Nothing Special   »   [go: up one dir, main page]

WO2020149596A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2020149596A1
WO2020149596A1 PCT/KR2020/000610 KR2020000610W WO2020149596A1 WO 2020149596 A1 WO2020149596 A1 WO 2020149596A1 KR 2020000610 W KR2020000610 W KR 2020000610W WO 2020149596 A1 WO2020149596 A1 WO 2020149596A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
light emitting
formula
Prior art date
Application number
PCT/KR2020/000610
Other languages
English (en)
French (fr)
Inventor
서상덕
이동훈
장분재
정민우
이정하
한수진
박슬찬
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200003325A external-priority patent/KR102354500B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005696.0A priority Critical patent/CN112955455B/zh
Priority to US17/282,678 priority patent/US12133459B2/en
Publication of WO2020149596A1 publication Critical patent/WO2020149596A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device using the same.
  • the organic light emitting phenomenon refers to a phenomenon that converts electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic material layer is often formed of a multi-layer structure composed of different materials, for example, may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Patent Document 0001 Korean Patent Publication No. 10-2013-073537
  • the present invention relates to an organic light emitting device comprising the novel compound.
  • the present invention provides a compound represented by Formula 1:
  • L 1 are each independently a direct bond; Or substituted or unsubstituted C 6-60 arylene,
  • R 1 is hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S, or condensed with an adjacent ring to form a benzene ring,
  • R 2 to R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • n is an integer from 0 to 8
  • n and 0 are each independently an integer from 0 to 3
  • l is an integer from 0 to 4,
  • X 1 is NR'
  • X 2 is O or S
  • X 1 is O or S
  • X 2 is NR'
  • L 2 is a direct bond; Or substituted or unsubstituted C 6-60 arylene,
  • Y 1 , Y 2 and Y 3 are each independently CH; Or N, provided that Y 1 , Two or more of Y 2 and Y 3 are N,
  • Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 5-60 heteroaryl comprising one or more hetero atoms selected from the group consisting of N, O and S.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer provides an organic light emitting device comprising the compound of the present invention described above.
  • the compound represented by Chemical Formula 1 may be used as a material of an organic material layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or life characteristics in the organic light emitting device.
  • the compound represented by Chemical Formula 1 may be used as a light emitting layer material.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 It is done.
  • substituted or unsubstituted in this specification is deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester groups; Imide group; Amino group; Phosphine oxide group; Alkoxy groups; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Aryl sulfoxyl group; Silyl group; Boron group; Alkyl groups; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; An alkenyl group; Alkyl aryl groups; Alkylamine groups; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atoms, or substituted or unsubstituted with two or more substituents
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group is specifically a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be straight chain or branched chain, and carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be a straight chain or a branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, steelbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the carbon number of the aryl group is 6 to 30. According to one embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may combine with each other to form a spiro structure.
  • the fluorenyl group When the fluorenyl group is substituted, It can be back. However, it is not limited thereto.
  • the heterocyclic group is a heterocyclic group containing one or more of O, N, Si and S as heterogeneous elements, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrol group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazo
  • an aryl group in an aralkyl group, an alkenyl group, an alkylaryl group, and an arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, alkylaryl group, and alkylamine group is the same as the above-described alkyl group.
  • heteroarylamine among heteroarylamines may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group among the alkenyl groups is the same as the exemplified alkenyl group.
  • the description of the aryl group described above may be applied, except that the arylene is a divalent group.
  • the description of the heterocyclic group described above may be applied, except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and a description of the aryl group or cycloalkyl group described above may be applied, except that two substituents are formed by bonding.
  • the heterocycle is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied, except that two substituents are formed by bonding.
  • the present invention provides a compound represented by Formula 1:
  • L 1 are each independently a direct bond; Or substituted or unsubstituted C 6-60 arylene,
  • R 1 is hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S, or condensed with an adjacent ring to form a benzene ring,
  • R 2 to R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • n is an integer from 0 to 8
  • n and 0 are each independently an integer from 0 to 3
  • l is an integer from 0 to 4,
  • X 1 is NR'
  • X 2 is O or S
  • X 1 is O or S
  • X 2 is NR'
  • L 2 is a direct bond; Or substituted or unsubstituted C 6-60 arylene,
  • Y 1 , Y 2 and Y 3 are each independently CH; Or N, provided that Y 1 , Two or more of Y 2 and Y 3 are N,
  • Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 5-60 heteroaryl comprising one or more hetero atoms selected from the group consisting of N, O and S.
  • connection relationship between Formula 1 and Formula 2 is specifically, C 1 -1 and C 2 -2; C 2 -1 and C 3 -2; C 3 -1 and C 2 -2; C 3 -1 and C 4 -2;.
  • the compound represented by Formula 1 may be any one selected from the group consisting of compounds represented by Formulas 3 to 6 below:
  • X 1 , X 2 , L 1 , R 1 , R 2 , R 3 , R 4 , n, m, o and l are as defined above.
  • L 1 and L 2 are each independently, a direct bond; Phenylene unsubstituted or substituted with deuterium; Or naphthylene unsubstituted or substituted with deuterium.
  • R 1 is hydrogen; heavy hydrogen; methyl; ethyl; profile; Phenyl unsubstituted or substituted with deuterium; Biphenylyl unsubstituted or substituted with deuterium; Or a benzene ring condensed with an adjacent ring.
  • R 2 to R 4 are each independently hydrogen; heavy hydrogen; methyl; ethyl; profile; Phenyl unsubstituted or substituted with deuterium; Or biphenylyl unsubstituted or substituted with deuterium.
