Nothing Special   »   [go: up one dir, main page]

WO2019235690A1 - 플라즈마 측정 방법 및 플라즈마 공정 측정 센서 - Google Patents

플라즈마 측정 방법 및 플라즈마 공정 측정 센서 Download PDF

Info

Publication number
WO2019235690A1
WO2019235690A1 PCT/KR2018/010307 KR2018010307W WO2019235690A1 WO 2019235690 A1 WO2019235690 A1 WO 2019235690A1 KR 2018010307 W KR2018010307 W KR 2018010307W WO 2019235690 A1 WO2019235690 A1 WO 2019235690A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
plasma
signal
present
probes
Prior art date
Application number
PCT/KR2018/010307
Other languages
English (en)
French (fr)
Inventor
하창승
임대철
장윤민
최익진
한희성
홍윤기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019235690A1 publication Critical patent/WO2019235690A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the present invention relates to a plasma measuring method and a plasma process measuring sensor, and more particularly, to a plasma measuring method using a plasma process measuring sensor in the form of a wafer.
  • Plasma processes are widely used in deposition, etching, ashing, etc. in various semiconductor production and display panel production.
  • the plasma process is performed at a high temperature, it is difficult to accurately measure the state of the plasma, the amount of data collected is large, it is difficult to select data to be utilized, and the measurement itself may affect the plasma.
  • An object of the present invention is a plasma measurement method and plasma process measurement for analyzing harmonics generated by plasma using two probes paired and paired among a plurality of probes To provide a sensor.
  • Another object of the present invention is to provide a plasma measuring method and a plasma process measuring sensor, which are advantageous for low power driving.
  • Another object of the present invention is to provide a plasma process measurement sensor capable of accurately measuring plasma, having a wafer shape, and having a thickness similar to that of a wafer, without requiring additional equipment or replacement of existing plasma process equipment.
  • Another object of the present invention is to provide a plasma measuring method and a plasma process measuring sensor capable of measuring distribution of plasma characteristics in two dimensions.
  • Another object of the present invention is to provide a plasma measuring method and a plasma process measuring sensor capable of accurately measuring the characteristics of the plasma without affecting the plasma.
  • a plasma measuring method using a plurality of probes includes: pairing a first probe and a second probe, generating a signal by the first probe, and generating a signal by the second probe.
  • the method may further include generating a signal, wherein the first probe receives signals generated by the first probe and the second probe to measure characteristics of the plasma, and the first probe and the second probe are adjacent to each other.
  • Plasma process measurement sensor using a plurality of probes a lower plate, a ring on the lower plate, a circuit board on the lower plate, not overlapping with the middle plate, the first on the circuit board A probe and a second probe; And a top plate above the first probe and the second probe, wherein the characteristics of the plasma are measured through the interaction between the first probe and the second probe, wherein the first probe and the second probe are connected to each other. It is characterized by the adjoining.
  • Plasma measurement method has the effect of measuring the plasma density by analyzing the harmonics generated by the plasma using the two probes paired and paired.
  • Plasma measurement method according to an embodiment of the present invention has the effect that can be driven at low power.
  • Plasma process measurement sensor since the thickness of the wafer shape is similar to the conventional wafer, there is an effect that can accurately measure the characteristics of the plasma while using the existing equipment as it is.
  • Plasma measurement method there is an effect that can accurately measure the characteristics of the plasma two-dimensional in the plasma process.
  • Plasma measurement method while measuring the characteristics of the plasma has an effect that can accurately measure the characteristics of the plasma without affecting the plasma.
  • FIG. 1 is a view showing an example of a pull (foup).
  • FIG. 2 is a flow chart illustrating a process in which a wafer is transferred to a chamber after being processed from a pool to a chamber.
  • 3A is an exploded view of a plasma process measurement sensor according to an exemplary embodiment.
  • 3B is an exploded view of a plasma process measurement sensor according to another exemplary embodiment.
