Nothing Special   »   [go: up one dir, main page]

WO2020071241A1 - ホスフィン遷移金属錯体、その製造方法及び抗がん剤 - Google Patents

ホスフィン遷移金属錯体、その製造方法及び抗がん剤

Info

Publication number
WO2020071241A1
WO2020071241A1 PCT/JP2019/037900 JP2019037900W WO2020071241A1 WO 2020071241 A1 WO2020071241 A1 WO 2020071241A1 JP 2019037900 W JP2019037900 W JP 2019037900W WO 2020071241 A1 WO2020071241 A1 WO 2020071241A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
metal complex
optionally substituted
phosphine
Prior art date
Application number
PCT/JP2019/037900
Other languages
English (en)
French (fr)
Inventor
一博 中對
千明 小野
宣彦 大原
恒雄 今本
小西 宏明
輝 油谷
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to CN201980052967.5A priority Critical patent/CN112585149B/zh
Priority to US17/269,318 priority patent/US11180516B2/en
Publication of WO2020071241A1 publication Critical patent/WO2020071241A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/505Preparation; Separation; Purification; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/650952Six-membered rings having the nitrogen atoms in the positions 1 and 4
    • C07F9/650994Six-membered rings having the nitrogen atoms in the positions 1 and 4 condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds

