Nothing Special   »   [go: up one dir, main page]

WO2023276898A1 - 通信装置、基地局、及び通信方法 - Google Patents

通信装置、基地局、及び通信方法 Download PDF

Info

Publication number
WO2023276898A1
WO2023276898A1 PCT/JP2022/025391 JP2022025391W WO2023276898A1 WO 2023276898 A1 WO2023276898 A1 WO 2023276898A1 JP 2022025391 W JP2022025391 W JP 2022025391W WO 2023276898 A1 WO2023276898 A1 WO 2023276898A1
Authority
WO
WIPO (PCT)
Prior art keywords
bfd
beam failure
radio link
failure detection
base station
Prior art date
Application number
PCT/JP2022/025391
Other languages
English (en)
French (fr)
Inventor
美沙 原田
秀明 ▲高▼橋
隆史 西
秀雄 姫野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280046078.XA priority Critical patent/CN117581629A/zh
Priority to EP22833045.2A priority patent/EP4366449A4/en
Publication of WO2023276898A1 publication Critical patent/WO2023276898A1/ja
Priority to US18/396,217 priority patent/US20240237117A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to communication devices, base stations, and communication methods used in mobile communication systems.
  • TRP transmission/reception points
  • MIMO multiple transmission/reception multi-output
  • Introduction of transmission is under consideration (see Non-Patent Document 1).
  • efficient transmission can be realized by configuring one cell with a plurality of distributed TRPs and simultaneously using the plurality of TRPs for wireless communication with a communication device.
  • the TRP is sometimes called a panel or an antenna panel.
  • Non-Patent Documents 2 and 3 When a cell is operated with multiple TRPs, it has been proposed to perform beam failure detection/restoration, which was conventionally performed on a cell-by-cell basis, on a TRP-by-TRP basis (see Non-Patent Documents 2 and 3). Specifically, a TRP-specific counter-timer for detecting beam failure is introduced, and a beam failure event (beam failure instance indicator) is notified from the physical layer to the medium access control (MAC) layer in the communication device. is counted by a counter, and beam failure is detected when the count value reaches a specified number of times or more before the timer expires.
  • MAC medium access control
  • 3GPP contributions RP-202803 “Summary for WI: Enhancement on MIMO for NR”
  • 3GPP contributions R2-2105870 Beam failure with mTRP”
  • 3GPP contribution R2-2105341 Discussion on RAN2 specification impacts of TRP-specific BFR
  • radio link monitoring that is, radio link failure detection and beam failure detection
  • a cell-by-cell basis Therefore, it is desirable to appropriately coexist such existing technology and beam failure detection on a TRP basis.
  • an object of the present disclosure is to provide a communication device, a base station, and a communication method that are capable of appropriately coexisting radio link monitoring and beam failure detection in TRP units when a cell is operated using multiple TRPs.
  • a communication device is a device that performs wireless communication with a base station that manages a cell having N (N ⁇ 2) transmission/reception points.
  • the communication device receives from the base station a radio resource control (RRC) message including a radio link monitoring configuration for configuring radio link monitoring and a beam failure detection configuration for configuring N beam failure detection resource sets.
  • RRC radio resource control
  • a control unit that detects radio link failures based on the radio link monitoring configuration and detects beam failures individually for each of the N beam failure detection resource sets based on the beam failure detection configuration.
  • a base station is a device that manages a cell having N (N ⁇ 2) transmission/reception points and performs wireless communication with a communication device.
  • the base station generates a radio resource control (RRC) message including a radio link monitoring configuration for configuring radio link monitoring and a beam failure detection configuration for configuring N beam failure detection resource sets; a communication unit that transmits an RRC message to the communication device.
  • the radio link monitoring configuration includes information for configuring reference signal resources and usage of the reference signal resources.
  • a communication method is a method executed by a communication device that performs wireless communication with a base station that manages a cell having N (N ⁇ 2) transmission/reception points.
  • the communication method comprises receiving from the base station a radio resource control (RRC) message including a radio link monitoring configuration for configuring radio link monitoring and a beam failure detection configuration for configuring N beam failure detection resource sets. and detecting a radio link failure based on the radio link monitoring configuration, and individually detecting beam failures for each of the N beam failure detection resource sets based on the beam failure detection configuration.
  • RRC radio resource control
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to one embodiment
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in a mobile communication system according to an embodiment
  • FIG. 3 is a diagram showing an operation example when a beam failure is detected in a secondary cell (SCell) during cell operation with a single TRP.
  • FIG. 4 is a diagram showing an operation example when a beam failure is detected in a special cell (SpCell) during cell operation with a single TRP.
  • FIG. 5 is a diagram showing an overview of multiple TRP (multi-TRP) transmission according to one embodiment
  • FIG. 6 is a diagram showing the configuration of a UE according to one embodiment
  • FIG. 7 is a diagram showing the configuration of a base station according to an embodiment
  • FIG. 8 is a diagram showing a BFD operation in units of TRP according to one embodiment
  • FIG. 9 is a diagram showing a configuration example of an RRC message according to one embodiment
  • FIG. 10 is a diagram showing a BFD operation in units of TRP according to one embodiment
  • FIG. 11 is a diagram showing a configuration example of BWP setting (BWP-DownlinkDedicated) according to one embodiment
  • FIG. 12 is a diagram showing a configuration example of a BFD setting list (BFD-ConfigurationList) according to one embodiment
  • FIG. 13 is a diagram illustrating operations in a UE according to an embodiment
  • FIG. 14 is a diagram for explaining an operation when a BFD reference signal resource is not provided according to an embodiment
  • FIG. 15 is a diagram for explaining an operation when a BFD reference signal resource is not provided according to an embodiment
  • FIG. 16 is a diagram for explaining an operation when a BFD reference signal resource is not provided according to an embodiment
  • FIG. 17 is a diagram for explaining coexistence with existing radio link monitoring according to an embodiment
  • FIG. 18 is a diagram showing a configuration example of an RRC message according to one embodiment
  • FIG. 19 is a diagram showing a configuration example of a radio link monitoring setting (RadioLinkMonitoringConfig) according to an embodiment
  • FIG. 20 is a diagram showing a comparative example of BFD/BFR operation in SpCell according to one embodiment
  • FIG. 21 is a diagram showing BFD/BFR operation in SpCell according to one embodiment
  • FIG. 22 is a diagram showing BFD/BFR operation in SpCell according to one embodiment
  • FIG. 23 is a diagram illustrating a specific example of the operation of a MAC entity in a UE according to an embodiment
  • FIG. 24 is a diagram illustrating an example operation of a MAC entity in a UE according to one embodiment.
  • the mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS).
  • TS 3GPP Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and a communication device (User Equipment: UE) 100 that communicates with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is a device used by a user.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon.
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area.
  • One cell belongs to one frequency (carrier frequency) and is composed of one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • a physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers.
  • a frame may consist of 10 ms and may include 10 subframes of 1 ms.
  • a subframe can include a number of slots corresponding to the subcarrier spacing.
  • the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
  • the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth).
  • the base station 200 sets a bandwidth part (BWP) consisting of consecutive PRBs (Physical Resource Blocks) for the UE 100 .
  • BWP bandwidth part
  • UE 100 transmits and receives data and control signals on the active BWP. Up to four BWPs can be set in the UE 100, for example. Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
  • the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell.
  • CORESET is a radio resource for control information that the UE 100 should receive.
  • UE 100 may be configured with up to 12 CORESETs on the serving cell.
  • Each CORESET has an index from 0 to 11.
  • a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • a NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management for the UE 100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • FIG. 3 (Overview of beam failure detection and restoration) Next, an overview of beam failure detection/restoration will be described with reference to FIGS. 3 and 4.
  • FIG. 3 (Overview of beam failure detection and restoration)
  • NR Compared to LTE (Long Term Evolution), which is the fourth generation radio access technology, NR is capable of wideband transmission in high frequency bands such as the millimeter wave band or the terahertz wave band.
  • high directivity beamforming using a large number of antennas is used between the base station 200 and the UE 100 to obtain a high beam gain.
  • NR introduces a beam control technique for establishing and maintaining a beam pair between the base station 200 and the UE 100 . Beam failure detection and recovery technology is one such beam control technology.
  • the base station 200 configures the UE 100 with downlink reference signal resources for detecting beam failures.
  • a reference signal resource is either SSB (SS: Synchronization Signal/PBCH Block) or CSI-RS (Channel State Information Reference Signal).
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • DMRS demodulation reference signal
  • an SSB may consist of four consecutive OFDM symbols in the time domain.
  • the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain.
  • PBCH is a physical channel that carries a Master Information Block (MIB).
  • MIB Master Information Block
  • CSI-RS is a reference signal transmitted for the UE 100 to measure the radio channel state.
  • the UE 100 can detect beam failure using the SSB if the SSB is within the band of the downlink BWP.
  • the UE 100 can detect beam failure using the CSI-RS set by the base station 200 if the SSB is not within the downlink BWP band.
  • the MAC layer counts the beam failure event (beam failure instance indicator) notified from the physical layer with a counter, and detects (declares) beam failure when the count value reaches a specified number of times or more before the timer expires. do.
  • FIG. 3 shows an operation example when a beam failure is detected in the secondary cell (SCell) during cell operation with a single TRP.
  • FIG. 3 shows an example in which the base station 200 manages the SCell 250B composed of one TRP 201.
  • the base station 200 (TRP 201) forms a total of three beams from beam #0 to beam #2.
  • UE 100 detects a beam failure during communication using beam #0 in SCell 250B.
  • the UE 100 triggers beam failure recovery (BFR) by starting transmission of a beam failure recovery MAC control element (BFR MAC CE).
  • BFR MAC CE beam failure recovery MAC control element
  • the UE 100 selects a beam suitable for the SCell (eg, beam #1) and indicates the selected beam information along with information on beam failures by BFR MAC CE.
  • the UE 100 receives the PDCCH indicating a new transmission uplink grant for the HARQ process used to transmit the BFR MAC CE, recovery from the SCell 250B beam failure is complete.
  • FIG. 4 shows an operation example when a beam failure is detected in a special cell (SpCell) during cell operation with a single TRP.
  • SpCell may be referred to as a primary cell (PCell).
  • FIG. 4 shows an example in which the base station 200 manages the SpCell 250A composed of one TRP 201.
  • the base station 200 (TRP 201) forms a total of three beams from beam #0 to beam #2.
  • UE 100 detects a beam failure during communication using beam #0 in SpCell 250A.
  • UE 100 triggers BFR by starting a random access procedure for SpCell 250A.
  • the UE 100 selects an appropriate beam (eg, beam #1) to perform BFR.
  • BFR is complete when the random access procedure is completed.
  • the base station 200 configures one cell 250 with a plurality of distributed TRPs 201 .
  • TRP201#0 and TRP201#0 are illustrated as the plurality of TRP201.
  • the base station 200 may configure one cell 250 with three or more TRPs 201 .
  • the case where the number of TRPs 201 constituting one cell 250 is two will be mainly described.
  • multiple TRP transmission it is possible to increase the data rate by transmitting different data from multiple TRPs 201 and performing spatial multiplexing. Alternatively, it is possible to transmit the same data from multiple TRPs 201 to provide diversity and improve transmission reliability and robustness.
  • the CORESET pool index can be regarded as an index that identifies the TRP 201 .
  • BFD/BFR which was conventionally performed in units of cells 250, is performed in units of TRPs 201 when a cell is operated using multiple TRPs 201 as described above.
  • a counter timer specific to TRP201 for detecting beam failure is introduced, and in UE100, the beam failure instance indicator notified from the physical layer to the MAC layer is counted with a counter, and before the expiration of the timer A beam failure is detected when the count value exceeds a specified number of times.
  • a beam failure detection resource set (hereinafter referred to as "BFD resource set") including reference signal resources for detecting beam failure is individually set for each TRP 201. It is considered necessary to be set in the UE 100. However, in existing 3GPP technical specifications, there is no mechanism for setting a BFD resource set for each TRP 201 in the UE 100 . In one embodiment, it is possible to perform BFD/BFR in units of TRP201.
  • a mechanism is realized that enables BFD/BFR even for the BFD resource set/TRP 201 in which the reference signal resource for BFD is not provided.
  • existing radio link monitoring that is, radio link failure (RLF) detection and beam failure detection
  • RLF radio link failure
  • BFD beam failure detection
  • communication data transmission/reception
  • communication can be performed if any TRP 201 is recovered from the beam failure. If the random access procedure for recovering from the beam failure is started without considering whether the beam failure has been recovered or not, communication will be interrupted because data cannot be sent or received while the random access procedure is being executed. occurs. In one embodiment, such interruption of communication can be suppressed.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitting unit 111 and the receiving unit 112 may be configured including multiple antennas and RF (Radio Frequency) circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the communication unit 110 performs radio communication with the base station 200 that manages the cell 250 having N (N ⁇ 2) TRPs 201 .
  • the communication unit 110 is information for setting N BFD resource sets, and beam failure detection settings (hereinafter referred to as "BFD setting list") associated with the downlink BWP that is part of the bandwidth of the cell 250. ) is received from the base station 200 .
  • the control unit 120 individually detects beam failures for each of the N BFD resource sets in wireless communication using the downlink BWP.
  • the other TRP 201 can continue communication, so the failure tolerance of communication can be improved.
  • control unit 120 uses predetermined reference signal resources instead of the reference signal resources. , to detect beam failures for that BFD resource set. For example, control unit 120 identifies an active transmission configuration indicator (Transmission Configuration Indication: TCI) state for PDCCH based on the CORESET pool index associated with the BFD resource set, and according to the active TCI state Using the indicated reference signal resource as the predetermined reference signal resource, beam failure is detected for the BFD resource set.
  • TCI Transmission Configuration Indication
  • the communication unit 110 sends an RRC message including a radio link monitoring setting for setting radio link monitoring in cell 250 units and a BFD setting list for setting N BFD resource sets.
  • the control unit 120 detects RLF in units of cells 250 based on radio link monitoring settings, and individually detects beam failures for each of the N BFD resource sets 521 # 0 and 521 # 1 based on the BFD setting list 520 . do.
  • radio link monitoring in cell 250 units and BFD in TRP 201 units can coexist appropriately.
  • the cell 250 (specifically, Determines whether to initiate a random access procedure for the SpCell. For example, the control unit 120, which has detected a beam failure for one BFD resource set, detects a beam failure for another BFD resource set, and only if no BFD resource set has recovered from the beam failure, the cell Start the random access procedure for H.250. Accordingly, by reflecting the BFR status in the condition for starting the random access procedure, communication can be continued as long as possible.
  • the base station 200 has N TRPs 201 (TRP 201 # 0 and TRP 201 # 1 in the example of FIG. 7), a communication section 210 , a network interface 220 and a control section 230 .
  • Each TRP 201 includes multiple antennas and is configured to enable beamforming.
  • TRP 201 may also be referred to as a panel or antenna panel.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • Each TRP 201 is distributed and arranged to constitute one cell 250 . When the base station 200 manages multiple cells, the base station 200 may have N TRPs 201 for each cell.
