Nothing Special   »   [go: up one dir, main page]

WO2020057665A1 - 波束失败恢复的处理方法及装置 - Google Patents

波束失败恢复的处理方法及装置 Download PDF

Info

Publication number
WO2020057665A1
WO2020057665A1 PCT/CN2019/107334 CN2019107334W WO2020057665A1 WO 2020057665 A1 WO2020057665 A1 WO 2020057665A1 CN 2019107334 W CN2019107334 W CN 2019107334W WO 2020057665 A1 WO2020057665 A1 WO 2020057665A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
reference signal
failure recovery
frequency domain
domain bandwidth
Prior art date
Application number
PCT/CN2019/107334
Other languages
English (en)
French (fr)
Inventor
张淑娟
高波
鲁照华
李儒岳
陈艺戬
杨暐
谢武生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP24157801.2A priority Critical patent/EP4391624A3/en
Priority to AU2019341362A priority patent/AU2019341362A1/en
Priority to EP19863139.2A priority patent/EP3855661A4/en
Publication of WO2020057665A1 publication Critical patent/WO2020057665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and device for processing beam failure recovery.
  • the core technology in the fifth-generation mobile communication technology-New Radio is based on high-frequency communication for data transmission, and high-frequency can provide large-bandwidth data communication.
  • high-frequency One of the main characteristics of high-frequency is that the fading is relatively large, and because the antenna at high frequency is relatively small, a high-gain beam can be formed by a large-scale antenna array.
  • the control channel sent by a base station to a terminal can only achieve partial coverage. After all the control channel beams of a terminal fail, the base station cannot send control information to the terminal. In order to quickly restore link communication, the terminal needs to perform a beam failure recovery process. For this reason, a beam failure recovery process is introduced in 5G-NR.
  • a method for processing beam failure recovery includes performing a predetermined operation on a beam failure recovery process when a frequency domain bandwidth part is switched.
  • a method for processing beam failure recovery includes: determining whether there is an association relationship between a partial switching of a frequency domain bandwidth and a beam failure recovery process; and according to a determination result, performing at least one of the following: The beam failure recovery process and the frequency domain bandwidth switching are described.
  • a method for processing beam failure recovery is provided, which includes determining a beam failure recovery parameter correspondence relationship between N sets of first-type beam failure recovery parameters and M sets of second-type beam failure recovery parameters. Performing at least one of the following according to the correspondence relationship between the beam failure recovery parameters: a beam failure recovery process and a frequency domain bandwidth partial switching; wherein N and M are positive integers.
  • a method for processing beam failure recovery which includes a beam failure recovery process according to at least one of a beam failure recovery parameter and a preset rule, wherein the beam failure recovery parameter satisfies The preset rules are described.
  • a processing apparatus for recovering a beam failure which includes a processing module configured to perform a predetermined operation on a process of recovering a beam failure when a frequency domain bandwidth part is switched.
  • a processing apparatus for beam failure recovery including: a judgment module configured to judge whether there is an association relationship between a partial switching of a frequency domain bandwidth and a beam failure recovery process; the switching module is configured to be based on As a result of the judgment, at least one of the following is performed: the beam failure recovery process and the frequency domain bandwidth partial switching.
  • a processing apparatus for beam failure recovery including: a determining module configured to determine beams between N sets of first-type beam failure recovery parameters and M sets of second-type beam failure recovery parameters. Correspondence between failure recovery parameters; the operation module is configured to perform at least one of the following based on the beam failure recovery parameter correspondence: a beam failure recovery process and a frequency domain bandwidth partial switching; where N and M are positive integers.
  • a processing apparatus for recovering a beam failure including: a recovery module configured to perform a beam failure recovery process according to at least one of a beam failure recovery parameter and a preset rule, wherein the beam The failure recovery parameter satisfies the preset rule.
  • a storage medium stores a computer program, and the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, wherein the computer program is stored in the memory, and the processor is configured to run the computer program to execute any one of the foregoing. Steps in a method embodiment.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for processing beam failure recovery according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for processing beam failure recovery according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for processing beam failure recovery according to an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram of a correspondence relationship between beam failure recovery parameters between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention
  • FIG. 6 is a second schematic diagram of a beam failure recovery parameter correspondence between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention
  • FIG. 7 is a third schematic diagram of a beam failure recovery parameter correspondence relationship between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention
  • FIG. 8 is a fourth schematic diagram of a beam failure recovery parameter correspondence relationship between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention
  • FIG. 9 is a fifth schematic diagram of a beam failure recovery parameter correspondence relationship between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention.
  • FIG. 10 is a flowchart of another method for processing beam failure recovery according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a beam failure recovery process according to an embodiment of the present invention.
  • FIG. 12 is a first schematic diagram of a BWP handover including a frequency domain bandwidth part in a reporting period of a beam failure indication information according to an embodiment of the present invention
  • FIG. 13 is a second schematic diagram of a BWP handover included in a reporting period of a beam failure indication information according to an embodiment of the present invention
  • FIG. 14 is a first schematic diagram of a process in which multiple frequency-domain bandwidth portions correspond to one beam failure according to an embodiment of the present invention
  • FIG. 15 is a second schematic diagram of a process in which multiple frequency-domain bandwidth portions correspond to one beam failure according to an embodiment of the present invention.
  • FIG. 16 is a first schematic diagram of a recovery process of multiple downlink frequency domain bandwidth portions corresponding to respective beam failures according to an embodiment of the present invention
  • FIG. 17 is a second schematic diagram of a recovery process of multiple downlink frequency domain bandwidth portions corresponding to respective beam failures according to an embodiment of the present invention.
  • FIG. 18 is a third schematic diagram of a recovery process of multiple downlink frequency domain bandwidth portions corresponding to respective beam failures according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a downlink BWP according to an embodiment of the present invention.
  • 20 is a schematic diagram of interaction between a sending and receiving node according to an embodiment of the present invention.
  • 21 is a structural block diagram of a processing apparatus for beam failure recovery according to an embodiment of the present invention.
  • FIG. 22 is a structural block diagram of another beam failure recovery processing apparatus according to an embodiment of the present invention.
  • FIG. 23 is a structural block diagram of another apparatus for processing beam failure recovery according to an embodiment of the present invention.
  • FIG. 24 is a structural block diagram of another beam failure recovery processing apparatus according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method and a device for processing beam failure recovery, so as to at least solve the problem of difficulty in recovering the beam failure in the related art for a part of bandwidth switching and multiple transmission nodes serving one terminal.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal 10 may include one or more (only one shown in FIG. 1) a processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) ) And a memory 104 for storing data, optionally, the above mobile terminal may further include a transmission device 106 and an input-output device 108 for communication functions.
  • a processor 102 the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 104 for storing data
  • the above mobile terminal may further include a transmission device 106 and an input-output device 108 for communication functions.
  • FIG. 1 is only a schematic, and it does not limit the structure of the above mobile terminal.
  • the mobile terminal 10 may further include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG. 1.
  • the memory 104 may be used to store a computer program, for example, a software program and module of application software, such as a computer program corresponding to a method for processing a beam failure recovery in the embodiment of the present invention.
  • the processor 102 runs the computer program stored in the memory 104.
  • the memory 104 may include a high-speed random access memory, and may further include a non-volatile memory, such as one or more magnetic storage devices, a flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely disposed with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the transmission device 106 is used for receiving or transmitting data via a network.
  • a specific example of the above network may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • FIG. 2 is a flowchart of a method for processing beam failure recovery according to an embodiment of the present invention. As shown in FIG. The process includes the following steps:
  • step S202 when the frequency-domain bandwidth part is switched, a predetermined operation is performed on the beam failure recovery process.
  • the timer includes at least one of the following timers: a beam failure detection timer, a beam failure recovery timer, and a response monitoring timer.
  • the counter includes at least one of the following counters: a beam failure detection counter and a reference signal indication information transmission counter.
  • the beam failure detection timer is used to control the interval between two consecutive beam failure indications. It should be noted that if the interval exceeds the beam failure detection timer and is greater than the count-up time of the beam failure detection timer, it indicates that the time between two consecutive beam failure indications is very long. Therefore, in the subsequent process No more accumulation.
  • a beam failure recovery timer is used to control the length of time for the first time a new beam is reported to the current beam failure recovery process. It should be noted that if the beam failure recovery timer expires, even if the new beam information is not successfully transmitted, the terminal can stop sending the new beam information to the base station.
  • the response monitoring timer is used to control the time from when the terminal sends a PRACH (Physical Random Access Channel) to the termination of the response of the monitoring base station. It should be noted that if the response monitoring timer expires, even if no response is received from the base station, the terminal no longer monitors, and at the same time, it considers that the PRACH sequence fails to be sent.
  • PRACH Physical Random Access Channel
  • a beam failure detection counter is used to accumulate beam failure indications received from the physical layer. When the beam failure detection counter reaches a preset count, a beam failure event is considered to occur, indicating that the terminal is selecting a new beam (ie, selecting a reference signal) and sending a PRACH to the base station according to the PRACH resources associated with the selected new beam.
  • the reference signal indication information transmission counter counts out. If the terminal sends a PRACH, the PDCCH (Physical Downlink Control Channel, PDCCH) is not detected in SS-BFR (Synchronisation Signal-Beam Failure Recovery). Physical downlink control channel), the count is incremented by one.
  • PDCCH Physical Downlink Control Channel
  • SS-BFR Synchronisation Signal-Beam Failure Recovery
  • the timer parameter is the maximum duration corresponding to the timer. When the duration after the timer starts exceeds the maximum duration corresponding to the timer, it indicates that the timer has timed out.
  • the counter parameter is a threshold value corresponding to the counter. When the count of the counter is greater than or equal to the threshold value, a predetermined operation is performed.
  • the terminal detects that the performance parameter of at least one reference signal in the reference signals in the beam failure detection reference signal set is not less than a preset performance threshold, it considers that the beam failure has not been detected, and continues in real time. Detecting the beam fails to detect a reference signal in the reference signal set. If the performance parameters of all the reference signals in the beam failure detection reference signal set are less than the preset performance threshold, the beam failure is detected and the physical layer of the terminal is directed to the MAC (Media Access Control). The layer reports the beam failure indication information. At this time, the count value of the beam failure detection counter is incremented by one.
  • MAC Media Access Control
  • the MAC layer of the terminal instructs the physical layer to select a reference signal performance parameter in the candidate reference signal set that is greater than a preset performance threshold.
  • the resource index information of these reference signals and the RSRP (Reference Signaling Power) of the reference signals are reported to the MAC layer.
  • the aforementioned reference signal includes at least one of the following: a measurement reference signal, a demodulation reference signal, and a synchronization signal.
  • a first type of predetermined operation is performed on a beam failure recovery process, and the first type of predetermined operation includes at least one of the following: performing a beam failure detection reference signal set Update to use the beam failure detection reference signal set in the switched frequency domain bandwidth portion; Update the candidate reference signal set to use the candidate reference signal set in the switched frequency domain bandwidth portion; Switched frequency domain bandwidth
  • the initial value of the timer in the part is the state value of the timer in the frequency domain bandwidth part before the handover; the initial value of the counter in the frequency domain bandwidth part after the handover is the state of the counter in the frequency domain bandwidth part before the handover.
  • determining a first correspondence between a first type of reference signal and a second type of reference signal wherein the first type of reference signal belongs to a beam failure detection reference signal set in a frequency domain bandwidth portion before handover, and the first The second type of reference signal belongs to the set of beam failure detection reference signals in the frequency domain bandwidth portion after the handover; the third type of reference signal is determined The second correspondence between the fourth type of reference signals, wherein the third type of reference signals belong to the candidate reference signal set in the frequency domain bandwidth portion before handover, and the fourth type of reference signals belong to the frequency domain bandwidth after handover Candidate reference signal set in section.
  • the beam failure detection reference signal set is a reference signal set used for beam failure detection.
  • a second type of predetermined operation is performed on a beam failure recovery process, and the second type of predetermined operation includes at least one of the following: updating a set of beam failure detection reference signals, Detect the reference signal set using the beam failure in the switched frequency domain bandwidth portion; update the candidate reference signal set to use the candidate reference signal set in the switched frequency domain bandwidth portion; stop the timer; set the counter to 0 .
  • the switching of the frequency domain bandwidth part satisfies at least one of the following: the frequency domain bandwidth part before the switching and the frequency domain bandwidth part after the switching correspond to the same beam failure recovery process; the frequency domain bandwidth part before the switching and the frequency domain after switching The bandwidth part corresponds to the same timer; the frequency domain bandwidth part before the handover and the frequency domain bandwidth part after the handover correspond to the same counter; the reference signal indication information of the beam failure recovery process and the index information of the frequency domain bandwidth part have no correspondence. Relationship; the beam failure recovery parameter in the frequency domain bandwidth portion before handover and the beam failure recovery parameter in the frequency domain bandwidth portion after handover have an association relationship.
  • the association relationship between the beam failure recovery parameter in the frequency domain bandwidth portion before handover and the beam failure recovery parameter in the frequency domain bandwidth portion after handover includes at least one of the following: the frequency domain bandwidth portion before handover and the frequency after handover
  • the configuration parameters of the timers in the domain bandwidth section are the same; the configuration parameters of the counters in the frequency domain bandwidth section before the switchover and the frequency domain bandwidth section after the switchover are the same; the frequency domain bandwidth section before the switchover and the switchover
  • the frequency-domain bandwidth portion of the frequency domain shares a set of beam failure recovery parameter configuration information.
  • a third type of predetermined operation is performed on the beam failure recovery process.
  • the third type of predetermined operation includes at least one of the following: starting or restarting the frequency-domain bandwidth after the switching. Part of the corresponding beam failure recovery process; unlocking the suspended beam failure recovery process for the frequency domain bandwidth part after the handover; suspending the beam failure recovery process for the frequency domain bandwidth part before the handover; the frequency domain bandwidth part before the handover.
  • the corresponding counter is paused and accumulated; the counter corresponding to the frequency-domain bandwidth part after the pause and accumulation is switched; when the counter corresponding to the frequency-domain bandwidth part after the switch is not turned on, the counter corresponding to the frequency-domain bandwidth part after the switch is turned on;
  • the timer corresponding to the previous frequency domain bandwidth part continues to run in the corresponding time period when the switched frequency domain bandwidth part is active; the timer corresponding to the frequency domain bandwidth part before the handover is paused; unlocking the suspended handover The timer corresponding to the frequency domain bandwidth part; the
  • Candidate reference signal set unlock reporting operation of suspended reference signal indication information, wherein the reference signal corresponding to the reference signal indication information belongs to the candidate reference signal set corresponding to the frequency domain bandwidth portion after the handover; pause in the beam failure search space
  • Monitoring operation of a control channel wherein the control channel includes confirmation information for reporting success of reference signal indication information corresponding to a frequency domain bandwidth portion before handover; unlocking the monitoring operation of the control channel in a beam failure search space that is suspended,
  • the control channel includes confirmation information for reporting the reference signal indication information corresponding to the frequency domain bandwidth portion after the handover; updating the beam failure detection reference signal set to use the beam failure detection corresponding to the frequency domain bandwidth portion after the handover
  • Reference signal set The candidate set of updated reference signal, the reference candidate set of the frequency domain signal corresponding to the portion of the bandwidth to use handover.
  • a fourth type of predetermined operation is performed on the beam failure recovery process, and the fourth type of predetermined operation includes at least one of the following: starting or restarting the frequency domain after the switching.
  • the domain bandwidth continues to accumulate; when the counter corresponding to the frequency domain bandwidth part after switching has not been turned on, the counter corresponding to the frequency domain bandwidth part after switching is turned on; the timer corresponding to the frequency domain bandwidth part before switching is in the frequency domain after switching
  • the bandwidth part is in the active state, it continues to run for a period of time; in the frequency domain bandwidth part after the handover, the reference signal indication information corresponding to the frequency domain bandwidth part before the handover is reported; the beam in the frequency domain bandwidth part after the handover Monitoring control channel in the failed search space, wherein the control
  • the beam failure detection counter may be set to zero if the corresponding beam failure detection timer times out during the pause accumulation of the beam failure detection counter.
  • the beam failure detection counter if the beam failure detection counter is unlocked after the accumulation is suspended, it means that the accumulation function of the beam failure detection counter is unlocked, and at the same time, the initial value of the beam failure detection counter is the count value of the beam failure detection counter at the time of suspension.
  • the timer if the timer is unlocked after being suspended, it means that the timer restarts running, and the time count of the timer that starts running is based on the time count at the time of the pause as an initial value;
  • the timer when the timer is started after being stopped, it means that the timer restarts running, and the time count of the timer that starts running is the maximum value or 0 value corresponding to the timer.
  • the beam failure recovery process when the beam failure recovery process is unlocked after being suspended, it indicates that the beam failure recovery process is restarted, and the timer, counter, and reference signal set corresponding to the beam failure recovery process are in the state at the time of the suspension. .
  • a beam failure event that is, the count of the beam failure detection counter of the MAC layer of the terminal is greater than or equal to a predetermined threshold
  • the terminal needs to report the reference signal selected from the candidate reference signal set on the beam failure reporting resource. Instructions. It should be noted that when a beam failure event is detected, it also means that the count of the beam failure detection counter obtained from the beam failure detection reference signal set, the beam failure detection timer, and the beam failure detection counter parameters is greater than or equal to the pre-detection detection threshold.
  • the y beam failure recovery control channel resources correspond to y frequency-domain bandwidth portions and satisfy at least one of the following conditions: each beam failure recovery control channel resource quasi-co-location reference signal fails according to the beam
  • the reference signal indication information corresponding to the frequency domain bandwidth portion corresponding to the recovery control channel resource is determined; the quasi co-location reference signal of the downlink data channel scheduled by the control channel resource for each failure recovery recovery channel is based on the frequency domain corresponding to the recovery channel control resource failure.
  • the reference signal indication information corresponding to the bandwidth part is determined; the spatial filtering parameters of the uplink channel or signal scheduled for each beam failure recovery control channel resource are determined according to the reference signal indication information corresponding to the frequency domain bandwidth part corresponding to the transmission failure beam recovery control channel resource.
  • the spatial filtering parameters used are determined.
  • Reporting the reference signal indication information corresponding to the frequency domain bandwidth part before the handover in the frequency domain bandwidth part after the handover includes: transmitting the reference signal instruction information corresponding to the frequency domain bandwidth part before the handover in high-level signaling; after the handover;
  • the method includes at least one of the following: a frequency domain bandwidth part before handover and a frequency domain bandwidth part after handover respectively correspond to a beam failure recovery process; a frequency domain bandwidth part before handover and a frequency domain bandwidth part after handover respectively correspond to one A timer; the frequency domain bandwidth part before the handover and the frequency domain bandwidth part after the handover respectively correspond to a counter; there is a correspondence between the reference signal indication information and the frequency domain bandwidth part index information included in the beam failure recovery process; handover The former frequency domain bandwidth part and the switched frequency domain bandwidth part respectively correspond to a set of beam failure recovery parameter information.
  • the switching of the frequency domain bandwidth part includes at least one of the following: switching of the downlink frequency domain bandwidth part; switching of the uplink frequency domain bandwidth part; and switching of the frequency domain bandwidth part in a CC (Component Carrier, component carrier).
  • CC Component Carrier, component carrier
  • the timer includes at least one of the following timers: a beam failure detection timer, a beam failure recovery timer, and a response monitoring timer; the counter includes at least one of the following counters: a beam failure detection counter and a reference signal indication information transmission counter .
  • the count value of the beam failure detection counter includes: a beam failure detection count obtained according to a beam failure detection reference signal set in a frequency domain bandwidth part before handover and a beam failure detection reference signal set obtained in a frequency domain bandwidth part after handover Sum of beam failure detection counts.
  • the type of the predetermined operation is determined according to the following manner: the type of the predetermined operation is determined according to signaling information, wherein the predetermined operation is applied to switching between any two frequency domain bandwidth parts, or the predetermined operation is applied To specify between two frequency domain bandwidth sections.
  • the method further includes determining whether the type of the predetermined operation is a first type of predetermined operation according to at least one of the following methods: determining whether a first correspondence relationship is satisfied between the first type of reference signal and the second type of reference signal, and The type of the predetermined operation is determined as a result, wherein the first type of reference signal belongs to a first beam failure detection reference signal set in a frequency domain bandwidth portion before handover, and the second type of reference signal belongs to a frequency domain bandwidth after handover And the second beam failure detection reference signal set in the section; and, determining whether a second correspondence relationship is satisfied between the third type of reference signal and the fourth type of reference signal, and determining the type of the predetermined operation according to the determination result, wherein the first The three types of reference signals belong to the first candidate reference signal set in the frequency domain bandwidth portion before handover, and the fourth type of reference signals belong to the second candidate reference signal set in the frequency domain bandwidth portion after handover.
  • the first type of predetermined operation when there is a corresponding relationship between the first reference signal set and the reference signals in the second reference signal set, the first type of predetermined operation is adopted; each reference signal in the first reference signal set is in the second When at least one reference signal with a corresponding relationship exists in the reference signal set, the first type of predetermined operation is adopted; wherein the first reference signal set is the first beam failure detection reference signal set, and the second reference signal The set is the second beam failure detection reference signal set, the correspondence is the first correspondence, and / or the first reference signal set is the first candidate reference signal set, and the second reference signal The set is the second candidate reference signal set, and the correspondence relationship is the second correspondence relationship.
  • the two reference signals with the reference signal correspondence relationship satisfy at least one of the following: determining the link performance of a link according to the two reference signals with the reference signal correspondence relationship; the two reference signals with the reference signal correspondence relationship The reference signal satisfies a quasi-co-location relationship with respect to one or more quasi-co-location parameters; two reference signals having the reference signal correspondence are associated to the same reporting resource; wherein the reference signal correspondence includes at least one of the following : The first correspondence relationship and the second correspondence relationship; the two reference signals having the reference signal correspondence relationship include at least one of the following: a first type of reference signal and a second type having the first correspondence relationship A reference signal, a third type of reference signal and a fourth type of reference signal having the second correspondence.
  • the reporting resource is a reporting resource for reporting reference signal indication information selected in the candidate reference signal set.
  • the quasi-co-location parameters described above include at least one of the following parameters: Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (delay), and delay spread (delay) Extension), average gain (spatial gain parameter).
  • FIG. 3 is a flowchart of another method for processing beam failure recovery according to an embodiment of the present invention, as shown in FIG. 3. The process includes the following steps:
  • step S302 it is determined whether there is an association relationship between the frequency domain bandwidth switching and the beam failure recovery process.
  • step S304 according to the judgment result, at least one of the following is performed: the beam failure recovery process and the frequency domain bandwidth partial switching.
  • the beam failure recovery process and the frequency domain bandwidth part switching include at least one of the following: when the judgment result is yes, when the frequency domain bandwidth part switching occurs, the beam fails The restoration process performs a predetermined operation; when the judgment result is yes, the beam failure restoration process proceeds to a predetermined state, and the frequency domain bandwidth part is switched; when the judgment result is no, when the frequency domain bandwidth part is switched , The operation on the beam failure recovery process remains unchanged; when the judgment result is no, the progress status of the beam failure recovery process is not related to the switching of the bandwidth part.
  • switching the frequency-domain bandwidth portion includes at least one of the following: reporting a beam failure event is detected, and a report corresponding to a reference signal in a candidate reference signal set is reported
  • the uplink frequency domain bandwidth part where the resource is located is in an inactive state
  • the uplink frequency domain bandwidth part is switched to the frequency domain bandwidth part where the reported resource is located
  • the reference is included with the candidate reference signal set
  • the downlink frequency domain bandwidth portion where the signal is located is inactive
  • the downlink frequency domain bandwidth portion is switched to the frequency domain bandwidth portion of the reference signal included in the candidate reference signal set
  • the beam fails to search for the space
  • the downlink frequency-domain bandwidth portion of the channel is in an inactive state
  • the downlink frequency-domain bandwidth portion is switched to the frequency-domain bandwidth portion where the beam failure search space is located; after a reference signal is selected from the candidate reference signal set, the selected reference signal is selected.
  • FIG. 4 is a flowchart of another method for processing beam failure recovery according to an embodiment of the present invention, as shown in FIG. 4. As shown, the process includes the following steps:
  • Step S402 Determine a beam failure recovery parameter correspondence between N sets of first-type beam failure recovery parameters and M sets of second-type beam failure recovery parameters.
  • Step S404 Perform at least one of the following according to the correspondence relationship between the beam failure recovery parameters: a beam failure recovery process and a frequency domain bandwidth switching;
  • N and M are positive integers.
  • determining a beam failure recovery parameter correspondence between N sets of first-type beam failure recovery parameters and M sets of second-type beam failure recovery parameters including at least one of the following: determining the beam failure recovery parameters according to information in a frequency domain bandwidth portion Correspondence; determine the beam failure recovery parameter correspondence relationship according to control channel resource group information; determine the beam failure recovery parameter correspondence relationship according to CC information or CC group information; determine the beam parameter correspondence relationship according to data channel configuration information; Determine according to the set number index of the first type beam failure recovery parameters in N sets of first type beam failure recovery parameters and the set number index of the second type beam failure recovery parameters in M sets of second type beam failure recovery parameters The beam failure recovery parameter correspondence relationship; the beam exists between a set of the second type of beam failure recovery parameters and each of the N sets of the first type of beam failure recovery parameters Correspondence between failure recovery parameters; one set of the first type of beam failure recovery parameters and M sets of the second type The beam failure recovery parameter correspondence exists between each set of the second-type beam failure recovery parameters in the beam failure recovery parameters; and the second type corresponding
  • Determining the correspondence relationship of the beam failure recovery parameters according to the information in the frequency domain bandwidth portion including at least one of the following: a set of frequency domain bandwidth portions corresponding to a set of first-type beam failure recovery parameters and a set of second-type beam failure recovery parameters When the corresponding bandwidth part index of the corresponding frequency domain bandwidth part is the same, it is determined that the beam failure recovery parameter correspondence exists between the set of first-type beam failure recovery parameters and the set of second-type beam failure recovery parameters; a set of first type When the intersection between the time resource corresponding to the frequency domain bandwidth part corresponding to the beam failure recovery parameter is activated and the time resource corresponding to the set of the second type beam failure recovery parameter corresponding to the time domain bandwidth when the active state is not empty, determine There is a correspondence relationship between the set of beam failure recovery parameters of the first type and the set of beam failure recovery parameters of the second type.
  • the beam failure recovery parameter exists with the set of second-type beam failure recovery parameters according to the frequency domain bandwidth portion where the candidate reference signal set included in the second-type beam failure recovery parameters includes.
  • the second type of beam failure recovery parameters corresponding to the beam failure recovery parameters are described. According to the part of the frequency domain bandwidth where the beam failure search space included in the set of second type beam failure recovery parameters is determined, the second type beam failure recovery is determined. There is a first-type beam failure recovery parameter corresponding to the parameter corresponding to the beam failure recovery parameter.
  • a signal conflict indicates that the intersection of resources occupied by multiple signals is not empty, or that the first communication node of the airspace resources occupied by the multiple signals cannot be generated at the same time, or that of the airspace resources occupied by the multiple signals.
  • the intersection is empty, and the resources include at least one of the following: time domain resources, frequency domain resources, code domain resources, space domain resources, antenna ports, and quasi co-location reference signals.
  • One of the spatial domain resources corresponds to one spatial transmission filter parameter, or corresponds to a quasi-co-located reference signal of an associated spatial reception parameter.
  • Conflicting multiple control channel resources also includes the number of candidate control channels in the multiple control channel resources and the number of candidate control channels that exceeds the first communication node's blind detection in a time unit.
  • the signaling information Determining the second-type beam failure recovery parameter corresponding to each set of first-type beam failure recovery parameters according to the signaling information, including at least one of the following: the signaling information notifies each set of first-type beam failure recovery parameters and the M There is a correspondence relationship between beam failure recovery parameters among one or more sets of the second type of beam failure recovery parameters; the signaling information is notified that a reporting resource corresponds to Q candidate reference signals, and the Q candidate reference signals correspond to Q sets The first type of beam failure recovery parameter.
  • the beam failure recovery process and the frequency domain bandwidth partial switching include: performing a beam failure recovery process according to a set of first-type beam failure recovery parameters When a predetermined event occurs in the beam failure recovery process, the beam failure recovery is performed according to one or more sets of second-type beam failure recovery parameters corresponding to the set of beam failure recovery parameters corresponding to the set of first-type beam failure recovery parameters.
  • the fifth type of scheduled operation in the process is performed according to one or more sets of second-type beam failure recovery parameters corresponding to the set of beam failure recovery parameters corresponding to the set of first-type beam failure recovery parameters.
  • a beam failure event is detected according to a set of first-type beam failure recovery parameters, and a second-type beam failure recovery parameter corresponding to a set of beam failure recovery parameters corresponding to the first-type beam failure recovery parameters.
  • the frequency-domain bandwidth portion of the is in an inactive state, the frequency-domain bandwidth portion is switched to the frequency-domain bandwidth portion corresponding to the second-type beam failure recovery parameter corresponding to the set of first-type beam failure recovery parameters.
  • the first-type beam failure recovery parameter includes at least one of the following parameters: a beam failure detection signal set, a maximum duration corresponding to a beam failure detection timer, and a predetermined threshold value corresponding to a beam failure detection counter;
  • the second type beam Failure recovery parameters include at least one of the following parameters: candidate reference signal set, reporting resource correspondence between candidate reference signal set and reporting resource, beam failure search space, predetermined threshold corresponding to reference signal indication information transmission counter, beam failure The longest duration corresponding to the recovery timer and the longest duration corresponding to the listening timer;
  • the predetermined event in the beam failure recovery process is a detected beam failure event;
  • the fifth type of predetermined operation includes at least one of the following: Selecting a reference signal from a reference signal set, reporting reference signal indication information in a reporting resource, monitoring a control channel in a beam failure search space, determining quasi-co-located reference signal information for a predetermined channel based on the reported reference signal indication information, and reporting the reference signal Instruction space used
  • the transmission filter parameter determines a spatial
  • FIG. 5 is a first schematic diagram of a correspondence relationship between beam failure recovery parameters between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention.
  • a terminal is configured with three beam failure detection reference signal sets (that is, the first type of beam failure recovery parameters), and three sets of ⁇ candidate reference signal sets, reporting resources, reporting resources, and candidate reference signals.
  • beam failure search space, predetermined channel ⁇ when the terminal detects a beam failure event according to the i-th beam failure detection reference signal set, it corresponds to a beam failure recovery parameter corresponding to the i-th beam failure detection reference signal set.
  • FIG. 6 is a second schematic diagram of a correspondence relationship between beam failure recovery parameters between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention.
  • the first and second sets of first-type beam failure recovery parameters correspond to the first-type second-type beam failure recovery parameters, and according to the beam failure detection reference of at least one of the first and second sets
  • the fifth preset is made according to the ⁇ candidate reference signal set, reporting resource, correspondence between the reporting resource and candidate reference signal, beam failure search space, and predetermined channel ⁇ in the first set. operating.
  • FIG. 7 is a third schematic diagram of a correspondence relationship between beam failure recovery parameters between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention.
  • a beam failure detection reference signal set in any one or more of the first to third sets is detected, a beam failure event is detected according to the ⁇ candidate reference signal set in the first set, reporting resources, and reporting resources.
  • the candidate reference signal, the beam failure search space, and the predetermined channel ⁇ perform a fifth preset operation.
  • FIG. 8 is a fourth schematic diagram of a correspondence relationship between beam failure recovery parameters between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention.
  • one set of beam failure recovery parameters of the first type corresponds to two sets of beam failure recovery parameters of the second type, for example, when a beam failure event is detected based on the beam failure detection reference signal set in the first set of beam failure recovery parameters of the first type , Performing the fifth preset operation according to the first set or the second set of ⁇ candidate reference signal set, reporting resource, correspondence between the reporting resource and candidate reference signal, beam failure search space, predetermined channel ⁇ .
  • FIG. 9 is a fifth schematic diagram of a correspondence relationship between beam failure recovery parameters between N first-type beam failure recovery parameters and M second-type beam failure recovery parameters in an embodiment of the present invention.
  • one set of beam failure recovery parameters of the first type corresponds to three sets of beam failure recovery parameters of the second type. For example, when a beam failure event is detected based on the beam failure detection reference signal set in the first set of beam failure recovery parameters of the first type , Performing a fifth preset operation according to the first set, the second set, or the third set of ⁇ candidate reference signal set, reporting resource, correspondence between the reporting resource and candidate reference signal, beam failure search space, predetermined channel ⁇ .
  • the fifth preset operation is performed according to which set of second-type beam failure recovery parameters.
  • Different sets of first or second types of beam failure recovery parameters in Figs. 5 to 9 correspond to different downlink control channel resource groups / BWP (Bandwidth part, frequency domain bandwidth part) / CC / BWP group / CC group / TRP (Transmission (Reception Point, sending and receiving node), the three downlink control channel resource groups belong to one BWP.