  • Ar 1 and Ar 2 are each independently phenyl substituted or unsubstituted with deuterium; Biphenylyl unsubstituted or substituted with deuterium; Dibenzofuranyl unsubstituted or substituted with deuterium; Or dibenzothiophenyl unsubstituted or substituted with deuterium.
  • the compound represented by Formula 1 is any one selected from the group consisting of:
  • the compound represented by the formula (1) according to the present invention is advantageous in both hole transport and electron transport because it has a benzofurocabazole or benzothiocarbazole which acts as an electron donor and a triazine part that acts as an electron acceptor.
  • Benzofurocarbazole or benzothiocarbazole has a very high material stability due to the five-condensed structure.
  • carbazole is substituted with a carbon-nitrogen bond at meta positions of N, O, and S of benzofurocarbazole or benzothiocarbazole, which is benzofurocarbazole or benzo from carbazole.
  • the compound of Formula 1 when applied as a light emitting layer host of an organic light emitting device, it may have characteristics of high efficiency, low driving voltage, and long life.
  • the compound represented by Chemical Formula 1 may be prepared through the following Reaction Scheme 1a, Reaction Scheme 1b, and Reaction Scheme 1c, or may be prepared through Reaction Scheme 2a, Reaction Scheme 2b, and Reaction Scheme 2c, and may be further embodied in Preparation Examples to be described later.
  • reaction schemes 1a, 1b, and 1c are synthetic reaction schemes when X 2 in Formula 1 is NR′.
  • the remaining variables other than Y 4 , Y 5 and Y 6 are as defined above, and Y 4 , Y 5 and Y 6 are each independently halogen, preferably bromo or chloro.
  • reaction schemes 2a, 2b, and 2c are synthetic reaction schemes when X 1 in Formula 1 is NR′.
  • C 1' , C 2' , C 3' , C 4' , 1'and 2' are connected by C 1 , C 2 , C 3 , C 4 , 1 and 2 in Formula 1
  • the relationship is the same, and the remaining variables except Y 5 and Y 6 are as defined above, and Y 4 , Y 5 and Y 6 are each independently halogen, preferably bromo or chloro.
  • the present invention provides an organic light emitting device comprising the compound represented by the formula (1).
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And an organic light emitting device including at least one layer of an organic material provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Chemical Formula 1, and an organic light emitting device is provided. do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer as an organic material layer.
  • the structure of the organic light emitting device is not limited to this, and may include fewer organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer simultaneously performing hole injection and transport, and the hole injection layer, a hole transport layer, or a layer simultaneously performing hole injection and transport may be represented by Formula 1 It includes the compound displayed.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes a compound represented by Chemical Formula 1.
  • the organic material layer includes a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by Chemical Formula 1.
  • the organic material layer may include a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1.
  • the compound represented by Chemical Formula 1 according to the present invention may have characteristics of high efficiency, low driving voltage and long life when applied as a light emitting layer host of a device.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Further, the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of the organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Chemical Formula 1 may be included in the light emitting layer.
  • FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4 It is done.
  • the compound represented by Chemical Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
  • the organic material layer including the compound represented by Chemical Formula 1 may be a light emitting layer, and preferably, the light emitting layer may further include a compound represented by Chemical Formula 7:
  • Ar 3 and Ar 4 are each independently, substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl including any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
  • R 4 and R 5 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl including any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
  • a and b are each independently an integer from 0 to 7.
  • Ar 3 and Ar 4 may each independently be phenyl, biphenylyl, terphenylyl, naphthyl, dibenzofuranyl, dibenzothiophenyl, or dimethylfluorenyl.
  • R 4 and R 5 may be hydrogen.
  • the compound represented by Formula 7 may be any one selected from the group consisting of:
  • the organic light emitting device by using a combination of the compound represented by the formula (1) and the compound represented by the formula (7) in the light emitting layer, it is possible to significantly improve the characteristics of low voltage, high efficiency, long life due to their synergy.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1. Further, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a positive electrode is formed by depositing a metal or conductive metal oxide or an alloy thereof on a substrate using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation.
  • PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer is formed thereon, and a material that can be used as a cathode is deposited thereon.
  • an organic light emitting device may be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the compound represented by Chemical Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited to these.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the positive electrode material is preferably a material having a large work function so that hole injection into the organic material layer is smooth.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); A combination of metal and oxide such as ZnO:Al or SNO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into an organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof;
  • a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from an electrode, and has the ability to transport holes as a hole injection material, and thus has a hole injection effect at an anode, an excellent hole injection effect for a light emitting layer or a light emitting material, and is produced in the light emitting layer.
  • a compound which prevents migration of the excitons to the electron injection layer or the electron injection material, and has excellent thin film formation ability is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes from the hole injection layer to the light emitting layer. It is a material that transports holes from the anode or the hole injection layer as a hole transport material and transfers them to the light emitting layer. This is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the light-emitting material is a material capable of emitting light in the visible light region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole compounds; Poly(p-phenylenevinylene) (PPV)-based polymers; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited to these.
  • the light emitting layer may include a host material and a dopant material.
  • the host material may be a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic compounds include carbazole derivatives, dibenzofuran derivatives, and ladder types Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periplanene, etc. having an arylamino group, and substituted or unsubstituted as a styrylamine compound.
  • a compound in which at least one arylvinyl group is substituted with the arylamine, a substituent selected from 1 or 2 or more from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • a substituent selected from 1 or 2 or more from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like but are not limited thereto.