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an RF circuit.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • a base station 200 manages a cell 250 having N TRPs 201 and performs radio communication with the UE 100 .
  • the communication unit 210 transmits to the UE 100 an RRC message including a list for configuring N BFD resource sets and associated with a downlink BWP that is part of the bandwidth of the cell 250 .
  • the BFD configuration list is used by the UE 100 to individually detect beam failures for each of the N BFD resource sets in wireless communication using the downlink BWP.
  • the control unit 230 performs an RRC including a radio link monitoring setting for setting radio link monitoring for each cell 250 and a BFD setting list for setting N BFD resource sets. Generate a message.
  • the communication unit 210 transmits the RRC message to the UE100.
  • the radio link monitoring configuration includes information indicating reference signal resources and information indicating usage of the reference signal resources.
  • the control unit 120 When setting the BFD setting list in the UE 100, the control unit 120 does not set the beam failure detection but sets the RLF detection as the use of the reference signal resource in the radio link monitoring setting.
  • radio link monitoring in cell 250 units and BFD in TRP 201 units can coexist appropriately.
  • the UE 100 can realize two-stage failure detection and recovery by RLF detection and recovery in units of cells 250 and BFD / BFR in units of TRP 201, so it is possible to improve communication fault tolerance. .
  • the base station 200 (communication unit 210) managing the cell 250 having N TRPs 201 is a list for setting N BFD resource sets, and the band of the cell 250 Send an RRC message including a BFD configuration list associated with the downlink BWP that is part of the width to the UE 100 .
  • UE 100 receives the RRC message.
  • the RRC message is a UE-specific RRC message, and may be, for example, an RRC Reconfiguration message.
  • the BFD setting list can be set individually for each downlink BWP. Therefore, it is possible to set the optimum BFD configuration list according to the requirements for downlink BWP.
  • step S102 UE 100 (control unit 120) individually detects beam failures for each of the N BFD resource sets based on the BFD setting list set by base station 200 in radio communication using the downlink BWP. (beam monitoring).
  • the UE 100 (control unit 120) detects a beam failure for one of the BFD resource sets, it starts (trigger) a BFR procedure for recovering from the detected beam failure.
  • the RRC message includes a BWP setting (BWP-DownlinkDedicated) 500 for setting the downlink BWP (specifically, the UE-specific downlink BWP) to the UE 100.
  • BWP configuration (BWP-DownlinkDedicated) 500 is an information element that configures UE-specific parameters of downlink BWP.
  • the BWP configuration (BWP-DownlinkDedicated) 500 includes a radio link monitoring configuration (RadioLinkMonitoringConfig) 510 for configuring radio link monitoring for each cell 250, and a BFD configuration list (BFD-ConfigurationList) 520 for configuring N BFD resource sets. and can be included.
  • the BFD configuration list (BFD-ConfigurationList) 520 can be configured for each downlink BWP configured in the UE 100.
  • UE 100 (control unit 120), when using the downlink BWP set in the BWP setting (BWP-DownlinkDedicated) 500 for wireless communication, that is, when the downlink BWP is an active BWP, corresponds to the downlink BWP Beam monitoring is performed using the attached BFD configuration list (BFD-ConfigurationList) 520 .
  • the BFD configuration list (BFD-ConfigurationList) 520 is an information element different from the radio link monitoring configuration (RadioLinkMonitoringConfig) 510.
  • the radio link monitoring configuration (RadioLinkMonitoringConfig) 510 is an information element defined in the existing technical specifications
  • the BFD configuration list (BFD-ConfigurationList) 520 is a new information element not defined in the existing technical specifications. information elements. In this way, by introducing a new information element for BFD on a TRP 201 basis, BFD on a TRP 201 basis becomes possible and coexistence with existing radio link monitoring becomes possible.
  • a BFD configuration list (BFD-ConfigurationList) 520 includes N BFD resource sets (BFD Resource Set) 521 .
  • the BFD configuration list (BFD-ConfigurationList) 520 includes two BFD resource sets (BFD Resource Set) 521#0 and 521#1.
  • Each BFD resource set (BFD Resource Set) 521 includes downlink reference signal resources.
  • the reference signal resource is either SSB or CSI-RS.
  • the reference signal resource in the BFD resource set (BFD Resource Set) 521 is set as a reference signal resource intended for beam failure detection. In other words, reference signal resources in the BFD resource set (BFD Resource Set) 521 are not set as reference signal resources intended for RLF detection.
  • RLF detection is performed on a cell 250 basis using a radio link monitoring configuration (RadioLinkMonitoringConfig) 510, and beam failure detection is performed using a BFD configuration list (BFD-ConfigurationList) 520. It is supposed to be performed in units of TRP201.
  • RadioLinkMonitoringConfig RadioLinkMonitoringConfig
  • BFD-ConfigurationList BFD configuration list
  • N BFD resource sets 521 are associated with N TRPs 201 on a one-to-one basis.
  • BFD Resource Set 521#0 is associated with TRP 201#0
  • BFD Resource Set 521#1 is associated with TRP 201#1. This enables BFD in units of TRP201.
  • each BFD resource set (BFD Resource Set) 521 includes one or more reference signal resources, each of which corresponds to a beam on a one-to-one basis. may be attached.
  • TRP 201#0 forms three beams #0 to #2
  • TRP 201#1 forms three beams #0 to #2.
  • the base station 200 uses the RRC message to create a BFD resource set 521#0 associated with TRP 201#0 and a BFD resource set 521#0 associated with TRP 201#1.
  • a set (BFD Resource Set) 521#1 is set in the UE 100.
  • the base station 200 sets three reference signal resources that are associated one-to-one with the three beams #0 to #2 in the BFD resource set 521#0. . Also, the base station 200 (control unit 230) configures three reference signal resources that are associated one-to-one with the three beams #0 to #2 in the BFD resource set 521#1. . This enables the UE 100 (control unit 120) to detect beam failures for each TRP 201 and for each beam.
  • FIG. 11 and 12 show description examples in the 3GPP RRC layer technical specifications (TS38.331).
  • BWP configuration (BWP-DownlinkDedicated) 500 for configuring UE-specific downlink BWP in UE 100 includes radio link monitoring configuration (RadioLinkMonitoringConfig) 510 for configuring radio link monitoring in cell 250 units, and N BFD configuration list (BFD-ConfigurationList-r17) 520 that configures BFD resource sets.
  • radio link monitoring configuration RadioLinkMonitoringConfig
  • BFD-ConfigurationList-r17 N BFD configuration list
  • the BFD configuration list (BFD-ConfigurationList) 520 set in the UE 100 can be released by a release instruction from the base station 200. For example, when changing from cell operation using multiple TRPs to cell operation using a single TRP, base station 200 transmits to UE 100 a release instruction to release BFD-ConfigurationList 520 set in UE 100 . UE 100 releases the configured BFD configuration list (BFD-ConfigurationList) 520 in response to receiving the release instruction.
  • the BFD configuration list (BFD-ConfigurationList) 520 includes BFD resource sets (BFD Resource Set) 521 up to maxNrOfBFD-ResourceSets.
  • Each BFD resource set (BFD Resource Set) 521 includes a BFD resource set identifier (bfd-ResourceSetId) that identifies the BFD resource set, and an addition/change list (bfd) for adding/changing one or more reference signal resources.
  • -ResourcesToAddModList a release list for releasing one or more reference signal resources (bfd-ResourcesToReleaseList), a maximum count value of the beam failure instance indicator from the physical layer (beamFailureInstanceMaxCountPerRS), and a and a timer value (beamFailureDetectionTimerPerRS).
  • a BFD resource set identifier is an identifier that identifies a BFD resource set.
  • a BFD resource set identifier (bfd-ResourceSetId) can be regarded as an identifier that identifies the corresponding TRP 201 .
  • a BFD resource set identifier (bfd-ResourceSetId) may be associated one-to-one with a CORESET pool index (coresetPoolIndex).
  • bfd-ResourceSetId For example, "0" of the BFD resource set identifier (bfd-ResourceSetId) is associated with “0" of the CORESET pool index (coresetPoolIndex), and "1" of the BFD resource set identifier (bfd-ResourceSetId) is associated with the CORESET pool index (coresetPoolIndex). ) is associated with “1”.
  • the addition/modification list (bfd-ResourcesToAddModList) is a list of one or more reference signal resources (BeamFailureDetectionRS) to be added/modified.
  • the addition/modification list (bfd-ResourcesToAddModList) is a list of reference signals for detecting beam failures, and the limit of reference signals that can be set by the network (base station 200) is defined in technical specifications (for example, Specified in Table 5-1) of TS 38.213.
  • the network (base station 200) configures a maximum predetermined number of reference signal resources for each resource set.
  • BFD Resource Set BFD Resource Set
  • coresetPoolIndex CORESET pool index
  • the set reference signal resource (BeamFailureDetectionRS) includes a reference signal resource identifier (beamFailureDetectionRS-Id) that identifies the reference signal resource, and a reference signal resource (detectionResource) that the UE 100 should use for BFD.
  • An SSB index (ssb-Index) or a CSI-RS index (csi-RS-Index) is set in the reference signal resource (detection resource).
  • the release list (bfd-ResourcesToReleaseList) is a list of reference signal resource identifiers (beamFailureDetectionRS-Id) of reference signal resources to be released.
  • the maximum count value (beamFailureInstanceMaxCountPerRS) indicates the number of beam failure events (that is, the number of beam failure instance indicators from the physical layer) for which the UE 100 triggers the BFR procedure. For example, the value 'n1' corresponds to one beam failure instance designator and the value 'n2' corresponds to two beam failure instances.
  • a timer value (beamFailureDetectionTimerPerRS) is a timer for BFD.
  • the MAC layer of the UE 100 detects a beam failure when a beam failure event (beam failure instance indicator) is notified from the physical layer a specified number of times within a specified time.
  • Each BFD resource set (BFD resource set) 521 includes information for setting the specified time and the specified number of times independently of other BFD resource sets.
  • the maximum count value (beamFailureInstanceMaxCountPerRS) indicating the specified number of times and the timer (beamFailureDetectionTimerPerRS) indicating the specified time are set for each BFD resource set (BFD Resource Set) 521, that is, for each TRP 201. This makes it possible to optimize the conditions for detecting beam failures for each TRP 201 .
  • the physical (PHY) layer evaluates radio link quality for each configured BFD resource set.
  • the radio link quality may be the block error rate (BLER) of the PDCCH.
  • BLER block error rate
  • the physical layer sends the beam failure instance indicator along with the BFD resource set identifier (bfd-ResourceSetId) of the BFD resource set to the MAC layer. cyclically. This period is set to, for example, the minimum period of the reference signal in the BFD resource set or 2 ms, whichever is larger.
  • a BFD resource set identifier (bfd-ResourceSetId) may be used as the beam failure instance indicator.
  • Each BFD resource set (BFD resource set) 521 may contain information for setting a threshold value to be compared with the radio link quality measured at the physical layer independently of other BFD resource sets. According to the physical layer, the radio link quality in any BFD resource set (BFD Resource Set) 521 is worse than the threshold value associated with that BFD resource set (BFD resource set) 521, Notify the MAC layer of a beam failure event (beam failure instance indicator) indicating (BFD Resource Set) 521.
  • the threshold to be compared with the radio link quality can be set individually for each BFD Resource Set 521, that is, for each TRP 201, so the conditions for detecting beam failure events can be optimized for each TRP 201. Become.
  • the MAC layer manages timers and counters for each set BFD resource set, and performs BFD/BFR for each BFD resource set.
  • FIG. 13 there are two BFD resource sets, and the MAC layer manages timer #0 and counter #0 for BFD resource set #0 and timer #1 and counter #1 for BFD resource set #1. An example is shown.
  • the MAC layer When the MAC layer receives a beam failure instance indicator with a BFD resource set identifier (bfd-ResourceSetId) from the physical layer, it starts a timer corresponding to the BFD resource set identifier (bfd-ResourceSetId) and sends the BFD resource set identifier. Increment (ie, add 1 to) the counter corresponding to (bfd-ResourceSetId). The MAC layer detects a beam failure for the BFD resource set corresponding to the counter when the count value of the counter reaches a specified number of times or more before the timer expires. Details of such operations will be described later.
  • BeamFailureDetectionRS BeamFailureDetectionRS
  • a mechanism that enables BFD/BFR even for a BFD resource set (BFD resource set) or TRP 201 in which no reference signal resource (BeamFailureDetectionRS) for BFD is provided is realized.
  • NR supports TCI state setting, which is a higher layer setting for beamforming per CORESET.
  • TCI state setting which is a higher layer setting for beamforming per CORESET.
  • UE 100 monitors a PDCCH search space associated with CORESET, UE 100 receives PDCCH on CORESET based on the TCI state settings configured for CORESET.
  • Beam information for PDCCH reception is a downlink reference signal (particularly, CSI-RS associated with a beam) and PDCCH demodulation reference signal (DMRS).
  • DMRS PDCCH demodulation reference signal
  • QCL Quasi-Co-Location: QCL ) is implicitly recognized by the UE 100 by the relationship.
  • DMRS of PDCCH has a pseudo collocation relationship with downlink reference signals by QCL-TypeA and/or QCL-TypeD.
  • QCL-Type A corresponds to channel statistical properties observed at the UE 100 side, such as Doppler shift, Doppler spread, mean delay, delay spread.
  • QCL-TypeD corresponds to reception beam information on the UE 100 side.
  • the downlink reference signal and the PDCCH DMRS may be assumed that the downlink reference signal and the PDCCH DMRS have the same spatial parameters. If the PDCCH DMRS is in a pseudo-colocation relationship with the QCL-Type D downlink reference signal, the UE 100 can receive the PDCCH using the same spatial reception parameters used to receive the downlink reference signal in beamforming.
  • the base station 200 can explicitly set the QCL relationship to the UE 100 through RRC signaling.
  • UE 100 is configured with multiple TCI states for CORESET in order to receive PDCCH.
  • Each TCI state includes parameters for downlink reference signal resources and QCL relationships between downlink reference signals and PDCCH DMRS ports for QCL-TypeA and QCL-TypeD.
  • UE 100 uses only one beam to receive one PDCCH. Therefore, if multiple TCI states are set for CORESET, the base station 200 activates one of the TCI states used for CORESET using an activation command by MAC CE.
  • a UE 100 that performs wireless communication with a base station 200 that manages a cell 250 having N TRPs 201 uses a BFD configuration list (BFD-ConfigurationList) that sets N BFD resource sets 521. ) 520 from the base station 200, and a control unit 120 that individually detects beam failures for each of N BFD resource sets 521 based on the BFD setting list 520.
  • BFD-ConfigurationList BFD configuration list
  • BFD Resource Set BFD Resource Set
  • BeamFailureDetectionRS reference signal resource
  • BFD resource set BFD resource set 521 (here, BFD resource set 521 #0) that does not provide a reference signal resource (BeamFailureDetectionRS)
  • beam failure is detected for the BFD resource set 521#0.
  • UE 100 (control unit 120) is a downlink reference signal ( For example, CSI-RS) is determined as a reference signal resource (BeamFailureDetectionRS) for BFD.
  • CSI-RS downlink reference signal
  • BFD resource set (BFD Resource Set) 521 does not provide the reference signal resource (BeamFailureDetectionRS)
  • BFD can be performed using the downlink reference signal indicated by the active TCI state for the PDCCH. becomes possible.
  • FIG. 16 shows a specific example of such operation. Note that FIG. 16 shows a description example in the 3GPP physical layer technical specifications (TS38.213).
  • the add-modify list (bfd-ResourcesToAddModList) allows the set q 0 of periodic CSI-RS resource configuration indices to be added to each BFD resource set (BFD Resource Set) 521 .
  • the UE 100 uses the BFD resource set identifier (bfd - include in set q 0 a periodic CSI-RS resource configuration index that has the same value as the reference signal index of the downlink reference signal set indicated by the TCI state of each CORESET belonging to the CORESET pool index associated with ResourceSetId). and decide. If a TCI state has two reference signal indices, set q0 includes the reference signal indices with qcl -Type set to 'typeD' for the corresponding TCI state.
  • FIG. 19 shows a description example in the 3GPP RRC layer technical specifications (TS38.331).
  • existing radio link monitoring that is, RLF detection and beam failure detection
  • RLF detection and beam failure detection is performed in units of cells 250, not in units of TRPs 201.
  • beam failure detection is performed on a TRP 201 basis rather than on a cell 250 basis.
  • RLF detection in cell 250 units in existing radio link monitoring can coexist with BFD in TRP 201 units, so RLF detection in cell 250 units can be configured in UE 100 .
  • beam failure detection in cell 250 units in existing radio link monitoring conflicts with beam failure detection in TRP 201 units, so beam failure detection in cell 250 units cannot be set in UE 100. .