  • the first-type beam failure recovery parameter includes a candidate reference signal set; the second-type beam failure recovery parameter includes at least one of the following parameters: a reporting resource correspondence between the candidate reference signal set and a reporting resource, a reporting resource, Beam failure search space, a predetermined threshold corresponding to the reference signal indication information transmission counter, the longest duration corresponding to the beam failure recovery timer, and the longest duration corresponding to the listening timer; the predetermined event includes selecting from a candidate reference signal set to a reference
  • the fifth type of predetermined operation includes at least one of the following: reporting reference signal indication information in a reporting resource, monitoring a control channel in a beam failure search space, and determining a quasi co-location reference of the predetermined channel according to the reported reference signal indication information
  • the signal information determines the spatial transmission filtering parameters of the predetermined channel or signal according to the spatial transmission filtering parameters used for reporting the reference signal indication information.
  • FIGS. 5 to 9 The correspondence relationship between the beam failure recovery parameters of the N sets of beam recovery parameters of the first type and the M sets of beam recovery parameters of the second type is shown in FIGS. 5 to 9.
  • multiple candidate reference signal sets correspond to a set of reporting resources.
  • different reporting resources may be associated with reference signals in different candidate signal sets, or may be a set of reporting resources.
  • One reported resource is associated with more than one reference signal, where different reference signals belong to different candidate reference signal sets; in Figs. 8 to 9, one candidate reference signal set corresponds to multiple reported resources.
  • the indication information of the selected reference signal in the set is reported according to the indication information of the selected reference signal according to one or more of the plurality of reporting resources, for example, according to which uplink BWP is currently activated, Reporting the indication information of the selected reference signal according to the reporting resource in the BWP, or according to the uplink BWP with the shortest BWP handover delay of the uplink BWP where the multiple reporting resources are located and the currently active uplink BWP. Escalation resources are reported.
  • the first-type beam failure recovery parameter includes a reporting resource correspondence between a candidate reference signal set and a reporting resource; the second-type beam failure recovery parameter includes a beam failure search space; and the predetermined event includes:
  • the reference signal indication information is reported in the reporting resources obtained by the one type of beam failure recovery parameter;
  • the fifth type of predetermined operation includes at least one of the following: monitoring the control channel in the beam failure search space, and determining the predetermined channel according to the reported reference signal indication information
  • the quasi-co-located reference signal information is determined according to the spatial transmission filter parameter used for reporting the reference signal indication information, and the spatial transmission filter parameter of the predetermined channel or signal is determined.
  • two candidate reference signal sets correspond to one beam failure search space.
  • the terminal can simultaneously report the reference signal indication information that belongs to the two candidate reference signal sets, in one beam
  • the base station sends two candidate reference signal set index information or reference signal indication information to the terminal in the control channel in the failed search space or in the data channel scheduled by the control channel in one beam failed search space.
  • the reference signal indication information is index information in a union of two candidate reference signal sets.
  • one candidate control channel corresponds to multiple beam failure search spaces.
  • the control channel is monitored in the beam failure search space in the BWP for determining reporting.
  • the reference signal indicates whether the reporting information is successfully reported, or monitors the control channel based on the beam failure search space in the downlink BWP with the shortest BWP handover delay between the downlink BWP where the multiple beam failure search spaces are located and the currently active downlink BWP.
  • the first-type beam failure recovery parameter includes: a beam failure search space; the second-type beam failure recovery parameter includes at least one of: predetermined channel information and predetermined signal information; and the predetermined event includes: failure in the beam
  • the monitoring control channel in the search space; the fifth type of predetermined operation includes at least one of the following: determining the quasi co-location reference signal information of the predetermined channel according to the reported reference signal indication information, and sending the space according to the reported reference signal indication information.
  • the filtering parameter determines a spatial transmission filtering parameter of a predetermined channel or signal.
  • a set of beam failure search spaces corresponds to a type of predetermined channel.
  • a quasi-co-location reference signal of the i-th downlink reservation channel is based on the
  • the reference signal indication information in the candidate reference signal set corresponding to the set of beam failure search spaces is acquired.
  • multiple sets of beam failure search spaces correspond to a class of predetermined channels, and in the process of listening to the control channel in any one of the multiple sets of beam failure search spaces, there is a correspondence with the multiple sets of beam failure search spaces.
  • the quasi-co-location reference signal of the related downlink predetermined channel is obtained according to the reference signal indication information in the candidate reference signal set corresponding to the beam failure search space.
  • a transmission space filter of an uplink predetermined channel that has a corresponding relationship with the multiple sets of beam failure search spaces is obtained according to a space transmission filter parameter used for sending reference signal instruction information corresponding to the beam failure search spaces.
  • different sets of first or second type beam failure recovery parameters correspond to different downlink control channel resource groups / BWP / CC / BWP groups / CC groups / TRP / data channel configuration information / uplink control Channel configuration information / demodulation reference configuration information.
  • Multiple downlink control channel resource groups belong to one BWP.
  • the frequency-domain bandwidth part is switched to more than one frequency domain bandwidth part.
  • the frequency-domain bandwidth portion is switched.
  • N sets of first-type beam failure recovery parameters and M sets of second-type beam failure recovery parameters satisfy at least one of the following conditions: one or more of the N-type first-type beam failure recovery parameters and the M-type second-type beam failure recovery parameters are Beam failure recovery parameters in CCs; N sets of beam failure recovery parameters of the first type and M sets of beam failure recovery parameters of the second type are parameters of one or more of the beam failure recovery processes; N sets of beam recovery of the first type failure Parameters correspond to N control channel resource groups; M sets of second-type beam failure recovery parameters correspond to M control channel resource groups; N sets of first-type beam failure recovery parameters correspond to N frequency-domain bandwidth portions; M sets of second-type beam failures The recovery parameters correspond to M frequency domain bandwidth portions; N sets of first-type beam failure recovery parameters correspond to N CCs; M sets of second-type beam failure recovery parameters correspond to M CCs; N sets of first-type beam failure recovery parameters correspond to N CC group; M sets of second-type beam failure recovery parameters correspond to M CC groups; N sets of first
  • the method satisfies at least one of the following conditions: N control channel resource groups belong to a frequency domain bandwidth part; M control channel resource groups belong to a frequency domain bandwidth part; N frequency domain bandwidth parts belong to a CC, where N Not greater than the number of candidate frequency domain bandwidth parts included in the CC that are the same as the transmission direction of the N frequency domain bandwidth parts; M frequency domain bandwidth parts belong to the same CC, where M is not greater than the CC
  • N frequency domain bandwidth parts include at least one of the following: initial bandwidth part, default bandwidth part; M frequency domain bandwidth parts include at least one of: initial bandwidth part, default bandwidth part .
  • the first-type beam failure recovery parameter and / or the second-type beam failure recovery parameter satisfy at least one of the following conditions: the first-type beam failure recovery parameter is configured in configuration information of an uplink frequency domain bandwidth part
  • the second type beam failure recovery parameter is configured in configuration information of a downlink frequency domain bandwidth portion; the resource corresponding to the first type beam failure recovery parameter is located in an uplink frequency domain bandwidth portion; the second type beam
  • the resource corresponding to the failure recovery parameter is located in a downlink frequency domain bandwidth portion.
  • the resource includes at least one of a resource occupied by a reference signal and a resource occupied by a channel.
  • the channel associated with the beam failure recovery control channel resource obtained from the set of second-type beam failure recovery parameters includes the set index information or reference signal indication information of the A set of first-type beam failure recovery parameters.
  • the set of index information of the first-type beam failure recovery parameter is expressed in at least one of the following ways: the frequency-domain bandwidth index information corresponding to the first-type beam failure recovery parameter; and the first-type beam failure recovery parameter corresponding to Control channel resource group information; CC index information corresponding to the first type beam failure recovery parameter; CC group index information corresponding to the first type beam failure recovery parameter; data channel corresponding to the first type beam failure recovery parameter Index information for configuration information.
  • the set of index information for reporting A set of the first type of beam failure recovery parameters is used to indicate at least one of the following information: according to the set of beam index recovery information corresponding to the first type of beam failure recovery parameters, the beam failure detection reference signal set detection is performed. A beam failure event has arrived; the reported reference signal indication information is the reference signal indication information corresponding to the set of index information.
  • determining the set of index information or The reporting operation of the reference signal indication information corresponding to the reference signal indication information is successfully completed.
  • a set of index information of the first type of beam failure recovery parameters and at least one of the following information of the I channel of the beam failure recovery control channel resource associated with the set of beam recovery parameters of the second type Corresponding relationships exist: demodulation reference signal port information of the control channel; demodulation reference signal sequence information of the control channel; time resources for monitoring the control channel; scrambling sequence of the control channel; format of the control information carried by the control channel; Demodulation reference signal information; scrambling sequence information of a data channel; wherein I is a positive integer less than or equal to A, the control channel belongs to a control channel in a beam failure recovery control channel resource, and the data channel belongs to the beam The data channel scheduled by the control channel in the control channel resource for failure recovery.
  • FIG. 10 is a flowchart of another method for processing beam failure recovery according to an embodiment of the present invention, as shown in FIG. 10. As shown, the process includes the following steps:
  • Step S1002 The communication node performs a beam failure recovery process according to at least one of a beam failure recovery parameter and a preset rule, wherein the beam failure recovery parameter satisfies the preset rule.
  • the preset rule includes at least one of the following: a beam failure detection reference signal set and a candidate reference signal set are located in a same downlink frequency domain bandwidth part; an uplink frequency domain bandwidth part where a resource is reported and a downlink frequency where a beam failure search space is located
  • the index information of the bandwidth part of the domain bandwidth part is the same; the intersection between the time resource where the uplink frequency domain bandwidth part where the resource is reported is active and the time resource where the downlink frequency domain bandwidth part where the beam failure search space is active is not empty;
  • the beam failure detection reference signal set, the candidate reference signal set, and the beam failure search space are located in the same downlink frequency domain bandwidth portion;
  • the association relationship between the reported resource and the candidate reference signal configuration information includes the frequency domain bandwidth index where the candidate reference signal is located Information;
  • the configuration information of the beam failure detection reference signal includes a frequency domain bandwidth index where the beam failure detection reference signal is located; at least two reporting resources exist in a set of reporting resources included in a frequency domain bandwidth, and the two reporting resources Associated candidate
  • a frequency-domain bandwidth includes a frequency-domain bandwidth portion, ie, a BWP, and a frequency-domain bandwidth corresponding to a component carrier is a frequency-domain bandwidth corresponding to a CC.
  • One frequency domain bandwidth index information includes at least one of BWP index information and CC index information.
  • the preset rule includes at least one of the following: the downlink initial frequency domain bandwidth part or the default bandwidth part includes at least one of the following: a beam failure detection reference signal set, a candidate reference signal set, and a beam failure search space; an uplink initial frequency domain bandwidth Part or the default bandwidth part includes reporting resources; reference signals in the beam failure detection reference signal set are located in the same downlink frequency domain bandwidth part; at least two reference signals exist in the candidate reference signal set, and the two reference signals are respectively located in two Different frequency domain bandwidths; at least one downlink frequency domain bandwidth portion includes at least one of: a beam failure detection reference signal set, a candidate reference signal set, and a beam failure search space; each downlink frequency domain located in a component carrier CC
  • the bandwidth part includes at least one of: a beam failure detection reference signal set, a candidate reference signal set, a beam failure search space, a beam failure detection timer, and a beam failure detection timer; each uplink frequency domain bandwidth part located in a CC includes At least one of the following: Resources, reporting the correspondence
  • the preset rule includes at least one of the following: one beam failure detection reference signal set corresponds to X candidate reference signal sets, and the X candidate reference signal sets are respectively located in X downlink frequency domain bandwidths; one candidate reference signal set Corresponds to Y sets of reporting resources, which are located in Y uplink frequency domain bandwidths.
  • Each set of reporting resources includes: one or more reporting resources; one reporting resource corresponds to Z candidate reference signals; one set The reported resources correspond to W sets of beam failure search spaces, which are respectively located in W downlink frequency domain bandwidths, where X, Y, Z, and W are all positive integers not less than 1.
  • One report resource corresponds to Z candidate reference signals, including at least one of the following: Z candidate reference signals correspond to Z downlink frequency domain bandwidth portions; Z candidate reference signals correspond to Z control channel resource groups; Z candidate reference signals correspond to Z downlink component carrier groups; Z candidate reference signals correspond to Z beam failure detection reference signal sets; when Z candidate reference signals have Z1 reference signal indication information to be reported, at least one of the following information corresponding to the Z1 reference signals is to be reported First, it is determined that a signal currently sent in the reporting resource corresponds to one of the Z1 reference signals: an active frequency domain bandwidth portion nearest to the current reporting resource, and Z1 reference signals among Z reference signals Index information, priority information of Z1 control channel resource groups corresponding to Z1 reference signals, priority information of Z1 downlink member groups corresponding to Z1 reference signals, and Z1 control channel resource groups corresponding to Z1 reference signals Index information and index information of Z1 downlink member groups corresponding to Z1 reference signals, where Z1 is a positive integer greater than 1
  • the preset rule includes at least one of the following: one downlink frequency domain bandwidth includes C sets of the beam failure recovery parameters; one uplink frequency domain bandwidth includes D sets of the beam failure recovery parameters; wherein both C and D are A positive integer not less than 1, m sets of beam failure recovery parameters correspond to at least one of m pieces of information: control channel resource group, frequency domain bandwidth group, channel or signal configuration information, where m is the C or the D.
  • the method satisfies at least one of the following: a downlink frequency domain bandwidth portion and an uplink frequency domain bandwidth portion belong to a SPcell (Special Cell); the communication node refuses to receive a beam failure recovery parameter that does not satisfy the preset rule;
  • the beam failure recovery process includes reporting frequency domain bandwidth index information, and the reported frequency domain bandwidth index information is used to indicate at least one of the following: a frequency domain bandwidth portion where the reported reference signal indication information is located, and corresponding according to the frequency domain bandwidth index information.
  • the beam failure detection reference signal detected a beam failure event.
  • the predetermined rule includes at least one of the following: one downlink frequency domain bandwidth part corresponds to E beam failure recovery processes, and the E beam failure recovery process corresponds to E control channel resource groups included in the one downlink frequency domain bandwidth part, where: E is a positive integer not less than 1.
  • the channel or signal carrying the reference signal indication information conflicts with other channels or signals, the channel or signal carrying the reference signal indication information has higher priority; the channel associated with the control channel resource is restored when the beam fails When the signal or signal conflicts with other channels or signals, the channel or signal associated with the control channel resource with beam failure recovery control channel has the highest priority; when the channel or signal associated with the control channel resource with beam failure recovery conflicts with other channels or signals, the beam fails to recover
  • the channel or signal associated with the control channel resource has a higher priority than other channels or signals of the first type, wherein the other channels or signals of the first type meet at least one reference signal in the beam failure detection reference signal set to satisfy a quasi co-location relationship; Beam failure recovery for control channel scheduling in control channel resources
  • the spatial filter parameters or channel signal line acquisition parameters in accordance with the spatial filter transmitting the reference signal transmission using the indication information; scheduling channel or a signal-free reference signal carries the indication information; information indicating a reference signal carrying higher layer signaling information.
  • the channels or signals associated with the beam failure recovery control channel resource include: control channels transmitted in the beam failure recovery control channel resource, and channels or signals scheduled by the control channel transmitted in the beam failure recovery control channel resource.
  • the predetermined rule includes at least one of the following: a beam failure recovery control channel resource included in the predetermined rule satisfies at least one of the following: only a dedicated control channel is monitored in the beam failure recovery control channel resource; and the control channel resource is recovered in a beam failure Only the downlink control information (DCI) DCI0_0 and DCI1_0 are monitored, and at least one of DCI0_1 and DCI1_1 is not monitored; the control channel in the control channel resource of the beam failure recovery control does not include TCI (Transmission, Configuration, Indicator, Transmission).
  • DCI downlink control information
  • Control indication) field the number of bits in the SRS (Sounding Reference Signal) resource indication field in the control channel in the beam failure recovery control channel resource is 0, where the SRS resource indication field is used to indicate the uplink data channel.
  • Spatial parameters the number of bits of a type of bit field in the control channel in the control channel resource in beam failure recovery is different from the number of bits of the type of bit field in the control channel in other control channel resources; the control channel resource is recovered in the beam failure Monitoring a reference signal sequence ; After receiving the predetermined reference signal sequence in the beam failure recovery control channel resource, perform at least one of the following operations: the reference signal indication information transmission process is successfully completed and the beam failure recovery timer is stopped; a quasi-co-located reference signal set includes The number of different quasi-co-located reference signals is not greater than the number of reference signals that can be included in the beam failure detection reference signal set, where a quasi-co-located reference signal set includes one of the control channel resource associations configured in a frequency domain bandwidth.
  • the beam failure recovery process satisfies the predetermined rule in a predetermined period of time, the predetermined period of time includes at least one of the following periods: the response monitoring timer operation period; the beam failure recovery timer operation period; after the reference signal indication information is sent Until the update message of the quasi-co-located reference signal of the control channel is received; after the reference signal indication information is transmitted, the quasi-co-located reference signal of the control channel is received in the data channel scheduled by the control channel in the control channel resource in the recovery of the beam failure.
  • Update message after sending the reference signal indication information until the control channel is received in the control channel resource for beam failure recovery; after sending the reference signal indication information until the control channel resource is received in the beam failure recovery control channel resource; from sending the reference signal instruction
  • the update message of the spatial filtering parameters of the uplink channel or signal is received; after the reference signal indication information is sent, the spatial filtering of the uplink channel or signal is received in the data channel scheduled by the control channel in the control channel resource after the beam failure is restored.
  • parameter Update message from control channel or predetermined sequence received in beam failure recovery control channel resource to receiving quasi-co-location reference signal update information of downlink control channel; control channel or predetermined sequence received in beam failure recovery control channel resource Update message to receive the spatial filtering parameters of the uplink channel or signal.
  • the method further includes: determining a reference signal included in the beam failure detection reference signal set according to a quasi-co-location reference signal of F control channel resources that satisfy predetermined characteristics, wherein the F control channel resources that satisfy the predetermined characteristics satisfy the following At least one: F control channel resources do not include beam failure recovery control channel resources; different control channel resources in the F control channel resources are associated with a quasi-co-location reference signal of a class of quasi-co-location parameters that do not satisfy the quasi-co-location relationship; F Control channel resources are proprietary control channel resources; F control channel resources are configured with quasi-co-location reference signals associated with a class of quasi-co-location parameters; F control-channel resources are associated with quasi-co-location reference signals with a class of quasi-co-location parameters At least one of F quasi-co-located reference signals with the largest bandwidth and F-quasi-co-located reference signals with the highest density in a quasi-co-located reference signal set of a class of quasi-co-located parameters associated in a control channel resource set;
  • the control channel resources are preferentially selected as F control channel resources; the control channel resource indexes of the F control channel resources meet predetermined characteristics in a control channel resource set; the F control channel resources are associated with a class of quasi-co-location parameters of quasi-co-location
  • the reference signal belongs to a frequency-domain bandwidth, where one of the control channel resources includes at least one of a set of control channel resource configurations configured in the frequency-domain bandwidth and a set of control channel resource configurations satisfying predetermined characteristics; where F Is a positive integer not less than 1.
  • FIG. 11 is a flowchart of a beam failure recovery process according to an embodiment of the present invention. As shown in FIG. 11, the beam failure recovery process includes:
  • the terminal detects whether a beam failure is transmitted by detecting a reference signal in the beam failure detection reference signal set.
  • the physical layer of the terminal reports a beam failure indication information to the MAC layer.
  • the beam failure detection reference signals in the reference signal set When the performance of at least one is higher than a predetermined threshold, it is considered that no beam failure is detected, the physical layer of the terminal does not report the beam failure indication information to the MAC layer, and the terminal continues to detect the performance of the reference signals in the beam failure detection reference signal set.
  • the MAC layer starts or restarts the beam failure detection timer, increments the beam failure counter, and sets the beam failure detection counter to 0 when the beam failure detection timer expires.
  • Operation 2 Select a new beam. If the beam failure counter reaches a predetermined value, the MAC layer of the terminal instructs the physical layer to select a reference signal whose reference signal performance is greater than a predetermined value from the candidate reference signal set reference signal set, and reports the resource index information of these reference signals and the RSRP of the reference signal. To the MAC layer.
  • Operation 3 Report the selected new beam.
  • the MAC layer selects one of the multiple reference signals reported by the physical layer that meets the performance, and reports the index of the reference signal to the base station.
  • the base station assigns the terminal with the reference signal in the candidate reference signal set and the physical random access channel. (Physical Random-Access Channel, PRACH) resource association, so that the terminal can send a PRACH on the PRACH resource corresponding to the selected reference signal, that is, send a preamble, and the base station knows the beam failure detection reference signal after receiving this PRACH information
  • PRACH Physical Random-Access Channel
  • this PRACH resource is simply referred to as PRACH-BFR (Physical Random Access Channel-Beam Failure Recovery).
  • the reporting reference signal indication information described in this article includes the terminal sending a Preamble on a reporting resource (such as a PRACH resource, and the PRACH resource may also be referred to as a PRACH-BFR resource), or the terminal reporting the reference selected in the candidate reference signal set in the PUCCH Signal indication information.
  • Operation four monitor the confirmation information for the reported new beam information.
  • the time domain monitoring window is opened, that is, the monitoring response timer is started, and the confirmation information sent by the base station is monitored, so that the base station receives the selected new beam information sent by the terminal, and the terminal fails to recover in the configured beam.
  • the control channel resource (Control Resource Set-Beam Recovery Recovery (CORESET-BFR) included in the beam failure recovery search space (Search Space-Beam Recovery (SS-BFR)) monitors the PDCCH sent by the base station. When the PDCCH sent by the base station is monitored in the SS-BFR, the PRACH process that the beam fails to recover is considered successful.
  • CORESET-BFR Control Resource Set-Beam Recovery Recovery
  • SS-BFR Search Space-Beam Recovery Recovery
  • the PDCCH is not detected in the SS-BFR, and the number of PRACH transmissions is increased by 1. If the beam failure recovery timer does not expire and the number of PRACH transmissions does not exceed a predetermined number Value, you can go back to operation three as above to continue, otherwise it is considered that the current beam failure recovery process has failed.
  • the terminal From monitoring the PDCCH in the SS-BFR until receiving the base station's update of the quasi-co-located reference signal for the PDCCH, the terminal considers the PDCCH and PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) DMRS (Demodulation Reference Signal) demodulation reference Signal) and the reported new beam (ie, the new reference signal) satisfy a quasi-co-location relationship.
  • the terminal continues to listen to the PDCCH in the SS-BFR until receiving the base station's quasi-co-located reference signal update for the PDCCH.
  • the PDCCH quasi-co-located reference signal update includes the following updates at least One: MAC-CE (Medium Access Control-Control Element) command updates the PDCCH quasi-co-location reference signal, and RRC (Radio Resource Control) signaling for the PDCCH quasi-co-location reference signal list Update.
  • MAC-CE Medium Access Control-Control Element
  • RRC Radio Resource Control
  • NR allows communication based on the frequency-domain bandwidth part mechanism.
  • an uplink CC a maximum of 4 candidate frequency-domain bandwidth parts can be configured. Only one uplink frequency-domain bandwidth part can be active at a time.
  • a downlink CC a maximum of 4 can be configured. Of the candidate frequency-domain bandwidth portions, only one downlink frequency-domain bandwidth portion can be active at a time.
  • each of the N downlink frequency domain bandwidth parts has a corresponding ⁇ beam failure detection reference signal set, candidate reference signal set, beam failure recovery search space ⁇ , and one frequency domain in the N frequency domain bandwidth parts.
  • the beam failure recovery process proposes the following enhancement scheme.
  • Method 1 of beam failure recovery process N downlink frequency domain bandwidth parts correspond to the same timer and counter, wherein the timers include: beam failure detection timer, beam failure recovery timer, and monitoring response timer, and the counter includes beam detection Failure counter, reference signal indication information transmission counter.
  • the timers and counters do not perform any operation because of the frequency domain bandwidth part switching, and realize seamless transition.
  • the timers and counters are not terminated or restarted due to the partial switching of the frequency domain bandwidth, but the ⁇ beam failure detection reference signal set, candidate reference signal set ⁇ in the beam failure recovery process are updated and replaced.
  • FIG. 12 is a first schematic diagram of a BWP handover included in a reporting period of a beam failure indication information according to an embodiment of the present invention.
  • the ⁇ beam failure detection reference signal set, candidate reference signal set ⁇ in the beam failure recovery process is changed from the ⁇ beam failure in the frequency domain bandwidth part BWPD0.
  • Detection reference signal set 0, candidate reference signal set 0 ⁇ is updated to ⁇ beam failure detection reference signal set 1, candidate reference signal set 1 ⁇ in the frequency domain bandwidth part BWPD1, that is, when the frequency domain bandwidth part BWPD0 is active, only
  • the physical layer reports the beam failure indication information to the MAC layer.
  • the beam failure counter accumulates to a predetermined value, a new one is selected from the candidate reference signal set 0. Beam.
  • the physical layer After switching from the frequency domain bandwidth part BWPD0 to the frequency domain bandwidth part BWPD1, only when the performance of the reference signals in the beam failure detection reference signal set 1 are lower than a predetermined threshold, the physical layer reports the beam failure indication information to the MAC layer, and the beam fails When the counter has accumulated to a predetermined value, a new beam is selected from the candidate reference signal set 1. Therefore, before the frequency domain bandwidth part BWPD0 is switched to the frequency domain bandwidth part BWPD1, if the beam failure counter has accumulated a value such as 3, but this value is less than the predetermined threshold 6, after switching to the frequency domain bandwidth part BWPD1, the original beam fails. The counter continues to accumulate on the basis of the counter, that is, the initial value of the beam failure counter after switching to the frequency domain bandwidth part BWPD1 is 3.
  • the terminal may be appointed to determine whether to report the beam failure indication information according to the beam failure detection reference signal set in the new frequency domain bandwidth part, or It is agreed to determine whether to report the beam failure indication information according to a beam failure detection reference signal set included in a frequency domain bandwidth portion corresponding to an active state time length included in a reporting period of the beam failure indication information. As shown in FIG.
  • the frequency domain bandwidth part BWPD0 is active for a longer time than the frequency domain bandwidth part BWPD1 is active, so in this reporting cycle, according to the frequency domain bandwidth part BWPD0 Whether the performance of the reference signals in the beam failure detection reference signal set 0 configured in the configuration is lower than a predetermined value, and determine whether to report beam failure indication information to the MAC layer.
  • FIG. 13 is a second schematic diagram of a BWP handover in a reporting period of a beam failure indication information according to an embodiment of the present invention.
  • the time during which the frequency domain bandwidth part BWPD2 is active is greater than the time during which the frequency domain bandwidth part D0 is active, so in this reporting period, according to the frequency domain bandwidth Whether the performance of the reference signals in the beam failure detection reference signal set 2 configured in some BWPD2 is lower than a predetermined value, and whether to report the beam failure indication information to the MAC layer is determined.
  • beam failure detection reference signal set in the new frequency domain bandwidth part includes reference signals (3, 4), where QCL (Quasi-co-location, Quasi co-location) relationship, the reference signals 2 and 4 satisfy the QCL relationship.
  • the two reference signals having the QCL relationship correspond to the same transmit beam of the base station, and can be virtualized as a reference signal, thereby synthesizing the reference signal (1,3)
  • the performance of a link is called the first link performance
  • the synthesis of the reference signal (2,4) is called the second link performance.
  • the physical layer sends beam failure indication information to the MAC layer.
  • the above is to establish the correspondence between the reference signals in the beam failure detection reference signal set in the two new and old frequency domain bandwidth parts through the QCL relationship.
  • the reference signals can also be established through other rules or explicit signaling notified by the base station. Corresponding relationship.
  • the candidate reference signal set can also be detected by using the above-mentioned detection method of the beam failure detection reference signal set, for example, establishing a correspondence between reference signals in the candidate reference signal set in the bandwidth portion of the new and old frequency domains, such as the old frequency domain.
  • the candidate reference signal set in the bandwidth part includes the reference signal (5, 6), and the candidate reference signal set in the new frequency domain bandwidth part includes the reference signal (7, 8).
  • the reference signal is obtained through the QCL relationship or explicit signaling.
  • the candidate reference signals are reference signals in the candidate reference signal set
  • sending a PRACH means sending a preamble code on a PRACH channel
  • the base station knows that the terminal selects a new beam selection result based on two or more reference signals associated with the PRACH.
  • the two or more reference signals associated with the same PRACH resource correspond to different frequency domain bandwidth parts.
  • the beam failure process is not interrupted because of this, that is, the beam failure detection reference signal sets and candidate reference signal sets between multiple frequency domain bandwidth parts have Association, corresponding to the same set of beam failure recovery process.
  • FIG. 14 is a first schematic diagram of a failure process of multiple frequency-domain bandwidth portions corresponding to one beam according to an embodiment of the present invention.
  • the frequency domain bandwidth part BWPD0 and the frequency domain bandwidth part BWPD1 share a beam failure recovery process, which corresponds to the same beam failure detection timer. Beam failure recovery timer, listening timer, beam failure counter, and reference signal indication information sending counter.
  • timers and counters do not perform additional operations due to the switching of the frequency domain bandwidth part, such as not performing the following operations: 0 / stop / Pause / restart, etc., just after the frequency domain bandwidth part switch, update the beam failure detection reference signal set and candidate reference signal set during the beam failure recovery process to the beam failure detection reference signal set in the frequency domain bandwidth part after the handover, Candidate reference signal set.
  • the beam failure detection reference signal set and candidate reference signal set is not updated. if there is no beam failure detection reference signal set (or candidate reference signal set) in the frequency domain bandwidth portion after the handover, in one embodiment, at least one of the beam failure detection reference signal set and the candidate reference signal set is not updated. .
  • the PDCCH is monitored in the SS-BFR in the new frequency domain bandwidth part, so as to determine whether the PRACH base station sent by the terminal has been received.
  • PRACH has been sent in the old frequency domain bandwidth part, but when the listening timer expires, the PDCCH has not been monitored in the SS-BFR in the old frequency domain bandwidth part, and the reference signal indicates that the information transmission counter has not reached a predetermined number of times,
  • the base station triggers another handover in the frequency domain bandwidth part in the DCI in the other SS (Search Space, search space). At this time, the terminal can continue to send the PRACH in the new frequency domain bandwidth part.
  • FIG. 15 is a second schematic diagram of a beam failure process corresponding to multiple frequency-domain bandwidth portions according to an embodiment of the present invention.
  • the beam failure detection timer and the beam failure recovery timer are stopped, the beam failure counter is set to 0, the reference signal indication information transmission counter is set to 0, and the terminal is in the new frequency domain bandwidth part.
  • the beam failure recovery process shown in FIG. 1 is restarted until the MAC layer of the terminal receives the beam failure indication information fed back by the physical layer in the new frequency domain bandwidth section, and then starts the beam failure detection by using the process in FIG. 1. Timers, beam failure recovery timers, accumulate beam failure counters.
  • the reference signal is also selected from the candidate reference signal set in the new frequency domain bandwidth part.
  • multiple downlink frequency domain bandwidth parts correspond to a set of beam failure detection timers, beam failure recovery timers, listening timers, beam failure counters, and reference signal indication information transmission counters.
  • the difference is whether the counters / timers on different frequency-domain bandwidth parts are related after the frequency-domain bandwidth part is switched, such as whether the beam failure counter continues to accumulate in the new frequency-domain bandwidth part. If it can be accumulated, it is the first method. Otherwise, it is the second method.
  • the PRACH sending process needs to be restarted after the frequency domain bandwidth is partially switched. If the restart is the second method, if it is not restarted, it is the first method.
  • At least one of the following configuration information corresponding to different downlink frequency domain bandwidth parts should be the same: a beam failure detection timer, a listening timer, a beam failure recovery timer, a beam failure counter, and a reference signal indication information transmission counter. Or only one of the plurality of downlink frequency domain bandwidth sections is configured with a set of beam failure detection timers, listening timers, beam failure recovery timers, beam failure counters, and reference signal indication information transmission counters. This parameter is shared by the downlink frequency domain bandwidth portion.
  • the preamble information reported by the terminal need not carry part of the frequency domain bandwidth information.
  • different frequency-domain bandwidth portions correspond to respective beam failure recovery processes. The configuration of these parameters in each frequency domain bandwidth portion need not satisfy constraints.
  • FIG. 16 is a first schematic diagram of a process of recovery of a plurality of downlink frequency domain bandwidths corresponding to respective beam failures according to an embodiment of the present invention.
  • FIG. 17 is a second schematic diagram of a recovery process of multiple downlink frequency domain bandwidth portions corresponding to respective beam failures according to an embodiment of the present invention.
  • each corresponds to a beam failure process, that is, each has a corresponding ⁇ beam failure detection timer, beam failure recovery timer, listening timer, and beam failure counter.
  • Reference signal instruction information sending counter ⁇ if there are two downlink frequency domain bandwidth parts, each corresponds to a beam failure process, that is, each has a corresponding ⁇ beam failure detection timer, beam failure recovery timer, listening timer, and beam failure counter. Reference signal instruction information sending counter ⁇ .
  • the beam failure detection timer in the old frequency-domain bandwidth part does not operate because the frequency-domain bandwidth part is switched, and the beam-fail counter in the old frequency-domain bandwidth part is paused and accumulated until it is re-switched to this In the old frequency domain bandwidth part, it is shown in FIG. 17.
  • the beam failure counter corresponding to this frequency domain bandwidth part is set to 0, as shown in FIG. 16.
  • the beam failure detection timer in the new frequency domain bandwidth part does not perform any operation because the frequency domain bandwidth part is switched.
  • the beam failure counter previously accumulated in the new frequency domain bandwidth part can be turned on to continue accumulation.
  • each frequency domain bandwidth part corresponds to a separate set of processes in FIG.
  • the new BWP ie, the BWP after switching, as shown in BWPD1 in FIGS. 16 to 17
  • the old BWP ie, the BWP before switching, as shown in BWPD0 in FIGS. 16 to 17
  • the rest of the timers including the beam failure recovery timer and the monitoring timer
  • the counter including the beam failure detection counter, the reference signal indication information is sent
