WO2020075344A1 - フィードバック制御方法、およびフィードバック制御装置 - Google Patents
フィードバック制御方法、およびフィードバック制御装置 Download PDFInfo
- Publication number
- WO2020075344A1 WO2020075344A1 PCT/JP2019/023646 JP2019023646W WO2020075344A1 WO 2020075344 A1 WO2020075344 A1 WO 2020075344A1 JP 2019023646 W JP2019023646 W JP 2019023646W WO 2020075344 A1 WO2020075344 A1 WO 2020075344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- filter
- controlled object
- controller
- compensator
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/34—Modelling or simulation for control purposes
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
Definitions
- the present invention relates to a feedback control method and a feedback control device.
- Non-Patent Document 1 is proposed.
- the controlled object has resonance characteristics
- the control gain is increased in order to suppress disturbance and follow the control amount to the target value with high speed and high accuracy, resonance is excited and stable control is achieved. It may not be possible and the control gain may not be increased.
- the ability of the band stop filter (or notch filter) to suppress the disturbance of the controller at the band stop frequency decreases, and the disturbance easily excites resonance.
- Non-patent document 2 is proposed as a control method for avoiding the excitation of resonance by disturbance.
- Non-Patent Document 2 a band stop filter having a resonance frequency as a center frequency is provided in a subsequent stage of the controller so that the controller does not excite torsional resonance of a driving force transmission system of a vehicle.
- a disturbance observer and a bandpass filter with the resonance frequency as the center frequency it is shown.
- Non-Patent Document 1 when the controlled object has a resonance characteristic, a means for avoiding excitation of resonance by the controller or the disturbance is provided, for example, by providing a notch filter after the controller or by providing a disturbance observer. Since it is not provided, there is a problem that resonance suppression is insufficient.
- Non-Patent Document 2 a band stop filter for suppressing resonance is provided in a subsequent stage of the controller, and has a controller configuration in which a disturbance observer for compensating for resonance excitation caused by disturbance and a band pass filter are provided. .
- a disturbance observer for compensating for resonance excitation caused by disturbance and a band pass filter are provided.
- a separate delay compensator is added, which causes a problem that the calculation cost increases.
- the object of the present invention is to compensate for the delay element existing in the closed loop of the feedback control system even when the controlled object has a pole at the origin, and even when the controlled object has a resonance characteristic, the controller does not resonate. It is an object of the present invention to provide a feedback control method which is not excited, can avoid a resonance from exciting resonance, and can be realized at a low calculation cost.
- a preferred example of the present invention is a model of a controlled object having a nominal plant model and a nominal model of delay elements, a delay compensator having a filter, a first feedback controller, a notch filter, and a disturbance compensator.
- a feedback control method for a control device having: The delay compensator receives an operation amount for the controlled object as an input, and acts the filter on an error calculated from an output of the controlled object for the operated amount and an output of a model of the controlled object for the operated amount.
- the notch filter is Is provided after the first feedback controller to process the output of the first feedback controller,
- the filter is A second feedback controller corresponding to the nominal plant model and a function of the model of the controlled object so that delay compensation can be stably performed even when the controlled object has a pole at the origin,
- the filter is decomposed into a first filter and a second filter,
- the first filter is An open loop transfer characteristic is given by the product of the model of the controlled object and the second feedback controller, And the open-loop characteristic is given by the closed-loop system transfer characteristic that the output is equivalent to the input
- the disturbance compensator is The output of the first filter is processed by a third feedback controller, and the output of the third feedback controller is used as the output of the disturbance compensator,
- the first feedback controller is Based on the deviation between the output of the delay compensator and the target value, feedback compensation is performed on the controlled object, It is a feedback control method for
- the delay element existing in the closed loop of the feedback control system can be compensated, and even if the controlled object has the resonance characteristic, the controller resonates. It is also possible to avoid excitement of resonance and to prevent resonance from being excited by a disturbance, and to realize a low calculation cost.
- FIG. 3 is a diagram showing a configuration of a feedback control system in the first embodiment. The figure explaining a comparative example. The figure which shows the structure of a disturbance observer.
- FIG. 6 is a diagram showing a configuration of a feedback control system in the second embodiment.
- FIG. 8 is a diagram showing the configuration of a feedback control system in the third embodiment.
- FIG. 9 is a diagram showing the configuration of a speed control system of an AC servomotor in a fourth embodiment.
- feedback is abbreviated as “FB”.
- feedback controller is abbreviated as “FB controller”.
- the feedback control device 1 includes a delay compensator 3, a notch filter 7, a disturbance compensator, and an FB controller, as shown in FIG.
- the filter Np5, which is the first filter, and the filter Nd4, which is the second filter, are obtained by disassembling the filter N21.