  • metal complexes include, but are not limited to, iridium complexes, platinum complexes, and the like.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples include the Al complex of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, followed by an aluminum layer or a silver layer in each case.
  • the electron injection layer is a layer that injects electrons from an electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film forming ability is preferred.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like and their derivatives, metal Complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato) zinc, bis(8-hydroxyquinolinato) copper, bis(8-hydroxyquinolinato) manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato) zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( There are o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtholato) gallium, It is not limited to this.
  • the organic light emitting device may be a front emission type, a back emission type, or a double-sided emission type, depending on the material used.
  • the compound represented by Chemical Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • ITO Indium Tin Oxide
  • distilled water filtered secondarily by a filter of Millipore Co.
  • ultrasonic washing was repeated for 10 minutes by repeating it twice with distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, followed by drying and transporting to a plasma cleaner.
  • the substrate was washed for 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator.
  • the following HT and 5 wt% PD were thermally vacuum-deposited to a thickness of 100 ⁇ on the prepared ITO transparent electrode, and then, only the HT material was deposited to a thickness of 1150 ⁇ to form a hole transport layer.
  • the following EB as an electron blocking layer was thermally vacuum-deposited to a thickness of 450 MPa.
  • compound 1 and 15% by weight of GD were used as a dopant and vacuum-deposited to a thickness of 400 MPa.
  • the following ET-A was vacuum-deposited to a thickness of 50 MPa as a hole blocking layer.
  • ET-B and Liq as the electron transporting and injection layers were thermally vacuum-deposited at a thickness of 250 MPa at a ratio of 2:1, and then LiF and magnesium were vacuum-deposited at a thickness of 30 MPa at a ratio of 1:1.
  • Magnesium and silver were deposited on the electron injection layer at a thickness of 160 ⁇ at a ratio of 1:4 to form a cathode to prepare an organic light emitting device.
  • the organic light emitting devices of Experimental Examples 2 to 19 and Comparative Experimental Examples 1 to 10 were respectively manufactured using the same method as in Experimental Example 1, except that the host material was changed as shown in Table 1 below.
  • the host material was changed as shown in Table 1 below.
  • voltage, efficiency, and lifetime (T95) were measured and the results are shown in Table 1 below.
  • T95 lifetime
  • the compound of Formula 1 according to the present invention exhibits characteristics of low voltage, high efficiency, and long life when used as a light emitting layer host of an organic electroluminescent device.
  • the synergistic effect is realized when used in combination with a compound of Formula 7 such as PGH.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2019년 1월 15일자 한국 특허 출원 제10-2019-0005246호 및 2020년 1월 9일자 한국 특허 출원 제 10-2020-0003325호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2013-073537호
본 발명은 신규한 화합물 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020000610-appb-I000001
[화학식 2]
Figure PCTKR2020000610-appb-I000002
상기 화학식 1에서, C1 내지 C4 중 인접한 두개의 탄소는 화학식 2로 표시되는 화합물의 1 및 2와 각각 연결되며, 단, C1이 2에 연결되고 C2가 1에 연결되는 경우 및 C4가 1에 연결되고 C3가 1에 연결되는 경우는 제외하고,
L1은 각각 독립적으로 직접 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R1은 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이거나, 또는 인접한 고리와 축합되어 벤젠고리를 형성하고,
R2 내지 R4는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이고,
n은 0 내지 8의 정수이고,
m 및 0은 각각 독립적으로, 0 내지 3의 정수이고,
l은 0 내지 4의 정수이고,
X1는 NR'이고, X2는 O 또는 S이거나, 또는 X1는 O 또는 S이고, X2는 NR'이고,
R' 은
Figure PCTKR2020000610-appb-I000003
이고,
L2는 직접 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Y1, Y2 및 Y3는 각각 독립적으로, CH; 또는 N이고, 단, Y1, Y2 및 Y3 중 2개 이상이 N이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 전술한 본 발명의 화합물을 포함하는 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 발광층 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2020000610-appb-I000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020000610-appb-I000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020000610-appb-I000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020000610-appb-I000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020000610-appb-I000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020000610-appb-I000009
[화학식 2]
Figure PCTKR2020000610-appb-I000010
상기 화학식 1에서, C1 내지 C4 중 인접한 두개의 탄소는 화학식 2로 표시되는 화합물의 1 및 2와 각각 연결되며, 단, C1이 2에 연결되고 C2가 1에 연결되는 경우 및 C4가 1에 연결되고 C3가 1에 연결되는 경우는 제외하고,
L1은 각각 독립적으로 직접 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R1은 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이거나, 또는 인접한 고리와 축합되어 벤젠고리를 형성하고,
R2 내지 R4는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이고,
n은 0 내지 8의 정수이고,
m 및 0은 각각 독립적으로, 0 내지 3의 정수이고,
l은 0 내지 4의 정수이고,
X1는 NR'이고, X2는 O 또는 S이거나, 또는 X1는 O 또는 S이고, X2는 NR'이고,
R' 은
Figure PCTKR2020000610-appb-I000011
이고,
L2는 직접 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Y1, Y2 및 Y3는 각각 독립적으로, CH; 또는 N이고, 단, Y1, Y2 및 Y3 중 2개 이상이 N이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이다.