  • the number of counters is also paused and accumulated. After switching to BWPD0 again, start these timers and counters.
  • 0 that is, the beam failure recovery timer 0 shown
  • 0 that is, the monitoring timer 0 shown
  • 0 that is, the reference signal indication information transmission counter shown
  • Method 4 of the beam failure recovery process The new and old BWPs correspond to a beam failure recovery process respectively. Unlike the method 3, the beam failure process for the old BWP is still allowed during the time period when the new BWP is active, as shown in Figure 16. T1 to t5 (or t11 to t5) and t1 to t4 (or t11 to t4) in Figure 17, 0,0 continues to run, and / or 0,0 also continues In operation, for example, the reference signal corresponding to the beam failure detection reference signal of the old BWP in the new BWP, and the reference signal corresponding to the candidate reference signal of the old BWP in the new BWP.
  • the new BWP at least two beam failure recovery processes are running in parallel, because it is possible that the beam failure recovery process of the BWP before the old BWP may also be run in the current new BWP.
  • a beam that runs in parallel in the BWP may also be specified
  • the maximum number of failure recovery processes For example, the beam failure recovery process for the old BWP is called process 1, and the beam failure recovery process for the new BWP is called process 2.
  • At least two sets of reporting resources and two sets are required in the new BWP. Beam failure recovery search space for process 1 and process 2 respectively.
  • the parameter is the spatial filtering parameter used for reporting the reference signal indication information in process i, that is, the preamble used to send the preamble in the PRACH-BFR resource.
  • the PUCCH scheduled by the DCI in the SS-BFRi includes the PUCCH where the ACK / NACK (Acknowledgement / Negative Acknowledgement, Acknowledgement / Negative Acknowledgement) message of the PDSCH scheduled by the DCI in the SS-BFRi is located.
  • ACK / NACK Acknowledgement / Negative Acknowledgement, Acknowledgement / Negative Acknowledgement
  • the reference signal indication information of the beam failure recovery process for other BWPs running in the new BWP can be reported in the new BWP.
  • High-level signaling such as MAC-CE / RRC signaling.
  • the ⁇ beam failure detection reference signal set, candidate reference signal set, PRACH-BFR ⁇ is a set of new and old BWP, only one set of SS-BFR, DCI of SS-BFR, or SS-BFR
  • the PDSCH scheduled by the DCI carries the process index information or the set of index information of the candidate reference signal set.
  • the related operation of the beam failure recovery process during the BWP handover in FIG. 16 is performed at time t1, and of course, it may also be performed at time t11.
  • the action performed at time t5 can also be performed at time t6.
  • the related operation of the beam failure recovery process during the BWP handover in FIG. 17 is performed at time t1, of course, it may also be performed at time t11, and similarly, the action performed at time t4 may also be performed at time t2.
  • each BWP corresponds to a separate set of beam failure recovery procedures.
  • a PRACH resource is associated with more than one candidate reference signal
  • different candidate reference signals belong to the candidate reference signal set in different BWPs.
  • the terminal and the base station agree on which downlink BWP in the activated state is closest to the current PRACH resource, and the reference signal indication information reported by the PRACH resource is for which set of candidate reference signals in the downlink BWP.
  • the beam failure detection timer, monitoring timer, beam failure recovery timer, beam failure counter, and reference signal indication information sending counter are all based on one of the three kinds of beam failure recovery processes described above.
  • this scenario is not ruled out.
  • At least one of the part timers and part counters is done in the above manner i, and at least one of the part timers and part counters is done in the above manner j, where i and j belong to ⁇ 1, 2,3 ⁇ and unequal positive integers.
  • the beam failure detection timer and the beam failure counter are performed according to the first method, and the beam failure recovery timer, the monitoring timer, and the reference signal instruction information transmission counter are operated according to the second relationship establishment method.
  • ⁇ beam failure detection reference signal set, beam failure detection timer, beam failure counter ⁇ are configured in N downlink frequency domain bandwidth sections, and ⁇ candidate reference signal set is configured in M uplink frequency domain bandwidth sections, PRACH, association relationship between candidate reference signal set and PRACH, beam failure recovery timer, SS-BFR, listening timer, reference signal indication information sending counter ⁇ , the purpose is to confirm the correspondence between them.
  • the parameters of the timer are used to configure the duration of the timer, and the parameters of the counter are used to configure the predetermined threshold value corresponding to the counter. When the count of the counter reaches the predetermined threshold value corresponding to the counter, a predetermined operation is performed.
  • the number of downlink frequency domain bandwidth parts and the number of uplink frequency domain bandwidth parts should be the same, but there will still be situations where N and M are different, such as In a case where at least one of the beam failure recovery parameters is configured in part of the uplink frequency domain bandwidth portion and only in a portion of the downlink frequency domain bandwidth portion, it is necessary to determine the beam failure recovery parameters in the M uplink frequency domain bandwidth portions. And N downlink frequency domain bandwidth partial beam failure recovery parameters.
  • the terminal sends the Preamble in a PRACH resource because at least one of the following: in which downlink frequency-domain bandwidth part has detected a beam failure detection reference signal in a reference signal set whose performance is lower than a predetermined threshold; in which downlink frequency-domain bandwidth A set of candidate reference signals was detected in the section.
  • the configuration of the BFR parameters in the uplink frequency domain bandwidth part that is, the frequency domain bandwidth part U in Table 1
  • the downlink frequency domain bandwidth part D in Table 1 is shown in Table 1.
  • the seven parameters ⁇ candidate reference signal set, PRACH, candidate reference signal set and PRACH configuration, the beam failure recovery timer, SS-BFR are configured in an uplink frequency domain bandwidth part.
  • Monitoring timer, reference signal indication information sending counter ⁇ is called a BFR-U parameter set (that is, the second type of beam failure recovery parameter), and three parameters ⁇ beam failure detection) configured in a downlink frequency domain bandwidth part
  • the reference signal set, the beam failure detection timer, and the beam failure counter ⁇ are called a BFR-D parameter set (that is, the first type of beam failure recovery parameter).
  • one of the four candidate frequency domain bandwidth portions U in the uplink CC and one of the four candidate frequency domain bandwidth portions D in the downlink CC may be active at the same time.
  • N BFR-U and M BFR-D can be determined in one or more of the following ways, such as the two BFR-U parameter sets and the three BFR-D parameter sets in Table 1. Correspondence between. After the corresponding relationship is determined, at which frequency domain bandwidth part U the base station receives the PRACH, the above correspondence can be used to determine at least one of the following: The terminal detects which frequency domain bandwidth part D the beam failure detection reference signal set has detected A beam failure event occurs (that is, the frequency of the frequency domain bandwidth part D corresponding to the count of the beam failure counter reaches a predetermined value); in which frequency domain bandwidth part D the candidate reference signal set of the terminal selects a new beam.
  • the terminal After determining the corresponding relationship, the terminal also knows that when a beam failure detection event is detected based on a beam failure detection reference signal set, the terminal performs at least one of the following operations: which frequency domain bandwidth is required to select a new beam from the candidate reference signal set on part D And which frequency-domain bandwidth part U is required to report the new beam.
  • Method 1 for determination There is a correspondence relationship between the BFR-U parameter set of the uplink frequency domain bandwidth part and the downlink frequency domain bandwidth part in the same frequency domain bandwidth part-ID. That is, the terminal sends the Preamble on the PRACH-BFR in the uplink frequency domain bandwidth part U0 only because the performance of the reference signals in the beam failure detection reference signal set in the frequency domain bandwidth part D0 is lower than a predetermined value.
  • the terminal for the beam failure detection reference signal set configured in the frequency domain bandwidth part D3 does not need to detect, because the reference signals in the beam failure detection reference signal set in the BFR-D parameter set 3 are all lower than a predetermined threshold because there is no BRACH -BFR corresponds to this beam failure detection reference signal set, so the terminal cannot send a preamble on any PRACH-BFR, so the terminal does not need to detect the beam failure detection reference signal set in the BFR-D parameter set 3, that is, one is required at this time
  • the BFR-D parameter set is configured in the downlink frequency domain bandwidth part, and the BFR-U parameter set needs to be configured in the uplink frequency domain bandwidth part having the same frequency domain bandwidth part-ID as the downlink frequency domain bandwidth part.
  • a downlink frequency domain bandwidth portion is configured with a BFR-D parameter set, and the downlink frequency domain bandwidth portion has the same frequency domain bandwidth portion-ID.
  • the uplink frequency domain bandwidth portion has no BFR- U parameter set, that is, a BFR-U parameter set is required to be configured in an uplink frequency domain bandwidth part, and a BFR-D parameter needs to be configured in a downlink frequency domain bandwidth part having the same frequency domain bandwidth part-ID as the uplink frequency domain bandwidth part. set.
  • the terminal does not want to receive the following configuration.
  • a BFR-U parameter set is configured in an uplink frequency domain bandwidth portion, and a BFR-U is not configured in a downlink frequency domain bandwidth portion having the same frequency domain bandwidth portion-ID as this uplink frequency domain bandwidth portion.
  • D parameter set that is, the frequency domain bandwidth part D set configured with BFR-D and the frequency domain bandwidth part in the frequency set U part configured with BFR-U.
  • Determination method 2 There is a correspondence between a frequency domain bandwidth part U configured with a BFR-U parameter set and all frequency domain bandwidth parts D configured with a BFR-D parameter set in a CC, and any beam in the BFR-D
  • the reference signal in the failure detection reference signal set is lower than a predetermined threshold, and a preamble can be sent on a PRACH resource configured in the BFR-U parameter set.
  • the frequency domain bandwidth part D3 and the frequency domain bandwidth part U3 are currently active.
  • a beam failure event occurs, that is, the beam in the BFR-D-3.
  • the failure counter reaches a predetermined threshold corresponding to the beam failure counter.
  • the terminal needs to switch to a frequency domain bandwidth part U configured with the BFR-U parameter set, but since there are two frequency domain bandwidth parts U: ⁇
  • the frequency domain bandwidth part U0 and the frequency domain bandwidth part U1 ⁇ are configured with a BFR-U parameter set.
  • the terminal can select which frequency domain bandwidth part U to switch to based on the frequency domain bandwidth part index information, such as switching to a configuration with BFR- Among the multiple frequency-domain bandwidth sections of the U parameter set, the frequency-domain bandwidth section U with a lower frequency-domain bandwidth section-ID, for example, switches to the frequency-domain bandwidth section U0, and in the frequency-domain bandwidth section U0, the terminal according to the candidate reference
  • the new reference signal indication information selected in the signal set determines on which PRACH resource the preamble is sent.
  • the terminal needs to switch to the frequency domain bandwidth part U of the frequency domain bandwidth part U set of the BFR-U parameter set.
  • Another decision method of the terminal is to determine which frequency domain bandwidth part to switch to according to the selected new reference signal indication information.
  • the candidate reference signal set in BFR-U0 in Table 1 includes the reference signal (1,2)
  • the candidate reference signal set in BFR-U1 includes the reference signal (2, 3).
  • the terminal may use the reference signal ( 1,2,3) to select a reference signal (ie, new reference signal indication information), and determine which frequency domain bandwidth part U to switch to based on the selected reference signal.
  • the selected reference signal has only one frequency domain bandwidth part U. , Then switch to this frequency-domain bandwidth part U. For example, if you select reference signal 1, you switch to frequency-domain bandwidth part U0. If you select reference signal 3, you switch to frequency-domain bandwidth part U1. When you select reference signal 2, you can switch to In the frequency-domain bandwidth part U having the lowest frequency-domain bandwidth part-ID.
  • Determination method three there is a corresponding relationship between the frequency domain bandwidth part U and the frequency domain bandwidth part D that are active at the same time, or more precisely, the frequency domain bandwidth part U and the frequency domain bandwidth part D that are active at the same time.
  • the BFR-U parameter set in the frequency domain bandwidth part U can be activated at the same time as each frequency domain bandwidth part of the candidate frequency domain bandwidth part in the uplink CC, because they independently switch the frequency domain bandwidth part, such as downlink
  • the CC includes four frequency-domain bandwidth sections, and the uplink CC includes three uplink frequency-domain bandwidth sections.
  • FIG. 18 is a third schematic diagram of a recovery process of multiple downlink frequency domain bandwidth portions corresponding to respective beam failures according to an embodiment of the present invention.
  • the terminal detects the BFR-D parameter set in any one of the frequency domain bandwidth part D in the frequency domain bandwidth part D0, the frequency domain bandwidth part D1, the frequency domain bandwidth part D2, or the frequency domain bandwidth part D3.
  • new reference signal indication information can be selected from the reference signal indication information selected in the candidate reference signal set configured in BFR-U0, and the corresponding new reference indication information in the frequency domain bandwidth portion U0 is selected according to the selected new reference indication information.
  • the PRACH resource sends a preamble.
  • One PRACH resource in the BFR-U0 configured in the frequency domain bandwidth part U0 needs to associate x candidate reference signal sets, and different candidate reference signals correspond to ⁇ frequency domain bandwidth part D0, frequency domain bandwidth part D1, frequency domain bandwidth part D2, frequency The different frequency domain bandwidth part D in the domain bandwidth part D3 ⁇ , where x is a positive integer less than or equal to 4. That is, x is less than or equal to the number of frequency domain bandwidth parts included in a downlink candidate frequency domain bandwidth part set included in one CC.
  • FIG. 19 is a schematic diagram of a downlink BWP according to an embodiment of the present invention. As shown in FIG. 19, the BWP that is in the active state may be different in different periods during which a downlink BWP is in the active state.
  • Method four Determine the correspondence between the BFR-U parameter set and the BFR-D parameter set in the frequency domain bandwidth part U according to the SS-BFR information configured in the frequency domain bandwidth part U.
  • the SS-BFR search space in the BFR-U parameter set in the frequency domain bandwidth part U0 is located in the frequency domain bandwidth part D1
  • the BFR-U parameter set in the frequency domain bandwidth part U0 and the BFR in the frequency domain bandwidth part D1 -D parameter sets have a correspondence relationship.
  • Method five Determine the correspondence between the BFR-U parameter set and the BFR-D parameter set in the frequency domain bandwidth part U according to the candidate reference signal set information configured in the frequency domain bandwidth part U.
  • the reference signal included in the candidate reference signal set in the BFR-U parameter set in the frequency domain bandwidth part U0 is located in the frequency domain bandwidth part D1
  • the BFR-U parameter set in the frequency domain bandwidth part U0 and the frequency domain bandwidth part D1 There is a correspondence relationship between the BFR-D parameter sets in.
  • Determination method six explicit signaling determination. For example, the correspondence between the N BFR-U parameter sets and the M configured BFR-D parameter sets is determined through explicit signaling. For example, the BFR-Di index information is included in the BFR-Ui configuration information.
  • the first type of beam failure recovery parameter is a BFR-D parameter set
  • the second type of beam failure recovery parameter is a BFR-U parameter set.
  • the method for determining the correspondence between the N sets of beam recovery parameters of the first type and the M sets of beam recovery parameters of the second type may further include the following situations:
  • Case 1 The first type of beam failure recovery parameters belongs to ⁇ beam failure detection reference signal set, beam failure detection timer, beam failure counter ⁇ , and the second type of beam failure recovery parameters belongs to ⁇ candidate reference signal set ⁇ .
  • the terminal knows which set of ⁇ candidate reference signal set ⁇ to select a new beam.
  • Case 2 The first type of beam failure recovery parameters belongs to the ⁇ candidate reference signal set ⁇ , the second type of beam failure recovery parameters belongs to the association between the ⁇ candidate reference signal set and PRACH, the beam failure recovery timer, the monitoring timer, reference Signal indication information sending counter ⁇ , when a new beam is selected based on a set of parameters ⁇ candidate reference signal set ⁇ , the terminal knows which set of ⁇ candidate reference signal set and PRACH association relationship, beam failure recovery timer, Listening timer, reference signal indication information sending counter ⁇ to report new beam indication information.
  • the first type of beam failure recovery parameters belongs to ⁇ the association relationship between the candidate reference signal set and PRACH, the beam failure recovery timer, the listening timer, and the reference signal indication information sending counter ⁇ .
  • the second type of beam failure recovery parameters belong to ⁇ SS-BFR ⁇ When a new beam is reported based on a set of parameters ⁇ relationship between candidate reference signal set and PRACH, beam failure recovery timer, listening timer, reference signal indication information sending counter ⁇ , the terminal knows Which set of ⁇ SS-BFR ⁇ to report the new beam indication information.
  • the frequency-domain bandwidth portion corresponding to the set of first-type beam failure recovery parameters indicates that a signal or channel determined according to the first-type beam failure recovery parameter is located in the frequency-domain bandwidth portion.
  • a frequency-domain bandwidth portion corresponding to a set of second-type beam failure recovery parameters indicates that a signal or channel determined according to the second-type beam failure recovery parameters is located in the frequency-domain bandwidth portion.
  • Beam Failure Recovery Configuration in a frequency domain bandwidth part U includes: candidate reference signal set, PRACH, association relationship between candidate reference signal set and PRACH, beam failure recovery timer, SS-BFR, Listening timer, reference signal indication information sending counter.
  • the SS-BFR may be located in any frequency domain bandwidth part of the downlink candidate frequency domain bandwidth part set, which is not suitable in this scenario. Because during the PRACH process, the terminal either does not perform part of the frequency domain bandwidth handover, or after switching to the new frequency domain bandwidth part, it also needs to perform a new PRACH process. For this reason, after the terminal sends the preamble on the PRACH, it needs to monitor the response information of the base station. In this process, if the terminal does not switch the uplink frequency domain bandwidth part, the downlink frequency domain bandwidth part cannot be switched in the TDD system. Limiting the beam failure in a frequency domain bandwidth part U The frequency domain bandwidth part D where the SS-BFR configured in the recovery configuration is configured needs to have the same frequency domain bandwidth part-ID information as the frequency domain bandwidth part U described above.
  • the SS-BFR configured in an uplink frequency domain bandwidth part U may not have the above constraints.
  • a frequency-domain bandwidth part U is required to include an SS-BFR configured for each frequency-domain bandwidth part D in the downlink CC, because a frequency-domain bandwidth part U is in a frequency-domain bandwidth in which the downlink is in an active state at different time periods of its active state Part D may be different, so that one downlink frequency domain bandwidth part U and any one of the downlink candidate frequency domain bandwidth parts may be active at the same time.
  • RAR Random Access Response
  • the SS-BFR configured in a frequency domain bandwidth part U can be located on any frequency domain bandwidth part D. After the terminal sends a preamble on the PRACH-BFR resource, if the SS-BFR is not in the currently activated frequency domain In the bandwidth part D, the downlink frequency domain bandwidth part is switched to the frequency domain bandwidth part D where the SS-BFR is located. Only one SS-BFR is configured in one frequency domain bandwidth part U, and multiple SS-BFRs can also be configured.
  • the terminal After the terminal sends a preamble on the PRACH-BFR resource, if the frequency domain bandwidth part U in which the PRACH-BFR is located is configured If there is an SS-BFR in the SS-BFR set that falls in the currently active frequency domain bandwidth part D, then the RAR information is monitored based on the SS-BFR corresponding to the currently active frequency domain bandwidth part D, otherwise the frequency domain bandwidth part D is switched to this The frequency domain bandwidth part D where one SS-BFR in the SS-BFR set configured in the frequency domain bandwidth part U is located, for example, switched to the frequency domain bandwidth part D where the SS-BFR having the lowest SS-BFRID is located.
  • the terminal Before updating the quasi-co-located reference signal of the PDCCH, the terminal considers the PDCCH in the SS-BFR and the DMRS (Demodulation Reference Signal) of the PDSCH scheduled in the SS-BFR and reports it Between the new beams (that is, the new reference signals, that is, the reference signals indicated in the reference signal indication information described herein).
  • the quasi co-location reference signals of other control channels and data channels scheduled by other control channels are still performed according to the original configuration, and will not be changed according to the reference signal indication information.
  • the PDCCH quasi-co-location reference signal update is received in other control channels or data channels scheduled by other control channels, but not received in the SS-BFR or SS-BFR scheduled data channels.
  • the first time period does not end, and the terminal considers that the PDCCH in the SS-BFR and the DMRS of the PDSCH scheduled in the SS-BFR and the reported new beam satisfy a quasi-co-location relationship.
  • the priority of SS-BFR is higher, or in the first time period, if SS-BFR conflicts with the first type of control channel, SS-BFR Has a higher priority, and the first type of control channel satisfies a quasi co-location relationship with at least one reference signal in the beam failure detection reference signal set, for example, at least one reference signal in the beam failure detection reference signal set with respect to a spatial reception parameter Meet the quasi co-location relationship.
  • the update of the quasi-co-located reference signal of the PDCCH includes at least one of the following updates: MAC-CE command update of the quasi-co-located reference signal of the PDCCH, RRC Update of the quasi-co-location reference signal list for PDCCH.
  • the terminal stops monitoring the PDCCH in the SS-BFR.
  • the PDCCH is only monitored in the SS-BFR during the first time period, and the PDSCH quasi-co-location reference signal scheduled by the SS-BFR and the PDCCH in the SS-BFR during this time are reference signal indication information It is indicated that there may be at least one of the following conventions for this purpose: only dedicated PDCCHs are monitored in SS-BFR, only DCI1_0 / DCI1_1 is monitored in PDCCH in SS-BFR, tci-PresentInDCI is not enabled in DCI1_1 in SS-BFR The number of bits in the SRS Resource Indicator (SRI) bit field in DCI0_1 in SS-BFR is 0, and the number of bits is not determined based on the number of SRS resources included in the SRS-set for the codebook or the SRS-set for the non-codebook , Where an SRS resource indicator (resource indicator) is used to indicate which SRS resource the precoding / spatial transmission filtering parameter of the PUSCH is
  • this embodiment does not exclude other bit fields in the DCI in the SS-BFR for simplified processing, such as the time domain resource indicator field, the CSI (Channel State Information) channel request field, and even in the SS-BFR.
  • Only one sequence is sent during the running of the response timer, only indicating that the base station has received the preamble sent by the terminal.
  • a DMRS sequence can be transmitted.
  • the DMRS sequence of the PDCCH is the first sequence, it means that the base station only transmitted this sequence, but not the PDCCH.
  • the terminal receives the reference signal sequence, which means that the SINR (Signal to Interference plus Noise Ratio) obtained according to the reference signal sequence (also referred to as a reference signal port) , Signal-to-interference-plus-noise ratio), according to the transmission parameter assumption of the control channel, it is obtained that the predicted value of the control channel BLER is lower than a predetermined threshold.
  • SINR Signal to Interference plus Noise Ratio
  • the terminal receives a predetermined reference signal sequence or PDCCH in the SS-BFR, it indicates that the transmission of the preamble was successful, and the beam failure recovery timer is stopped.
  • the first time period may also be one of the following time periods: during the response monitoring timer operation period, during the beam failure recovery timer operation period, after the reference signal indication information is sent until the control channel quasi-co-location reference signal update message is received The control channel is received before, after sending the reference signal indication information, until the control channel is received in the beam failure recovery control channel.
  • the collision of multiple downlink channels or signals includes at least one of the following situations:
  • Case 1 The intersection of resources occupied by multiple channels or signals is not empty, and the resources include at least one of the following: time domain resources, frequency domain resources, code domain resources, air domain resources, and antenna ports, where one air domain resource corresponds to one standard Co-located reference signal.
  • Case 2 The airspace resource terminals occupied by the multiple channels or signals cannot be generated simultaneously or the difference set of the airspace resources occupied by multiple channels or signals is not empty. For example, the terminal can only generate one receive beam at a time. When the channels or signals do not satisfy the quasi co-location relationship, the multiple channels or signals collide. For example, the terminal can only generate two receiving beams at a time. When the quasi-co-location reference signals of the multiple channels or signals do not satisfy the quasi-co-location relationship and there are more than two, the multiple channels or signals collide.
  • Case 3 The conflict of multiple control channel resources also includes the number of candidate control channels in the multiple control channel resources and the number of candidate control channels that exceeds the first communication node's blind detection in one time unit.
  • the channel or signal carrying reference signal indication information when a channel or signal carrying reference signal indication information conflicts with other channels or signals, the channel or signal carrying reference signal indication information has higher priority, such as in PRACH-BFR
  • the preamble and other uplink channels or signals scheduled by the control channel conflict, or the preamble conflicts with the previously configured periodic PUCCH.
  • the spatial filter parameter of the uplink channel or signal scheduled by the control channel in the control channel resource of the beam failure recovery control channel is obtained according to the spatial filter parameter of the reference signal sending information, where the beam failure control channel resource indicates SS-BFR, Or the CORESET (Control-resource Set) where the SS-BFR is located.
  • the uplink channel includes at least one of PUCCH and PUSCH, and the uplink signal includes SRS, PRACH, and SR (Scheduling Request, scheduling request).
  • the SRS-set for at least one of the codeboo and the codebook
  • the PUSCH is updated to a preamble including only the reference signal indication information.
  • the second time period includes at least one of the following time periods: during the operation of the response monitoring timer, during the operation of the beam failure recovery timer, after sending the reference signal indication information and before receiving the update message of the spatial filtering parameters of the uplink channel or signal From sending the reference signal instruction information until receiving an update message of the spatial filtering parameter of the uplink channel or signal in the data channel of the control channel in the control channel resource where the beam fails to recover, from sending the reference signal instruction information until the beam failure Receive the control channel from the control channel.
  • the conflict between the multiple uplink channels or signals includes at least one of the following situations:
  • Case 1 The intersection of resources occupied by multiple channels or signals is not empty, and the resources include at least one of the following: time domain resources, frequency domain resources, code domain resources, space domain resources, antenna ports, and antenna resources.
  • One of the airspace resources is associated with a reference signal of a spatial transmission filtering parameter.
  • Case 2 The terminals of the spatial transmission filtering parameters occupied by the multiple channels or signals cannot be generated simultaneously, for example, the reference signals associated with the spatial filtering parameters of multiple channels or signals cannot be transmitted simultaneously, such as the reference signals of multiple spatial transmission filtering parameters Belongs to an SRS set.
  • the beam failure detection reference signal set q 0 is obtained by an implicit method, such as a quasi-co-located reference signal obtained by receiving a configuration parameter of an associated space in CORESET.
  • H CORESETs are configured in one BWP or one CC.
  • Each CORESET can be configured with quasi co-location reference signals of the PDCCH transmitted by the CORESET, and q 0 includes at most F reference signals.
  • the F control channel resources do not include a beam failure recovery control channel resource.
  • the quasi-co-location reference signals of a class of quasi-co-location parameters associated with different control channel resources among the F control channel resources do not satisfy the quasi-co-location relationship, that is, a class of quasi-co-location is associated with the F control channel resources.
  • the quasi-co-location reference signal of the co-location parameter does not satisfy the quasi-co-location relationship.
  • the quasi-co-location reference signal of the type of quasi-co-location parameter associated with the two types of quasi-co-location parameter of the H control channel resources meets the quasi-co-location relationship.
  • a control channel resource only one of the two control channel resources can be selected.
  • the F control channel resources are dedicated control channel resources, that is, the common control channel resources are not included in the F control channel resources.
  • rule four the F control channel resources are the newly configured control channel resources among the H control channel resources.
  • the quasi-co-location reference signals associated with a class of quasi-co-location parameters associated with the F control channel resources are a set of quasi-co-location reference signals associated with the one type of quasi-co-location parameters associated with the H control channel resources At least one of the F quasi-co-located reference signals with the largest bandwidth and the F quasi-co-located reference signals with the highest density.
  • the H control channel resources are associated with the SSB (SS / PBCH: Synchronization Signal and PBCH Block) of the type of quasi-co-location reference signal set of the quasi-co-location parameter. Control channel resources are preferentially selected as the F control channel resources.
  • the F control channel resources are configured with a quasi-co-location reference signal associated with a class of quasi-co-location parameters.
  • the control channel resource indexes of the F control channel resources satisfy a predetermined characteristic in a control channel resource set, such as the control channel resources corresponding to the lowest F control channel resource indexes in a control channel resource set (of course, it can also Is a control channel resource corresponding to the highest F control channel resource index in a control channel resource set, or a control channel resource that satisfies other predetermined characteristics in a control channel resource set), said one control channel resource set is a BWP or a CC
  • the above control channel resource is CORESET.
  • the search space level / each search space set level can be configured with a quasi co-location reference signal
  • the above one control channel resource may also be a search space or a search space set.
  • the type of quasi-co-location parameters include space reception parameters.
  • the one frequency domain bandwidth is a frequency domain bandwidth part or a frequency domain bandwidth corresponding to one component carrier.
  • FIG. 20 is an interaction schematic diagram of a transmission and reception node (Transmission, Reception Point, TRP) according to an embodiment of the present invention.
  • TRP Transmission, Reception Point
  • TRP1 sends DCI1 to schedule PDSCH1 / PUSCH1
  • TRP2 sends DCI2 to schedule PDSCH2 / PUSCH2.
  • Information exchange between two TRPs needs to consider the delay.
  • the base station including at least one of TRP1 and TRP2 should be notified, instead of waiting for the PDCCH of both TRPs to reach the terminal, then the beam failure event is considered to have occurred.
  • each TRP corresponds to a set of beam failure recovery parameters, that is, for example, each CORESET group / SS (search space) group / CC group / CC / BWP / TRP corresponds to a set of beam failure recovery parameters, in which the beam fails
  • each CORESET group / SS (search space) group / CC group / TRP corresponds to a separate set of beam failure recovery parameters, that is, a separate beam failure recovery process.
  • part of the beam failure recovery parameters of each CORESET group / SS (search space) group / CC group / TRP are independent, and some of the failure recovery parameters are shared. For example, there are two sets of beam failure detection reference signal sets (such as beams).
  • Each reference signal in the two sets of candidate reference signal sets has a PRACH resource corresponding to it in PRACH-BFR. It may further be restricted that only one set of candidate reference signal sets is selected to report reference indication information in one time unit.
  • the above two TRP independent corresponding beam failure recovery parameters include a beam failure detection reference signal set and a candidate reference signal set. Of course, this embodiment does not exclude that the two TRP independent corresponding beam failure recovery parameters include other beam failure recovery parameters.
  • the DCI of the SS-BFR (or the PDSCH scheduled by the DCI in the SS-BFR) needs to indicate the candidate reference signal set index information, which is used to indicate that the base station sends the PDCCH in the SS-BFR because which candidate reference is received by the base station.
  • Signal set (candidate reference signal set 0 or candidate reference signal set 1), or different candidate reference signal sets ⁇ candidate reference signal set 0, candidate reference signal set 1 ⁇ corresponding to different time periods / different RNTIs of the PDCCH in the SS-BFR ( Radio Network Tempory Identity) scrambling sequence / different demodulation reference signal sequence.
  • the terminal When the terminal detects a beam failure event by detecting the reference signals in the reference signal set 1 of the beam failure detection, the terminal can inform TRP0 of at least one of the following information by sending an SR / MAC-CE command to TRP0: the beam failure detection reference corresponding to TRP1 A beam failure event occurs in signal set 1, the reference signal indication information selected by the terminal in candidate reference signal set 1, and TRP0 forwards the above information to TRP1.
  • Solution 1 Pcell / SPcell and Scell respectively correspond to a set of independent beam failure recovery parameters, each corresponding to a beam failure recovery process in FIG. 11.
  • Solution 2 A set of partial beam failure recovery parameters corresponding to Pcell / SPcell and Scell respectively. Other beam failure recovery parameters are shared by Pcell / SPcell and Scell.
  • Pcell / SPcell corresponds to ⁇ beam failure detection reference signal set 0, candidate reference signal.
  • Set 0 ⁇ Scell corresponds to ⁇ beam failure detection reference signal set 1, candidate reference signal set 1 ⁇ .
  • a reference signal is selected in a candidate reference signal set corresponding to the beam failure detection reference signal set.
  • At least one of PRACH-BFR and SS-BFR is only in Pcell / SPcell.
  • each reference signal in two sets of candidate reference signal sets ⁇ candidate reference signal set 0, candidate reference signal set 1 ⁇ is in Pcell / SPcell.
  • At least one PRACH resource in the PRACH-BFR is associated with it, so the configuration information of the candidate reference signal associated with the PRACH-BFR resource needs to carry CC information.
  • Solution 3 Pcell / SPcell corresponds to the same beam failure recovery process, but the reference signals in the Pcell may be included in the beam failure detection reference signal set.
  • the frequency domain bandwidth includes at least one of a frequency domain bandwidth component and a component carrier (CC), that is, a frequency domain bandwidth includes a frequency domain bandwidth component and a frequency domain bandwidth corresponding to a component carrier.
  • CC component carrier
  • the frequency domain bandwidth index includes at least one of a frequency domain bandwidth part BWP index and a CC index.
  • a processing apparatus for recovering a beam failure is also provided.
  • the apparatus is used to implement the foregoing embodiments and preferred implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 21 is a structural block diagram of a processing apparatus for beam failure recovery according to an embodiment of the present invention. As shown in FIG. 21, the apparatus includes a processing module 2102.
  • the processing module 2102 is configured to perform a predetermined operation on a beam failure recovery process when a frequency domain bandwidth part switch occurs.
  • a processing apparatus for recovering a beam failure is also provided.
  • the apparatus is used to implement the foregoing embodiments and preferred implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 22 is a structural block diagram of another processing apparatus for beam failure recovery according to an embodiment of the present invention. As shown in FIG. 22, the apparatus includes a determining module 2202 and a switching module 2204.
  • the judging module 2202 is configured to judge whether there is an association relationship between a frequency domain bandwidth switching and a beam failure recovery process
  • the switching module 2204 is configured to perform at least one of the following: the beam failure recovery process and the frequency domain bandwidth partial switching according to the judgment result.
  • the above modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but are not limited to the above: the above modules are located in the same processor; or the above modules are arbitrarily combined The forms are located in different processors.
  • a processing apparatus for recovering a beam failure is also provided.
  • the apparatus is used to implement the foregoing embodiments and preferred implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 23 is a structural block diagram of another apparatus for processing beam failure recovery according to an embodiment of the present invention. As shown in FIG. 23, the apparatus includes a determination module 2302 and an operation module 2304.
  • the determining module 2302 is configured to determine a beam failure recovery parameter correspondence between N sets of first-type beam failure recovery parameters and M sets of second-type beam failure recovery parameters;
  • the operation module 2304 is configured to perform at least one of the following according to the correspondence relationship of the beam failure recovery parameters: a beam failure recovery process and a frequency domain bandwidth switching; wherein N and M are positive integers.
  • the above modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but are not limited to the above: the above modules are located in the same processor; or the above modules are arbitrarily combined The forms are located in different processors.
  • a processing apparatus for recovering a beam failure is also provided.
  • the apparatus is used to implement the foregoing embodiments and preferred implementation manners, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and conceived.
  • FIG. 24 is a structural block diagram of another processing apparatus for beam failure recovery according to an embodiment of the present invention. As shown in FIG. 24, the apparatus includes a recovery module 2402.
  • the recovery module 2402 is configured to perform a beam failure recovery process according to at least one of a beam failure recovery parameter and a preset rule, wherein the beam failure recovery parameter satisfies the preset rule.
  • the above modules can be implemented by software or hardware. For the latter, they can be implemented in the following ways, but are not limited to the above: the above modules are located in the same processor; or the above modules are arbitrarily combined The forms are located in different processors.
  • An embodiment of the present invention further provides a storage medium.
  • the storage medium stores a computer program, and the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the storage medium is also configured to store a computer program for performing the following steps:
  • the communication node performs a beam failure recovery process according to at least one of a beam failure recovery parameter and a preset rule, wherein the beam failure recovery parameter satisfies the preset rule.
  • the above storage medium may include, but is not limited to, a U disk, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk a magnetic disk
  • optical disk a magnetic disk
  • An embodiment of the present invention further provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the foregoing storage medium may be configured to store a computer program for performing the following steps:
  • the storage medium is also configured to store a computer program for performing the following steps:
  • the communication node performs a beam failure recovery process according to at least one of a beam failure recovery parameter and a preset rule, wherein the beam failure recovery parameter satisfies the preset rule.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, and they can be concentrated on a single computing device or distributed on a network composed of multiple computing devices. Above, they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be performed in a different order than shown here. Or the steps described, or they are separately made into individual integrated circuit modules, or multiple modules or steps in them are made into a single integrated circuit module. As such, the invention is not limited to any particular combination of hardware and software.
  • a corresponding operation is implemented to implement the solution, which can solve a plurality of bandwidth switching scenarios.
  • the transmission node serves one terminal scenario, and the problem of beam failure recovery in multiple serving cell scenarios is difficult to recover, which can effectively improve the effect of beam failure recovery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Particle Accelerators (AREA)
  • Lasers (AREA)
  • Transmitters (AREA)