- a method for designing the filter N21 is described in Japanese Patent Application No. 2017-054595 (hereinafter referred to as a prior application).
- the delay compensator 3 includes a nominal plant model 11, a nominal model 12 of delay elements, an adder / subtractor 15, an adder / subtractor 16, a filter Nd4, and a filter Np5.
- the disturbance compensator is composed of a nominal plant model 11, a delay element nominal model 12, an adder / subtractor 15, a filter Np5, and an FB controller Cp ( ⁇ 3) 2.
- the filter N21 includes a FB controller Ca that is a second FB controller corresponding to the nominal plant model and a nominal plant so that delay compensation can be stably performed even when the controlled object has a pole at the origin. It is configured as a function of the model and the nominal model of the delay element included in the feedback control system.
- FB control of the controlled object 10 including the delay in FIG. 1 is performed by the FB controller 6, the notch filter 7, the delay compensator 3, and the disturbance compensator.
- the delay compensator 3 has a model of a controlled object inside, and the model of the controlled object in the present embodiment includes a nominal plant model 11 and a nominal model 12 of a delay element.
- the model to be controlled may include the nominal models of those delay elements.
- the error signal e is calculated by the adder / subtractor 15 from the output signal of the controlled object and the output signal of the model of the controlled object with respect to the manipulated variable u, and a signal obtained as a result of applying the filter Np5 and the filter Nd4 to the error signal e.
- the output signal yp of the delay compensator 3 is calculated by adding the output signal of the nominal plant model 11 with the adder / subtractor 16.
- the output signal yp of the delay compensator is a predicted value signal of the output signal of the control target considering the delay element included in the control target, and the deviation between the output signal yp and the target value signal r is calculated by the adder / subtractor 13.
- the FB controller 6 compensates the controlled object based on the deviation.
- the error signal e calculated by the adder / subtractor 15 is zero, and the FB controller 6 is FB for the nominal plant model Pm that does not include delay. It can be easily understood that it can be regarded as performing control, and as a result, the control gain of the FB controller 6 can be increased.
- the output d1 of the disturbance compensator is the output signal of the filter Np5 included in the delay compensator 3 processed by the FB controller Cp ( ⁇ 3) 2, and the FB controller Cp ( ⁇ 3) 2 is the FB controller CB ( It is assumed that the structure is the same as that of ⁇ 1) 6, and each control parameter ⁇ 1 and ⁇ 3 can be designed independently.
- the controlled object 10 has one resonance characteristic, and the resonance frequency is described as ⁇ m1. Even when the controlled object 10 has one or more resonance characteristics, the present embodiment can be applied when the resonance frequency at which the occurrence of resonance is desired to be avoided is ⁇ m1.
- the resonance is excited when the input (operation amount u) of the controlled object 10 includes the resonance frequency component, it is desirable that the operation amount of the FB controller 6 does not include the resonance frequency.
- a notch filter Nch7 whose notch frequency matches the resonance frequency ⁇ m1 is provided after the FB controller 6. Thereby, the manipulated variable from which the resonance frequency component is removed can be input to the controlled object 10.
- the FB controller 6 plays a role of suppressing the disturbance d, but by providing the notch filter Nch7, the ability to suppress the disturbance d around the resonance frequency becomes insufficient, and the disturbance causes resonance. It becomes a state that can be excited.
- Non-Patent Document 2 For the estimated disturbance value, there is a method of adding a disturbance observer to the control system as described in Non-Patent Document 2, for example.
- the output of the FB controller Cp ( ⁇ 3) 2 which is the third feedback controller in FIG. 1, bears the meaning of the estimated disturbance value, it is not necessary to additionally provide the disturbance observer.
- the calculation of the filter N21 of the delay compensator shown in FIG. 2 is shared, and the FB controller Cp ( ⁇ 3) 2 is added to the delay compensator 3 to avoid the increase in calculation cost and the disturbance. It is possible to avoid the occurrence of resonance due to this.
- the output of the FB controller Cp ( ⁇ 3) 2 in FIG. 1 can bear the meaning of the estimated disturbance value.
- the filter Np5 which is the first filter, is configured such that the open-loop transfer characteristic is given by the product of the model to be controlled and the second FB controller, and the open-loop characteristic is equivalent to the output with respect to the input. It is given by the closed-loop system transfer characteristic as shown in the equation (1).
- Ca ( ⁇ 2) is a second FB controller having the same structure as the first FB controller CB ( ⁇ 1) 6 and capable of arbitrarily determining the parameter ⁇ 2 independently of ⁇ 1.
