示すように、前記めっき層の主層全体の面積に対するMgSiの面積率(A%)を測定する。その後、観察視野中に存在するMgSi粒子の中から、主層の表面から界面合金層に達するまで延在するMgSi粒子(図4では矢印で示した粒子)の、前記めっき層の主層全体に対する面積率(C%)を測定する。そして、前記めっき層の主層全体におけるMgSiの面積率(A%)に対する、前記めっき層の主層全体における主層の表面から界面合金層に達するまで延在するMgSiの面積率(C%)の割合((C%)/(A%)×100%)を算出することによって、観察視野中に存在するMgSi粒子のうち、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合(Y%)を得ることができる。
 なお、本発明における、前記MgSiが「主層の表面から界面合金層に達するまで延在する」点については、前記MgSiが、主層の表面から前記界面合金層に達する(接する)まで延在するものだけでなく、前記MgSiの下端と前記界面合金層の上端との距離が非常に小さく、実質的に前記界面層に達する場合(例えば、前記めっき層の厚さ方向の断面において観察した際の、前記MgSiの下端と前記界面合金層の上端との距離が1.0μm以下である場合)も含むものである。この場合も、前記界面合金層を起点にクラックが発生した場合、それらの多くがめっき主層の表面にまで達することになるためである。
 前記めっき層の厚さ方向の断面において観察されるMgSiについては、より優れた耐食性を実現できる観点から、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が60%以上であることが好ましい。
 また、前記めっき層の厚さ方向の断面において観察されるMgSiについては、より優れた加工部の耐食性を実現できる観点から、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が40%以下であることが好ましい。
 さらに、前記めっき層の厚さ方向の断面において観察されるMgSiについては、より優れた耐食性及び加工部の耐食性を実現できる観点から、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が60%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が40%以下であることがより好ましい。
 ここで、上述しためっき層の厚さ方向の断面において観察されるMgSiの面積割合については、めっき層の無作為に選択した10カ所の断面において観察されるMgSiの面積割合を平均したものである。
 なお、前記めっき層には組成成分としてSiを含有するため、上述したようにめっき層中のSi,Mgの組成によってはSi相がめっき層中に形成されることがある。しかしながら、耐食性及び加工性をより高める観点からは、前記Si相の形成を、できるだけ抑えることが好ましい。
 特に、本発明では、耐食性を向上させるMgSiとめっき層の腐食の際にカソードサイトとなって耐食性を劣化させるSi相との含有比率が重要であることを見出した。すなわち、本発明の本質は、耐食性を向上させるMg2Siの絶対量が多くても耐食性を劣化させるSi相の量が多くては良好な耐食性を確保できないため、その割合を一定の値以下に制御することにある。
 そのため、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板では、以下に示す方法により測定された、前記めっき層の厚さ方向の断面において観察されるMgSi及びSi相の面積率の合計に対する、前記めっき層の厚さ方向の断面において観察されるSi相の面積率(Si相の面積率/MgSi及びSi相の合計面積率)が、30%以下であることが好ましく、10%以下であることがより好ましい。
 なお、前記Si相の面積率を導出する方法については、例えば上述したMgSiと同様に、走査型電子顕微鏡を用いてエネルギー分散型X線分光法(SEM−EDX)によりを用いて行うことができる。
 上述したように、前記めっき層の厚さ方向の断面状態を取得した後(図2(a))、Mg及びSiのそれぞれについてマッピングを行う(図2(b))。その後、マッピングしたMg及びSiのうち、Siが存在する位置でMgが存在しなかった図2(b)中青色で示された部分をSi相とみなすことができる。観察した視野におけるこの青色部分の面積の総和とめっき層の面積の比からSi相の面積率(D%)を算出できる。さらに、MgSi及びSi相の面積率の合計に対する、前記めっき層の厚さ方向の断面において観察されるSi相の面積率(Si相の面積率/MgSi及びSi相の合計面積率)は、(D%/(A%+D%)×100%)として算出できる。
 ここで、上述しためっき層の厚さ方向の断面において観察される、MgSi及びSi相の合計面積に対するSi相の面積割合については、めっき層の無作為に選択した10カ所の断面において観察されるSi相の面積割合を平均したものである。
 また、前記めっき層の厚さ方向の断面において観察されるSi相の面積率(観察視野におけるSi相の面積割合:D%)は、10%以下であることが好ましく、3%以下であることがより好ましい。
