WO2019239520A1 - 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 - Google Patents
熱交換器、熱交換器ユニット、及び冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2019239520A1 WO2019239520A1 PCT/JP2018/022576 JP2018022576W WO2019239520A1 WO 2019239520 A1 WO2019239520 A1 WO 2019239520A1 JP 2018022576 W JP2018022576 W JP 2018022576W WO 2019239520 A1 WO2019239520 A1 WO 2019239520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- flat tube
- interval holding
- holding unit
- fins
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/34—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/04—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
- F28F17/005—Means for draining condensates from heat exchangers, e.g. from evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/04—Assemblies of fins having different features, e.g. with different fin densities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2240/00—Spacing means
Definitions
- the present invention relates to a heat exchanger, a heat exchanger unit including a heat exchanger, and a refrigeration cycle apparatus, and more particularly to a structure of a spacing holding unit that holds a spacing between fins installed in a heat transfer tube.
- a heat exchanger having a flat tube that is a heat transfer tube having a flat multi-hole cross section is known.
- a heat exchanger in which flat tubes are arranged so that the tube axis direction extends in the left-right direction, and arranged at a predetermined interval in the up-down direction.
- plate-like fins are arranged side by side in the tube axis direction of the flat tube, and heat exchange is performed between the air passing between the fins and the fluid flowing in the flat tube.
- fins are provided with a fin collar at the periphery of the flat tube insertion portion.
- the fin collar makes the tip abut against the adjacent fins to ensure the distance between the fins, but with the flattening of flat tubes in recent years, the width of the flat tube insertion portion of the fin has become narrower, and the flat tube insertion portion It is difficult to raise the fin collar provided on the periphery of the sheet to a predetermined size. Therefore, in Patent Document 1, an interval holding portion formed by bending a part of the fin other than the peripheral edge of the flat tube insertion portion is provided on the fin, and the interval between adjacent fins is held.
- a fin is provided with the insertion area
- the interval holding portion is formed in the insertion region and the extension region, and the interval holding portion in the extension region is formed immediately after the interval holding portion in the insertion region (see, for example, Patent Document 1).
- the interval holding portion provided by bending a part of the fin is provided with the surface facing in the flow direction of the air passing between the fins. Therefore, the subject that the area of the air path between fins decreased and the ventilation property of a heat exchanger deteriorated occurred.
- the surface of the space holding unit is oriented along the air flow direction, frost and frosted molten water stay on the surface of the space holding unit, and the heat exchanger drainage and defrosting properties are reduced. There was a problem to do.
- the flat tubes are arranged with the longitudinal direction of the cross-sectional shape being horizontal, water is accumulated on the flat tubes and there is a problem that it is difficult to drain. It was.
- the present invention is intended to solve the above-described problems, and suppresses deterioration of drainage and ventilation, and heat exchangers and heat exchangers that are less likely to block air passages when frost formation occurs.
- An object is to obtain a unit and a refrigeration cycle apparatus.
- the heat exchanger according to the present invention is formed of a flat tube and a plate-like body having a plate surface extending in a longitudinal direction and a width direction orthogonal to the longitudinal direction, and the plate surface intersects a tube axis of the flat tube. And a plurality of fins arranged at intervals from each other, each of the plurality of fins being formed in the plate-like body and holding the interval.
- the flat tube is disposed with a major axis of a cross section perpendicular to the tube axis being inclined at an inclination angle ⁇ with respect to the width direction, and the first interval holding portion intersects the plate surface.
- the rising surface is inclined in the same direction as the inclination angle ⁇ .
- a heat exchanger unit includes the above heat exchanger and a blower that sends air to the heat exchanger.
- the refrigeration cycle apparatus includes the above heat exchanger unit.
- the interval holding unit can appropriately maintain the interval between the fins, so that the air passage is prevented from being blocked during frost formation, and the drainage of the molten water is ensured during defrosting.
- maintenance part inclines in the same direction as a flat tube, inhibition of the air flow along a flat tube can be suppressed, and the ventilation fall between a fin and a flat tube can be suppressed. Therefore, the heat exchanger, the heat exchanger unit, and the refrigeration cycle apparatus have improved frost resistance and drainage while maintaining heat exchange performance.
- FIG. 1 is a perspective view showing a heat exchanger according to Embodiment 1.
- FIG. It is explanatory drawing of the refrigerating-cycle apparatus to which the heat exchanger which concerns on Embodiment 1 was applied. It is explanatory drawing of the cross-sectional structure of the heat exchanger of FIG.
- FIG. 3 is an enlarged view of an interval holding unit provided on a fin of the heat exchanger according to Embodiment 1. It is explanatory drawing of the space
- FIG. 1 It is explanatory drawing of the space
- FIG. 1 It is explanatory drawing of the space
- FIG. 1 It is explanatory drawing of the cross-section of the heat exchanger of the comparative example of the fin of the heat exchanger which concerns on Embodiment 1.
- FIG. It is explanatory drawing of the cross-section of the heat exchanger of the modification of the heat exchanger which concerns on Embodiment 1.
- FIG. 3 is an explanatory diagram of the flow of air passing through the heat exchanger according to Embodiment 1.
- FIG. It is explanatory drawing of the cross-section of the heat exchanger which concerns on Embodiment 2.
- FIG. It is explanatory drawing of the cross-section of the heat exchanger which concerns on Embodiment 3.
- FIG. 1 is a perspective view showing a heat exchanger 100 according to the first embodiment.
- FIG. 2 is an explanatory diagram of the refrigeration cycle apparatus 1 to which the heat exchanger 100 according to Embodiment 1 is applied.
- a heat exchanger 100 shown in FIG. 1 is mounted on a refrigeration cycle apparatus 1 such as an air conditioner or a refrigerator.
- the refrigerating cycle apparatus 1 of an air conditioning apparatus is illustrated.
- the refrigeration cycle apparatus 1 is configured by connecting a compressor 3, a four-way valve 4, an outdoor heat exchanger 5, an expansion device 6, and an indoor heat exchanger 7 by a refrigerant pipe 90 to constitute a refrigerant circuit.