상기 화학식 1과 화학식 2와의 연결 관계는, 구체적으로, C1-1 및 C2-2; C2-1 및 C3-2; C3-1 및 C2-2; C3-1 및 C4-2;를 의미한다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은, 하기 화학식 3 내지 6으로 표시되는 화합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있다:
[화학식 3]
Figure PCTKR2020000610-appb-I000012
[화학식 4]
Figure PCTKR2020000610-appb-I000013
[화학식 5]
Figure PCTKR2020000610-appb-I000014
[화학식 6]
Figure PCTKR2020000610-appb-I000015
상기 화학식 3 내지 6에서,
X1, X2, L1, R1, R2, R3, R4, n, m, o 및 l은 앞서 정의한 바와 같다.
바람직하게는, L1 및 L2는 각각 독립적으로, 직접 결합; 중수소로 치환 또는 비치환된 페닐렌; 또는 중수소로 치환 또는 비치환된 나프틸렌이다.
바람직하게는, R1은 수소; 중수소; 메틸; 에틸; 프로필; 중수소로 치환 또는 비치환된 페닐; 중수소로 치환 또는 비치환된 비페닐릴; 또는 인접한 고리와 축합된 벤젠고리이다.
바람직하게는, R2 내지 R4는 각각 독립적으로, 수소; 중수소; 메틸; 에틸; 프로필; 중수소로 치환 또는 비치환된 페닐; 또는 중수소로 치환 또는 비치환된 비페닐릴이다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 중수소로 치환 또는 비치환된 페닐; 중수소로 치환 또는 비치환된 비페닐릴; 중수소로 치환 또는 비치환된 디벤조퓨라닐; 또는 중수소로 치환 또는 비치환된 디벤조티오페닐이다.
상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020000610-appb-I000016
Figure PCTKR2020000610-appb-I000017
Figure PCTKR2020000610-appb-I000018
Figure PCTKR2020000610-appb-I000019
Figure PCTKR2020000610-appb-I000020
Figure PCTKR2020000610-appb-I000021
Figure PCTKR2020000610-appb-I000022
Figure PCTKR2020000610-appb-I000023
Figure PCTKR2020000610-appb-I000024
Figure PCTKR2020000610-appb-I000025
Figure PCTKR2020000610-appb-I000026
Figure PCTKR2020000610-appb-I000027
Figure PCTKR2020000610-appb-I000028
Figure PCTKR2020000610-appb-I000029
Figure PCTKR2020000610-appb-I000030
Figure PCTKR2020000610-appb-I000031
본 발명에 따른 화학식 1로 표시되는 화합물은 전자 주개 역할을 하는 벤조퓨로카바졸 혹은 벤조싸이오카바졸과 전자 받개 역할을 하는 트리아진 부분이 있어 정공 수송 및 전자 수송에 모두 유리하다. 벤조퓨로카바졸이나 벤조싸이오카바졸은 고리가 5개 축합된 구조로 인해 물질의 안정성이 매우 높다. 또한, 화학식 1의 구조는 벤조퓨로카바졸이나 벤조싸이오카바졸의 N, O, S의 meta 위치에 카바졸이 탄소-질소 결합으로 치환되어 있는데 이는 카바졸로부터 벤조퓨로카바졸 혹은 벤조싸이오카바졸로 전자를 밀어주는 역할을 하여 전자 주개 특성을 강화시켜 정공 수송 특성을 높여주고 HOMO(highest occupied molecular orbial) level을 높여 정공 주입 특성도 강화시킨다. 이에 따라 화학식 1의 구조의 화합물을 유기 발광 소자의 발광층 호스트로 적용시 고효율, 저 구동 전압, 장수명의 특성을 가질 수 있다.
상기 화학식 1로 표시되는 화합물은 하기 반응식 1a, 반응식 1b 및 반응식 1c를 거쳐 제조되거나, 또는 반응식 2a, 반응식 2b 및 반응식 2c를 거쳐 제조될 수 있으며, 후술할 제조예에서 보다 구체화될 수 있다.
[반응식 1a]
[규칙 제91조에 의한 정정 04.03.2020] 
Figure WO-DOC-FIGURE-1a
[반응식 1b]
[규칙 제91조에 의한 정정 04.03.2020] 
Figure WO-DOC-FIGURE-1b
[반응식 1c]
[규칙 제91조에 의한 정정 04.03.2020] 
Figure WO-DOC-FIGURE-1c
[규칙 제91조에 의한 정정 04.03.2020] 
상기 반응식 1a, 1b 및 1c는 화학식 1에서 X2가 NR'인 경우의 합성 반응식이다. 상기 식 중에서, Y4, Y5 및 Y6을 제외한 나머지 변수들은 앞서 정의한 바와 같고, Y4, Y5 및 Y6은 각각 독립적으로 할로겐이며, 바람직하게는 브로모 또는 클로로이다.
[반응식 2a]
[규칙 제91조에 의한 정정 04.03.2020] 
Figure WO-DOC-FIGURE-2a
[반응식 2b]
[규칙 제91조에 의한 정정 04.03.2020] 
Figure WO-DOC-FIGURE-2b
[반응식 2c]
[규칙 제91조에 의한 정정 04.03.2020] 
Figure WO-DOC-FIGURE-2c
상기 반응식 2a, 2b 및 2c는 화학식 1에서 X1이 NR'인 경우의 합성 반응식이다. 상기 식 중에서, C1', C2', C3', C4', 1' 및 2' 의 연결 관계는, 화학식 1의 C1, C2, C3, C4, 1 및 2의 연결 관계와 동일하고, Y5 및 Y6을 제외한 나머지 변수들은 앞서 정의한 바와 같으며, 상기 Y4, Y5 및 Y6은 각각 독립적으로 할로겐이며, 바람직하게는 브로모 또는 클로로이다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조를 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화학식 1로 표시되는 화합물은 소자의 발광층 호스트로 적용시 고효율, 저 구동 전압, 장수명의 특성을 가질 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 발광층일 수 있으며, 바람직하게는, 상기 발광층은 하기 화학식 7로 표시되는 화합물을 더 포함할 수 있다:
[화학식 7]
Figure PCTKR2020000610-appb-I000038
상기 화학식 7에서,
Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
R4 및 R5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
a 및 b는 각각 독립적으로, 0 내지 7의 정수이다.