Definitions

  • the present invention relates to a novel phosphine transition metal complex, a method for producing the same, and an anticancer agent.
  • cisplatin has been well known as a substance having high anticancer activity against cancer cells, and is currently a major anticancer agent.
  • phosphine transition metal complexes including 1,2-bis (diphenylphosphino) ethane are known to be compounds having anticancer activity comparable to cisplatin (for example, Patent Document 1 and 2 etc.).
  • the present applicant has previously proposed an anticancer agent containing a phosphine transition metal complex represented by the following formula (a) (see Patent Document 3).
  • R 1 , R 2 , R 3 , and R 4 are an alkyl group or the like.
  • M is gold, copper or silver, and X ⁇ is an anion.
  • This anticancer agent has higher anticancer activity than a conventionally used anticancer agent such as a platinum preparation such as cisplatin or Taxol (registered trademark).
  • the phosphine transition metal complex of Patent Document 3 has low solubility in water. For this reason, when a drug solution is administered to a living body, the phosphine transition metal complex may be precipitated in the body, and the anticancer effect may be impaired. There is a problem.
  • an object of the present invention is to provide a novel phosphine transition metal complex having excellent solubility in an aqueous solvent, an industrially advantageous production method thereof, and an anticancer agent having excellent anticancer activity. It is in.
  • the present invention provides a phosphine transition metal complex represented by the following general formula (1).
  • R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 and R 9 each independently represent a linear or branched C 1 atom which may be substituted.
  • R 5 and R 10 each independently represent a monovalent substituent
  • n and y each represent a monovalent substituent.
  • M represents a transition metal atom selected from the group consisting of gold, copper and silver.
  • X ⁇ represents an anion.
  • the present invention provides the following general formula (2) (Wherein R 1 , R 2 , R 3 and R 4 are each independently an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms, A phosphine derivative represented by a good cycloalkyl group or an optionally substituted adamantyl group; R 5 represents a monovalent substituent; n represents an integer of 0 to 4); 3) (In the formula, R 6 , R 7 , R 8 and R 9 are each independently an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms, which may be substituted.
  • a cycloalkyl group or an optionally substituted adamantyl group, R 10 represents a monovalent substituent, and y represents an integer of 0 to 4), and gold, copper or silver With a transition metal salt of the following general formula (1) (In the formula, R 1 , R 2 , R 3 , R 4 , R 6 , R 7 , R 8 and R 9 each independently represent a linear or branched C 1 atom which may be substituted. Represents an alkyl group, a cycloalkyl group which may be substituted or an adamantyl group which may be substituted, R 5 and R 10 each independently represent a monovalent substituent, and n and y each represent a monovalent substituent.
  • M represents a transition metal atom selected from the group consisting of gold, copper and silver.
  • X ⁇ represents an anion.
  • the present invention further provides a drug, particularly an anticancer agent, containing the phosphine transition metal complex.
  • the present invention also provides the use of the phosphine transition metal complex for the manufacture of a medicament, especially an anticancer agent.
  • the phosphine transition metal complex of the present invention is a phosphine transition metal complex represented by the following general formula (1).
  • R 1 to R 4 and R 6 to R 9 each may be a linear or branched alkyl group having 1 to 10 carbon atoms, which may be substituted; And a cycloalkyl group or an adamantyl group which may be substituted. Further, R 1 to R 4 and R 6 to R 9 may be the same or different groups.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 4 and R 6 to R 9 include a methyl group, an ethyl group, an isopropyl group, an n-propyl group, an isobutyl group and an n-butyl group.
  • the cycloalkyl group represented by R 1 to R 4 and R 6 to R 9 preferably has 3 to 10 carbon atoms, and more preferably has 5 to 6 carbon atoms.
  • Examples of such a cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • the substituent may be an alkyl group, a nitro group, an amino group, Examples include a hydroxyl group, an alkoxy group, a fluoro group, a chloro group, a bromo group, and an iodo group.
  • Examples of the alkyl group as a substituent include the same alkyl groups having 1 to 10 carbon atoms represented by R 1 to R 4 and R 6 to R 9 described above.
  • Examples of the alkoxy group as a substituent include those in which an oxygen atom is bonded to a carbon atom at the bond hand side of an alkyl group having 1 to 10 carbon atoms represented by R 1 to R 4 and R 6 to R 9. .
  • the substituent includes a trifluoromethyl group and the like. .
  • R 1 to R 4 and R 6 to R 9 have a substituent and the substituent is a group having a carbon atom number
  • R 1 to R 4 , R 6 to R also include the carbon atom number of the substituent.
  • 9 has 10 or less carbon atoms.
  • R 1 to R 4 and R 6 to R 9 may be different groups or the same group.
  • R 1 to R 4 are all the same group (i)
  • R 1 and R 2 are the same group
  • R 3 and R 4 are different groups (ii)
  • R 1 and R 2 are different groups
  • R 3 and R 4 are also different groups (iii)
  • R 1 and R 2 are the same group
  • R 3 and R 4 are the same group (provided that , R 1 and R 2 and R 3 and R 4 are not the same group) (iv) and the like.
  • R 1 and R 2 are different groups, and R 3 and R 4 are also different groups (iii), because the symmetry is lost, the crystallinity is reduced, and a solvent such as water is used. From the viewpoint of excellent solubility.
  • R 1 and R 2 are different groups, and R 3 and R 4 are also different groups (iii)
  • one of R 1 and R 2 is a short-chain alkyl group having 2 or less carbon atoms.
  • the other is preferably a group having 3 or more carbon atoms
  • one of R 3 and R 4 is a short-chain alkyl group having 2 or less carbon atoms
  • the other is preferably a group having 3 or more carbon atoms
  • One of R 1 and R 2 is a methyl group, and the other is a substituted or unsubstituted branched alkyl group having 3 to 10 carbon atoms, a cycloalkyl group which may be substituted, or an adamantyl which may be substituted.
  • R 3 and R 4 is a methyl group, and the other is an optionally substituted branched alkyl group having 3 to 10 carbon atoms, an optionally substituted cycloalkyl group or an unsubstituted cycloalkyl group.
  • Adama that may be It is preferably a methyl group.
  • one of R 1 and R 2 is a methyl group, and the other is an optionally substituted isopropyl group, an optionally substituted t-butyl group, an optionally substituted cyclohexyl group, or an optionally substituted cyclohexyl group.
  • An adamantyl group, one of R 3 and R 4 is a methyl group, and the other is an optionally substituted isopropyl group, an optionally substituted t-butyl group, an optionally substituted cyclohexyl It is preferably an adamantyl group or an optionally substituted adamantyl group.
  • R 1 and R 2 are different groups and R 3 and R 4 are also different groups (iii), particularly, R 1 and R 2 and R 3 and R 4 are the same two kinds of groups.
  • the combination (iii +) is preferred from the viewpoint that the target compound is easily produced, the number of isomers is reduced when complexed, and the composition can be easily specified.
  • R 6 to R 9 are all the same group (I), R 6 and R 7 are the same group, and R 8 and R 9 are different groups (II), R 6 and R 7 are different groups, R 8 and R 9 are also different groups (III), R 6 and R 7 are the same group, and R 8 and R 9 are the same group ( However, R 6 and R 7 and R 8 and R 9 are not the same group) (IV) and the like.
  • the fact that R 6 and R 7 are different groups and that R 8 and R 9 are also different groups (III) is that the crystallinity is reduced due to the loss of symmetry and the solvent such as water is used. From the viewpoint of excellent solubility.
  • R 6 and R 7 are different groups and R 8 and R 9 are also different groups (III)
  • one of R 6 and R 7 is a short-chain alkyl group having 2 or less carbon atoms. It is preferable that the other is a group having 3 or more carbon atoms, and one of R 8 and R 9 is a short-chain alkyl group having 2 or less carbon atoms and the other is a group having 3 or more carbon atoms
  • One of R 6 and R 7 is a methyl group, and the other is an optionally substituted branched alkyl group having 3 to 10 carbon atoms, an optionally substituted cycloalkyl group, or an optionally substituted adamantyl.
  • R 8 and R 9 is a methyl group, and the other is an optionally substituted branched alkyl group having 3 to 10 carbon atoms, an optionally substituted cycloalkyl group or an optionally substituted Adamantyl group There it is preferable.
  • one of R 6 and R 7 is a methyl group, and the other is an optionally substituted isopropyl group, an optionally substituted t-butyl group, an optionally substituted cyclohexyl group or an optionally substituted cyclohexyl group.
  • An adamantyl group, one of R 8 and R 9 is a methyl group, and the other is an optionally substituted isopropyl group, an optionally substituted t-butyl group, an optionally substituted cyclohexyl It is preferably an adamantyl group or an optionally substituted adamantyl group.
  • R 6 and R 7 are different groups and R 8 and R 9 are also different groups (III)
  • a combination of two kinds of groups in which R 6 and R 7 are the same as R 8 and R 9 (III +) is preferable in that the target compound is easily produced, the number of isomers is reduced when complexed, and the composition can be easily specified.
  • R 1 and R 6 are the same group
  • R 2 and R 7 are the same group
  • R 3 and R 8 are the same group
  • R 4 and R 4 are the same group.
  • a compound in which R 9 is the same group and R 5 and R 10 are the same is preferable in that the target compound can be easily produced.
  • R 1 to R 4 and R 6 to R 9 in the general formula (1) include the following.
  • ( ⁇ ) R 1 and R 2 , R 3 and R 4 , R 6 and R 7 , and R 8 and R 9 are all combinations of an isopropyl group and a methyl group.
  • ( ⁇ ) R 1 and R 2 , R 3 and R 4 , R 6 and R 7 , and R 8 and R 9 are all combinations of a t-butyl group and a methyl group.
  • R 1 and R 2 and R 6 and R 7 are each a combination of a cyclohexyl group and a methyl group, and R 3 and R 4 and R 8 and R 9 are all a combination of an adamantyl group and a methyl group. .
  • All of R 1 to R 4 and R 6 to R 9 are isopropyl groups.
  • R 1 , R 2 , R 6 and R 7 are methyl groups, and R 3 , R 4 , R 8 and R 9 are a combination of t-butyl groups.
  • the combination of R 1 to R 4 and R 6 to R 9 is particularly preferably a combination of R 1 and R 2 , R 3 and R 4 , R 6 of the above ( ⁇ ).
  • a stereoselective method for synthesizing a phosphine moiety corresponding to a combination of a t-butyl group and a methyl group for each of R 7 , and R 8 and R 9 has been established. From the viewpoint that a complex of the formula (1) is obtained, and that the solubility in aqueous system is high and the target compound is easily produced.
  • R 5 and R 10 in the formula (1) each independently represent a monovalent substituent.
  • the monovalent substituent represented by R 5 and R 10 include a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group, a nitro group, an amino group, and a hydroxyl group. Groups, alkoxy groups, fluoro groups, chloro groups, bromo groups, iodo groups, silyl groups and the like.
  • the cycloalkyl group preferably has 3 to 8 carbon atoms, and the alkoxy group preferably has 1 to 8 carbon atoms.
  • the monovalent substituent represented by R 5 and R 10 is preferably an organic group, particularly preferably an organic group having 1 to 10 carbon atoms. It is preferable that R 5 and R 10 be the same group from the viewpoint of easy production of the phosphine transition metal complex.
  • N n and y in the formula (1) each independently represent an integer of 0 to 4, and preferably an integer of 0 to 2. It is preferable that n and y have the same number from the viewpoint of easy production of the phosphine transition metal complex. For example, both n and y may be 0.
  • M in the general formula (1) represents a transition metal atom selected from the group consisting of gold, copper and silver, and is preferably a gold atom from the viewpoint of use as an anticancer agent.
  • X ⁇ represents an anion, and examples thereof include a chloride ion, a bromine ion, an iodine ion, a boron tetrafluoride ion, a hexafluorophosphate ion, a perchlorate ion and the like.
  • X ⁇ is a chlorine ion, a bromine ion or an iodine ion from the viewpoint of increasing the aqueous solubility.
  • the particularly preferred phosphine transition metal complex represented by the general formula (1) is a compound having an asymmetric center on four phosphorus atoms in the formula from the viewpoint of synthesis.
  • a compound having an asymmetric center on a phosphorus atom represented by the following general formula (1 ′) is particularly preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 , n and X ⁇ have the same meanings as in the general formula (1) (provided that R 1 and R 2 are different from each other) Different groups, and R 3 and R 4 are different groups from each other).
  • An asterisk (*) indicates an asymmetric phosphorus atom.
  • isomers exist in the phosphine transition metal complex represented by the general formula (1) having four asymmetric phosphorus atoms including the phosphine transition metal complex represented by the general formula (1 ′).
  • the types of these isomers are not particularly limited. Specifically, these isomers are composed of a single enantiomer, such as (R, R) (R, R) or (S, S) (S, S), in which the stereochemistry on the phosphorus atom is And may be mutually composed of meso bodies, as in (R, S) (S, R), and as in (R, R) (S, R), It may be composed of one enantiomer and its meso form. Further, as in (R, R) (S, S), it may be composed of enantiomers having different absolute configurations on a phosphorus atom.
  • the phosphine transition metal complex represented by the general formula (1) having four asymmetric phosphorus atoms the absolute configuration on the phosphorus atom where R 1 and R 2 are bonded, and R 6 and R 7 are bonded.
  • the objective is to have the same absolute configuration on the phosphorus atom as the phosphorus atom and the same absolute configuration on the phosphorus atom where R 3 and R 4 are bonded and the absolute configuration on the phosphorus atom where R 8 and R 9 are bonded. Is preferable in that the compound is easily produced.
  • the absolute configuration on the phosphorus atom to which R 1 and R 2 in formula (1) are bonded is The absolute configuration on the phosphorus atom where R 3 and R 4 are bonded, the absolute configuration on the phosphorus atom where R 6 and R 7 are bonded, and the absolute configuration on the phosphorus atom where R 8 and R 9 are bonded are all the same. Certain compounds are preferred in that the target compound is easily prepared and when complexed, there is virtually no isomer and the purity is improved.
  • the phosphine transition metal complex represented by the general formula (1) includes a phosphine derivative represented by the following general formula (2), a phosphine derivative represented by the following general formula (3), and gold, copper, or silver. It is suitably produced by reacting with a transition metal salt.
  • R 1 , R 2 , R 3 , R 4 , R 5, and n are the same as those in the general formula (1), R 1 , R 2 , R 3 , R 4 , R 5, and n. Is synonymous with That, R 1, R 2, R 3, R 4, R 5 and n in the general formula (2), the R 1 of the general formula (1) in, R 2, R 3, R 4, R 5 And n respectively.
  • R 6, R 7, R 8, R 9, R 10 and y are the general formula (1) R 6, R 7 in, R 8, R 9, R 10 And y are synonymous. That, R 6, R 7, R 8, R 9, R 10 and y in the general formula (3), the general formula (1) R 6, R 7 in, R 8, R 9, R 10 And y respectively.
  • the phosphine transition metal complex represented by the general formula (1) is represented by the following general formula: It is produced by reacting the phosphine derivative represented by (2) with a transition metal salt of gold, copper or silver.
  • R 1 and R 6 are the same group
  • R 2 and R 7 are the same group
  • R 3 and R 8 are the same.
  • the phosphine derivative represented by the formula (2) and the phosphine derivative represented by the formula (3) are different compounds, the phosphine derivative represented by the formula (2) and the phosphine derivative represented by the formula (3) May be simultaneously reacted with a transition metal salt of gold, copper or silver, but the phosphine derivative represented by the formula (2) is reacted with a transition metal salt of gold, copper or silver, and the obtained reactant is reacted.
  • the reaction with the phosphine derivative represented by the formula (3) is preferred in terms of reaction efficiency.
  • the phosphine derivative represented by the general formula (2) and the phosphine derivative represented by the general formula (3) are known compounds and can be produced by a known production method (for example, Japanese Patent Application Laid-Open No. 2000-2000). 319288, JP-A-2012-17288, ORGANIC @ LETTERS, 2006, Vol. 8, No. 26, 6103-6106).
  • the method for producing a phosphine transition metal complex includes the steps of: Unlike R 1 and R 2 each other, unlike a phosphine derivative represented by the general formula R 3 and R 4 are different from each other (2), R 6 and R 7 together, the general R 8 and R 9 are different from each other A phosphine derivative represented by the formula (3) may be used.