 ここで、上述しためっき層の厚さ方向の断面において観察されるSi相の面積率については、めっき層の無作為に選択した10カ所の断面において観察されるSi相の面積率を平均したものである。
 さらに、めっき鋼板の初期耐食性をより高める観点からは、前記めっき層の表面において観察されるSi相の面積率(観察視野におけるSi相の面積割合)が、1%以下であることが好ましく、0.5%以下であることがより好ましい。ここで、前記めっき層の表面におけるSi相の面積率を導出する方法については、断面を観察する場合と同様に、走査型電子顕微鏡を用いてエネルギー分散型X線分光法(SEM−EDX)によりを用いて行うことができる。面積率の求め方は、断面観察法に準じて行うことができ、めっき層の無作為に選択した10カ所の表面において観察されるSi相の面積率を平均したものとすることができる。
 さらにまた、同様に初期耐食性をより高める観点から、前記めっき層の表面において観察されるMgSi及びSi相の合計面積に対する、前記めっき層の厚さ方向の断面において観察されるSi相の面積割合(Si相の面積/MgSi及びSi相の合計面積)が、20%以下であることが好ましく、10%以下であることがより好ましい。実際の観察方法、面積率の求め方は、上述した断面観察法に準じる。
 なお、前記めっき層の主層や前記界面合金層を、走査型電子顕微鏡によって観察する際には、めっき層の断面又は表面を、研磨及び/又はエッチングした後に観察を行う。断面又は表面の研磨方法やエッチング方法はいくつか種類があるが、一般的にめっき層断面又は表面を観察する際に用いられる方法であれば特に限定はされない。また、走査型電子顕微鏡での観察条件は、例えば加速電圧5~20kVで、2次電子線像や反射電子像にて500~5000倍程度の倍率であれば、前記めっき層の断面を明確に観察することが可能である。また、EDXでマッピングする場合も、同様の倍率で分析することで先の面積率を求めることができる。
 また、前記めっき層の主層は、α−Al相のデンドライト部分を有し、該デンドライト部分の平均デンドライトアーム間距離と、前記めっき層の厚さとが、以下の式(1)を満足することが好ましい。
t/d≧1.5 ・・・(1)
t:めっき層の厚さ(μm)、d:平均デンドライトアーム間距離(μm)
 上記(1)式を満足することで、上述したα−Al相からなるデンドライト部分のアームを相対的に小さくでき、優先的に腐食されるインターデンドライトの経路を長く確保することにより、耐食性をより向上させることができる。
 なお、前記デンドライト部分のデンドライトアーム間距離とは、隣接するデンドライトアーム間の中心距離(デンドライトアームスペーシング)のことを意味する。本発明では、例えば、図5に示すように、めっき層主層の表面を、走査型電子顕微鏡(SEM)等を用いて拡大観察し(例えば200倍で観察し)、無作為に選択した視野の中で、2番目に間隔の広いデンドライトアーム(2次デンドライトアーム)の間隔を以下のとおり測定する。2次デンドライトアームが3本以上整列している部分を選択し(図5では、A−B間の3本を選択している。)、アームが整列している方向に沿って距離(図5では、距離L)を測定する。その後、測定した距離をデンドライトアームの本数で除して(図5では、L/3)、デンドライトアーム間距離を算出する。当該デンドライトアーム間距離は、1つの視野の中で、3箇所以上測定し、それぞれ得られたデンドライトアーム間距離の平均を算出したものを平均デンドライトアーム間距離とする。
 なお、前記めっき層の膜厚は、加工性と耐食性とを高いレベルでの両立させる観点から、10~30μmであることが好ましく、20~25μmであることがより好ましい。前記めっき層が10μm以上の場合には十分な耐食性を確保でき、前記めっき層が30μm以下の場合には加工性を十分に確保できるためである。
 さらに、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板は、その表面に、化成処理皮膜及び/又は塗膜をさらに備える表面処理鋼板とすることもできる。
(溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法)
 次に、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法について説明する。
 本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法は、Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、浴温が585℃以下であるめっき浴を用い、鋼板に溶融めっきを施す際、前記めっき浴進入時の鋼板温度(進入板温)を、前記めっき浴の浴温から20℃加算した温度(めっき浴温+20℃)以下とすることを特徴とする。
 上述した製造方法によって得られた溶融Al−Zn−Mg−Si−Srめっき鋼板は、好な表面外観性を有するとともに、平板部及び加工部の耐食性にも優れる。
 本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法では、特に限定はされないが、製造効率や品質の安定性の観点から、連続式溶融めっき設備が通常採用される。