바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 또는 디메틸플루오레닐일 수 있다.
바람직하게는, R4 및 R5는 수소일 수 있다.
바람직하게는, 상기 화학식 7로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure PCTKR2020000610-appb-I000039
Figure PCTKR2020000610-appb-I000040
Figure PCTKR2020000610-appb-I000041
Figure PCTKR2020000610-appb-I000042
Figure PCTKR2020000610-appb-I000043
Figure PCTKR2020000610-appb-I000044
본 발명에 따른 유기 발광 소자는, 발광층에 상기 화학식 1로 표시되는 화합물과 화학식 7로 표시되는 화합물을 조합하여 사용함으로써, 이들의 시너지 효과로 저전압, 고효율, 장수명의 특성을 현저히 향상시킬 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자 주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조를 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[합성예]
합성예 1: 중간체 A의 합성
반응식 1-1) 중간체 A-1의 합성
Figure PCTKR2020000610-appb-I000045
3 구 플라스크에 2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (30.0g, 102.0mmol), 1-bromo-4-chloro-2-nitrobenzene (27.0g, 114.2mmol)을 THF 450ml에 녹이고 potassium carbonate (56.4g, 407.9mmol)을 H2O 150ml에 녹여 넣는다. 여기에 tetrakis(triphenylphosphine)palladium(0) (5.9g, 5.1mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, ethyl acetate로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 재결정하여 중간체 A-1을 28.1g 수득하였다. (수율 85%, MS[M+H]+= 323)
반응식 1-2) 중간체 A-2의 합성
Figure PCTKR2020000610-appb-I000046
2 구 플라스크에 화합물 A-1 (25.0g, 77.2mmol), triphenylphosphine (16.0g, 115.8mmol), o-dichlorobenzene 250ml를 넣고 환류 조건하에서 24시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 감압 증류하여 용매를 제거하고 CH2Cl2로 추출하였다. 추출액을 MgSO4로 건조, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 A를 16.9g 수득하였다. (수율 75%, MS[M+H]+= 291)
합성예 2: 중간체 B, 중간체 C의 합성
반응식 2-1)
Figure PCTKR2020000610-appb-I000047
합성예 1에서, 2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane을 2-(dibenzo[b,d]furan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane으로 변경하여 사용한 것을 제외하고는, 중간체 A의 제조 방법과 동일한 제조 방법으로 합성한 후, 실리카 겔 컬럼 크로마토그래피로 분리하여 중간체 B와 중간체 C를 수득하였다. (MS[M+H]+= 291)
합성예 3 : 중간체 D의 합성
반응식 3-1)
Figure PCTKR2020000610-appb-I000048
합성예 1에서, 2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane을 2-(dibenzo[b,d]furan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane으로 변경하여 사용한 것을 제외하고는, 중간체 A의 제조 방법과 동일한 제조 방법으로 중간체 D를 제조하였다. (MS[M+H]+= 291)
합성예 4 : 중간체 E의 합성
반응식 4-1)
Figure PCTKR2020000610-appb-I000049
합성예 1에서, 2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane을 2-(dibenzo[b,d]thiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane으로 변경하여 사용한 것을 제외하고는, 중간체 A의 제조 방법과 동일한 제조 방법으로 중간체 E를 제조하였다. (MS[M+H]+= 307)
합성예 5 : 중간체 F의 합성
반응식 5-1)
Figure PCTKR2020000610-appb-I000050
합성예 1에서, 2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane을 2-(dibenzo[b,d]thiophen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane으로 변경하여 사용한 것을 제외하고는, 중간체 A의 제조 방법과 동일한 제조 방법으로 중간체 F를 제조하였다. (MS[M+H]+= 307)
합성예 6: 중간체 G의 합성
반응식 6-1) 중간체 G-1의 합성
Figure PCTKR2020000610-appb-I000051
3 구 플라스크에 3-bromo-7-chlorodibenzo[b,d]furan (25.0g, 88.8mmol), 9H-carbazole (15.6g, 93.2mmol)을 toluene 750ml에 녹이고 sodium tert-butoxide (12.8g, 133.2mmol), Bis(tri-tert-butylphosphine)palladium(0) (0.9g, 1.8mmol)을 넣은 후, 아르곤 분위기 환류 조건하에서 6시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, H2O를 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 G-1 24.8g을 수득하였다. (수율 76%, MS[M+H]+= 367)
반응식 6-2) 중간체 G-2의 합성
Figure PCTKR2020000610-appb-I000052
3 구 플라스크에 중간체 G-1 (20.0g, 54.4mmol), (2-nitrophenyl)boronic acid (10.0g, 59.8mmol)을 THF 300ml에 녹이고 potassium carbonate (30.1g, 217.5mmol)을 H2O 100ml에 녹여 넣는다. 여기에 tetrakis(triphenylphosphine)palladium(0) (3.1g, 2.7mmol)를 넣고, 아르곤 분위기 환류 조건하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, ethyl acetate로 추출하였다. 추출액을 MgSO4로 건조 후, 여과 및 농축한 후, 재결정하여 중간체 G-2를 20.0g 수득하였다. (수율 81%, MS[M+H]+= 454)
반응식 6-3) 중간체 G의 합성
Figure PCTKR2020000610-appb-I000053