  • FIG. 4 is a diagram illustrating a structure of a pad according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a process of manufacturing a pad according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a process of coupling a top plate and a probe according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a process of manufacturing a plasma process measurement sensor according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a plane of a plasma process measurement sensor according to an exemplary embodiment of the present invention.
  • 9A, 9B, and 9C are views illustrating aspects of a structure of a plasma process measurement sensor according to an exemplary embodiment of the present invention.
  • FIG. 10 is a diagram illustrating that a plane of a plasma process measurement sensor according to an exemplary embodiment includes a plurality of probes.
  • FIG. 11 is a diagram illustrating a plasma measuring principle according to an embodiment of the present invention.
  • FIG. 12 is a graph illustrating signals generated by probes according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a plasma measurement principle according to another embodiment of the present invention.
  • FIG. 14 is a graph illustrating signals generated by probes according to another exemplary embodiment of the present invention.
  • the (up) or down (below) (on or under) when described as being formed on the “on” or “on” (under) of each component, the (up) or down (below) (on or under) includes both the two components are in direct contact with each other (directly) or one or more other components are formed indirectly formed between the two (component).
  • the (up) or down (below) when expressed as “up” or "on (under)” (on or under) it may include the meaning of the downward direction as well as the upward direction based on one component.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • 1 is a diagram illustrating an example of the pull 100.
  • Front Opening Unified Pod (FOUP) 100 is one of the devices typically used in semiconductor manufacturing.
  • the wafer 110 passes through various process equipments according to the semiconductor manufacturing process, the wafers 110 are loaded into the pool 100 to facilitate storage and transportation while blocking external variables as much as possible.
  • the wafers 110 After the wafers 110 are loaded into the pool 100, it is checked whether the wafers 110 are correctly positioned. For example, the wafers 110 inside the pool 100 are scanned with a laser to check whether one wafer 110 is loaded in the slot of the pool 100 or loaded at the correct position. For example, when scanning the inside of the pull 100 with a laser, if the thickness of the wafer 110 is measured to be 1.2 mm or more, two wafers are loaded in one slot in which only one wafer 110 should be loaded. It can be judged that.
  • FIG. 2 is a flowchart illustrating a process in which the wafer 110 is transferred to the chamber 100 after being processed into the chamber from the pool 100 and then processed again.
  • the pull 100 door is opened (210).
  • the transfer device selects one of the wafers 100 inside the pull 100 (220). Thereafter, the transfer device transfers the selected wafer 110 to the chamber (230). In the chamber, plasma is generated to perform an etching process, a deposition process, and the like on the wafer 110 (240).
  • the wafer is transferred to the pool 100 through the transfer device (260). When all of the semiconductors enter the pool 100, the pool 100 door is closed (260).
  • the performance and yield of the wafer vary depending on the result of step 240 of processing the wafer using plasma. Therefore, by accurately measuring the state of the plasma it is possible to accurately predict the results of the process.
  • single langmuir probes were mainly used to measure the state of plasma.
  • the single volume muir probe method inserts a small metal probe chip into the plasma to measure plasma parameters based on a current curve with a change in voltage applied to the probe.
  • the voltage applied to the probe affects the plasma, which causes errors in the plasma measurement.
  • an error occurs in the plasma measurement even when a dielectric material is deposited on the probe.
  • plasma density, ion flux, electron temperature, and the like, which are variables of plasma are measured using harmonic perturbation.
  • the senor may be divided into a probe circuit contacting the plasma and a measurement circuit unit capable of generating a sine wave having a constant voltage and sensing a signal.
  • the signal measured by sensing the signal may be divided into a first harmonic component and a second harmonic component using a fast Fourier transform.
  • the measurement principle of plasma is as follows. First, current flows through the probe, and the current flowing through the probe is classified by frequency using a modified Bessel function. The electronic temperature is measured using the ratio between the fundamental frequency current component and the second harmonic current component. The ion density can then be determined using the measured electron temperature, the variable for the probe, and the first harmonic current.