  • an optically active substance of the phosphine derivative represented by the general formula (2) is required.
  • An optically active phosphine derivative represented by the following general formula (2 ′) may be used. (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and n have the same meanings as in the above formula (1 ′).
  • An asterisk (*) represents an asymmetric phosphorus atom.
  • the phosphine derivative represented by the general formula (2 ′) In order to obtain an optically active form of the phosphine derivative represented by the general formula (2 ′), it can be produced, for example, according to the following reaction scheme (1).
  • the phosphine derivative represented by the formula (2) and the phosphine derivative represented by the formula (3) other than the optically active substance represented by the general formula (2 ′) are also appropriately selected depending on the compound to be obtained.
  • the borane compound (3), the compound of the formula (6) or the compound of the formula (8) can be produced in the same manner as in the following reaction scheme (1), for example, by changing the compound. (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , n, and * have the same meanings as in the general formula (1 ′).
  • Z, X ′, and X ′′ represent a halogen atom.
  • the phosphine-borane compound (3) is deboranated with 1,4-diazabicyclo [2.2.2] octane (DABCO) or the like, then lithiated with a lithiating agent such as butyllithium, and then the reaction product (5 ) Is reacted with a dihalogenophosphine represented by the general formula (6): R 3 PX ′ 2 (wherein R 3 has the same meaning as described above; X ′ represents a halogen atom) to give a reaction product (7).
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • the transition metal salt according to the method for producing a phosphine transition metal complex of the present invention is a salt of a gold ion, a copper ion or a silver ion, and an anion, and a gold, copper or silver halide, a nitrate, a perchlorate, Examples thereof include tetrafluoroborates and hexafluorophosphates.
  • the transition metal salt of gold, copper or silver may be two or more transition metal salts different from one or both of a transition metal species and an anion.
  • Preferred transition metal salts of gold include, for example, chloroauric (I) acid, gold (I) chloride, and tetrabutylammonium chloride / gold (I) chloride (“Fifth Edition—Experimental Chemistry Lecture 21”, edited by the Japan Corporation) Chemical Society of Japan, published by Maruzen, published on March 30, 2004, pp. 366-380, Aust. @J. Chem., 1997, 50, 775-778).
  • Preferred transition metal salts of copper include, for example, copper (I) chloride, copper (I) bromide, copper (I) iodide (“Fifth Edition—Experimental Chemistry Course 21”, edited by the Chemical Society of Japan). Issuance Office: Maruzen, Issue Date: March 30, 2004, pp.
  • Preferred silver transition metal salts include, for example, silver chloride (I), silver bromide (I), silver iodide (I) (“Fifth Edition—Experimental Chemistry Course 21”, edited by the Chemical Society of Japan). Issuance Office: Maruzen; Issue Date: March 30, 2004, pp. 361-366).
  • the transition metal salt according to the method for producing a phosphine transition metal complex of the present invention may be an anhydride or a hydrate.
  • the molar ratio of the phosphine derivative represented by the general formula (2) to the transition metal of the transition metal salt of gold, copper, or silver is:
  • the phosphine derivative represented by the general formula (2) and a transition metal salt of gold, copper or silver are mixed with acetone, acetonitrile, methanol in a molar amount of 1 to 5 times, preferably 1.8 to 2.2 times.
  • reaction temperature -20 to 60 ° C., preferably 0 to 25 ° C.
  • reaction time 0.5 to 48 hours, preferably 1 to 3 hours
  • the reaction is preferably performed under an inert atmosphere such as nitrogen.
  • a transition metal of a transition metal salt of gold, copper or silver and a phosphine derivative represented by the formula (2) have a molar ratio of 1 : About 1: 1, for example, a molar ratio of 1: 0.9 to 1.1, and then the obtained reactant is mixed with a phosphine derivative represented by the formula (3) in a molar ratio of about 1: 1, for example, 1: 0. It can be produced by reacting at a molar ratio of 0.9 to 1.1 times.
  • the anion of the phosphine transition metal complex represented by the general formula (1) obtained by the method for producing a phosphine transition metal complex of the present invention is converted into another anion, and the general formula having a desired anion is obtained.
  • the phosphine transition metal complex represented by (1) can be produced.
  • a phosphine transition metal complex in which X ⁇ in the general formula (1) is a halogen ion is synthesized by the method for producing a phosphine transition metal complex of the present invention.
  • a phosphine transition metal complex in which X ⁇ is a halogen ion By reacting a phosphine transition metal complex in which X ⁇ is a halogen ion with an inorganic acid, an organic acid or an alkali metal salt thereof having a desired anion in a suitable solvent, the compound represented by the general formula (1)
  • a phosphine transition metal complex in which X ⁇ is a desired anion can be obtained (see JP-A-10-147590, JP-A-10-114784, and JP-A-61-10594).
  • the phosphine transition metal complex represented by the general formula (1) is more excellent in solubility in an aqueous solvent than the conventional phosphine transition metal complex represented by the above formula (a). Since the phosphine transition metal complex of the present invention has a high anticancer activity as described later, it can be used as an anticancer agent.
  • the aqueous solvent include water, a buffer, a physiological salt solution, and a mixture of these with various additives.
  • buffers and physiological saline solutions include, but are not limited to, those described below as buffers and physiological saline solutions used for liquid preparations.
  • the additives include, but are not limited to, those described below as additives used in solid preparations and liquid preparations.
  • the anticancer agent of the present invention contains one or more of the phosphine transition metal complexes represented by the general formula (1).
  • the anticancer agent of the present invention may be one or more of these isomers.
  • the type of cancer to which the anticancer agent of the present invention is applied is not particularly limited, for example, malignant melanoma, malignant lymphoma, gastrointestinal cancer, lung cancer, esophagus cancer, stomach cancer, colorectal cancer, rectal cancer, Colon cancer, ureteral tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, breast cancer, liver cancer, pancreatic cancer, testicular tumor, maxillary cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, ovarian cancer, uterine cancer , Prostate cancer, thyroid cancer, brain tumor, Kaposi's sarcoma, hemangiomas, leukemia, polycythemia vera, neuroblastoma, retinoblastoma, myeloma, cystoma, sarcoma, osteosarcoma, myoma, skin cancer, basal cell carcinoma And adenocarcinoma of the
  • the anticancer agent of the present invention can be administered to humans or animals in various forms. Preferred examples of animals other than humans include mammals.
  • the administration form of the anticancer agent of the present invention may be oral administration or parenteral administration.
  • Parenteral administration includes intravenous, intramuscular, subcutaneous or intradermal, intratumoral, intraperitoneal, intraarterial, intramedullary, intracardiac, intraarticular, intrasynovial, intracranial, intrathecal, or subarachnoid ( Injection, rectal administration, transmucosal administration, and the like.
  • Formulations suitable for oral administration include, for example, tablets, pills, granules, powders, capsules, solutions, suspensions, emulsions, syrups and the like.
  • Pharmaceutical compositions suitable for parenteral administration include, for example, injections, drops, nose drops, sprays, inhalants, suppositories, or ointments, creams, powder coatings, liquid coatings, patches, etc. And the like.
  • examples of the dosage form of the anticancer agent of the present invention include pellets for implantation and sustained-release preparations by known techniques.
  • the preferred administration form, preparation form and the like are appropriately selected by a physician according to the patient's age, sex, constitution, symptoms, treatment time and the like.
  • the anticancer agent of the present invention is a solid preparation such as tablets, pills, powders, powders, and granules
  • these solid preparations usually contain the phosphine transition metal complex represented by the general formula (1). It is produced by appropriately mixing with an appropriate additive according to the method.
  • additives include lactose, sucrose, D-mannitol, corn starch, synthetic or natural gum, excipients such as crystalline cellulose, starch, hydroxypropylcellulose, hydroxypropylmethylcellulose, gum arabic, gelatin, polyvinylpyrrolidone, etc.
  • Binders such as carboxymethylcellulose calcium, carboxymethylcellulose sodium, starch, corn starch, sodium alginate, lubricants such as talc, magnesium stearate, sodium stearate, calcium carbonate, sodium carbonate, calcium phosphate, phosphoric acid Fillers or diluents such as sodium are included. Tablets and the like may be subjected to sugar coating, gelatin, enteric coating, film coating, and the like, if necessary, using a coating agent such as hydroxypropylmethylcellulose, sucrose, polyethylene glycol, or titanium oxide. One or more of the above-mentioned additives and coatings can be used, respectively.
  • the anticancer agent of the present invention is a liquid preparation such as an injection, an eye drop, a nasal drop, an inhalant, a spray, a lotion, a syrup, a liquid, a suspension or an emulsion
  • these liquid preparations Is obtained by mixing the phosphine transition metal complex represented by the general formula (1) with a pharmaceutically acceptable liquid and dispersing or dissolving the complex.
  • a pharmaceutically acceptable liquid examples include water such as purified water, an appropriate buffer such as a phosphate buffer, physiological saline, a Ringer's solution, a physiological salt solution such as a rock solution, cocoa butter, sesame oil, olive oil, and the like.
  • the liquid preparation further contains various additives as necessary, for example, emulsifiers such as cholesterol, suspending agents such as gum arabic, dispersing aids, wetting agents, surfactants, dissolution aids such as sodium phosphate, Stabilizers such as sugar, sugar alcohol and albumin, preservatives such as paraben, tonicity agents such as sodium chloride, glucose and glycerin, buffers, soothing agents, anti-adsorption agents, humectants, antioxidants, coloring Agents, sweeteners, flavors, aromatic substances and the like may be added as appropriate.
  • emulsifiers such as cholesterol
  • suspending agents such as gum arabic
  • dispersing aids wetting agents
  • surfactants dissolution aids
  • dissolution aids such as sodium phosphate
  • Stabilizers such as sugar, sugar alcohol and albumin
  • preservatives such as paraben
  • tonicity agents such as sodium chloride, glucose and glycerin
  • soothing agents such as sodium chloride, glucose and
  • the surfactant examples include a nonionic surfactant, a cationic surfactant, and an anionic surfactant.
  • a nonionic surfactant examples include a plurality of polyoxyethylene hydrogenated castor oil-based surfactants and polyoxyethylene sorbitan fatty acid ester-based surfactants of polyethylene glycol type are widely used as pharmaceutical additives.
  • the above liquids and additives can be used alone or in combination of two or more.
  • the above liquid preparation is prepared, for example, as a sterilized aqueous solution, non-aqueous solution, suspension, liposome or emulsion.
  • the injection preferably has a physiological pH, particularly preferably a pH in the range of 6 to 8 at room temperature (25 ° C.).
  • the anticancer agent of the present invention is a semi-solid preparation such as a lotion, a cream, an ointment, etc.
  • these semi-solid preparations are obtained by converting the phosphine transition metal complex represented by the general formula (1) to a fat or a fatty oil , Lanolin, petrolatum, paraffin, wax, plaster, resin, plastic, glycols, higher alcohol, glycerin, water, emulsifier, suspending agent and the like.
  • the above additives can be used alone or in combination of two or more.
  • the content of the phosphine transition metal complex represented by the general formula (1) in the anticancer agent of the present invention varies depending on the dosage form, the severity, the intended dosage, and the like. Is from 0.001 to 80% by mass, preferably from 0.1 to 50% by mass, based on the total mass of the anticancer agent of the present invention.
  • the dose of the anticancer agent of the present invention is appropriately determined by a physician according to conditions such as the patient's age, sex, body weight, symptoms, and administration route.
  • the amount of the active ingredient per day is in the range of about 1 ⁇ g / kg to about 1,000 mg / kg, preferably in the range of about 10 ⁇ g / kg to about 10 mg / kg.
  • the above-mentioned dose of the anticancer agent may be administered once a day, or may be administered several times (eg, about 2 to 4 times).
  • the anticancer agent of the present invention can be used in combination with known chemotherapy, surgical treatment, radiation therapy, hyperthermia, immunotherapy and the like.
  • the anticancer agent in the use of the phosphine metal complex represented by the general formula (1) in the present invention all the descriptions of the above anticancer agent apply.
  • the phosphine transition metal complex represented by the general formula (1) has higher water solubility than the phosphine transition metal complex proposed in Patent Document 3, when it is used as an anticancer agent, the administration form and the preparation form There is an advantage that the dose can be reduced because the range of choice is wide, the amount is small, and it works effectively on the affected area.
  • a 200 mL four-necked flask was charged with 9.5 mL of concentrated hydrochloric acid, 65 mL of pure water, and 6.0 g (35 mmol) of 2-bromoaniline, and dissolved by heating. After cooling to 0 ° C., a solution of 2.46 g (35.1 mmol) of sodium nitrite previously dissolved in 7.5 mL of pure water was added dropwise over about 10 minutes. At first, the reaction solution which was in the form of a porridge became a pale yellow transparent liquid by stirring for 30 minutes. Next, when 12.5 g (59.8 mmol) of a 42 mass% HBF 4 aqueous solution was added dropwise over about 5 minutes, a pale yellow crystal was immediately precipitated.
  • Example 1 >> ⁇ Synthesis of bis [(R, R) -1,2-bis (t-butylmethylphosphino) benzene] gold (I) chloride (1′-1)> A (R, R) -1,2-bis (t-butylmethylphosphino) benzene (311 mg, 1.1 mmol) and tetrabutylammonium gold (I) dichloride (255 mg, (0.5 mmol), and the pressure and the introduction of nitrogen were repeated several times to replace the inside of the system with nitrogen. After adding dichloromethane (5 mL) and stirring for 2 hours, the solvent was distilled off with an evaporator, and the residue was washed with a small amount of water.
  • Sample preparation 40.01 mg, 50.04 mg, 100.02 mg for the samples obtained in Examples 1 and 2, and 10.01 mg, 20.02 mg, and 30.08 mg for the sample obtained in Comparative Example 1, respectively. did.
  • Each weighed sample was put into 150 ⁇ L of a surfactant and sufficiently stirred, and then 850 ⁇ L of a 5% by mass aqueous glucose solution was added and further stirred at room temperature (25 ° C.).
  • A549 human lung cancer cells
  • NCI-H460 human lung cancer cells
  • MKN45 human gastric cancer cells
  • NCI-N87 human gastric cancer cells
  • A2780 human ovarian cancer cells
  • A2780cis human ovarian cancer cells, Cisplatin-resistant cells
  • Roswell® Park® Medical® Institute medium RPMI1640
  • 10% by volume fetal calf serum 100 Units / mL penicillin and 100 ⁇ g / mL streptomycin under a 5% by volume carbon dioxide atmosphere during wet incubation.
  • the cells were cultured at 37 ° C.
  • the cells were washed with phosphate buffered saline (PBS), and after counting the number of cells, a 5 ⁇ 10 4 cells / ml suspension was prepared using the same medium. The suspension was added to a sterile 96-well microplate to a density of 2500 cells / well.
  • PBS phosphate buffered saline
  • the number of surviving cells was evaluated by the WST-8 assay. That is, a water-soluble tetrazolium salt WST-8 solution was added, and the cells were cultured for 1 hour in an incubator. The absorbance at 450 nm of water-soluble formazan generated by the enzymatic activity of mitochondria in the cells was measured using a microplate reader (Spectra Max PLUS; Molecular Devices). This was evaluated as the number of surviving cells, and the 50% cell growth inhibitory concentration (IC 50 ) was calculated. In calculating the IC 50 value, an average value of three similar experiments was used. Table 2 shows the results.
  • the phosphine transition metal complex of the present invention has excellent solubility in aqueous solvents and can provide an anticancer agent having higher anticancer activity than cisplatin, which is a conventionally known anticancer agent.
  • the method for producing a phosphine transition metal complex of the present invention can industrially advantageously produce the phosphine transition metal complex of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明のホスフィン遷移金属錯体は式(1)で表される。RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとR10とが同じ基であり、nとyとが同じ数であることが好ましい。前記ホスフィン遷移金属錯体は下記式(2)で表されるホスフィン誘導体及び(3)で表されるホスフィン誘導体と金、銅又は銀の遷移金属塩とを、反応させることで好適に得られる。(各式中、符号の意味は明細書を参照)