- the refrigeration cycle apparatus 1 can switch between a heating operation, a refrigeration operation, and a defrosting operation by circulating the refrigerant in the refrigerant pipe 90 and switching the flow of the refrigerant by the four-way valve 4.
- the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 include the blower 2 in the vicinity.
- the blower 2 sends outside air to the outdoor heat exchanger 5, and performs heat exchange between the outside air and the refrigerant.
- the indoor unit 9 the blower 2 sends indoor air to the indoor heat exchanger 7, performs heat exchange between the indoor air and the refrigerant, and harmonizes the temperature of the indoor air.
- the heat exchanger 100 can be used as the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 in the refrigeration cycle apparatus 1, and as a condenser or an evaporator. Function.
- devices such as the outdoor unit 8 and the indoor unit 9 on which the heat exchanger 100 is mounted are particularly referred to as a heat exchanger unit.
- the heat exchanger 100 shown in FIG. 1 includes two heat exchange units 10 and 20.
- the heat exchange units 10 and 20 are arranged in series along the x direction shown in FIG.
- the x direction is a direction perpendicular to the parallel direction of the flat tubes 30 of the heat exchange unit 10 and the tube axis of the flat tubes 30.
- the air flowing into the heat exchanger 100 is along the x direction. Inflow. Therefore, the heat exchange units 10 and 20 are arranged in series along the ventilation direction of the heat exchanger 100, the first heat exchange unit 10 is arranged on the windward side, and the second heat exchange unit 20 is leeward. Arranged on the side.
- Headers 60 and 61 are disposed at both ends of the heat exchange unit 10, and the flat tube 30 is connected between the header 60 and the header 61. Headers 60 and 62 are disposed at both ends of the heat exchange unit 20, and the flat tube 30 is connected between the header 60 and the header 62.
- the refrigerant that flows into the header 61 from the refrigerant pipe 91 passes through the heat exchange unit 10, flows into the heat exchange unit 20 through the header 60, and flows out from the header 62 to the refrigerant pipe 92.
- the heat exchange unit 10 and the heat exchange unit 20 may have the same structure or different structures.
- FIG. 3 is an explanatory diagram of a cross-sectional structure of the heat exchanger 100 of FIG.
- FIG. 3 shows a view of a part of a cross section A perpendicular to the y-axis of the heat exchange unit 10 of the heat exchanger 100 of FIG.
- the heat exchanging unit 10 is configured by arranging a plurality of flat tubes 30 having a tube axis directed in the y direction in parallel in the z direction. In the flat tube 30, the refrigerant flows inside, and performs heat exchange between the air fed into the heat exchanger 100 and the internal refrigerant.
- the heat exchanging unit 10 is configured such that the fins 40 are attached to the flat tubes 30 such that the plate surfaces 48 of the fins 40 that are plate-shaped bodies intersect the tube axis of the flat tubes 30.
- the fin 40 has a rectangular shape whose longitudinal direction is directed in the direction in which the flat tubes 30 are arranged in parallel. That is, the fin 40 is extended in the longitudinal direction along the z direction.
- the 1st end edge 41 which is one edge of ax direction is located in the windward side
- the 2nd edge 42 which is the other edge is located in the leeward side.
- a cutout 44 is formed in the second end edge 42.
- the flat tube 30 is fitted in the notch 44.
- the width direction of the fin 40 means a direction orthogonal to the longitudinal direction of the fin 40, and the width direction of the fin 40 and the x direction coincide with each other.
- two flat tubes 30 are displayed.
- the two flat tubes 30 arranged adjacent to each other along the longitudinal direction of the fin 40 are respectively a first flat tube and a second flat tube 30. Sometimes called a tube.
- the flat tube 30 is inclined with respect to the width direction of the fin 40 by the inclination angle ⁇ of the major axis of the cross section, and the first end portion 31 located on the first end edge 41 side of the fin 40 has the second end. It is located below the second end portion 32 located on the end edge 42 side.
- the notch 44 provided at the second end edge 42 of the fin 40 is also provided with an inclination angle ⁇ with respect to the width direction of the fin 40.
- a plurality of fins 40 are arranged along the tube axis direction of the flat tube 30. Adjacent fins 40 are arranged with a predetermined gap therebetween, and are configured such that air passes between the fins 40. In order to ensure the interval between the adjacent fins 40, the fin 40 is formed with a first interval holding portion 50a and a second interval holding portion 50b.
- the first interval holding unit 50a and the second interval holding unit 50b may be collectively referred to as the interval holding unit 50.
- the interval holding unit 50 is formed by bending a part of the fin 40 that is a plate-like body, and is erected in a direction intersecting the plate surface 48.
- FIG. 4 is an enlarged view of the interval holding unit 50 provided in the fin 40 of the heat exchanger 100 according to the first embodiment.
- FIG. 4A is a view seen from the direction of arrow C in FIG. 3, and is a view seen from a direction parallel to the plate surface 48 of the fin 40 and parallel to the rising surface 53 of the interval holding unit 50.
- FIG. 4B is an explanatory diagram of the structure of the interval holding unit 50 as viewed from the vertical direction of the cross section taken along the line BB in FIG.
- the interval holding unit 50 is erected toward the adjacent fins 40, and the tip is in contact with the plate surface 48 of the adjacent fins 40.
- the tip of the interval holding unit 50 is bent and forms a contact part 52.
- the rising surface 53 of the interval holding unit 50 extends substantially perpendicular to the plate surface 48 of the fin 40.
- the interval holding unit 50 is formed by bending a part of the fin 40 in a direction intersecting the plate surface 48.
- An opening 51 is formed adjacent to the interval holding unit 50 on the opposite side of the interval holding unit 50 in the z direction.
- the opening 51a adjacent to the first interval holding unit 50a may be referred to as a first opening
- the opening 51b adjacent to the second interval holding unit 50b may be referred to as a second opening.