  • the plasma perturbation is less.
  • the plasma can be diagnosed even if a dielectric material is deposited on the probe.
  • the plasma process measurement sensor has the form of a wafer.
  • the wafer shape allows the sensor to accurately measure the plasma when the plasma process is performed by incorporating a wafer-like sensor into the wafer processing process without having to replace or upgrade existing semiconductor equipment.
  • the sensor operates wirelessly, and does not require a separate wired data cable.
  • 3A is an exploded view of a plasma process measurement sensor according to an exemplary embodiment.
  • Plasma process measurement sensor has the form of a wafer, the upper plate 310a, the pad 320a, the probe 330a, the circuit board 340a, the pad 350a, and the lower plate 360a
  • the middle plate is omitted.
  • the probe 330a may also be referred to as a sensor or a tip.
  • the lower plate 360a may also be referred to as a substrate.
  • the upper plate 310a and the lower plate 360a may be made of a conductive material or a semiconductor material.
  • the upper plate 310a and the lower plate 360a may be made of the same material as a product processed by plasma.
  • the upper plate 310a and the lower plate 360a may be formed of a silicon-based semiconductor material or an aluminum-based conductor. That is, since the plasma process measurement sensor according to an embodiment of the present invention directly contacts the plasma in the chamber, the upper plate 310a and the lower plate 360a may be made of a material having low reactivity with the plasma.
  • the pads 320a and 350a serve as adhesive and insulating EMI shields and are manufactured in a thin form.
  • the probe 330a is a sensor for measuring plasma and is configured with a diameter of 20 mm or less.
  • the probe 330a may be made of a conductive material or a semiconductor material.
  • the probe 330a may be made of the same material as a product processed by plasma.
  • the probe 330a may be formed of a silicon-based semiconductor material or an aluminum-based conductor. That is, since the plasma process measurement sensor according to an embodiment of the present invention contacts the plasma directly in the chamber, the probe 330a may be made of a material having low reactivity with the plasma.
  • the circuit board 340a includes a circuit electrically connected to the probe 330a.
  • 3B is an exploded view of a plasma process measurement sensor according to another exemplary embodiment.
  • the plasma process measurement sensor shown in FIG. 3B further includes a bottom door 370b. That is, the plasma process measurement sensor according to another embodiment of the present invention has a wafer shape, and includes an upper plate 310b, a pad 320b, a probe 330b, a circuit board 340b, a pad 350b, and a lower plate 360b. ), And the lower plate door 370b, and the middle plate is omitted.
  • the lower door 370b is located at the center area of the lower plate 360b for debugging the plasma process measuring sensor.
  • the lower door 370b is not separated from the lower plate 360b to disassemble the entire plasma process measuring sensor. It is comprised so that the circuit of the circuit board 340b can be confirmed.
  • the upper plate 310b, the lower plate 360b, and the lower door 370b may be made of a conductive material or a semiconductor material.
  • the upper plate 310b, the lower plate 360b, and the lower plate door 370b may be made of the same material as a product processed by plasma.
  • the upper plate 310b, the lower plate 360b, and the lower door 370b may be formed of a silicon-based semiconductor material or an aluminum-based conductor. That is, since the plasma process measurement sensor according to another embodiment of the present invention contacts the plasma directly in the chamber, the upper plate 310b, the lower plate 360b, and the lower door 370b are made of a material having low reactivity with plasma. It is preferred to be configured.
  • the pads 320b and 350b serve as adhesion, insulation, and EMI shielding, and are manufactured in a thin form.
  • the probe 330b is a sensor for measuring plasma and is configured with a diameter of 20 mm or less.
  • the probe 330b may be made of a conductive material or a semiconductor material.
  • the probe 330b may be made of the same material as a product processed by plasma.
  • the probe 330b may be formed of a silicon-based semiconductor material or an aluminum-based conductor. That is, since the plasma process measurement sensor according to an embodiment of the present invention contacts the plasma directly in the chamber, the probe 330b may be made of a material having low reactivity with the plasma.