Description

ホスフィン遷移金属錯体、その製造方法及び抗がん剤
 本発明は、新規なホスフィン遷移金属錯体、その製造方法及び抗がん剤に関するものである。
 従来より、がん細胞に対して高い抗がん活性を有する物質として、シスプラチンがよく知られており、現在、主要な抗がん剤となっている。
 また、1,2-ビス(ジフェニルホスフィノ)エタンを初めとして種々のホスフィン遷移金属錯体は、シスプラチンに匹敵する抗がん活性を有する化合物であることが知られている(例えば、特許文献1及び2等参照)。
 また、本出願人は先に、以下の式(a)で表されるホスフィン遷移金属錯体を含有する抗がん剤を提案した(特許文献3参照)。式中、R、R、R、Rはアルキル基等である。またMは、金、銅又は銀であり、Xはアニオンである。この抗がん剤は、従来用いられてきた抗がん剤であるシスプラチン等の白金製剤やタキソール(登録商標)に比較して、高い抗がん活性を有するものである。
Figure JPOXMLDOC01-appb-C000005
WO96/17856A1 特開昭61-10594号公報 US2010/048894A1
 前記特許文献3のホスフィン遷移金属錯体は水に対して溶解性が低い。このため、薬剤溶液を生体に投与した場合に、体内でホスフィン遷移金属錯体の析出や、また抗がん効果が損なわれる可能性があるため、生体への投与形態もかなり限られたものになるという問題がある。
 上述の現況に鑑み、本発明の課題は、水系溶媒に対する溶解性に優れた新規なホスフィン遷移金属錯体、その工業的に有利な製造方法及び抗がん活性に優れた抗がん剤を提供することにある。
 本発明は、下記一般式(1)で表されるホスフィン遷移金属錯体を提供するものである。
Figure JPOXMLDOC01-appb-C000006
(式中、R 、R、R 、R及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。R及びR10は、それぞれ独立に、一価の置換基を示す。n及びyはそれぞれ独立に、0~4の整数を示す。Mは、金、銅及び銀の群から選ばれる遷移金属原子を示す。Xは、アニオンを示す。)
 また、本発明は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000007
(式中、R 、及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。Rは一価の置換基を示す。nは0~4の整数を示す。)で表されるホスフィン誘導体と、下記一般式(3)
Figure JPOXMLDOC01-appb-C000008
(式中、R 、R及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。R10は一価の置換基を示す。yは0~4の整数を示す。)で表されるホスフィン誘導体と、金、銅又は銀の遷移金属塩とを、反応させて、下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、R 、R、R 、R及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。R及びR10は、それぞれ独立に、一価の置換基を示す。n及びyはそれぞれ独立に、0~4の整数を示す。Mは、金、銅及び銀の群から選ばれる遷移金属原子を示す。Xは、アニオンを示す。)
で表されるホスフィン遷移金属錯体を得る、ホスフィン遷移金属錯体の製造方法を提供するものである。
 本発明は更に、前記ホスフィン遷移金属錯体を含有する医薬、特に抗がん剤を提供するものである。また本発明は、医薬、特に抗がん剤の製造のための前記ホスフィン遷移金属錯体の使用を提供するものである。
 以下、本発明を好ましい実施形態に基づき説明する。
 本発明のホスフィン遷移金属錯体は、下記一般式(1)で表されるホスフィン遷移金属錯体である。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(1)中、R~R、R~Rは、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。また、R~R、R~Rは、それぞれが同一の基であっても異なる基であってもよい。
 R~R、R~Rで表される炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、n-プロピル基、イソブチル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、イソペンチル基、n-ペンチル基、sec-ペンチル基、tert-ペンチル基、3-ペンチル基、イソヘキシル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、イソヘプチル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、第三ヘプチル基、n-オクチル基、イソオクチル基、第三オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、デシル基等が挙げられる。また、R~R、R~Rで表されるシクロアルキル基としては、炭素原子数3~10のものが好ましく、特に炭素原子数5~6のものがより好ましい。このようなシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。また、R~R、R~Rの何れかが、置換基を有するシクロアルキル基、置換基を有するアダマンチル基の場合、該置換基としては、アルキル基、ニトロ基、アミノ基、ヒドロキシル基、アルコキシ基、フルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられる。置換基としてのアルキル基は上記のR~R、R~Rで表される炭素原子数1~10のアルキル基と同様のものが挙げられる。また置換基としてのアルコキシ基はR~R、R~Rで表される炭素原子数1~10のアルキル基における結合手側末端の炭素原子に酸素原子が結合したものが挙げられる。R~R、R~Rで表される炭素原子数1~10の何れかが、置換基を有するアルキル基である場合、当該置換基としては、トリフルオロメチル基等が挙げられる。R~R、R~Rが置換基を有し、置換基が炭素原子数を有する基である場合、置換基の炭素原子数も含めてR~R、R~Rの炭素原子数が10以下であることが好ましい。
 前記R~R、R~Rは、互いに異なる基であっても同一の基であってもよい。例えばR~Rの組み合わせについては、
~Rが全て同一の基である(i)、
及びRが同一の基で、R及びRが互いに異なる基である(ii)、
及びRが互いに異なる基で、R及びRも互いに異なる基である(iii)、R及びRが同一の基で、R及びRも同一の基である(但し、R及びRと、R及びRは同一の基となることはない)(iv)等の組み合わせが挙げられる。
 本発明において、特にR及びRが互いに異なる基で、R及びRも互いに異なる基である(iii)ことが、対称性が崩れることにより結晶性が下がり、水などの溶媒に対して溶解性に優れるという観点から好ましい。
 特に、R及びRが互いに異なる基であり、R及びRも互いに異なる基である(iii)場合、R及びRの一方が炭素数2以下の短鎖アルキル基であって他方が炭素原子数3以上の基であり、且つR及びRの一方が炭素数2以下の短鎖アルキル基であって他方が炭素原子数3以上の基でありことが好ましく、とりわけ、R及びRの一方がメチル基であり他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であり、R及びRの一方がメチル基であり、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であることが好ましい。中でも特に、R及びRの一方がメチル基であり、他方が置換されていてもよいイソプロピル基、置換されていてもよいt-ブチル基、置換されていてもよいシクロヘキシル基又は置換されていてもよいアダマンチル基であり、R及びRの一方がメチル基であり、他方が置換されていてもよいイソプロピル基、置換されていてもよいt-ブチル基、置換されていてもよいシクロヘキシル基又は置換されていてもよいアダマンチル基であることが好ましい。
 また、R及びRが互いに異なる基で、R及びRも互いに異なる基である(iii)場合、特にR及びRと、R及びRとが同じ2種の基の組み合わせである(iii+)ことが、目的とする化合物を製造しやすい点、錯体化した時に異性体数が減り、組成の特定が容易になる点等から好ましい。
 同様に、R~Rの組み合わせについても、
~Rが全て同一の基である(I)、
及びRが同一の基で、R及びRが互いに異なる基である(II)、
及びRが互いに異なる基であり、R及びRも互いに異なる基である(III)、R及びRが同一の基で、R及びRも同一の基である(但し、R及びRと、R及びRは同一の基となることはない)(IV)等の組み合わせが挙げられる。
 本発明において、特にR及びRが互いに異なる基で、R及びRも互いに異なる基である(III)ことが、対称性が崩れることにより結晶性が下がり、水などの溶媒に対して溶解性に優れるという観点から好ましい。
 特に、R及びRが互いに異なる基で、R及びRも互いに異なる基である(III)場合に、R及びRの一方が炭素数2以下の短鎖アルキル基であって他方が炭素原子数3以上の基であり、且つR及びRの一方が炭素数2以下の短鎖アルキル基であって他方が炭素原子数3以上の基でありことが好ましく、とりわけ、R及びRの一方がメチル基で、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であり、R及びRの一方がメチル基で、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であることが好ましい。中でも特に、R及びRの一方がメチル基であり、他方が置換されていてもよいイソプロピル基、置換されていてもよいt-ブチル基、置換されていてもよいシクロヘキシル基又は置換されていてもよいアダマンチル基であり、R及びRの一方がメチル基であり、他方が置換されていてもよいイソプロピル基、置換されていてもよいt-ブチル基、置換されていてもよいシクロヘキシル基又は置換されていてもよいアダマンチル基であることが好ましい。
 また、R及びRが互いに異なる基で、R及びRも互いに異なる基である(III)場合、R及びRと、RとRとが同じ2種の基の組み合わせ(III+)であることが、目的とする化合物を製造しやすい点、錯体化した時に異性体数が減り、組成の特定が容易になる点等から好ましい。
 更に一般式(1)の化合物の中でも、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとR10とが同じ基であるものが、目的とする化合物を製造しやすい点から好ましい。
 本発明において一般式(1)におけるR~R、R~Rの好ましい組み合わせは、下記のものが挙げられる。
(α)RとR、RとR、RとR、及びRとRがいずれも、イソプロピル基とメチル基の組み合わせである。
(β)RとR、RとR、RとR、及びRとRがいずれも、t-ブチル基とメチル基の組み合わせである。
(γ)RとR及びRとRがいずれもシクロヘキシル基とメチル基の組み合わせであり、RとR及びRとRがいずれもアダマンチル基とメチル基の組み合わせである。
(δ)R~R、R~Rの全てがイソプロピル基である。
(ε)R、R、R及びRがメチル基であり、R、R、R及びRがt-ブチル基の組み合わせである。
 本発明において、前記一般式(1)の式中、R~R、R~Rの組み合わせは、特に前記(β)のRとR、RとR、RとR、及びRとRがいずれも、t-ブチル基とメチル基の組み合わせであるものが対応するホスフィン部位の立体選択的合成法が確立されており、異性体の混じりがなく高純度の錯体が得られる点と、水系の溶解度が高く、しかも目的とする化合物を製造しやすいという観点から好ましい。