- the rising surface 53a of the first interval holding unit 50a may be referred to as a first rising surface
- the rising surface 53b of the second interval holding unit 50b may be referred to as a second rising surface.
- FIG. 5 is an explanatory diagram of a spacing unit 150c as a comparative example of the spacing unit 50 formed on the fins 40 of the heat exchanger 100 according to the first embodiment.
- FIG. 5 is a view as seen from the same direction as FIG.
- the interval holding portion 150c of the comparative example is formed by bending a part of the fin 140 toward the opposite side in the z direction of FIG. That is, when the heat exchanger 100 is installed with the opposite side of the z direction in FIG. 5 aligned with the gravity direction, the interval holding unit 150c is formed by bending a part of the fin 140 in the gravity direction.
- the rising surface 153 c is formed substantially perpendicular to the plate surface 48. In this case, an opening 151c is formed on the interval holding portion 150c.
- the interval holding unit 50 is provided between the two flat tubes 30 in the longitudinal direction of the fins 40.
- maintenance part 50 is arrange
- positioned at the 1st edge 41 side of the fin 40 connects the lower ends of the 1st end part 31 of the flat tube 30 arrange
- the rising surface 53a of the first interval holding portion 50a is inclined in the same direction as the inclination angle ⁇ of the flat tube 30 when the fin 40 is viewed from the y direction, that is, when viewed from the direction perpendicular to the plate surface 48.
- the inclination angle ⁇ and the inclination angle ⁇ 1 are angles inclined with respect to the x-axis in a cross section perpendicular to the tube axis of the flat tube 30, in other words, inclined with respect to a horizontal straight line in the width direction of the fin 40.
- the inclination angle ⁇ 1 of the rising surface 53a of the first interval holding unit 50a is set to satisfy 0 ⁇ 1 ⁇ ⁇ .
- maintenance part 50b is formed in the intermediate
- the rising surface 53b of the second interval holding unit 50b is also inclined in the same direction as the inclination direction of the flat tube 30 similarly to the rising surface 53b of the first interval holding unit 50a.
- the second interval holding unit 50b has an inclination angle ⁇ 2 and is set to satisfy 0 ⁇ 2 ⁇ ⁇ .
- the inclination angle ⁇ 2 is also an angle inclined with respect to the x axis in a cross section perpendicular to the tube axis of the flat tube 30, in other words, an angle inclined with respect to a horizontal straight line in the width direction of the fin 40. .
- FIG. 6 is an explanatory diagram of an interval holding unit 150a that is a modification of the interval holding unit 50 formed on the fin 40 of the heat exchanger 100 according to the first embodiment. 6 (a) corresponds to FIG. 4 (a), and FIG. 6 (b) corresponds to FIG. 4 (b).
- the first interval holding unit 50a and the second interval holding unit 50b provided in the fin 40 of the heat exchanger 100 according to Embodiment 1 are, for example, the interval holding unit 150a as shown in FIG. It may be a structure.
- the interval holding portion 150a is formed by inserting two slits in the plate surface 148a of the fin 140 and projecting a portion between the slits from the plate surface 148a.
- maintenance part 150a is connected with the plate surface 148a at two places.
- maintenance part 150a is the standing surface 153a.
- the rising surface 153a is inclined in the same direction as the flat tube 30 in the heat exchanger 100, similarly to the rising surface 53 of the interval holding unit 50, when viewed from the y direction.
- FIG. 7 is an explanatory diagram of a spacing unit 150b that is a modification of the spacing unit 50 formed on the fins 40 of the heat exchanger 100 according to Embodiment 1.
- 7A corresponds to FIG. 4A
- FIG. 7B corresponds to FIG. 4B.
- the interval holding part 150 b is formed to protrude from the plate surface 148 b of the fin 140 into a rectangle.
- maintenance part 150b is the standing surface 153b.
- the rising surface 153b is inclined in the same direction as the flat tube 30 in the heat exchanger 100, similarly to the rising surface 53 of the interval holding unit 50, when viewed from the y direction.
- FIG. 8 is an explanatory diagram of a cross-sectional structure of the heat exchanger 1100 of the comparative example of the fins 40 of the heat exchanger 100 according to the first embodiment.
- FIG. 8 shows a cross section perpendicular to the tube axis of the flat tube 30 as in FIG. 3.
- the interval holding portions 1050a and 1050b are formed in the region between the flat tubes 30.
- the interval holding portions 1050 a and 1050 b are formed by bending a part of the fin 1040, and the rising surfaces 1053 a and 1053 b are formed horizontally in the width direction of the fin 1040. Openings 1051a and 1051b are formed adjacent to the lower portions of the interval holding portions 1050a and 1050b, respectively.
- the heat exchanger 100 since the first interval holding unit 50a and the second interval holding unit 50b are inclined, the water on the rising surfaces 53a and 53b receives gravity. It is discharged immediately and flows downward. By being configured in this manner, the heat exchanger 100 has ensured an appropriate gap between the adjacent fins 40 and has flowed down onto the rising surface 53 of the first interval holding unit 50a. Water does not stay. Therefore, the heat exchanger 100 is highly drainable, there is no blockage of the air path between the fins 40, and the heat exchange performance is not impaired.
- the flat tube 30 reduces the short axis, that is, Thinner. Accordingly, when a fin collar for appropriately securing the interval between the fins 40 is to be provided at the periphery of the notch 44, the width of the notch 44 into which the fin 40 is inserted is narrow, and the notch 44 It is difficult to raise the fin collar provided at the periphery to a predetermined size.
- the gap 40 by providing the gap 40 with the interval holding unit 50, the interval between the fins 40 can be appropriately ensured.
- FIG. 9 is an explanatory diagram of a cross-sectional structure of a heat exchanger 100a that is a modification of the heat exchanger 100 according to Embodiment 1.
- FIG. 9 is an explanatory diagram of a cross-sectional structure of a heat exchanger 100a that is a modification of the heat exchanger 100 according to Embodiment 1.
