Nothing Special   »   [go: up one dir, main page]

WO2020144381A1 - Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain - Google Patents

Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain Download PDF

Info

Publication number
WO2020144381A1
WO2020144381A1 PCT/EP2020/050720 EP2020050720W WO2020144381A1 WO 2020144381 A1 WO2020144381 A1 WO 2020144381A1 EP 2020050720 W EP2020050720 W EP 2020050720W WO 2020144381 A1 WO2020144381 A1 WO 2020144381A1
Authority
WO
WIPO (PCT)
Prior art keywords
adipose tissue
extracellular matrix
human adipose
cells
fraction
Prior art date
Application number
PCT/EP2020/050720
Other languages
English (en)
Inventor
Christian Dani
Alain Doglio
Vincent DANI-DAVESNE
Philippe LETERTRE
Original Assignee
Universite Cote D'azur
Institut National de la Santé et de la Recherche Médicale
Centre National De La Recherche Scientifique (Cnrs)
Chu De Nice
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Cote D'azur, Institut National de la Santé et de la Recherche Médicale, Centre National De La Recherche Scientifique (Cnrs), Chu De Nice filed Critical Universite Cote D'azur
Priority to EP20700217.1A priority Critical patent/EP3966317A1/fr
Priority to CA3125836A priority patent/CA3125836A1/fr
Priority to JP2021539468A priority patent/JP2022518159A/ja
Priority to US17/421,840 priority patent/US20220098552A1/en
Publication of WO2020144381A1 publication Critical patent/WO2020144381A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/362Skin, e.g. dermal papillae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3633Extracellular matrix [ECM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1305Adipocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1352Mesenchymal stem cells
    • C12N2502/1382Adipose-derived stem cells [ADSC], adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/28Vascular endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1384Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from adipose-derived stem cells [ADSC], from adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a method for in vitro or ex vivo amplification of stem cells from human adipose tissue. It further relates to a method for in vitro or ex vivo amplification of differentiated cells, an extracellular matrix, a composition comprising a mixture of an extracellular matrix and a stroma-vascular fraction, a use of the extracellular matrix or of the composition comprising a mixture of the extracellular matrix and the stroma-vascular fraction, and differentiated cells obtained according to the process of the invention for their use.
  • Cell therapy consists of a transplant of cells aimed at restoring the functions of a tissue or an organ when they are impaired by an accident, a pathology or aging. It allows a patient to be treated sustainably by a single injection of so-called “therapeutic” cells. These cells are obtained, in particular, from multipotent stem cells originating from the patient himself.
  • Lipofilling is a special cell therapy technique used to transfer fat cells, or adipocytes, from one area of the body to another in order to reshape the body or the face.
  • the adipocytes present in certain adipose sites are used for cell therapy and, more particularly, for lipofilling.
  • the quantity of adipocytes available in a patient can be limiting. For example, when a patient has too low a body mass index or has undergone chemotherapy, he may not have enough fatty tissue to perform lipofilling.
  • the non-enzymatic dissociation of adipose tissue makes it possible to isolate the precursors of adipocytes.
  • This type of dissociation appears to be an alternative method that is much less expensive, faster and which has indisputable advantages for the manufacture of a product that complies with the standards of therapeutic grade production (reduced exposure to external products or contaminants).
  • the non-enzymatic dissociation presented to date are not satisfactory because the number of adipocyte precursors obtained is low compared to enzymatic dissociation. This then requires their amplification in 2D on a culture dish.
  • endothelial cells, the extracellular matrix and the three-dimensional structure of adipose tissue are lost at the end of the process.
  • adipocyte precursors therein and thus try to reconstruct the structure of the adipose tissue as well as possible.
  • the matrix is also used to orient in vitro the precursors of adipocytes towards a non-adipose cell type (essentially bone or cartilaginous) before implantation.
  • Decellularized adipose tissue has also been proposed to increase the differentiation of the precursors and to better mimic the structure of the adipose tissue.
  • the manufacture of all these types of matrices requires numerous steps involving enzymatic reactions or long chemical treatments.
  • the decellularized tissue loses these endogenous cells but also loses the factors of therapeutic interest which are anchored on the native matrix, which reduces the clinical value of this type of matrix.
  • Adipose tissue not decellularized and enriched with adipocyte precursors (previously isolated by enzymatic dissociation) followed by 2D amplification has recently been proposed as a matrix for better bone reconstruction.
  • the time to generate this biological matrix is long, requires three weeks of culture in vitro, and does not allow the amplification of the precursors of adipocytes. Only the interest in bone repair was put forward by the authors.
  • Three-dimensional (3D) suspension culture represents an alternative method of choice to the standard 2D method because it essentially allows the structure and intrinsic qualities of the tissue to be preserved.
  • This advantage is important because, for example, the absence of a relevant human model which best mimics adipose tissue in vitro is a major limitation during trials of preclinical phases for the discovery of new drugs effective in combating obesity and associated metabolic diseases such as type 2 diabetes and cardiovascular disease.
  • 3D culture is achievable in a closed system which reduces handling and the risk of contamination.
  • a technical problem which the invention proposes to solve is to obtain in vitro or ex vivo a large quantity of stem cells of human adipose tissue or of differentiated cells, of therapeutic grade.
  • the first object of the solution of the invention to this technical problem is a method of in vitro or ex vivo amplification of stem cells from human adipose tissue, comprising the following steps: extraction, on the one hand, of a stromal fraction -vascular of human adipose tissue comprising endothelial cells of the vascular network of human adipose tissue and stem cells of human adipose tissue and, on the other hand, of an extracellular matrix of said human adipose tissue, said extracellular matrix comprising cells endothelials of the vascular network of human adipose tissue, stem cells of human adipose tissue and collagen; mixing of said stroma-vascular fraction and said matrix extracellular; and culture of the mixture obtained in the preceding step, in suspension, in a culture medium.
  • suspension culture of the strovascular fraction made possible by the presence of the extracellular matrix, allows 3D amplification, giving access to a large number of cells and thus limiting the manipulations which increase the risks of contamination.
  • the extraction of the extracellular matrix comprises a non-enzymatic dissociation step and, in particular, the extraction of the extracellular matrix comprises a mechanical dissociation step;
  • Extraction of the strovascular fraction and the extracellular matrix comprises the following steps: centrifugation of human adipose tissue to obtain at least two distinct fractions, a fraction A comprising a centrifuged extracellular matrix, and the stroma-vascular fraction; and mechanical dissociation of fraction A to obtain the extracellular matrix;
  • the collagen of the extracellular matrix is collagen type I and collagen type III;
  • the culture of the mixture of said stromal-vascular fraction and of said extracellular matrix comprises the following steps: transfer of said mixture in a sterile manner into a suspension culture bag comprising culture medium; amplification of said mixture forming cellular aggregates; and mechanical dissociation of said cellular aggregates.
  • the invention relates to a method of in vitro or ex vivo amplification of differentiated cells comprising the following steps: extraction, on the one hand, of a stroma-vascular fraction of human adipose tissue comprising, cells endothelials of the vascular network of human adipose tissue and stem cells of human adipose tissue and, on the other hand, of an extracellular matrix of said human adipose tissue, said extracellular matrix comprising endothelial cells of the vascular network of human adipose tissue, cells strains of human adipose tissue and collagen; mixing said stromal fraction and said extracellular matrix; culture of the mixture obtained in the preceding step, in suspension, in a culture medium; and inducing differentiation of adipose tissue stem cells to obtain differentiated cells.
  • the differentiated cells are adipocytes or osteoblasts, preferably adipocytes;
  • the extraction of the extracellular matrix comprises a step of non-enzymatic dissociation, in particular the extraction of the extracellular matrix comprises a step of mechanical dissociation;
  • the extraction of the stroma-vascular fraction and of the extracellular matrix comprises the following steps: centrifugation of human adipose tissue to obtain at least two distinct fractions, a fraction A comprising a centrifuged extracellular matrix, and the stroma-vascular fraction; and mechanical dissociation of fraction A to obtain the extracellular matrix;
  • the collagen of the extracellular matrix is collagen type I and collagen type III;
  • the culture of the mixture of said stromal-vascular fraction and of said extracellular matrix comprises the following steps: transfer of said mixture in a sterile manner into a suspension culture bag comprising culture medium; amplification of said mixture forming aggregates cell phones; and mechanical dissociation of said cellular aggregates.
  • the invention relates to an isolated extracellular matrix capable of being obtained according to the method defined above, comprising endothelial cells of the vascular network of human adipose tissue, stem cells of human adipose tissue, and collagen.
  • the collagen is collagen type I and collagen type III; - the extracellular matrix also comprises fibronectin.
  • the invention relates to a composition
  • a composition comprising the mixture of the extracellular matrix and the stroma-vascular fraction as defined above, the extracellular matrix comprising endothelial cells of the vascular network of human adipose tissue, stem cells. human adipose tissue, and collagen, and the strovascular fraction comprising endothelial cells of the vascular network of adipose tissue and stem cells of adipose tissue.
  • the collagen is collagen type I and collagen type III; - the extracellular matrix also comprises fibronectin.
  • the invention relates to the in vitro use of the extracellular matrix as defined above or the in vitro use of the composition as defined above for the screening of pharmacological active agents against obesity and associated metabolic diseases.
  • the invention relates to differentiated cells obtained according to the process defined above intended for use, or for their use, in cell therapy, in particular in plastic and restorative surgery and, more particularly, for lipofilling.
  • FIG. 1A schematically represents the necessary and sufficient steps for the extraction of an extracellular matrix and a stroma-vascular fraction (steps 1 to 3), and their coculture (step 4), according to one invention
  • FIG. 1B is a more detailed schematic representation of the method which allows the sequential extraction of extracellular matrices (M1-M4) and of populations of cells (C1-C3) of stromal fraction (steps 1 to 5), and their coculture (step 6), according to the invention;
  • FIG. 2 shows the Cl cell population in Endothelial Growth Medium culture medium supplemented with growth factors (EGM +), in suspension, consisting of a majority of endothelial type cells;
  • FIG. 3A shows the CD31 + immunofluorescent labeling (endothelial cell marker) of the C1 cell population in adherent culture
  • FIG. 3B shows the immunofluorescent labeling PDGFRa + (marker of adipocyte stem cells) of the cell population C1 in adherent culture;
  • FIG. 4 illustrates the cell population C2 in EGM + culture medium in suspension showing the formation of a capillary type network consisting of cells CD31 + endothelial cells and the presence of aggregates made up of PDGFRa + adipose tissue stem cells;
  • FIG. 5 is a microscopic image of the C3 cell population in EGM + culture medium in suspension showing the presence of aggregates consisting of stem cells from the adipose tissue PDGFRa +;
  • FIG. 6A represents a quantitative PCR of the cell populations C2 and C3 making it possible to determine the relative proportion of endothelial cells CD31 + and of the stem cells of the adipose tissue PDGFRa +;