 前記一般式(1)の式中のR及びR10は、それぞれ独立に一価の置換基を示す。R及びR10で表される一価の置換基としては、例えば、直鎖状又は分岐状であり且つ炭素原子数が1~6のアルキル基、シクロアルキル基、ニトロ基、アミノ基、ヒドロキシル基、アルコキシ基、フルオロ基、クロロ基、ブロモ基、ヨード基、シリル基等が挙げられる。シクロアルキル基の炭素原子数は3以上8以下であることが好ましく、アルコキシ基の炭素原子数は1以上8以下であることが好ましい。R及びR10で表される一価の置換基は有機基が好ましく、特に炭素原子数1以上10以下の有機基がより好ましい。R及びR10は同じ基であることがホスフィン遷移金属錯体の製造しやすさの点で好ましい。
 一般式(1)の式中のn及びyはそれぞれ独立に、0~4の整数を示し、0~2の整数であることが好ましい。n及びyは同じ数であることが、ホスフィン遷移金属錯体の製造しやすさの点で好ましい。例えばn及びyはいずれも0であってもよい。
 前記一般式(1)中のMは、金、銅及び銀の群から選ばれる遷移金属原子を示し、抗がん剤として用いる観点から金原子であることが好ましい。
 前記一般式(1)中、Xは、アニオンを示し、例えば、塩素イオン、臭素イオン、ヨウ素イオン、四フッ化ホウ素イオン、六フッ化リン酸イオン、過塩素酸イオン等が挙げられる。これらのうち、Xが塩素イオン、臭素イオン又はヨウ素イオンであることが水系の溶解度が高くなる観点から好ましい。
 本発明において、特に好ましい前記一般式(1)で表されるホスフィン遷移金属錯体は、合成上の観点から、式中の4つのリン原子上に不斉中心を有する化合物である。このような化合物として、とりわけ、下記一般式(1’)で表されるリン原子上に不斉中心を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 前記一般式(1’)中、R、R、R、R、R、n及びXは前記一般式(1)と同義である(但し、RとRがお互いに異なる基であり、RとRがお互いに異なる基である)。アスタリスク(*)は、不斉リン原子を示す。
 前記一般式(1’)で表されるホスフィン遷移金属錯体を含め、不斉なリン原子を4個有する一般式(1)で表されるホスフィン遷移金属錯体には、数多くの異性体が存在するが、本発明においては、これらの異性体の種類については、特に制限されるものではない。具体的には、これらの異性体は、リン原子上の立体が、(R,R)(R,R)や、(S,S)(S,S)のように、単一のエナンチオマーから構成されていてもよく、また、(R,S)(S,R)のように、お互いにメソ体から構成されていてもよく、また、(R,R)(S,R)のように、一つのエナンチオマーとそのメソ体から構成されていてもよい。また(R,R)(S,S)のように、リン原子上の絶対配置が異なるエナンチオマーから構成されていてもよい。
 不斉なリン原子を4個有する一般式(1)で表されるホスフィン遷移金属錯体としては、とりわけ、RとRが結合するリン原子上の絶対配置とRとRが結合するリン原子上の絶対配置とが同じであり、且つRとRが結合するリン原子上の絶対配置と、RとRが結合するリン原子上の絶対配置とが同じものが、目的とする化合物を製造しやすい点で好ましい。
 とりわけ上記の(R,R)(R,R)や、(S,S)(S,S)のように、式(1)中のRとRが結合するリン原子上の絶対配置とRとRが結合するリン原子上の絶対配置、RとRが結合するリン原子上の絶対配置、及び、RとRが結合するリン原子上の絶対配置が全て同じであるものが目的とする化合物の製造しやすさや錯体化したときに異性体が事実上存在せず、純度が向上する点で好ましい。
 前記一般式(1)で表されるホスフィン遷移金属錯体は、下記一般式(2)で表されるホスフィン誘導体と、下記一般式(3)で表されるホスフィン誘導体と、金、銅又は銀の遷移金属塩と、を反応させることにより好適に製造される。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 前記一般式(2)中、R、R、R、R、R及びnは、前記一般式(1)中のR、R、R、R、R及びnと同義である。すなわち、前記一般式(2)中のR、R、R、R、R及びnは、前記一般式(1)中のR、R、R、R、R及びnにそれぞれ相当する。
 同様に、一般式(3)中、R、R、R、R、R10及びyは、前記一般式(1)中のR、R、R、R、R10及びyと同義である。すなわち、前記一般式(3)中のR、R、R、R、R10及びyは、前記一般式(1)中のR、R、R、R、R10及びyにそれぞれ相当する。
 式(2)で表されるホスフィン誘導体と、式(3)で表されるホスフィン誘導体とが同一の化合物である場合、上記一般式(1)で表されるホスフィン遷移金属錯体は、下記一般式(2)で表されるホスフィン誘導体と、金、銅又は銀の遷移金属塩と、を反応させることにより製造される。この場合、一般式(1)で表されるホスフィン遷移金属錯体として、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとR10とが同じ基であり、n及びyが同じ数であるホスフィン遷移金属錯体(以下「対称体」ともいう。)が得られる。
 式(2)で表されるホスフィン誘導体と、式(3)で表されるホスフィン誘導体とが異なる化合物である場合、式(2)で表されるホスフィン誘導体及び式(3)で表わされるホスフィン誘導体を同時に金、銅又は銀の遷移金属塩と反応させてもよいが、式(2)で表されるホスフィン誘導体と金、銅又は銀の遷移金属塩とを反応させ、得られた反応物を式(3)で表わされるホスフィン誘導体と反応させることが反応効率の点で好ましい。
 前記一般式(2)で表されるホスフィン誘導体及び前記一般式(3)で表されるホスフィン誘導体は、公知の化合物であり、公知の製造方法により製造することができる(例えば、特開2000-319288号公報、特開2012-17288号公報、ORGANIC LETTERS,2006,Vol.8,No.26,6103-6106等参照)。
 また式(1)で表されるホスフィン遷移金属錯体として、4つのリン原子上に不斉中心を有する該ホスフィン遷移金属錯体の光学活性体を得るには、前記ホスフィン遷移金属錯体の製造方法において、RとRが互いに異なり、RとRが互いに異なる前記一般式(2)で表されるホスフィン誘導体と、RとRが互いに異なり、RとRが互いに異なる前記一般式(3)で表されるホスフィン誘導体を用いればよい。
 前記ホスフィン遷移金属錯体の光学活性体として例えば前記一般式(1’)で表されるホスフィン遷移金属錯体を得るためには、前記一般式(2)で表されるホスフィン誘導体の光学活性体である下記一般式(2’)で表されるホスフィン誘導体の光学活性体を用いればよい。
Figure JPOXMLDOC01-appb-C000014
  (式中、R、R、R、R、R及びnは前記一般式(1’)と同義。アスタリスク(*)は、不斉リン原子を示す。)
 前記一般式(2’)で表されるホスフィン誘導体の光学活性体を得るには、例えば、下記反応スキーム(1)に従って製造することができる。一般式(2’)で表される光学活性体以外の式(2)で表されるホスフィン誘導体及び式(3)で表されるホスフィン誘導体も、得ようとする化合物に応じて、適宜ホスフィン-ボラン化合物(3)、式(6)の化合物又は式(8)の化合物を異ならせる等して、下記反応スキーム(1)と同様に製造できる。
Figure JPOXMLDOC01-appb-C000015
(式中、R、R、R、R、R、n及び*は前記一般式(1’)と同義。Z、X’及びX’’は、ハロゲン原子を示す。)
 ホスフィン-ボラン化合物(3)を1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等で脱ボラン化した後、ブチルリチウム等のリチオ化剤でリチオ化し、次いでその反応生成物(5)を、一般式(6):RPX’(式中、Rは前記と同義。X’は、ハロゲン原子を示す)で表されるジハロゲノホスフィンと反応させ反応生成物(7)を得る。次いで、その反応生成物(7)と、一般式(8):RMgX’’(式中、Rは前記と同義。X’’は、ハロゲン原子を示す)で表されるグリニャール試薬と反応させる方法が挙げられる(特開2012-17288号公報参照)。ホスフィン-ボラン化合物(3)は特開2012-17288号公報記載の方法にて製造することができる。
 本発明のホスフィン遷移金属錯体の製造方法に係る遷移金属塩は、金イオン、銅イオン又は銀イオンと、アニオンとの塩であり、金、銅又は銀のハロゲン化物、硝酸塩、過塩素酸塩、四フッ化ホウ素酸塩、六フッ化リン酸塩等が挙げられる。また、金、銅又は銀の遷移金属塩は、遷移金属種又はアニオンのいずれか一方又は両方が異なる2種以上の遷移金属塩であってもよい。
 好ましい金の遷移金属塩としては、例えば、塩化金(I)酸、塩化金(I)、あるいはテトラブチルアンモニウムクロリド・塩化金(I)等(「第5版  実験化学講座21」、編者  社団法人日本化学会、発行所  丸善、発行日  平成16年3月30日、p366~380、Aust. J. Chemm., 1997, 50, 775-778頁参照)が挙げられる。また、好ましい銅の遷移金属塩としては、例えば、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)等(「第5版  実験化学講座21」、編者  社団法人日本化学会、発行所  丸善、発行日  平成16年3月30日、p349~361)が挙げられる。また、好ましい銀の遷移金属塩としては、例えば、塩化銀(I)、臭化銀(I)、ヨウ化銀(I)等(「第5版  実験化学講座21」、編者  社団法人日本化学会、発行所  丸善、発行日  平成16年3月30日、p361~366)が挙げられる。なお、本発明のホスフィン遷移金属錯体の製造方法に係る遷移金属塩は、無水物であっても含水物であってもよい。
 式(1)で表されるホスフィン遷移金属錯体として、前記対称体を得る場合、金、銅又は銀の遷移金属塩の遷移金属に対する前記一般式(2)で表わされるホスフィン誘導体のモル比が、1~5倍モル、好ましくは1.8~2.2倍モル量で、前記一般式(2)で表わされるホスフィン誘導体と、金、銅又は銀の遷移金属塩とを、アセトン、アセトニトリル、メタノール、エタノール、ジクロロメタン等の溶媒中で、反応温度-20~60℃、好ましくは0~25℃、反応時間 0.5~48時間、好ましくは 1~3時間で反応させることにより、前記対称体が得られる。反応中は窒素等の不活性雰囲気下とすることが好ましい。そして、反応終了後、必要に応じて、常法の精製を行うことができる。対称体以外の式(1)で表されるホスフィン遷移金属錯体を得る場合には、金、銅又は銀の遷移金属塩の遷移金属と、式(2)で表わされるホスフィン誘導体とをモル比1:1近傍、例えば1:0.9~1.1倍モル比で反応させた後、得られた反応物と式(3)で表わされるホスフィン誘導体とモル比1:1近傍、例えば1:0.9~1.1倍モル比で反応させて製造できる。
 また、本発明のホスフィン遷移金属錯体の製造方法により得られた前記一般式(1)で表されるホスフィン遷移金属錯体のアニオンを、他のアニオンに変換して、所望のアニオンを有する前記一般式(1)で表されるホスフィン遷移金属錯体を製造することができる。
 例えば、先ず、本発明のホスフィン遷移金属錯体の製造方法により、前記一般式(1)中のXが、ハロゲンイオンであるホスフィン遷移金属錯体を合成し、次いで、前記一般式(1)中のXが、ハロゲンイオンであるホスフィン遷移金属錯体と、所望のアニオンを有する無機酸、有機酸又はそれらのアルカリ金属塩とを、適切な溶媒中で反応させることにより、前記一般式(1)中のXが、所望のアニオンであるホスフィン遷移金属錯体を得ることができる(特開平10-147590号公報、特開平10-114782号公報、特開昭61-10594号公報参照)。