 なお、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板に用いられる下地鋼板の種類については、特に限定はされない。例えば、酸洗脱スケールした熱延鋼板若しくは鋼帯、又は、それらを冷間圧延して得られた冷延鋼板若しくは鋼帯を用いることができる。
 また、前記前処理工程及び焼鈍工程の条件についても特に限定はされず、任意の方法を採用することができる。
 本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法では、前記めっき浴が、Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有する。
 これによって、所望の組成の溶融Al−Zn−Mg−Si−Srめっき鋼板を得ることができる。なお、前記めっき浴中に含有される各元素の種類や、含有量、作用については、上述した本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の中で説明されている。
 なお、本発明の製造方法により得られた溶融Al−Zn−Mg−Si−Srめっき鋼板は、全体としてはめっき浴の組成とほぼ同等となる。そのため、前記主層の組成の制御は、めっき浴組成を制御することにより精度良く行うことができる。
 また、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法では、前記めっき浴中のMg及びSiの含有量が、以下の式(2)を満足することが好ましい。
Mg/(MSi−0.6)≧1.0 ・・・(2)
Mg:Mgの含有量(質量%)、MSi:Siの含有量(質量%)
 前記めっき浴中のMg及びSiの含有量が、上記関係式を満たすことによって、形成されためっき層は、Si相の発生が抑えられ(例えば、めっき層の厚さ方向の断面において観察されるSi相の面積率が10%以下、めっき層の表面において観察されるSi相の面積率が、1%以下となり)、加工性及び耐食性のさらなる向上が可能となる。
 同様の観点から、MMg/(MSi−0.6)が、2.0以上であることがより好ましく、3.0以上であることがさらに好ましい。
 本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法では、前記めっき浴の浴温が585℃以下であり、580℃以下であることが好ましい。この浴温設定により、前記めっき層の主層の表面から界面合金層まで達するような大きなMgSiの量を減らすことができる。また、界面合金層の成長を抑制する効果もある。低浴温化が有効に作用する理由は、MgSi及び界面合金層が成長する高温領域に鋼板が滞在する時間を、短時間にすることが可能になるためである。前記めっき浴の浴温が585℃を超える場合、前記めっき浴進入時の鋼板温度について適正化を図った場合であっても、前記主層の表面から界面合金層まで達するような大きなMgSiの量が多くなり、また、界面合金層が厚く成長するため、所望の加工性及び加工部の耐食性を得ることができない。
 また、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法では、前記めっき浴進入時の鋼板温度(進入板温)を、前記めっき浴の浴温から20℃加算した温度(めっき浴温+20℃)以下とする。これによって、前記めっき層の主層の表面から界面合金層まで達するような大きなMgSiの量を減らすことができる。進入板温を低減することにより、大きなMgSiの量を減らすことができる理由としては、前記浴温を低くした際の効果と同様に、MgSi及び界面合金層が成長する高温領域に鋼板が滞在する時間を短時間にすることが可能なためである。
 同様の観点から、前記鋼板の進入板温は、前記めっき浴の浴温から10℃加算した温度(めっき浴温+10℃)以下であることが好ましく、前記めっき浴の浴温以下であることが好ましい。
 さらに、本発明の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法では、前記鋼板に溶融めっきを施した後、10℃/s以上の平均冷却速度で、板温が前記めっき浴の浴温から150℃減算した温度(めっき浴温−150℃)になるまで、前記鋼板を冷却することが好ましい。上述しためっき層中に形成されるMgSiは、めっき浴の浴温から150℃減算した温度(めっき浴温−150℃)までの温度域で生成しやすいことがわかっており、その温度域での冷却速度を平均10℃/sec以上と早くすることよって、MgSiの成長を抑え、前記めっき層の主層の表面から界面合金層まで達するような大きなMgSiの量を減らすことができる。さらに、前記溶融めっき後の鋼板の冷却速度を高めることで、前記界面合金層の成長を抑えることもできる結果、優れた加工部の耐食性を実現できる。
 なお、前記平均冷却速度については、鋼板がめっき浴温から150℃減算した温度になるまでの時間を求め、150℃をその時間で除することで求められる。