- the first interval holding portion 50a is disposed in a region on the first edge 41 side where the notch portion 44 of the fin 40 is not provided. That is, the first interval holding portion 50a arranged on the first end edge 41 side of the fin 40 connects the first end portions 31 of the flat tubes 30 arranged at least in the z direction. It arrange
- the first interval holding unit 50a is disposed, for example, 1 mm or more away from the first virtual line L1.
- the first interval holding portion 50a By arranging the first interval holding portion 50a in this way, when the water on the flat tube 30 flows down from the first end portion 31 of the flat tube 30, the first interval holding portion 50a and the flat interval are flattened. Water flows into the drainage area h between the first end 31 of the pipe 30.
- the heat exchanger 100a of the modified example further drains the heat exchanger 100. Increases nature.
- FIG. 10 is an explanatory diagram of a cross-sectional structure of a heat exchanger 100b that is a modification of the heat exchanger 100 according to the first embodiment.
- the first interval holding unit 50 a is disposed in the intermediate region 43 between the two adjacent cutouts 44 of the fin 40. That is, the 1st space
- the first interval holding portion 50a is not arranged in the region on the first edge 41 side where the notch portion 44 of the fin 40 is not provided. Does not obstruct the flow of water from. Further, when the water accumulated on the upper surface 33 of the flat tube 30 flows down from the first end portion 31 of the flat tube 30, the water is located closer to the first edge 41 than the first end portion 31 of the flat tube 30. Water flows through the drainage area h. When the gravity direction and the longitudinal direction of the fins 40, that is, the z direction in FIG. 10 coincide with each other, there is no disposition of the water flow in the drainage region h. The drainage performance is further increased with respect to the exchanger 100.
- FIG. 11 is an explanatory diagram of a cross-sectional structure of a heat exchanger 100c which is a modification of the heat exchanger 100 according to the first embodiment.
- the heat exchanger 100c of the modification is obtained by extending the fins 40 to the leeward side with respect to the second end portion 32 of the flat tube 30.
- the notch 44 is also formed long on the leeward side, and nothing is arranged in the region of the notch 44 on the second end edge 42 side.
- the second end edge 42 and the second end portion 32 of the flat tube 30 are at substantially the same position in the x direction.
- the second end edge 42 of the fin 40 is located away from the second end 32 of the flat tube 30 in the x direction.
- the second interval holding portion 50 b includes the second end portion 32 that is the end portion on the leeward side of the flat tube 30 in the width direction of the fin 40 in the intermediate region 43 and the second end edge 42 of the fin 40. Is located in the area between.
- the heat exchanger 100, 100a, 100b, 100c which concerns on Embodiment 1 ensures the space
- FIG. 12 is an explanatory diagram of the flow of air passing through the heat exchanger 100 according to the first embodiment.
- FIG. 12 shows a state where the first end edge 41 of the fin 40 of the heat exchanger 100 is directed to the windward side. Since the heat exchanger 100 is provided with the first gap holding portion 50a and the second gap holding portion 50b, the gap between the fins 40 is appropriately maintained. Through the air, heat exchange is performed between the fluid flowing in the flat tube 30 and the air. Since the flat tube 30 is inclined with respect to the inflowing air flow, the air that has entered the heat exchanger 100 strikes the upper surface 33 of the flat tube 30 and the flow direction changes.
- a first interval holding unit 50a and a second interval holding unit 50b are provided between the fins 40 of the heat exchanger 100.
- the rising surface 53a of the first interval holding unit 50a and the rising surface 53b of the second interval holding unit 50b are inclined in the same direction as the inclination angle ⁇ of the flat tube 30, and therefore the configuration in which the flow of air is not easily inhibited. It has become.
- the inclination angle ⁇ 1 of the rising surface 53a of the first interval holding portion 50a is smaller than the inclination angle ⁇ of the flat tube 30 and gently changes the air flow direction, which may impair ventilation. Absent.
- the inclination angle ⁇ 2 of the rising surface 53b of the second interval holding portion 50b is set to a value close to the inclination angle ⁇ of the flat tube 30, and the air flows in the intermediate region 43 between the adjacent flat tubes 30.
- the structure does not hinder the flow.
- the air permeability can be improved by reducing the inclination angle ⁇ 1.
- the structure is not damaged.
- the first interval holding unit 50a is located in the intermediate region 43 and is located on the leeward side from the first end portion 31 of the flat tube 30. Therefore, the inclination angle ⁇ 1 may be set to a value close to the inclination angle ⁇ of the flat tube 30.
- the heat exchanger 100 is disposed so as to be inclined with respect to the direction of gravity.
- the heat exchanger 100 is disposed so as to be inclined with respect to the direction of gravity.
- tilt angle of the flat tube 30 the 1st space
- the first interval holding unit 50a is inclined in the same direction as the flat tube 30, so that water flowing from above the fins 40 is the first. It is suppressed that it stays in the space
- the inclination angle ⁇ 1 of the rising surface 53a of the first interval holding unit 50a has a relationship of 0 ⁇ 1 ⁇ ⁇ , it is difficult to inhibit the flow of air flowing into the heat exchangers 100, 100a, and 100b. . Therefore, the heat exchangers 100, 100a, and 100b have improved frost resistance and drainage while maintaining heat exchange performance. Furthermore, even when the short axis of the flat tube 30 is smaller than the arrangement interval of the fins 40, the gap between the fins 40 can be appropriately ensured by the first interval holding unit 50a.
- FIG. The heat exchanger 200 according to the second embodiment is obtained by changing the arrangement of the first interval holding unit 50a with respect to the heat exchanger 100 according to the first embodiment.
- the heat exchanger 200 which concerns on Embodiment 2 it demonstrates centering around the change with respect to Embodiment 1.
- FIG. 13 is an explanatory diagram of a cross-sectional structure of the heat exchanger 200 according to the second embodiment.
- FIG. 13 shows a cross section perpendicular to the tube axis of the flat tube 30 of FIG.
- the fin 240 of the heat exchanger 200 is provided with a first interval holding portion 250a on the first end edge 241 side.