- FIG. 3 is an example of the configuration of a generally known disturbance observer 34, and the estimated disturbance value in FIG. 3 is given by equation (2).
- the block 33 in FIG. 3 is assumed to be the FB controller Ca ( ⁇ 2) described in the equation (1).
- the filter N21 is given by the equations (5) and (6)
- the filter Np5 is given by the equation (1)
- the filter N21 is given by the equations (5) and (6).
- the filter Nd4 which is the second filter, is expressed by equation (7) and equation (8), respectively.
- the effect of delay compensation on the output (manipulation amount) of the FB controller CB6 of the output signal of the filter N21 relating to delay compensation is reduced by the notch filter Nch7 around the resonance frequency, and the controlled object 10 is affected. It can be interpreted as working.
- the filter N21 for delay compensation is expressed by the formula ( When 5) is selected, the FB controller Cp ( ⁇ 3) 2 and the filter Nd4 may be defined as in equations (9) and (10).
- Expression (5) can be transformed into Expression (11) using Expression (1) and Expression (10).
- equation (12) The first term on the right side of equation (12) is equation (13), and it can be seen that it is the term that bears the meaning of disturbance estimation.
- the signal described by Expression (13) may be added to the subsequent stage of the notch filter Nch7.
- the output d1 of the disturbance compensator in FIG. 1 becomes equation (13) ⁇ ( ⁇ 1) by defining the FB controller Cp ( ⁇ 3) as in equation (9).
- the output of the FB controller CB can play the role of the second term on the right side of Expression (12).
- the notch filter Nch7 is used as the portion of the filter N21 in the equation (5) that is responsible for the disturbance estimation by using the equations (9) and (10). It can be cut out at the latter stage.
- control target 10 the role of disturbance suppression and delay compensation originally possessed by the filter of the equation (5) as the manipulated variable without the influence of the band stop of the notch filter Nch7.
- the disturbance observer shown in FIG. 3 is not separately provided, and the disturbance observer can be configured by adding only Cp shown in Expression (9) to the comparative example shown in FIG. It is possible to suppress the occurrence of the generated resonance.
- the controller configuration according to the present embodiment shown in FIG. 1 even when the filter N21 is set to the expression (5) and the object to be controlled by the delay compensator 3 has a pole at the origin, the feedback control system It is possible to compensate for the delay element existing in the closed loop.
- the disturbance compensator in FIG. 1 plays a role of a disturbance observer while avoiding the notch filter Nch7 from hindering the original performance of the filter N21.
- the FB controller Cp ( ⁇ 3) 2 and the filter Nd4 may be set as in Expressions (14) and (15).
- CB and Ca will be an FB controller with the same structure as CB.
- An example of a device that satisfies this constraint is a PID controller.
- Expression (6) can be transformed into Expression (16) using Expression (1) and Expression (10).
- equation (17) the first term on the right-hand side of equation (17) is the term responsible for disturbance estimation as shown in equation (18).
- the effect of Expression (18) may be added to the subsequent stage of the notch filter Nch7.
- the output d1 of the disturbance compensator in FIG. 1 becomes equation (18) ⁇ ( ⁇ 1) by selecting the FB controller Cp ( ⁇ 3) as in equation (14).
- the second term on the right side of Expression (17) can play the role of the output of the FB controller CB.
- the disturbance observer 34 shown in FIG. 3 is not additionally provided, and the disturbance observer is configured by adding only Cp shown in Expression (14) to the comparative example shown in FIG. It is possible to suppress the occurrence of resonance due to disturbance.
- the feedback control system is used both when the filter N21 is set to the equation (6) and when the delay compensator 3 has the pole at the origin.
- the delay element existing in the closed loop of can be compensated.
- a disturbance compensator can be configured while avoiding an increase in calculation cost, which can suppress the occurrence of resonance due to disturbance. Further, since the notch filter is provided in the subsequent stage of the controller, the resonance caused by the controller can be suppressed.
- the filter N21 is selected as in the formulas (5) and (6), the filter Nd is selected to satisfy the formula (15) in any case, but the filter N21 is selected as the formula (5).
- the FB controller Cp ( ⁇ 3) 2, which is the third feedback controller, and the filter Nd4, which is the second filter, can be set as shown in Expression (19) and Expression (20).
- the configuration is such that the output d1 of the disturbance compensator is weakened by (1- ⁇ ) times, and the weakened amount is compensated by the output of the filter N21. That is, the output of the third feedback controller and the output of the second filter are adjusted to each other. Thereby, the degree of compensation around the notch frequency of the disturbance compensator can be adjusted by the adjustment parameter ⁇ .
- the FB controller Cp ( ⁇ 3) 2 and the filter Nd4 can be set as shown in the expressions (21) and (22).