  • the base station 200 (control unit 230) that manages the cell 250 having N TRPs 201 performs radio link monitoring setting (RadioLinkMonitoringConfig) for setting radio link monitoring in cell 250 units. and a BFD configuration list (BFD-ConfigurationList) that configures N BFD resource sets (BFD Resource Set).
  • the base station 200 (communication unit 210) transmits the generated RRC message to the UE100.
  • UE 100 (communication unit 110) receives the RRC message.
  • step S302 the UE 100 (control unit 120) performs radio link monitoring for detecting RLF in cell 250 units based on radio link monitoring settings (RadioLinkMonitoringConfig). Also, the UE 100 (control unit 120) performs beam monitoring for individually detecting beam failures for each of the N BFD resource sets based on the BFD configuration list (BFD-ConfigurationList). That is, the UE 100 (control unit 120) performs beam monitoring on a TRP 201 basis.
  • radio link monitoring settings RadioLinkMonitoringConfig
  • BFD-ConfigurationList the BFD configuration list
  • the UE 100 detects a beam failure for one of the BFD resource sets by beam monitoring based on the BFD configuration list (BFD-ConfigurationList), processing to recover from the detected beam failure, for example, BFR MAC Perform CE transmission processing.
  • BFD-ConfigurationList BFD configuration list
  • UE 100 detects RLF for cell 250 by radio link monitoring based on radio link monitoring settings (RadioLinkMonitoringConfig), and performs processing for recovery from the detected RLF, for example, RRC re-establishment processing. .
  • RadioLinkMonitoringConfig radio link monitoring settings
  • the radio link monitoring configuration (RadioLinkMonitoringConfig) 510 included in the BWP configuration (BWP-DownlinkDedicated) 500 is a reference signal resource for radio link monitoring (for RLM) as configuration information.
  • RS radio link monitoring
  • Base station 200 when setting BFD configuration list (BFD-ConfigurationList) 520 in UE 100, RLF (rlf) without setting detection of beam failure (beamfailure) as purpose 512 Configure the detection of
  • the purpose 512 of the reference signal resource (RS for RLM) 511 includes "beamfailure”, "RLF (rlf)", and "both". You have three options.
  • the BFD configuration list (BFD-ConfigurationList) 520 is set in the UE 100, as the purpose 512 of the reference signal resource (RS for RLM) 511, only RLF (rlf) can be set. do. Therefore, when the BFD configuration list (BFD-ConfigurationList) 520 is set, the UE 100 (control unit 120) does not detect the beam failure based on the radio link monitoring configuration (RadioLinkMonitoringConfig) 510, and the cell 250 unit RLF detection is performed. This allows the existing radio link monitoring and beam failure detection in TRP 201 units to coexist appropriately.
  • the UE 100 when the BFD configuration list (BFD-ConfigurationList) 520 is set, beam failure (beamfailure) or as the purpose 512 of the reference signal resource (RS for RLM) 511
  • the purpose 512 of the reference signal resource (RS for RLM) 511 may be read as RLF (rlf).
  • FIG. it is assumed that UE 100 performs wireless communication with cell 250 (specifically, SpCell) having two TRPs 201 #0 and #1. However, one cell 250 may be composed of three or more TRPs 201 . Also, assume that the BFD resource set 521 for each TRP 201 has already been set in the UE 100 .
  • step S401 the UE 100 (control unit 120) detects beam failure for the BFD resource set 521#0 associated with TRP 201#0, and starts (trigger) BFR accompanied by transmission of BFR MAC CE.
  • step S402 the UE 100 (control unit 120) detects beam failure for the BFD resource set 521#1 associated with the TRP 201#1.
  • UE 100 (control unit 120) in response to detecting beam failure for both BFD resource sets 521 # 0 and # 1 (that is, both TRP 201 # 0 and # 1), random access to cell 250 (SpCell) Decide to start the procedure.
  • step S403 the UE 100 (control unit 120) successfully completes BFR for the BFD resource set 521#0 associated with TRP201#0, and becomes ready to transmit and receive data with TRP201#0.
  • step S404 the UE 100 (control unit 120) starts a random access procedure to the cell 250 (SpCell).
  • the UE 100 (control unit 120) cannot transmit/receive data to/from the cell 250 (SpCell) while the random access procedure is being executed.
  • step S405 the UE 100 (control unit 120) communicates (data transmission/reception) with the cell 250 (SpCell) due to the random access procedure despite being in a state where data transmission/reception with the TRP 201#0 is possible. becomes impossible.
  • the UE 100 detects a beam failure for all of the N BFD resource sets 521 associated with the N TRPs 201, the state of recovery from the beam failure Based on this, it decides whether to start the random access procedure for the cell 250 (SpCell). For example, the UE 100 (control unit 120) detects a beam failure for one BFD resource set 521 out of N BFD resource sets 521, detects a beam failure for the other BFD resource set 521, and , initiates a random access procedure to the cell 250 (SpCell) only if none of the BFD resource sets 521 have recovered from the beam failure. As a result, it becomes possible to prevent a state in which communication with the cell 250 (SpCell) becomes impossible due to the random access procedure.
  • step S431 the UE 100 (control unit 120) detects beam failure for the BFD resource set 521#0 associated with TRP 201#0, and starts BFR accompanied by transmission of BFR MAC CE.
  • step S432 the UE 100 (control unit 120) detects beam failure for the BFD resource set 521#1 associated with the TRP 201#1.
  • step S433 the UE 100 (control unit 120) successfully completes BFR for the BFD resource set 521#0 associated with TRP201#0, and becomes ready to transmit and receive data with TRP201#0.
  • step S434 UE 100 (control unit 120) starts a random access procedure for cell 250 (SpCell) in response to successful completion of BFR for BFD resource set 521 #0 associated with TRP 201 #0. decide not to.
  • step S435 the UE 100 (control unit 120) is in a state where communication (data transmission/reception) with the cell 250 (SpCell) is possible, and communicates with the cell 250 (SpCell). Note that the UE 100 (control unit 120) may start BFR with BFR MAC CE transmission for the BFD resource set 521#1 associated with the TRP 201#1.
  • the UE 100 (control unit 120) that has detected a beam failure for the BFD resource set 521 #1 detects a beam failure for the BFD resource set 521 #0, and the BFD resource set 521 #0 has recovered from the beam failure, it decides not to initiate the random access procedure for cell 250 (SpCell). As a result, it becomes possible to prevent a state in which communication with the cell 250 (SpCell) becomes impossible due to the random access procedure. In addition, the UE 100 (control unit 120) determines not to start the random access procedure for the cell 250 (SpCell), and the BFR procedure for recovering from the beam failure for the BFD resource set 521 #1 (that is, the BFR MAC CE transmission process) may be started. This makes it possible to try to restore communication with the TRP 201#1.
  • step S451 the UE 100 (control unit 120) detects beam failure for the BFD resource set 521#0 associated with TRP 201#0, and starts BFR accompanied by transmission of BFR MAC CE.
  • step S452 the UE 100 (control unit 120) detects a beam failure for the BFD resource set 521#1 associated with TRP 201#1, and starts BFR with transmission of BFR MACCE.
  • step S453 the UE 100 (control unit 120) has not completed (succeeded) the BFR for the BFD resource set 521#0 associated with the TRP 201#0.
  • step S454 the UE 100 (control unit 120) has not completed (succeeded) BFR for the BFD resource set 521#1 associated with the TRP 201#1.
  • step S455 the UE 100 (control unit 120) detects beam failure for all of the N BFD resource sets 521, and in response to not recovering from the beam failure for any BFD resource set 521, the cell 250 (SpCell) to initiate a random access procedure.
  • the operation of the MAC entity may be part of the operation of the control unit 120 of the UE100.
  • 23 and 24 show operation examples described in the 3GPP MAC layer technical specifications (TS38.321).
  • the MAC entity performs steps S502 to S521 when one or more BFD resource sets 521 are configured for each serving cell in which BFD is configured (step S501). perform an action.
  • the MAC entity When the MAC entity receives a beam failure instance indicator from the lower layer (that is, the physical layer) for the BFD resource set (BFD Resource Set) 521 identified by the BFD resource set identifier (bfd-ResourceSetId) (step S502) , the operations of steps S503 to S510 are executed.
  • the lower layer that is, the physical layer
  • BFD Resource Set BFD Resource Set
  • bfd-ResourceSetId BFD resource set identifier
  • step S503 the MAC entity starts or restarts the timer (beamFailureDetectionTimerPerRS) set for the BFD resource set (BFD Resource Set) 521 identified by the BFD resource set identifier (bfd-ResourceSetId).
  • timer beamFailureDetectionTimerPerRS
  • step S504 the MAC entity increments the count value (BFI_COUNTER_BFD_RS) set for the BFD resource set (BFD Resource Set) 521 identified by the BFD resource set identifier (bfd-ResourceSetId), that is, adds "1". .
  • the initial value of the count value (BFI_COUNTER_BFD_RS) is "0".
  • step S506 if the serving cell is a SpCell (step S506) and beam failure is detected in another BFD resource set (BFD Resource Set) 521 and has not yet been restored by the beam restoration procedure (step S507), in step S508, initiate a random access procedure on the SpCell for beam recovery.
  • BFD Resource Set BFD Resource Set
  • the MAC entity restores the BFD resource set ( BFD (Resource Set) 521 triggers BFR.
  • the MAC entity sets (resets) the count value (BFI_COUNTER_BFD_RS) to zero in step S513 when the corresponding timer (beamFailureDetectionTimerPerRS) expires (step S511).
  • the MAC entity is any of the timer (beamFailureDetectionTimerPerRS) associated with the BFD resource set (BFD Resource Set) 521, the maximum count value (beamFailureInstanceMaxCountPerRS), and the reference signal resource for BFD (reference signals usedreforbeam) is reset by the upper layer (ie, the RRC layer) (step S512), the count value (BFI_COUNTER_BFD_RS) is set (reset) to zero in step S513.
  • the timer beamFailureDetectionTimerPerRS
  • the maximum count value (beamFailureInstanceMaxCountPerRS)
  • the reference signal resource for BFD reference signal resource for BFD (reference signals usedreforbeam) is reset by the upper layer (ie, the RRC layer) (step S512)
  • the count value (BFI_COUNTER_BFD_RS) is set (reset) to zero in step S513.
  • the MAC entity performs the operations of steps S515 to S517 if the serving cell is a SpCell and the random access procedure for BFR of the SpCell is successfully completed (step S514).
  • step S515 the MAC entity sets (resets) the count value (BFI_COUNTER_BFD_RS) to zero.
  • step S5166 the MAC entity stops the timer (beamFailureDetectionTimerPerRS) if the timer (beamFailureDetectionTimerPerRS) is set.
  • the MAC entity determines that the BFR has been successfully completed.
  • the MAC entity indicates an uplink grant for a new transmission for the HARQ process used for transmission of the BFR MAC MAC whose serving cell is the SCell and which includes the BFR information of the BFD Resource Set 521
  • the operations of steps S520 and S521 are performed.
  • BFR MAC MAC has normal BFR MAC MAC and truncated BFR MAC CE.
  • step S520 the MAC entity sets (resets) the count value (BFI_COUNTER_BFD_RS) to zero.
  • the MAC entity determines that the BFR has been successfully completed and cancels all triggered BFRs for the BFD Resource Set 521.
  • the MAC entity in the BFR procedure, for the SCell or BFD Resource Set (BFD Resource Set) 521 for which candidate beam evaluation is being performed according to the requirements specified in TS38.133, at least If it is determined that one BFR has been triggered and has not been canceled, then the operations of steps S532 through S537 are performed.
  • uplink shared channel (UL-SCH) resources are available for the new transmission and UL-SCH resources can accommodate the BFR MAC CE and its subheaders as a result of Logical Channel Prioritization (LCP) (step S532) , in step S533, the MAC entity instructs the multiplexing and assembly procedure to generate the BFR MAC CE.
  • LCP Logical Channel Prioritization
  • step S535 the MAC entity receives the truncated Instruct the multiplexing and assembly procedure to generate the BFR MAC CE.
  • step S537 the MAC entity evaluates candidate beams according to the requirements specified in TS38.133, triggers BFR, For each SCell or BFD Resource Set 521 that has not been canceled, trigger a scheduling request (SR) for the SCell's BFR.
  • SR scheduling request
  • this PDU contains a BFR MAC CE or a truncated BFR MAC CE containing beam failure information of the SCell or BFD Resource Set 521, the SCell or BFD Resource Set (BFD Cancel all triggered BFRs for Resource Set 521 (step S538).
  • the communication device 100 that performs wireless communication with the base station 200 that manages the cell 250 that has N transmission/reception points 201 sends a message for setting N BFD resource sets 521 to the base station. 200, and a control unit 120 for individually detecting beam failures for each of N BFD resource sets 521.
  • the controller 120 triggers BFR for one BFD resource set in which beam failure is detected.
  • the communication unit 110 transmits a BFR MAC CE including information about the detected beam failure, or an SR requesting resources for transmitting the BFR MAC CE.
  • PDU MAC protocol data unit
  • the control unit 120 cancels all triggered BFRs for that one BFD resource set. This makes it possible to appropriately perform BFR in units of TRP201.
  • the control unit 120 detects a beam failure for each of the N BFD resource sets 521 in response to the beam failure event being notified from the physical layer in the UE 100 a specified number of times within a specified time. To detect. As described above, each of the N BFD resource sets (BFD Resource Set) 521 sets a timer (beamFailureDetectionTimerPerRS) indicating a specified time and a maximum count value (beamFailureInstanceMaxCountPerRS) indicating a specified number of times independently of other BFD resource sets. Contains information to configure.
  • the control unit 120 when a beam failure event is notified from the physical layer for the one BFD resource set (BFD Resource Set) 521, the control unit 120 is associated with the one BFD resource set (BFD resource set) 521.
  • a timer (beamFailureDetectionTimerPerRS) is started or restarted, and a count value (BFI_COUNTER_BFD_RS) associated with the one BFD resource set (BFD Resource Set) 521 is incremented. This makes it possible to appropriately perform BFD in units of TRP201.
  • the control unit 120 is associated with the one BFD resource set (BFD resource set) 521. reset the count value (BFI_COUNTER_BFD_RS). This makes it possible to appropriately perform BFD in units of TRP201.
  • the control unit 120 sets the timer (beamFailureDetectionTimerPerRS) associated with the one BFD resource set (BFD Resource Set) 521, the maximum count value (beamFailureInstanceMaxCountPerRS), and the reference signal resource for BFD (reference based signals failure detection) is reset by the base station 200, the count value (BFI_COUNTER_BFD_RS) associated with the one BFD resource set (BFD Resource Set) 521 is reset. This makes it possible to appropriately perform BFD in units of TRP201.
  • the communication unit 110 updates the HARQ process used for transmitting the BFR MAC CE for the one BFD resource set 521 where the cell 250 is the SCell.
  • Receive PDCCH indicating link grant.
  • the control unit 120 resets the count value (BFI_COUNTER_BFD_RS) associated with the one BFD resource set (BFD Resource Set) 521, considers that the BFR has succeeded, and resets the one BFD Cancel all triggered BFRs for a resource set (BFD Resource Set) 521. This makes it possible to appropriately perform BFD in units of TRP201.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
  • the base station 200 may be an eNB that provides Evolved Universal Terrestrial Radio Access (E-UTRA) user plane and control plane protocol termination towards the UE 100 in LTE.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • RRC radio resource control
  • the radio link monitoring configuration (510) includes information for configuring reference signal resources and uses of the reference signal resources, When the beam failure detection setting (520) is set, the radio link failure detection is set as the usage without setting the beam failure detection.
  • the communication device (100) according to appendix 1 or 2 .
  • a radio resource control (RRC) comprising a radio link monitoring configuration (510) for configuring radio link monitoring and a beam failure detection configuration (520) for configuring N beam failure detection resource sets (521#0, 521#1) ) a control unit (230) that generates a message; a communication unit (210) that transmits the RRC message to the communication device (100);
  • the radio link monitoring configuration (510) includes information for configuring reference signal resources and uses of the reference signal resources, When the beam failure detection setting (520) is set in the communication device (100), the control unit (230) sets radio link failure detection as the application without setting beam failure detection.
  • RRC radio resource control
  • a radio link monitoring configuration 510) for configuring radio link monitoring
  • a beam failure detection configuration 520
  • N beam failure detection resource sets 521#0, 521#1
  • receiving a message from said base station (200) detecting a radio link failure based on said radio link monitoring configuration (510); and individually detecting beam failures for each of the N beam failure detection resource sets (521#0, 521#1) based on the beam failure detection settings (520).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UE(100)は、N個(N≧2)のTRP(201#0、201#1)を有するセル(250)を管理する基地局(200)との無線通信を行う。UE(100)は、無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含むRRCメッセージを基地局から受信する通信部(110)と、無線リンクモニタリング設定(510)に基づいて無線リンク障害を検出し、ビーム障害検出設定リスト(520)に基づいてN個のビーム障害検出リソースセット(521#0、521#1)のそれぞれについてビーム障害を個別に検出する制御部(120)と、を備える。