- the first interval holding portion 250a is located closer to the first edge 41 than the first imaginary line L1 connecting the first end portions 31 of the flat tubes 30 arranged in the vertical direction. Yes.
- the first interval holding unit 250a is located between the virtual line La extending in the longitudinal direction of the cross-sectional shape of the flat tube 30 from the upper surface 33 of the flat tube 30 and the virtual line Lb extending from the lower surface 34 of the flat tube 30 in the cross-sectional longitudinal direction of the flat tube 30, The first interval holding unit 250a is located.
- the first interval holding portion 250a is arranged in a region where the flat tube 30 is projected in a direction along the longitudinal direction of the cross section.
- the first interval holding portion 250a and the first end portion 31 of the flat tube 30 are located at a predetermined distance. Since the notch 44 is formed in the fin 240 at the portion where the flat tube 30 is disposed, the notch 44 and the first interval holding part 250a are formed apart from each other.
- the inclination angle ⁇ 1 of the first interval holding portion 250a is set to be substantially the same as the inclination angle ⁇ of the flat tube 30, but the present invention is not limited to this, and 0 ⁇ 1 A value of ⁇ ⁇ can be taken.
- the first interval holding unit 250a is disposed in the vicinity of the extension line of the upper surface 33 of the flat tube 30 in which water is likely to stay. Therefore, when water on the upper surface 33 of the flat tube 30 reaches the first end portion 31, the water is guided to the first interval holding portion 250 a side by capillary action and drained from the flat tube 30. Moreover, since the 1st space
- the heat exchanger 200 In the heat exchanger 200, the water on the surfaces of the upper surface 33 and the lower surface 34 of the flat tube 30 is easily guided to the first end edge 41 side by the first interval holding part 250a. Therefore, compared with the heat exchangers 100, 100a, and 100b according to the first embodiment, the heat exchanger 200 has an advantage that the amount of water remaining on the upper surface 33 and the lower surface 34 of the flat tube 30 is easily reduced. is there.
- the first interval holding unit 250 a is disposed in a region where the flat tube 30 is projected in the longitudinal direction of the cross section, and the air flow from the first edge 41 side of the fin 240 is changed to the flat tube 30. Therefore, the air permeability of the heat exchanger 200 is not impaired.
- Embodiment 3 The heat exchanger 300 according to the third embodiment is obtained by changing the arrangement of the second interval holding unit 50b with respect to the heat exchanger 100 according to the first embodiment.
- description will be made centering on changes from the first embodiment.
- components having the same function in each drawing are denoted by the same reference numerals as those used in the description of the first embodiment.
- FIG. 14 is an explanatory diagram of a cross-sectional structure of the heat exchanger 300 according to the third embodiment.
- FIG. 14 shows a cross section perpendicular to the tube axis of the flat tube 30 of FIG.
- maintenance part 350b is formed in the intermediate
- the air passes along the flat tube 30 when the air flows from the first end 41 side of the fin 340 as shown in FIG.
- the second interval holding portion 350b is arranged in a region shielded by the flat tube 30 when viewed from the first edge 41 side, that is, when viewed from the direction in which air flows into the heat exchanger 300 in FIG. Yes. That is, the second interval holding portion 350b is disposed in the shielding region 345 on the back side of the flat tube 30 when viewed from the first edge 41 side of the fin 340. Furthermore, in the intermediate region 343 between the two notches 44, a second imaginary line L2 drawn horizontally from the lower end of the first end 31 of the flat tube 30 in the width direction of the fin 340, A second space holding portion 350b is disposed in a shielding region 345 that is a region between the lower surface 34 of the flat tube 30.
- the first interval holding unit 50a may be arranged similarly to the heat exchangers 100, 100a, and 100b of the first embodiment. Similarly to the heat exchanger 200, the first interval holding unit 250a may be disposed. Or in the heat exchanger 300, the structure by which only the 2nd space
- the second interval holding unit 350b is arranged in the shielding region 345, it is possible to ensure the fins 340 without interfering with the flow of air passing therethrough. it can.
- the shielding region 345 below the flat tube 30 is a portion shielded by the flat tube 30 when viewed from the upstream side of the air flow, and is a region where the air flow is stagnant. For this reason, the main part of the air flow passing between the fins 340 passes through the region below the shielding region 345, so that the second interval holding portion 350b changes the air flow passing between the fins 340. There is little influence.