  • the circuit board 340b includes a circuit electrically connected to the probe 330b.
  • FIG. 4 is a diagram illustrating a structure of a pad according to an embodiment of the present invention.
  • the pad performs functions of insulation, EMI shielding, and adhesion, and includes an adhesive layer 410, an insulating layer 420, a metal layer 430, an insulating layer 440, and an adhesive layer 450.
  • the insulating layers 420 and 440 of the pad have a porous structure or a heat insulating structure, and the metal layer 430 of the pad has a thin film or mesh structure.
  • the adhesive layer 410 and the insulating layer 420 may be combined into one layer, and the adhesive layer 450 and the insulating layer 440 may also be combined into one layer.
  • FIG. 5 is a flowchart illustrating a process of manufacturing a pad according to an embodiment of the present invention.
  • Plasma process measurement sensor has a wafer shape, and because the thickness should be similar to the actual wafer, the pad is made as thin as possible.
  • an insulating layer is first manufactured (510), a metal layer is prepared (520), an insulating layer is prepared (530), and finally an upper and lower adhesive layers are prepared (540).
  • an upper and lower adhesive layers are prepared (540).
  • an insulating layer is manufactured through a spray process or a sputter process.
  • the insulating layer is manufactured by the metal can method, it is thicker than that produced by the spray process or the sputter process, so it is manufactured by the spray process or the sputter process.
  • the insulating layer produced through the spray process or the sputtering process has a porous structure or a heat insulating structure.
  • a metal layer is manufactured through a spray process or a sputter process.
  • the insulating layer is manufactured by the metal can method, it is thicker than that produced by the spray process or the sputter process, so it is manufactured by the spray process or the sputter process.
  • the metal layer manufactured through the spray process or the sputter process has a thin film or mesh structure.
  • an adhesive layer is manufactured through a spray process or a paste coating process.
  • the adhesive layer and the insulating layer may be combined into one layer, and when combined, a separate adhesive layer manufacturing process step may be omitted.
  • FIG. 6 is a flowchart illustrating a process of coupling a top plate and a probe according to an embodiment of the present invention.
  • the top plate and the probe are made of a conductive material or a semiconductor material.
  • the top plate and the probe are energized, and the plasma is not properly measured.
  • the semiconductor material turns into a conductor when it enters a high-temperature chamber, so that it is also energized and the plasma is not properly measured. Therefore, the top plate and the probe should be composed of one layer but insulated from each other.
  • a top plate is prepared (610), and an insulating film or an oxide film is formed on the top plate (620).
  • the plasma process measurement sensor according to an embodiment of the present invention has a wafer shape and should have a thickness similar to that of an actual wafer, an insulating film or an oxide film should be formed while keeping the top plate as thin as possible.
  • the thickness of the top plate is formed as an SiO 2 film in the case of an oxide film and as a SiN film or Y 2 O 3 film in the case of an insulating film, so as to prevent cracking. It can be made as thin as 0.5mm.
  • the thickness can be manufactured to 0.5mm or thinner as long as no crack occurs.
  • the top plate and the probe are insulated from each other, so that the plasma can be accurately measured by the probe.
  • FIG. 7 is a flowchart illustrating a process of manufacturing a plasma process measurement sensor according to an embodiment of the present invention.
  • Substrate means another name that refers to the bottom plate.
  • the circuit board is stacked (720) on the substrate, the probe is stacked (730) on the circuit board, and finally, the insulated top plate shown in FIG. 6 is stacked on the substrate and the circuit board (740).
  • FIG. 8 is a diagram illustrating a plane of a plasma process measurement sensor according to an exemplary embodiment of the present invention.
  • Plasma process measurement sensor 800 is composed of a plurality of probes 810 and the top plate 820 forming a layer with the probe, the position or number of probes 810 Can be changed as necessary.
  • 9A, 9B, and 9C are views illustrating aspects of a structure of a plasma process measurement sensor according to an exemplary embodiment of the present invention.