- the configuration is such that the output d1 of the disturbance compensator is weakened by (1- ⁇ ) times, and the weakened amount is compensated by the output of the filter N21. Thereby, the degree of compensation around the notch frequency of the disturbance compensator can be adjusted by ⁇ .
- FIG. 4 is a diagram showing the configuration of the feedback control system 41 in the second embodiment. Descriptions of functions common to the first embodiment will be omitted.
- the feedback control device includes a delay compensator 3, a notch filter 7, a disturbance compensator, and an FB controller 6, as shown in FIG.
- the filter Nd4 and the filter Np5 shown in FIG. 4 have a steady deviation of the step disturbance applied to the input end of the controlled object even when the controlled object has a pole at the origin.
- the filter N21 is disassembled so as to match the filter N21, which can be suppressed without any problem.
- FB control of the control target 10 including the delay in FIG. 4 is performed by the FB controller 6, the notch filter 7, the delay compensator 3, and the disturbance compensator.
- the FB controller 6, the notch filter 7, the delay compensator 3, and the disturbance compensator are the same as those shown in the first embodiment, but the input of the delay compensator 3 is the control target 10 in the first embodiment. However, the difference is that the output signal of the FB controller 6 is used in the second embodiment.
- the first embodiment has a configuration in which the band stop effect of the output of the FB controller 6 by the notch filter Nch7 is reflected in the controlled object 10 and the nominal plant model 11 in a balanced manner.
- the position where the output d1 of the disturbance compensator is FB is the preceding stage of the input u of the delay compensator, but in the present embodiment, the position where the output d2 of the disturbance compensator is FB is It is the latter stage of the input of.
- the controller configuration of the second embodiment is different from that of the first embodiment in that the input signal of the delay compensator 3 is changed and the position at which the estimated disturbance value is FB is changed. Therefore, the output of the disturbance compensator in the configuration of FIG.
- the estimation accuracy of the value d2 is different from that of d1.
- the configuration of the first embodiment or the configuration of the second embodiment is selected according to the use and purpose.
- the output d2 of the disturbance compensator can play a role of disturbance estimation.
- the delay compensator 3 can compensate the delay element existing in the closed loop of the feedback control system even when the controlled object has a pole at the origin. .
- FIG. 5 is a diagram showing the configuration of the feedback control system 51 in the third embodiment. Descriptions of functions common to the first embodiment will be omitted.
- the present embodiment is different from the first embodiment in that the output signal of the disturbance compensator is processed by the bandpass filter 52 in the controller configuration of the first embodiment.
- the center frequency of the bandpass filter 52 is selected so as to match the resonance frequency ⁇ m1 of the controlled object 10. This allows the disturbance compensator to compensate only for the effect of the output signal of the filter N21 on the controlled object that is lost around the notch frequency of the notch filter Nch7.
- the delay compensator 3 can compensate the delay element existing in the closed loop of the feedback control system even when the controlled object has a pole at the origin. .
- FIG. 6 is a diagram showing the configuration of the speed control system 61 of the AC servo motor in the fourth embodiment.
- the motor control device according to the fourth embodiment is based on the assumption that it is applied to a speed control system in a cascade FB control system of an AC servomotor.
- the current controller 63 controls the electric circuit portion of the motor, and on the assumption that this control cycle is sufficiently faster than the speed controller 62, in the speed control system, the current control system is approximately 1 (the operation amount of the speed controller is It is considered to be the machine part (rotor) of the motor.
- control target of the speed controller 62 is the machine part (rotor) of the motor and the machine 613 coupled to the motor rotor.
- the machine 613 is regarded as the control target 10 in the first embodiment.
- the speed controller 62 is the FB controller including the delay compensator 3, the notch filter Nch7, the FB controller 6, and the disturbance compensator shown in the first embodiment, and the target value signal r of FIG.
- the rotation speed command and the output signal yp of the delay compensator in FIG. 1 are regarded as the motor rotation speed detected by the position / speed calculator 611 in FIG.
- the mechanical part (rotor) of the motor and the machine 613 coupled to the motor rotor have the FB shown in the first embodiment including the delay compensator 3, the notch filter Nch7, the FB controller 6, and the disturbance compensator. It is controlled by the controller.
- the machine 613 has resonance characteristics at the resonance frequency ⁇ m1, and the notch frequency of the notch filter Nch7 is set to match the resonance frequency ⁇ m1 of the machine 613.
- Ksp is a velocity proportional gain when the velocity response frequency is ⁇ s
- Ksi is a velocity integral gain when the velocity response frequency is ⁇ s
- s is a Laplace operator
- J represents the inertia
- K a represents the motor constant
- ⁇ S represents the response frequency of the speed control system
- P P is the number of pole pairs.