- the heat exchanger 300 can maintain the space
- the inclination angle ⁇ 2 of the second interval holding portion 350b can be set larger than the inclination angle ⁇ of the flat tube 30. As shown in FIG. 14, when air flows in a direction perpendicular to the longitudinal direction of the fins 340, the shielding region 345 where the second interval holding portion 350 b is disposed is a region where the air flow is stagnant. This is because there is little influence on the air permeability of the heat exchanger 300.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
図1は、実施の形態1による熱交換器100を示す斜視図である。図2は、実施の形態1に係る熱交換器100が適用された冷凍サイクル装置1の説明図である。図1に示された熱交換器100は、空気調和装置又は冷蔵庫等の冷凍サイクル装置1に搭載されるものである。実施の形態1においては、空気調和装置の冷凍サイクル装置1を例示している。冷凍サイクル装置1は、圧縮機3、四方弁4、室外熱交換器5、膨張装置6、及び室内熱交換器7を冷媒配管90により接続し、冷媒回路を構成したものである。冷凍サイクル装置1は、冷媒配管90内には冷媒が流通し、四方弁4により冷媒の流れを切り換えることにより、暖房運転、冷凍運転、及び除霜運転を切り換えることができる。
図6は、実施の形態1に係る熱交換器100のフィン40に形成された間隔保持部50の変形例である間隔保持部150aの説明図である。図6(a)は、図4(a)に対応し、図6(b)は、図4(b)に対応している。実施の形態1に係る熱交換器100のフィン40に設けられた第1の間隔保持部50a、第2の間隔保持部50bは、例えば、図6に示される様な間隔保持部150aのような構造であっても良い。間隔保持部150aは、フィン140の板面148aに2つのスリットを入れ、そのスリットの間の部分を板面148aから突出させて形成されている。従って、間隔保持部150aは、板面148aと2箇所で接続されている。図6において、間隔保持部150aの上側に位置する面が、立ち上がり面153aである。立ち上がり面153aは、y方向から見た時に、間隔保持部50の立ち上がり面53と同様に熱交換器100において、扁平管30と同じ方向に傾斜している。
実施の形態1に係る熱交換器100の効果について説明する。なお、実施の形態1に係る熱交換器100における排水性の理解を容易とするため、以下では、熱交換器100が低温外気条件で蒸発器として運転する時の動作について説明する。その後、比較例の熱交換器1100の構成について説明し、実施の形態1に係る熱交換器100の排水作用を説明する。
図9は、実施の形態1に係る熱交換器100の変形例の熱交換器100aの断面構造の説明図である。変形例の熱交換器100aは、フィン40の切り欠き部44が設けられていない第1の端縁41側の領域に第1の間隔保持部50aが配置されている。つまり、フィン40の第1の端縁41側に配置されている第1の間隔保持部50aは、少なくともz方向に並べて配置されている扁平管30の第1の端部31同士を結んだ第1の仮想線L1に重ならないように配置されている。
図12は、実施の形態1に係る熱交換器100を通過する空気の流れの説明図である。図12は、熱交換器100のフィン40の第1の端縁41を風上側に向けた状態を示している。熱交換器100は、第1の間隔保持部50a及び第2の間隔保持部50bが設けられていることにより、フィン40の間隔が適正に保たれているため、フィン40及び扁平管30の間を空気が通過し、扁平管30内を流動する流体と空気との間で熱交換が行われる。流入する空気の流れに対し扁平管30が傾斜しているため、熱交換器100に入った空気は、扁平管30の上面33に当たり、流れの向きが変化する。
実施の形態1に係る熱交換器100、100a、100bは、第1の間隔保持部50aを扁平管30と同方向に傾斜させているため、フィン40の上方から流れてくる水が第1の間隔保持部50aに滞留するのが抑制される。また、第1の間隔保持部50aの立ち上がり面53aの傾斜角度α1は、0<α1≦θの関係になっているため、熱交換器100、100a、100bに流入する空気の流れを阻害しにくい。従って、熱交換器100、100a、100bは、熱交換性能を維持しつつ耐着霜性及び排水性が向上する。さらに、扁平管30の短軸がフィン40の配列間隔より小さい場合であっても、第1の間隔保持部50aによりフィン40同士の間の隙間も適正に確保することができる。
実施の形態2に係る熱交換器200は、実施の形態1に係る熱交換器100に対し、第1の間隔保持部50aの配置を変更したものである。実施の形態2に係る熱交換器200においては、実施の形態1に対する変更点を中心に説明する。実施の形態2に係る熱交換器200の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
実施の形態2に係る熱交換器200によれば、水が滞留し易い扁平管30の上面33の延長線上の近傍に第1の間隔保持部250aが配置されている。そのため、扁平管30の上面33の水が第1の端部31まで来ると毛管現象により第1の間隔保持部250a側に誘導され、扁平管30から排水される。また、第1の間隔保持部250aが傾斜角度α1で傾いているため、扁平管30から誘導された水は、第1の間隔保持部250aの上からも排出され易い。熱交換器200は、扁平管30の上面33及び下面34の表面の水が第1の間隔保持部250aにより第1の端縁41側に誘導されやすい。そのため、実施の形態1に係る熱交換器100、100a、100bと比較して、熱交換器200は、扁平管30の上面33及び下面34に残留する水がの量が減少しやすいという利点がある。また、第1の間隔保持部250aは、扁平管30を断面の長手方向に向かって投影した領域に配置されており、フィン240の第1の端縁41側からの空気の流れを扁平管30の上面33に流すよう形成されているため、熱交換器200の通風性を損なうことがない。
実施の形態3に係る熱交換器300は、実施の形態1に係る熱交換器100に対し、第2の間隔保持部50bの配置を変更したものである。実施の形態3に係る熱交換器300においては、実施の形態1に対する変更点を中心に説明する。実施の形態3に係る熱交換器300の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
実施の形態3に係る熱交換器300によれば、遮蔽領域345に第2の間隔保持部350bが配置されているため、通過する空気の流れを阻害することなくフィン340同士の確保することができる。扁平管30の下側の遮蔽領域345は、空気の流れの上流側から見ると扁平管30によって遮蔽された部分であり、空気の流れが澱む領域となる。そのため、フィン340の間を通過する空気の流れのうち主な部分は、遮蔽領域345から下方の領域を通過するため、第2の間隔保持部350bはフィン340の間を通過する空気の流れに与える影響が少ない。よって、熱交換器300は、通風性を確保しつつフィン340同士の間隔を精度良く保つことができる。また、第2の間隔保持部350bは、実施の形態1及び実施の形態2と同様に扁平管30と同じ方向に傾斜しているため、排水性も高い。なお、実施の形態3においては、第2の間隔保持部350bの傾斜角度α2は、扁平管30の傾斜角度θよりも大きく設定することもできる。図14に示されるように、フィン340の長手方向に対し垂直方向に空気が流入する場合は、第2の間隔保持部350bが配置される遮蔽領域345は、空気の流れが澱む領域であるため、熱交換器300の通風性に対し影響が少ないためである。
Claims (17)
- 扁平管と、
長手方向と該長手方向に直交する幅方向とに延びる板面を有する板状体で形成され、前記扁平管の管軸に前記板面が交差するように配置されると共に、互いに間隔を空けて配置された複数のフィンと、を備え、
前記複数のフィンのそれぞれは、
前記板状体に形成され、前記間隔を保持する第1の間隔保持部を備え、
前記扁平管は、
前記管軸に垂直な断面の長軸を前記幅方向に対し傾斜角度θに傾斜させて配置され、
前記第1の間隔保持部は、
前記板面に対し交差する方向に延在する立ち上がり面を有し、