 また、上述した温度域での冷却速度を平均10℃/sec以上と速くすることよって、めっき主層の表面近傍に存在するMgSiの量を全体の50%以上と増やすことが可能となる。この理由は、次の通りである。前記界面合金層は、前記めっき浴中での固液反応(浴中のAlと鋼板との反応)により生成し、この反応時に界面合金層にSiも取り込まれる。そのため、インターデンドライトが凝固する際の界面合金層近傍のSi濃度は、めっき主層の平均Si濃度より低くなっており、MgSiの分布は、界面合金層側に比べてめっき主層表面側のほうが多くなっている。一方、めっき後の冷却過程において、前記めっき鋼板は、表面から冷却されるため、インターデンドライトの凝固は表面から起こる。Zn中のMgSiの溶解度は、温度が低いほど小さく、固液界面でMg及びSiは液相側に排出され、液体のインターデンドライト部に濃縮されていくこととなる。この現象は、平衡状態に近い、すなわち冷却速度が遅いほど顕著になるため、冷却速度が遅い場合、MgSiの分布は界面合金層近傍に偏在しやすくなる。つまり、冷却速度を速く(平均10℃/sec以上に)することによって、上述したMgSiの分布について、界面合金層近傍での偏在を抑制し、本来のMgSiの分布を維持することができる。すなわち、前記めっき層中のMgSiの分布を、前記界面合金層の近傍に比べて、前記主層表面側のほうが多いという状態を確保できる。
 同様の観点から、前記溶融めっき後の鋼板の冷却は、20℃/sec以上の平均冷却速度で行うことがより好ましく、30℃/sec以上の平均冷却速度で行うことがさらに好ましく、40℃/sec以上の平均冷却速度で行うことが特に好ましい。
 なお、本発明の製造方法において、前記溶融めっき時の浴温及び進入板温、並びに、溶融めっき後の冷却条件以外については、特に限定はされず、常法に従って溶融Al−Zn−Mg−Si−Srめっき鋼板を製造することができる。
 本発明の製造方法によって得られた溶融Al−Zn−Mg−Si−Srめっき鋼板は、その表面に、化成処理皮膜をさらに形成すること(化成処理工程)や、別途塗装設備において塗膜をさらに形成すること(塗膜形成工程)も可能である。
 なお、前記化成処理皮膜については、例えば、クロメート処理液又はクロメートフリー化成処理液を塗布し、水洗することなく、鋼板温度として80~300℃となる乾燥処理を行うクロメート処理又はクロメートフリー化成処理により形成することが可能である。これら化成処理皮膜は単層でも複層でもよく、複層の場合には複数の化成処理を順次行えばよい。
 また、前記塗膜については、ロールコーター塗装、カーテンフロー塗装、スプレー塗装等の形成方法が挙げられる。有機樹脂を含有する塗料を塗装した後、熱風乾燥、赤外線加熱、誘導加熱等の手段により加熱乾燥して塗膜を形成することが可能である。
(サンプル1~25)
 常法で製造した板厚0.5mmの冷延鋼板を下地鋼板として用い、連続式溶融めっき設備において、サンプル1~25の溶融Al−Zn系めっき鋼板の製造を行った。なお、製造に用いためっき浴の組成については、表1に示す各サンプルのめっき層の組成とほぼ同じであり、めっき浴の浴温、鋼板の進入板温及びめっき浴の浴温から150℃減算した温度までの冷却速度、については表1に示す。
 その後、得られた溶融Al−Zn系めっき鋼板の各サンプルについては、走査型電子顕微鏡を用いてエネルギー分散型X線分光法(SEM−EDX)により、無作為の一カ所で断面の観察を行った。
 そして、それぞれのサンプルについて、形成されためっき層の各条件及びめっきの各製造条件を測定又は算出し、表1に示す。
(評価)
 上記のように得られた溶融Al−Zn系めっき鋼板の各サンプルについて、以下の評価を行った。評価結果を表1に示す。
(1)表面外観性
 溶融Al−Zn系めっき鋼板の各サンプルについて、1000~1600mm程度の鋼板巾×長手1000mmの観察視野で、めっき層の表面(各サンプルの両面)を目視により観察した。
 そして、観察結果を、以下の基準に従って評価した。
 ○:表面及び裏面のいずれについても、シワ状欠陥が全く観察されなかった
 ×:表面及び裏面のうちの少なくとも一方に、シワ状欠陥が観察された
(2)耐食性評価(平板部の耐食性)
 溶融Al−Zn系めっき鋼板の各サンプルについてについて、日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルに赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ○:赤錆発生サイクル数≧400サイクル
 △:300サイクル≦赤錆発生サイクル数<400サイクル
 ×:赤錆発生サイクル数<300サイクル
(3)曲げ加工部耐食性評価(加工部の耐食性)
 溶融Al−Zn−Mg−Si−Srめっき鋼板の各サンプルについて、同板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施した後、曲げの外側に日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルの加工部に赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ○:赤錆発生サイクル数≧400サイクル
 △:300サイクル≦赤錆発生サイクル数<400サイクル
 ×:赤錆発生サイクル数<300サイクル
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明例の各サンプルは、比較例の各サンプルに比べて、表面外観性、耐食性及び加工部耐食性のいずれについてもバランスよく優れていることがわかる。