- Knp is a speed proportional gain when the response frequency of the speed control system is ⁇ n.
- Kni is the speed integral gain when the response frequency of the speed control system is ⁇ n. However, corresponding to ⁇ 2 ⁇ ⁇ 1 in the first embodiment, ⁇ n ⁇ ⁇ s.
- the filter Nd4 and the FB controller Cp2 are determined as in the equations (30) and (31) similarly to the equations (14) and (15).
- the FB controller Cp of the equation (30) is also a PI controller having the same structure as the FB controller CB.
- s is a Laplace operator
- K a is a motor constant
- P P is the number of pole pairs.
- the delay is delayed in the same manner as the first embodiment even with respect to the speed control system in the cascade FB control system of the AC servomotor shown in FIG. 6 of the present embodiment. Even when the controlled object has a pole at the origin, the compensator 3 can compensate the delay element existing in the closed loop of the feedback control system.
- the disturbance compensator can be configured while avoiding an increase in calculation cost. With that configuration, it is possible to suppress the occurrence of resonance due to disturbance. Furthermore, since the notch filter is provided in the subsequent stage of the controller, it is possible to suppress the occurrence of resonance caused by the controller.
- the filter N21 of FIG. 2 includes an arbitrary FB controller for the controlled object, a model of the controlled object, a transfer function of the closed loop system including the arbitrary FB controller for the controlled object and the model of the controlled object, and the closed loop system. It is a function constructed in the form of the sum of product quotients by arbitrarily using the open loop transfer function. Further, the filter N21 can make the steady deviation zero even if the controlled object has a pole at the origin and the Smith method leaves a stationary deviation for the step disturbance applied to the input end of the controlled object. It belongs to a set of filters.
- the model of the controlled object” in the design method of the filter N21 is assumed to be the one shown in the following equations (33) to (35) according to FIG.
- Expression (33) is the nominal plant model of the controlled object P in FIG. 2
- Expression (34) is the nominal delay model of the delay element included in the entire controlled object
- Expression (35) is the entire controlled object including the delay. A nominal model is shown.
- the “FB controller corresponding to the controlled object and the transfer function of the closed loop system configured by the model of the controlled object” are assumed to be, for example, the following expressions (36) and (37).
- the "closed loop loop transfer function" in the comparative example is assumed to be, for example, the following equations (38) and (39).
- the function F as shown in the following formula (40) from the formulas (33) to (39) constitutes its subset.
- Np and Nd in the above embodiment are obtained so that the designed filter N21 matches Np ⁇ Nd.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Power Engineering (AREA)
- Feedback Control In General (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