2 구 플라스크에 중간체 G-2 (20.0g, 44.0mmol), triphenylphosphine (9.1g, 66.0mmol), o-dichlorobenzene 200ml를 넣고 환류 조건하에서 24시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 감압 증류하여 용매를 제거하고 CH2Cl2로 추출하였다. 추출액을 MgSO4로 건조, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 G를 13.4g 수득하였다. (수율 72%, MS[M+H]+= 422)
합성예 7 : 중간체 H의 합성
반응식 7-1)
Figure PCTKR2020000610-appb-I000054
합성예 F에서, 3-bromo-7-chlorodibenzo[b,d]furan 을 7-bromo-2-chlorodibenzo[b,d]furan으로 변경하여 사용한 것을 제외하고는, 중간체 G의 제조 방법과 동일한 제조 방법으로 중간체 H를 제조하였다. (MS[M+H]+= 422)
실시예 1: 화합물 1의 합성
반응식 1-A) 화합물 1-1의 합성
Figure PCTKR2020000610-appb-I000055
3 구 플라스크에 중간체 A (15.0g, 51.4mmol), 중간체 a-1 (22.0g, 56.6mmol)을 toluene 450ml에 녹이고 sodium tert-butoxide (7.4g, 77.1mmol), bis(tri-tert-butylphosphine)palladium(0) (0.5g, 1.0mmol)을 넣은 후, 아르곤 분위기 환류 조건하에서 6시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, H2O를 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1 21.9g을 수득하였다. (수율 71%, MS[M+H]+= 599)
반응식 1-B) 화합물 1의 합성
Figure PCTKR2020000610-appb-I000056
3 구 플라스크에 화합물 1-1 (20.0g, 33.4mmol), 중간체 b-1 (6.1g, 36.7mmol)을 toluene 600ml에 녹이고 sodium tert-butoxide (4.8g, 50.1mmol), Bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.7mmol)을 넣은 후, 아르곤 분위기 환류 조건하에서 6시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, H2O를 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 1 7.8g을 수득하였다. (수율 32%, MS[M+H]+= 729)
실시예 2: 화합물 2의 합성
반응식 2)
Figure PCTKR2020000610-appb-I000057
실시예 1의 반응식 1-B에서, 중간체 b-1을 중간체 b-2로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 2를 제조하였다. (MS[M+H]+= 805)
실시예 3: 화합물 3의 합성
반응식 3)
Figure PCTKR2020000610-appb-I000058
실시예 1의 반응식 1-A에서, 중간체 a-1을 중간체 a-2로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 3을 제조하였다. (MS[M+H]+= 805)
실시예 4: 화합물 4의 합성
반응식 4)
Figure PCTKR2020000610-appb-I000059
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 B로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 4를 제조하였다. (MS[M+H]+= 729)
실시예 5: 화합물 5의 합성
반응식 5)
Figure PCTKR2020000610-appb-I000060
실시예 1의 반응식 1-B에서, 화합물 1-1을 화합물 4-1로, 중간체 b-1을 중간체 b-2로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 5를 제조하였다. (MS[M+H]+= 805)
실시예 6: 화합물 6의 합성
반응식 6)
Figure PCTKR2020000610-appb-I000061
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 B로, 중간체 a-1을 중간체 a-3으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 6을 제조하였다. (MS[M+H]+= 819)
실시예 7: 화합물 7의 합성
반응식 7)
Figure PCTKR2020000610-appb-I000062
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 C로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 7을 제조하였다. (MS[M+H]+= 729)
실시예 8: 화합물 8의 합성
반응식 8)
Figure PCTKR2020000610-appb-I000063
실시예 1의 반응식 1-B에서, 화합물 1-1을 화합물 7-1로, 중간체 b-1을 중간체 b-3으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 8을 제조하였다. (MS[M+H]+= 805)
실시예 9: 화합물 9의 합성
반응식 9)
Figure PCTKR2020000610-appb-I000064
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 C로, 중간체 a-1을 중간체 a-4로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 9를 제조하였다. (MS[M+H]+= 729)
실시예 10: 화합물 10의 합성
반응식 10)
Figure PCTKR2020000610-appb-I000065
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 D로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 10을 제조하였다. (MS[M+H]+= 729)
실시예 11: 화합물 11의 합성
반응식 11)
Figure PCTKR2020000610-appb-I000066
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 E로, 중간체 a-1을 중간체 a-4로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 11을 제조하였다. (MS[M+H]+= 745)
실시예 12: 화합물 12의 합성
반응식 12)
Figure PCTKR2020000610-appb-I000067
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 F로, 중간체 a-1을 중간체 a-4로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 12를 제조하였다. (MS[M+H]+= 745)
실시예 13: 화합물 13의 합성
반응식 13)
Figure PCTKR2020000610-appb-I000068
실시예 1의 반응식 1-A에서, 중간체 A를 중간체 F로, 중간체 a-1을 중간체 a-5로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 13을 제조하였다. (MS[M+H]+= 669)