  • FIG. 6B is an image of fluorescence microscopy showing the capacity of adipocyte differentiation of C2 cell populations; Cores (dark gray) Lipid droplets (light gray);
  • FIG. 6C illustrates, by a fluorescence microscopy image, the adipocyte differentiation capacity of C3 cell populations; Cores (dark gray) Lipid droplets (light gray);
  • FIG. 8 shows, by microscopy, that the M2 matrix is heterogeneous in terms of matrix types: fibrous type and type rich in collagen;
  • FIG. 9 is a microscopy image illustrating the fibrous type of the matrix M3;
  • FIG. 10A shows, by fluorescence microscopy, that the matrix M2 is of the collagen-rich type; collagen labeled with Picro-Sirius Red (light gray) and nucleus labeling (white);
  • FIG. 11A is a photograph of the adipose tissue centrifuged from fraction A after mechanical dissociation containing the matrix M4;
  • FIG. 11B highlights by fluorescence microscopy, in the M4 matrix, mature adipocytes by Oil red 0 staining (light gray) and a matrix rich in collagen by labeling type I collagen (very light gray);
  • FIG. 11C shows, by one CD31 immunostaining, the capillary structures formed by CD31 + endothelial cells (white) in the M4 matrix; core marking (dark gray);
  • FIG. 11D illustrates the presence of the network of stem cells of the adipose tissue PDGFRa + (light gray dots) in the matrix M4; core marking (dark gray);
  • FIG. 12 shows, by incorporation of Edu, 5-ethylnyl-2 '-deoxyuridine, in the nucleus of proliferating cells, that endogenous cells, in the extracellular matrix of the invention are maintained in proliferation in the EGM + medium in suspension ; nuclei (dark gray), proliferating cells (white) auto fluorescence of the matrix (light gray);
  • FIG. 13 shows that stem cells of exogenous adipose tissue, put in coculture with the extracellular matrix of the invention, form structures composed of these stem cells of adipose tissue and endogenous cells present in the matrix; image taken after 3 days of coculture, nuclei (dark gray), collagen (light gray), exogenous stem cells from adipose tissue (light gray / white);
  • FIG. 14A shows the formation of a cellular aggregate without proliferation of cells during the cell culture of adipose tissue stem cells and endothelial cells in suspension without an extracellular matrix; image taken after 10 days of co-culture; nuclei (dark gray), proliferating cell nuclei (very light gray);
  • FIG. 14B shows a capacity for proliferation of stem cells from adipose tissue and endothelial cells placed in co-culture, in suspension, with the extracellular matrix of the invention; image taken after 10 days of co-culture; nuclei (dark gray), collagen matrix (light gray), nuclei of cells in proliferation by Edu labeling (white);
  • FIG. 15A shows the level of expression of the marker for endothelial cells CD31 in the differentiated cell populations obtained by culture, in suspension, with (right) and without (left) the extracellular matrix of the invention
  • FIG. 15B shows the level of expression of the adipocyte stem cell marker PDGFRa in the differentiated cell populations obtained by culture, in suspension, with (right) and without (left) the extracellular matrix of the invention
  • FIG. 15C shows the level of expression of the marker for mature adipocytes PLN1 in the differentiated cell populations obtained by culture, in suspension, with (right) and without (left) the extracellular matrix of the invention
  • FIG. 15D shows the level of expression of the adiponectin mature adipocyte marker in the differentiated cell populations obtained by culture, in suspension, with (right) and without (left) the extracellular matrix of the invention
  • - Figure 16 shows an image by fluorescence microscopy of the stroma-vascular fraction after amplification and differentiation in the presence of the extracellular matrix of the invention
  • nucleus dark gray
  • mature adipocyte light gray
  • collagen matrix medium gray
  • Figures 17A and 17B are images which demonstrate the activation of the proliferation capacities of the method according to the invention.
  • undissociated adipose tissue does not show proliferating cells.
  • the composition shows proliferating cells, the nuclei of the proliferating cells being represented in white in this figure;
  • FIGS. 18A, 18B, 18C and 18D illustrate the expression of dipeptidyl peptidase-4 (DPP4), which is concentrated in the isolated vascular stroma fraction (SVF), and the expression of ICAM1, which is concentrated in isolated matrix;
  • DPP4 dipeptidyl peptidase-4
  • FIG. 19A and 19B illustrate the presence of macrophages type Ml and type M2 respectively, in the amplified composition according to the invention.
  • FIG. 20 includes a set of photographs which demonstrate the presence of certain proteins in the extracellular matrix according to the invention, and the conservation of a capillary network.
  • the adipose tissue is provided to carry out the invention.
  • the first object of the invention is a method of in vitro or ex vivo amplification of stem cells from human adipose tissue comprising the following steps: extraction, on the one hand, of a stroma-vascular fraction from human adipose tissue comprising cells endothelials of the vascular network of human adipose tissue and stem cells of human adipose tissue, and on the other hand, of an extracellular matrix of said human adipose tissue, said extracellular matrix comprising endothelial cells of the vascular network of human adipose tissue, cells strains of human adipose tissue and collagen; mixing said stromal fraction and said extracellular matrix; and culture of the mixture obtained in the preceding step, in suspension, in a culture medium.
  • This process is also referred to hereinafter as the “ExAdEx process” (for Ex vivo Adipocytes Expansion).
  • stroma-vascular fraction is understood to mean the cells present in a sample of human adipose tissue.
  • This stromal-vascular fraction comprises endothelial cells of the vascular network of human adipose tissue and stem cells of human adipose tissue.
  • extracellular matrix is understood to mean a bioactive matrix, that is to say a matrix which comprises different proteins from adipose tissue and endogenous cells. This extracellular matrix allows cellular amplification in 3D, that is to say the proliferation of cells in three dimensions.
  • the extracellular matrix of the invention is also noted below “EndoStem-Matrix” or “EndoStem matrix”.
  • the proteins in the extracellular matrix of adipose tissue include collagen. This collagen is type I and type III.
  • the proteins in the extracellular matrix of adipose tissue also include fibronectin.
  • Extraction of the extracellular matrix comprises a non-enzymatic dissociation step, in particular the extraction of the extracellular matrix comprises a mechanical dissociation step.
  • the “mechanical dissociation” of the invention makes it possible to keep the structure of the extracellular matrix intact while an enzymatic digestion generally involves collagenase which destroys it. Mechanical dissociation thus allows the maintenance of the "vasculature" and the micro structure of the extracellular matrix, which consequently presents an organization similar to the organization of adipose tissue in vivo.
  • the extraction of the stroma-vascular fraction and of the extracellular matrix comprises the following steps: centrifugation of human adipose tissue to obtain at least two distinct fractions, a fraction A comprising a centrifuged extracellular matrix, and the stroma-vascular fraction; and mechanical dissociation of fraction A to obtain the extracellular matrix.
  • the centrifugation step of the human adipose tissue also makes it possible to remove the oil, blood and anesthetic liquid contained in the supplied human adipose tissue. This step also makes it possible to eliminate physiological liquid obtained from prior washes of the human adipose tissue provided.
  • the extraction of the stroma-vascular fraction and of the extracellular matrix comprises the following steps: centrifugation of human adipose tissue to obtain at least two distinct fractions, a fraction A comprising a centrifuged extracellular matrix and a fraction B comprising endothelial cells of the vascular network of human adipose tissue and stem cells of the tissue human adipose; mechanical dissociation of fraction A to obtain a fraction A 'comprising a dissociated extracellular matrix; centrifugation of fraction A 'to obtain at least the extracellular matrix and a fraction B' comprising endothelial cells of the vascular network of human adipose tissue and stem cells of human adipose tissue; and mixing fractions B and B 'to obtain the stroma-vascular fraction.
  • the step of centrifuging the human adipose tissue also makes it possible to remove the oil, blood and anesthetic liquid contained in the human adipose tissue supplied.
  • This step also makes it possible to eliminate physiological liquid obtained from prior washes of the human adipose tissue provided.
  • the centrifugation of fraction A ' also makes it possible to remove any residues of oil and physiological fluid. This centrifugation step of fraction A 'is optional.
  • Culturing the mixture of said stromal fraction and said extracellular matrix comprises the following steps: transfer of said mixture in a sterile manner into a suspension culture bag comprising culture medium; amplification of said mixture forming cellular aggregates; and mechanical dissociation of said cellular aggregates.
  • the transfer in a "sterile manner”, within the meaning of the invention, is a transfer, preferably, carried out in a closed system.
  • This sterile transfer makes it possible to limit the number of contaminants during cell culture.
  • the mechanical dissociation of the aggregates formed during the amplification does not require opening of the system, thus limiting the exposure of the products cells to possible contamination of the culture by elements of the environment.
  • the culture medium in the suspension culture bag, is an EGM + medium.
  • This culture medium comprises the basic medium for the proliferation of endothelial cells (EGM) enriched with Epidermal Growth Factor (EGF), Basic Growth Factor (FGF2), Insulin-like Growth Factor, Vascular Endothelial Growth Factor 165, ascorbic acid, heparin and hydrocortisone (EGM +).
  • EGM + medium also allows the amplification of adipocyte stem cells without altering their capacity for differentiation into adipocytes.
  • the method of the invention allows an amplification of the number of stem cells of adipose tissue with an amplification factor greater than 10, advantageously greater than 20, in particular greater than 30, preferably greater than 35.
  • the amplification factor is the ratio between the number of cells obtained after culture of the SVF isolated in the presence of said extracellular matrix and the number of cells before the invention.
  • the method of the invention has an amplification factor of 36 in 8 days.
  • the invention relates to a method of in vitro or ex vivo amplification of differentiated cells comprising the following steps: in vitro or ex vivo amplification of stem cells of human adipose tissue as defined above; and inducing differentiation of adipose tissue stem cells to obtain differentiated cells.
  • the in vitro or ex vivo amplification process of differentiated cells therefore comprises the following steps: extraction, on the one hand, of a fraction stroma-vascular of human adipose tissue comprising, endothelial cells of the vascular network of human adipose tissue and stem cells of human adipose tissue, and secondly, of an extracellular matrix of said human adipose tissue, said extracellular matrix comprising endothelial cells of the vascular network of human adipose tissue, stem cells of human adipose tissue and collagen; mixing said stroma-vascular fraction and said extracellular matrix; culture of the mixture obtained in the preceding step, in suspension, in a culture medium; and inducing differentiation of adipose tissue stem cells to obtain differentiated cells.
  • the differentiated cells are adipocytes or osteoblasts.
  • the differentiated cells are adipocytes.
  • the method of in vitro or ex vivo amplification of differentiated cells comprising the steps related to the in vitro or ex vivo amplification of adipose tissue stem cells, the details given above for the method of in vitro or ex vivo amplification adipose tissue stem cells also apply for the in vitro or ex vivo amplification process of differentiated cells.
  • the extraction of the extracellular matrix comprises a non-enzymatic dissociation step, in particular the extraction of the extracellular matrix comprises a mechanical dissociation step.
  • the extraction of the stroma-vascular fraction and of the extracellular matrix comprises the following steps: centrifugation of human adipose tissue to obtain at at least two separate fractions, a fraction A comprising a centrifuged extracellular matrix, and the stromal-vascular fraction; and mechanical dissociation of fraction A to obtain the extracellular matrix.