前記遅れ補償器は、前記制御対象に対する操作量を入力とし、前記操作量に対する前記制御対象の出力と前記操作量に対する前記制御対象のモデルの出力とから算出される誤差に対して前記フィルタを作用させ、前記フィルタを作用させた結果と前記操作量に対する前記ノミナルプラントモデルの出力に基づいて前記遅れ補償器の出力を算出し、
前記ノッチフィルタは、
前記第1のフィードバック制御器の出力を処理するように前記第1のフィードバック制御器の後段に設けられ、
前記フィルタは、
前記制御対象が原点に極を有する場合でも安定に遅れ補償が可能なように、前記ノミナルプラントモデルに対応する第2のフィードバック制御器と、前記制御対象のモデルとによる関数として構成され、
前記フィルタは、第1のフィルタと第2のフィルタに分解されており、
前記第1のフィルタは、
一巡伝達特性が前記制御対象のモデルと、前記第2のフィードバック制御器との積で与えられ、
かつ開ループ特性が入力に対して出力が等価になるように構成された閉ループ系伝達特性で与えられ、
前記外乱補償器は、
前記第1のフィルタの出力を、第3のフィードバック制御器で処理し、前記第3のフィードバック制御器の出力を前記外乱補償器の出力とし、
前記第1のフィードバック制御器は、
前記遅れ補償器の出力と目標値との偏差に基づいて、前記制御対象に対してフィードバック補償を行い、
前記ノッチフィルタの出力と前記外乱補償器の出力に基づいて前記制御対象に対する前記操作量を算出するフィードバック制御方法である。
これにより共振周波数成分を除去した操作量を制御対象10に入力できる。
式(6)は、式(1)及び式(10)を用いて式(16)のように変形できる。
フィルタNp5は式(26)とする。
但し、実施例1のθ2≦θ1に対応して、ωn≦ωsとする。
フィルタNd4およびFB制御器Cp2は、式(14)および式(15)と同様に、式(30)、式(31)のように定める。
Claims (10)
- ノミナルプラントモデルと遅れ要素のノミナルモデルとを有する制御対象のモデルと、フィルタとを有する遅れ補償器と、
第1のフィードバック制御器と、
ノッチフィルタと、
外乱補償器とを有する制御装置のフィードバック制御方法であって、
前記遅れ補償器は、
前記制御対象に対する操作量を入力とし、
前記操作量に対する前記制御対象の出力と前記操作量に対する前記制御対象のモデルの出力とから算出される誤差に対して前記フィルタを作用させ、
前記フィルタを作用させた結果と前記操作量に対する前記ノミナルプラントモデルの出力に基づいて前記遅れ補償器の出力を算出し、
前記ノッチフィルタは、
前記第1のフィードバック制御器の出力を処理するように前記第1のフィードバック制御器の後段に設けられ、
前記フィルタは、
前記制御対象が原点に極を有する場合でも安定に遅れ補償が可能なように、
前記ノミナルプラントモデルに対応する第2のフィードバック制御器と、
前記制御対象のモデルとによる関数として構成され、
前記フィルタは、第1のフィルタと第2のフィルタに分解されており、
前記第1のフィルタは、
一巡伝達特性が前記制御対象のモデルと、前記第2のフィードバック制御器との積で与えられ、
かつ開ループ特性が入力に対して出力が等価になるように構成された閉ループ系伝達特性で与えられ、
前記外乱補償器は、
前記第1のフィルタの出力を、第3のフィードバック制御器で処理し、前記第3のフィードバック制御器の出力を前記外乱補償器の出力とし、
前記第1のフィードバック制御器は、
前記遅れ補償器の出力と目標値との偏差に基づいて、
前記制御対象に対してフィードバック補償を行い、
前記ノッチフィルタの出力と前記外乱補償器の出力に基づいて前記制御対象に対する前記操作量を算出することを特徴とするフィードバック制御方法。 - 請求項1に記載のフィードバック制御方法において、
前記ノッチフィルタの出力から前記外乱補償器の出力を加減算器で減じることで、前記制御対象に対する前記操作量を算出することを特徴とするフィードバック制御方法。 - 請求項1に記載のフィードバック制御方法において、
前記第2のフィルタの出力と前記操作量に対する前記ノミナルプラントモデルの出力とに基づいて前記遅れ補償器の出力を算出し、
前記第3のフィードバック制御器の出力と前記第2のフィルタの出力を互いに調整することを特徴とするフィードバック制御方法。 - ノミナルプラントモデルと遅れ要素のノミナルモデルとを有する制御対象のモデルと、フィルタとを有する遅れ補償器と、
第1のフィードバック制御器と、
ノッチフィルタと、
外乱補償器とを有するフィードバック制御装置であって、
前記遅れ補償器は、
前記制御対象に対する操作量を入力とし、
前記操作量に対する前記制御対象の出力と前記操作量に対する前記制御対象のモデルの出力とから算出される誤差を入力する前記フィルタを有し、
前記フィルタの出力と前記操作量に対する前記ノミナルプラントモデルの出力に基づいて前記遅れ補償器の出力を算出し、
前記ノッチフィルタは、
前記第1のフィードバック制御器の出力を処理するように前記第1のフィードバック制御器の後段に設けられ、
前記フィルタは、
前記制御対象が原点に極を有する場合でも安定に遅れ補償が可能なように、
前記ノミナルプラントモデルに対応する第2のフィードバック制御器と、
前記制御対象のモデルとによる関数として構成され、
前記フィルタは、第1のフィルタと第2のフィルタに分解されており、
前記第1のフィルタは、
一巡伝達特性が前記制御対象のモデルと、前記第2のフィードバック制御器との積で与えられ、かつ開ループ特性が入力に対して出力が等価になるように構成された閉ループ系伝達特性で与えられ、
前記外乱補償器は、
前記第1のフィルタの出力を処理する第3のフィードバック制御器を有し、前記第3のフィードバック制御器の出力を前記外乱補償器の出力とし、
前記第1のフィードバック制御器は、
前記遅れ補償器の出力と目標値との偏差に基づいて、前記制御対象に対してフィードバック補償を行い、
前記ノッチフィルタの出力と前記外乱補償器の出力に基づいて前記制御対象に対する前記操作量を算出することを特徴とするフィードバック制御装置。 - 請求項4に記載のフィードバック制御装置において、
加減算器が、
前記ノッチフィルタの出力から前記外乱補償器の出力を減じることで、前記制御対象に対する前記操作量を算出することを特徴とするフィードバック制御装置。 - 請求項4に記載のフィードバック制御装置において、
前記第2のフィルタの出力と前記操作量に対する前記ノミナルプラントモデルの出力とに基づいて前記遅れ補償器の出力を算出し、
前記第3のフィードバック制御器の出力と前記第2のフィルタの出力を互いに調整することを特徴とするフィードバック制御装置。 - 請求項4に記載のフィードバック制御装置において、
前記遅れ補償器は、
前記第1のフィードバック制御器の出力を入力とし、
前記制御対象に対して与えた前記操作量に対する応答である前記制御対象の出力と前記第1のフィードバック制御器の出力に対する前記制御対象のモデルの出力とに基づいて、前記誤差を算出し、
算出した前記誤差に対して前記フィルタを作用させた結果と、前記第1のフィードバック制御器の出力に対する前記ノミナルプラントモデルの出力とに基づいて、前記遅れ補償器の出力を算出することを特徴とするフィードバック制御装置。 - 請求項4に記載のフィードバック制御装置において、