Description

通信装置、基地局、及び通信方法 関連出願の相互参照
 本出願は、2021年6月28日に出願された特許出願番号2021-106429号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いる通信装置、基地局、及び通信方法に関する。
 近年、移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)(登録商標。以下同じ)において、MIMO(multi-input multi-output)の拡張として、複数送受信ポイント(Transmission/Reception Point:TRP)伝送の導入が検討されている(非特許文献1参照)。このような複数TRP伝送では、分散して設けられる複数のTRPにより1つのセルを構成し、これら複数TRPを同時に用いて通信装置との無線通信を行うことにより、効率的な伝送を実現できる。なお、TRPは、パネル又はアンテナパネルと称されることもある。
 複数TRPによるセル運用時において、従来はセル単位で行われていたビーム障害検出・復旧をTRP単位で行うことが提案されている(非特許文献2及び3参照)。具体的には、ビーム障害を検出するためのTRP固有のカウンタ・タイマを導入し、通信装置において、物理レイヤから媒体アクセス制御(MAC)レイヤに通知されるビーム障害イベント(ビーム障害インスタンス指示子)をカウンタでカウントし、タイマの満了前にカウント値が規定回数以上になると、ビーム障害が検出される。
 複数TRPによるセル運用時においてビーム障害検出・復旧をTRP単位で行うためには、ビーム障害を検出するための参照信号リソースを含むビーム障害検出リソースセットをTRPごとに個別に通信装置に設定する必要があると考えられる。
 しかしながら、既存の無線リンクモニタリング(すなわち、無線リンク障害の検出及びビーム障害の検出)は、セル単位で行われている。よって、このような既存技術とTRP単位でのビーム障害検出とを適切に共存させることが望まれる。
 そこで、本開示は、複数TRPによるセル運用時において、無線リンクモニタリングとTRP単位でのビーム障害検出とを適切に共存させることが可能な通信装置、基地局、及び通信方法を提供することを目的とする。
 第1の態様に係る通信装置は、N個(N≧2)の送受信ポイントを有するセルを管理する基地局との無線通信を行う装置である。前記通信装置は、無線リンクモニタリングを設定する無線リンクモニタリング設定と、N個のビーム障害検出リソースセットを設定するビーム障害検出設定とを含む無線リソース制御(RRC)メッセージを前記基地局から受信する通信部と、前記無線リンクモニタリング設定に基づいて無線リンク障害を検出し、前記ビーム障害検出設定に基づいて前記N個のビーム障害検出リソースセットのそれぞれについてビーム障害を個別に検出する制御部と、を備える。
 第2の態様に係る基地局は、N個(N≧2)の送受信ポイントを有するセルを管理するとともに、通信装置との無線通信を行う装置である。前記基地局は、無線リンクモニタリングを設定する無線リンクモニタリング設定と、N個のビーム障害検出リソースセットを設定するビーム障害検出設定とを含む無線リソース制御(RRC)メッセージを生成する制御部と、前記RRCメッセージを前記通信装置に送信する通信部と、を備える。前記無線リンクモニタリング設定は、参照信号リソースと前記参照信号リソースの用途とを設定する情報を含む。前記制御部は、前記ビーム障害検出設定を前記通信装置に設定する場合、前記用途として、ビーム障害の検出を設定せずに、無線リンク障害の検出を設定する。
 第3の態様に係る通信方法は、N個(N≧2)の送受信ポイントを有するセルを管理する基地局との無線通信を行う通信装置が実行する方法である。前記通信方法は、無線リンクモニタリングを設定する無線リンクモニタリング設定と、N個のビーム障害検出リソースセットを設定するビーム障害検出設定とを含む無線リソース制御(RRC)メッセージを前記基地局から受信するステップと、前記無線リンクモニタリング設定に基づいて無線リンク障害を検出するステップと、前記ビーム障害検出設定に基づいて前記N個のビーム障害検出リソースセットのそれぞれについてビーム障害を個別に検出するステップと、を備える。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態に係る移動通信システムの構成を示す図であり、 図2は、一実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図であり、 図3は、単一TRPによるセル運用時においてセカンダリセル(SCell)でビーム障害が検出された場合の動作例を示す図であり、 図4は、単一TRPによるセル運用時においてスペシャルセル(SpCell)でビーム障害が検出された場合の動作例を示す図であり、 図5は、一実施形態に係る複数TRP(multi-TRP)伝送の概要を示す図であり、 図6は、一実施形態に係るUEの構成を示す図であり、 図7は、一実施形態に係る基地局の構成を示す図であり、 図8は、一実施形態に係るTRP単位でのBFD動作を示す図であり、 図9は、一実施形態に係るRRCメッセージの構成例を示す図であり、 図10は、一実施形態に係るTRP単位でのBFD動作を示す図であり、 図11は、一実施形態に係るBWP設定(BWP-DownlinkDedecated)の構成例を示す図であり、 図12は、一実施形態に係るBFD設定リスト(BFD-ConfigurationList)の構成例を示す図であり、 図13は、一実施形態に係るUE内の動作を示す図であり、 図14は、一実施形態に係るBFD用の参照信号リソースが提供されない場合の動作を説明するための図であり、 図15は、一実施形態に係るBFD用の参照信号リソースが提供されない場合の動作を説明するための図であり、 図16は、一実施形態に係るBFD用の参照信号リソースが提供されない場合の動作を説明するための図であり、 図17は、一実施形態に係る既存の無線リンクモニタリングとの共存を説明するための図であり、 図18は、一実施形態に係るRRCメッセージの構成例を示す図であり、 図19は、一実施形態に係る無線リンクモニタリング設定(RadioLinkMonitoringConfig)の構成例を示す図であり、 図20は、一実施形態に係るSpCellにおけるBFD・BFR動作の比較例を示す図であり、 図21は、一実施形態に係るSpCellにおけるBFD・BFR動作を示す図であり、 図22は、一実施形態に係るSpCellにおけるBFD・BFR動作を示す図であり、 図23は、一実施形態に係るUEにおけるMACエンティティの動作の具体例を示す図であり、 図24は、一実施形態に係るUEにおけるMACエンティティの動作の具体例を示す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システム)
 まず、図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信する通信装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。
 UE100は、ユーザにより利用される装置である。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
 次に、図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 物理チャネルは、時間領域における複数のOFDM(Orthogonal Frequency Division Multiplexing)シンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。
 NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRB(Physical Resource Block)からなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。
 基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(control resource set:CORESET)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックスを有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (ビーム障害検出・復旧の概要)
 次に、図3及び図4を参照して、ビーム障害検出・復旧の概要について説明する。
 NRは、第4世代の無線アクセス技術であるLTE(Long Term Evolution)に比べて、ミリ波帯又はテラヘルツ波帯といった高周波数帯による広帯域伝送が可能である。NRでは、このような高周波数帯の電波における電波減衰を補うために、基地局200とUE100との間で、多数のアンテナを使用した高指向性のビームフォーミングを利用し、高いビーム利得を得ている。NRでは、基地局200とUE100との間のビームペアを確立及び維持するためのビーム制御技術が導入されている。ビーム障害検出・復旧技術は、このようなビーム制御技術の1つである。
 ビーム障害検出(BFD)に関し、基地局200は、ビーム障害を検出するための下りリンクの参照信号リソースをUE100に設定する。このような参照信号リソースは、SSB(SS:Synchronization Signal/PBCH Block)及びCSI-RS(Channel State Information Reference Signal)のいずれかである。SSBは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(Physical Broadcast Channel)、及び復調参照信号(DMRS)を含む。例えば、SSBは、時間領域において連続した4つのOFDMシンボルから構成されてもよい。また、SSBは、周波数領域において連続した240サブキャリア(すなわち、20リソースブロック)から構成されてもよい。PBCHは、マスタ情報ブロック(MIB)を運ぶ物理チャネルである。CSI-RSは、無線チャネルの状態をUE100が測定するために送信される参照信号である。
 なお、UE100は、SSBが下りリンクBWPの帯域内にあれば、SSBを用いてビーム障害を検出できる。UE100は、SSBが下りリンクBWPの帯域内に無ければ、基地局200から設定されたCSI-RSを用いてビーム障害を検出できる。
 UE100において、MACレイヤは、物理レイヤから通知されるビーム障害イベント(ビーム障害インスタンス指示子)をカウンタでカウントし、タイマの満了前にカウント値が規定回数以上になると、ビーム障害を検出(宣言)する。
 図3に、単一TRPによるセル運用時においてセカンダリセル(SCell)でビーム障害が検出された場合の動作例を示す。
 図3において、基地局200が、1つのTRP201により構成されるSCell250Bを管理する一例を示している。基地局200(TRP201)は、ビーム#0乃至ビーム#2の合計3つのビームを形成している。UE100は、SCell250Bにおいて、ビーム#0を用いた通信中にビーム障害を検出する。
 この場合、UE100は、ビーム障害復旧MAC制御要素(BFR MAC CE)の送信を開始することにより、ビーム障害復旧(BFR)をトリガする。ここで、UE100は、SCellに適したビーム(例えば、ビーム#1)を選択し、ビーム障害に関する情報とともに選択ビーム情報をBFR MAC CEにより示す。UE100は、BFR MAC CEの送信に使用されたHARQプロセスの新しい送信のアップリンクグラントを示すPDCCHを受信すると、SCell250Bのビーム障害からの復旧が完了する。
 図4に、単一TRPによるセル運用時においてスペシャルセル(SpCell)でビーム障害が検出された場合の動作例を示す。SpCellは、プライマリセル(PCell)と称されてもよい。
 図4において、基地局200が、1つのTRP201により構成されるSpCell250Aを管理する一例を示している。基地局200(TRP201)は、ビーム#0乃至ビーム#2の合計3つのビームを形成している。UE100は、SpCell250Aにおいて、ビーム#0を用いた通信中にビーム障害を検出する。
 この場合、UE100は、SpCell250Aに対するランダムアクセス手順を開始することにより、BFRをトリガする。ここで、UE100は、BFRを実行するために適切なビーム(例えば、ビーム#1)を選択する。ランダムアクセス手順が完了すると、BFRが完了する。
 (複数TRP伝送の概要)
 次に、図5を参照して、実施形態に係る複数TRP(multi-TRP)伝送の概要について説明する。
 複数TRP伝送では、基地局200は、分散して設けられる複数のTRP201により1つのセル250を構成する。図5において、複数のTRP201として、2つのTRP(TRP201#0及びTRP201#0)を例示している。しかしながら、基地局200は、3つ以上のTRP201により1つのセル250を構成してもよい。以下においては、1つのセル250を構成するTRP201の数が2つである場合について主として説明する。
 複数TRP伝送では、複数のTRP201から異なるデータを送信して空間多重を行い、データレートを上げることが可能である。或いは、複数のTRP201から同じデータを送信してダイバーシティを行い、送信の信頼性及び堅牢性を向上させることも可能である。
 複数TRP伝送には、単一のPDCCHを用いるスキームと複数のPDCCHを用いるスキームがある。単一のPDCCHベースのスキームでは、1つのTRP201がPDCCH(下りリンク制御情報(DCI))を送信し、各TRP201のPDSCH(Physical Uplink Shared Channel)レイヤのセットをスケジューリングする。これに対し、複数のPDCCHを用いるスキームでは、各TRP201が自身のPDSCHを個別にスケジューリングする。以下においては、複数のPDCCHを用いるスキームを主として想定する。
 複数のPDCCHを用いるスキームにおいて、TRP201ごとにCORESETを異ならせることが可能である。具体的には、TRP201とCORESETプールインデックスとが1対1で対応付けられる。基地局200は、UE100にCORESETを設定する際に、当該CORESETが属するCORESETプールインデックスをUE100に通知する。そのため、CORESETプールインデックスは、TRP201を識別するインデックスであるとみなすことができる。
 実施形態において、このような複数TRP201を用いたセル運用時において、従来はセル250単位で行われていたBFD・BFRをTRP201単位で行うことを想定する。具体的には、ビーム障害を検出するためのTRP201固有のカウンタ・タイマを導入し、UE100において、物理レイヤからMACレイヤに通知されるビーム障害インスタンス指示子をカウンタでカウントし、タイマの満了前にカウント値が規定回数以上になると、ビーム障害が検出される。
 このようなTRP201単位でのBFD・BFRを行うためには、ビーム障害を検出するための参照信号リソースを含むビーム障害検出リソースセット(以下、「BFDリソースセット」と呼ぶ)をTRP201ごとに個別にUE100に設定する必要があると考えられる。しかしながら、既存の3GPPの技術仕様においては、TRP201ごとのBFDリソースセットをUE100に設定する仕組みが存在しない。一実施形態では、BFD・BFRをTRP201単位で行うことを可能とする。
 また、BFD用の参照信号リソースをTRP201ごとに個別にUE100に設定することを必須とする場合、BFD・BFRのためのシグナリング量が増加する懸念がある。一実施形態では、BFD用の参照信号リソースが提供されないBFDリソースセット/TRP201についてもBFD・BFRを可能とする仕組みを実現する。
 また、既存の無線リンクモニタリング(すなわち、無線リンク障害(RLF)の検出及びビーム障害の検出)は、TRP201単位ではなく、セル250単位で行われている。一実施形態では、このような既存技術とTRP201単位でのBFDとを適切に共存させることを可能とする。
 また、UE100がすべてのTRP201についてビーム障害を検出した場合であっても、いずれかのTRP201についてビーム障害から復旧しているのであれば、通信(データ送受信)を行うことが可能である。ビーム障害から復旧したか否かの状況を考慮せずに、ビーム障害からの復旧のためのランダムアクセスプロシージャを開始してしまうと、ランダムアクセスプロシージャの実行中はデータ送受信ができないため、通信の中断が生じる。一実施形態では、このような通信の中断を抑制可能とする。
 (通信装置の構成)
 次に、図6を参照して、一実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF(Radio Frequency)回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 一実施形態に係るUE100において、通信部110は、N個(N≧2)のTRP201を有するセル250を管理する基地局200との無線通信を行う。通信部110は、N個のBFDリソースセットを設定する情報であって、セル250の帯域幅の一部である下りリンクBWPと対応付けられたビーム障害検出設定(以下、「BFD設定リスト」と呼ぶ)を含むRRCメッセージを基地局200から受信する。制御部120は、当該下りリンクBWPを用いた無線通信において、N個のBFDリソースセットのそれぞれについてビーム障害を個別に検出する。これにより、複数のTRP201を用いたセル250の運用時において、TRP201ごとのBFDリソースセットをRRCレイヤにおいてUE100に設定することが可能になるため、BFD・BFRをTRP201単位で行うことが可能になる。その結果、一方のTRP201で障害が発生しても、他方のTRP201で通信を継続可能になるため、通信の耐障害性を高めることができる。
 また、一実施形態に係るUE100において、制御部120は、ビーム障害を検出するための参照信号リソースを提供しないBFDリソースセットがある場合、当該参照信号リソースに代えて所定の参照信号リソースを用いて、当該BFDリソースセットについてビーム障害を検出する。例えば、制御部120は、当該BFDリソースセットと対応付けられたCORESETプールインデックスに基づいて、PDCCHのためのアクティブな送信設定指示子(Transmission Configuration Indication:TCI)状態を特定し、アクティブなTCI状態により示される参照信号リソースを所定の参照信号リソースとして用いて、当該BFDリソースセットについてビーム障害を検出する。これにより、複数のTRP201を用いたセル250の運用時において、参照信号リソースが提供されないTRPについてもBFD・BFRを行うことが可能になる。その結果、シグナリング量の削減が可能になる。