 本発明によれば、良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板、並びに、良好な表面外観性を有するとともに、平板部及び加工部の耐食性に優れた溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法を提供できる。

Claims (8)

  1.  めっき層が、Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
     前記めっき層は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなり、
     前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が50%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が50%以下であることを特徴とする、溶融Al−Zn−Mg−Si−Srめっき鋼板。
  2.  前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が60%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が50%以下であることを特徴とする、請求項1に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
  3.  前記めっき層の厚さ方向の断面において観察されるMgSiのうち、前記主層の表面から50%までの厚さ範囲内に存在するMgSiの面積割合が60%以上であり、且つ、前記主層の表面から前記界面合金層に達するまで延在するMgSiの面積割合が40%以下であることを特徴とする、請求項1又は2に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
  4.  前記めっき層の厚さ方向の断面において観察されるSi相は、前記めっき層の厚さ方向の断面において観察されるMgSi及びSi相の面積率の合計に対するSi相の面積率の割合が、30%以下であることを特徴とする、請求項1~3のいずれか1項に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
  5.  前記主層がα−Al相のデンドライト部分を有し、該デンドライト部分の平均デンドライトアーム間距離と、前記めっき層の厚さとが、以下の式(1)を満足することを特徴とする、請求項1~4のいずれか1項に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板。
    t/d≧1.5 ・・・(1)
    t:めっき層の厚さ(μm)、d:平均デンドライトアーム間距離(μm)
  6.  Al:40~70質量%、Si:0.6~5質量%、Mg:0.1~10質量%及びSr:0.001~1.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、浴温が585℃以下であるめっき浴を用い、
     鋼板に溶融めっきを施す際、前記めっき浴進入時の鋼板温度(進入板温)を、前記めっき浴の浴温から20℃加算した温度(めっき浴温+20℃)以下とすることを特徴とする、溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法。
  7.  前記鋼板の進入板温が、前記めっき浴の浴温以下であることを特徴とする請求項6に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法。
  8.  前記鋼板に溶融めっきを施した後、10℃/s以上の平均冷却速度で、板温が前記めっき浴の浴温から150℃減算した温度(めっき浴温−150℃)になるまで、前記鋼板を冷却することを特徴とする、請求項6又は7に記載の溶融Al−Zn−Mg−Si−Srめっき鋼板の製造方法。
PCT/JP2019/045520 2019-03-01 2019-11-14 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法 WO2020179147A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MYPI2021004943A MY193467A (en) 2019-03-01 2019-11-14 Hot-dip al-zn-mg-si-sr coated steel sheet and method of producing same
KR1020217027753A KR20210123340A (ko) 2019-03-01 2019-11-14 용융 Al-Zn-Mg-Si-Sr 도금 강판 및 그 제조 방법
KR1020237034407A KR20230145257A (ko) 2019-03-01 2019-11-14 용융 Al-Zn-Mg-Si-Sr 도금 강판 및 그 제조 방법
CN202410170601.0A CN117987688A (zh) 2019-03-01 2019-11-14 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法