前記第3のフィードバック制御器の後段に、前記ノッチフィルタのノッチ周波数に中心周波数が一致するバンドパスフィルタを有し、
前記第3のフィードバック制御器の出力を、前記バンドパスフィルタで処理した出力を前記外乱補償器の出力とすることを特徴とするフィードバック制御装置。 - 請求項4に記載のフィードバック制御装置が、速度制御器であり、前記目標値は、モータ回転速度指令であり、前記遅れ補償器の出力は、検出したモータ回転速度であることを特徴とするモータ制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980044109.6A CN112334845B (zh) | 2018-10-09 | 2019-06-14 | 反馈控制方法和反馈控制装置 |
JP2020549954A JP7061684B2 (ja) | 2018-10-09 | 2019-06-14 | フィードバック制御方法、およびフィードバック制御装置 |
KR1020217001896A KR102430383B1 (ko) | 2018-10-09 | 2019-06-14 | 피드백 제어 방법, 및 피드백 제어 장치 |
EP19871120.2A EP3865957B1 (en) | 2018-10-09 | 2019-06-14 | Feedback control method and feedback control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-190884 | 2018-10-09 | ||
JP2018190884 | 2018-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075344A1 true WO2020075344A1 (ja) | 2020-04-16 |
Family
ID=70164219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023646 WO2020075344A1 (ja) | 2018-10-09 | 2019-06-14 | フィードバック制御方法、およびフィードバック制御装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3865957B1 (ja) |
JP (1) | JP7061684B2 (ja) |
KR (1) | KR102430383B1 (ja) |
CN (1) | CN112334845B (ja) |
WO (1) | WO2020075344A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115933528A (zh) * | 2022-11-03 | 2023-04-07 | 吉林大学 | 一种考虑通信时延的龙门机床大惯量动梁同步误差补偿方法 |
RU2812154C1 (ru) * | 2022-12-01 | 2024-01-24 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Устройство компенсации запаздывания управляющих сигналов дистанционно пилотируемых объектов |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7348526B2 (ja) * | 2020-03-02 | 2023-09-21 | シンフォニアテクノロジー株式会社 | 共振抑制制御装置 |
CN113114119B (zh) * | 2021-04-30 | 2022-06-21 | 广东电网有限责任公司电力科学研究院 | 新型反馈控制器的噪声干扰水平的在线判断方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017054595A (ja) | 2015-09-07 | 2017-03-16 | 住友電装株式会社 | コネクタ |
JP2018156557A (ja) * | 2017-03-21 | 2018-10-04 | 株式会社日立産機システム | 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置 |
JP2019082791A (ja) * | 2017-10-30 | 2019-05-30 | 株式会社日立産機システム | フィードバック制御方法、及びモータ制御装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0651805A (ja) * | 1992-07-31 | 1994-02-25 | Meidensha Corp | プラントの適応制御方法およびそれを実現する装置 |
US5970033A (en) * | 1997-09-12 | 1999-10-19 | Olympus Optical Co., Ltd. | Tracking control unit for optical disk drive capable of suppressing control residual derived from disturbance |
JP4340299B2 (ja) * | 2007-03-08 | 2009-10-07 | 株式会社日立産機システム | モータ制御装置、及びモータ制御システム |
JP5209442B2 (ja) * | 2008-10-31 | 2013-06-12 | ファナック株式会社 | コイル端部に端子を接続する端子接続方法および端子接続装置 |
JP5246328B2 (ja) * | 2009-03-24 | 2013-07-24 | 株式会社安川電機 | モータ制御装置 |
JP5899547B2 (ja) * | 2013-07-09 | 2016-04-06 | パナソニックIpマネジメント株式会社 | 電動機の制御装置 |
CN105159063A (zh) * | 2015-08-31 | 2015-12-16 | 南京航空航天大学 | 一种分数相位超前补偿重复控制器及控制方法 |
-
2019
- 2019-06-14 EP EP19871120.2A patent/EP3865957B1/en active Active
- 2019-06-14 JP JP2020549954A patent/JP7061684B2/ja active Active
- 2019-06-14 CN CN201980044109.6A patent/CN112334845B/zh active Active
- 2019-06-14 KR KR1020217001896A patent/KR102430383B1/ko active IP Right Grant
- 2019-06-14 WO PCT/JP2019/023646 patent/WO2020075344A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017054595A (ja) | 2015-09-07 | 2017-03-16 | 住友電装株式会社 | コネクタ |