  • FIG. 9A illustrates components of the plasma process measurement sensor before coupling according to an embodiment of the present disclosure, and includes an upper plate 910, a probe 920, a circuit board 930, a ring 940, and a lower plate 950. It is shown.
  • the middle plate 940 is located on the lower plate in the drawing, but may be integrated with the upper plate 910 or the lower plate 950.
  • the middle plate 940 may be replaced with an epoxy or silicon adhesive in addition to the conductive material and the semiconductor material.
  • FIG. 9B illustrates that an insulating film or an oxide film is formed on the upper plate 910 before the plasma process measurement sensor is coupled according to an exemplary embodiment.
  • the middle plate 940, the circuit board 930, and the probe 920 are stacked on the lower plate 950, and the upper plate 915 on which the insulating film or the oxide film is formed is covered.
  • FIG. 9C illustrates a side surface of the plasma process measurement sensor after coupling according to an embodiment of the present invention, and includes an upper plate 915, a probe 920, a circuit board 930, a middle plate 940 formed with an insulating film or an oxide film, and The bottom plate 950 is shown.
  • FIG. 10 is a diagram illustrating that a plane of a plasma process measurement sensor according to an exemplary embodiment includes a plurality of probes.
  • the plasma process measurement sensor 1000 illustrated in FIG. 10 has the same structure as the plasma process measurement sensor 800 illustrated in FIG. 8, and each of the plurality of probes has a unique number. Although the plurality of probes are shown as having numbers 1 to 49, the number and location of the probes may be changed according to an embodiment or need.
  • each probe independently measured plasma, but according to an embodiment of the present invention, two probes are paired and interact to measure plasma.
  • the plurality of probes are all connected to a multiplexer (MUX), and the two probes are paired and driven at a time through the MUX during plasma measurement. For example, among 1 to 49 probes, adjacent probes such as 1 and 2 probes, 2 and 3 probes, 3 and 4 probes, 9 and 2 probes, and 10 and 11 probes are selected and paired.
  • MUX multiplexer
  • probes perform a calibration operation before measuring the plasma.
  • plasma may be used to calibrate probes, this is inefficient, so probes according to an embodiment of the present invention connect specific impedances instead of plasma and adjust the setting values of the probes based on the measured value of the impedance.
  • FIG. 11 is a diagram illustrating a plasma measuring principle according to an embodiment of the present invention.
  • the AC power supply 1110 generates a sinusoidal voltage signal, and the sinusoidal voltage signal moves through the signal processor 1130 to the first probe 1140.
  • the sinusoidal voltage signal may be referred to as a sinusoidal signal.
  • the GND (ground) 1120 generates a signal grounded signal, and the signal grounded signal moves to the second probe 1150 after passing through the signal processor 1130.
  • the signal grounded signal may be referred to as a ground signal.
  • the first probe 1140 generates a sinusoidal signal with respect to the plasma and measures a response signal thereto.
  • the second probe 1150 generates a ground signal for the plasma, and measures a response signal thereto for the first probe 1140.
  • the first probe 1140 sends the two received signals to the signal processor 1130, and the signal processor 1130 analyzes the received two signals to obtain the density of the plasma.
  • a signal is generated by one probe and measured again to analyze the signal.
  • the measured value is inaccurate, such as noise in the signal
  • the voltage of the signal was amplified and measured to improve the accuracy.
  • amplifying the voltage of the signal increases power consumption, and it is difficult to apply to power-sensitive devices such as wireless devices.
  • the first probe generates a sinusoidal signal and the second probe generates a ground signal. Therefore, if you compare the plasma measurement of the sinusoidal signal with the plasma measurement of the ground signal rather than analyzing one plasma measurement of the sinusoidal signal, you can obtain accurate analysis results without amplifying the voltage as in the prior art. There is an effect that can reduce.
  • FIG. 12 is a graph illustrating signals generated by probes according to the circuit of FIG. 11.