  • the extraction of the stroma-vascular fraction and of the extracellular matrix comprises the following steps: centrifugation of human adipose tissue to obtain at least two distinct fractions, a fraction A comprising a centrifuged extracellular matrix and a fraction B comprising endothelial cells of the vascular network of human adipose tissue and stem cells of human adipose tissue; mechanical dissociation of fraction A to obtain a fraction A 'comprising a dissociated extracellular matrix; centrifugation of fraction A 'to obtain at least the extracellular matrix and a fraction B' comprising endothelial cells of the vascular network of human adipose tissue and stem cells of human adipose tissue; and mixing fractions B and B 'to obtain the stroma-vascular fraction.
  • the collagen of the extracellular matrix comprises type I collagen and type III collagen revealed by staining with Picro-Sirius Red.
  • Culturing the mixture of said stromal fraction and said extracellular matrix comprises the following steps: transfer of said mixture in a sterile manner into a suspension culture bag comprising culture medium; amplification of said mixture forming cellular aggregates; and mechanical dissociation of said cellular aggregates.
  • the invention relates to an isolated extracellular matrix capable of being obtained according to the method defined above, comprising cells endothelials of the human adipose tissue vascular network, human adipose tissue stem cells, and collagen.
  • Collagen is type I collagen and type III collagen.
  • the extracellular matrix further comprises fibronectin.
  • the invention relates to a composition
  • a composition comprising the mixture of the extracellular matrix and the stroma-vascular fraction as defined above, the extracellular matrix comprising endothelial cells of the vascular network of human adipose tissue, stem cells. human adipose tissue, and collagen, and the strovascular fraction comprising endothelial cells of the vascular network of adipose tissue and stem cells of adipose tissue.
  • Collagen is type I collagen and type III collagen.
  • the extracellular matrix further comprises fibronectin.
  • the invention relates to the in vitro use of the extracellular matrix as defined above or the in vitro use of the composition as defined above for the screening of pharmacological active agents against obesity and associated metabolic diseases such as type 2 diabetes and cardiovascular disease.
  • the invention relates to differentiated cells obtained according to the process defined above intended for use, or for their use, in cell therapy, in particular in plastic and repair surgery, and more particularly for lipofilling.
  • the extracellular matrix is an autologous matrix, which by definition contains cells specific to the patient from whom the adipose tissue is derived.
  • the differentiated cells obtained by the process of the invention are adipocytes.
  • Fig. IB The mechanical extraction of the strovascular fraction and the extracellular matrix, from a sample of adipose tissue from a human donor, can be carried out according to the following steps (Fig. IB):
  • the syringe is centrifuged at 1600 rcf (relative centrifugal force), 3 min in the collection tube.
  • the oil fraction as well as the blood and anesthetic liquid fraction are eliminated.
  • the pellet fraction is kept.
  • a unit of physiological saline is injected into the syringe, followed by an incubation of 30 min at 37 ° C with shaking.
  • the syringe is centrifuged at 1600 rcf, 3 min in the collection tube.
  • the physiological liquid fraction and the oil fraction are eliminated.
  • the pellet fraction is kept.
  • the syringe is connected to another male Luer-Lock syringe connected by a Tulip® connector in order to dissociate the tissue by emulsification.
  • Tulip® connector Three types of Tulip® connector, 2.4 mm, 1.4 mm and then 1.2 mm, are successively used, over 30 passages.
  • a unit of physiological saline is injected into the syringe, followed by an incubation of 30 min at 37 ° C with shaking.
  • the syringe is centrifuged at 1600 rcf 3 min in the collection tube.
  • the physiological liquid fraction and the oil fraction are eliminated.
  • the pellet fraction is kept.
  • the contents of the syringe as well as the contents of the collection tubes previously rid of blood cells are transferred by a sterile connection into a culture bag containing the EGM + culture medium at 37 ° C. for the expansion phase.
  • a connector of a brand other than the Tulip® brand can be used.
  • the number of connectors used is between 1 and 5.
  • the number of passes through these connectors is between 10 and 50.
  • the method described above makes it possible to sequentially extract the stroma-vascular fraction into 3 cell populations. These cell populations are characterized in particular by optical microscopy and by fluorescence microscopy.
  • the cell population obtained during step 2, here called Cl, is composed of a majority of CD31 + endothelial type cells (Fig. 2 and Fig. 3).
  • the cell population obtained during step 3, here called C2 is composed of CD31 + endothelial type cells forming a capillary type network when maintained in 3D and tissue stem cells fat PDGFRa + (Fig. 4 and Fig. 6A).
  • the C2 cell population has the capacity to differentiate into mature adipocytes (Fig. 6B).
  • the cell population obtained during step 5, here called C3, is composed of a majority of stem cells of the adipose tissue PDGFRa + capable of forming spheres in suspension (Fig. 5 and Fig. 6A).
  • the C3 cell population has the capacity to differentiate into mature adipocytes (Fig. 6C).
  • Ml is of fibrous type (Fig. 7).
  • M2 The matrix obtained during step 3, here called M2 is of fibrous type and rich in collagen (Fig. 8).
  • the collagen is revealed by the Picro-Sirius Red (Fig. 10A) which also makes it possible to visualize a structure of the collagen in rods.
  • This matrix contains endogenous cells.
  • the matrix obtained during step 5 and isolated in the collection tube, named here M3 is of fibrous type (Fig. 9 and Fig. 10B). This matrix also contains endogenous cells.
  • the collagen of the isolated matrix is revealed, in FIG. 10B, by Picro-Sirus Red which colors the type I and type III collagen fibers.
  • the red coloration (in shades of gray in Fig. 10B) obtained indicates that the collagen remains organized, namely that the collagen present always has a secondary helical structure and a quaternary triple helical structure. It is not degraded. Indeed, disorganized collagen turns green with Picro-Sirus Red.
  • the matrix obtained during step 5 and contained in the syringe, named here M4 is composed of a majority mature fat cells and a type I collagen frame (Fig. 11B).
  • the M4 matrix is also composed of capillary structures formed by CD31 + endothelial cells (Fig. 11C) and by a network of PDGFRa + adipose tissue stem cells (Fig. 11D).
  • FIG. 1A shows a method making it possible to gather in step 2 the populations Cl and C2 as well as the matrices Ml and M2.
  • step 3 the population C3 and the matrices M3 and M4 are grouped together.
  • a method of ex vivo expansion of adipose tissue stem cells and of differentiation in an environment mimicking adipose tissue comprises the following steps:
  • Example 1 The final product obtained in Example 1 containing the C1-C3 populations as well as the so-called EndoStem-Matrix M1-M4 matrices are placed in suspension culture in bags and maintained in the EGM + proliferation medium with stirring for 24 h. at 37 ° C 5% CO2, then maintained under the same conditions, preferably with stirring.
  • the EGM + proliferation medium is changed to 50% every two days.
  • the EGM + proliferation medium is replaced by the differentiation cocktail I composed of EGM + enriched in 250 mM Dexamethasone; 500 mM IBMX; 1 mM Rosiglitazone; 2 mM T3 and 2.5 pg / ml insulin.
  • the differentiation medium I is replaced by the differentiation medium II composed of EGM + enriched in 1 mM Rosiglitazone; 2 mM T3 and 2.5 pg / ml insulin.
  • EndoStem-Matrix of the invention The extracellular matrices known as EndoStem-Matrix of the invention were characterized, in particular, by fluorescence microscopy, in the presence of different specific markers. Proliferating cells were thus detected by incorporation, during the DNA replication phase, of fluorescent Edu (5-ethylnyl-2 '-deoxyuridine) in the EndoStem-Matrix matrices of the invention, as illustrated in the Figure 12, proving that these are bioactive. Indeed, Figure 12 shows that cells endogenous to the matrices are maintained in proliferation during the amplification phase.
  • FIG. 13 shows the presence of stem cells from the adipose tissue after three days of co-culture with the extracellular matrix of the invention.
  • the extracellular matrix therefore makes it possible to provide a support for the proliferation of the strovascular fraction: the added stem cells of the adipose tissue can attach to the EndoStem-Matrix matrix, in suspension.
  • the strovascular fraction is amplified by its culture on the EndoStem Matrix of the invention.
  • the stroma-vascular fraction when the stroma-vascular fraction is cultured in suspension without the extracellular matrix, cell aggregates without proliferation are observed.
  • the extracellular matrix of the invention therefore has the capacity to amplify the added fatty tissue stem cells.
  • the cell amplification capacity of the different matrices M1 to M4 obtained during the steps of Example 1 was checked.
  • approximately 10 4 stem cells of the adipose tissue were kept in suspension in the presence of the various matrices Ml to M4 in Ultra Low wells.
  • the amplification factor is the ratio between the number of cells obtained after culture in the presence of the extracellular matrix and the number of cells obtained in the absence of the extracellular matrix.
  • the M2 and M4 matrices have a strong power to amplify stem cells from adipose tissue.
  • the volume of matrix M2 obtained is very low compared to the volume of M4 (Fig. 11A).
  • the M4 matrix illustrates an extracellular matrix as defined in the invention.
  • FIG. 15 shows a comparison of these expression levels with those from a suspension culture of the stroma-vascular fraction without the extracellular matrix of the invention. This study reveals an amplification of the endothelial cells of the vascular network of adipose tissue (FIG. 15A) and of the stem cells of adipose tissue (FIG. 15B).
  • FIG. 16 shows the presence of nuclei, mature adipocytes and a collagen matrix after amplification and differentiation of the stromal fraction in the presence of the extracellular matrix of the invention. So the differentiation in the presence of the extracellular matrix of the invention makes it possible to conserve the in vivo structural organization of the adipose tissue.
  • an undissociated adipose tissue which can be assimilated to an explant, remains viable for a short time ex vivo.
  • the matrix isolated by dissociation contains proliferating cells, unlike non-dissociated tissue.
  • Figs. 17A and 17B make it possible to compare cell proliferation in the non-dissociated tissue (Fig. 17A) and in the isolated matrix (Fig. 17B).
  • the non-dissociated adipose tissue does not show proliferating cells.
  • the composition shows proliferating cells. Indeed, this figure shows, in white, the nuclei of proliferating cells.
  • DPP4 is a marker which marks the precursor cells of ICAM1 pre-adipocytes, which have a large proliferation capacity and which are located in the interstitial reticulum of adipose tissue. It is these cells which have the capacity for proliferation in the composition according to the invention. It is important to note that these cells are eliminated following the washes carried out according to the methods of the prior art. As shown in Figs. 18A and 18B, the expression of DPP4 is concentrated in the isolated SVF fraction. The matrix does not express much. On the other hand, and as shown in Figs. 18C and 18D, the expression of ICAM1, is concentrated in the isolated matrix. The cells which carry the amplification in the composition are the cells expressing DPP4 added.
  • the adipose tissue in vivo contains macrophages and that the amplified composition according to the invention maintains the presence of type M1 macrophages, as shown in FIG. 19A and type M2 as shown in FIG. 19B.
  • the M1 type macrophages are revealed by the marker IL-1b and, in FIG. 19B, macrophages of the type
  • M2 are revealed by the marker MRC1.
  • the isolated matrix according to the invention comprises proteins of the extracellular matrix, namely in particular, type I collagen, type IV collagen, elastin, fibronectin, laminin.
  • the labeling of CD31 endothelial cells shows that a capillary network is preserved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Sustainable Development (AREA)
  • Vascular Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La présente invention a pour objet un procédé d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain. Ce procédé comprend les étapes suivantes: extraction, d'une part, d'une fraction stromavasculaire d'un tissu adipeux humain comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain, et d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène; mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire; et culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture.