 また、一実施形態に係るUE100において、通信部110は、セル250単位での無線リンクモニタリングを設定する無線リンクモニタリング設定と、N個のBFDリソースセットを設定するBFD設定リストとを含むRRCメッセージを基地局200から受信する。制御部120は、無線リンクモニタリング設定に基づいてセル250単位でRLFを検出し、BFD設定リスト520に基づいてN個のBFDリソースセット521#0及び521#1のそれぞれについてビーム障害を個別に検出する。これにより、複数のTRP201を用いたセル250の運用時において、セル250単位での無線リンクモニタリングとTRP201単位でのBFDとを適切に共存させることが可能になる。その結果、セル250単位でのRLF検出・復旧と、TRP201単位でのBFD・BFRとによる2段階の障害検出・復旧を実現できるため、通信の耐障害性を高めることが可能になる。
 また、一実施形態に係るUE100において、制御部120は、N個のBFDリソースセットのすべてについてビーム障害を検出した場合、ビーム障害からの復旧の状況に基づいて、セル250(具体的には、SpCell)に対するランダムアクセスプロシージャを開始するか否かを決定する。例えば、1つのBFDリソースセットについてビーム障害を検出した制御部120は、他のBFDリソースセットについてビーム障害を検出し、且つ、どのBFDリソースセットについてもビーム障害から復旧していない場合に限り、セル250に対するランダムアクセスプロシージャを開始する。これにより、ランダムアクセスプロシージャの開始条件にBFRの状況を反映させることで、可能な限り通信を継続させることができる。
 (基地局の構成)
 次に、図7を参照して、一実施形態に係る基地局200の構成について説明する。基地局200は、N個のTRP201(図7の例では、TRP201#0及びTRP201#1)と、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
 各TRP201は、複数のアンテナを含み、ビームフォーミング可能に構成される。TRP201は、パネル又はアンテナパネルと称されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。各TRP201は、分散して配置され、1つのセル250を構成する。基地局200が複数のセルを管理する場合、基地局200は、セルごとにN個のTRP201を有していてもよい。
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 一実施形態に係る基地局200は、N個のTRP201を有するセル250を管理するとともに、UE100との無線通信を行う。通信部210は、N個のBFDリソースセットを設定するリストであって、セル250の帯域幅の一部である下りリンクBWPと対応付けられたBFD設定リストを含むRRCメッセージをUE100に送信する。BFD設定リストは、当該下りリンクBWPを用いた無線通信において、UE100がN個のBFDリソースセットのそれぞれについてビーム障害を個別に検出するために用いられる。これにより、複数のTRP201を用いたセル250の運用時において、TRP201ごとのBFDリソースセットをRRCレイヤにおいてUE100に設定することが可能になるため、UE100がBFD・BFRをTRP201単位で行うことが可能になる。その結果、UE100は、一方のTRP201で障害が発生しても、他方のTRP201で通信を継続可能になるため、通信の耐障害性を高めることができる。
 また、一実施形態に係る基地局200において、制御部230は、セル250単位での無線リンクモニタリングを設定する無線リンクモニタリング設定と、N個のBFDリソースセットを設定するBFD設定リストとを含むRRCメッセージを生成する。通信部210は、当該RRCメッセージをUE100に送信する。無線リンクモニタリング設定は、参照信号リソースを示す情報と、参照信号リソースの用途を示す情報とを含む。制御部120は、BFD設定リストをUE100に設定する場合、無線リンクモニタリング設定における参照信号リソースの用途として、ビーム障害の検出を設定せずに、RLFの検出を設定する。これにより、複数のTRP201を用いたセル250の運用時において、セル250単位での無線リンクモニタリングとTRP201単位でのBFDとを適切に共存させることが可能になる。その結果、UE100は、セル250単位でのRLF検出・復旧と、TRP201単位でのBFD・BFRとによる2段階の障害検出・復旧を実現できるため、通信の耐障害性を高めることが可能になる。
 (TRP単位でのビーム障害検出動作)
 次に、図8乃至図10を参照して、一実施形態に係るTRP201単位でのBFD動作について説明する。
 図8に示すように、ステップS101において、N個のTRP201を有するセル250を管理する基地局200(通信部210)は、N個のBFDリソースセットを設定するリストであって、セル250の帯域幅の一部である下りリンクBWPと対応付けられたBFD設定リストを含むRRCメッセージをUE100に送信する。UE100(通信部110)は、RRCメッセージを受信する。なお、RRCメッセージは、UE固有のRRCメッセージであって、例えばRRC Reconfigurationメッセージであってもよい。
 このように、下りリンクBWPとBFD設定リストとを対応付けることにより、下りリンクBWPごとにBFD設定リストを個別に設定できる。そのため、下りリンクBWPに求められる要件に応じて最適なBFD設定リストを設定可能になる。
 ステップS102において、UE100(制御部120)は、当該下りリンクBWPを用いた無線通信において、基地局200により設定されたBFD設定リストに基づいて、N個のBFDリソースセットのそれぞれについてビーム障害を個別に検出する(ビームモニタリング)。UE100(制御部120)は、いずれかのBFDリソースセットについてビーム障害を検出した場合、検出したビーム障害から復旧するためのBFRプロシージャを開始(トリガ)する。
 図9に示すように、一実施形態に係るRRCメッセージは、下りリンクBWP(具体的には、UE固有の下りリンクBWP)をUE100に設定するBWP設定(BWP-DownlinkDedecated)500を含む。BWP設定(BWP-DownlinkDedecated)500は、下りリンクBWPのUE固有のパラメータを設定する情報要素である。BWP設定(BWP-DownlinkDedecated)500には、セル250単位での無線リンクモニタリングを設定する無線リンクモニタリング設定(RadioLinkMonitoringConfig)510と、N個のBFDリソースセットを設定するBFD設定リスト(BFD-ConfigurationList)520とを含めることができる。BWP設定(BWP-DownlinkDedecated)500にBFD設定リスト(BFD-ConfigurationList)520を含めることにより、UE100に設定する下りリンクBWPごとにBFD設定リスト(BFD-ConfigurationList)520を設定可能になる。UE100(制御部120)は、BWP設定(BWP-DownlinkDedecated)500で設定された下りリンクBWPを無線通信に用いる場合、すなわち、当該下りリンクBWPがアクティブなBWPである場合、当該下りリンクBWPと対応付けられたBFD設定リスト(BFD-ConfigurationList)520を用いてビームモニタリングを行う。
 ここで、BFD設定リスト(BFD-ConfigurationList)520は、無線リンクモニタリング設定(RadioLinkMonitoringConfig)510と異なる情報要素である。具体的には、無線リンクモニタリング設定(RadioLinkMonitoringConfig)510は、既存の技術仕様で規定された情報要素であって、BFD設定リスト(BFD-ConfigurationList)520は、既存の技術仕様で規定されていない新たな情報要素である。このように、TRP201単位でのBFDのための新たな情報要素を導入することにより、TRP201単位でのBFDが可能になるとともに、既存の無線リンクモニタリングとの共存が可能になる。
 BFD設定リスト(BFD-ConfigurationList)520は、N個のBFDリソースセット(BFD Resource Set)521を含む。例えば、N=2である場合、BFD設定リスト(BFD-ConfigurationList)520は、2個のBFDリソースセット(BFD Resource Set)521#0及び521#1を含む。各BFDリソースセット(BFD Resource Set)521は、下りリンクにおける参照信号リソースを含む。参照信号リソースは、SSB及びCSI-RSのいずれかである。ここで、BFDリソースセット(BFD Resource Set)521中の参照信号リソースは、ビーム障害(beamfailure)の検出を用途とした参照信号リソースとして設定される。言い換えると、BFDリソースセット(BFD Resource Set)521中の参照信号リソースは、RLFの検出を用途とした参照信号リソースとして設定されない。詳細については後述するが、一実施形態では、無線リンクモニタリング設定(RadioLinkMonitoringConfig)510を用いてRLFの検出をセル250単位で行い、BFD設定リスト(BFD-ConfigurationList)520を用いてビーム障害の検出をTRP201単位で行うこととしている。
 一実施形態において、N個のBFDリソースセット(BFD Resource Set)521は、N個のTRP201と1対1で対応付けられる。例えば、BFDリソースセット(BFD Resource Set)521#0はTRP201#0と対応付けられ、BFDリソースセット(BFD Resource Set)521#1はTRP201#1と対応付けられる。これにより、TRP201単位でのBFDが可能になる。
 また、一実施形態において、各BFDリソースセット(BFD Resource Set)521は、1つ又は複数の参照信号リソースを含み、当該1つ又は複数の参照信号リソースのそれぞれは、ビームと1対1で対応付けられてもよい。例えば、図10に示すように、TRP201#0が3つのビーム#0乃至#2を形成するとともに、TRP201#1が3つのビーム#0乃至#2を形成するものとする。このような場合、基地局200(制御部230)は、RRCメッセージにより、TRP201#0と対応付けられたBFDリソースセット(BFD Resource Set)521#0と、TRP201#1と対応付けられたBFDリソースセット(BFD Resource Set)521#1とをUE100に設定する。そして、基地局200(制御部230)は、BFDリソースセット(BFD Resource Set)521#0において、3つのビーム#0乃至#2と1対1で対応付けられた3つの参照信号リソースを設定する。また、基地局200(制御部230)は、BFDリソースセット(BFD Resource Set)521#1において、3つのビーム#0乃至#2と1対1で対応付けられた3つの参照信号リソースを設定する。これにより、UE100(制御部120)は、TRP201ごと、且つ、ビームごとに、ビーム障害を検出することが可能になる。
 次に、図11及び図12を参照して、一実施形態に係るRRCメッセージの具体例について説明する。図11及び図12は、3GPPのRRCレイヤの技術仕様書(TS38.331)における記載例を示している。
 図11に示すように、UE固有の下りリンクBWPをUE100に設定するBWP設定(BWP-DownlinkDedecated)500は、セル250単位での無線リンクモニタリングを設定する無線リンクモニタリング設定(RadioLinkMonitoringConfig)510と、N個のBFDリソースセットを設定するBFD設定リスト(BFD-ConfigurationList-r17)520とを含めることができる。ここで「-r17」とは、3GPP規格のリリース17で導入される情報要素であることを意味するが、リリース18以降で導入されてもよい。以下においては、「-r17」の表記を適宜省略する。
 なお、UE100に設定されたBFD設定リスト(BFD-ConfigurationList)520は、基地局200からの解放指示により解放(Release)できる。例えば、基地局200は、複数TRPによるセル運用から単一TRPによるセル運用に変更する場合、UE100に設定されたBFD設定リスト(BFD-ConfigurationList)520を解放する解放指示をUE100に送信する。UE100は、解放指示の受信に応じて、設定されたBFD設定リスト(BFD-ConfigurationList)520を解放する。
 図12に示すように、BFD設定リスト(BFD-ConfigurationList)520は、最大でmaxNrOfBFD-ResourceSets個までのBFDリソースセット(BFD Resource Set)521を含む。
 各BFDリソースセット(BFD Resource Set)521には、当該BFDリソースセットを識別するBFDリソースセット識別子(bfd-ResourceSetId)と、1つ又は複数の参照信号リソースを追加・変更する追加・変更リスト(bfd-ResourcesToAddModList)と、1つ又は複数の参照信号リソースを解放する解放リスト(bfd-ResourcesToReleaseList)と、物理レイヤからのビーム障害インスタンス指示子の最大カウント値(beamFailureInstanceMaxCountPerRS)と、ビーム障害を検出するためのタイマ値(beamFailureDetectionTimerPerRS)と、を含めることができる。
 BFDリソースセット識別子(bfd-ResourceSetId)は、BFDリソースセットを識別する識別子である。BFDリソースセット識別子(bfd-ResourceSetId)は、対応するTRP201を識別する識別子であるとみなすことができる。BFDリソースセット識別子(bfd-ResourceSetId)は、CORESETプールインデックス(coresetPoolIndex)と1対1で対応付けられてもよい。例えば、BFDリソースセット識別子(bfd-ResourceSetId)の「0」がCORESETプールインデックス(coresetPoolIndex)の「0」と対応付けられ、BFDリソースセット識別子(bfd-ResourceSetId)の「1」がCORESETプールインデックス(coresetPoolIndex)の「1」と対応付けられる。
 追加・変更リスト(bfd-ResourcesToAddModList)は、追加・変更する1つ又は複数の参照信号リソース(BeamFailureDetectionRS)のリストである。具体的には、追加・変更リスト(bfd-ResourcesToAddModList)は、ビーム障害を検出するための参照信号のリストであって、ネットワーク(基地局200)が設定できる参照信号の制限は技術仕様(例えば、TS38.213の表5-1)で指定される。ネットワーク(基地局200)は、リソースセットごとに最大所定数の参照信号リソースを設定する。詳細については後述するが、各BFDリソースセット(BFD Resource Set)521について、BFDの用途で参照信号が提供されていない場合、UE100は、対応するCORESETプールインデックス(coresetPoolIndex)と対応付けられたPDCCHのためのアクティブなTCI状態に基づいてビームモニタリングを実行する。
 設定される参照信号リソース(BeamFailureDetectionRS)は、当該参照信号リソースを識別する参照信号リソース識別子(beamFailureDetectionRS-Id)と、UE100がBFDに用いるべき参照信号である参照信号リソース(detectionResource)とを含む。参照信号リソース(detectionResource)には、SSBインデックス(ssb-Index)又はCSI-RSインデックス(csi-RS-Index)が設定される。
 解放リスト(bfd-ResourcesToReleaseList)は、解放する参照信号リソースの参照信号リソース識別子(beamFailureDetectionRS-Id)のリストである。
 最大カウント値(beamFailureInstanceMaxCountPerRS)は、UE100がBFRプロシージャをトリガするビーム障害イベントの数(すなわち、物理レイヤからのビーム障害インスタンス指示子の数)を示す。例えば、値「n1」は1つのビーム障害インスタンス指示子に対応し、値「n2」は2つのビーム障害インスタンスに対応する。タイマ値(beamFailureDetectionTimerPerRS)は、BFD用のタイマである。
 上述のように、UE100(制御部120)のMACレイヤは、物理レイヤからビーム障害イベント(ビーム障害インスタンス指示子)が規定時間内に規定回数だけ通知された場合、ビーム障害を検出する。各BFDリソースセット(BFD Resource Set)521は、当該規定時間及び当該規定回数を他のBFDリソースセットと独立に設定する情報を含む。当該規定回数を示す最大カウント値(beamFailureInstanceMaxCountPerRS)及び当該規定時間を示すタイマ(beamFailureDetectionTimerPerRS)は、BFDリソースセット(BFD Resource Set)521ごと、すなわち、TRP201ごとに設定される。これにより、ビーム障害を検出する条件をTRP201ごとに最適化可能になる。
 図13に示すように、UE100において、物理(PHY)レイヤは、設定されたBFDリソースセットごとに無線リンク品質を評価する。無線リンク品質は、PDCCHのブロック誤り率(BLER)であってもよい。例えば、物理レイヤは、BFDリソースセット内のすべての参照信号リソースの無線リンク品質が閾値よりも悪い場合、当該BFDリソースセットのBFDリソースセット識別子(bfd-ResourceSetId)と共にビーム障害インスタンス指示子をMACレイヤに周期的に出力する。この周期は、例えば、BFDリソースセット内の最小の参照信号の周期及び2msのうち、いずれか大きい方に設定される。なお、ビーム障害インスタンス指示子としてBFDリソースセット識別子(bfd-ResourceSetId)を用いてもよい。