前記立ち上がり面は、
前記傾斜角度θと同じ方向に傾斜している、熱交換器。 - 前記複数のフィンは、
前記幅方向の一方の端縁である第1の端縁と、
前記幅方向の他方の端縁である第2の端縁と、を有し、
前記第2の端縁に切り欠き部が形成され、
前記扁平管は、
前記切り欠き部に挿入され、
前記幅方向において前記第1の端縁側に位置する前記扁平管の第1の端部が、前記第2の端縁側に位置する前記扁平管の第2の端部よりも下方に位置する、請求項1に記載の熱交換器。 - 前記扁平管は、
前記複数のフィンのそれぞれの前記長手方向において隣合って配置される第1の扁平管及び第2の扁平管の何れかであり、
前記複数のフィンは、
前記第1の扁平管が挿入される前記切り欠き部と前記第2の扁平管が挿入される前記切り欠き部との間に形成された中間領域を有し、
前記第1の間隔保持部は、
前記中間領域よりも前記第1の端縁側に配置される、請求項2に記載の熱交換器。 - 前記複数のフィンは、
前記第1の間隔保持部を立設することにより前記板面に形成される第1の開口部を備え、
前記第1の開口部は、
前記第1の間隔保持部の下方に位置する、請求項3に記載の熱交換器。 - 前記第1の間隔保持部及び前記第1の開口部の少なくとも一方は、
前記扁平管を前記長軸の沿った方向に投影した領域内に配置される、請求項4に記載の熱交換器。 - 前記扁平管は、
前記複数のフィンのそれぞれの前記長手方向において隣合って配置される第1の扁平管及び第2の扁平管の何れかであり、
前記複数のフィンは、
前記第1の扁平管が挿入される前記切り欠き部と前記第2の扁平管が挿入される前記切り欠き部との間に中間領域が形成され、
前記第1の間隔保持部は、
前記中間領域に配置される、請求項2に記載の熱交換器。 - 前記第1の間隔保持部は、
前記第1の扁平管及び前記第2の扁平管のそれぞれの前記第1の端縁側に位置する第1の端部を繋いだ第1の仮想線上に配置される、請求項6に記載の熱交換器。 - 前記第1の間隔保持部は、
前記扁平管の端部のうち、前記第1の端縁側に位置する第1の端部から前記幅方向に延ばした第2の仮想線よりも前記扁平管側に配置される、請求項7に記載の熱交換器。 - 前記複数のフィンは、
前記第1の間隔保持部を立設することにより前記板面に形成される第1の開口部を備え、
前記第1の開口部は、
前記第1の間隔保持部の下方に位置する、請求項6~8の何れか1項に記載の熱交換器。 - 前記第1の間隔保持部の前記立ち上がり面の傾斜角度αは、
前記扁平管の前記傾斜角度θ以下である、請求項1~9の何れか1項に記載の熱交換器。 - 前記第1の間隔保持部の前記立ち上がり面の傾斜角度αは、
前記扁平管の前記傾斜角度θよりも大きい、請求項9に記載の熱交換器。 - 前記複数のフィンは、
前記第1の間隔保持部よりも前記第2の端縁側に位置し、前記間隔を保持する第2の間隔保持部を更に備え、
前記第2の間隔保持部は、
前記板面に対し交差して延在する第2の立ち上がり面を有し、
前記第2の立ち上がり面は、
前記扁平管の前記傾斜角度θと同方向に傾斜して配置される、請求項3~7の何れか1項に記載の熱交換器。 - 前記第2の間隔保持部は、
前記中間領域に配置される、請求項12に記載の熱交換器。 - 前記第2の間隔保持部は、
前記第1の扁平管及び前記第2の扁平管のそれぞれの前記第1の端縁側に位置する第1の端部から前記フィンの前記幅方向に延ばした第2の仮想線よりも前記扁平管側に配置される、請求項12に記載の熱交換器。 - 前記第2の間隔保持部を立設することにより前記板面に形成される第2の開口部は、
前記第2の間隔保持部の下方に位置する、請求項12~14の何れか1項に記載の熱交換器。 - 請求項1~15の何れか1項に記載の熱交換器と、
前記熱交換器に空気を送る送風機と、を備える、熱交換器ユニット。 - 請求項16に記載の熱交換器ユニットを備えた冷凍サイクル装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880093507.2A CN112204331B (zh) | 2018-06-13 | 2018-06-13 | 热交换器、热交换器单元以及制冷循环装置 |
AU2018427607A AU2018427607B2 (en) | 2018-06-13 | 2018-06-13 | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus |
SG11202010610YA SG11202010610YA (en) | 2018-06-13 | 2018-06-13 | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus |
JP2020525009A JP7004814B2 (ja) | 2018-06-13 | 2018-06-13 | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 |
EP18922499.1A EP3809086A4 (en) | 2018-06-13 | 2018-06-13 | HEAT EXCHANGER, HEAT EXCHANGER UNIT AND REFRIGERATION CYCLE DEVICE |
US17/049,056 US11391521B2 (en) | 2018-06-13 | 2018-06-13 | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus |
PCT/JP2018/022576 WO2019239520A1 (ja) | 2018-06-13 | 2018-06-13 | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/022576 WO2019239520A1 (ja) | 2018-06-13 | 2018-06-13 | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019239520A1 true WO2019239520A1 (ja) | 2019-12-19 |
Family
ID=68842066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022576 WO2019239520A1 (ja) | 2018-06-13 | 2018-06-13 | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11391521B2 (ja) |
EP (1) | EP3809086A4 (ja) |
JP (1) | JP7004814B2 (ja) |
CN (1) | CN112204331B (ja) |
AU (1) | AU2018427607B2 (ja) |
SG (1) | SG11202010610YA (ja) |
WO (1) | WO2019239520A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11737246B2 (en) * | 2021-04-27 | 2023-08-22 | Quanta Computer Inc. | Dual-radiator cooling device |
WO2024080937A1 (en) * | 2022-10-14 | 2024-04-18 | National University Of Singapore | An apparatus, system, and method for heat exchange |
US12104532B1 (en) | 2023-07-31 | 2024-10-01 | Rolls-Royce North American Technologies Inc. | Bypass duct heat exchanger with access panel for gas turbine engines |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791873A (ja) * | 1993-09-20 | 1995-04-07 | Hitachi Ltd | フィンアンドチューブ形熱交換器 |
JP2007183088A (ja) * | 2005-12-07 | 2007-07-19 | Matsushita Electric Ind Co Ltd | 熱交換器 |
JP2012163317A (ja) * | 2011-01-21 | 2012-08-30 | Daikin Industries Ltd | 熱交換器及び空気調和機 |