실시예 14: 화합물 14의 합성
반응식 14)
Figure PCTKR2020000610-appb-I000069
3 구 플라스크에 중간체 G (15.0g, 35.5mmol), 중간체 a-1 (15.2g, 39.1mmol)을 toluene 450ml에 녹이고 sodium tert-butoxide (5.1g, 53.3mmol), bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol)을 넣은 후, 아르곤 분위기 환류 조건하에서 6시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, H2O를 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 14 7.8g을 수득하였다. (수율 30%, MS[M+H]+= 729)
실시예 15: 화합물 15의 합성
반응식 15)
Figure PCTKR2020000610-appb-I000070
실시예 14의 반응식 14에서, 중간체 a-1을 중간체 a-4로 변경하여 사용한 것을 제외하고는, 화합물 14의 제조 방법과 동일한 제조 방법으로 화합물 15를 제조하였다. (MS[M+H]+= 729)
실시예 16: 화합물 16의 합성
반응식 16)
Figure PCTKR2020000610-appb-I000071
실시예 14의 반응식 14에서, 중간체 G를 중간체 H로 변경하여 사용한 것을 제외하고는, 화합물 14의 제조 방법과 동일한 제조 방법으로 화합물 16을 제조하였다. (MS[M+H]+= 729)
[실험예]
실험예 1
ITO(Indium Tin Oxide)가 1,400Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 HT와 5 중량%의 PD를 100Å의 두께로 열 진공 증착하고 이어서 HT 물질만 1150Å의 두께로 증착하여 정공수송층을 형성하였다. 그 위에 전자저지층으로 하기 EB를 450Å 두께로 열 진공 증착하였다. 이어서 화합물 1과 15 중량%의 GD를 도펀트로 하여 400Å의 두께로 진공 증착하였다. 이어서, 정공 저지층으로 하기 ET-A를 50Å의 두께로 진공 증착하였다. 이어서 전자 수송 및 주입층으로 하기 ET-B와 Liq를 2:1의 비율로 250Å의 두께로 열 진공 증착하고 이어서 LiF와 마그네슘을 1:1의 비율로 30Å의 두께로 진공 증착하였다. 상기 전자주입층 위에 마그네슘과 은을 1:4의 비율로 160Å의 두께로 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
상기 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 수명(T95)을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, 전압, 효율은 10mA/cm2의 전류 밀도를 인가하여 측정되었으며, T95은 전류 밀도 20mA/cm2에서 초기휘도가 95%로 저하할 때까지의 시간을 의미한다.
Figure PCTKR2020000610-appb-I000072
실험예 2-19 및 비교 실험예 1 내지 10
호스트 물질을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 실험예 2 내지 19 및 비교 실험예 1 내지 비교예 10의 유기 발광 소자를 각각 제작하고, 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 수명(T95)을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, 호스트로서 2종의 화합물의 혼합물을 사용한 경우, 괄호 안은 호스트 화합물간의 중량비를 의미한다.
Figure PCTKR2020000610-appb-I000073
Figure PCTKR2020000610-appb-T000001
Figure PCTKR2020000610-appb-I000074
Figure PCTKR2020000610-appb-I000075
상기 표 1에서 확인할 수 있듯이, 본원 발명에 따른 화학식 1의 화합물을 유기 전계 발광 소자의 발광층 호스트로 사용 시 저전압, 고효율, 장수명의 특성을 나타냄을 알 수 있다. 또한, PGH와 같은 화학식 7의 화합물과 함께 혼합하여 사용할 경우 시너지 효과를 구현함을 확인할 수 있었다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 8: 전자수송층

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020000610-appb-I000076
    [화학식 2]
    Figure PCTKR2020000610-appb-I000077
    상기 화학식 1에서, C1 내지 C4 중 인접한 두개의 탄소는 화학식 2로 표시되는 화합물의 1 및 2와 각각 연결되며, 단, C1이 2에 연결되고 C2가 1에 연결되는 경우 및 C4가 1에 연결되고 C3가 1에 연결되는 경우는 제외하고,
    L1은 각각 독립적으로 직접 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    R1은 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이거나, 또는 인접한 고리와 축합되어 벤젠고리를 형성하고,
    R2 내지 R4는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴이고,
    n은 0 내지 8의 정수이고,
    m 및 0은 각각 독립적으로, 0 내지 3의 정수이고,
    l은 0 내지 4의 정수이고,
    X1는 NR'이고, X2는 O 또는 S이거나, 또는 X1는 O 또는 S이고, X2는 NR'이고,
    R' 은
    Figure PCTKR2020000610-appb-I000078
    이고,
    L2는 직접 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Y1, Y2 및 Y3는 각각 독립적으로, CH; 또는 N이고, 단, Y1, Y2 및 Y3 중 2개 이상이 N이고,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C5-60 헤테로아릴임.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 6으로 표시되는 화합물 중에서 선택되는 어느 하나인, 화합물:
    [화학식 3]
    Figure PCTKR2020000610-appb-I000079
    [화학식 4]
    Figure PCTKR2020000610-appb-I000080
    [화학식 5]
    Figure PCTKR2020000610-appb-I000081
    [화학식 6]
    Figure PCTKR2020000610-appb-I000082
    상기 화학식 3 내지 6에서,
    X1, X2, L1, R1, R2, R3, R4, n, m, o 및 l은 청구항 1에서 정의한 바와 같음.
  3. 제 1항에 있어서,
    L1 및 L2는 각각 독립적으로, 직접 결합; 중수소로 치환 또는 비치환된 페닐렌; 또는 중수소로 치환 또는 비치환된 나프틸렌인, 화합물.
  4. 제 1항에 있어서,
    R1은 수소; 중수소; 메틸; 에틸; 프로필; 중수소로 치환 또는 비치환된 페닐; 중수소로 치환 또는 비치환된 비페닐릴; 또는 인접한 고리와 축합된 벤젠고리인, 화합물.