Description

PROCEDE D'AMPLIFICATION IN VITRO OU EX VIVO DE CELLULES SOUCHES DU TISSU ADIPEUX HUMAIN
Domaine technique de 11 invention
La présente invention concerne un procédé d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain. Elle concerne en outre un procédé d'amplification in vitro ou ex vivo de cellules différenciées, une matrice extracellulaire, une composition comprenant un mélange d'une matrice extracellulaire et d'une fraction stroma-vasculaire, une utilisation de la matrice extracellulaire ou de la composition comprenant un mélange de la matrice extracellulaire et de la fraction stroma-vasculaire, et des cellules différenciées obtenues selon le procédé de l'invention pour leur utilisation.
Art antérieur
La thérapie cellulaire consiste en une greffe de cellules visant à restaurer les fonctions d'un tissu ou d'un organe lorsqu'elles sont altérées par un accident, une pathologie ou le vieillissement. Elle permet de soigner durablement un patient grâce une unique injection de cellules dites « thérapeutiques ». Ces cellules sont obtenues, en particulier, à partir de cellules souches multipotentes provenant du patient lui-même.
Le lipofilling est une technique particulière de thérapie cellulaire permettant de transférer des cellules graisseuses, ou adipocytes, d'une zone du corps à une autre afin de remodeler le corps ou le visage.
A ce jour, seuls les adipocytes présents dans certains sites adipeux sont utilisés pour la thérapie cellulaire et, plus particulièrement, pour le lipofilling. Or, selon les cas, la quantité d'adipocytes disponible chez un patient peut être limitante. Par exemple, lorsqu'un patient a un indice de masse corporelle trop bas ou a subi une chimiothérapie, il peut ne pas avoir suffisamment de tissu adipeux pour procéder à un lipofilling.
Dans ce contexte, il existe un besoin de réaliser des cultures d'adipocytes autologues et, par suite, de développer des méthodes d'amplification cellulaire permettant l'obtention de quantités importantes d'adipocytes de grade thérapeutique en vue, notamment, d'un lipofilling.
La procédure standard, pour isoler et amplifier les précurseurs d'adipocytes à partir de prélèvements de tissu adipeux, passe par une dissociation enzymatique puis par leur expansion en deux dimensions (2D) par attachement au plastique de boîtes de culture. Cette procédure est coûteuse, longue, et nécessite de nombreuses manipulations qui augmentent les risques de contaminations. De plus, elle entraîne une destruction de la structure tridimensionnelle du tissu, ainsi que la perte de types cellulaires d' intérêts comme les cellules endothéliales qui jouent un rôle essentiel à la fois pour la vascularisation du greffon et la physiologie de 1' adipocyte .
La dissociation non-enzymatique du tissu adipeux, le plus souvent basée sur un procédé mécanique, permet d'isoler les précurseurs d'adipocytes. Ce type de dissociation apparaît comme une méthode alternative beaucoup moins coûteuse, plus rapide et qui présente des avantages incontestables pour la fabrication d'un produit conforme aux standards d'une production de grade thérapeutique (exposition réduite à des produits ou contaminants extérieurs) . En revanche, les procédés de dissociation non-enzymatique présentés à ce jour ne sont pas satisfaisants car le nombre de précurseurs d'adipocytes obtenu est faible comparé à la dissociation enzymatique. Cela nécessite alors leur amplification en 2D sur boite de culture. De plus, les cellules endothéliales, la matrice extracellulaire ainsi que la structure tridimensionnelle du tissu adipeux sont perdues à la fin du processus.
Il a été proposé différentes matrices synthétiques pour y ensemencer les précurseurs d'adipocytes et ainsi essayer de reconstituer au mieux la structure du tissu adipeux. La matrice sert également à orienter in vitro les précurseurs d'adipocytes vers un type cellulaire non adipeux (essentiellement osseux ou cartilagineux) avant implantation. Du tissu adipeux décellularisé a également été proposé pour augmenter la différenciation des précurseurs et mieux mimer la structure du tissu adipeux. La fabrication de tous ces types de matrices nécessite de nombreuses étapes faisant intervenir des réactions enzymatiques ou de longs traitements chimiques. De plus, le tissu décellularisé, par définition, perd ces cellules endogènes mais perd également les facteurs d' intérêt thérapeutique qui sont ancrés sur la matrice native, ce qui réduit la valeur clinique de ce type de matrice. Le tissu adipeux non décellularisé et enrichi en précurseurs d'adipocytes (préalablement isolés par dissociation enzymatique) suivi d'une amplification en 2D a été proposé récemment comme matrice pour une meilleure reconstruction osseuse. Le temps pour générer cette matrice biologique est long, nécessite trois semaines de culture in vitro, et ne permet pas l'amplification des précurseurs d'adipocytes. Seul l'intérêt pour la réparation osseuse a été mis en avant par les auteurs. La culture en suspension en trois dimensions (3D) représente une méthode alternative de choix à la méthode standard en 2D car elle permet essentiellement de conserver la structure et les qualités intrinsèques du tissu. Cet avantage est important car, par exemple, l'absence d'un modèle humain pertinent qui mime au mieux in vitro le tissu adipeux est une limitation majeure lors des essais de phases précliniques pour la découverte de nouveaux médicaments efficaces pour lutter contre l'obésité et les maladies métaboliques associées comme le diabète de type 2 et les maladies cardiovasculaires. De plus la culture 3D est réalisable en système clos ce qui diminue les manipulations et les risques de contamination.
Résumé de 1 invention
Compte tenu de ce qui précède, un problème technique que se propose de résoudre l'invention est d'obtenir in vitro ou ex vivo une grande quantité de cellules souches du tissu adipeux humain ou de cellules différenciées, de grade thérapeutique.
La solution de l'invention à ce problème technique a pour premier objet, un procédé d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain, comprenant les étapes suivantes : extraction, d'une part, d'une fraction stroma-vasculaire d'un tissu adipeux humain comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain et, d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène ; mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire ; et culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture.
Ainsi, la culture en suspension de la fraction stroma- vasculaire, rendue possible grâce à la présence de la matrice extracellulaire, permet une amplification en 3D, donnant accès à un grand nombre de cellules et limitant ainsi les manipulations qui augmentent les risques de contaminations .
Avantageusement, - l'extraction de la matrice extracellulaire comprend une étape de dissociation non- enzymatique et, en particulier, l'extraction de la matrice extracellulaire comprend une étape de dissociation mécanique ; - l'extraction de la fraction stroma- vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée, et la fraction stroma-vasculaire ; et dissociation mécanique de la fraction A pour obtenir la matrice extracellulaire ; - le collagène de la matrice extracellulaire est du collagène de type I et du collagène de type III ; et - la culture du mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire comprend les étapes suivantes : transfert dudit mélange de manière stérile dans une poche de culture en suspension comprenant du milieu de culture ; amplification dudit mélange formant des agrégats cellulaires ; et dissociation mécanique desdits agrégats cellulaires.
Selon un second objet, l'invention concerne un procédé d'amplification in vitro ou ex vivo de cellules différenciées comprenant les étapes suivantes : extraction, d'une part, d'une fraction stroma-vasculaire d'un tissu adipeux humain comprenant, des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain et, d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène ; mélange de ladite fraction stroma- vasculaire et de ladite matrice extracellulaire ; culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture ; et induction d'une différenciation des cellules souches du tissu adipeux pour obtenir des cellules différenciées.
Avantageusement - les cellules différenciées sont des adipocytes ou des ostéoblastes, préférentiellement des adipocytes ; - l'extraction de la matrice extracellulaire comprend une étape de dissociation non-enzymatique, en particulier l'extraction de la matrice extracellulaire comprend une étape de dissociation mécanique ; - l'extraction de la fraction stroma-vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée, et la fraction stroma-vasculaire ; et dissociation mécanique de la fraction A pour obtenir la matrice extracellulaire ; - le collagène de la matrice extracellulaire est du collagène de type I et du collagène de type III ; et - la culture du mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire comprend les étapes suivantes : transfert dudit mélange de manière stérile dans une poche de culture en suspension comprenant du milieu de culture ; amplification dudit mélange formant des agrégats cellulaires ; et dissociation mécanique desdits agrégats cellulaires .
Selon un troisième objet, l'invention concerne une matrice extracellulaire isolée susceptible d'être obtenue selon le procédé défini ci-dessus, comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain, et du collagène.
Avantageusement - le collagène est du collagène de type I et du collagène de type III ; - la matrice extracellulaire comprend en outre de la fibronectine.
Selon un quatrième objet, l'invention concerne une composition comprenant le mélange de la matrice extracellulaire et de la fraction stroma-vasculaire tel que défini ci-dessus, la matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain, et du collagène, et la fraction stroma- vasculaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux et des cellules souches du tissu adipeux.
Avantageusement - le collagène est du collagène de type I et du collagène de type III ; - la matrice extracellulaire comprend en outre de la fibronectine.
Selon un cinquième objet, l'invention concerne l'utilisation in vitro de la matrice extracellulaire telle que définie ci-dessus ou l'utilisation in vitro de la composition telle que définie ci-dessus pour le criblage d'actifs pharmacologiques contre l'obésité et les maladies métaboliques associées.