  • FIG. 13 is a diagram illustrating a plasma measurement principle according to another embodiment of the present invention. Unlike the circuit shown in FIG. 11, FIG. 13 has an additional AC power supply unit instead of signal ground.
  • the first AC power supply unit 1310 generates a first sinusoidal wave voltage signal, and the first sinusoidal wave voltage signal moves through the signal processor 1330 to the first probe 1340.
  • the first sinusoidal voltage signal may be referred to as a first sinusoidal signal.
  • the second AC power supply 1320 generates a second sinusoidal voltage signal whose phase is inverted 180 degrees with the first sinusoidal voltage signal, and the second sinusoidal voltage signal passes through the signal processor 1330 to the second probe 1350. do.
  • the second sinusoidal voltage signal may be referred to as a second sinusoidal signal.
  • the phase difference between the first sinusoidal voltage signal and the second sinusoidal voltage signal may be changed according to an embodiment or need.
  • the first probe 1340 generates a first sinusoidal wave signal for the plasma and measures a response signal thereto.
  • the second probe 1350 generates a second sinusoidal wave signal for the plasma, and measures a response signal thereto for the first probe 1340.
  • the first probe 1340 sends the two received signals to the signal processor 1330, and the signal processor 1330 analyzes the received two signals to obtain the density of the plasma.
  • the first probe generates a first sinusoidal signal
  • the second probe generates a second sinusoidal signal whose phase is inverted 180 degrees with the first sinusoidal signal. Let's do it. Therefore, if the plasma measurement value of the first sinusoidal signal and the plasma measurement value of the second sinusoidal wave signal are compared and analyzed rather than the analysis of one plasma measurement value of the first sinusoidal signal, an accurate analysis result is achieved without amplifying the voltage as in the related art. It is possible to obtain an effect that can reduce the power consumption.
  • FIG. 14 is a graph illustrating signals generated by probes according to the circuit of FIG. 13.
  • the same effect as that of increasing the potential difference without increasing the power output of the sinusoidal wave can be obtained. have.
  • Embodiments of the present invention as described above may be applied to various plasma processes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

플라즈마 측정 방법 및 플라즈마 공정 측정 센서가 개시된다. 본 발명의 일 실시 예에 따른 플라즈마 측정 방법은, 제 1 프로브와 제 2 프로브를 페어링하고, 제 1 프로브가 신호를 발생시키고, 제 2 프로브가 신호를 발생시키고, 제 1 프로브가 제 1 프로브 및 제 2 프로브에서 발생시킨 신호들을 수신하고, 이들을 분석하여 플라즈마의 특성을 측정하며, 제 1 프로브가 발생시킨 신호와 제 2 프로브가 발생시킨 신호는 상이한 것을 특징으로 한다. 두 신호를 비교 분석함으로써, 신호의 전력을 높이지 않고서도 정확한 측정값을 얻을 수 있으므로 저전력으로 구동이 가능하다.

Description

플라즈마 측정 방법 및 플라즈마 공정 측정 센서
본 발명은 플라즈마 측정 방법 및 플라즈마 공정 측정 센서에 관한 것으로, 보다 상세하게는 웨이퍼 형태의 플라즈마 공정 측정 센서를 이용한 플라즈마 측정 방법에 관한 것이다.
각종 반도체 생산 및 디스플레이 패널 생산에서 증착(deposition), 식각(etching), 애싱(ashing) 등을 수행하는데 있어서 플라즈마 공정이 널리 사용되고 있다.
플라즈마 공정에 있어서, 플라즈마의 상태는 공정의 결과물에 큰 영향을 끼치므로 플라즈마의 상태를 최적의 상태로 유지시키는 것이 중요하며, 이를 위해서는 플라즈마의 상태를 정확하게 측정하는 것이 필요하다.
그러나 플라즈마 공정은 고온에서 수행되므로, 플라즈마의 상태를 정확하게 측정하는 것이 어려우며, 수집되는 데이터의 양이 광범위하여 활용할 데이터를 선택하는 것이 어렵고, 측정하는 것 자체가 플라즈마에 영향을 끼칠 수 있다.