JP2020511539A JP6715399B1 (ja) 2019-03-01 2019-11-14 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
SG11202109471QA SG11202109471QA (en) 2019-03-01 2019-11-14 HOT-DIP Al-Zn-Mg-Si-Sr COATED STEEL SHEET AND METHOD OF PRODUCING SAME
CN201980093481.6A CN113631748A (zh) 2019-03-01 2019-11-14 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037994 2019-03-01
JP2019-037994 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179147A1 true WO2020179147A1 (ja) 2020-09-10

Family

ID=72337835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045520 WO2020179147A1 (ja) 2019-03-01 2019-11-14 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法

Country Status (5)

Country Link
KR (1) KR20210123340A (ja)
CN (1) CN113631748A (ja)
SG (1) SG11202109471QA (ja)
TW (1) TWI724674B (ja)
WO (1) WO2020179147A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082043A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082045A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg-Sr계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082044A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589282B1 (ko) * 2021-12-14 2023-10-13 현대제철 주식회사 열간 프레스용 강판 및 이를 이용하여 제조된 핫 스탬핑 부품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284718A (ja) * 2006-04-13 2007-11-01 Jfe Galvanizing & Coating Co Ltd 耐食性および加工性に優れた溶融Zn−Al合金めっき鋼板及びその製造方法
JP2011514934A (ja) * 2008-03-13 2011-05-12 ブルースコープ・スティール・リミテッド 金属被覆スチールストリップ
JP2018172783A (ja) * 2017-03-31 2018-11-08 Jfeスチール株式会社 溶融Al系めっき鋼板とその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS467161Y1 (ja) 1968-03-19 1971-03-13
JPS5020228B1 (ja) 1970-08-12 1975-07-12
JP2000282204A (ja) * 1999-04-02 2000-10-10 Nippon Steel Corp 端面、加工部の耐食性に優れた建材用アルミめっき鋼板
JP3983932B2 (ja) 1999-05-19 2007-09-26 日新製鋼株式会社 表面外観の良好な高耐食性Mg含有溶融Zn−Al系合金めっき鋼板
JP4136286B2 (ja) * 1999-08-09 2008-08-20 新日本製鐵株式会社 耐食性に優れたZn−Al−Mg−Si合金めっき鋼材およびその製造方法
JP4102035B2 (ja) * 2000-04-18 2008-06-18 新日本製鐵株式会社 耐食性に優れためっき製品およびその製造方法
JP2002012959A (ja) * 2000-04-26 2002-01-15 Nippon Steel Corp 加工部及び端面耐食性に優れたAl系めっき鋼板
WO2013008341A1 (ja) * 2011-07-14 2013-01-17 新日鐵住金株式会社 アルコール又はその混合ガソリンに対する耐食性、および外観に優れたアルミめっき鋼板およびその製造方法
JP5430022B2 (ja) * 2011-12-12 2014-02-26 Jfeスチール株式会社 Al系めっき鋼材及びその製造方法
TWI592499B (zh) * 2015-03-02 2017-07-21 Jfe Galvanizing & Coating Co Melted Al-Zn-Mg-Si plated steel sheet and manufacturing method thereof