Abstract

本公开提供了一种波束失败恢复的处理方法及装置,所述波束失败恢复的处理方法包括:当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。

Description

波束失败恢复的处理方法及装置
本申请要求在2018年09月21日提交中国专利局、申请号为201811110793.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种波束失败恢复的处理方法及装置。
背景技术
第五代移动通信技术-新空口(5th-Generation New Radio,5G-NR)中的核心技术就是基于高频通信进行数据传输,高频可以提供大带宽数据通信。高频的一个主要特点是衰落比较大,而且由于高频下的天线比较小,可以通过大规模天线阵列构成高增益波束。
基于波束通信的一个核心问题是波束覆盖范围。基站发给一个终端的控制信道只能达到部分覆盖,一个终端的所有控制信道的波束都失败之后,基站将无法下发控制信息给终端。为了快速恢复链路通信,需要终端进行波束失败恢复过程,为此5G-NR中引入了波束失败恢复过程。
然而,相关技术中不存在带宽部分切换之后的波束失败恢复过程,以及当有多个传输节点给一个终端服务时,特别是多个传输节点之间没有理想回程线路(Backhaul)的时候,如何有效地进行波束失败恢复过程。
发明内容
根据本发明的一个实施例,提供了一种波束失败恢复的处理方法,包括:当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
根据本发明的一个实施例,提供了一种波束失败恢复的处理方法,包括:判断频域带宽部分切换和波束失败恢复过程之间是否存在关联关系;根据判断结果,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换。根据本发明的一个实施例,提供了一种波束失败恢复的处理方法,包括:确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;其中,N,M均为正整数。
根据本发明的一个实施例,提供了一种波束失败恢复的处理方法,包括:根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
根据本发明的一个实施例,提供了一种波束失败恢复的处理装置,包括:处理模块,设置为当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
根据本发明的一个实施例,提供了一种波束失败恢复的处理装置,包括:判断模块,设置为判断频域带宽部分切换和波束失败恢复过程之间是否存在关联关系;切换模块,设置为根据判断结果,进行以下至少之一:所述波束失败恢复过程和频域带宽部分切换。
根据本发明的一个实施例,提供了一种波束失败恢复的处理装置,包括:确定模块,设置为确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;操作模块,设置为根据所述波束失 败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;其中,N,M均为正整数。
根据本发明的一个实施例,提供了一种波束失败恢复的处理装置,包括:恢复模块,设置为根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本发明实施例的移动终端的硬件结构框图;
图2是根据本发明实施例的一种波束失败恢复的处理方法的流程图;
图3是根据本发明实施例的另一种波束失败恢复的处理方法的流程图;
图4是根据本发明实施例的再一种波束失败恢复的处理方法的流程图;
图5是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图一;
图6是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图二;
图7是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图三;
图8是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图四;
图9是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图五;
图10是根据本发明实施例的又一种波束失败恢复的处理方法的流程图;
图11是根据本发明实施例的一种实现波束失败恢复过程的流程图;
图12是根据本发明实施例的波束失败指示信息上报周期中包括频域带宽部分BWP切换的示意图一;
图13是根据本发明实施例的波束失败指示信息上报周期中包括BWP切换的示意图二;
图14是根据本发明实施例的多个频域带宽部分对应一个波束失败过程的示意图一;
图15是根据本发明实施例的多个频域带宽部分对应一个波束失败过程的示意图二;
图16是根据本发明实施例的多个下行频域带宽部分各自对应各自波束失败恢复过程的示意图一;
图17是根据本发明实施例的多个下行频域带宽部分各自对应各自波束失败恢复过程的示意图二;
图18是根据本发明实施例的多个下行频域带宽部分各自对应各自波束失败恢复过程的示意图三;
图19是根据本发明实施例的下行BWP的示意图;
图20是根据本发明实施例的发送接收节点的交互示意图;
图21是根据本发明实施例的一种波束失败恢复的处理装置的结构框图;
图22是根据本发明实施例的另一种波束失败恢复的处理装置的结构框图;
图23是根据本发明实施例的再一种波束失败恢复的处理装置的结构框图;
图24是根据本发明实施例的又一种波束失败恢复的处理装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,下文中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明实施例提供了一种波束失败恢复的处理方法及装置,以至少解决相关技术中针对带宽部分切换和多个传输节点服务一个终端的波束失败恢复困难的问题。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块, 如本发明实施例中的波束失败恢复的处理方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的波束失败恢复的处理方法,图2是根据本发明实施例的一种波束失败恢复的处理方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
所述计时器包括如下计时器至少之一:波束失败检测计时器,波束失败恢复计时器,响应监听计时器。
所述计数器包括如下计数器至少之一:波束失败检测计数器、参考信号指示信息发送计数器。
在一实施例中,波束失败检测计时器用于控制连续两次波束失败指示之间的间隔。需要说明的是,如果该间隔的时间超过波束失败检测计时器大于该波 束失败检测计时器的计满时间,则说明连续的两次波束失败指示之间时间距离很远,因此,在后续过程中不再进行累加。
在一实施例中,波束失败恢复计时器,用于控制第一次启动新波束上报到本次波束失败恢复过程的时间长度。需要说明的是,如果该波束失败恢复计时器超时的话,即使没有成功发送新波束信息,终端也能够终止向基站发送新波束的信息。
在一实施例中,响应监听计时器,用于控制从终端发送一个PRACH(Physical Random Access Channel,物理随机接入信道)到终止监听基站的响应的时间。需要说明的是,如果该响应监听计时器超时的话,即使没有收到基站的响应,终端也不再进行监听,同时视为该PRACH序列发送失败。
在一实施例中,波束失败检测计数器,用于累计从物理层收到的波束失败指示。当该波束失败检测计数器达到预设的计数数量时,才认为波束失败事件发生,指示终端在选择新波束(即选择参考信号),并根据选择的新波束关联的PRACH资源,向基站发送PRACH。
在一实施例中,在参考信号指示信息发送计数器计数超时,如果终端发送一个PRACH没有在SS-BFR(Synchronisation Signal-Beam Failure Recovery,同步信号波束失败恢复)中检测到PDCCH(Physical Downlink Control Channel,物理下行控制信道),则计数加1。
需要说明的是,计时器参数即为计时器对应的最长时长,当计时器启动之后的时长超过所述计时器对应的最大时长,表示计时器超时。计数器参数即为计数器对应的阀值,当计数器的计数大于或者等于所述阀值时,进行预定操作。
在一实施例中,如果终端检测到在波束失败检测参考信号集合中的参考信号中存在至少一个参考信号的性能参数不小于预设的性能阈值,则视为没有检 测到波束失败,同时继续实时检测该波束失败检测参考信号集合中的参考信号。而如果波束失败检测参考信号集合中的全部参考信号的性能参数均小于该预设的性能阈值时,则视为检测到波束失败,同时终端的物理层向MAC(Media Access Control,介质访问控制)层上报波束失败指示信息。此时,波束失败检测计数器的计数值加1。
在此之后,如果选择的新波束的波束失败检测计数器的计数值达到预设的计数阈值的话,终端的MAC层指示物理层在候选参考信号集合中选择参考信号的性能参数大于预设的性能阈值的参考信号,同时将这些参考信号的资源索引信息以及参考信号的RSRP(Reference Signal Receiving Power,参考信号接收功率)上报给MAC层。
在一实施例中,上述提及的参考信号包括以下至少之一:测量参考信号、解调参考信号、同步信号。在一实施例中,当所述频域带宽部分发生切换时,对波束失败恢复过程进行第一类预定操作,所述第一类预定操作包括以下至少之一:对波束失败检测参考信号集合进行更新,以使用切换后的频域带宽部分中的波束失败检测参考信号集合;对候选参考信号集合进行更新,以使用切换后的频域带宽部分中的候选参考信号集合;切换后的频域带宽部分中计时器的初始值为切换前的所述频域带宽部分中计时器的状态值;切换后的频域带宽部分中计数器的初始值为切换前的所述频域带宽部分中计数器的状态值;确定第一类参考信号和第二类参考信号之间的第一对应关系,其中所述第一类参考信号属于切换前的频域带宽部分中的波束失败检测参考信号集合,所述第二类参考信号属于切换后的频域带宽部分中的波束失败检测参考信号集合;确定第三类参考信号和第四类参考信号之间的第二对应关系,其中所述第三类参考信号属于切换前的频域带宽部分中的候选参考信号集合,所述第四类参考信号属于 切换后的频域带宽部分中的候选参考信号集合。
在一实施例中,所述波束失败检测参考信号集合为用于波束失败检测的参考信号集合。
在一实施例中,当所述频域带宽部分发生切换时,对波束失败恢复过程进行第二类预定操作,第二类预定操作包括以下至少之一:对波束失败检测参考信号集合进行更新,以使用切换后的频域带宽部分中的波束失败检测参考信号集合;对候选参考信号集合进行更新,以使用切换后的频域带宽部分中的候选参考信号集合;停止计时器;对计数器置0。
所述频域带宽部分发生切换满足以下至少之一:切换前的频域带宽部分和切换后的频域带宽部分对应同一个波束失败恢复过程;切换前的频域带宽部分和切换后的频域带宽部分对应同一个计时器;切换前的频域带宽部分和切换后的频域带宽部分对应同一个计数器;所述波束失败恢复过程的参考信号指示信息和频域带宽部分的索引信息不具有对应关系;切换前的频域带宽部分中的波束失败恢复参数和切换后的频域带宽部分中的波束失败恢复参数具有关联关系。
切换前的频域带宽部分中的波束失败恢复参数和切换后的频域带宽部分中的波束失败恢复参数具有的关联关系包括如下至少之一:切换前的频域带宽部分中和切换后的频域带宽部分中的所述计时器的配置参数相同;切换前的频域带宽部分中和切换后的频域带宽部分中的所述计数器的配置参数相同;切换前的频域带宽部分和切换后的频域带宽部分共享一套波束失败恢复参数配置信息。
在一实施例中,频域带宽部分发生切换时,对波束失败恢复过程进行第三类预定操作,所述第三类预定操作包括以下至少之一:启动或者重新启动针对切换后的频域带宽部分对应的波束失败恢复过程;解锁被暂停的针对切换后的频域带宽部分对应的波束失败恢复过程;暂停针对切换前的频域带宽部分对应 的波束失败恢复过程;切换前的频域带宽部分对应的计数器暂停累加;解锁被暂停累加的切换后的频域带宽部分对应的计数器;切换后的频域带宽部分对应的计数器未曾开启时,则开启切换后的频域带宽部分对应的计数器;切换前的频域带宽部分对应的计时器在切换后的频域带宽部分处于激活状态时对应的时间段中继续运行;暂停切换前的频域带宽部分对应的计时器;解锁被暂停的切换后的频域带宽部分对应的计时器;切换后的频域带宽部分对应的计时器未曾开启时,则开启切换后的频域带宽部分对应的计时器;暂停参考信号指示信息的上报操作,其中所述参考信号指示信息对应的参考信号属于切换前的频域带宽部分对应的候选参考信号集合;解锁被暂停的参考信号指示信息的上报操作,其中所述参考信号指示信息对应的参考信号属于切换后的频域带宽部分对应的候选参考信号集合;暂停在波束失败搜索空间中对控制信道的监听操作,其中所述控制信道包括针对切换前的频域带宽部分对应的参考信号指示信息上报成功的确认信息;解锁被暂停的在波束失败搜索空间中对控制信道的监听操作,其中所述控制信道包括针对切换后的频域带宽部分对应的参考信号指示信息上报成功的确认信息;对波束失败检测参考信号集合进行更新,以使用切换后的频域带宽部分对应的波束失败检测参考信号集合;对候选参考信号集合进行更新,以使用切换后的频域带宽部分对应的候选参考信号集合。
在一实施例中,所述频域带宽部分切换时,对波束失败恢复过程进行第四类预定操作,所述第四类预定操作包括以下至少之一:启动或者重新启动针对切换后的频域带宽部分对应的波束失败恢复过程;针对切换前的频域带宽部分对应的波束失败恢复过程在切换后的频域带宽部分中继续运行;切换前的频域带宽部分对应的计数器在切换后的频域带宽中继续累加;切换后的频域带宽部分对应的计数器未曾开启时,则开启切换后的频域带宽部分对应的计数器;切 换前的频域带宽部分对应的计时器在切换后的频域带宽部分处于激活状态时对应的时间段中继续运行;在切换后的频域带宽部分中上报针对切换前的频域带宽部分对应的参考信号指示信息;在切换后的频域带宽部分中的波束失败搜索空间中监听控制信道,其中所述控制信道包括针对切换前的频域带宽部分对应的参考信号指示信息上报成功的确认信息;在切换后的频域带宽部分中包括的切换前的频域带宽部分对应的波束失败恢复控制信道资源中监听控制信道,其中所述控制信道包括针对切换前的频域带宽部分对应的参考信号指示信息的上报成功的确认信息,其中,切换后的频域带宽部分中包括y个波束失败恢复控制信道资源,所述y个波束失败恢复控制信道资源与y个频域带宽部分对应,y为不小于1的正整数。
在一实施例中,如果在波束失败检测计数器暂停累加的过程中,对应的波束失败检测计时器超时的话,则波束失败检测计数器可以被置0。
在一实施例中,如果波束失败检测计数器在暂停累加之后被解锁的话,则表示波束失败检测计数器累加功能被解锁,同时该波束失败检测计数器的初始值为暂停时波束失败检测计数器的计数值。
在一实施例中,上述计时器被暂停之后被解锁的话,则表示该计时器重新开始运行,开始运行的该计时器的时间计数以暂停时的时间计数为初始值;
在一实施例中,上述计时器被停止之后开启的话,则表示这个计时器重新开始运行,开始运行的该计时器的时间计数为这个计时器对应的最大值或者0值。
在一实施例中,当波束失败恢复过程被暂停之后被解锁的话,则表示所述波束失败恢复过程重新开始运行,波束失败恢复过程对应的计时器、计数器和参考信号集合为当时暂停时的状态。
需要说明的是,检测到波束失败事件发生,即终端的MAC层的波束失败检测计数器的计数大于或者等于预定阀值,终端需要在波束失败上报资源上上报从候选参考信号集合中选择的参考信号指示信息。需要说明的是,检测到波束失败事件发生,还表示根据波束失败检测参考信号集合、波束失败检测计时器、波束失败检测计数器参数得到波束失败检测计数器的计数大于或者等于预检检测阀值。
在一实施例中,y个波束失败恢复控制信道资源与y个频域带宽部分对应,满足以下至少之一的条件:每个波束失败恢复控制信道资源的准共址参考信号根据与该波束失败恢复控制信道资源对应的频域带宽部分对应的参考信号指示信息确定;每个波束失败恢复控制信道资源调度的下行数据信道的准共址参考信号根据与该波束失败恢复控制信道资源对应的频域带宽部分对应的参考信号指示信息确定;每个波束失败恢复控制信道资源调度的上行信道或信号的空间滤波参数根据与发送该波束失败恢复控制信道资源对应的频域带宽部分对应的参考信号指示信息所用的空间滤波参数确定。
在切换后的频域带宽部分中上报针对切换前的频域带宽部分对应的参考信号指示信息,包括:在高层信令中传输针对切换前的频域带宽部分对应的参考信号指示信息;切换后的频域带宽部分中至少包括:z套物理层上报资源,z套所述物理层上报资源对应z个所述频域带宽部分,一个所述频域带宽部分对应的参考信号指示信息在所述频域带宽部分对应的上报资源中上报,其中,所述物理层上报资源包括以下至少之一:PRACH(Physical Random Access Channel,物理随机接入信道)资源,PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)资源,PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源;切换前的频域带宽部分对应的候选参考信号集合中的参考信号, 在切换后的频域带宽部分中的物理层上报资源集合中至少存在一个上报资源与之对应;上报所述参考信号指示信息和频域带宽部分索引信息,其中,所述频域带宽部分索引信息用于指示以下至少之一:上报的所述参考信号指示信息所在的频域带宽部分、根据所述频域带宽部分索引信息所在的频域带宽部分对应的波束失败检测参考信号检测到了波束失败事件。
所述方法包括以下至少之一:切换前的频域带宽部分和切换后的频域带宽部分分别对应一个波束失败恢复过程;切换前的频域带宽部分和切换后的频域带宽部分分别对应一个计时器;切换前的频域带宽部分和切换后的频域带宽部分分别对应一个计数器;所述波束失败恢复过程中包括的参考信号指示信息和频域带宽部分索引信息之间具有对应关系;切换前的频域带宽部分和切换后的频域带宽部分分别对应一套波束失败恢复参数信息。
所述频域带宽部分的切换包括以下至少之一:下行频域带宽部分发生切换;上行频域带宽部分发生切换;一个CC(Component Carrier,成员载波)中的频域带宽部分发生切换。
所述计时器包括如下计时器至少之一:波束失败检测计时器、波束失败恢复计时器、响应监听计时器;所述计数器包括如下计数器至少之一:波束失败检测计数器、参考信号指示信息发送计数器。波束失败检测计数器的计数值包括:根据切换前的频域带宽部分中的波束失败检测参考信号集合得到的波束失败检测计数与根据切换后的频域带宽部分中的波束失败检测参考信号集合得到的波束失败检测计数之和。
根据以下方式确定所述预定操作的类型:根据信令信息确定所述预定操作的类型,其中,所述预定操作应用于任意两个频域带宽部分之间的切换,或者,所述预定操作应用于指定两个频域带宽部分之间的切换。
所述方法还包括根据以下至少之一的方式确定所述预定操作的类型是否为第一类预定操作:判断第一类参考信号和第二类参考信号之间是否满足第一对应关系,根据判断结果确定所述预定操作的类型,其中所述第一类参考信号属于切换前的频域带宽部分中的第一波束失败检测参考信号集合,所述第二类参考信号属于切换后的频域带宽部分中的第二波束失败检测参考信号集合;和,判断第三类参考信号和第四类参考信号之间是否满足第二对应关系,根据判断结果确定所述预定操作的类型,其中所述第三类参考信号属于切换前的频域带宽部分中的第一候选参考信号集合,所述第四类参考信号属于切换后的频域带宽部分中的第二候选参考信号集合。
在一实施例中,在第一参考信号集合与第二参考信号集合中的参考信号存在对应关系时,采用所述第一类预定操作;在第一参考信号集合中每个参考信号在第二参考信号集合中都存在至少一个具有对应关系的参考信号时,采用所述第一类预定操作;其中,所述第一参考信号集合为所述第一波束失败检测参考信号集合,第二参考信号集合为所述第二波束失败检测参考信号集合,所述对应关系为所述第一对应关系,和/或,所述第一参考信号集合为所述第一候选参考信号集合,第二参考信号集合为所述第二候选参考信号集合,所述对应关系为所述第二对应关系。
具有参考信号对应关系的两个参考信号之间满足以下至少之一:根据具有所述参考信号对应关系的两个参考信号确定一个链路的链路性能;具有所述参考信号对应关系的两个参考信号关于一个或者多个准共址参数满足准共址关系;具有所述参考信号对应关系的两个参考信号关联到同一个上报资源上;其中,所述参考信号对应关系包括以下至少之一:所述第一对应关系、所述第二对应关系;具有所述参考信号对应关系的两个参考信号包括以下至少之一:具有所 述第一对应关系的第一类参考信号和第二类参考信号、具有所述第二对应关系的第三类参考信号和第四类参考信号。
在一实施例中,上报资源为上报在候选参考信号集合中选择的参考信号指示信息的上报资源。
在一实施例中,上述说明的准共址参数包括以下至少之一的参数:Doppler shift(多普勒频移)、Doppler spread(多普扩展)、average delay(平均延迟)、delay spread(延迟扩展)、average gain(平均增益)、Spatial Rx parameter(空间接收参数)。
通过上述步骤,解决了针对带宽部分切换和多个传输节点服务一个终端的波束失败恢复困难的问题,进而可以达到有效地完善波束失败恢复的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机、计算机、服务器或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中提供了另一种运行于上述移动终端的波束失败恢复的处理方法,图3是根据本发明实施例的另一种波束失败恢复的处理方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,判断频域带宽部分切换和波束失败恢复过程之间是否存在关联关系。
步骤S304,根据判断结果,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换。
根据判断结果,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换,包括以下至少之一:当判断结果为是时,当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作;当判断结果为是时,所述波束失败恢复过程进行到预定状态时,对所述频域带宽部分进行切换;当判断结果为否时,当频域带宽部分发生切换时,对所述波束失败恢复过程的操作保持不变;当判断结果为否时,所述波束失败恢复过程进行状态与所述带宽部分的切换无关。
所述波束失败恢复过程进行到预定状态时,对所述频域带宽部分进行切换,包括以下至少之一:在检测到波束失败事件,且与候选参考信号集合中的参考信号存在对应关系的上报资源所在的上行频域带宽部分处于非激活状态时,将上行频域带宽部分切换至所述上报资源所在的频域带宽部分中;在检测到波束失败事件,且与候选参考信号集合包含的参考信号所在的下行频域带宽部分处于非激活状态时,将下行频域带宽部分切换至候选参考信号集合包含的参考信号所在的频域带宽部分;在上报参考信号指示信息之后,波束失败搜索空间所在的频域带宽部分处于非激活状态时,将下行频域带宽部分切换至所述波束失败搜索空间所在的频域带宽部分;在候选参考信号集合中选择到参考信号之后,选择的所述参考信号对应的上报资源所在的上行频域带宽部分处于非激活状态时,将上行频域带宽部分切换至选择的所述参考信号对应的上报资源所在的上行频域带宽部分。
实施例3
在本实施例中提供了再一种运行于上述移动终端的一种波束失败恢复的处 理方法,图4是根据本发明实施例的再一种波束失败恢复的处理方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系。
步骤S404,根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;
其中,N,M均为正整数。
确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;根据所述波束失败恢复参数对应关系,进行波束失败恢复过程和/或频域带宽部分切换;其中,N,M均为正整数,N与M的和大于或者等于2。
确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系,包括以下至少之一:根据频域带宽部分的信息确定所述波束失败恢复参数对应关系;根据控制信道资源组信息确定所述波束失败恢复参数对应关系;根据CC信息或者CC组信息确定所述波束失败恢复参数对应关系;根据数据信道的配置信息确定所述波束参数对应关系;根据所述第一类波束失败恢复参数在N套第一类波束失败恢复参数中的套数索引和所述第二类波束失败恢复参数在M套第二类波束失败恢复参数中的套数索引,确定所述波束失败恢复参数对应关系;一套所述第二类波束失败恢复参数和N套所述第一类波束失败恢复参数中的每一套第一类波束失败恢复参数之间存在所述波束失败恢复参数对应关系;一套所述第一类波束失败恢复参数和M套所述第二类波束失败恢复参数中的每一套所述第二类波束失败恢复参数之间存在所述波束失败恢复参数对应关系;根据信令信息确定与每套第一类波束失败恢复参数 对应的第二类波束失败恢复参数;所述第一类波束失败恢复参数中包括的参数类型集合和所述第二类波束失败恢复参数中包括的参数类型集合之间的交集为空。
根据所述频域带宽部分的信息确定所述波束失败恢复参数对应关系,包括以下至少之一:一套第一类波束失败恢复参数对应的频域带宽部分和一套第二类波束失败恢复参数对应的频域带宽部分的带宽部分索引相同时,确定该套第一类波束失败恢复参数和该套第二类波束失败恢复参数之间存在所述波束失败恢复参数对应关系;一套第一类波束失败恢复参数对应的频域带宽部分处于激活状态时对应的时间资源和一套第二类波束失败恢复参数对应的频域带宽部分处于激活状态时对应的时间资源之间交集非空时,确定该套第一类波束失败恢复参数和该套第二类波束失败恢复参数之间存在所述波束失败恢复参数对应关系。
在一实施例中,例如,根据一套第二类波束失败恢复参数中包括的候选参考信号集合所在的频域带宽部分,确定与该套第二类波束失败恢复参数存在所述波束失败恢复参数对应关系的第一类波束失败恢复参数;根据一套第一类波束失败恢复参数中包括的波束失败检测参考信号集合所在的频域带宽部分,确定与该套第一类波束失败恢复参数存在所述波束失败恢复参数对应关系的第二类波束失败恢复参数;根据一套第二类波束失败恢复参数中包括的波束失败搜索空间所在的频域带宽部分,确定与该套第二类波束失败恢复参数存在所述波束失败恢复参数对应关系的第一类波束失败恢复参数。
在一实施例中,信号有冲突表示多个信号占有的资源的交集非空,或者所述多个信号占有的空域资源第一通信节点不能同时产生,或者所述多个信号占有的空域资源的交集为空,所述资源包括如下至少之一:时域资源、频域资源、 码域资源、空域资源、天线端口、准共址参考信号。一个所述空域资源对应一个空间发送滤波参数,或者对应一个关联空间接收参数的准共址参考信号。多个控制信道资源有冲突还包括多个控制信道资源中包括候选控制信道的个数和超过第一通信节点在一个时间单元中能够盲检的候选控制信道的个数。
根据信令信息确定与每套第一类波束失败恢复参数对应的第二类波束失败恢复参数,包括以下至少之一:所述信令信息通知每套第一类波束失败恢复参数和所述M套第二类波束失败恢复参数中的一套或者多套之间存在波束失败恢复参数对应关系;所述信令信息中通知一个上报资源对应Q个候选参考信号,Q个候选参考信号对应Q套所述第一类波束失败恢复参数。
所述根据所述波束失败恢复参数对应关系,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换,包括:根据一套第一类波束失败恢复参数进行波束失败恢复过程,所述波束失败恢复过程中的预定事件发生时,根据与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的一套或者多套第二类波束失败恢复参数,进行波束失败恢复过程中的第五类预定操作。
在一实施例中,根据一套第一类波束失败恢复参数检测到波束失败事件,与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的一套第二类波束失败恢复参数对应的频域带宽部分处于非激活状态时,将频域带宽部分切换到与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数对应的频域带宽部分中。
所述第一类波束失败恢复参数包括以下至少之一的参数:波束失败检测信号集合、波束失败检测计时器对应的最长时长、波束失败检测计数器对应的预定阀值;所述第二类波束失败恢复参数包括以下至少之一的参数:候选参考信号集合、候选参考信号集合和上报资源之间的上报资源对应关系、波束失败搜 索空间、参考信号指示信息发送计数器对应的预定阀值、波束失败恢复计时器对应的最长时长、监听计时器对应的最长时长;所述波束失败恢复过程中的预定事件为检测到波束失败事件;所述第五类预定操作包括以下至少之一:在候选参考信号集合中选择参考信号、在上报资源中上报参考信号指示信息、在波束失败搜索空间中监听控制信道、根据上报的参考信号指示信息确定预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
图5是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图一。如图5所示,给一个终端配置了3个波束失败检测参考信号集合(即所述第一类波束失败恢复参数),3套{候选参考信号集合,上报资源,上报资源和候选参考信号之间的对应关系,波束失败搜索空间,预定信道},终端根据第i个波束失败检测参考信号集合检测到波束失败事件发生时,根据与第i个波束失败检测参考信号集合存在波束失败恢复参数对应关系的第i套{候选参考信号集合,上报资源,上报资源和候选参考信号之间的对应关系,波束失败搜索空间,预定信道}进行第五预设操作,i=1,2,3。
图6是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图二。在图6中,第一套和第二套第一类波束失败恢复参数都对应第一套第二类波束失败恢复参数,根据第一套和第二套中至少之一中的波束失败检测参考信号集合检测到波束失败事件时,都根据第一套中的{候选参考信号集合,上报资源,上报资源和候选参考信号之间的对应关系,波束失败搜索空间,预定信道}进行第五预设操作。
图7是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失 败恢复参数之间的波束失败恢复参数对应关系示意图三。图7中,第一至第三套中任意一套或者多套中的波束失败检测参考信号集合检测到波束失败事件时,都根据第一套中的{候选参考信号集合,上报资源,上报资源和候选参考信号之间的对应关系,波束失败搜索空间,预定信道}进行第五预设操作。
图8是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图四。图8中,一套第一类波束失败恢复参数对应二套第二类波束失败恢复参数,比如根据第一套第一类波束失败恢复参数中的波束失败检测参考信号集合检测到波束失败事件时,根据第一套或者第二套{候选参考信号集合,上报资源,上报资源和候选参考信号之间的对应关系,波束失败搜索空间,预定信道}进行第五预设操作。
图9是本发明实施例中N个第一类波束失败恢复参数和M个第二类波束失败恢复参数之间的波束失败恢复参数对应关系示意图五。图9中,一套第一类波束失败恢复参数对应三套第二类波束失败恢复参数,比如根据第一套第一类波束失败恢复参数中的波束失败检测参考信号集合检测到波束失败事件时,根据第一套或者第二套或者第三套{候选参考信号集合,上报资源,上报资源和候选参考信号之间的对应关系,波束失败搜索空间,预定信道}进行第五预设操作。比如第一至第三套的第二类波束失败恢复参数对应的资源所在的频域带宽哪个处于激活状态,就根据哪套第二类波束失败恢复参数进行第五预设操作。图5至9中不同套的第一类或第二类波束失败恢复参数对应不同的下行控制信道资源组/BWP(Bandwidth Part,频域带宽部分)/CC/BWP组/CC组/TRP(Transmission Reception Point,发送接收节点),所述3个下行控制信道资源组属于一个BWP。
所述第一类波束失败恢复参数包括候选参考信号集合;所述第二类波束失败恢复参数包括以下至少之一的参数:候选参考信号集合和上报资源之间的上 报资源对应关系、上报资源、波束失败搜索空间、参考信号指示信息发送计数器对应的预定阀值、波束失败恢复计时器对应的最长时长、监听计时器对应的最长时长;所述预定事件包括在候选参考信号集合选择到参考信号;所述第五类预定操作包括以下至少之一:在上报资源中上报参考信号指示信息、在波束失败搜索空间中监听控制信道、根据上报的参考信号指示信息确定预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
如图5至9中给出所示N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系。在图6至7中,多个候选参考信号集合对应一套上报资源,为此一套上报资源中可以有不同的上报资源关联不同候选信号集合中的参考信号,也可以是一套上报资源中的一个上报资源关联多于一个的参考信号,其中不同参考信号属于不同的候选参考信号集合;图8至9中,一个候选参考信号集合对应多个上报资源,当需要上报所述一个候选参考信号集合中的选择的参考信号的指示信息时,根据所述多个上报资源中的一个或者多个上报资源上报所述选择的参考信号的指示信息,比如根据当前处于激活状态的上行BWP是哪个,就根据该BWP中的上报资源上报所述选择的参考信号的指示信息,或者根据所述多个上报资源所在的上行BWP和当前处于激活状态的上行BWP的BWP切换时延最短的上行BWP中的上报资源上报。
所述第一类波束失败恢复参数包括候选参考信号集合和上报资源之间的上报资源对应关系;所述第二类波束失败恢复参数包括波束失败搜索空间;所述预定事件包括:根据一套第一类波束失败恢复参数得到的上报资源中上报参考信号指示信息;所述第五类预定操作包括以下至少之一:在波束失败搜索空间中监听控制信道、根据上报的参考信号指示信息确定预定信道的准共址参考信 号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
如图5至9中给出所示N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系。
在图6至7中,两个候选参考信号集合(或者两套上报资源)对应一个波束失败搜索空间,当终端能同时上报分别属于两个候选参考信号集合的参考信号指示信息时,在一个波束失败搜索空间中的控制信道中或者一个波束失败搜索空间中的控制信道调度的数据信道中,基站给终端发送两个候选参考信号集合索引信息或者参考信号指示信息。参考信号指示信息是两个候选参考信号集合的并集中的索引信息。