 前記一般式(1)で表されるホスフィン遷移金属錯体は、従来の上記式(a)で表されるホスフィン遷移金属錯体に比べ、水系溶媒に対する溶解性に優れている。本発明のホスフィン遷移金属錯体は、後述するように高い抗がん活性を有するので、抗がん剤として利用され得る。なお、上記水系溶媒としては、水、緩衝液、生理的塩類溶液のほか、これらに各種添加剤を添加したものが挙げられる。緩衝液や生理食塩類溶液の例としては、液状製剤に用いる緩衝液や生理食塩類溶液として後述するものが挙げられるが、これに限定されない。また添加剤としては固形製剤や液状製剤に用いる添加剤として後述するものが挙げられるが、これに限定されない。
 すなわち、本発明の抗がん剤は、前記一般式(1)で表されるホスフィン遷移金属錯体の1種又は2種以上を含有する。
 また、前記一般式(1)で表されるホスフィン遷移金属錯体のうち、リン原子上に不斉中心を有するホスフィン遷移金属錯体、すなわち、光学活性体である場合は、数多くの異性体が存在するが、本発明の抗がん剤は、それらの異性体のうちの1種又は2種以上のいずれでもよい。
 本発明の抗がん剤が適用される癌の種類は、特に限定されるものではなく、例えば、悪性黒色腫、悪性リンパ腫、消化器癌、肺癌、食道癌、胃癌、大腸癌、直腸癌、結腸癌、尿管腫瘍、胆嚢癌、胆管癌、胆道癌、乳癌、肝臓癌、膵臓癌、睾丸腫瘍、上顎癌、舌癌、口唇癌、口腔癌、咽頭癌、喉頭癌、卵巣癌、子宮癌、前立腺癌、甲状腺癌、脳腫瘍、カポジ肉腫、血管腫、白血病、真性多血症、神経芽腫、網膜芽腫、骨髄腫、膀胱腫、肉腫、骨肉腫、筋肉腫、皮膚癌、基底細胞癌、皮膚付属器癌、皮膚転移癌等が挙げられ、さらに悪性腫瘍ばかりでなく良性腫瘍にも適用され得る。
 また、本発明の抗がん剤は、癌転移を抑制するために使用されることができ、特に、術後の癌転移抑制剤としても有用である。
 本発明の抗がん剤の使用においては、種々の形態でヒト又は動物に、本発明の抗がん剤を投与することができる。ヒト以外の動物としては、哺乳類が好ましく挙げられる。
 本発明の抗がん剤の投与形態としては、経口投与でもよいし、非経口投与でもよい。
 非経口投与としては、静脈内、筋肉内、皮下又は皮内、腫瘍内、腹腔内、動脈内、髄内、心臓内、関節内、滑液嚢内、頭蓋内、髄腔内、又はくも膜下(髄液)等への注射、直腸内投与、経粘膜投与等が挙げられる。
 経口投与に適する製剤形態としては、例えば、錠剤、丸剤、顆粒剤、散剤、カプセル剤、液剤、懸濁剤、乳剤、シロップ剤などを挙げることができる。
 非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、点鼻剤、噴霧剤、吸入剤、坐剤、あるいは、軟膏、クリーム、粉状塗布剤、液状塗布剤、貼付剤等の経皮吸収剤等が挙げられる。
 その他、本発明の抗がん剤の製剤形態としては、埋め込み用ペレットや公知の技術により持続性製剤が挙げられる。
 上述したうち、好ましい投与形態や製剤形態等は、患者の年齢、性別、体質、症状、処置時期等に応じて、医師によって適宜選択される。
 本発明の抗がん剤が、錠剤、丸剤、散剤、粉剤、顆粒剤等の固形製剤の場合、これらの固形製剤は、前記一般式(1)で表されるホスフィン遷移金属錯体を、常法に従って適当な添加剤と適宜混合して製造される。添加剤としては、例えば、乳糖、ショ糖、D-マンニトール、トウモロコシデンプン、合成もしくは天然ガム、結晶セルロース等の賦形剤、デンプン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、アラビアゴム、ゼラチン、ポリビニルピロリドン等の結合剤、カルボシキメチルセルロースカルシウム、カルボシキメチルセルロースナトリウム、デンプン、コーンスターチ、アルギン酸ナトリウム等の崩壊剤、タルク、ステアリン酸マグネシウム、ステアリン酸ナトリウム等の滑沢剤、炭酸カルシウム、炭酸ナトリウム、リン酸カルシウム、リン酸ナトリウム等の充填剤又は希釈剤等が挙げられる。
 錠剤等は、必要に応じて、ヒドロキシプロピルメチルセルロース、白糖、ポリエチレングリコール、酸化チタン等のコーティング剤を用いて、糖衣、ゼラチン、腸溶被覆、フイルムコーティング等が施されても良い。
 前記の添加剤やコーティングはそれぞれ1種又は2種以上を用いることができる。
 本発明の抗がん剤が、注射剤、点眼剤、点鼻剤、吸入剤、噴霧剤、ローション剤、シロップ剤、液剤、懸濁剤、乳剤等の液状製剤である場合、これらの液状製剤は、前記一般式(1)で表されるホスフィン遷移金属錯体を、薬学的に許容される液体と混合し、前記錯体を分散又は溶解させて得られる。そのような液体としては、例えば、精製水等の水、リン酸緩衝液等の適当な緩衝液、生理的食塩水、リンゲル溶液、ロック溶液等の生理的塩類溶液、カカオバター、ゴマ油、オリーブ油等の植物油、鉱油、高級アルコール、高級脂肪酸、エタノール、多価アルコール等の有機溶媒が挙げられる。前記の液状製剤には更に、必要に応じて各種添加剤、例えばコレステロール等の乳化剤、アラビアゴム等の懸濁剤、分散助剤、浸潤剤、界面活性剤、リン酸ナトリウム等の溶解補助剤、糖、糖アルコール、アルブミン等の安定化剤、パラベン等の保存剤、塩化ナトリウム、ブドウ糖、グリセリン等の等張化剤、緩衝剤、無痛化剤、吸着防止剤、保湿剤、酸化防止剤、着色剤、甘味料、フレーバー、芳香物質等を適宜添加してもよい。界面活性剤としては、非イオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤が挙げられる。たとえば非イオン性界面活性剤のうちポリエチレングリコール型である、ポリオキシエチレン硬化ヒマシ油系、ポリオキシエチレンソルビタン脂肪酸エステル系の複数の界面活性剤が医薬品添加剤として汎用されている。
 前記の液体や添加剤はそれぞれ1種又は2種以上を組み合わせて用いることができる。
 前記の液体製剤は、例えば、滅菌された水溶液、非水溶液、懸濁液、リポソーム又はエマルジョン等として調製される。この際、注射剤は、生理学的なpHを有することが好ましく、室温(25℃)にて6~8の範囲内のpHを有することが特に好ましい。
 本発明の抗がん剤が、ローション剤、クリーム剤、軟膏等の半固形製剤の場合、これらの半固形製剤は、前記一般式(1)で表されるホスフィン遷移金属錯体を脂肪、脂肪油、ラノリン、ワセリン、パラフィン、蝋、硬膏剤、樹脂、プラスチック、グリコール類、高級アルコール、グリセリン、水、乳化剤、懸濁化剤等と適宜混和することにより製造される。前記の添加剤はそれぞれ1種又は2種以上を組み合わせて用いることができる。
 本発明の抗がん剤中の前記一般式(1)で表されるホスフィン遷移金属錯体の含有量は、投与形態、重篤度や目的とする投与量などによって様々であるが、一般的には、本発明の抗がん剤の全質量に対して0.001~80質量%、好ましくは0.1~50質量%である。
 本発明の抗がん剤の投与量は、例えば患者の年齢、性別、体重、症状、及び投与経路などの条件に応じて適宜医師により決定されるものであるが、一般的には、成人一日あたりの有効成分の量として1μg/kgから1,000mg/kg程度の範囲であり、好ましくは10μg/kgから10mg/kg程度の範囲である。上記投与量の抗がん剤は、一日一回で投与されてもよいし、数回(例えば、2~4回程度)に分けて投与されてもよい。
 本発明の抗がん剤の使用においては、既知の化学療法、外科的治療法、放射線療法、温熱療法や免疫療法などと組み合わせて、本発明の抗がん剤を用いることもできる。
 本発明における一般式(1)で表されるホスフィン金属錯体の使用における抗がん剤には、上述した抗がん剤の説明が全てあてはまる。
 前記一般式(1)で表されるホスフィン遷移金属錯体は、特許文献3で提案されているホスフィン遷移金属錯体に比べ、水溶性が高いので、抗がん剤にした場合、投与形態や製剤形態の選択の幅が広く、少量で、患部に効果的に作用するため、用量を少なくすることができるという利点を有する。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔製造例1〕
<(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼンの合成>
(R)-2-(ボラナト(t-ブチル)メチルホスフィノ)ブロモベンゼンの合成
 下記反応式に従い以下の手順で(R)-2-(ボラナト(t-ブチル)メチルホスフィノ)ブロモベンゼンを合成した。
Figure JPOXMLDOC01-appb-C000016
 200mLの4つ口フラスコに濃塩酸9.5mL、純水65mL、2-ブロモアニリン6.0g(35mmol)を仕込み、加熱して溶解させた。0℃に冷却した後、予め純水7.5mLに溶解させた亜硝酸ナトリウム2.46g(35.1mmol)の溶液を約10分かけて滴下した。初め、かゆ状であった反応液は30分撹拌を行うことで淡黄色透明液となった。次いで、42質量%HBF水溶液12.5g(59.8mmol)を約5分かけて滴下したところ、直ちに淡黄色結晶が析出した。30分撹拌した後、グラスフィルターにてろ過、純水30mLで洗浄し、さらにメタノール8mLとエーテル32mLの混合溶液にて洗浄した。その後、減圧乾燥を行い2-ブロモベンゼンジアゾニウムテトラフルオロホウ酸塩4.5g(収率48%)を得た。
 よく乾燥した30mLシュレンク管に(S)-t-ブチルメチルホスフィン-ボラン236mg(2.00mmol)を仕込み、Ar置換した後に脱水テトラヒドロフラン(THF)6mLを加え撹拌して溶解させた。-78℃に冷却した後、nBuLiのヘキサン溶液(1.6mol/L)1.5mL(2.4mmol)をゆっくり加えた。20分撹拌した後、前記の2-ブロモベンゼンジアゾニウムテトラフルオロホウ酸塩650mg(2.40mmol)を少量ずつ添加した。暗赤紫色透明液を2時間かけて室温へ昇温し、さらに室温で2時間撹拌を行った。食塩水と酢酸エチルを加えて有機層を分液し、食塩水で洗浄した。MgSOで乾燥後、溶媒を濃縮し、シリカゲルクロマトグラフィーにより精製を行い、(R)-2-(ボラナト(t-ブチル)メチルホスフィノ)ブロモベンゼンを60mg(収率11%)得た。得られた化合物の分析結果を以下に示す。
(分析結果)
1H NMR (500 MHz, CDCl3) δ: 0.20-1.05 (m, 3H), 1.19 (d, J=14.3 Hz, 9H), 1.91 (d,9.7 Hz, 3H), 7.32 (t, 8.7 Hz, 1H), 7.40 (t, 7.5 Hz, 1H), 7.64 (d, 9.0 Hz, 1H), 8.06 (dd, 12.6,12.9 Hz, 1H);
31P NMR (202 MHz, CDCl3) δ:38.3.
APCI-MS:m/z 275, 273 (M++H).
(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン(BenzP*)の合成
 下記反応式に従い、以下の手順で(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼンを合成した。
Figure JPOXMLDOC01-appb-C000017