Selon un sixième objet, l'invention concerne des cellules différenciées obtenues selon le procédé défini ci-dessus destinées à une utilisation, ou pour leur utilisation, en thérapie cellulaire, en particulier en chirurgie plastique et réparatrice et, plus particulièrement, pour le lipofilling.
Brève description des figures
L'invention sera mieux comprise à la lecture de la description non limitative qui suit, rédigée au regard des dessins annexés, dans lesquels :
- la figure IA représente schématiquement les étapes nécessaires et suffisantes pour l'extraction d'une matrice extracellulaire et d'une fraction stroma-vasculaire (étapes 1 à 3) , et leur mise en coculture (étape 4), selon 1 ' invention ;
- la figure IB est une représentation schématique plus détaillée de la méthode qui permet l'extraction séquentielle de matrices extracellulaires (M1-M4) et de populations de cellules (C1-C3) de fraction stroma- vasculaire (étapes 1 à 5) , et de leur mise en coculture (étape 6), selon l'invention ;
- la figure 2 représente la population cellulaire Cl en milieu de culture Endothélial Growth Medium supplémenté en facteurs de croissance (EGM+) , en suspension, constituée d'une majorité de cellules de type endothéliales ;
- la figure 3A montre le marquage immuno-fluorescent CD31+ (marqueur de cellules endothéliales) de la population cellulaire Cl en culture adhérente ;
- la figure 3B montre le marquage immuno-fluorescent PDGFRa+ (marqueur de cellules souches adipocytaires ) de la population cellulaire Cl en culture adhérente ;
- la figure 4 illustre la population cellulaire C2 en milieu de culture EGM+ en suspension montrant la formation d'un réseau de type capillaire constitué de cellules endothéliales CD31+ et présence d'agrégats constitués de cellules souches du tissu adipeux PDGFRa+ ;
- la figure 5 est une image par microscopie de la population cellulaire C3 en milieu de culture EGM+ en suspension montrant la présence d'agrégats constitués de cellules souches du tissu adipeux PDGFRa+ ;
- la figure 6A représente une PCR quantitative des populations cellulaires C2 et C3 permettant de déterminer la proportion relative de cellules endothéliales CD31+ et des cellules souches du tissu adipeux PDGFRa+ ;
- la figure 6B est une image de microscopie à fluorescence montrant la capacité de différenciation adipocytaire des populations cellulaires C2 ; Noyaux (gris foncé) Gouttelettes lipidiques (gris clair) ;
- la figure 6C illustre, par une image de microscopie à fluorescence, la capacité de différenciation adipocytaire des populations cellulaires C3 ; Noyaux (gris foncé) Gouttelettes lipidiques (gris clair) ;
- la figure 7 caractérise, en microscopie, le type fibreux de la matrice Ml ;
- la figure 8 montre, par microscopie, que la matrice M2 est hétérogène en termes de types matricielles : type fibreux et type riche en collagène ;
- la figure 9 est une image de microscopie illustrant le type fibreux de la matrice M3 ;
- la figure 10A montre, par microscopie à fluorescence, que la matrice M2 est de type riche en collagène ; collagène marqué au Picro-Sirius Red (gris clair) et marquage des noyaux (blanc) ;
- la figure 10B montre, par microscopie à fluorescence, que la matrice M3 est de type fibreux ; collagène marqué au Picro-Sirius Red (gris clair et fibres blanches) et marquage des noyaux (blanc) ; - la figure 11A est une photographie du tissu adipeux centrifugé de la fraction A après dissociation mécanique contenant la matrice M4 ;
- la figure 11B met en évidence par microscopie en fluorescence, dans la matrice M4 , des adipocytes matures par coloration Oil red 0 (gris clair) et une matrice riche en collagène par marquage du collagène de type I (gris très clair) ;
- la figure 11C montre, par 1 ' immunomarquage CD31, les structures capillaires formées par des cellules endothéliales CD31+ (blanc) dans la matrice M4 ; marquage des noyaux (gris foncé) ;
- la figure 11D illustre la présence du réseau de cellules souches du tissu adipeux PDGFRa+ (points gris clair) dans la matrice M4 ; marquage des noyaux (gris foncé) ;
- la figure 12 montre, par incorporation d'Edu, 5- ethylnyl-2 ' -deoxyuridine , dans le noyau des cellules en prolifération, que les cellules endogènes, dans la matrice extracellulaire de l'invention sont maintenues en prolifération dans le milieu EGM+ en suspension ; noyaux (gris foncé) , cellules en prolifération (blanc) auto fluorescence de la matrice (gris clair) ;
- la figure 13 montre que des cellules souches du tissu adipeux exogènes, mises en coculture avec la matrice extracellulaire de l'invention, forment des structures composées de ces cellules souches du tissu adipeux et des cellules endogènes présentent dans la matrice ; image prise après 3 jours de coculture, noyaux (gris foncé) , collagène (gris clair) , cellules souches exogènes du tissu adipeux (gris clair/blanc) ;
- la figure 14A montre la formation d'un agrégat cellulaire sans prolifération de cellules lors de la culture cellulaire des cellules souches du tissu adipeux et des cellules endothéliales en suspension sans matrice extracellulaire ; image prise après lOj de co-culture ; noyaux (gris foncé) , noyaux de cellules en prolifération (gris très clair) ;
- la figure 14B met en évidence une capacité de prolifération des cellules souches du tissu adipeux et des cellules endothéliales mises en co-culture, en suspension, avec la matrice extracellulaire de l'invention ; image prise après 10 j de co-culture ; noyaux (gris foncé), matrice collagène (gris clair) , noyaux de cellules en prolifération par marquage Edu (blanc) ;
- la figure 15A montre le niveau d'expression du marqueur de cellules endothéliales CD31 dans les populations cellulaires différenciées obtenues par culture, en suspension, avec (droite) et sans (gauche) la matrice extracellulaire de l'invention ;
- la figure 15B montre le niveau d'expression du marqueur de cellules souches adipocytaires PDGFRa dans les populations cellulaires différenciées obtenues par culture, en suspension, avec (droite) et sans (gauche) la matrice extracellulaire de l'invention ;
- la figure 15C montre le niveau d'expression du marqueur d'adipocytes matures PLN1 dans les populations cellulaires différenciées obtenues par culture, en suspension, avec (droite) et sans (gauche) la matrice extracellulaire de l'invention ;
- la figure 15D montre le niveau d'expression du marqueur d'adipocytes matures Adiponectine dans les populations cellulaires différenciées obtenues par culture, en suspension, avec (droite) et sans (gauche) la matrice extracellulaire de l'invention ; - la figure 16 représente une image par microscopie à fluorescence de la fraction stroma-vasculaire après amplification et différenciation en présence de la matrice extracellulaire de l'invention ; noyau (gris foncé), adipocyte mature (gris clair) , matrice collagénique (gris moyen) ;
- les figures 17A et 17B sont des images qui mettent en évidence l'activation des capacités de prolifération du procédé selon l'invention. En figure 17A, un tissu adipeux non dissocié ne montre pas de cellules en prolifération. En figure 17B, la composition montre des cellules en prolifération, les noyaux des cellules en prolifération étant représentés en blanc sur cette figure ;
- les figures 18A, 18B, 18C et 18D, illustrent l'expression de la dipeptidyl peptidase-4 (DPP4), qui est concentrée dans la fraction stroma vasculaire (SVF) isolée, et l'expression de ICAM1, qui est concentrée dans la matrice isolée ;
- les figures 19A et 19B illustrent la présence de macrophages de type Ml et de type M2 respectivement, dans la composition amplifiée selon l'invention ; et
- la figure 20 comprend un ensemble de photographies qui démontrent la présence de certaines protéines dans la matrice extracellulaire selon l'invention, et la conservation d'un réseau capillaire.
Description détaillée de 1 invention
Le tissu adipeux est fourni pour réaliser l'Invention.
L'invention a pour premier objet, un procédé d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain comprenant les étapes suivantes : extraction , d'une part, d'une fraction stroma-vasculaire d'un tissu adipeux humain comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain, et d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène ; mélange de ladite fraction stroma- vasculaire et de ladite matrice extracellulaire ; et culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture. Ce procédé est également dénommé, ci-après, « procédé ExAdEx » (pour Ex vivo Adipocytes Expansion) .
Au sens de la présente invention, il est entendu par « fraction stroma-vasculaire » les cellules présentes dans un prélèvement de tissu adipeux humain. Cette fraction stroma-vasculaire comprend des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain.
Au sens de l'invention, il est entendu par « matrice extracellulaire » une matrice bioactive, c'est à dire une matrice qui comprend différentes protéines du tissu adipeux et des cellules endogènes. Cette matrice extracellulaire permet l'amplification cellulaire en 3D, c'est-à-dire la prolifération des cellules en trois dimensions. La matrice extracellulaire de l'invention est également notée ci-après « EndoStem-Matrix » ou « matrice EndoStem ».
Les protéines de la matrice extracellulaire du tissu adipeux comprennent du collagène. Ce collagène est de type I et de type III. Les protéines de la matrice extracellulaire du tissu adipeux comprennent en outre de la fibronectine. L'extraction de la matrice extracellulaire comprend une étape de dissociation non-enzymatique, en particulier l'extraction de la matrice extracellulaire comprend une étape de dissociation mécanique. La « dissociation mécanique » de l'invention permet de conserver intacte la structure de la matrice extracellulaire tandis qu'une digestion enzymatique fait généralement intervenir de la collagénase qui la détruit. La dissociation mécanique permet ainsi le maintien de la « vasculature » et la micro structure de la matrice extracellulaire, qui présente en conséquence une organisation semblable à l'organisation du tissu adipeux in vivo.
L'extraction de la fraction stroma-vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée, et la fraction stroma-vasculaire ; et dissociation mécanique de la fraction A pour obtenir la matrice extracellulaire.