在图8至9中,一个候选控制信道对应多个波束失败搜索空间,比如根据当前处于激活状态的下行BWP是哪个,就根据该BWP中的波束失败搜索空间中监听控制信道,用于确定上报的参考信号指示信息是否上报成功,或者根据所述多个波束失败搜索空间所在的下行BWP和当前处于激活状态的下行BWP的BWP切换时延最短的下行BWP中的波束失败搜索空间监听控制信道。
所述第一类波束失败恢复参数包括:波束失败搜索空间;所述第二类波束失败恢复参数包括以下至少之一:预定信道信息、预定信号信息;所述预定事件包括:在所述波束失败搜索空间中监听控制信道;所述第五类预定操作包括以下至少之一:根据上报的参考信号指示信息确定所述预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
如图5至9中给出所示N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系。
在图5中,一套波束失败搜索空间对应一类预定信道,在第i套波束失败搜索空间中检测控制信道过程中,第i类下行预定信道的准共址参考信号根据与所述第i套波束失败搜索空间对应的候选参考信号集合中的参考信号指示信息获取。第i类上行预定信道或者信号的发送空间滤波器根据与所述第i套波束失败搜索空间对应的参考信号指示信息发送所采用的空间发送滤波参数得到,i=1,2,3。
在图6至7中,多套波束失败搜索空间对应一类预定信道,在多套波束失败搜索空间中的任意一套中监听控制信道的过程中,与所述多套波束失败搜索空间存在对应关系的下行预定信道的准共址参考信号,根据与所述波束失败搜索空间对应的候选参考信号集合中的参考信号指示信息获取。与所述多套波束失败搜索空间存在对应关系的上行预定信道的发送空间滤波器,根据与所述波束失败搜索空间对应的参考信号指示信息发送所采用的空间发送滤波参数得到。
如图5至9中不同套的第一类或第二类波束失败恢复参数,对应不同的下行控制信道资源组/BWP/CC/BWP组/CC组/TRP/数据信道的配置信息/上行控制信道的配置信息/解调参考的配置信息,多个下行控制信道资源组属于一个BWP。
将频域带宽部分切换到与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数对应的频域带宽部分中,包括:与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数对应的频域带宽部分存在多于一个时,将频域带宽部分切换到多于一个的频域带宽部分中具有满足指定频域带宽部分索引特征的频域带宽部分中;或者,与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数存在多于一个时,将频域带宽部分切换到与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数索引满足指定特征的第二类波束失败恢复参数对应的频域带宽部分中。
N套第一类波束失败恢复参数和M套第二类波束失败恢复参数满足以下至少之一的条件:N套第一类波束失败恢复参数和M套第二类波束失败恢复参数是一个或者多个CC中的波束失败恢复参数;N套第一类波束失败恢复参数和M套第二类波束失败恢复参数是一个或者多个所述波束失败恢复过程的参数;N套第一类波束失败恢复参数对应N个控制信道资源组;M套第二类波束失败恢复参数对应M个控制信道资源组;N套第一类波束失败恢复参数对应N个频域带宽部分;M套第二类波束失败恢复参数对应M个频域带宽部分;N套第一类波束失败恢复参数对应N个CC;M套第二类波束失败恢复参数对应M个CC;N套第一类波束失败恢复参数对应N个CC组;M套第二类波束失败恢复参数对应M个CC组;N套第一类波束失败恢复参数对应N个数据信道配置信息;M套第二类波束失败恢复参数对应M个数据信道配置信息。
所述方法满足以下至少之一的条件:N个控制信道资源组属于一个频域带宽部分;M个控制信道资源组属于一个频域带宽部分;N个频域带宽部分属于一个CC,其中,N不大于所述CC中包括的与N个频域带宽部分的传输方向相同的候选频域带宽部分的个数;M个频域带宽部分属于同一个所述CC,其中,M不大于所述CC中包括的与M个频域带宽部分的传输方向相同的候选频域带宽部分的个数;N个控制信道资源组和M个控制信道资源组属于一个频域带宽部分;N个频域带宽部分和M个频域带宽部分属于一个CC;N个频域带宽部分包括以下至少之一:初始带宽部分、默认带宽部分;M个频域带宽部分包括以下至少之一:初始带宽部分、默认带宽部分。
所述第一类波束失败恢复参数和/或所述第二类波束失败恢复参数满足以下至少之一的条件:所述第一类波束失败恢复参数在一个上行频域带宽部分的配置信息中配置;所述第二类波束失败恢复参数在一个下行频域带宽部分的配置 信息中配置;所述第一类波束失败恢复参数对应的资源位于一个上行频域带宽部分中;所述第二类波束失败恢复参数对应的资源位于一个下行频域带宽部分中。在一实施例中,该资源包括参考信号占有的资源和信道占有的资源中至少一个。
所述方法满足以下至少之一的条件:在N=1的情况下,一套第一类波束失败恢复参数和M套第二类波束失败恢复参数中每一套之间存在波束失败恢复参数对应关系;在M=1的情况下,一套第二类波束失败恢复参数和N套第一类波束失败恢复参数中每一套之间存在波束失败恢复参数对应关系;一套第二类波束失败恢复参数与A套所述第一类波束失败恢复参数存在波束失败恢复参数对应关系,其中A为不小于1且不大于N的正整数;一套第一类波束失败恢复参数与B套所述第二类波束失败恢复参数存在波束失败恢复参数对应关系,其中B为不小于1且不大于M的正整数。与一套第二类波束失败恢复参数存在波束失败恢复参数对应关系的第一类波束失败恢复参数的套数A大于1时,根据该套第二类波束失败恢复参数得到的一个上报资源中,上报A套所述第一类波束失败恢复参数的套索引信息;与一套第二类波束失败恢复参数存在波束失败恢复参数对应关系的第一类波束失败恢复参数的套数A大于1时,根据该套第二类波束失败恢复参数得到的波束失败恢复控制信道资源关联的信道中包括A套第一类波束失败恢复参数的套索引信息或者参考信号指示信息。
所述第一类波束失败恢复参数的套索引信息通过以下至少之一的方式表示:所述第一类波束失败恢复参数对应的频域带宽索引信息;所述第一类波束失败恢复参数对应的控制信道资源组信息;所述第一类波束失败恢复参数对应的CC索引信息;所述第一类波束失败恢复参数对应的CC组索引信息;所述第一类波束失败恢复参数对应的数据信道配置信息的索引信息。
上报A套所述第一类波束失败恢复参数的套索引信息用于指示以下至少之一的信息:根据所述套索引信息对应的第一类波束失败恢复参数对应的波束失败检测参考信号集合检测到了波束失败事件;上报的参考信号指示信息是所述套索引信息对应的参考信号指示信息。
在一实施例中,在所述波束失败恢复控制信道资源关联的信道中收到A套所述第一类波束失败恢复参数的套索引信息或者参考信号指示信息之后,确定所述套索引信息或者所述参考信号指示信息对应的参考信号指示信息上报操作成功完成。
A套所述第一类波束失败恢复参数的套索引信息和根据一套所述第二类波束失败恢复参数得到的波束失败恢复控制信道资源关联的信道的I套以下至少之一的信息之间存在对应关系:控制信道的解调参考信号端口信息;控制信道的解调参考信号序列信息;监听控制信道的时间资源;控制信道的加扰序列;控制信道携带的控制信息的格式;数据信道的解调参考信号信息;数据信道的加扰序列信息;其中,I为小于或者等于A的正整数,所述控制信道属于波束失败恢复控制信道资源中的控制信道,所述数据信道属于所述波束失败恢复控制信道资源中的控制信道调度的数据信道。
实施例4
在本实施例中提供了又一种运行于上述移动终端的一种波束失败恢复的处理方法,图10是根据本发明实施例的又一种波束失败恢复的处理方法的流程图,如图10所示,该流程包括如下步骤:
步骤S1002,通信节点根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
所述预设规则包括以下至少之一:波束失败检测参考信号集合和候选参考 信号集合位于相同的下行频域带宽部分中;上报资源所在的上行频域带宽部分和波束失败搜索空间所在的下行频域带宽部分的带宽部分索引信息相同;上报资源所在的上行频域带宽部分处于激活状态的时间资源和波束失败搜索空间所在的下行频域带宽部分处于激活状态的时间资源之间的交集非空;波束失败检测参考信号集合、候选参考信号集合和波束失败搜索空间位于相同的下行频域带宽部分中;上报资源和候选参考信号之间的关联关系配置信息中包括候选参考信号所在的频域带宽索引信息;波束失败检测参考信号的配置信息中包括波束失败检测参考信号所在的频域带宽索引;一个频域带宽中包括的上报资源构成的集合中至少存在两个上报资源,所述两个上报资源关联的候选参考信号的频域带宽索引不同;一个频域带宽中包括y1套波束失败恢复控制信道资源,y1套波束失败恢复控制信道资源对应y2套第三类波束失败恢复参数,其中所述第三类波束失败恢复参数包括如下参数至少之一:波束检测参考信号集合、候选参考信号集合、上报资源集合,其中,y1,y2为正整数;一个参考信号资源关联多于一个下行频域带宽部分,所述参考信号资源在所述多于一个下行频域带宽部分中占有资源,其中一个参考信号资源对应一个参考信号资源标识ID,一个参考信号资源包括以下至少之一:一个波束失败检测参考信号资源和一个候选参考信号资源。
在一实施例中,一个频域带宽包括一个频域带宽部分即BWP,一个成员载波对应的频域带宽即一个CC对应的频域带宽。一个频域带宽索引信息包括BWP索引信息和CC索引信息中至少一个。
所述预设规则包括以下至少之一:下行初始频域带宽部分或默认带宽部分中包括以下至少之一:波束失败检测参考信号集合、候选参考信号集合和波束失败搜索空间;上行初始频域带宽部分或默认带宽部分中包括上报资源;波束 失败检测参考信号集合中的参考信号位于相同的下行频域带宽部分;候选参考信号集合中存在至少两个参考信号,所述两个参考信号分别位于两个不同的频域带宽中;至少一个下行频域带宽部分包括以下至少之一:波束失败检测参考信号集合、候选参考信号集合和波束失败搜索空间;位于一个成员载波CC中的每个下行频域带宽部分包括以下至少之一:波束失败检测参考信号集合、候选参考信号集合、波束失败搜索空间、波束失败检测计时器、波束失败检测计时器;位于一个CC中的每个上行频域带宽部分包括以下至少之一:上报资源、上报资源和候选参考信号集合之间的对应关系、波束失败恢复计时器、波束失败监听计时器。
所述预设规则包括以下至少之一:一个波束失败检测参考信号集合和X个候选参考信号集合对应,所述X个候选参考信号集合分别位于X个下行频域带宽中;一个候选参考信号集合和Y套上报资源对应,所述Y套上报资源分别位于Y个上行频域带宽中,每套上报资源中包括:一个或者多个上报资源;一个上报资源和Z个候选参考信号对应;一套上报资源与W套波束失败搜索空间对应,所述W套波束失败搜索空间分别位于W个下行频域带宽中;其中,X、Y、Z、W均为不小于1的正整数。
一个上报资源和Z个候选参考信号对应,包括以下至少之一:Z个候选参考信号对应Z个下行频域带宽部分;Z个候选参考信号对应Z个控制信道资源组;Z个候选参考信号对应Z个下行成员载波组;Z个候选参考信号对应Z个波束失败检测参考信号集合;Z个候选参考信号中有Z1个参考信号指示信息需要上报时,根据Z1个参考信号对应的如下信息至少之一,确定当前在所述上报资源中发送的信号和Z1个参考信号中的一个参考信号对应:距离当前上报资源最近的处于激活状态的频域带宽部分、Z1个参考信号在Z个参考信号中的索引 信息、Z1个参考信号对应的Z1个控制信道资源组的优先级信息、Z1个参考信号对应的Z1个下行成员组的优先级信息、Z1个参考信号对应的Z1个控制信道资源组的索引信息、Z1个参考信号对应的Z1个下行成员组的索引信息,其中,Z1为大于1的正整数。
所述预设规则包括以下至少之一:一个下行频域带宽中包括C套所述波束失败恢复参数;一个上行频域带宽中包括D套所述波束失败恢复参数;其中,C、D均为不小于1的正整数,m套波束失败恢复参数对应m个如下信息至少之一:控制信道资源组、频域带宽组、信道或信号的配置信息,其中所述m为所述C或所述D。
所述方法满足以下至少之一:下行频域带宽部分和上行频域带宽部分属于SPcell(Special cell,特殊小区);所述通信节点拒绝接收不满足所述预设规则的波束失败恢复参数;所述波束失败恢复过程包括上报频域带宽索引信息,上报的频域带宽索引信息用于指示以下至少之一:上报的参考信号指示信息所在的频域带宽部分、根据所述频域带宽索引信息对应的波束失败检测参考信号检测到了波束失败事件。
所述预定规则包括以下至少之一:一个下行频域带宽部分对应E个波束失败恢复过程,E个波束失败恢复过程对应所述一个下行频域带宽部分包括的E个控制信道资源组,其中,E为不小于1的正整数;携带参考信号指示信息的信道或信号与其他信道或信号有冲突时,携带参考信号指示信息的信道或信号优先级更高;波束失败恢复控制信道资源关联的信道或信号与其他信道或信号有冲突时,波束失败恢复控制信道资源关联的信道或信号的优先级最高;波束失败恢复控制信道资源关联的信道或信号与其他信道或信号有冲突时,波束失败恢复控制信道资源关联的信道或信号的优先级高于第一类其他信道或信号,其 中所述第一类其他信道或信号至少和波束失败检测参考信号集合中的一个参考信号满足准共址关系;波束失败恢复控制信道资源中的控制信道调度的上行信道或信号的空间滤波参数根据发送参考信号指示信息采用的发送空间滤波参数获取;免调度的信道或信号中携带参考信号指示信息;在高层信令信息中携带参考信号指示信息。
在一实施例中,所述波束失败恢复控制信道资源关联的信道或信号包括:波束失败恢复控制信道资源中传输的控制信道、波束失败恢复控制信道资源中传输的控制信道调度的信道或信号。
所述预定规则包括以下至少之一:所述预定规则包括的波束失败恢复控制信道资源满足以下至少之一:在波束失败恢复控制信道资源中只监听专有控制信道;在波束失败恢复控制信道资源中只监听下行控制信息(Downlink Control Information,DCI)DCI0_0和DCI1_0中至少一个,不监听DCI0_1和DCI1_1中至少一个;在波束失败恢复控制信道资源中的控制信道中不包括TCI(Transmission Configuration Indicator,传输控制指示)域;在波束失败恢复控制信道资源中的控制信道中的SRS(Sounding Reference Signal,探测参考信号)资源指示域的比特数为0,其中,SRS资源指示域用于指示上行数据信道的空间参数;在波束失败恢复控制信道资源中的控制信道中的一类比特域的比特数和其他控制信道资源中控制信道的所述一类比特域的比特数不同;在波束失败恢复控制信道资源中监听一个参考信号序列;在波束失败恢复控制信道资源中收到预定参考信号序列之后,执行以下至少之一操作:参考信号指示信息发送过程成功完成和停止波束失败恢复计时器;一个准共址参考信号集合中包括的不同准共址参考信号的个数不大于波束失败检测参考信号集合中可包括的参考信号的个数,其中,一个准共址参考信号集合包括一个频域带宽中配置的控制信 道资源关联的一类准共址参数的准共址参考信号。
在预定时间段中波束失败恢复过程满足所述预定规则,所述预定时间段包括如下时间段至少之一:响应监听计时器运行期间;波束失败恢复计时器运行期间;从发送参考信号指示信息之后直到收到控制信道的准共址参考信号的更新消息;从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中的控制信道调度的数据信道中收到控制信道的准共址参考信号的更新消息;从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中收到控制信道;从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中收到预定序列;从发送参考信号指示信息之后直到收到上行信道或信号的空间滤波参数的更新消息;从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中的控制信道调度的数据信道中收到上行信道或信号的空间滤波参数的更新消息;从在波束失败恢复控制信道资源中收到控制信道或者预定序列到收到下行控制信道的准共址参考信号更新信息;从在波束失败恢复控制信道资源中收到控制信道或者预定序列到收到上行信道或信号的空间滤波参数的更新消息。
所述方法还包括:根据满足预定特征的F个控制信道资源的准共址参考信号,确定波束失败检测参考信号集合中包括的参考信号,其中满足所述预定特征的F个控制信道资源满足以下至少之一:F个控制信道资源不包括波束失败恢复控制信道资源;F个控制信道资源中的不同控制信道资源关联一类准共址参数的准共址参考信号不满足准共址关系;F个控制信道资源是专有控制信道资源;F个控制信道资源中配置关联一类准共址参数的准共址参考信号;F个控制信道资源关联一类准共址参数的准共址参考信号包括一个控制信道资源集合中关联的一类准共址参数的准共址参考信号集合中带宽最大的F个准共址参考信号和密度最大的F个准共址参考信号中至少之一;一个控制信道资源集合中关联一 类准共址参数的准共址参考信号集合中包括的SSB(Single Side Band,单边带)控制信道资源优先选为F个控制信道资源;F个控制信道资源的控制信道资源索引在一个控制信道资源集合中满足预定特征;F个控制信道资源关联一类准共址参数的准共址参考信号属于一个频域带宽,其中,一个所述控制信道资源包括所述频域带宽中配置的控制信道资源构成的集合和满足预定特征的控制信道资源构成的集合中至少之一;其中,F为不小于1的正整数。
基于上述实施例,还提供了如下的应用场景,以便理解技术方案。
场景1:
图11是根据本发明实施例的一种实现波束失败恢复过程的流程图,如图11所示,波束失败恢复过程包括:
操作一:检测波束失败是否发生。终端通过检测波束失败检测参考信号集合中的参考信号,来检测波束失败是否发送。当波束失败检测参考信号集合中的参考信号中所有参考信号的性能都低于预定阀值时,终端的物理层向MAC层上报一个波束失败指示信息,当波束失败检测参考信号集合中的参考信号的性能至少有一个高于预定阀值时,认为没有检测到波束失败,终端的物理层不向MAC层上报波束失败指示信息,终端继续检测波束失败检测参考信号集合中参考信号的性能。MAC层收到物理层的一个波束失败指示信息后,启动或者重启波束失败检测计时器,将波束失败计数器加1,当波束失败检测计时器超时时,将波束失败检测计数器置0。
操作二:选择新波束。如果波束失败计数器达到预定值,终端的MAC层指示物理层在候选参考信号集合参考信号集合中选择参考信号的性能大于预定值的参考信号,将这些参考信号的资源索引信息以及参考信号的RSRP上报给 MAC层。
操作三:上报选择的新波束。MAC层在物理层上报的满足性能的多个参考信号中选择一个,将这个参考信号的索引上报给基站,在这之前基站给终端分配了候选参考信号集合中的参考信号和物理随机接入信道(Physical Random-access Channel,PRACH)资源之间的关联关系,从而终端就可以在选择的参考信号对应的PRACH资源上发送PRACH即发送preamble,基站收到这个PRACH信息之后就知道波束失败检测参考信号集合中的参考信号发生了波束失败,并知道终端在候选参考信号集合中选择的新波束(即所述选择的参考信号资源对应的波束)。以下为了简单将此种PRACH资源称为PRACH-BFR(Physical Random Access Channel-Beam Failure Recovery,物理随机接入信道波束失败恢复)。本文中所述上报参考信号指示信息,包括终端在上报资源(比如PRACH资源,PRACH资源也可以称为PRACH-BFR资源)上发送Preamble,或者终端在PUCCH中上报在候选参考信号集合中选择的参考信号指示信息。
操作四:监听针对上报的新波束信息的确认信息。终端上报选择的新波束信息之后,开启时域监听窗口,即开启监听响应计时器,监听基站发送的确认信息,从而知道基站收到了终端发送的选择的新波束信息,终端在配置的波束失败恢复控制信道资源(Control Resource Set-Beam Failure Recovery,CORESET-BFR)中包括的波束失败恢复搜索空间(Search Space-Beam Failure Recovery,SS-BFR)中监听基站发送的PDCCH。当在SS-BFR中监听到基站发送的PDCCH时,认为波束失败恢复的PRACH过程成功。当在时域监听窗口中即所述监听响应计时器运行期间时,没有在SS-BFR中检测到PDCCH,将PRACH发送次数增1,如果波束失败恢复计时器没有过期且PRACH发送次数没有超过预定值,则可以回到如上操作三继续进行,否则认为本次波束失败恢 复过程失败。从在SS-BFR中监听PDCCH到收到基站对于PDCCH的准共址参考信号的更新之前,终端认为PDCCH和PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的DMRS(Demodulation Reference Signal,解调参考信号)和上报的新波束(即新参考信号)之间满足准共址关系。在波束失败恢复的PRACH过程成功之后直到收到基站对于PDCCH的准共址参考信号的更新之前,终端继续在SS-BFR中侦听PDCCH,PDCCH的准共址参考信号的更新包括如下更新至少之一:MAC-CE(Medium access control-Control Element,控制元素)命令对于PDCCH的准共址参考信号的更新,RRC(Radio Resource Control,无线资源控制)信令对于PDCCH的准共址参考信号列表的更新。终端收到基站对于PDCCH的准共址参考信号的更新之后,停止在SS-BFR中监听PDCCH。
NR允许基于频域带宽部分机制进行通信,一个上行CC中,最多可以配置4个候选频域带宽部分,一个时刻只能一个上行频域带宽部分处于激活状态,一个下行CC中,最多可以配置4个候选频域带宽部分,一个时刻只能一个下行频域带宽部分处于激活状态。
场景2:
在本场景中,假设N个下行频域带宽部分中都有各自对应的{波束失败检测参考信号集合,候选参考信号集合,波束失败恢复搜索空间},N个频域带宽部分中的一个频域带宽部分切换到另一个频域带宽部分时,波束失败恢复过程提出如下增强方案。
波束失败恢复过程方式一:N个下行频域带宽部分对应相同的计时器和计数器,其中所述计时器包括:波束失败检测计时器、波束失败恢复计时器、监听响应计时器,计数器包括波束检测失败计数器、参考信号指示信息发送计数 器。当下行频域带宽部分切换之后,计时器、计数器不因为频域带宽部分切换而进行任何操作,实现无缝过度。计时器、计数器不因为频域带宽部分切换而进行终止或重启操作,只是波束失败恢复过程中的{波束失败检测参考信号集合,候选参考信号集合}进行更新替换。
图12是根据本发明实施例的波束失败指示信息上报周期中包括BWP切换的示意图一。如图12所示,从频域带宽部分BWPD0切换到频域带宽部分BWPD1,波束失败恢复过程中的{波束失败检测参考信号集合,候选参考信号集合}从频域带宽部分BWPD0中的{波束失败检测参考信号集合0,候选参考信号集合0}更新为频域带宽部分BWPD1中的{波束失败检测参考信号集合1,候选参考信号集合1},即在频域带宽部分BWPD0处于激活态时,只有波束失败检测参考信号集合0中的参考信号的性能都低于预定阀值时,物理层向MAC层上报波束失败指示信息,波束失败计数器累积到预定值时,从候选参考信号集合0中选择新波束。从频域带宽部分BWPD0切换到频域带宽部分BWPD1之后,只有波束失败检测参考信号集合1中的参考信号的性能都低于预定阀值时,物理层向MAC层上报波束失败指示信息,波束失败计数器累积到预定值时,从候选参考信号集合1中选择新波束。从而频域带宽部分BWPD0切换到频域带宽部分BWPD1之前,如果波束失败计数器已经累积到一个值比如为3,只是这个值小于预定阀值6,切换到频域带宽部分BWPD1之后,在原来波束失败计数器的基础上继续累积,即切换到频域带宽部分BWPD1之后波束失败计数器的值初始值为3。
此时存在如下情况,一个波束失败指示信息的上报周期中包括频域带宽部分切换,此时可以约定终端根据新频域带宽部分中的波束失败检测参考信号集合决定是否上报波束失败指示信息,或者约定根据波束失败指示信息的上报周 期包括的对应处于激活状态时间长度的频域带宽部分中的波束失败检测参考信号集合决定是否上报波束失败指示信息。如图7中所示,一个波束失败指示信息的上报周期中频域带宽部分BWPD0处于激活状态的时间大于频域带宽部分BWPD1处于激活状态的时间,从而在此上报周期中,根据频域带宽部分BWPD0中配置的波束失败检测参考信号集合0中的参考信号的性能是否都低于预定值,判断是否上报波束失败指示信息给MAC层。
图13是根据本发明实施例的波束失败指示信息上报周期中包括BWP切换的示意图二。如图13所示,图13中一个波束失败指示信息的上报周期中频域带宽部分BWPD2处于激活状态的时间大于频域带宽部分D0处于激活状态的时间,从而在此上报周期中,根据频域带宽部分BWPD2中配置的波束失败检测参考信号集合2中的参考信号的性能是否都低于预定值,判断是否上报波束失败指示信息给MAC层。
此时的另一种实施方式,通过建立新旧频域带宽部分中的波束失败检测参考信号集合、候选参考信号集合之间的对应关系,比如旧频域带宽部分中的波束失败检测参考信号集合中包括的参考信号(1,2),新频域带宽部分中的波束失败检测参考信号集合中包括参考信号(3,4),其中参考信号1和3之间满足QCL(Quasi-co-location,准共址)关系,参考信号2和4之间满足QCL关系,认为存在QCL关系的两个参考信号对应基站的同一个发送波束,可以虚拟为一个参考信号,从而综合参考信号(1,3)得到一个链路性能称为第一链路性能,综合参考信号(2,4)得到一个链路性能称为第二链路性能,当第一链路性能和第二链路性能都低于预定链路性能阀值时,物理层向MAC层发送波束失败指示信息。上述是通过QCL关系建立两个新旧频域带宽部分中的波束失败检测参考信号集合中的参考信号之间的对应关系,当然也可以通过其他规则或者基站通知的显式信令 建立参考信号之间的对应关系。
类似地,候选参考信号集合的检测也可以采用上述波束失败检测参考信号集合的检测方法,比如建立新旧频域带宽部分中的候选参考信号集合中的参考信号之间的对应关系,比如旧频域带宽部分中的候选参考信号集合包括参考信号(5,6),新频域带宽部分中的候选参考信号集合包括参考信号(7,8),通过QCL关系或者显式信令,得知参考信号(5,7)存在对应关系(比如对应相同的发送波束1),参考信号(6,8)存在对应关系(比如对应相同的发送波束2),从而终端就可以基于参考信号(5,7)综合得到这个发送波束1对应的性能,基于参考信号(6,8)得到参考信号(6,8)对应的发送波束2的性能,从而在发送波束1和发送波束2之间选择一个优选发送波束发送给基站。
建立新旧频域带宽部分中的参考信号之间的对应关系,也可以是当两个或者两个以上的候选参考信号(所述候选参考信号即为候选参考信号集合中的参考信号)关联到同一个PRACH资源时,认为所述两个或者两个以上的候选参考信号存在对应关系,当终端在所述一个PRACH资源上发送Preamble码之后(本场景发送PRACH即在PRACH信道上发送preamble码),基站就知道终端是基于与这个PRACH关联的两个或者两个以上的参考信号得到的新波束选择结果。上述关联到同一个PRACH资源的两个或者两个以上的参考信号对应不同的频域带宽部分。
上述波束失败恢复过程方式一中,随着频域带宽部分的切换,波束失败过程不因此而中断,即多个频域带宽部分之间的波束失败检测参考信号集合、候选参考信号集合之间有关联,对应同一套波束失败恢复过程。
图14是根据本发明实施例的多个频域带宽部分对应一个波束失败过程的示意图一。如图14所示,频域带宽部分BWPD0和频域带宽部分BWPD1共享一 个波束失败恢复过程,即对应同一个波束失败检测计时器。波束失败恢复计时器、监听计时器、波束失败计数器、参考信号指示信息发送计数器,这些计时器、计数器不因为频域带宽部分的切换而进行额外的操作,比如不进行如下的操作置0/停止/暂停/重启等,只是频域带宽部分切换之后,将波束失败恢复过程中的波束失败检测参考信号集合、候选参考信号集合更新为切换之后的频域带宽部分中的波束失败检测参考信号集合、候选参考信号集合。当然,如果切换之后的频域带宽部分中没有波束失败检测参考信号集合(或者候选参考信号集合),在一实施例中,波束失败检测参考信号集合和候选参考信号集合中至少一个就不进行更新。比如频域带宽部分切换之后,在旧频域带宽部分中发送了Preamble之后,在新频域带宽部分的SS-BFR中侦听PDCCH,从而确定终端发送的PRACH基站有没有收到。旧频域带宽部分中已经发送了PRACH,但是监听计时器到期时,还没有在旧频域带宽部分中的SS-BFR中监听到PDCCH,而且参考信号指示信息发送计数器还没有达到预定次数,基站在其他SS(Search Space,搜索空间)中的DCI中又触发了频域带宽部分切换,此时终端在新频域带宽部分中可以继续PRACH的发送。
波束失败恢复过程方式二:图15是根据本发明实施例的一种多个频域带宽部分对应一个波束失败过程的示意图二。如图15所示,下行频域带宽部分切换之后,波束失败检测计时器、波束失败恢复计时器停止,波束失败计数器置0,参考信号指示信息发送计数器置0,终端在新的频域带宽部分中重新启动图1所示的波束失败恢复过程,直到在新的频域带宽部分中,终端的MAC层收到物理层反馈的波束失败指示信息之后,采用图1中的流程,启动波束失败检测计时器、波束失败恢复计时器,对于波束失败计数器进行累加。类似地,当频域带宽部分切换之后,也是在新频域带宽部分中的候选参考信号集合中选择参考信 号。
上述波束失败恢复过程方式一和方式二中,可以理解多个下行频域带宽部分对应一套波束失败检测计时器、波束失败恢复计时器、监听计时器、波束失败计数器、参考信号指示信息发送计数器,不同之处是频域带宽部分切换之后,不同频域带宽部分上的计数器/计时器是否有关联,比如波束失败计数器是否在新频域带宽部分中进行继续累加,如果可以累加就是方式一,否则为方式二,频域带宽部分切换之后PRACH的发送过程是否要重启,如果重启就是方式二,如果不重启就是方式一。不同下行频域带宽部分中对应的如下配置信息至少之一要相同:波束失败检测计时器、监听计时器、波束失败恢复计时器、波束失败计数器、参考信号指示信息发送计数器。或者多个下行频域带宽部分中只有一个频域带宽部分中配置了一套波束失败检测计时器、监听计时器、波束失败恢复计时器、波束失败计数器、参考信号指示信息发送计数器,所述多个下行频域带宽部分共享此参数。终端上报的preamble信息中不需要携带频域带宽部分信息。在下面的实施方式中,不同频域带宽部分各自对应各自的波束失败恢复过程。各个频域带宽部分中这些参数的配置之间不需要满足约束条件。
波束失败恢复过程方式三:图16是根据本发明实施例的多个下行频域带宽部分各自对应各自波束失败恢复过程的示意图一。图17是本发明实施例的多个下行频域带宽部分各自对应各自波束失败恢复过程的示意图二。如图16和17所示,如有2个下行频域带宽部分,各自对应一个波束失败过程,即各自有对应的{波束失败检测计时器、波束失败恢复计时器、监听计时器、波束失败计数器、参考信号指示信息发送计数器}。当发生频域带宽部分切换时,旧频域带宽部分中的波束失败检测计时器不因为频域带宽部分切换而进行操作,旧频域带宽部分中的波束失败计数器暂停累加,直到重新切换到这个旧频域带宽部分中, 如图17所示。在重新切换到旧频域带宽部分之前,如果旧频域带宽部分对应的波束失败检测计时器过期,则此频域带宽部分对应的波束失败计数器置0,如图16所示。新频域带宽部分中的波束失败检测计时器不因为频域带宽部分切换而做任何操作,新频域带宽部分中之前被暂停累加的波束失败计数器可以开启继续累加,当然如果这个暂停的波束失败计数器在这个频域带宽部分连续两次处于激活状态的间隔内,这个频域带宽部分的波束失败检测计时器已经过期,则该新频域带宽部分被暂停累加的波束失败计数器已经置0。如果当前切换到的新频域带宽部分是第一次处于激活状态,则对于新频域带宽部分启动图16所示的流程,直到收到基于新频域带宽部分中的波束失败检测参考信号集合得到的波束失败指示信息之后,按照图16所示的流程,进行波束失败检测计时器、波束失败恢复计时器、波束失败计数器的相关操作。总之认为此时各个频域带宽部分各自对应一套独立的图16中的流程。在上述实施方式中,在新BWP(即切换后的BWP,如图16至17中的BWPD1)处于激活状态的时间段,针对旧BWP(即切换前的BWP,如图16至17中的BWPD0)的波束失败恢复过程除波束失败检测计时器继续运行之外,其余的计时器(包括波束失败恢复计时器、监听计时器)是暂停的,计数器(包括波束失败检测计数器,参考信号指示信息发送次数计数器)也是暂停累加的,等到再次切换到BWPD0之后,再开启这些计时器、计数器。比如图16中的t1至t5时间段(或者t11至t5时间段)中和图17中t1至t4时间段(或者t11至t4时间段)中,0(即所示波束失败恢复计时器0),0(即所示监听计时器0)是暂停的,0(即所示波束失败检测计数器0),0(即所示参考信号指示信息发送次数计数器)也是暂停累加的,图16中的t6时刻和图17中的t2时刻,0,0,0,0]解锁。
波束失败恢复过程方式四:新旧BWP分别对应一个波束失败恢复过程,和 方式三不同的是,在新BWP处于激活状态时间段中,针对旧BWP的波束失败过程还在继续允许,比如图16中的t1至t5时间段(或者t11至t5时间段)中和图17中t1至t4时间段(或者t11至t4时间段)中,0,0是继续运行的,和/或0,0也是继续运行的,比如旧BWP的波束失败检测参考信号在新BWP中对应的参考信号,旧BWP的候选参考信号在新BWP中对应的参考信号。从而在新BWP中,至少有两个波束失败恢复过程在并行运行,因为可能旧BWP之前的BWP的波束失败恢复过程也可能在当前新BWP中运行,当然也可以规定一个BWP中并行运行的波束失败恢复过程的最大数目个数,比如针对旧BWP的波束失败恢复过程称为过程1,针对新BWP的波束失败恢复过程称为过程2,在新BWP中需要有至少两套上报资源、两套波束失败恢复搜索空间,分别针对过程1和过程2。比如有两套PRACH资源{PRACH-BFR1,PRACH-BFR-2}、两套SS-BFR{SS-BFR1,SS-BFR-2},分别针对过程1和过程2,SS-BFRi的准共址参考信号和SS-BFRi中的DCI调度的PDSCH的准共址参考信号都为过程i中上报的参考信号指示信息,i=1,2,SS-BFRi中的DCI调度的PUSCH/PUCCH的空间滤波参数为过程i中上报参考信号指示信息所用的空间滤波参数,即在PRACH-BFR资源中发送preamble所用的preamble。其中SS-BFRi中的DCI调度的PUCCH包括SS-BFRi中的DCI调度的PDSCH的ACK/NACK(Acknowledgement/Negative Acknowledgement,应答/非应答)消息所在的PUCCH。另一种实施方式是在新BWP中只有一套PRACH-BFR和一套SS-BFR针对过程2,新BWP中运行的针对其他BWP的波束失败恢复过程的参考信号指示信息上报可以在新BWP中的高层信令中携带,比如MAC-CE/RRC信令。第三种实施方式中,{波束失败检测参考信号集合,候选参考信号集合,PRACH-BFR}是新旧BWP各对应一套,SS-BFR只有一套,SS-BFR的DCI中 或者SS-BFR中的DCI调度的PDSCH中携带过程索引信息,或者候选参考信号集合的套索引信息。