 各BFDリソースセット(BFD Resource Set)521は、物理レイヤで測定された無線リンク品質と比較される閾値を他のBFDリソースセットと独立に設定する情報を含んでもよい。物理レイヤは、いずれかのBFDリソースセット(BFD Resource Set)521における無線リンク品質が、当該BFDリソースセット(BFD Resource Set)521と対応付けられた閾値よりも悪いことに応じて、当該BFDリソースセット(BFD Resource Set)521を示すビーム障害イベント(ビーム障害インスタンス指示子)をMACレイヤに通知する。これにより、無線リンク品質と比較される閾値を、BFDリソースセット(BFD Resource Set)521ごと、すなわち、TRP201ごとに個別に設定できるため、ビーム障害イベントを検出する条件をTRP201ごとに最適化可能になる。
 MACレイヤは、設定されたBFDリソースセットごとにタイマ及びカウンタを管理し、BFDリソースセットごとにBFD・BFRを行う。図13において、BFDリソースセットが2つであり、MACレイヤが、BFDリソースセット#0用のタイマ#0及びカウンタ#0と、BFDリソースセット#1用のタイマ#1及びカウンタ#1とを管理する一例を示している。
 MACレイヤは、物理レイヤからBFDリソースセット識別子(bfd-ResourceSetId)と共にビーム障害インスタンス指示子を受け取ると、当該BFDリソースセット識別子(bfd-ResourceSetId)に対応するタイマを始動するとともに、当該BFDリソースセット識別子(bfd-ResourceSetId)に対応するカウンタをインクリメント(すなわち、1を加算)する。MACレイヤは、タイマの満了前にカウンタのカウント値が規定回数以上になると、当該カウンタに対応するBFDリソースセットについてビーム障害を検出する。このような動作の詳細については後述する。
 (ビーム障害検出用の参照信号リソースが提供されない場合の動作)
 次に、図14乃至図16を参照して、一実施形態に係るBFD用の参照信号リソースが提供されない場合の動作について説明する。
 BFD用の参照信号リソース(BeamFailureDetectionRS)をTRP201ごとに個別にUE100に設定することを必須とする場合、BFDのためのシグナリング量が増加する懸念がある。一実施形態では、BFD用の参照信号リソース(BeamFailureDetectionRS)が提供されないBFDリソースセット(BFD Resource Set)若しくはTRP201についてもBFD・BFRを可能とする仕組みを実現する。
 ここで、NRにおけるビームフォーミングに関して説明する。PDCCHのマルチビーム動作を行うために、NRは、CORESETごとにビームフォーミングのための上位レイヤ設定であるTCI状態設定をサポートする。UE100がCORESETと対応付けられたPDCCHサーチスペースを監視する場合、UE100は、CORESETに対して設定されたTCI状態設定に基づいてCORESETでPDCCHを受信する。PDCCH受信のためのビーム情報は、下りリンク参照信号(特に、ビームと対応付けられたCSI-RS)とPDCCHの復調用参照信号(DMRS)との間の疑似コロケーション(Quasi-Co-Location:QCL)関係によってUE100に暗黙的に認識される。PDCCHのDMRSは、QCL-TypeA及び/又はQCL-TypeDにより下りリンク参照信号と疑似コロケーション関係にある。QCL-TypeAは、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドなど、UE100側で観測されたチャネル統計プロパティに対応する。QCL-TypeDは、UE100側の受信ビーム情報に対応する。QCL-TypeDの場合、下りリンク参照信号とPDCCHのDMRSとで空間パラメータが同じであると仮定できてもよい。PDCCHのDMRSがQCL-TypeDの下りリンク参照信号と疑似コロケーション関係にある場合、UE100がビームフォーミングで下りリンク参照信号を受信するために用いるのと同じ空間受信パラメータを使用してPDCCHを受信できる。
 図14に示すように、基地局200は、RRCシグナリングによりQCL関係を明示的にUE100に設定できる。UE100は、PDCCHを受信するために、CORESETについて複数のTCI状態が設定される。各TCI状態には、下りリンク参照信号リソースに関するパラメータと、QCL-TypeA及びQCL-TypeDに関する下りリンク参照信号及びPDCCHのDMRSポート間のQCL関係とが含まれる。UE100は、1つのPDCCHを受信するために1つのビームのみを用いる。したがって、複数のTCI状態がCORESETに設定されている場合、基地局200は、MAC CEによるアクティブ化コマンドを用いて、CORESETに使用されるTCI状態の1つをアクティブ化する。
 一実施形態において、N個のTRP201を有するセル250を管理する基地局200との無線通信を行うUE100は、N個のBFDリソースセット(BFD Resource Set)521を設定するBFD設定リスト(BFD-ConfigurationList)520を基地局200から受信する通信部110と、BFD設定リスト520に基づいて、N個のBFDリソースセット(BFD Resource Set)521のそれぞれについてビーム障害を個別に検出する制御部120と、を備える。制御部120は、BFDのための参照信号リソース(BeamFailureDetectionRS)を提供しないBFDリソースセット(BFD Resource Set)521がある場合、当該参照信号リソース(BeamFailureDetectionRS)に代えて所定の参照信号リソースを用いて、当該BFDリソースセット(BFD Resource Set)521についてビーム障害を検出する。
 図15に示すように、UE100(制御部120)は、参照信号リソース(BeamFailureDetectionRS)を提供しないBFDリソースセット(BFD Resource Set)521(ここでは、BFDリソースセット521#0とする)がある場合、当該BFDリソースセット(BFD Resource Set)521#0と対応付けられたCORESETプールインデックス#0に基づいて、PDCCHのためのアクティブなTCI状態を特定し、アクティブなTCI状態により示される参照信号リソースを所定の参照信号リソースとして用いて、当該BFDリソースセット(BFD Resource Set)521#0についてビーム障害を検出する。例えば、UE100(制御部120)は、CORESETプールインデックス#0に属するCORESETに対して設定されたTCI状態(すなわち、PDCCHのためのTCI状態)のうちアクティブなTCI状態により示される下りリンク参照信号(例えば、CSI-RS)をBFD用の参照信号リソース(BeamFailureDetectionRS)として決定する。これにより、BFDリソースセット(BFD Resource Set)521が参照信号リソース(BeamFailureDetectionRS)を提供しない場合であっても、PDCCHのためのアクティブなTCI状態により示される下りリンク参照信号を用いてBFDを行うことが可能になる。
 図16に、このような動作の具体例を示す。なお、図16は、3GPPの物理レイヤの技術仕様書(TS38.213)における記載例を示している。
 図16に示すように、UE100がサービングセルのBWPに対してBFD設定リスト(bfd-ConfigurationList)520で設定されているとする。このような場合、追加・変更リスト(bfd-ResourcesToAddModList)により、周期的なCSI-RSリソース設定インデックスのセットqが、BFDリソースセット識別子(bfd-ResourceSetId)によって識別される各BFDリソースセット(BFD Resource Set)521に提供される。
 UE100がBFDリソースセット(BFD Resource Set)521について、追加・変更リスト(bfd-ResourcesToAddModList)によってセットqが提供されていない場合、UE100は、PDCCHを監視するために用いる、BFDリソースセット識別子(bfd-ResourceSetId)と対応付けられたCORESETプールインデックスに属する各CORESETのTCI状態により示される下りリンク参照信号セットの参照信号インデックスと同じ値を持つ周期的なCSI-RSリソース設定インデックスをセットqに含めると決定する。TCI状態に2つの参照信号インデックスがある場合、対応するTCI状態のqcl-Typeが「typeD」にセットされた参照信号インデックスをセットqに含める。
 (既存の無線リンクモニタリングとの共存)
 次に、図17乃至図19を参照して、既存の無線リンクモニタリングとの共存について説明する。なお、図19は、3GPPのRRCレイヤの技術仕様書(TS38.331)における記載例を示している。
 上述のように、既存の無線リンクモニタリング(すなわち、RLFの検出及びビーム障害の検出)は、TRP201単位ではなく、セル250単位で行われている。
 一実施形態では、ビーム障害の検出については、セル250単位ではなく、TRP201単位で行う。既存の無線リンクモニタリングにおけるセル250単位でのRLFの検出については、TRP201単位でのBFDと併存可能であるため、セル250単位でのRLFの検出はUE100に設定可能とする。これに対し、既存の無線リンクモニタリングにおけるセル250単位でのビーム障害の検出は、TRP201単位でのビーム障害の検出と競合するため、セル250単位でのビーム障害の検出はUE100に設定不可とする。
 図17に示すように、ステップS301において、N個のTRP201を有するセル250を管理する基地局200(制御部230)は、セル250単位での無線リンクモニタリングを設定する無線リンクモニタリング設定(RadioLinkMonitoringConfig)と、N個のBFDリソースセット(BFD Resource Set)を設定するBFD設定リスト(BFD-ConfigurationList)とを含むRRCメッセージを生成する。基地局200(通信部210)は、生成されたRRCメッセージをUE100に送信する。UE100(通信部110)は、RRCメッセージを受信する。
 ステップS302において、UE100(制御部120)は、無線リンクモニタリング設定(RadioLinkMonitoringConfig)に基づいて、セル250単位でRLFを検出するための無線リンクモニタリングを行う。また、UE100(制御部120)は、BFD設定リスト(BFD-ConfigurationList)に基づいて、N個のBFDリソースセットのそれぞれについてビーム障害を個別に検出するためのビームモニタリングを行う。すなわち、UE100(制御部120)は、TRP201単位でのビームモニタリングを行う。
 UE100(制御部120)は、BFD設定リスト(BFD-ConfigurationList)に基づくビームモニタリングにより、いずれかのBFDリソースセットについてビーム障害を検出すると、検出したビーム障害から復旧するための処理、例えば、BFR MAC CEの送信処理を行う。また、UE100(制御部120)は、無線リンクモニタリング設定(RadioLinkMonitoringConfig)に基づく無線リンクモニタリングにより、セル250についてRLFを検出すると、検出したRLFから復旧するための処理、例えば、RRC再確立処理を行う。このような2段階での障害検出・復旧により、通信の耐障害性を高めることが可能になる。
 図18及び図19に示すように、RRCメッセージにおいて、BWP設定(BWP-DownlinkDedecated)500に含まれる無線リンクモニタリング設定(RadioLinkMonitoringConfig)510は、設定情報として、無線リンクモニタリング用の参照信号リソース(RLM用RS)511と、当該参照信号リソース(RLM用RS)511の用途(purpose)512とを含む。基地局200(制御部230)は、BFD設定リスト(BFD-ConfigurationList)520をUE100に設定する場合、用途(purpose)512として、ビーム障害(beamfailure)の検出を設定せずに、RLF(rlf)の検出を設定する。
 具体的には、技術仕様上、参照信号リソース(RLM用RS)511の用途(purpose)512としては、「ビーム障害(beamfailure)」、「RLF(rlf)」、及び「両方(both)」の3つの選択肢がある。しかしながら、BFD設定リスト(BFD-ConfigurationList)520をUE100に設定する場合、参照信号リソース(RLM用RS)511の用途(purpose)512としてはRLF(rlf)のみが設定可能であるという制限事項を規定する。そのため、UE100(制御部120)は、BFD設定リスト(BFD-ConfigurationList)520が設定される場合、無線リンクモニタリング設定(RadioLinkMonitoringConfig)510に基づいてビーム障害の検出を行わずに、セル250単位でのRLFの検出を行う。これにより、既存の無線リンクモニタリングとTRP201単位でのビーム障害の検出とを適切に共存させることが可能になる。
 なお、BFD設定リスト(BFD-ConfigurationList)520が設定される場合であっても、予期せぬエラーにより、参照信号リソース(RLM用RS)511の用途(purpose)512として、ビーム障害(beamfailure)又は両方(both)を基地局200が設定することも想定され得る。そのため、UE100(制御部120)は、BFD設定リスト(BFD-ConfigurationList)520が設定された場合であって、参照信号リソース(RLM用RS)511の用途(purpose)512としてビーム障害(beamfailure)又は両方(both)がセットされている場合、参照信号リソース(RLM用RS)511の用途(purpose)512がRLF(rlf)であると読み替えてもよい。
 (SpCellにおけるビーム障害検出・復旧動作)
 次に、図20乃至図22を参照して、一実施形態に係るSpCellにおけるBFD・BFR動作について説明する。ここでは、UE100が、2つのTRP201#0及び#1を有するセル250(具体的には、SpCell)との無線通信を行うものとする。但し、1つのセル250が3つ以上のTRP201により構成されてもよい。また、TRP201ごとのBFDリソースセット521が既にUE100に設定されているものとする。
 一実施形態に係るSpCellにおけるBFD・BFR動作の説明に先立ち、図20を参照して比較例について説明する。
 ステップS401において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてビーム障害を検出し、BFR MAC CEの送信を伴うBFRを開始(トリガ)する。
 ステップS402において、UE100(制御部120)は、TRP201#1と対応付けられたBFDリソースセット521#1についてビーム障害を検出する。UE100(制御部120)は、両方のBFDリソースセット521#0及び#1(すなわち、両方のTRP201#0及び#1)についてビーム障害を検出したことに応じて、セル250(SpCell)に対するランダムアクセスプロシージャを開始することを決定する。
 ステップS403において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてBFRが成功裏に完了し、TRP201#0とのデータ送受信が可能な状態になる。
 ステップS404において、UE100(制御部120)は、セル250(SpCell)に対するランダムアクセスプロシージャを開始する。UE100(制御部120)は、ランダムアクセスプロシージャの実行中は、セル250(SpCell)とのデータ送受信が不能である。
 ステップS405において、UE100(制御部120)は、TRP201#0とのデータ送受信が可能な状態であるにもかかわらず、ランダムアクセスプロシージャに起因して、セル250(SpCell)との通信(データ送受信)が不能な状態になってしまう。
 このように、UE100がTRP201#0及び#1についてビーム障害を検出した場合であっても、TRP201#0についてビーム障害から復旧しているのであれば、セル250(SpCell)との通信が可能である。しかしながら、ビーム障害から復旧したか否かの状況を考慮せずにランダムアクセスプロシージャを開始(ステップS404)してしまうと、ランダムアクセスプロシージャの実行中はデータ送受信ができないため、通信の中断が生じる。
 そこで、一実施形態に係るUE100(制御部120)は、N個のTRP201と対応付けられたN個のBFDリソースセット521のすべてについてビーム障害を検出した場合、当該ビーム障害からの復旧の状況に基づいて、セル250(SpCell)に対するランダムアクセスプロシージャを開始するか否かを決定する。例えば、UE100(制御部120)は、N個のBFDリソースセット521のうち1つのBFDリソースセット521についてビーム障害を検出した場合であって、他のBFDリソースセット521についてビーム障害を検出し、且つ、どのBFDリソースセット521についてもビーム障害から復旧していない場合に限り、セル250(SpCell)に対するランダムアクセスプロシージャを開始する。これにより、ランダムアクセスプロシージャに起因してセル250(SpCell)との通信が不能な状態になることを抑制可能になる。
 図21を参照して、一実施形態に係るSpCellにおけるBFD・BFR動作例1について説明する。
 ステップS431において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてビーム障害を検出し、BFR MAC CEの送信を伴うBFRを開始する。
 ステップS432において、UE100(制御部120)は、TRP201#1と対応付けられたBFDリソースセット521#1についてビーム障害を検出する。
 ステップS433において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてBFRが成功裏に完了し、TRP201#0とのデータ送受信が可能な状態になる。
 ステップS434において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてBFRが成功裏に完了したことに応じて、セル250(SpCell)に対するランダムアクセスプロシージャを開始しないことを決定する。