JP5177307B2 (ja) | 2011-01-21 | 2013-04-03 | ダイキン工業株式会社 | 熱交換器 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2915296A (en) * | 1955-04-07 | 1959-12-01 | Olin Mathieson | Heat exchanger |
US4691768A (en) * | 1985-12-27 | 1987-09-08 | Heil-Quaker Corporation | Lanced fin condenser for central air conditioner |
KR100543599B1 (ko) * | 2003-09-15 | 2006-01-20 | 엘지전자 주식회사 | 열교환기 |
US20070295492A1 (en) * | 2005-04-25 | 2007-12-27 | Anthony Sharp | Heat exchange system with inclined heat exchanger device |
JP4989979B2 (ja) * | 2007-01-10 | 2012-08-01 | 昭和電工株式会社 | 熱交換器 |
JP5337402B2 (ja) | 2008-05-14 | 2013-11-06 | パナソニック株式会社 | フィンチューブ型熱交換器 |
CN101738008A (zh) * | 2009-11-30 | 2010-06-16 | 江苏康泰热交换设备工程有限公司 | 一种利于冷凝水排出的热交换器 |
JP2014035122A (ja) | 2012-08-08 | 2014-02-24 | Toshiba Corp | 熱交換器 |
EP2725311B1 (en) * | 2012-10-29 | 2018-05-09 | Samsung Electronics Co., Ltd. | Heat exchanger |
JP2014156990A (ja) | 2013-02-18 | 2014-08-28 | Mitsubishi Electric Corp | 空気調和機の熱交換器 |
JP5962734B2 (ja) | 2014-10-27 | 2016-08-03 | ダイキン工業株式会社 | 熱交換器 |
WO2017126019A1 (ja) | 2016-01-19 | 2017-07-27 | 三菱電機株式会社 | 熱交換器 |
-
2018
- 2018-06-13 CN CN201880093507.2A patent/CN112204331B/zh active Active
- 2018-06-13 WO PCT/JP2018/022576 patent/WO2019239520A1/ja unknown
- 2018-06-13 US US17/049,056 patent/US11391521B2/en active Active
- 2018-06-13 AU AU2018427607A patent/AU2018427607B2/en active Active
- 2018-06-13 EP EP18922499.1A patent/EP3809086A4/en active Pending
- 2018-06-13 SG SG11202010610YA patent/SG11202010610YA/en unknown
- 2018-06-13 JP JP2020525009A patent/JP7004814B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791873A (ja) * | 1993-09-20 | 1995-04-07 | Hitachi Ltd | フィンアンドチューブ形熱交換器 |
JP2007183088A (ja) * | 2005-12-07 | 2007-07-19 | Matsushita Electric Ind Co Ltd | 熱交換器 |
JP2012163317A (ja) * | 2011-01-21 | 2012-08-30 | Daikin Industries Ltd | 熱交換器及び空気調和機 |
JP5177307B2 (ja) | 2011-01-21 | 2013-04-03 | ダイキン工業株式会社 | 熱交換器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3809086A4 |
Also Published As
Publication number | Publication date |
---|---|
US20210239409A1 (en) | 2021-08-05 |
CN112204331A (zh) | 2021-01-08 |
US11391521B2 (en) | 2022-07-19 |
CN112204331B (zh) | 2022-12-02 |
JPWO2019239520A1 (ja) | 2021-04-01 |
SG11202010610YA (en) | 2020-11-27 |
JP7004814B2 (ja) | 2022-01-21 |
AU2018427607B2 (en) | 2022-04-14 |
AU2018427607A1 (en) | 2020-12-17 |
EP3809086A1 (en) | 2021-04-21 |
EP3809086A4 (en) | 2021-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3091322B1 (en) | Fin and tube-type heat exchanger and refrigeration cycle device provided therewith | |
EP3587988B1 (en) | Heat exchanger and air conditioner | |
CN110398163B (zh) | 热交换器 | |
WO2019239520A1 (ja) | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 | |
KR20220133091A (ko) | 열교환기 | |
JP6466631B1 (ja) | 熱交換器およびこれを備えた空気調和機 | |
JP6972336B2 (ja) | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 | |
EP3608618B1 (en) | Heat exchanger and refrigeration cycle device | |
GB2563169A (en) | Heat exchanger and air conditioner | |
WO2020012549A1 (ja) | 熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置 | |
JP6621922B2 (ja) | 熱交換器およびそれを備えた冷凍サイクル装置 | |
JP6932262B2 (ja) | 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 | |
JP7414845B2 (ja) | 冷凍サイクル装置 | |
JP7158601B2 (ja) | 熱交換器及び冷凍サイクル装置 | |
JP7258151B2 (ja) | 熱交換器および冷凍サイクル装置 | |
JP7150157B2 (ja) | 熱交換器および冷凍サイクル装置 | |
US20230366565A1 (en) | Outdoor heat exchanger and air conditioner | |
JP2016169901A (ja) | フィンチューブ熱交換器 | |
WO2020012548A1 (ja) | 熱交換器、熱交換器ユニット及び冷凍サイクル装置 | |
JP2001133181A (ja) | フィン付熱交換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18922499 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525009 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018427607 Country of ref document: AU Date of ref document: 20180613 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018922499 Country of ref document: EP Effective date: 20210113 |