L'étape de centrifugation du tissu adipeux humain permet en outre d'éliminer de l'huile, du sang et du liquide anesthésique contenus dans le tissu adipeux humain fourni. Cette étape permet également d'éliminer du liquide physiologique issu de lavages préalables du tissu adipeux humain fourni.
Dans un mode de réalisation particulier, l'extraction de la fraction stroma-vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée et une fraction B comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain ; dissociation mécanique de la fraction A pour obtenir une fraction A' comprenant une matrice extracellulaire dissociée ; centrifugation de la fraction A' pour obtenir au moins la matrice extracellulaire et une fraction B' comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain ; et mélange des fractions B et B' pour obtenir la fraction stroma-vasculaire.
Dans ce mode de réalisation, l'étape de centrifugation du tissu adipeux humain permet en outre d'éliminer de l'huile, du sang et du liquide anesthésique contenus dans le tissu adipeux humain fourni. Cette étape permet également d'éliminer du liquide physiologique issu de lavages préalables du tissu adipeux humain fourni. La centrifugation de la fraction A' permet en outre d'éliminer d'éventuels résidus d'huile et de liquide physiologique. Cette étape de centrifugation de la fraction A' est optionnelle .
La culture du mélange de ladite fraction stroma- vasculaire et de ladite matrice extracellulaire comprend les étapes suivantes : transfert dudit mélange de manière stérile dans une poche de culture en suspension comprenant du milieu de culture ; amplification dudit mélange formant des agrégats cellulaires ; et dissociation mécanique desdits agrégats cellulaires.
Le transfert de « manière stérile », au sens de l'invention, est un transfert, de préférence, réalisé en système clos. Ce transfert de manière stérile permet de limiter le nombre de contaminants lors de la culture cellulaire. La dissociation mécanique des agrégats formés au cours de l'amplification ne nécessite pas d'ouverture du système, limitant ainsi l'exposition des produits cellulaires à une éventuelle contamination de la culture par les éléments de l'environnement.
Dans un mode de réalisation, le milieu de culture, dans la poche de culture en suspension, est un milieu EGM+ . Ce milieu de culture comprend le milieu de base pour la prolifération des cellules endothéliales (EGM) enrichi en Epidermal Growth Factor (EGF), Basic Growth Factor (FGF2), Insulin-like Growth Factor, Vascular Endothélial Growth Factor 165, acide ascorbique, héparine et hydrocortisone (EGM+) . Le milieu EGM+ permet également l'amplification des cellules souches adipocytaires sans altérer leur capacité de différenciation en adipocytes.
Le procédé de l'invention permet une amplification du nombre de cellules souches du tissu adipeux avec un facteur d'amplification supérieur à 10, avantageusement supérieur à 20, en particulier supérieur à 30, de préférence supérieur à 35. Le facteur d'amplification est le rapport entre le nombre de cellules obtenues après culture de la SVF isolée en présence de ladite matrice extracellulaire et le nombre de cellules avant l'invention. Dans un mode de réalisation particulier décrit dans l'exemple 2, le procédé de l'invention présente un facteur d'amplification de 36 en 8 jours.
Selon un second objet, l'invention concerne un procédé d'amplification in vitro ou ex vivo de cellules différenciées comprenant les étapes suivantes : amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain telle que définie ci-dessus ; et induction d'une différenciation des cellules souches du tissu adipeux pour obtenir des cellules différenciées.
Plus précisément, le procédé d'amplification in vitro ou ex vivo de cellules différenciées comprend donc les étapes suivantes : extraction, d'une part, d'une fraction stroma-vasculaire d'un tissu adipeux humain comprenant, des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain, et d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène ; mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire ; culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture ; et induction d'une différenciation des cellules souches du tissu adipeux pour obtenir des cellules différenciées.
Au sens de l'invention, les cellules différenciées sont des adipocytes ou des ostéoblastes. De préférence, les cellules différenciées sont des adipocytes.
Le procédé d'amplification in vitro ou ex vivo de cellules différenciées comprenant les étapes liées à l'amplification in vitro ou ex vivo de cellules souches du tissu adipeux, les précisions données ci-dessus pour le procédé d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux s'appliquent également pour le procédé d'amplification in vitro ou ex vivo de cellules différenciées .
En particulier, l'extraction de la matrice extracellulaire comprend une étape de dissociation non- enzymatique, en particulier l'extraction de la matrice extracellulaire comprend une étape de dissociation mécanique .
Dans un mode de réalisation, l'extraction de la fraction stroma-vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée, et la fraction stroma-vasculaire ; et dissociation mécanique de la fraction A pour obtenir la matrice extracellulaire.
Dans un autre mode de réalisation, l'extraction de la fraction stroma-vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée et une fraction B comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain ; dissociation mécanique de la fraction A pour obtenir une fraction A' comprenant une matrice extracellulaire dissociée ; centrifugation de la fraction A' pour obtenir au moins la matrice extracellulaire et une fraction B' comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain ; et mélange des fractions B et B' pour obtenir la fraction stroma-vasculaire.
Le collagène de la matrice extracellulaire comprend du collagène de type I et du collagène de type III révélé par coloration au Picro-Sirius Red.
La culture du mélange de ladite fraction stroma- vasculaire et de ladite matrice extracellulaire comprend les étapes suivantes : transfert dudit mélange de manière stérile dans une poche de culture en suspension comprenant du milieu de culture ; amplification dudit mélange formant des agrégats cellulaires ; et dissociation mécanique desdits agrégats cellulaires.
Selon un troisième objet, l'invention concerne une matrice extracellulaire isolée susceptible d'être obtenue selon le procédé défini ci-dessus, comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain, et du collagène.
Le collagène est du collagène de type I et du collagène de type III. La matrice extracellulaire comprend en outre de la fibronectine.
Selon un quatrième objet, l'invention concerne une composition comprenant le mélange de la matrice extracellulaire et de la fraction stroma-vasculaire tel que défini ci-dessus, la matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain, et du collagène, et la fraction stroma- vasculaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux et des cellules souches du tissu adipeux.
Le collagène est du collagène de type I et du collagène de type III. La matrice extracellulaire comprend en outre de la fibronectine.
Selon un cinquième objet, l'invention concerne l'utilisation in vitro de la matrice extracellulaire telle que définie ci-dessus ou l'utilisation in vitro de la composition telle que définie ci-dessus pour le criblage d'actifs pharmacologiques contre l'obésité et les maladies métaboliques associées comme le diabète de type 2 et les maladies cardio-vasculaires.
Selon un sixième objet, l'invention concerne des cellules différenciées obtenues selon le procédé défini ci-dessus destinées à une utilisation, ou pour leur utilisation, en thérapie cellulaire, en particulier en chirurgie plastique et réparatrice, et plus particulièrement pour le lipofilling. Dans le cas d'une utilisation en chirurgie plastique et réparatrice, la matrice extracellulaire est une matrice autologue, qui contient, par définition, des cellules propres au patient dont le tissu adipeux est issu.
Pour une utilisation pour le lipofilling, les cellules différenciées obtenues par le procédé de l'invention sont des adipocytes.
EXEMPLES
Exemple 1. Extraction mécanique
a) Procédé d'extraction mécanique en vue de la caractérisation des populations cellulaires et matricielles au cours du processus
L'extraction mécanique de la fraction stroma- vasculaires et de la matrice extracellulaire, à partir d'un prélèvement de tissu adipeux chez un donneur humain, peut être réalisée selon les étapes suivantes (Fig. IB) :
1. Prélèvement de tissu adipeux par aspiration dans une seringue stérile de lOcc équipée d'une canule de Coleman 2mm en dépression -20kPa.
2. Afin de séparer les différentes phases, la seringue est centrifugée à 1600 rcf (force centrifuge relative), 3 min dans le tube de collecte. La fraction huile ainsi que la fraction sang et liquide anesthésique sont éliminées. La fraction culotée est conservée.
3. Une unité de sérum physiologique est injectée dans la seringue, suivie d'une incubation de 30 min à 37°C en agitation. La seringue est centrifugée à 1600 rcf, 3 min dans le tube de collecte. La fraction de liquide physiologique et la fraction huile sont éliminées. La fraction culotée est conservée.
4. La seringue est connectée à une autre seringue de type Luer-Lock mâle reliée par un connecteur de type Tulip® afin de procéder à la dissociation du tissu par une émulsification. Trois types de connecteur Tulip®, 2,4 mm, 1,4 mm puis 1,2 mm, sont successivement utilisés, sur 30 passages .
5. Une unité de sérum physiologique est injectée dans la seringue, suivie d'une incubation de 30 min à 37 °C en agitation. La seringue est centrifugée à 1600 rcf 3 min dans le tube de collecte. La fraction de liquide physiologique et la fraction huile sont éliminées. La fraction culotée est conservée.
6. Le contenu de la seringue ainsi que les contenus des tubes de collecte préalablement débarrassé des cellules sanguines sont transférés par une connexion stérile dans une poche de culture contenant le milieu de culture EGM+ à 37°C pour la phase d'expansion.
Lors de l'étape 4 ci-dessus de dissociation du tissu, un connecteur d'une autre marque que la marque Tulip® peut être employé. Le nombre de connecteur employé est compris entre 1 et 5. Le nombre de passages à travers ces connecteurs est compris entre 10 et 50.