图16中BWP切换时的波束失败恢复过程相关操作是在t1时刻进行,当然也可以是在t11时刻进行。类似地,t5时刻进行的动作也可以在t6时刻进行。图17中BWP切换时的波束失败恢复过程相关操作是在t1时刻进行,当然也可以是在t11时刻进行,类似地,t4时刻进行的动作也可以在t2时刻进行。
在图16至17中,各个BWP分别对应一套独立的波束失败恢复过程,当一个PRACH资源关联多于一个候选参考信号时,不同候选参考信号属于不同BWP中的候选参考信号集合,终端在这个PRACH发送preamble之后,终端和基站约定距离当前PRACH资源最近的处于激活状态的下行BWP是哪个,PRACH资源上报的参考信号指示信息就是针对哪个下行BWP中的候选参考信号集合的。
在上述三种波束失败恢复过程中,波束失败检测计时器、监听计时器、波束失败恢复计时器、波束失败计数器、参考信号指示信息发送计数器都按照上述三种波束失败恢复过程中的其中一种进行,当然本场景也不排除,部分计时器和部分计数器中至少之一按照上述方式i做,部分计时器和部分计数器中至少之一按照上述方式j做,其中i、j是属于{1,2,3}且不相等的正整数。比如波束失败检测计时器、波束失败计数器按照方式一做,波束失败恢复计时器、监听计时器、参考信号指示信息发送计数器按照关联关系建立方式二操作。
场景3:
在本场景中,N个下行频域带宽部分中配置了{波束失败检测参考信号集合,波束失败检测计时器,波束失败计数器},M个上行频域带宽部分中配置了{候选参考信号集合,PRACH,候选参考信号集合与PRACH之间的关联关系,波束失败恢复计时器,SS-BFR,监听计时器,参考信号指示信息发送计数器},目 的在于需要确认它们之间的对应关系。其中,计时器的参数用于配置计时器的时长,所述计数器的参数用于配置计数器对应的预定阀值,当计数器的计数达到与所述计数器对应的预定阀值时,进行预定操作。
在TDD(Time Division Duplexing,时分双工)的一个激活CC中下行频域带宽部分的个数和上行频域带宽部分的个数应该是相同的,但是还是会存在N和M不同的情况,比如只有部分上行频域带宽部分中配置了波束失败恢复参数和只有部分下行频域带宽部分中配置波束失败恢复参数中至少之一的情况,需要确定M个上行频域带宽部分中的波束失败恢复参数和N个下行频域带宽部分波束失败恢复参数之间的对应关系。从而可以确定终端在一个PRACH资源发送Preamble是因为以下至少之一:在哪些下行频域带宽部分中检测到了波束失败检测参考信号集合中的参考信号的性能低于预定门限;在哪些下行频域带宽部分中检测到了候选参考信号集合。比如,上行频域带宽部分(即表1中的频域带宽部分U)和下行频域带宽部分(即表1中的频域带宽部分D)中BFR参数的配置如表1所示。在表1中为了描述简单,将一个上行频域带宽部分中配置的七个参数{候选参考信号集合,PRACH,候选参考信号集合与PRACH之间的关联关系,波束失败恢复计时器,SS-BFR,监听计时器,参考信号指示信息发送计数器}称为一个BFR-U参数集合(即所述第二类波束失败恢复参数),将一个下行频域带宽部分中配置的三个参数{波束失败检测参考信号集合,波束失败检测计时器,波束失败计数器}称为一个BFR-D参数集合(即所述第一类波束失败恢复参数)。在表1中BFR-Ui表示第i套BFR-U参数集合,其中i=0,1,BFR-Dj表示第j套BFR-D参数集合,其中j=0,1,2。表1中频域带宽部分Ui表示第i个频域带宽部分U,i=0至3,表1中频域带宽部分Uj表示第j个频域带宽部分D,j=0至3。
在FDD(Frequency Division Duplexing,频分双工)系统中,上行CC中的4个候选频域带宽部分U中的一个频域带宽部分U和下行CC中的4个候选频域带宽部分D中的每个频域带宽部分D都可能在相同时刻处于激活状态。
表1
频域带宽部分索引 BFR的配置情况
频域带宽部分U0 BFR-U0
频域带宽部分U1 BFR-U1
频域带宽部分U2 没有配置BFR参数
频域带宽部分U3 没有配置BFR参数
频域带宽部分D0 BFR-D0
频域带宽部分D1 BFR-D1
频域带宽部分D2 没有配置BFR参数
频域带宽部分D3 BFR-D3
可以采用如下方式中的一种或者多种确定N个BFR-U和M个BFR-D之间的对应关系,比如表1中的2个BFR-U参数集合和3个BFR-D参数集合之间的对应关系。确定了对应关系之后,基站在哪个频域带宽部分U上收到PRACH,就可以通过上述对应关系确定以下至少之一:终端通过检测哪个频域带宽部分D中的波束失败检测参考信号集合检测到了波束失败事件发生(即哪个频域带宽部分D对应的波束失败计数器的计数达到预定值);终端在哪个频域带宽部分D中的候选参考信号集合选择到了新波束。确定对应关系之后,终端也知道当基于一个波束失败检测参考信号集合检测到波束失败事件发生之后,执行以下至少之一操作:要求到哪个频域带宽部分D上的候选参考信号集合中选择新波束和要求到哪个频域带宽部分U上报新波束。
确定方式一:具有相同频域带宽部分-ID中的上行频域带宽部分的BFR-U参数集合和下行频域带宽部分的BFR-D参数之间具有对应关系。即终端要在上行频域带宽部分U0中的PRACH-BFR上发送Preamble,只因为在频域带宽部分D0中的波束失败检测参考信号集合中的参考信号性能都低于预定值。从而频域带宽部分D3中配置的波束失败检测参考信号集合终端就不需要检测,因为BFR-D参数集合3中的波束失败检测参考信号集合中的参考信号都低于预定门限时,因为没有BRACH-BFR与此波束失败检测参考信号集合对应,从而终端不能在任何PRACH-BFR上发送preamble,从而终端也不需要检测BFR-D参数集合3中的波束失败检测参考信号集合,即此时要求一个下行频域带宽部分中配置了BFR-D参数集合,和这个下行频域带宽部分具有相同频域带宽部分-ID的上行频域带宽部分中就需要配置BFR-U参数集合。终端不希望收到如下的配置,一个下行频域带宽部分中配置了BFR-D参数集合,和这个下行频域带宽部分具有相同频域带宽部分-ID的上行频域带宽部分中没有配置BFR-U参数集合,即要求一个上行频域带宽部分中配置了BFR-U参数集合,和这个上行频域带宽部分具有相同频域带宽部分-ID的下行频域带宽部分中就需要配置BFR-D参数集合。终端不希望收到如下的配置,一个上行频域带宽部分中配置了BFR-U参数集合,和这个上行频域带宽部分具有相同频域带宽部分-ID的下行频域带宽部分中没有配置BFR-D参数集合,即配置了BFR-D的频域带宽部分D集合和配置了BFR-U的频域带宽部分U集合中的频域带宽部分之间存在一一对应关系。
确定方式二:一个配置了BFR-U参数集合的频域带宽部分U和一个CC中配置了BFR-D参数集合的所有频域带宽部分D之间存在对应关系,任意一个BFR-D中的波束失败检测参考信号集合中的参考信号低于预定阀值,就可以在这个BFR-U参数集合中配置的PRACH资源上发送preamble。比如当前处于激 活状态的是频域带宽部分D3和频域带宽部分U3,通过检测频域带宽部分D3中的BFR-D3中的参数检测得到波束失败事件发生,即BFR-D-3中的波束失败计数器达到波束失败计数器对应的预定阀值。此时由于频域带宽部分U3中没有配置BFR-U参数集合,从而终端需要切换到一个配置了BFR-U参数集合的频域带宽部分U中,但是由于有2个频域带宽部分U:{频域带宽部分U0,频域带宽部分U1}配置了BFR-U参数集合,为此终端可以基于频域带宽部分索引信息,选择切换到哪个频域带宽部分U中,比如切换到配置了BFR-U参数集合的多个频域带宽部分中具有较低频域带宽部分-ID的频域带宽部分U中,比如切换到频域带宽部分U0中,在频域带宽部分U0中终端根据在候选参考信号集合中选择的新参考信号指示信息确定在哪个PRACH资源上发送preamble。终端需要切换到配置了BFR-U参数集合的频域带宽部分U集合的哪个频域带宽部分U的另一种决策方式是,终端根据选择的新参考信号指示信息确定切换到哪个频域带宽部分U中,比如表1中的BFR-U0中的候选参考信号集合包括参考信号(1,2),BFR-U1中的候选参考信号集合包括参考信号(2,3),终端可以在参考信号(1,2,3)中选择参考信号(即新的参考信号指示信息),基于选择的参考信号确定切换到哪个频域带宽部分U中,比如选择的参考信号只有一个频域带宽部分U中有,则切换到这个频域带宽部分U中,比如选择参考信号1则切换到频域带宽部分U0中,选择参考信号3,则切换到频域带宽部分U1中,选择参考信号2则可以切换到具有最低频域带宽部分-ID的频域带宽部分U中。
确定方式三:相同时刻处于激活状态的频域带宽部分U和频域带宽部分D之间具有对应关系,或者更确切地说,相同时刻处于激活状态的频域带宽部分U和频域带宽部分D,频域带宽部分U中的BFR-U参数集合和频域带宽部分D中的BFR-D参数集合之间具有对应关系。在FDD中,一个下行频域带宽部分可 以和上行CC中的候选频域带宽部分中的每一个频域带宽部分在相同时刻处于激活状态,因为它们是独立进行频域带宽部分切换的,比如下行CC中包括4个频域带宽部分,上行CC中包括3个上行频域带宽部分,一个上行频域带宽部分处于激活状态期间的不同时间段下行处于激活状态的频域带宽部分可以不同。图18是根据本发明实施例的多个下行频域带宽部分各自对应各自波束失败恢复过程的示意图三。如图18所示,只要终端在频域带宽部分D0、频域带宽部分D1、频域带宽部分D2、频域带宽部分D3中的任何一个频域带宽部分D中的BFR-D参数集合检测到波束失败事件,都可以在BFR-U0中配置的候选参考信号集合中选择的参考信号指示信息中选择新参考信号指示信息,并根据选择的新参考指示信息在频域带宽部分U0中的对应的PRACH资源发送preamble。频域带宽部分U0中配置的BFR-U0中一个PRACH资源需要关联x个候选参考信号集合,不同的候选参考信号对应{频域带宽部分D0,频域带宽部分D1,频域带宽部分D2,频域带宽部分D3}中的不同频域带宽部分D,其中x为小于或者等于4的正整数。即x为小于或者等于一个CC中包括的下行候选频域带宽部分集合中包括的频域带宽部分个数。类似地,图19是根据本发明实施例的下行BWP的示意图。如图19所示,一个下行BWP处于激活状态期间的不同时间段上行处于激活状态的BWP可以不同。
确定方式四:根据频域带宽部分U中配置的SS-BFR信息确定这个频域带宽部分U中的BFR-U参数集合和BFR-D参数集合之间的对应关系。比如频域带宽部分U0中的BFR-U参数集合中的SS-BFR搜索空间位于频域带宽部分D1中,则频域带宽部分U0中的BFR-U参数集合和频域带宽部分D1中的BFR-D参数集合之间具有对应关系。
确定方式五:根据频域带宽部分U中配置的候选参考信号集合信息确定这 个频域带宽部分U中的BFR-U参数集合和BFR-D参数集合之间的对应关系。比如频域带宽部分U0中的BFR-U参数集合中的候选参考信号集合包括的参考信号位于频域带宽部分D1中,则频域带宽部分U0中的BFR-U参数集合和频域带宽部分D1中的BFR-D参数集合之间具有对应关系。
确定方式六:显式信令确定。比如通过显式信令确定N个BFR-U参数集合和M个配置BFR-D参数集合之间的对应关系,比如在BFR-Ui的配置信息中包括BFR-Dj的索引信息。
上述实施方式中,第一类波束失败恢复参数为BFR-D参数集合,第二类波束失败恢复参数为BFR-U参数集合。类似地,上述N套第一类波束失败恢复参数和M套第二类波束失败恢复参数的对应关系的确定方法,还可以包括如下情况:
情况一:第一类波束失败恢复参数属于{波束失败检测参考信号集合,波束失败检测计时器,波束失败计数器},第二类波束失败恢复参数属于{候选参考信号集合}。当基于一套参数{波束失败检测参考信号集合,波束失败检测计时器,波束失败计数器}检测到了波束失败事件发生,终端就知道基于哪一套{候选参考信号集合}去选择新波束。
情况二:第一类波束失败恢复参数属于{候选参考信号集合},第二类波束失败恢复参数属于{候选参考信号集合与PRACH之间的关联关系,波束失败恢复计时器,监听计时器,参考信号指示信息发送计数器},当基于一套参数{候选参考信号集合}选择到新波束之后,终端就知道基于哪一套{候选参考信号集合与PRACH之间的关联关系,波束失败恢复计时器,监听计时器,参考信号指示信息发送计数器}去上报新波束指示信息。
情况三:第一类波束失败恢复参数属于{候选参考信号集合与PRACH之间 的关联关系,波束失败恢复计时器,监听计时器,参考信号指示信息发送计数器},第二类波束失败恢复参数属于{SS-BFR},当基于一套参数{候选参考信号集合与PRACH之间的关联关系,波束失败恢复计时器,监听计时器,参考信号指示信息发送计数器}上报新波束之后,终端就知道基于哪一套{SS-BFR}去上报新波束指示信息。
在本场景中,所述一套第一类波束失败恢复参数对应的频域带宽部分,表示根据所述第一类波束失败恢复参数确定的信号或者信道位于所述频域带宽部分中,所述一套第二类波束失败恢复参数对应的频域带宽部分,表示根据所述第二类波束失败恢复参数确定的信号或者信道位于所述频域带宽部分中。
场景4:
在一个频域带宽部分U中的波束失败恢复配置(Beam Failure Recovery Config)包括:候选参考信号集合、PRACH、候选参考信号集合与PRACH之间的关联关系、波束失败恢复计时器、SS-BFR、监听计时器、参考信号指示信息发送计数器。
如果对于SS-BFR没有限制,那SS-BFR可以位于下行候选频域带宽部分集合中的任意一个频域带宽部分中,这在本场景下并不合适。因为进行PRACH过程中,终端要么不进行频域带宽部分切换,要么切换到新频域带宽部分之后,还要进行新的PRACH过程。为此,当终端在PRACH上发送preamble之后,需要监听基站的响应信息,在此过程中如果终端不切换上行频域带宽部分,在TDD系统中下行频域带宽部分也不能切换,为此就需要限制一个频域带宽部分U中的波束失败恢复配置中配置的SS-BFR所在的频域带宽部分D需要和上述频域带宽部分U具有相同频域带宽部分-ID信息。
在FDD系统中,一个上行频域带宽部分U中配置的SS-BFR可以没有如上 约束,为此可以有如下配置方法:
配置方法一:一个频域带宽部分U中配置多个SS-BFR,其中不同的SS-BFR落在不同的频域带宽部分D中。需要一个频域带宽部分U中包括为下行CC中的每个频域带宽部分D配置的SS-BFR,因为一个频域带宽部分U在其激活状态的不同时间段下行处于激活状态的频域带宽部分D可以不同,从而一个下行频域带宽部分U可以和下行候选频域带宽部分中的任何一个在相同时刻处于激活状态。这样配置之后,终端发送preamble之后,不用切换下行频域带宽部分就可以侦听基站发送的RAR(Random Access Response,随机接入响应)信息。
配置方法二:一个频域带宽部分U中配置的SS-BFR可以位于任意一个频域带宽部分D上,当终端在PRACH-BFR资源上发送preamble之后,如果SS-BFR不位于当前激活的频域带宽部分D中,则将下行频域带宽部分切换到SS-BFR所在的频域带宽部分D。一个频域带宽部分U中只配置一个SS-BFR,也可以配置多个SS-BFR,当终端在PRACH-BFR资源上发送preamble之后,如果这个PRACH-BFR所在的频域带宽部分U中配置的SS-BFR集合中有落在当前激活频域带宽部分D中的SS-BFR,则基于当前激活频域带宽部分D对应的SS-BFR中监听RAR信息,否则将频域带宽部分D切换到该频域带宽部分U中配置的SS-BFR集合中的一个SS-BFR所在的频域带宽部分D上,比如切换到具有最低SS-BFRID的SS-BFR所在的频域带宽部分D中。
场景5
在本实施例中,在第一时间段,比如终端从在SS-BFR中监听PDCCH到收到基站在预定信道中(所述预定信道包括SS-BFR中传输的PDCCH和SS-BFR中的PDCCH调度的PDSCH中至少之一)对于PDCCH的准共址参考信号的更新之前,终端认为SS-BFR中的PDCCH和SS-BFR中调度的PDSCH的DMRS (Demodulation Reference Signal,解调参考信号)和上报的新波束(即新参考信号,也即本文所述参考信号指示信息中指示的参考信号)之间满足准共址关系。在第一时间段中其他控制信道和其他控制信道调度的数据信道的准共址参考信号还是按照原配置进行,不会跟着参考信号指示信息而改变。
在第一时间段中,在其他控制信道或者其他控制信道调度的数据信道中收到对于PDCCH的准共址参考信号的更新,但是没有在SS-BFR或者SS-BFR调度的数据信道中收到对于PDCCH的准共址参考信号的更新之前,第一时间段没有结束,终端认为SS-BFR中的PDCCH和SS-BFR中调度的PDSCH的DMRS和上报的新波束之间满足准共址关系。
在第一时间段中,如果SS-BFR和其他控制信道发生冲突,SS-BFR的优先级更高,或者第一时间段中,如果SS-BFR和第一类控制信道发生冲突,SS-BFR的优先级更高,所述第一类控制信道至少和波束失败检测参考信号集合中的一个参考信号满足准共址关系,比如至少和波束失败检测参考信号集合中的一个参考信号关于空间接收参数满足准共址关系。
在第一时间段中,终端继续在SS-BFR中侦听PDCCH,PDCCH的准共址参考信号的更新包括如下更新至少之一:MAC-CE命令对于PDCCH的准共址参考信号的更新、RRC信令对于PDCCH的准共址参考信号列表的更新。终端收到基站对于PDCCH的准共址参考信号的更新之后,停止在SS-BFR中监听PDCCH。
因为只有在第一时间段中才会在SS-BFR中侦听PDCCH,而且这段时间中SS-BFR中的PDCCH和SS-BFR中的PDCCH调度的PDSCH的准共址参考信号都为参考信号指示信息指示的,为此可以有如下至少之一的约定:SS-BFR中只监听专有PDCCH、SS-BFR中的PDCCH中只监听DCI1_0/DCI1_1、SS-BFR 中的DCI1_1中tci-PresentInDCI不使能、SS-BFR中的DCI0_1中的SRS资源指示(SRS Resource Indicator,SRI)比特域的比特数为0,不根据SRS-set for codebook或者SRS-set for non codebook中包括的SRS资源数确定比特数,其中SRS资源指示(resource indicator)用于指示PUSCH的预编码/空间发送滤波参数根据哪个SRS资源获取,具体地可以参考5G新空口标准协议中的协议38.212。
当然本实施例也不排除SS-BFR中的DCI中其他比特域进行简化处理,比如时域资源指示域,CSI(Channel State Information,信道状态信息)请求(request)域等,甚至SS-BFR中在响应计时器运行期间只发送一个序列,仅指示基站收到了终端发送的preamble。比如可以发送一个DMRS序列,当PDCCH的DMRS序列为第一序列时,表示基站只发送了这个序列,没有发送PDCCH,当PDCCH的DMRS序列为第二序列时,表示基站不但发送了DMRS,也发送了PDCCH,从而可以适应当基站收到preamble之后,只是给终端一个响应,并不调度PDSCH/PUSCH/PUCCH。在波束失败恢复计时器运行期间按照此规则进行,所述终端收到所述参考信号序列,表示根据所述参考信号序列(也可以称为参考信号端口)得到的SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比),根据控制信道的传输参数假设,得到控制信道BLER的预测值低于预定门限。当终端在SS-BFR中收到预定参考信号序列或者PDCCH就表示preamble的发送成功,停止波束失败恢复计时器。
当然第一时间段还可以是如下时间段之一:响应监听计时器运行期间、波束失败恢复计时器运行期间、从发送参考信号指示信息之后直到收到控制信道的准共址参考信号的更新消息之前、从发送参考信号指示信息之后直到在波束失败恢复控制信道中收到控制信道。
多个下行信道或信号有冲突包括如下情况至少之一:
情况一:多个信道或信号占有的资源的交集非空,所述资源包括如下至少之一:时域资源、频域资源、码域资源、空域资源、天线端口,其中一个空域资源对应一个准共址参考信号。
情况二:所述多个信道或信号占有的空域资源终端不能同时产生或者多个信道或信号占有的空域资源的差集非空,比如一个时刻终端只能产生1个接收波束,当这多个信道或信号不满足准共址关系时,这多个信道或信号就发生冲突。比如一个时刻终端只能产生2个接收波束,当这多个信道或信号的准共址参考信号不满足准共址关系且多于2个时,这多个信道或信号发生冲突。
情况三:多个控制信道资源有冲突还包括多个控制信道资源中包括候选控制信道的个数和超过第一通信节点在一个时间单元中能够盲检的候选控制信道的个数。
当多个信道或信号发生冲突时,只接收优先级高的信道或信号,或者以优先级高的信道或信号的参数接收所述多个信道或信号。
场景6
在本实施例中,在第二时间段中,携带参考信号指示信息的信道或信号与其他信道或信号有冲突时,携带参考信号指示信息的信道或信号优先级更高,比如PRACH-BFR中的preamble和其他控制信道调度的上行信道或信号发生冲突,或者Preamble和之前已经配置的周期性PUCCH发生冲突。
在第二时间段中,波束失败恢复控制信道资源中的控制信道调度的上行信道或信号的空间滤波参数根据发送参考信号指示信息的空间滤波参数获取,其中波束失败控制信道资源表示SS-BFR,或者SS-BFR所在的CORESET(Control-resource Set,控制资源集)。其中所述上行信道包括PUCCH和PUSCH中至少之一,上行信号包括SRS、PRACH、SR(Scheduling Request,调度请求)。 比如在第二时间段中,PUSCH对应的SRS-set(for non codeboo和codebook中至少之一)更新为只包括发送参考信号指示信息的preamble。
其中第二时间段包括以下时间段至少之一:响应监听计时器运行期间、波束失败恢复计时器运行期间、从发送参考信号指示信息之后直到收到上行信道或信号的空间滤波参数的更新消息之前、从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中的控制信道的数据信道中收到上行信道或信号的空间滤波参数的更新消息之前、从发送参考信号指示信息之后直到在波束失败恢复控制信道中收到控制信道。
其中所述多个上行信道或信号有冲突包括如下情况至少之一:
情况一:多个信道或信号占有的资源的交集非空,所述资源包括如下至少之一:时域资源、频域资源、码域资源、空域资源、天线端口、天线资源。其中一个空域资源关联一个空间发送滤波参数的参考信号。
情况二:所述多个信道或信号占有的空间发送滤波参数终端不能同时产生,比如多个信道或信号的空间滤波参数关联的参考信号终端不能同时发送,比如多个空间发送滤波参数的参考信号属于一个SRS set。
当多个信道或信号发生冲突时,只发送优先级高的信道或信号,或者以优先级高的信道或信号的参数发送所述多个信道或信号。
场景7
在本实施例中,波束失败检测参考信号集合q 0通过隐式方法获取,比如通过CORESET中的配置的关联空间接收滤波参数的准共址参考信号获取。一个BWP中或者一个CC中配置了H个CORESET,每个CORESET中可以配置该CORESET传输的PDCCH的准共址参考信号,而q 0中最多包括F个参考信号, 如何从H个CORESET中选择F个CORESET,从而得到q 0中包括的参考信号,可以采用如下规则中的一种或者多种选择所述F个CORESET。
规则一:所述F个控制信道资源不包括波束失败恢复控制信道资源。
规则二:所述F个控制信道资源中的不同控制信道资源的关联一类准共址参数的准共址参考信号不满足准共址关系,即所述F个控制信道资源中关联一类准共址参数的准共址参考信号不满足准共址关系,比如H个控制信道资源中两个控制信道资源关联所述一类准共址参数的准共址参考信号满足准共址关系,则视为一个控制信道资源,只选择这两个控制信道资源其中一个控制信道资源就可以。
规则三:所述F个控制信道资源是专有控制信道资源,即公共控制信道资源不包括在所述F个控制信道资源中。
规则四:所述F个控制信道资源是所述H个控制信道资源中最新配置的控制信道资源。
规则五:所述F个控制信道资源关联一类准共址参数的准共址参考信号是所述H个控制信道资源关联所述一类准共址参数的准共址参考信号构成的集合中带宽最大的F个准共址参考信号和密度最大的F个准共址参考信号中至少之一。
规则六:所述H个控制信道资源关联所述一类准共址参数的准共址参考信号集合中包括的SSB(SS/PBCH Block:Synchronization Signal and PBCH Block,同步信号/物理广播信道块)控制信道资源优先选为所述F个控制信道资源。
规则七:所述F个控制信道资源配置了关联一类准共址参数的准共址参考信号。
规则八:所述F个控制信道资源的控制信道资源索引在一个控制信道资源 集合中满足预定特征,比如为一个控制信道资源集合中最低F个控制信道资源索引对应的控制信道资源(当然也可以是一个控制信道资源集合中最高F个控制信道资源索引对应的控制信道资源,或者一个控制信道资源集合中满足其他预定特征的控制信道资源),所述一个控制信道资源集合为一个BWP或者一个CC中配置的控制信道资源构成的集合,或者为一个BWP或者一个CC中配置的控制信道资源中满足预定特征的控制信道资源构成的集合,比如为满足上述规则一至七中任意一个或者多个的控制信道资源构成的集合。
上述控制信道资源是CORESET,当然如果可以搜索空间级别/每个搜索空间集合级别配置准共址参考信号时,上述一个控制信道资源也可以是一个搜索空间或者一个搜索空间集合。
在本场景下,所述一类准共址参数包括空间接收参数。
在本文中,所述一个频域带宽为一个频域带宽部分或者一个成员载波对应的频域带宽。
场景8
图20是根据本发明实施例的发送接收节点(Transmission Reception Point,TRP)的交互示意图。
如图20所示,有两个TRP给一个终端服务,当然也可以是多于两个的TRP给终端服务。特别是这两个TRP中没有理想回程线路(Backhaul),从而两个TRP到终端(User Equipment,UE)的通信相对独立进行,比如TRP1发送DCI1调度PDSCH1/PUSCH1,TRP2发送DCI2调度PDSCH2/PUSCH2,两个TRP之间交互信息需要考虑时延。
为此可以让CORESET组i/SS(搜索空间)组i/CC组i对应TRPi,i=0,1,当终端检测到一个TRP对应的波束失败检测参考信号集合中的参考信号发生波束 失败事件时,就应该告知基站(包括TRP1和TRP2中至少一个),而不是等到两个TRP的PDCCH都无法到达终端时,才认为发生波束失败事件。
如图20所示,每个TRP对应一套波束失败恢复参数,即比如每个CORESET组/SS(搜索空间)组/CC组/CC/BWP/TRP对应一套波束失败恢复参数,其中波束失败恢复参数包括如下参数至少之一:波束失败检测参考信号集合(即所述波束失败检测参考信号集合i,i=0,1)、候选参考信号集合(即所述候选参考信号集合i,i=0,1)、波束失败检测计数器(即所述波束失败检测计数器i,i=0,1)、参考信号指示信息发送次数计数器(即所述参考信号指示信息发送次数计数器i,i=0,1)、波束失败检测计时器(即所述波束失败检测计时器i,i=0,1)、波束失败恢复计时器(即所述波束失败恢复计时器i,i=0,1)、监听计时器(即所述监听计时器i,i=0,1)、参考信号指示信息上报资源(即所述PRACH-BFRi,i=0,1)、波束失败恢复控制信道资源(即所述SS-BFRi,i=0,1)。
图20中是每个CORESET组/SS(搜索空间)组/CC组/TRP都对应一套独立的波束失败恢复参数,即分别对应一个独立的波束失败恢复过程,本场景中的第二种实施方式中,每个CORESET组/SS(搜索空间)组/CC组/TRP的部分波束失败恢复参数是独立的,部分失败恢复参数是共享的,比如有两套波束失败检测参考信号集合(比如波束失败检测参考信号集合i,i=0,1)、两套候选参考信号集合(比如候选参考信号集合i,i=0,1),只要任意一个波束失败检测参考信号集合检测到波束失败事件,就在该波束失败检测参考信号集合对应的候选参考信号集合中选择新参考信号,两套候选参考信号集合中的每个参考信号在PRACH-BFR中都有PRACH资源与其对应。进一步可以限定一个时间单元中只上报一套候选参考信号集合中选择的参考指示信息。上述两个TRP独立对应的波束失败恢复参数包括波束失败检测参考信号集合和候选参考信号集合,当然 本实施例也不排除两个TRP独立对应的波束失败恢复参数包括的是其他波束失败恢复参数,SS-BFR的DCI中(或者SS-BFR中的DCI调度的PDSCH中)需要指示候选参考信号集合套数索引信息,用于指示基站在该SS-BFR中的发送PDCCH是因为基站收到了哪个候选参考信号集合(候选参考信号集合0还是候选参考信号集合1),或者不同候选参考信号集合{候选参考信号集合0,候选参考信号集合1}对应SS-BFR中的PDCCH的不同时间段/不同RNTI(Radio Network Tempory Identity,无线网络临时标识)加扰序列/不同解调参考信号序列。
本场景中的第三种实施方式中,两个TRP分别对应两套波束失败检测参考信号集合(比如波束失败检测参考信号集合i,i=0,1)、两套候选参考信号集合(比如候选参考信号集合i,i=0,1)中的一套,PRACH-BFR只和一套候选参考信号集合中的参考信号建立关联,比如和候选参考信号集合0建立关联。当终端通过检测波束失败检测参考信号集合1中参考信号发现波束失败事件发生时,终端可以通过发送给TRP0的SR/MAC-CE命令中告知TRP0如下信息至少之一:TRP1对应的波束失败检测参考信号集合1发生了波束失败事件、终端在候选参考信号集合1中选择的参考信号指示信息、TRP0将上述信息转发给TRP1。
场景9
在本实施例中,除了有针对SPcell的波束失败恢复过程,也有针对Scell(Secondary Cell,辅小区)的波束失败过程,从而检测Scell的波束运行状况。为此可以有如下方案:
方案一:Pcell/SPcell与Scell分别对应一套独立的波束失败恢复参数,各自对应图11中的一个波束失败恢复过程。
方案二:Pcell/SPcell与Scell分别对应的一套部分波束失败恢复参数,其他波束失败恢复参数是Pcell/SPcell与Scell共享的,比如Pcell/SPcell对应{波束失败检测参考信号集合0,候选参考信号集合0},Scell对应{波束失败检测参考信号集合1,候选参考信号集合1}。通过一个波束失败检测参考信号集合中的参考信号检测到波束失败事件时,在与这个波束失败检测参考信号集合对应的候选参考信号集合中选择参考信号。PRACH-BFR和SS-BFR中至少之一只在Pcell/SPcell中,比如两套候选参考信号集合{候选参考信号集合0,候选参考信号集合1}中的每个参考信号在Pcell/SPcell中的PRACH-BFR中至少有一个PRACH资源与其关联,从而PRACH-BFR资源关联的候选参考信号的配置信息中需要携带CC信息。
方案三:Pcell/SPcell对应同一个波束失败恢复过程,只是在波束失败检测参考信号集合中可以包括Pcell中的参考信号。
在本实施例中,所述频域带宽包括频域带宽部分和成员载波(Component Carrior,CC)中至少一个,即一个频域带宽包括一个频域带宽部分和一个成员载波对应的频域带宽中至少一个,频域带宽索引包括频域带宽部分BWP索引和CC索引中至少一个。
实施例4
在本实施例中还提供了一种波束失败恢复的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图21是根据本发明实施例的一种波束失败恢复的处理装置的结构框图,如 图21所示,该装置包括处理模块2102。
处理模块2102,设置为当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
实施例5
在本实施例中还提供了一种波束失败恢复的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图22是根据本发明实施例的另一种波束失败恢复的处理装置的结构框图,如图22所示,该装置包括判断模块2202和切换模块2204。
判断模块2202,设置为判断频域带宽部分切换和波束失败恢复过程之间是否存在关联关系;
切换模块2204,设置为根据所述判断结果,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例6
在本实施例中还提供了一种波束失败恢复的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可 能并被构想的。
图23是根据本发明实施例的再一种波束失败恢复的处理装置的结构框图,如图23所示,该装置包括确定模块2302和操作模块2304。
确定模块2302,设置为确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;
操作模块2304,设置为根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;其中,N,M均为正整数。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例7
在本实施例中还提供了一种波束失败恢复的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图24是根据本发明实施例的又一种波束失败恢复的处理装置的结构框图,如图24所示,该装置包括恢复模块2402。
恢复模块2402,设置为根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例8
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,判断频域带宽部分切换和波束失败恢复过程之间是否存在关联关系;
S2,根据所述判断结果,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;
S2,根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;其中,N,M均为正整数。
存储介质还被设置为存储用于执行以下步骤的计算机程序:
S1,通信节点根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,判断频域带宽部分切换和波束失败恢复过程之间是否存在关联关系;
S2,根据判断结果,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;
S2,根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;其中,N,M均为正整数。
存储介质还被设置为存储用于执行以下步骤的计算机程序:
S1,通信节点根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示 例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
通过本公开,利用波束失败恢复过程和频域带宽部分切换中至少之一,以及二者之间的关联关系、预设规则,以来实现执行相应的操作,可以解决针对带宽部分切换场景,多个传输节点服务一个终端场景,多个服务小区场景下的波束失败恢复困难的问题,进而可以达到有效地完善波束失败恢复的效果。