JP6368730B2 (ja) 2015-03-02 2018-08-01 Jfe鋼板株式会社 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
CN105483594B (zh) * 2016-01-14 2018-10-30 上海大学 一种钢材表面连续热浸镀Al–Zn–Mg–Si合金镀层的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284718A (ja) * 2006-04-13 2007-11-01 Jfe Galvanizing & Coating Co Ltd 耐食性および加工性に優れた溶融Zn−Al合金めっき鋼板及びその製造方法
JP2011514934A (ja) * 2008-03-13 2011-05-12 ブルースコープ・スティール・リミテッド 金属被覆スチールストリップ
JP2018172783A (ja) * 2017-03-31 2018-11-08 Jfeスチール株式会社 溶融Al系めっき鋼板とその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082043A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082045A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg-Sr계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082044A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판

Also Published As

Publication number Publication date
TWI724674B (zh) 2021-04-11
KR20210123340A (ko) 2021-10-13
TW202033791A (zh) 2020-09-16
SG11202109471QA (en) 2021-09-29
CN113631748A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
JP6715399B1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP6715400B1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP6368730B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
JP6433960B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
JP6687175B1 (ja) めっき鋼材
WO2020179148A1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP5482914B2 (ja) 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法
JP6645273B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
WO2020179147A1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP7549965B2 (ja) 溶融Al-Zn-Mg-Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法
WO2014119268A1 (ja) 溶融Al-Zn系めっき鋼板とその製造方法
KR102527548B1 (ko) 도금 강재
TW202223117A (zh) 鍍敷鋼材
TWI521092B (zh) 熔融Al-Zn系鍍覆鋼板及其製造方法
JP7475162B2 (ja) 塗装鋼板及び塗装鋼板の製造方法
TWI787118B (zh) 熔融Al-Zn系鍍覆鋼板及其製造方法
JP2020164986A (ja) 溶融Al−Zn−Mg−Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法
WO2021199373A1 (ja) 溶融Al-Zn-Mg-Si系めっき鋼板の製造方法及び塗装鋼板の製造方法
TW202138592A (zh) 熔融Al-Zn-Mg-Si系的鍍覆鋼板的製造方法及塗裝鋼板的製造方法
JP2020139224A (ja) 溶融Al−Zn−Mg−Si系めっき鋼板の製造方法及び塗装鋼板の製造方法
JP2021001374A (ja) 溶融Al−Zn系めっき鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020511539

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027753

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918141

Country of ref document: EP

Kind code of ref document: A1