 よく乾燥した50mLの2口フラスコに、前記の手順で得られた(R)-2-(ボラナト(t-ブチル)メチルホスフィノ)ブロモベンゼン1.365g(5.00mmol)と1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)589mg(5.25mmol)を仕込み、Ar置換した後に脱水テトラヒドロフラン10mLを加え撹拌して溶解させた。この溶液を穏やかな還流の下で約70℃にて2時間反応させた。その後-78℃へ冷却し、s-ブチルリチウムのヘキサン溶液(1.03mol/L)5.10mLをシリンジでゆっくり加えた。30分後、t-ブチルジクロロホスフィン875mg(5.5mmol)のTHF溶液3mlを一度に加えた。次いで1時間かけて室温へ昇温し、さらに1時間撹拌を行った。その後0℃へ冷却し、メチルマグネシウムブロミドのTHF溶液(0.96mol/L)12.5mlをシリンジで加えた後、室温へ昇温し、さらに1時間撹拌を行った。次いで大部分の溶媒を濃縮し、脱気したヘキサン25mlと15質量%NHCl水溶液10mlを加えた。ヘキサン層を分離した後、飽和食塩水で洗浄し、NaSOで乾燥した。その後溶媒を濃縮し、残渣の油状物に脱気したメタノールを加えた。生じた結晶をろ過し、少量の冷やしたメタノールで洗浄した後、減圧乾燥し、無色の結晶として、(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン539mg(収率38%)を得た。得られた化合物の分析結果を以下に示す。
(分析結果)
1H NMR (500 MHz, CDCl3) δ: 0.96 (t, J = 6.0 Hz, 18H), 1.23 (t, J = 3.2 Hz, 6H),7.26-7.35 (m, 2H), 7.48-7.50 (m, 2H)
13C NMR (125 MHz, CDCl3) δ: 5.69 (t, J = 6.0 Hz), 27.24 (t, 8.4 Hz), 30.37 (t, 7.2 Hz), 127.75 (S), 131.47 (S), 144.86 (t, 6.0 Hz)
31P NMR (202 MHz, CDCl3) δ: -25.20 (s).
APCI-MS:m/z 283 (M++H).
HRMS(TOF): Calcd.for C16H28NaP2: 305.1564, Found: 305.1472
Mp. 125~126℃
[α]D 24:+222.9 (c, 0.535, EtOAc)
{実施例1}
<ビス[(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド(1’-1)の合成> 
 撹拌子を入れた25mLの二口フラスコに(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン(311mg,1.1mmol)とテトラブチルアンモニウム金(I)ジクロリド(255mg,0.5mmol)を加え、減圧と窒素導入を数回繰り返して、系内を窒素置換した。ジクロロメタン(5mL)を加え2時間撹拌した後、エバポレーターで溶媒を留去し、残渣を少量の水で洗浄した。さらに、酢酸エチルで洗浄し、減圧乾燥することにより下記式(1’-1)で表されるビス[(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリドを淡黄色粉末として得た(383mg,粗収率96%)。
 この生成物を約80℃の水(7.5mL)に溶解し、ゆっくり室温まで冷却したところ、細かい針状結晶が析出した。さらに冷蔵庫中で一晩冷却後、析出した結晶をろ取、冷水で洗浄、デシケーター中で真空乾燥することにより式(1’-1)の化合物234mgを得た(収率59%)。
Figure JPOXMLDOC01-appb-C000018
(式(1’-1)の化合物の分析結果)
1H NMR (500 MHz, CDCl3) δ: 1.128 (m, 36H), 1.842 (s, 12H), 7.62-7.63 (m, 4H), 7.94-7.95 (m, 2H)
13C NMR (125 MHz, CDCl3) δ: 13.6 , 27.4, 32.5, 127.75 (S), 130.6, 131.7, 141.7-141.9(m)
31P NMR (202 MHz, CDCl3) δ: 20.6 (s).
DART-MS:m/z 761 (C32H56Au+P4), 515 (C16H28AuClP2H+), 479 (C16H28Au+P2)
{実施例2}
<ビス[(S,S)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド(1’-2)の合成>
 (R)-2-(ボラナト(t-ブチル)メチルホスフィノ)ブロモベンゼンの合成において、(S)-t-ブチルメチルホスフィン-ボランに代えて(R)-t-ブチルメチルホスフィン-ボランを用いた以外は、製造例1と同様な操作で(S,S)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼンを得た。
 次いで撹拌子を入れた25mLの二口フラスコに(S,S)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン(191mg,0.675mmol)とテトラブチルアンモニウム金(I)ジクロリド(164mg,0.32mmol)を加え、減圧と窒素導入を数回繰り返して、系内を窒素置換した。以後、実施例1と同様の操作を行い、式(1’-2)の化合物143mgを淡黄色結晶として得た(143mg,56%)。
Figure JPOXMLDOC01-appb-C000019
(式(1’-2)の化合物の分析結果)
H NMR 、13C NMR 、31P NMR、DART-MS分析は実施例1の立体のものと同等の結果が得られた。
{比較例1}
(1)<(R,R)-2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリンの合成>
 本出願人の先の出願に係る特開2007-56007号公報における実施例1の記載に従い、(R,R)-2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリンを得た。
(2)<ビス(2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリン)金(I)クロリドの合成>
 窒素ガスで置換した500ml二口フラスコに、前記の方法で得られた(R,R)-2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリン5.50g(16.4mmol)をTHF220mlに溶かした。ここにテトラブチルアンモニウム金ジクロリド4.19g(8.2mmol)を加え、室温で5時間撹拌した。生成した褐色沈殿をろ別し、次いでジクロロメタン42mlに溶かして水50mlで洗浄し、更に硫酸ナトリウムで乾燥した。これをろ過したのち溶液を乾固させた。この固体をジクロロメタン50mlに溶解し、ジエチルエーテル270mlを加え、0℃にしたところ固体が析出し、ビス(2,3-ビス(tert-ブチルメチルホスフィノ)キノキサリン)金(I)クロリドを得た。この化合物は、式(a-1)で表される化合物から構成されていた。
Figure JPOXMLDOC01-appb-C000020
(式(a-1)の化合物の分析結果)
31P-NMR(CDCl);13.6
・[α]=+195.3(c=0.5、メタノール、25℃)
<溶解性試験>
 実施例1及び2並びに比較例1で得られたホスフィン遷移金属錯体試料について界面活性剤水溶液に対する溶解性を評価した。溶解度の決定には下記のHPLC分析を用いた。
[分析装置]
 HPLCの分析装置には、Prominence HPLCシステム(LC-20AD、島津製作所)を用いた。検出器には、UV検出器SPD-20A(島津製作所、検出波長249nm)を、カラムには島津製作所製 XR-ODS(3mm i.d.×100mm、粒子径2.2μm)を用いた。移動相は、メタノール:水:TFA=90:10:0.05(v/v)、カラム温度40℃、流速0.5mL/分とした。
[試料調製]
 実施例1及び2によって得られたサンプルについては40.01mg、50.04mg、100.02mg、比較例1によって得られたサンプルについて、10.01mg、20.02mg及び30.08mgをそれぞれ正確に秤量した。秤量したサンプルそれぞれについて、界面活性剤150μL中に投入し十分に撹拌した後、5質量%グルコース水溶液 850μLを投入し室温(25℃)でさらに撹拌した。この液を0.2μmメンブレンフィルターに通じ、ろ液をメタノール:水(9:1)を用いて50体積倍希釈し、HPLC用分析用調製液とした。前記の界面活性剤としては、Tween80とプロピレングリコールの質量比2:1の混合物を用いた。
[分析]
 調製した試料をバイアル瓶に移し、オートサンプラーにセットし、それぞれ1μL注入することで分析を実施した。
[結果]
 秤量したサンプル重量と、得られたクロマトグラム中の当該ピークの面積との関係から、ホスフィン遷移金属錯体の溶解度を評価し、その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000021
<抗がん活性の評価>
 上記のようにして得られたビス[(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド(実施例1)及びビス[(S,S)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド(実施例2)の腫瘍細胞に対する活性評価を下記のように実施した。また、比較対象としてシスプラチンについても同様な試験を実施した。
 癌細胞としてA549(ヒト肺癌細胞)、NCI-H460(ヒト肺癌細胞)、MKN45(ヒト胃癌細胞)、NCI-N87(ヒト胃癌細胞)、A2780(ヒト卵巣癌細胞)、A2780cis(ヒト卵巣癌細胞、シスプラチン耐性細胞)を使用し、10体積%ウシ胎児血清及び100Units/mLペニシリン及び100μg/mLストレプトマイシンを補足したRoswell Park Memorial Institute培地(RPMI1640)中で、5体積%二酸化炭素雰囲気下、湿潤インキュベーション中、37℃で培養した。
 細胞はリン酸塩緩衝生理食塩水(PBS)で洗浄し、細胞数を算定後、同じ培地を用いて5×10細胞/ml懸濁液を調製した。滅菌96ウエルのマイクロプレートに前記の懸濁液を2500細胞/ウエルの密度となるように加えた。
 次に、ジメチルスルホキシドに完全に溶解させたビス[(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド(実施例1)、ビス[(S,S)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド(実施例2)又はシスプラチン溶液を加え、引き続き48時間インキュベータ内で培養した。
 その後、生存細胞数をWST-8アッセイにより評価した。即ち、水溶性テトラゾリウム塩WST-8溶液を加え、1時間インキュベータ内で培養した。細胞内のミトコンドリアの酵素活性により生成した水溶性ホルマザンの450nmの吸光度をマイクロプレートリーダー(Spectra Max PLUS;Molecular Devices)を用いて測定した。これを生存細胞数として評価し、50%細胞発育抑制濃度(IC50)を算出した。なお、IC50値の算出に当たっては、同様に実施した3回の実験値の平均値を採用した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000022
 表2の結果から明らかなように、ビス[(R,R)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリド及びビス[(S,S)-1,2-ビス(t-ブチルメチルホスフィノ)ベンゼン]金(I)クロリドはシスプラチンよりも高い抗がん活性を有することが分かった。
 本発明のホスフィン遷移金属錯体は、水系溶媒に対する溶解性に優れ、従来知られている抗がん剤であるシスプラチンよりも抗がん活性が高い抗がん剤を提供することができる。本発明のホスフィン遷移金属錯体の製造方法は、本発明のホスフィン遷移金属錯体を工業的に有利に製造できる。