Claims (53)

  1. 一种波束失败恢复的处理方法,包括:
    当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
  2. 根据权利要求1所述的方法,其中,所述当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作,包括:
    当所述频域带宽部分发生切换时,对所述波束失败恢复过程进行第一类预定操作,其中,所述第一类预定操作包括以下至少之一:
    对波束失败检测参考信号集合进行更新,以使用切换后的频域带宽部分中的波束失败检测参考信号集合;
    对候选参考信号集合进行更新,以使用切换后的频域带宽部分中的候选参考信号集合;
    切换后的频域带宽部分中计时器的初始值为切换前的所述频域带宽部分中计时器的状态值;
    切换后的频域带宽部分中计数器的初始值为切换前的所述频域带宽部分中计数器的状态值;
    确定第一类参考信号和第二类参考信号之间的第一对应关系,其中所述第一类参考信号属于切换前的频域带宽部分中的波束失败检测参考信号集合,所述第二类参考信号属于切换后的频域带宽部分中的波束失败检测参考信号集合;
    确定第三类参考信号和第四类参考信号之间的第二对应关系,其中所述第三类参考信号属于切换前的频域带宽部分中的候选参考信号集合,所述第四类参考信号属于切换后的频域带宽部分中的候选参考信号集合。
  3. 根据权利要求1所述的方法,其中,所述当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作,包括:
    当所述频域带宽部分发生切换时,对所述波束失败恢复过程进行第二类预定操作,其中,所述第二类预定操作包括以下至少之一:
    对波束失败检测参考信号集合进行更新,以使用切换后的频域带宽部分中的波束失败检测参考信号集合;
    对候选参考信号集合进行更新,以使用切换后的频域带宽部分中的候选参考信号集合;
    停止计时器;
    对计数器置0。
  4. 根据权利要求1、2或3所述的方法,其中,所述频域带宽部分发生切换满足以下至少之一:
    切换前的频域带宽部分和切换后的频域带宽部分对应同一个波束失败恢复过程;
    切换前的频域带宽部分和切换后的频域带宽部分对应同一个计时器;
    切换前的频域带宽部分和切换后的频域带宽部分对应同一个计数器;
    所述波束失败恢复过程的参考信号指示信息和频域带宽部分的索引信息不具有对应关系;
    切换前的频域带宽部分中的波束失败恢复参数和切换后的频域带宽部分中的波束失败恢复参数具有关联关系。
  5. 根据权利要求4所述的方法,其中,所述切换前的频域带宽部分中的波束失败恢复参数和所述切换后的频域带宽部分中的波束失败恢复参数具有的所述关联关系包括如下至少之一:
    所述切换前的频域带宽部分中和所述切换后的频域带宽部分中的所述计时器的配置参数相同;
    所述切换前的频域带宽部分中和所述切换后的频域带宽部分中的所述计数器的配置参数相同;
    所述切换前的频域带宽部分和所述切换后的频域带宽部分共享一套波束失败恢复参数配置信息。
  6. 根据权利要求1所述的方法,其中,所述当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作,包括:
    所述频域带宽部分发生切换时,对所述波束失败恢复过程进行第三类预定操作,其中,所述第三类预定操作包括以下至少之一:
    启动或者重新启动切换后的频域带宽部分对应的波束失败恢复过程;
    解锁被暂停的切换后的频域带宽部分对应的波束失败恢复过程;
    暂停切换前的频域带宽部分对应的波束失败恢复过程;
    切换前的频域带宽部分对应的计数器暂停累加;
    解锁被暂停累加的切换后的频域带宽部分对应的计数器;
    切换后的频域带宽部分对应的计数器未曾开启时,则开启切换后的频域带宽部分对应的计数器;
    切换前的频域带宽部分对应的计时器在切换后的频域带宽部分处于激活状态时对应的时间段中继续运行;
    暂停切换前的频域带宽部分对应的计时器;
    解锁被暂停的切换后的频域带宽部分对应的计时器;
    切换后的频域带宽部分对应的计时器未曾开启时,则开启切换后的频域带宽部分对应的计时器;
    暂停参考信号指示信息的上报操作,其中所述参考信号指示信息对应的参考信号属于切换前的频域带宽部分对应的候选参考信号集合;
    解锁被暂停的参考信号指示信息的上报操作,其中所述参考信号指示信息对应的参考信号属于切换后的频域带宽部分对应的候选参考信号集合;
    暂停在波束失败搜索空间中对控制信道的监听操作,其中所述控制信道包括切换前的频域带宽部分对应的参考信号指示信息上报成功的确认信息;
    解锁被暂停的在波束失败搜索空间中对控制信道的监听操作,其中所述控制信道包括切换后的频域带宽部分对应的参考信号指示信息上报成功的确认信息;
    对波束失败检测参考信号集合进行更新,以使用切换后的频域带宽部分对应的波束失败检测参考信号集合;
    对候选参考信号集合进行更新,以使用切换后的频域带宽部分对应的候选参考信号集合。
  7. 根据权利要求1所述的方法,其中,所述当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作,包括:
    所述频域带宽部分切换时,对波束失败恢复过程进行第四类预定操作,其中,所述第四类预定操作包括以下至少之一:
    启动或者重新启动切换后的频域带宽部分对应的波束失败恢复过程;
    切换前的频域带宽部分对应的波束失败恢复过程在切换后的频域带宽部分中继续运行;
    切换前的频域带宽部分对应的计数器在切换后的频域带宽中继续累加;
    切换后的频域带宽部分对应的计数器未曾开启时,则开启切换后的频域带宽部分对应的计数器;
    切换前的频域带宽部分对应的计时器在切换后的频域带宽部分处于激活状态时对应的时间段中继续运行;
    在切换后的频域带宽部分中上报切换前的频域带宽部分对应的参考信号指示信息;
    在切换后的频域带宽部分中的波束失败搜索空间中监听控制信道,其中所述控制信道包括切换前的频域带宽部分对应的参考信号指示信息上报成功的确认信息;
    在切换后的频域带宽部分中监听控制信道,其中所述控制信道包括切换前的频域带宽部分对应的参考信号指示信息的上报成功的确认信息,其中,切换后的频域带宽部分中包括y个波束失败恢复控制信道资源,所述y个波束失败恢复控制信道资源与y个频域带宽部分对应,y为不小于1的正整数。
  8. 根据权利要求7所述的方法,其中,所述y个波束失败恢复控制信道资源与所述y个频域带宽部分对应,满足以下至少之一的条件:
    每个波束失败恢复控制信道资源的准共址参考信号根据与该波束失败恢复控制信道资源对应的频域带宽部分对应的参考信号指示信息确定;
    每个波束失败恢复控制信道资源调度的下行数据信道的准共址参考信号根据与该波束失败恢复控制信道资源对应的频域带宽部分对应的参考信号指示信息确定;
    每个波束失败恢复控制信道资源调度的上行信道或信号的空间滤波参数根据与发送该波束失败恢复控制信道资源对应的频域带宽部分对应的参考信号指示信息所用的空间滤波参数确定。
  9. 根据权利要求7或8所述的方法,其中,所述在切换后的频域带宽部分中上报切换前的频域带宽部分对应的参考信号指示信息,包括:
    在高层信令中传输切换前的频域带宽部分对应的参考信号指示信息;
    所述切换后的频域带宽部分中至少包括:z套物理层上报资源,z套所述物 理层上报资源对应z个所述频域带宽部分,在所述频域带宽部分对应的上报资源中上报一个所述频域带宽部分对应的参考信号指示信息,其中,所述物理层上报资源包括以下至少之一:物理随机接入信道PRACH资源,物理上行链路控制信道PUCCH资源,物理上行共享信道PUSCH资源;
    在切换后的所述频域带宽部分中的物理层上报资源集合中至少存在一个上报资源与切换前的频域带宽部分对应的候选参考信号集合中的参考信号对应;
    上报所述参考信号指示信息和频域带宽部分索引信息,其中,所述频域带宽部分索引信息用于指示以下至少之一:上报的所述参考信号指示信息所在的频域带宽部分、根据所述频域带宽部分索引信息所在的频域带宽部分对应的波束失败检测参考信号检测到了波束失败事件。
  10. 根据权利要求1、6至9中的任一项所述的方法,其中,所述方法包括以下至少之一:
    切换前的频域带宽部分和切换后的频域带宽部分分别对应一个波束失败恢复过程;
    切换前的频域带宽部分和切换后的频域带宽部分分别对应一个计时器;
    切换前的频域带宽部分和切换后的频域带宽部分分别对应一个计数器;
    所述波束失败恢复过程中包括的参考信号指示信息和频域带宽部分索引信息之间具有对应关系;
    切换前的频域带宽部分和切换后的频域带宽部分分别对应一套波束失败恢复参数信息。
  11. 根据权利要求1-9中的任一项所述的方法,其中,所述频域带宽部分的切换包括以下至少之一:
    下行频域带宽部分发生切换;
    上行频域带宽部分发生切换;
    一个成员载波CC中的频域带宽部分发生切换。
  12. 根据权利要求2-10中的任一项所述的方法,其中,
    所述计时器包括如下计时器至少之一:波束失败检测计时器、波束失败恢复计时器、响应监听计时器;
    所述计数器包括如下计数器至少之一:波束失败检测计数器、参考信号指示信息发送计数器。
  13. 根据权利要求12所述的方法,其中,所述波束失败检测计数器的计数值包括:
    根据切换前的频域带宽部分中的波束失败检测参考信号集合得到的波束失败检测计数与根据切换后的频域带宽部分中的波束失败检测参考信号集合得到的波束失败检测计数之和。
  14. 根据权利要求1-10中的任一项所述的方法,还包括:根据信令信息确定所述预定操作的类型;其中,所述预定操作应用于任意两个频域带宽部分之间的切换,或者,所述预定操作应用于指定两个频域带宽部分之间的切换。
  15. 根据权利要求2-13中的任一项所述的方法,还包括根据以下至少之一的方式确定所述预定操作的类型是否为第一类预定操作:
    判断第一类参考信号和第二类参考信号之间是否满足第一对应关系,根据判断结果确定所述预定操作的类型,其中所述第一类参考信号属于切换前的频域带宽部分中的第一波束失败检测参考信号集合,所述第二类参考信号属于切换后的频域带宽部分中的第二波束失败检测参考信号集合;
    判断第三类参考信号和第四类参考信号之间是否满足第二对应关系,根据判断结果确定所述预定操作的类型,其中所述第三类参考信号属于切换前的频 域带宽部分中的第一候选参考信号集合,所述第四类参考信号属于切换后的频域带宽部分中的第二候选参考信号集合。
  16. 根据权利要求15所述的方法,其中:
    在第一参考信号集合与第二参考信号集合中的参考信号存在对应关系时,采用所述第一类预定操作;
    在第一参考信号集合中每个参考信号在第二参考信号集合中都存在至少一个具有对应关系的参考信号时,采用所述第一类预定操作;
    其中,所述第一参考信号集合为所述第一波束失败检测参考信号集合,所述第二参考信号集合为所述第二波束失败检测参考信号集合,所述对应关系为所述第一对应关系;和/或,所述第一参考信号集合为所述第一候选参考信号集合,所述第二参考信号集合为所述第二候选参考信号集合,所述对应关系为所述第二对应关系。
  17. 根据权利要求2、15或16所述的方法,其中,具有参考信号对应关系的两个参考信号之间满足以下至少之一:
    根据具有所述参考信号对应关系的两个参考信号确定一个链路的链路性能;
    具有所述参考信号对应关系的两个参考信号关于一个或者多个准共址参数满足准共址关系;
    具有所述参考信号对应关系的两个参考信号关联到同一个上报资源上;
    其中,所述参考信号对应关系包括以下至少之一:所述第一对应关系、所述第二对应关系;具有所述参考信号对应关系的两个参考信号包括以下至少之一:具有所述第一对应关系的第一类参考信号和第二类参考信号、以及具有所述第二对应关系的第三类参考信号和第四类参考信号。
  18. 一种波束失败恢复的处理方法,包括:
    确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;
    根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;
    其中,N,M均为正整数。
  19. 根据权利要求18所述的方法,其中,所述确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系,包括以下至少之一:
    根据频域带宽部分的信息确定所述波束失败恢复参数对应关系;
    根据控制信道资源组信息确定所述波束失败恢复参数对应关系;
    根据成员载波CC信息或者CC组信息确定所述波束失败恢复参数对应关系;
    根据数据信道的配置信息确定所述波束参数对应关系;
    根据所述第一类波束失败恢复参数在所述N套第一类波束失败恢复参数中的套数索引和所述第二类波束失败恢复参数在所述M套第二类波束失败恢复参数中的套数索引,确定所述波束失败恢复参数对应关系;
    一套所述第二类波束失败恢复参数和N套所述第一类波束失败恢复参数中的每一套第一类波束失败恢复参数之间存在所述波束失败恢复参数对应关系;
    一套所述第一类波束失败恢复参数和M套所述第二类波束失败恢复参数中的每一套所述第二类波束失败恢复参数之间存在所述波束失败恢复参数对应关系;
    根据信令信息确定与每套第一类波束失败恢复参数对应的第二类波束失败恢复参数;
    所述第一类波束失败恢复参数中包括的参数类型集合和所述第二类波束失 败恢复参数中包括的参数类型集合之间的交集为空。
  20. 根据权利要求19所述的方法,其中,所述根据所述频域带宽部分的信息确定所述波束失败恢复参数对应关系,包括以下至少之一:
    一套第一类波束失败恢复参数对应的频域带宽部分和一套第二类波束失败恢复参数对应的频域带宽部分的带宽部分索引相同时,确定该套第一类波束失败恢复参数和该套第二类波束失败恢复参数之间存在所述波束失败恢复参数对应关系;
    一套第一类波束失败恢复参数对应的频域带宽部分处于激活状态时对应的时间资源和一套第二类波束失败恢复参数对应的频域带宽部分处于激活状态时对应的时间资源之间交集非空时,确定该套第一类波束失败恢复参数和该套第二类波束失败恢复参数之间存在所述波束失败恢复参数对应关系。
  21. 根据权利要求19所述的方法,其中,所述根据信令信息确定与每套第一类波束失败恢复参数对应的第二类波束失败恢复参数,包括以下至少之一:
    所述信令信息通知每套第一类波束失败恢复参数和所述M套第二类波束失败恢复参数中的一套或者多套之间存在所述波束失败恢复参数对应关系;
    所述信令信息中通知一个上报资源对应Q个候选参考信号,所述Q个候选参考信号对应Q套所述第一类波束失败恢复参数。
  22. 根据权利要求18所述的方法,其中,所述根据所述波束失败恢复参数对应关系,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换,包括:
    根据一套第一类波束失败恢复参数进行波束失败恢复过程,所述波束失败恢复过程中的预定事件发生时,根据与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的一套或者多套第二类波束失败恢复参数,进行波束失 败恢复过程中的第五类预定操作。
  23. 根据权利要求18或22所述的方法,其中,所述根据所述波束失败恢复参数对应关系,进行以下至少之一:所述波束失败恢复过程和所述频域带宽部分切换,包括:
    根据一套第一类波束失败恢复参数检测到波束失败事件,与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的一套第二类波束失败恢复参数对应的频域带宽部分处于非激活状态时,将当前频域带宽部分切换到与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数对应的频域带宽部分中。
  24. 根据权利要求22或23所述的方法,其中:
    所述第一类波束失败恢复参数包括以下至少之一的参数:波束失败检测信号集合、波束失败检测计时器对应的最长时长、波束失败检测计数器对应的预定阀值;
    所述第二类波束失败恢复参数包括以下至少之一的参数:候选参考信号集合、候选参考信号集合和上报资源之间的上报资源对应关系、波束失败搜索空间、参考信号指示信息发送计数器对应的预定阀值、波束失败恢复计时器对应的最长时长、监听计时器对应的最长时长;
    所述波束失败恢复过程中的预定事件为检测到波束失败事件;
    所述第五类预定操作包括以下至少之一:在候选参考信号集合中选择参考信号、在上报资源中上报参考信号指示信息、在波束失败搜索空间中监听控制信道、根据上报的参考信号指示信息确定预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
  25. 根据权利要求22或23所述的方法,其中:
    所述第一类波束失败恢复参数包括候选参考信号集合;
    所述第二类波束失败恢复参数包括以下至少之一的参数:候选参考信号集合和上报资源之间的上报资源对应关系、上报资源、波束失败搜索空间、参考信号指示信息发送计数器对应的预定阀值、波束失败恢复计时器对应的最长时长、监听计时器对应的最长时长;
    所述预定事件包括在候选参考信号集合选择到参考信号;
    所述第五类预定操作包括以下至少之一:在上报资源中上报参考信号指示信息、在波束失败搜索空间中监听控制信道、根据上报的参考信号指示信息确定预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
  26. 根据权利要求22或23所述的方法,其中:
    所述第一类波束失败恢复参数包括候选参考信号集合和上报资源之间的上报资源对应关系;
    所述第二类波束失败恢复参数包括波束失败搜索空间;
    所述预定事件包括:根据一套第一类波束失败恢复参数得到的上报资源中上报参考信号指示信息;
    所述第五类预定操作包括以下至少之一:在波束失败搜索空间中监听控制信道、根据上报的参考信号指示信息确定预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
  27. 根据权利要求22或23所述的方法,其中:
    所述第一类波束失败恢复参数包括:波束失败搜索空间;
    所述第二类波束失败恢复参数包括以下至少之一:预定信道信息、预定信号信息;
    所述预定事件包括:在所述波束失败搜索空间中监听控制信道;
    所述第五类预定操作包括以下至少之一:根据上报的参考信号指示信息确定所述预定信道的准共址参考信号信息、根据上报参考信号指示信息采用的空间发送滤波参数确定预定信道或信号的空间发送滤波参数。
  28. 根据权利要求22或23所述的方法,其中,所述将当前频域带宽部分切换到与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数对应的频域带宽部分中,包括:
    与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数对应的频域带宽部分存在多于一个时,将当前频域带宽部分切换到所述多于一个的频域带宽部分中具有满足指定频域带宽部分索引特征的频域带宽部分中;
    或者,
    与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数存在多于一个时,将当前频域带宽部分切换到与该套第一类波束失败恢复参数存在波束失败恢复参数对应关系的第二类波束失败恢复参数索引满足指定特征的第二类波束失败恢复参数对应的频域带宽部分中。
  29. 根据权利要求18-28任一项所述的方法,其中,所述N套第一类波束失败恢复参数和所述M套第二类波束失败恢复参数满足以下至少之一的条件:
    所述N套第一类波束失败恢复参数和所述M套第二类波束失败恢复参数是一个CC或者多个CC中的波束失败恢复参数;
    所述N套第一类波束失败恢复参数和所述M套第二类波束失败恢复参数是 一个或者多个所述波束失败恢复过程的参数;
    所述N套第一类波束失败恢复参数对应N个控制信道资源组;
    所述M套第二类波束失败恢复参数对应M个控制信道资源组;
    所述N套第一类波束失败恢复参数对应N个频域带宽部分;
    所述M套第二类波束失败恢复参数对应M个频域带宽部分;
    所述N套第一类波束失败恢复参数对应N个CC;
    所述M套第二类波束失败恢复参数对应M个CC;
    所述N套第一类波束失败恢复参数对应N个CC组;
    所述M套第二类波束失败恢复参数对应M个CC组;
    所述N套第一类波束失败恢复参数对应N个数据信道配置信息;
    所述M套第二类波束失败恢复参数对应M个数据信道配置信息。
  30. 根据权利要求29所述的方法,其中,所述方法满足以下至少之一的条件:
    所述N个控制信道资源组属于一个频域带宽部分;
    所述M个控制信道资源组属于一个频域带宽部分;
    所述N个频域带宽部分属于一个CC,其中,N不大于所述CC中包括的与N个频域带宽部分的传输方向相同的候选频域带宽部分的个数;
    所述M个频域带宽部分属于同一个CC,其中,M不大于所述CC中包括的与M个频域带宽部分的传输方向相同的候选频域带宽部分的个数;
    所述N个控制信道资源组和所述M个控制信道资源组属于一个频域带宽部分;
    所述N个频域带宽部分和所述M个频域带宽部分属于一个CC;
    所述N个频域带宽部分包括以下至少之一:初始带宽部分、默认带宽部分;
    所述M个频域带宽部分包括以下至少之一:初始带宽部分、默认带宽部分。
  31. 根据权利要求18-30任一项所述的方法,其中,所述第一类波束失败恢复参数满足以下至少之一的条件:
    所述第一类波束失败恢复参数在一个上行频域带宽部分的配置信息中配置;
    所述第一类波束失败恢复参数对应的资源位于一个上行频域带宽部分中。
  32. 根据权利要求18-31任一项所述的方法,其中,所述第二类波束失败恢复参数满足以下至少之一的条件:
    所述第二类波束失败恢复参数在一个下行频域带宽部分的配置信息中配置;
    所述第二类波束失败恢复参数对应的资源位于一个下行频域带宽部分中。
  33. 根据权利要求18-30任一项所述的方法,其中,所述方法满足以下至少之一的条件:
    在N=1的情况下,一套第一类波束失败恢复参数和所述M套第二类波束失败恢复参数中每一套之间存在波束失败恢复参数对应关系;
    在M=1的情况下,一套第二类波束失败恢复参数和所述N套第一类波束失败恢复参数中每一套之间存在波束失败恢复参数对应关系;
    一套第二类波束失败恢复参数与A套所述第一类波束失败恢复参数存在波束失败恢复参数对应关系,其中A为不小于1且不大于N的正整数;
    一套第一类波束失败恢复参数与B套所述第二类波束失败恢复参数存在波束失败恢复参数对应关系,其中B为不小于1且不大于M的正整数;
    与一套第二类波束失败恢复参数存在波束失败恢复参数对应关系的第一类波束失败恢复参数的套数A大于1时,根据该套第二类波束失败恢复参数得到的一个上报资源中,上报A套所述第一类波束失败恢复参数的套索引信息;
    与一套第二类波束失败恢复参数存在波束失败恢复参数对应关系的第一类 波束失败恢复参数的套数A大于1时,根据该套第二类波束失败恢复参数得到的波束失败恢复控制信道资源关联的信道中包括A套所述第一类波束失败恢复参数的套索引信息或者参考信号指示信息。
  34. 根据权利要求33所述的方法,其中,所述第一类波束失败恢复参数的套索引信息通过以下至少之一的方式表示:
    所述第一类波束失败恢复参数对应的频域带宽索引信息;
    所述第一类波束失败恢复参数对应的控制信道资源组信息;
    所述第一类波束失败恢复参数对应的CC索引信息;
    所述第一类波束失败恢复参数对应的CC组索引信息;
    所述第一类波束失败恢复参数对应的数据信道配置信息的索引信息。
  35. 根据权利要求33所述的方法,其中,上报A套所述第一类波束失败恢复参数的套索引信息用于指示以下至少之一的信息:
    根据所述套索引信息对应的第一类波束失败恢复参数对应的波束失败检测参考信号集合检测到了波束失败事件;
    上报的参考信号指示信息是所述套索引信息对应的参考信号指示信息。
  36. 根据权利要求33所述的方法,其中,
    在所述波束失败恢复控制信道资源关联的信道中收到A套所述第一类波束失败恢复参数的套索引信息或者参考信号指示信息之后,确定所述套索引信息或者所述参考信号指示信息对应的参考信号指示信息上报操作成功完成。
  37. 根据权利要求33所述的方法,其中,所述A套所述第一类波束失败恢复参数的套索引信息和根据一套所述第二类波束失败恢复参数得到的波束失败恢复控制信道资源关联的信道的I套以下至少之一的信息之间存在对应关系:
    控制信道的解调参考信号端口信息;
    控制信道的解调参考信号序列信息;
    监听控制信道的时间资源;
    控制信道的加扰序列;
    控制信道携带的控制信息的格式;
    数据信道的解调参考信号信息;
    数据信道的加扰序列信息;
    其中,I为小于或者等于A的正整数,所述控制信道属于所述波束失败恢复控制信道资源中的控制信道,所述数据信道属于所述波束失败恢复控制信道资源中的控制信道调度的数据信道。
  38. 一种波束失败恢复的处理方法,包括:
    根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
  39. 根据权利要求38所述的方法,其中,所述预设规则包括以下至少之一:
    波束失败检测参考信号集合和候选参考信号集合位于相同的下行频域带宽部分中;
    上报资源所在的上行频域带宽部分和波束失败搜索空间所在的下行频域带宽部分的带宽部分索引信息相同;
    上报资源所在的上行频域带宽部分处于激活状态的时间资源和波束失败搜索空间所在的下行频域带宽部分处于激活状态的时间资源之间的交集非空;
    波束失败检测参考信号集合、候选参考信号集合和波束失败搜索空间位于相同的下行频域带宽部分中;
    上报资源和候选参考信号之间的关联关系配置信息中包括候选参考信号所 在的频域带宽索引信息;
    波束失败检测参考信号的配置信息中包括波束失败检测参考信号所在的频域带宽索引;
    一个频域带宽中包括的上报资源构成的集合中至少存在两个上报资源,所述两个上报资源关联的候选参考信号的频域带宽索引不同;
    一个频域带宽中包括y1套波束失败恢复控制信道资源,所述y1套波束失败恢复控制信道资源对应y2套第三类波束失败恢复参数,其中所述第三类波束失败恢复参数包括如下参数至少之一:波束检测参考信号集合、候选参考信号集合、上报资源集合,其中,y1,y2为正整数;
    一个参考信号资源关联多于一个下行频域带宽部分,所述参考信号资源在所述多于一个下行频域带宽部分中占有资源,其中一个参考信号资源对应一个参考信号资源标识ID,所述一个参考信号资源包括以下至少之一:一个波束失败检测参考信号资源和一个候选参考信号资源。
  40. 根据权利要求38所述的方法,其中,所述预设规则包括以下至少之一:
    下行初始频域带宽部分或默认带宽部分中包括以下至少之一:波束失败检测参考信号集合、候选参考信号集合和波束失败搜索空间;
    上行初始频域带宽部分或默认带宽部分中包括上报资源;
    波束失败检测参考信号集合中的参考信号位于相同的下行频域带宽;
    候选参考信号集合中存在至少两个参考信号,所述两个参考信号分别位于两个不同的频域带宽中;
    至少一个下行频域带宽部分包括以下至少之一:波束失败检测参考信号集合、候选参考信号集合和波束失败搜索空间;
    位于一个成员载波CC中的每个下行频域带宽部分包括以下至少之一:波束失败检测参考信号集合、候选参考信号集合、波束失败搜索空间、波束失败检测计时器、波束失败检测计时器;
    位于一个CC中的每个上行频域带宽部分包括以下至少之一:上报资源、上报资源和候选参考信号集合之间的对应关系、波束失败恢复计时器、波束失败监听计时器。
  41. 根据权利要求38所述的方法,其中,所述预设规则包括以下至少之一:
    一个波束失败检测参考信号集合和X个候选参考信号集合对应,所述X个候选参考信号集合分别位于X个下行频域带宽中;
    一个候选参考信号集合和Y套上报资源对应,所述Y套上报资源分别位于Y个上行频域带宽中,每套上报资源中包括一个或者多个上报资源;
    一个上报资源和Z个候选参考信号对应;
    一套上报资源与W套波束失败搜索空间对应,所述W套波束失败搜索空间位于W个下行频域带宽中;
    其中,X、Y、Z、W均为不小于1的正整数。
  42. 根据权利要求41所述的方法,其中,一个上报资源和Z个候选参考信号对应,包括以下至少之一:
    所述Z个候选参考信号对应Z个下行频域带宽部分;
    所述Z个候选参考信号对应Z个控制信道资源组;
    所述Z个候选参考信号对应Z个下行成员载波组;
    所述Z个候选参考信号对应Z个波束失败检测参考信号集合;
    所述Z个候选参考信号中有Z1个参考信号指示信息需要上报时,根据Z1 个所述候选参考信号对应的如下信息至少之一,确定当前在所述上报资源中发送的信号和Z1个所述候选参考信号中的一个候选参考信号对应:
    距离当前上报资源最近的处于激活状态的频域带宽部分、Z1个所述候选参考信号在所述Z个候选参考信号中的索引信息、Z1个所述候选参考信号对应的Z1个控制信道资源组的优先级信息、Z1个所述候选参考信号对应的Z1个下行成员组的优先级信息、Z1个所述候选参考信号对应的Z1个控制信道资源组的索引信息、Z1个所述候选参考信号对应的Z1个下行成员组的索引信息,其中,Z1为大于1的正整数。
  43. 根据权利要求38所述的方法,其中,所述预设规则包括以下至少之一:
    一个下行频域带宽中包括C套所述波束失败恢复参数;
    一个上行频域带宽中包括D套所述波束失败恢复参数;
    其中,C、D均为不小于1的正整数,m套波束失败恢复参数对应m个如下信息至少之一:控制信道资源组、频域带宽组、信道或信号的配置信息,其中所述m为所述C或所述D。
  44. 根据权利要求38-43任一项所述的方法,其中,所述方法满足以下至少之一:
    下行频域带宽部分和上行频域带宽部分属于特殊小区SPcell;
    通信节点拒绝接收不满足所述预设规则的波束失败恢复参数;
    所述波束失败恢复过程包括上报频域带宽索引信息,上报的频域带宽索引信息用于指示以下至少之一:上报的参考信号指示信息所在的频域带宽部分;根据所述频域带宽索引信息对应的波束失败检测参考信号检测到了波束失败事件。
  45. 根据权利要求38所述的方法,其中,所述预定规则包括以下至少之一:
    一个下行频域带宽部分对应E个波束失败恢复过程,所述E个波束失败恢复过程对应所述一个下行频域带宽部分包括的E个控制信道资源组,其中,E为不小于1的正整数;
    携带参考信号指示信息的信道或信号与其他信道或信号有冲突时,所述携带参考信号指示信息的信道或信号优先级更高;
    波束失败恢复控制信道资源关联的信道或信号与其他信道或信号有冲突时,所述波束失败恢复控制信道资源关联的信道或信号的优先级最高;
    波束失败恢复控制信道资源关联的信道或信号与其他信道或信号有冲突时,所述波束失败恢复控制信道资源关联的信道或信号的优先级高于第一类其他信道或信号,其中所述第一类其他信道或信号至少和波束失败检测参考信号集合中的一个参考信号满足准共址关系;
    波束失败恢复控制信道资源中的控制信道调度的上行信道或信号的空间滤波参数根据发送参考信号指示信息采用的发送空间滤波参数获取;
    免调度的信道或信号中携带参考信号指示信息;
    在高层信令信息中携带参考信号指示信息。
  46. 根据权利要求38所述的方法,其中,所述预定规则包括以下至少之一:
    在波束失败恢复控制信道资源中只监听专有控制信道;
    在波束失败恢复控制信道资源中只监听下行控制信息DCI0_0和DCI1_0中至少一个,不监听DCI0_1和DCI1_1中至少一个;
    在波束失败恢复控制信道资源中的控制信道中不包括传输控制指示TCI域;
    在波束失败恢复控制信道资源中的控制信道中的探测参考信号SRS资源指示域的比特数为0,其中,所述SRS资源指示域用于指示上行数据信道的空间参数;
    在波束失败恢复控制信道资源中的控制信道中的一类比特域的比特数和其他控制信道资源中控制信道的所述一类比特域的比特数不同;
    在波束失败恢复控制信道资源中监听一个参考信号序列;
    在波束失败恢复控制信道资源中收到预定参考信号序列之后,执行以下至少之一操作:参考信号指示信息发送过程成功完成和停止波束失败恢复计时器;
    一个准共址参考信号集合中包括的不同准共址参考信号的个数不大于波束失败检测参考信号集合中可包括的参考信号的个数,其中,一个准共址参考信号集合包括一个频域带宽中配置的控制信道资源关联的一类准共址参数的准共址参考信号。
  47. 根据权利要求38所述的方法,其中,在预定时间段中所述波束失败恢复过程满足所述预定规则,所述预定时间段包括如下时间段至少之一:
    响应监听计时器运行期间;
    波束失败恢复计时器运行期间;
    从发送参考信号指示信息之后直到收到控制信道的准共址参考信号的更新消息;
    从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中的控制信道调度的数据信道中收到控制信道的准共址参考信号的更新消息;
    从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中收到控制信道;
    从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中收到预 定序列;
    从发送参考信号指示信息之后直到收到上行信道或信号的空间滤波参数的更新消息;
    从发送参考信号指示信息之后直到在波束失败恢复控制信道资源中的控制信道调度的数据信道中收到上行信道或信号的空间滤波参数的更新消息;
    从在波束失败恢复控制信道资源中收到控制信道或者预定序列到收到下行控制信道的准共址参考信号更新信息;
    从在波束失败恢复控制信道资源中收到控制信道或者预定序列到收到上行信道或信号的空间滤波参数的更新消息。
  48. 根据权利要求38所述的方法,所述方法还包括:
    根据满足预定特征的F个控制信道资源的准共址参考信号,确定波束失败检测参考信号集合中包括的参考信号,其中所述满足所述预定特征的F个控制信道资源满足以下至少之一:
    所述F个控制信道资源不包括波束失败恢复控制信道资源;
    所述F个控制信道资源中的不同控制信道资源关联一类准共址参数的准共址参考信号不满足准共址关系;
    所述F个控制信道资源是专有控制信道资源;
    所述F个控制信道资源中配置关联一类准共址参数的准共址参考信号;
    所述F个控制信道资源关联一类准共址参数的准共址参考信号包括一个控制信道资源集合中关联的一类准共址参数的准共址参考信号集合中带宽最大的F个准共址参考信号和密度最大的F个准共址参考信号中至少之一;
    一个控制信道资源集合中关联一类准共址参数的准共址参考信号集合中包括的单边带SSB控制信道资源优先选为所述F个控制信道资源;
    所述F个控制信道资源的控制信道资源索引在一个控制信道资源集合中满足所述预定特征;
    所述F个控制信道资源关联一类准共址参数的准共址参考信号属于一个频域带宽,其中,一个所述控制信道资源包括所述频域带宽中配置的控制信道资源构成的集合和满足预定特征的控制信道资源构成的集合中至少之一;
    其中,F为不小于1的正整数。
  49. 一种波束失败恢复的处理装置,包括:
    处理模块,设置为当频域带宽部分发生切换时,对波束失败恢复过程进行预定操作。
  50. 一种波束失败恢复的处理装置,包括:
    确定模块,设置为确定N套第一类波束失败恢复参数和M套第二类波束失败恢复参数之间的波束失败恢复参数对应关系;
    操作模块,设置为根据所述波束失败恢复参数对应关系,进行以下至少之一:波束失败恢复过程和频域带宽部分切换;
    其中,N,M均为正整数。
  51. 一种波束失败恢复的处理装置,包括:
    恢复模块,设置为根据波束失败恢复参数和预设规则中至少之一进行波束失败恢复过程,其中,所述波束失败恢复参数满足所述预设规则。
  52. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1-17、18-37、38-48任一项中所述的方法。
  53. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-17、 18-37、38-48任一项中所述的方法。
PCT/CN2019/107334 2018-09-21 2019-09-23 波束失败恢复的处理方法及装置 WO2020057665A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP24157801.2A EP4391624A3 (en) 2018-09-21 2019-09-23 Beam failure recovery processing method and device
AU2019341362A AU2019341362A1 (en) 2018-09-21 2019-09-23 Beam failure recovery processing method and device
EP19863139.2A EP3855661A4 (en) 2018-09-21 2019-09-23 BEAM FAILURE RECOVERY MANAGEMENT METHOD AND TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811110793.7A CN110943817A (zh) 2018-09-21 2018-09-21 波束失败恢复方法及装置
CN201811110793.7 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020057665A1 true WO2020057665A1 (zh) 2020-03-26