 ステップS435において、UE100(制御部120)は、セル250(SpCell)との通信(データ送受信)が可能な状態であり、セル250(SpCell)との通信を行う。なお、UE100(制御部120)は、TRP201#1と対応付けられたBFDリソースセット521#1について、BFR MAC CEの送信を伴うBFRを開始してもよい。
 このように、一実施形態では、BFDリソースセット521#1についてビーム障害を検出したUE100(制御部120)は、BFDリソースセット521#0についてビーム障害を検出し、且つ、BFDリソースセット521#0についてビーム障害から復旧している場合、セル250(SpCell)に対するランダムアクセスプロシージャを開始しないと決定する。これにより、ランダムアクセスプロシージャに起因してセル250(SpCell)との通信が不能な状態になることを抑制可能になる。また、UE100(制御部120)は、セル250(SpCell)に対するランダムアクセスプロシージャを開始しないと決定するとともに、BFDリソースセット521#1についてビーム障害から復旧するためのBFRプロシージャ(すなわち、BFR MAC CEの送信処理)を開始してもよい。これにより、TRP201#1との通信の復旧を試みることができる。
 図22を参照して、一実施形態に係るSpCellにおけるBFD・BFR動作例2について説明する。
 ステップS451において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてビーム障害を検出し、BFR MAC CEの送信を伴うBFRを開始する。
 ステップS452において、UE100(制御部120)は、TRP201#1と対応付けられたBFDリソースセット521#1についてビーム障害を検出し、BFR MAC CEの送信を伴うBFRを開始する。
 ステップS453において、UE100(制御部120)は、TRP201#0と対応付けられたBFDリソースセット521#0についてBFRが未完了(未成功)である。
 ステップS454において、UE100(制御部120)は、TRP201#1と対応付けられたBFDリソースセット521#1についてBFRが未完了(未成功)である。
 ステップS455において、UE100(制御部120)は、N個のBFDリソースセット521のすべてについてビーム障害を検出し、且つ、どのBFDリソースセット521についてもビーム障害から復旧していないことに応じて、セル250(SpCell)に対するランダムアクセスプロシージャを開始する。
 (通信装置におけるMACエンティティの動作の具体例)
 次に、図23及び図24を参照して、一実施形態に係るUE100におけるMACエンティティ(すなわち、MACレイヤのエンティティ)の動作の具体例について説明する。MACエンティティの動作は、UE100の制御部120の動作の一部であってもよい。なお、図23及び図24は、3GPPのMACレイヤの技術仕様書(TS38.321)に記載された場合の動作例を示している。
 図23に示すように、MACエンティティは、BFDが設定された各サービングセルについて、1つ又は複数のBFDリソースセット(BFD Resource Set)521が設定されている場合(ステップS501)、ステップS502乃至S521の動作を実行する。
 MACエンティティは、BFDリソースセット識別子(bfd-ResourceSetId)により識別されるBFDリソースセット(BFD Resource Set)521について、ビーム障害インスタンス指示子を下位レイヤ(すなわち、物理レイヤ)から受信した場合(ステップS502)、ステップS503乃至S510の動作を実行する。
 ステップS503において、MACエンティティは、BFDリソースセット識別子(bfd-ResourceSetId)により識別されるBFDリソースセット(BFD Resource Set)521について設定されたタイマ(beamFailureDetectionTimerPerRS)を始動又は再始動する。
 ステップS504において、MACエンティティは、BFDリソースセット識別子(bfd-ResourceSetId)により識別されるBFDリソースセット(BFD Resource Set)521について設定されたカウント値(BFI_COUNTER_BFD_RS)をインクリメント、すなわち、「1」を加算する。なお、カウント値(BFI_COUNTER_BFD_RS)の初期値は「0」である。
 MACエンティティは、当該カウント値(BFI_COUNTER_BFD_RS)が、BFDリソースセット識別子(bfd-ResourceSetId)により識別されるBFDリソースセット(BFD Resource Set)521について設定された最大カウント値(beamFailureInstanceMaxCountPerRS)以上になった場合、ステップS506乃至S510の動作を実行する。
 ここで、MACエンティティは、当該サービングセルがSpCellであり(ステップS506)、且つ、他のBFDリソースセット(BFD Resource Set)521でビーム障害が検出され、ビーム復旧手順によって未だ復旧されていない場合(ステップS507)、ステップS508において、ビーム復旧のためにSpCell上でランダムアクセスプロシージャを開始する。
 他方、当該サービングセルがSpCellでない場合、又は、他のBFDリソースセット(BFD Resource Set)521がビーム復旧手順によって復旧されている場合(ステップS509)、MACエンティティは、ステップS510において、当該BFDリソースセット(BFD Resource Set)521についてBFRをトリガする。
 MACエンティティは、各BFDリソースセット(BFD Resource Set)521について、対応するタイマ(beamFailureDetectionTimerPerRS)が満了した場合(ステップS511)、ステップS513において、カウント値(BFI_COUNTER_BFD_RS)をゼロにセット(リセット)する。
 また、MACエンティティは、BFDリソースセット(BFD Resource Set)521と対応付けられたタイマ(beamFailureDetectionTimerPerRS)、最大カウント値(beamFailureInstanceMaxCountPerRS)、及びBFD用の参照信号リソース(reference signals used for beam failure detection)のいずれかが上位レイヤ(すなわち、RRCレイヤ)により再設定された場合(ステップS512)、ステップS513において、カウント値(BFI_COUNTER_BFD_RS)をゼロにセット(リセット)する。
 MACエンティティは、当該サービングセルがSpCellであり、且つ、SpCellのBFRのためのランダムアクセスプロシージャが成功裏に完了した場合(ステップS514)、ステップS515乃至S517の動作を実行する。
 ステップS515において、MACエンティティは、カウント値(BFI_COUNTER_BFD_RS)をゼロにセット(リセット)する。
 ステップS516において、MACエンティティは、タイマ(beamFailureDetectionTimerPerRS)が設定されている場合、タイマ(beamFailureDetectionTimerPerRS)を停止する。
 ステップS517において、MACエンティティは、BFRが成功裏に完了したと判断する。
 他方、MACエンティティは、当該サービングセルがSCellであって、BFDリソースセット(BFD Resource Set)521のBFR情報を含むBFR MAC MACの送信に用いられたHARQプロセスについて新規送信のためのアップリンクグラントを示すC-RNTI宛てのPDCCHを受信した場合(ステップS518)、又は、当該SCellがディアクティブ化された場合(ステップS519)、ステップS520及びS521の動作を実行する。なお、BFR MAC MACには、通常のBFR MAC MACとTruncated BFR MAC CEとがある。
 ステップS520において、MACエンティティは、カウント値(BFI_COUNTER_BFD_RS)をゼロにセット(リセット)する。
 ステップS521において、MACエンティティは、BFRが成功裏に完了したと判断し、当該BFDリソースセット(BFD Resource Set)521についてトリガされたすべてのBFRをキャンセルする。
 図24に示すように、MACエンティティは、BFRプロシージャで、TS38.133で規定されている要件に従って候補ビームの評価が行われているSCell又はBFDリソースセット(BFD Resource Set)521に対して、少なくとも1つのBFRがトリガされ、キャンセルされていないと判断した場合、ステップS532乃至S537の動作を実行する。
 上りリンク共有チャネル(UL-SCH)リソースが新規送信に使用可能であり、UL-SCHリソースが論理チャネル優先度付け(LCP)の結果としてBFR MAC CE及びそのサブヘッダーを収容できる場合(ステップS532)、ステップS533において、MACエンティティは、BFR MAC CEを生成するように多重化及びアセンブリプロシージャに指示する。
 他方、UL-SCHリソースが新規送信に使用可能であり、UL-SCHリソースがLCPの結果としてTruncated BFR MAC CE及びそのサブヘッダーを収容できる場合(ステップS534)、ステップS535において、MACエンティティは、Truncated BFR MAC CEを生成するように多重化及びアセンブリプロシージャに指示する。
 他方、ステップS532及びS534のいずれの条件も満たされない場合(ステップS536)、ステップS537において、MACエンティティは、TS38.133で規定されている要件に従って候補ビームの評価が行われ、BFRがトリガされ、キャンセルされていない各SCell又はBFDリソースセット(BFD Resource Set)521に対して、SCellのBFRのためのスケジューリング要求(SR)をトリガする。
 MACエンティティは、MAC PDUが送信され、このPDUが、SCell又はBFDリソースセット(BFD Resource Set)521のビーム障害情報を含むBFR MAC CE又はTruncated BFR MAC CEを含む場合、SCell又はBFDリソースセット(BFD Resource Set)521についてトリガされたすべてのBFRをキャンセルする(ステップS538)。
 このように、N個の送受信ポイント201を有するセル250を管理する基地局200との無線通信を行う通信装置100は、N個のBFDリソースセット(BFD Resource Set)521を設定するメッセージを基地局200から受信する通信部110と、N個のBFDリソースセット(BFD Resource Set)521のそれぞれについてビーム障害を個別に検出する制御部120と、を備える。制御部120は、ビーム障害が検出された1つのBFDリソースセットについてBFRをトリガする。通信部110は、検出されたビーム障害に関する情報を含むBFR MAC CE、又は当該BFR MAC CEを送信するためのリソースを要求するSRを送信する。制御部120は、BFR MAC CEを含むMACプロトコルデータユニット(PDU)が送信された場合、当該1つのBFDリソースセットについてトリガされたすべてのBFRをキャンセルする。これにより、TRP201単位でのBFRを適切に行うことが可能になる。
 UE100において、制御部120は、N個のBFDリソースセット(BFD Resource Set)521のそれぞれについて、UE100における物理レイヤからビーム障害イベントが規定時間内に規定回数だけ通知されたことに応じてビーム障害を検出する。上述のように、N個のBFDリソースセット(BFD Resource Set)521のそれぞれは、規定時間を示すタイマ(beamFailureDetectionTimerPerRS)及び規定回数を示す最大カウント値(beamFailureInstanceMaxCountPerRS)を、他のBFDリソースセットと独立に設定する情報を含む。
 UE100において、制御部120は、当該1つのBFDリソースセット(BFD Resource Set)521について物理レイヤからビーム障害イベントが通知された場合、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたタイマ(beamFailureDetectionTimerPerRS)を始動又は再始動するとともに、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたカウント値(BFI_COUNTER_BFD_RS)をインクリメントする。これにより、TRP201単位でのBFDを適切に行うことが可能になる。
 UE100において、制御部120は、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたタイマ(beamFailureDetectionTimerPerRS)が満了した場合、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたカウント値(BFI_COUNTER_BFD_RS)をリセットする。これにより、TRP201単位でのBFDを適切に行うことが可能になる。
 UE100において、制御部120は、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたタイマ(beamFailureDetectionTimerPerRS)、最大カウント値(beamFailureInstanceMaxCountPerRS)、及びBFD用の参照信号リソース(reference signals used for beam failure detection)のいずれかが基地局200により再設定された場合、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたカウント値(BFI_COUNTER_BFD_RS)をリセットする。これにより、TRP201単位でのBFDを適切に行うことが可能になる。
 UE100において、BFR MAC CEの送信後、通信部110は、セル250がSCellであって、当該1つのBFDリソースセット(BFD Resource Set)521についてのBFR MAC CEの送信に用いられたHARQプロセスについてアップリンクグラントを示すPDCCHを受信する。制御部120は、PDCCHの受信に応じて、当該1つのBFDリソースセット(BFD Resource Set)521と対応付けられたカウント値(BFI_COUNTER_BFD_RS)をリセットするとともに、BFRが成功したとみなし、当該1つのBFDリソースセット(BFD Resource Set)521についてトリガされたすべてのBFRをキャンセルする。これにより、TRP201単位でのBFDを適切に行うことが可能になる。
 (その他の実施形態)
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、基地局200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。基地局200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRA(Evolved Universal Terrestrial Radio Access)ユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (付記)
 上述の実施形態に関する特徴について付記する。
 (付記1)
 N個(N≧2)の送受信ポイント(201#0、201#1)を有するセル(250)を管理する基地局(200)との無線通信を行う通信装置(100)であって、
 無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含む無線リソース制御(RRC)メッセージを前記基地局(200)から受信する通信部(110)と、
 前記無線リンクモニタリング設定(510)に基づいて無線リンク障害を検出し、前記ビーム障害検出設定(520)に基づいて前記N個のビーム障害検出リソースセット(521#0、521#1)のそれぞれについてビーム障害を個別に検出する制御部(120)と、を備える
 通信装置(100)。
 (付記2)
 前記制御部(120)は、前記ビーム障害検出設定(520)が設定される場合、前記無線リンクモニタリング設定(510)に基づいて、前記無線リンク障害の検出を行う
 付記1に記載の通信装置(100)。
 (付記3)
 前記無線リンクモニタリング設定(510)は、参照信号リソースと前記参照信号リソースの用途とを設定する情報とを含み、
 前記ビーム障害検出設定(520)が設定される場合、前記用途として、前記ビーム障害の検出が設定されずに前記無線リンク障害の検出が設定される
 付記1又は2に記載の通信装置(100)。
 (付記4)
 前記無線リンクモニタリング設定(510)は、セル(250)単位での前記無線リンクモニタリングを設定する情報を含む
 付記1乃至3のいずれかに記載の通信装置(100)。
 (付記5)
 N個(N≧2)の送受信ポイント(201#0、201#1)を有するセル(250)を管理するとともに、通信装置(100)との無線通信を行う基地局(200)であって、
 無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含む無線リソース制御(RRC)メッセージを生成する制御部(230)と、
 前記RRCメッセージを前記通信装置(100)に送信する通信部(210)と、を備え、
 前記無線リンクモニタリング設定(510)は、参照信号リソースと前記参照信号リソースの用途とを設定する情報を含み、
 前記制御部(230)は、前記ビーム障害検出設定(520)を前記通信装置(100)に設定する場合、前記用途として、ビーム障害の検出を設定せずに、無線リンク障害の検出を設定する
 基地局(200)。
 (付記6)
 N個(N≧2)の送受信ポイント(201#0、201#1)を有するセル(250)を管理する基地局(200)との無線通信を行う通信装置(100)が実行する通信方法であって、
 無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含む無線リソース制御(RRC)メッセージを前記基地局(200)から受信するステップと、
 前記無線リンクモニタリング設定(510)に基づいて無線リンク障害を検出するステップと、
 前記ビーム障害検出設定(520)に基づいて前記N個のビーム障害検出リソースセット(521#0、521#1)のそれぞれについてビーム障害を個別に検出するステップと、を備える
 通信方法。
 