Claims (12)

  1.  下記一般式(1)で表される、ホスフィン遷移金属錯体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R 、R、R 、R及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。R及びR10は、それぞれ独立に、一価の置換基を示す。n及びyはそれぞれ独立に、0~4の整数を示す。Mは、金、銅及び銀の群から選ばれる遷移金属原子を示す。Xは、アニオンを示す。)
  2.  RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RとR10とが同じ基であり、nとyとが同じ数である、請求項1に記載のホスフィン遷移金属錯体。
  3.  R及びRが互いに異なる基であり、R及びRが互いに異なる基であり、R及びRが互いに異なる基であり、R及びRが互いに異なる基である、請求項1又は2に記載のホスフィン遷移金属錯体。
  4.  R及びRと、R及びRとが同じ2種の基の組み合わせであり、R及びRと、RとRとが同じ2種の基の組み合わせである、請求項3に記載のホスフィン遷移金属錯体。
  5.  R及びRの一方がメチル基であり、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であり、
     R及びRの一方がメチル基であり、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であり、
     R及びRの一方がメチル基であり、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基であり、
     R及びRの一方がメチル基であり、他方が置換されていてもよい炭素原子数3以上10以下の分岐状アルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基である、請求項3又は4に記載のホスフィン遷移金属錯体。
  6.  一般式(1)の式中のRとR、RとR、RとR、及びRとRがいずれも、t-ブチル基とメチル基の組み合わせである、請求項1~5の何れか1項に記載のホスフィン遷移金属錯体。
  7.  一般式(1)の式中の4つのリン原子上に不斉中心を有しており、
     RとRが結合するリン原子上の絶対配置、RとRが結合するリン原子上の絶対配置、RとRが結合するリン原子上の絶対配置、及び、RとRが結合するリン原子上の絶対配置が全て同じである、請求項1~6の何れか1項に記載のホスフィン遷移金属錯体。
  8.  一般式(1)の式中のMは金原子である、請求項1~7の何れか1項に記載のホスフィン遷移金属錯体。
  9.  下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R 、及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基、又は置換されていてもよいアダマンチル基を示す。Rは一価の置換基を示す。nは0~4の整数を示す。)で表されるホスフィン誘導体と、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R 、R及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。R10は一価の置換基を示す。yは0~4の整数を示す。)
    で表されるホスフィン誘導体と、金、銅又は銀の遷移金属塩とを、反応させて、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R 、R、R 、R及びRは、それぞれ独立に、置換されていてもよい直鎖状若しくは分岐状の炭素原子数1~10のアルキル基、置換されていてもよいシクロアルキル基又は置換されていてもよいアダマンチル基を示す。R及びR10は、それぞれ独立に、一価の置換基を示す。n及びyはそれぞれ独立に、0~4の整数を示す。Mは、金、銅及び銀の群から選ばれる遷移金属原子を示す。Xは、アニオンを示す。)
    で表されるホスフィン遷移金属錯体を得る、ホスフィン遷移金属錯体の製造方法。
  10.  請求項1~8の何れか1項に記載のホスフィン遷移金属錯体を有効成分とする医薬。
  11.  請求項1~8の何れか1項に記載のホスフィン遷移金属錯体を含有する抗がん剤。
  12.  抗がん剤の製造のための、請求項1~8の何れか1項に記載のホスフィン遷移金属錯体の使用。
PCT/JP2019/037900 2018-10-03 2019-09-26 ホスフィン遷移金属錯体、その製造方法及び抗がん剤 WO2020071241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980052967.5A CN112585149B (zh) 2018-10-03 2019-09-26 膦过渡金属配位化合物、其制造方法和抗癌剂
US17/269,318 US11180516B2 (en) 2018-10-03 2019-09-26 Phosphine transition metal complex, method for producing same, and anticancer agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188266 2018-10-03
JP2018188266A JP6802232B2 (ja) 2018-10-03 2018-10-03 ホスフィン遷移金属錯体、その製造方法及び抗がん剤

Publications (1)

Publication Number Publication Date
WO2020071241A1 true WO2020071241A1 (ja) 2020-04-09

Family

ID=70055080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037900 WO2020071241A1 (ja) 2018-10-03 2019-09-26 ホスフィン遷移金属錯体、その製造方法及び抗がん剤

Country Status (4)

Country Link
US (1) US11180516B2 (ja)
JP (1) JP6802232B2 (ja)
CN (1) CN112585149B (ja)
WO (1) WO2020071241A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843993A (en) * 1997-03-14 1998-12-01 The Curators Of The University Of Missouri Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same
JP2007320909A (ja) * 2006-06-01 2007-12-13 Nippon Chem Ind Co Ltd ホスフィン遷移金属錯体、その製造方法及び抗癌剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110594A (ja) 1984-06-04 1986-01-18 スミスクライン・ベツクマン・コーポレイシヨン ホスフイノ‐炭化水素‐金、銀または銅錯体含有腫瘍細胞成長抑制医薬組成物
AU686918B2 (en) 1994-12-09 1998-02-12 Griffith University Anti-tumour agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843993A (en) * 1997-03-14 1998-12-01 The Curators Of The University Of Missouri Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same
JP2007320909A (ja) * 2006-06-01 2007-12-13 Nippon Chem Ind Co Ltd ホスフィン遷移金属錯体、その製造方法及び抗癌剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAKER, R. T. ET AL.: "Coinage metal-catalyzed hydroboration of imines", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 498, no. 2, 1995, pages 109 - 17, XP004023860, DOI: 10.1016/0022-328X(95)05499-F *

Also Published As

Publication number Publication date
JP2020055782A (ja) 2020-04-09
CN112585149A (zh) 2021-03-30
US11180516B2 (en) 2021-11-23
US20210253612A1 (en) 2021-08-19
CN112585149B (zh) 2023-08-11
JP6802232B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
KR101372659B1 (ko) 포스핀 전이 금속 착체, 그의 제조 방법 및 항암제
US8106186B2 (en) Transition metal phosphine complex, method for producing same, and anticancer agent containing transition metal phospine complex
KR101955135B1 (ko) 포스핀 전이 금속 착체를 함유하는 항암제의 제조 방법
WO2007066557A1 (ja) ホスフィン遷移金属錯体、その製造方法およびそれを含有する抗癌剤
JP5553275B2 (ja) 金属錯体およびこれを有効成分として含有する抗がん剤
WO2020071241A1 (ja) ホスフィン遷移金属錯体、その製造方法及び抗がん剤
JP5722233B2 (ja) 抗がん剤の製造方法
JP5646606B2 (ja) 抗がん剤の製造方法
JP5889550B2 (ja) 抗がん剤組成物
JP5161434B2 (ja) 抗癌剤
US7390915B1 (en) Phosphine transition metal complex having ferrocene skeleton, process for making the same, and anti-cancer agent
US10494391B2 (en) Two-component anti-cancer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869016

Country of ref document: EP

Kind code of ref document: A1