JP2018156557A (ja) * | 2017-03-21 | 2018-10-04 | 株式会社日立産機システム | 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置 |
JP2019082791A (ja) * | 2017-10-30 | 2019-05-30 | 株式会社日立産機システム | フィードバック制御方法、及びモータ制御装置 |
Non-Patent Citations (4)
Title |
---|
"Development of a Highly-Responsive Acceleration Control for the Nissan LEAF", NISSAN TECHNIQUE, January 2012 (2012-01-01) |
FUKUNAGA, YOSUKE ET AL.: "Development of a Highly-Responsive Acceleration Control for the Nissan LEAF", NISSAN TECHNICAL REVIEW, pages 16 - 20, ISSN: 0385-9266 * |
WATANABE ET AL.: "Disturbance Rejection of Smith Predictor Control System", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 19, 1983, pages 187 - 192, XP055614371, DOI: 10.9746/sicetr1965.19.187 |
WATANABE, KEIJI ET AL.: "Disturbance Rejection of Smith Predictor Control System", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, pages 187 - 192, XP055614371, ISSN: 0453-4654, DOI: 10.9746/sicetr1965.19.187 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115933528A (zh) * | 2022-11-03 | 2023-04-07 | 吉林大学 | 一种考虑通信时延的龙门机床大惯量动梁同步误差补偿方法 |
RU2812154C1 (ru) * | 2022-12-01 | 2024-01-24 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Устройство компенсации запаздывания управляющих сигналов дистанционно пилотируемых объектов |
Also Published As
Publication number | Publication date |
---|---|
EP3865957A1 (en) | 2021-08-18 |
CN112334845A (zh) | 2021-02-05 |
EP3865957A4 (en) | 2022-07-06 |
JP7061684B2 (ja) | 2022-04-28 |
CN112334845B (zh) | 2023-08-22 |
EP3865957B1 (en) | 2023-08-09 |
KR102430383B1 (ko) | 2022-08-08 |
KR20210022696A (ko) | 2021-03-03 |
JPWO2020075344A1 (ja) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8040098B2 (en) | Position controller | |
JP4779969B2 (ja) | 電動機制御装置 | |
JP5120654B2 (ja) | サーボ制御装置 | |
WO2020075344A1 (ja) | フィードバック制御方法、およびフィードバック制御装置 | |
WO2015004885A1 (ja) | 電動機の制御装置 | |
US9143073B2 (en) | Position control device for electric motor | |
CN107924163B (zh) | 用于控制受控参数的系统 | |
EP2096507A1 (en) | Servo control apparatus and control method thereof | |
JP7039176B2 (ja) | 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置 | |
US10558176B2 (en) | Feedback control system with periodic disturbance suppression and resonance/disturbance suppression using μ-synthesis | |
JPWO2010024194A1 (ja) | 電動機の脈動抑制装置 | |
JP2017099084A (ja) | 多慣性共振システムにおける共振抑制制御装置 | |
JP2014007900A (ja) | モータ制御装置 | |
JP5362339B2 (ja) | モータ制御装置 | |
WO2009110368A1 (ja) | 移動体のフィードフォワード制御方法 | |
JP2009081985A (ja) | 慣性共振系を制御対象とする特性同定方法及びモータ制御装置 | |
WO2019087554A1 (ja) | フィードバック制御方法、及びモータ制御装置 | |
JP2004288012A (ja) | モータの位置制御装置 | |
JP2999330B2 (ja) | スライディングモード制御系を用いた制御方法 | |
JP5457894B2 (ja) | フルクローズド位置制御装置 | |
Lima et al. | First-order dead-time compensation with feedforward action | |
JPH10323071A (ja) | 2慣性共振系速度制御の2次直列補償器の係数決定方 法 | |
WO2019123573A1 (ja) | 電動機の制御装置 | |
JP5805016B2 (ja) | モータ制御装置 | |
JP2009268292A (ja) | モータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19871120 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020549954 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217001896 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019871120 Country of ref document: EP Effective date: 20210510 |