 

Claims (6)

  1.  N個(N≧2)の送受信ポイント(201#0、201#1)を有するセル(250)を管理する基地局(200)との無線通信を行う通信装置(100)であって、
     無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含む無線リソース制御(RRC)メッセージを前記基地局(200)から受信する通信部(110)と、
     前記無線リンクモニタリング設定(510)に基づいて無線リンク障害を検出し、前記ビーム障害検出設定(520)に基づいて前記N個のビーム障害検出リソースセット(521#0、521#1)のそれぞれについてビーム障害を個別に検出する制御部(120)と、を備える
     通信装置(100)。
  2.  前記制御部(120)は、前記ビーム障害検出設定(520)が設定される場合、前記無線リンクモニタリング設定(510)に基づいて、前記無線リンク障害の検出を行う
     請求項1に記載の通信装置(100)。
  3.  前記無線リンクモニタリング設定(510)は、参照信号リソースと前記参照信号リソースの用途とを設定する情報とを含み、
     前記ビーム障害検出設定(520)が設定される場合、前記用途として、前記ビーム障害の検出が設定されずに前記無線リンク障害の検出が設定される
     請求項1又は2に記載の通信装置(100)。
  4.  前記無線リンクモニタリング設定(510)は、セル(250)単位での前記無線リンクモニタリングを設定する情報を含む
     請求項1に記載の通信装置(100)。
  5.  N個(N≧2)の送受信ポイント(201#0、201#1)を有するセル(250)を管理するとともに、通信装置(100)との無線通信を行う基地局(200)であって、
     無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含む無線リソース制御(RRC)メッセージを生成する制御部(230)と、
     前記RRCメッセージを前記通信装置(100)に送信する通信部(210)と、を備え、
     前記無線リンクモニタリング設定(510)は、参照信号リソースと前記参照信号リソースの用途とを設定する情報を含み、
     前記制御部(230)は、前記ビーム障害検出設定(520)を前記通信装置(100)に設定する場合、前記用途として、ビーム障害の検出を設定せずに、無線リンク障害の検出を設定する
     基地局(200)。
  6.  N個(N≧2)の送受信ポイント(201#0、201#1)を有するセル(250)を管理する基地局(200)との無線通信を行う通信装置(100)が実行する通信方法であって、
     無線リンクモニタリングを設定する無線リンクモニタリング設定(510)と、N個のビーム障害検出リソースセット(521#0、521#1)を設定するビーム障害検出設定(520)とを含む無線リソース制御(RRC)メッセージを前記基地局(200)から受信するステップと、
     前記無線リンクモニタリング設定(510)に基づいて無線リンク障害を検出するステップと、
     前記ビーム障害検出設定(520)に基づいて前記N個のビーム障害検出リソースセット(521#0、521#1)のそれぞれについてビーム障害を個別に検出するステップと、を備える
     通信方法。
     
PCT/JP2022/025391 2021-06-28 2022-06-24 通信装置、基地局、及び通信方法 WO2023276898A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280046078.XA CN117581629A (zh) 2021-06-28 2022-06-24 通信设备、基站以及通信方法
EP22833045.2A EP4366449A4 (en) 2021-06-28 2022-06-24 COMMUNICATION DEVICE, BASE STATION AND COMMUNICATION METHOD
US18/396,217 US20240237117A9 (en) 2021-06-28 2023-12-26 Communication apparatus, base station, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021106429A JP2023004609A (ja) 2021-06-28 2021-06-28 ユーザ装置、基地局、及び通信方法
JP2021-106429 2021-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/396,217 Continuation US20240237117A9 (en) 2021-06-28 2023-12-26 Communication apparatus, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2023276898A1 true WO2023276898A1 (ja) 2023-01-05

Family

ID=84691373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025391 WO2023276898A1 (ja) 2021-06-28 2022-06-24 通信装置、基地局、及び通信方法

Country Status (5)

Country Link
US (1) US20240237117A9 (ja)
EP (1) EP4366449A4 (ja)
JP (1) JP2023004609A (ja)
CN (1) CN117581629A (ja)
WO (1) WO2023276898A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012619A1 (ja) * 2018-07-12 2020-01-16 株式会社Nttドコモ ユーザ端末
US20210021329A1 (en) * 2019-07-15 2021-01-21 Qualcomm Incorporated Considerations on beam failure detection and recovery with multiple transmitter receiver points
JP2021106429A (ja) 2016-02-16 2021-07-26 シャープ株式会社 端末装置、MME(Mobility Management Entity)、及び通信制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485676B2 (ja) * 2019-01-10 2024-05-16 インターデイジタル パテント ホールディングス インコーポレイテッド ビーム障害検出を管理する装置、システム、コンピュータプログラム製品および方法
US11211990B2 (en) * 2019-05-01 2021-12-28 Ofinno, Llc Beam failure recovery in multi-TRP scenarios

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106429A (ja) 2016-02-16 2021-07-26 シャープ株式会社 端末装置、MME(Mobility Management Entity)、及び通信制御方法
WO2020012619A1 (ja) * 2018-07-12 2020-01-16 株式会社Nttドコモ ユーザ端末
US20210021329A1 (en) * 2019-07-15 2021-01-21 Qualcomm Incorporated Considerations on beam failure detection and recovery with multiple transmitter receiver points

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Enhancements on beam management for multi-TRP", 3GPP DRAFT; R1-2105781, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011706 *
MODERATOR (CATT): "Moderator summary #4 on M-TRP simultaneous transmission with multiple Rx panels", 3GPP DRAFT; R1-2106287, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 27 May 2021 (2021-05-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052015799 *
See also references of EP4366449A4

Also Published As

Publication number Publication date
US20240138013A1 (en) 2024-04-25
JP2023004609A (ja) 2023-01-17
CN117581629A (zh) 2024-02-20
EP4366449A1 (en) 2024-05-08
US20240237117A9 (en) 2024-07-11
EP4366449A4 (en) 2024-11-06

Similar Documents

Publication Publication Date Title
WO2023276898A1 (ja) 通信装置、基地局、及び通信方法
WO2023276897A1 (ja) 通信装置、基地局、及び通信方法
WO2023276896A1 (ja) 通信装置、基地局、及び通信方法
WO2023276900A1 (ja) 通信装置、基地局、及び通信方法
WO2023276901A1 (ja) 通信装置、基地局、及び通信方法
EP4336930A1 (en) Communication device, base station, and communication method
WO2023132273A1 (ja) 通信装置及び通信方法
WO2023132272A1 (ja) 通信装置及び通信方法
WO2022234838A1 (ja) 通信装置、基地局、及び方法
WO2022234835A1 (ja) ユーザ装置、基地局、及び通信制御方法
WO2023276987A1 (ja) 通信装置、マスタノード、及び通信制御方法
WO2023048183A1 (ja) ユーザ装置、基地局、及び通信方法
WO2023276988A1 (ja) 通信装置及び通信制御方法
WO2023068356A1 (ja) 通信装置、基地局、及び通信方法
WO2023068350A1 (ja) 通信装置、基地局、及び通信方法
WO2023013744A1 (ja) 通信装置、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280046078.X

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023027240

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202417000973

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022833045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833045

Country of ref document: EP

Effective date: 20240129

ENP Entry into the national phase

Ref document number: 112023027240

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231222