b) Caractérisation des populations cellulaires obtenues
Le procédé décrit ci-dessus permet d'extraire séquentiellement la fraction stroma-vasculaire en 3 populations cellulaires. Ces populations cellulaires sont caractérisées en particulier par microscopie optique et par microscopie à fluorescence.
- La population cellulaire obtenue lors de l'étape 2, nommée ici Cl, est composée d'une majorité de cellules de type endothéliales CD31+ (Fig. 2 et Fig. 3) .
- La population cellulaire obtenue lors de l'étape 3, nommée ici C2, est composée de cellules de type endothéliales CD31+ formant un réseau de type capillaire lorsque maintenue en 3D et de cellules souches du tissu adipeux PDGFRa+ (Fig. 4 et Fig. 6A) . La population cellulaire C2 a la capacité de se différencier en adipocytes matures (Fig. 6B) .
- La population cellulaire obtenue lors de l'étape 5, nommée ici C3, est composée d'une majorité de cellules souches du tissu adipeux PDGFRa+ capables de former des sphères en suspension (Fig. 5 et Fig. 6A) . La population cellulaire C3 a la capacité de se différencier en adipocytes matures (Fig. 6C) .
c) Caractérisation des matrices Ml à M4 obtenues lors des différentes étapes du procédé
- La matrice obtenue lors de l'étape 2, nommée ici Ml est de type fibreux (Fig. 7) .
- La matrice obtenue lors de l'étape 3, nommée ici M2 est de type fibreux et riche en collagène (Fig. 8) . Le collagène est révélé par le Picro-Sirius Red (Fig. 10A) qui permet, de plus, de visualiser une structure du collagène en bâtonnets. Cette matrice contient des cellules endogènes.
- La matrice obtenue lors de l'étape 5 et isolé dans le tube de collecte, nommée ici M3 est de type fibreux (Fig. 9 et Fig. 10B) . Cette matrice contient également des cellules endogènes. Le collagène de la matrice isolée est révélé, à la Fig. 10B, par le Picro-Sirus Red qui colore les fibres de collagène de type I et de type III. La coloration rouge (en nuance de gris à la Fig. 10B) obtenue indique que le collagène reste organisé, à savoir que le collagène présent présente toujours une structure secondaire en hélice et une structure quaternaire en triple hélice. Il n'est pas dégradé. En effet, le collagène désorganisé se colore en vert par le Picro-Sirus Red.
- La matrice obtenue lors de l'étape 5 et contenue dans la seringue, nommée ici M4, est composée d'une majorité d'adipocytes matures et d'une trame de collagène de type I (Fig. 11B) . La matrice M4 est également composée de structures capillaires formées par des cellules endothéliales CD31+ (Fig. 11C) et par un réseau de cellules souches du tissu adipeux PDGFRa+ (Fig. 11D) .
La figure IA montre un procédé permettant de rassembler dans l'étape 2 les populations Cl et C2 ainsi que les matrices Ml et M2. Dans l'étape 3 sont regroupées la population C3 et les matrices M3 et M4.
Exemple 2. Expansion cellulaire et différenciation
Une méthode d'expansion ex vivo de cellules souches du tissu adipeux et de différenciation dans un environnement mimant le tissu adipeux comprend les étapes suivantes :
1. Le produit final obtenu à l'exemple 1 contenant les populations C1-C3 ainsi que les matrices dites EndoStem- Matrix M1-M4 sont misent en culture en suspension dans des poches et maintenues dans le milieu de prolifération EGM+ avec une agitation pendant 24h à 37°C 5% CO2, puis maintenues dans les mêmes conditions, de préférence, avec agitation .
2. Le milieu de prolifération EGM+ est changé à 50% tous les deux jours.
3. Une dissociation mécanique en système clos, par passage à travers 2 seringues ou deux poches de culture montées en tulipe, est effectuée au jour 5 et jour 10.
4. Au jour 14, le milieu de prolifération EGM+ est remplacé par le cocktail de différenciation I composé de EGM+ enrichi en 250 mM Dexaméthasone ; 500 mM IBMX ; 1 mM Rosiglitazone ; 2 mM T3 et 2,5 pg/ml insuline.
5. Au jour 17, le milieu de différenciation I est remplacé par le milieu de différenciation II composé de EGM+ enrichi en 1 mM Rosiglitazone ; 2 mM T3 et 2,5 pg/ml insuline .
Exemple_3_._Caractérisation_de_la_capacité d' amplification de la matrice
Les matrices extracellulaires dites EndoStem-Matrix de l'invention ont été caractérisées, notamment, par microscopie à fluorescence, en présence de différents marqueurs spécifiques. Des cellules en prolifération ont ainsi été détectées par incorporation, lors de la phase de réplication de l'ADN, de Edu ( 5-ethylnyl-2 ' -deoxyuridine ) fluorescent dans les matrices EndoStem-Matrix de l'invention, comme illustré sur la figure 12, prouvant que celles-ci sont bioactives. En effet, la figure 12 montre que les cellules endogènes aux matrices sont maintenues en prolifération pendant la phase d'amplification.
Par ailleurs, la figure 13 met en évidence la présence de cellules souches du tissu adipeux après trois jours de co-culture avec la matrice extracellulaire de l'invention. La matrice extracellulaire permet donc de fournir un support pour la prolifération de la fraction stroma- vasculaire : les cellules souches du tissu adipeux ajoutées peuvent s'attacher à la matrice EndoStem-Matrix, en suspension.
En référence à la figure 14B, la fraction stroma- vasculaire est amplifiée par sa culture sur l'EndoStem Matrix de l'invention. A l'inverse, en référence à la figure 14A, lorsque la fraction stroma-vasculaire est mise en culture en suspension sans la matrice extracellulaire, des agrégats cellulaires sans prolifération sont observés. La matrice extracellulaire de l'invention a donc la capacité d'amplifier les cellules souches du tissu adipeux ajoutées . La capacité d'amplification cellulaire des différentes matrices Ml à M4 obtenues au cours des étapes de l'exemple 1 a été vérifiée. Ainsi, environ 104 cellules souches du tissu adipeux ont été maintenues en suspension en présence des différentes matrices Ml à M4 en puits Ultra Low
Attachment (ULA) . Huit jours après, les cellules sont détachées de la matrice par de la trypsine/EDTA puis comptées. Les valeurs obtenues sont montrées dans le tableau 1 suivant :
[Table 1]
Figure imgf000027_0001
Dans le tableau ci-dessus, pour le cas particulier des matrices individuelle Ml à M4, le facteur d'amplification est le rapport entre le nombre de cellules obtenues après culture en présence de la matrice extracellulaire et le nombre de cellules obtenu en absence de la matrice extracellulaire .
Les matrices M2 et M4 ont un fort pouvoir d'amplification des cellules souches du tissu adipeux. Le volume de matrice M2 obtenu est très faible comparé au volume de la M4 (Fig. 11A) . La matrice M4 illustre une matrice extracellulaire telle que définie dans 1 ' invention .
Le niveau d'expression de différents marqueurs cellulaires (marqueur de cellules endothéliales CD31, marqueur de cellules souches adipocytaires PDGFRa+, et deux marqueurs d'adipocytes matures PLN1 et Adiponectine) a été analysé après culture en suspension de la fraction stroma-vasculaire sur la matrice extracellulaire de l'invention. La figure 15 montre une comparaison de ces niveaux d'expression avec ceux issus d'une culture en suspension de la fraction stroma-vasculaire sans la matrice extracellulaire de l'invention. Cette étude révèle une amplification des cellules endothéliales du réseau vasculaire du tissu adipeux (figure 15A) et des cellules souches du tissu adipeux (figure 15B) . Cette étude permet également de mettre en évidence la meilleure capacité de différenciation induite par la matrice extracellulaire de l'invention (figure 15C et 15D) . Ainsi, les cellules souches du tissu adipeux amplifiées en 3D sur la matrice extracellulaire de l'invention gardent leur capacité à se différencier en adipocytes.
La figure 16 met en évidence la présence de noyaux, d'adipocytes matures et d'une matrice collagénique après amplification et différenciation de la fraction stroma- vasculaire en présence de la matrice extracellulaire de l'invention. Ainsi, la différenciation en présence de la matrice extracellulaire de l'invention permet de conserver l'organisation structurelle in vivo du tissu adipeux.
On notera qu'un tissu adipeux non dissocié, qui peut être assimilé à un expiant, reste viable peu de temps ex vivo. Ainsi que cela est montré notamment à la Fig. 12, la matrice isolée par dissociation contient des cellules en prolifération, au contraire d'un tissu non dissocié. Les Figs. 17A et 17B permettent de comparer la prolifération cellulaire dans le tissu non dissocié (Fig. 17A) et dans la matrice isolée (Fig. 17B) . En Fig. 17A, le tissu adipeux non dissocié ne montre pas de cellules en prolifération. En Fig. 17B, la composition montre des cellules en prolifération. En effet, cette figure fait apparaître, en blanc, les noyaux des cellules en prolifération.
On notera que les cellules isolées selon l'invention, par centrifugation du liquide des lavages, sont caractérisées moléculairement par le marqueur DPP4. DPP4 est un marqueur qui marque les cellules précurseurs des pré-adipocytes ICAM1, qui ont une grande capacité de prolifération et qui sont localisées dans le réticulum interstitiel du tissu adipeux. Ce sont ces cellules qui ont la capacité de prolifération dans la composition selon l'invention. Il est important de noter que ces cellules sont éliminées à la suite des lavages réalisés selon les procédés de l'art antérieur. Ainsi que cela est montré aux Figs. 18A et 18B, l'expression de DPP4 est concentrée dans la fraction SVF isolée. La matrice en exprime peu. En revanche, et ainsi que cela est montré aux Figs. 18C et 18D, l'expression de ICAM1, est concentrée dans la matrice isolée. Les cellules qui portent l'amplification dans la composition sont les cellules exprimant DPP4 ajoutées.
Par ailleurs, on notera que le tissu adipeux in vivo contient des macrophages et que la composition amplifiée selon l'invention maintient la présence de macrophages de type Ml, ainsi que cela est montré à la Fig. 19A et de type M2 ainsi que cela est montré à la Fig. 19B. A la Fig. 19A, les macrophages de type Ml sont révélés par le marqueur IL-lb et, à la Fig. 19B, les macrophages de type
M2 sont révélés par le marqueur MRC1.
Enfin, et ainsi que cela est montré à la Fig. 20, la matrice isolée selon l'invention comprend des protéines de la matrice extracellulaire, à savoir notamment, le collagène de type I, le collagène de type IV, l'élastine, la fibronectine, la laminine. Le marquage des cellules endothéliales CD31 montre qu'un réseau capillaire est conservé .