  5. 제 1항에 있어서,
    R2 내지 R4는 각각 독립적으로, 수소; 중수소; 메틸; 에틸; 프로필; 중수소로 치환 또는 비치환된 페닐; 또는 중수소로 치환 또는 비치환된 비페닐릴인, 화합물.
  6. 제 1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로, 중수소로 치환 또는 비치환된 페닐; 중수소로 치환 또는 비치환된 비페닐릴; 중수소로 치환 또는 비치환된 디벤조퓨라닐; 또는 중수소로 치환 또는 비치환된 디벤조티오페닐인, 화합물.
  7. 제 1항에 있어서,
    상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물:
    Figure PCTKR2020000610-appb-I000083
    Figure PCTKR2020000610-appb-I000084
    Figure PCTKR2020000610-appb-I000085
    Figure PCTKR2020000610-appb-I000086
    Figure PCTKR2020000610-appb-I000087
    Figure PCTKR2020000610-appb-I000088
    Figure PCTKR2020000610-appb-I000089
    Figure PCTKR2020000610-appb-I000090
    Figure PCTKR2020000610-appb-I000091
    Figure PCTKR2020000610-appb-I000092
    Figure PCTKR2020000610-appb-I000093
    Figure PCTKR2020000610-appb-I000094
    Figure PCTKR2020000610-appb-I000095
    Figure PCTKR2020000610-appb-I000096
    Figure PCTKR2020000610-appb-I000097
    Figure PCTKR2020000610-appb-I000098
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 6항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  9. 제8항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인,유기 발광 소자.
  10. 제9항에 있어서,
    상기 발광층은 하기 화학식 7로 표시되는 화합물을 더 포함하는, 유기 발광 소자:
    [화학식 7]
    Figure PCTKR2020000610-appb-I000099
    상기 화학식 7에서,
    Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    R4 및 R5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    a 및 b는 각각 독립적으로, 0 내지 7의 정수임.
  11. 제10항에 있어서,
    Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 또는 디메틸플루오레닐인, 유기 발광 소자.
  12. 제10항에 있어서,
    R4 및 R5는 수소인, 유기 발광 소자.
  13. 제10항에 있어서,
    상기 화학식 7로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인, 유기 발광 소자:
    Figure PCTKR2020000610-appb-I000100
    Figure PCTKR2020000610-appb-I000101
    Figure PCTKR2020000610-appb-I000102
    Figure PCTKR2020000610-appb-I000103
    Figure PCTKR2020000610-appb-I000104
    Figure PCTKR2020000610-appb-I000105
PCT/KR2020/000610 2019-01-15 2020-01-13 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2020149596A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005696.0A CN112955455B (zh) 2019-01-15 2020-01-13 新的化合物和使用其的有机发光器件
US17/282,678 US12133459B2 (en) 2019-01-15 2020-01-13 Heterocyclic compound and organic light emitting device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190005246 2019-01-15
KR10-2019-0005246 2019-01-15
KR1020200003325A KR102354500B1 (ko) 2019-01-15 2020-01-09 신규한 화합물 및 이를 이용한 유기 발광 소자
KR10-2020-0003325 2020-01-09

Publications (1)

Publication Number Publication Date
WO2020149596A1 true WO2020149596A1 (ko) 2020-07-23

Family

ID=71613233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000610 WO2020149596A1 (ko) 2019-01-15 2020-01-13 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2020149596A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464748A (zh) * 2020-11-10 2022-05-10 三星Sdi株式会社 有机光电装置及显示装置
CN114464759A (zh) * 2020-11-09 2022-05-10 三星Sdi株式会社 有机光电子装置和显示装置
CN114464745A (zh) * 2020-11-09 2022-05-10 三星Sdi株式会社 有机光电子装置和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127563A (ko) * 2012-05-02 2013-11-25 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20180008279A (ko) * 2016-07-15 2018-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20180104258A (ko) * 2017-03-10 2018-09-20 삼성디스플레이 주식회사 유기 발광 소자
KR20180136377A (ko) * 2017-06-14 2018-12-24 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20190064251A (ko) * 2017-11-30 2019-06-10 솔브레인 주식회사 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127563A (ko) * 2012-05-02 2013-11-25 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20180008279A (ko) * 2016-07-15 2018-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20180104258A (ko) * 2017-03-10 2018-09-20 삼성디스플레이 주식회사 유기 발광 소자
KR20180136377A (ko) * 2017-06-14 2018-12-24 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20190064251A (ko) * 2017-11-30 2019-06-10 솔브레인 주식회사 화합물 및 이를 포함하는 유기 발광 소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464759A (zh) * 2020-11-09 2022-05-10 三星Sdi株式会社 有机光电子装置和显示装置
CN114464745A (zh) * 2020-11-09 2022-05-10 三星Sdi株式会社 有机光电子装置和显示装置
CN114464748A (zh) * 2020-11-10 2022-05-10 三星Sdi株式会社 有机光电装置及显示装置

Similar Documents

Publication Publication Date Title
WO2021080368A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020111733A1 (ko) 유기 발광 소자
WO2019160315A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020149666A1 (ko) 유기 발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020149596A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021066351A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080253A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021040467A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2020185038A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021045347A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020091468A1 (ko) 유기 발광 소자
WO2020111586A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020149609A1 (ko) 유기 발광 소자
WO2020111780A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020153792A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020091526A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020013657A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031028A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741993

Country of ref document: EP

Kind code of ref document: A1