Family

ID=69888332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107334 WO2020057665A1 (zh) 2018-09-21 2019-09-23 波束失败恢复的处理方法及装置

Country Status (4)

Country Link
EP (2) EP3855661A4 (zh)
CN (2) CN110943817A (zh)
AU (1) AU2019341362A1 (zh)
WO (1) WO2020057665A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207562A1 (en) * 2020-04-08 2021-10-14 Idac Holdings, Inc. Methods, apparatuses and systems directed to beam management in connection with multiple cells and/or multiple transmission/reception points
WO2022072249A1 (en) * 2020-09-29 2022-04-07 Qualcomm Incorporated Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
EP3982556A1 (en) * 2020-10-12 2022-04-13 Samsung Electronics Co., Ltd. Method and device for multiple transmission and reception points beam failure recovery
WO2022200078A1 (en) * 2021-03-26 2022-09-29 Nokia Technologies Oy Indicating beam failure in multiple transmission reception point operation
WO2022205053A1 (en) * 2021-03-31 2022-10-06 Apple Inc. Method for beam failure recovery based on unified tci framework
WO2022227045A1 (en) * 2021-04-30 2022-11-03 Qualcomm Incorporated Beam failure detection for a physical downlink control channel monitoring operation corresponding to at least two transmission configuration indicator states
WO2022236708A1 (en) * 2021-05-11 2022-11-17 Apple Inc. Method for a transmission/reception point (trp) specific beam failure recovery (bfr) for a single downlink control information (dci) mode
EP4158933A4 (en) * 2020-05-26 2024-03-06 Qualcomm Incorporated BEAM FALLOUT RECOVERY FOR A MULTIPLE TRANSMIT/RECEIVE POINT IN A PRIMARY CELL

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078928A (zh) * 2019-01-07 2021-07-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111278122B (zh) * 2019-01-25 2023-03-24 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
EP4150772A4 (en) * 2020-05-21 2024-02-28 Nokia Technologies Oy BEAM FAILURE RECOVERY IN RECHARGEABLE BATTERY ACTIVATION
CN114070523B (zh) * 2020-08-07 2023-04-07 大唐移动通信设备有限公司 传输失败恢复方法、装置、设备及存储介质
CN114374994A (zh) * 2020-10-14 2022-04-19 中国移动通信有限公司研究院 一种波束失败信息的上报、接收方法、终端及网络设备
EP4190080A4 (en) * 2020-10-15 2023-10-25 ZTE Corporation BEAM FAILURE RECOVERY SYSTEM AND METHOD
CN114499782A (zh) * 2020-10-23 2022-05-13 维沃移动通信有限公司 波束失败恢复方法、装置、终端和存储介质
WO2022141405A1 (zh) * 2020-12-31 2022-07-07 北京小米移动软件有限公司 资源集合配置方法、装置及存储介质
CN115589279B (zh) * 2021-07-05 2024-08-13 维沃移动通信有限公司 波束上报方法及终端
CN115843105A (zh) * 2021-09-17 2023-03-24 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN118525463A (zh) * 2022-01-06 2024-08-20 诺基亚技术有限公司 无线网络的多trp系统的ue操作

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496385A (zh) * 2018-03-29 2018-09-04 北京小米移动软件有限公司 信息上报方法及装置和基于带宽部分的操作方法及装置
CN108513737A (zh) * 2018-03-28 2018-09-07 北京小米移动软件有限公司 信息传输方法和信息传输装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592865B1 (en) * 2011-11-14 2019-10-23 Alcatel Lucent Call drop avoidance during radio link failure
CN105722213B (zh) * 2014-12-04 2019-08-13 中国移动通信集团公司 一种多连接场景下的终端连接状态的获取方法及装置
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
JP6906507B2 (ja) * 2015-10-07 2021-07-21 バイオプロトニクス インコーポレイテッドBioprotonics,Inc. 特定のコントラスト機構を用いて構造的空間周波数を評価するための選択的サンプリング
US10411839B2 (en) * 2016-07-01 2019-09-10 Asustek Computer Inc. Method and apparatus for managing communication when a serving beam becomes invalid in a wireless communication system
US10477457B2 (en) * 2016-11-03 2019-11-12 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5G) new radio
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
CN107332800B (zh) * 2017-04-26 2020-05-22 南京理工大学 一种基于随机子载波选择的方向调制精准无线传输方案
CN108112074B (zh) * 2017-05-05 2023-07-18 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
CN108260214A (zh) * 2018-01-17 2018-07-06 中兴通讯股份有限公司 一种波束监测对象的确定方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513737A (zh) * 2018-03-28 2018-09-07 北京小米移动软件有限公司 信息传输方法和信息传输装置
CN108496385A (zh) * 2018-03-29 2018-09-04 北京小米移动软件有限公司 信息上报方法及装置和基于带宽部分的操作方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Further discussion on the reset of BFD counting, R2-1809568", 3GPP TSG-RAN WG2 MEETING AH-1807, 6 July 2018 (2018-07-06), XP051466844 *
OPPO: "CR on beam failure receovery configuration - 0301, 0302", 3GPP TSG-RAN WG2 MEETING #103, R2-1811149, 24 August 2018 (2018-08-24), XP051520837 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207562A1 (en) * 2020-04-08 2021-10-14 Idac Holdings, Inc. Methods, apparatuses and systems directed to beam management in connection with multiple cells and/or multiple transmission/reception points
US12126560B1 (en) 2020-04-08 2024-10-22 Interdigital Patent Holdings, Inc. Methods, apparatuses and systems directed to beam management in connection with multiple cells and/or multiple transmission/reception points
EP4158933A4 (en) * 2020-05-26 2024-03-06 Qualcomm Incorporated BEAM FALLOUT RECOVERY FOR A MULTIPLE TRANSMIT/RECEIVE POINT IN A PRIMARY CELL
WO2022072249A1 (en) * 2020-09-29 2022-04-07 Qualcomm Incorporated Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
EP3982556A1 (en) * 2020-10-12 2022-04-13 Samsung Electronics Co., Ltd. Method and device for multiple transmission and reception points beam failure recovery
US11950310B2 (en) 2020-10-12 2024-04-02 Samsung Electronics Co., Ltd. Method and device for multiple transmission and reception points beam failure recovery
WO2022200078A1 (en) * 2021-03-26 2022-09-29 Nokia Technologies Oy Indicating beam failure in multiple transmission reception point operation
EP4315627A1 (en) * 2021-03-26 2024-02-07 Nokia Technologies Oy Indicating beam failure in multiple transmission reception point operation
WO2022205053A1 (en) * 2021-03-31 2022-10-06 Apple Inc. Method for beam failure recovery based on unified tci framework
WO2022227045A1 (en) * 2021-04-30 2022-11-03 Qualcomm Incorporated Beam failure detection for a physical downlink control channel monitoring operation corresponding to at least two transmission configuration indicator states
WO2022236708A1 (en) * 2021-05-11 2022-11-17 Apple Inc. Method for a transmission/reception point (trp) specific beam failure recovery (bfr) for a single downlink control information (dci) mode

Also Published As

Publication number Publication date
AU2019341362A1 (en) 2021-05-20
CN110943817A (zh) 2020-03-31
EP3855661A4 (en) 2022-07-13
EP4391624A3 (en) 2024-09-18
EP3855661A1 (en) 2021-07-28
CN116112139B (zh) 2024-01-30
EP4391624A2 (en) 2024-06-26
CN116112139A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2020057665A1 (zh) 波束失败恢复的处理方法及装置
CN111466150B (zh) 在无线通信系统中处理带宽部分不活动计时器的方法和装置
US10645618B2 (en) Link failure recovery method and apparatus
TWI497932B (zh) 無線連結失效監視方法及裝置
WO2019137446A1 (zh) 通信方法和通信设备
US20240306056A1 (en) Ue and base station in mobile communication system and operating method therefor
US12113742B2 (en) Beam failure recovery method and device, beam failure recovery parameter determination method and device, quasi colocation reference signal determination method and device, and storage medium
WO2018202198A1 (zh) 数据包复制功能的控制方法和装置、通信设备及存储介质
US20200163144A1 (en) Method and apparatus for transmitting and receiving signals in wireless communication system
WO2019062992A1 (zh) 信号传输的方法及装置
WO2019196885A1 (zh) 一种波束恢复的方法及装置
JP2021519558A (ja) 装置、方法及びコンピュータープログラム
CN114342475B (zh) 用于无线通信的方法、设备和装置
JP7459217B2 (ja) ワイヤレス通信におけるリンク回復
WO2022083637A1 (zh) 波束失败恢复方法、装置、终端和存储介质
US12074755B2 (en) Beam recovery method and apparatus, and terminal and storage medium
WO2019178844A1 (zh) 数据传输方法及装置
CN116420334A (zh) 用于通过无线网络进行通信的用户设备和用于将用户设备连接到无线网络的无线网络节点
WO2024232311A1 (ja) 通信システム
WO2023205950A1 (zh) 载波管理方法、装置、设备和介质
WO2018024074A1 (zh) 一种传输节点更换方法及相关设备
WO2023276896A1 (ja) 通信装置、基地局、及び通信方法
WO2017190566A1 (zh) 一种用户设备、基站中的用于中继传输的方法和装置
WO2023276901A1 (ja) 通信装置、基地局、及び通信方法
WO2023276898A1 (ja) 通信装置、基地局、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019863139

Country of ref document: EP

Effective date: 20210421

ENP Entry into the national phase

Ref document number: 2019341362

Country of ref document: AU

Date of ref document: 20190923

Kind code of ref document: A