Claims

REVENDICATIONS
1. Procédé d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain comprenant les étapes suivantes :
extraction, d'une part, d'une fraction stroma- vasculaire d'un tissu adipeux humain comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain, et d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène ;
mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire ; et
culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture.
2. Procédé d'amplification in vitro ou ex vivo de cellules différenciées comprenant les étapes suivantes :
extraction, d'une part, d'une fraction stroma- vasculaire d'un tissu adipeux humain comprenant, des cellules endothéliales du réseau vasculaire du tissu adipeux humain et des cellules souches du tissu adipeux humain, et d'autre part, d'une matrice extracellulaire dudit tissu adipeux humain, ladite matrice extracellulaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain et du collagène ; mélange de ladite fraction stroma-vasculaire et de ladite matrice extracellulaire ;
culture du mélange obtenu à l'étape précédente, en suspension, dans un milieu de culture ; et
induction d'une différenciation des cellules souches du tissu adipeux pour obtenir des cellules différenciées .
3. Procédé selon la revendication 2, caractérisé en ce que les cellules différenciées sont des adipocytes ou des ostéoblastes.
4. Procédé selon la revendication 3, caractérisé en ce que les cellules différenciées sont des adipocytes.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'extraction de la matrice extracellulaire comprend une étape de dissociation non-enzymatique.
6. Procédé selon la revendication 5, caractérisé en ce que l'extraction de la matrice extracellulaire, qui comprend une étape de dissociation non-enzymatique, ne fait pas intervenir de collagénase.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'extraction de la matrice extracellulaire comprend une étape de dissociation mécanique .
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'extraction de la fraction stroma-vasculaire et de la matrice extracellulaire comprend les étapes suivantes : centrifugation du tissu adipeux humain pour obtenir au moins deux fractions distinctes, une fraction A comprenant une matrice extracellulaire centrifugée, et la fraction stroma-vasculaire ; et dissociation mécanique de la fraction A pour obtenir la matrice extracellulaire.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le collagène de la matrice extracellulaire est du collagène de type I et du collagène de type III.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la culture du mélange de ladite fraction stroma- vasculaire et de ladite matrice extracellulaire comprend les étapes suivantes :
transfert dudit mélange de manière stérile dans une poche de culture en suspension comprenant du milieu de culture ;
amplification dudit mélange formant des agrégats cellulaires ; et
dissociation mécanique desdits agrégats cellulaires .
11. Matrice extracellulaire isolée, comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux humain, des cellules souches du tissu adipeux humain, et du collagène.
12. Matrice selon la revendication 11, caractérisée en ce que le collagène est du collagène de type I de type III.
13. Matrice selon l'une des revendications il ou 12, caractérisée en ce qu'elle comporte en outre du collagène de type IV et/ou de l'élastine et/ou de la fibronectine et/ou de la laminine.
14. Composition comprenant un mélange de la matrice extracellulaire selon l'une des revendications 11, 12 ou 13 et d'une fraction stroma-vasculaire, la fraction stroma-vasculaire comprenant des cellules endothéliales du réseau vasculaire du tissu adipeux et des cellules souches du tissu adipeux.
15. Utilisation in vitro ou ex vivo de la matrice extracellulaire selon la revendication 11, 12 ou 13 ou de la composition selon la revendication 14 pour le criblage d'actifs pharmacologiques.
16. Cellules différenciées d'une composition selon la revendication 14, pour leur utilisation en thérapie cellulaire, en particulier en chirurgie plastique et réparatrice, et plus particulièrement pour le lipofilling .
17. Adipocyte ou ostéoblaste différenciés d'une composition selon la revendication 14, pour leur utilisation en thérapie cellulaire, en particulier en chirurgie plastique et réparatrice, et plus particulièrement pour le lipofilling.
18. Adipocyte différencié d'une composition selon la revendication 14, pour leur utilisation en thérapie cellulaire, en particulier en chirurgie plastique et réparatrice, et plus particulièrement pour le lipofilling .
PCT/EP2020/050720 2019-01-11 2020-01-13 Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain WO2020144381A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20700217.1A EP3966317A1 (fr) 2019-01-11 2020-01-13 Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain
CA3125836A CA3125836A1 (fr) 2019-01-11 2020-01-13 Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain
JP2021539468A JP2022518159A (ja) 2019-01-11 2020-01-13 ヒト脂肪組織幹細胞のin vitroまたはex vivoでの増幅方法
US17/421,840 US20220098552A1 (en) 2019-01-11 2020-01-13 Method for the in vitro or ex vivo amplification of human adipose tissue stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900287A FR3091707B1 (fr) 2019-01-11 2019-01-11 Procédé d’amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain
FR1900287 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020144381A1 true WO2020144381A1 (fr) 2020-07-16

Family

ID=67383857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/050720 WO2020144381A1 (fr) 2019-01-11 2020-01-13 Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain

Country Status (6)

Country Link
US (1) US20220098552A1 (fr)
EP (1) EP3966317A1 (fr)
JP (1) JP2022518159A (fr)
CA (1) CA3125836A1 (fr)
FR (1) FR3091707B1 (fr)
WO (1) WO2020144381A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013404A1 (fr) * 2020-07-15 2022-01-20 Centre National De La Recherche Scientifique Procede d'amplification in vitro ou ex vivo de cellules souches d'adipocytes bruns ou beiges

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109010920A (zh) * 2018-09-29 2018-12-18 四川新生命干细胞科技股份有限公司 一种含有干细胞、祖细胞和细胞外基质的美容制剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011251055B2 (en) * 2010-05-12 2014-12-04 Scinus Cell Expansion B.V. Cell - culture - bag
JP6681663B2 (ja) * 2014-04-22 2020-04-15 株式会社日本触媒 エーテル結合及び/又はチオエーテル結合とフッ素原子とを含むポリイミドを表面に含む細胞培養用基材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109010920A (zh) * 2018-09-29 2018-12-18 四川新生命干细胞科技股份有限公司 一种含有干细胞、祖细胞和细胞外基质的美容制剂

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI J S ET AL: "Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 139, no. 1, 1 October 2009 (2009-10-01), pages 2 - 7, XP026519049, ISSN: 0168-3659, [retrieved on 20090528], DOI: 10.1016/J.JCONREL.2009.05.034 *
MAROESJKA SPIEKMAN ET AL: "The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment : Adipose tissue and ADSC for fibrotic scar treatment", JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, vol. 11, no. 11, 3 February 2017 (2017-02-03), US, pages 3220 - 3235, XP055638160, ISSN: 1932-6254, DOI: 10.1002/term.2213 *
PABLO BORA ET AL: "Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation", STEM CELL RESEARCH & THERAPY, vol. 8, no. 1, 15 June 2017 (2017-06-15), XP055638162, DOI: 10.1186/s13287-017-0598-y *
YAO YAO ET AL: "Adipose Extracellular Matrix/Stromal Vascular Fraction Gel : A Novel Adipose Tissue-Derived Injectable for Stem Cell Therapy", PLASTIC AND RECONSTRUCTIVE SURGERY., vol. 139, no. 4, 1 April 2017 (2017-04-01), US, pages 867 - 879, XP055637126, ISSN: 0032-1052, DOI: 10.1097/PRS.0000000000003214 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013404A1 (fr) * 2020-07-15 2022-01-20 Centre National De La Recherche Scientifique Procede d'amplification in vitro ou ex vivo de cellules souches d'adipocytes bruns ou beiges
FR3112558A1 (fr) * 2020-07-15 2022-01-21 Centre National De La Recherche Scientifique (Cnrs) Procede d’amplification in vitro ou ex vivo de cellules souches d’adipocytes bruns ou beiges

Also Published As

Publication number Publication date
CA3125836A1 (fr) 2020-07-16
FR3091707B1 (fr) 2024-05-24
US20220098552A1 (en) 2022-03-31
FR3091707A1 (fr) 2020-07-17
JP2022518159A (ja) 2022-03-14
EP3966317A1 (fr) 2022-03-16

Similar Documents

Publication Publication Date Title
FR3059009A1 (fr) Microcompartiment cellulaire et procedes de preparation
CN109666630A (zh) 多能干细胞分化为间充质干细胞的方法及其培养基和应用
FR3058892A1 (fr) Unite de tissu neural et utilisation d'une telle unite pour l'implantation dans le systeme nerveux d'un mammifere
WO2019224467A1 (fr) Système de culture cellulaire en bioréacteur
EP1292671A1 (fr) Procede d'obtention de populations cellulaires caracterisees d'origine musculaire et utilisations
WO2020144381A1 (fr) Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain
EP4182444A1 (fr) Procede d'amplification in vitro ou ex vivo de cellules souches d'adipocytes bruns ou beiges
CA3147254A1 (fr) Unite tridimensionnelle creuse de tissu retinien et utilisation dans le traitement des retinopathies
EP1885846A2 (fr) Système et procédé de traitement génétique et epigénétique
WO2022263601A1 (fr) Microcompartiments cellulaires de grande taille comprenant plusieurs cystes
FR2976001A1 (fr) Modele de cuir chevelu reconstruit et procede de screening de molecules actives
EP3512573B1 (fr) Procédé de préparation d'une composition pour la réparation tissulaire
US20210187164A1 (en) Methods for tissue decellularization
FR3114321A1 (fr) Microcompartiments cellulaires comprenant des cellules humaines en cours de différenciation cardiaque, tissus obtenus à partir de ces microcompartiments et utilisations
WO2023214055A1 (fr) Microtissu hepatique particulier en trois dimensions et utilisations dans le traitement de l'insuffisance hepathique
EP1280888A1 (fr) Procedes de culture de cellules, amas cellulaires obtenus par ces procedes et utilisation de ceux-ci
WO2024033284A1 (fr) Substitut de matrice extracellulaire dans un microcompartiment cellulaire
CA3192855A1 (fr) Tissu cardiaque particulier et utilisation dans le traitement de pathologies cardiaque
FR3138661A1 (fr) Substitut de matrice extracellulaire dans un microcompartiment cellulaire
JP2003245067A (ja) 膵内分泌細胞
WO2004003181A2 (fr) Procede de preparation de cellules souches adultes animales ou humaines et utilisation desdites cellules souches en therapie.
CA2491043A1 (fr) Procede de preparation de cellules souches adultes animales ou humaines et utilisation desdites cellules souches en therapie.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20700217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539468

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3125836

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020700217

Country of ref document: EP

Effective date: 20210811