또한, 플라즈마를 측정할 수 있는 장비가 개발됨에 따라 현장에서는 플라즈마 측정을 위해 장비를 교체해야 하는 번거로움이 있다.
본 발명의 일 목적은 복수의 프로브(probe)들 중에서 2개의 프로브가 페어링(pairing)되고 페어링된 2개의 프로브를 이용하여 플라즈마에 의해 발생되는 고조파(Harmonics)를 분석하는 플라즈마 측정 방법 및 플라즈마 공정 측정 센서를 제공하는 것이다.
본 발명의 다른 일 목적은 저전력 구동에 유리한 플라즈마 측정 방법 및 플라즈마 공정 측정 센서를 제공하는 것이다.
본 발명의 다른 일 목적은 기존 플라즈마 공정 장비에 추가적인 설비 또는 교체를 필요로 하지 않으면서도 플라즈마를 정확하게 측정할 수 있고, 웨이퍼 형태를 가지며 웨이퍼와 유사한 두께를 갖는 플라즈마 공정 측정 센서를 제공하는 것이다.
본 발명의 다른 일 목적은 플라즈마의 특성을 2차원으로 분포를 측정할 수 있는 플라즈마 측정 방법 및 플라즈마 공정 측정 센서를 제공하는 것이다.
본 발명의 다른 일 목적은 플라즈마에 영향을 주지 않고 플라즈마의 특성을 정확하게 측정할 수 있는 플라즈마 측정 방법 및 플라즈마 공정 측정 센서를 제공하는 것이다.
본 발명의 일 실시 예에 의한 복수의 프로브(probe)를 이용하는 플라즈마 측정 방법은, 제 1 프로브와 제 2 프로브를 페어링 하는 단계, 상기 제 1 프로브가 신호를 발생시키는 단계, 상기 제 2 프로브가 신호를 발생시키는 단계, 상기 제 1 프로브가 상기 제 1 프로브 및 상기 제 2 프로브에서 발생시킨 신호들을 수신하여 플라즈마의 특성을 측정하고, 상기 제 1 프로브와 상기 제 2 프로브는 서로 인접한 것을 특징으로 한다.
본 발명의 다른 일 실시 예에 의한 복수의 프로브를 이용하는 플라즈마 공정 측정 센서는, 하판, 상기 하판 위의 중판(ring), 상기 하판 위에 있고, 상기 중판과 중첩하지 않는 회로판, 상기 회로판 위의 제 1 프로브(probe) 및 제 2 프로브; 및 상기 제 1 프로브 및 상기 제 2 프로브 위의 상판을 포함하고, 상기 제 1 프로브 및 상기 제 2 프로브 사이의 상호 작용을 통해 플라즈마의 특성을 측정하고, 상기 제 1 프로브와 상기 제 2 프로브는 서로 인접한 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 플라즈마 측정 방법은 2개의 프로브들이 페어링 되고 페어링된 2개의 프로브들을 이용하여 플라즈마에 의해 발생되는 고조파를 분석하여 플라즈마 밀도를 측정할 수 있는 효과가 있다.
본 발명의 일 실시 예에 따른 플라즈마 측정 방법은 저전력으로도 구동이 가능한 효과가 있다.
본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 웨이퍼 형태로서 두께 역시 기존의 웨이퍼와 유사하므로, 기존의 설비를 그대로 이용하면서 플라즈마의 특성을 정확하게 측정할 수 있는 효과가 있다.
본 발명의 일 실시 예에 따른 플라즈마 측정 방법은, 플라즈마 공정에 있어서 플라즈마의 특성을 2차원적으로 정확하게 측정할 수 있는 효과가 있다.
본 발명의 일 실시 예에 따른 플라즈마 측정 방법은, 플라즈마의 특성을 측정하면서도 플라즈마에 영향을 주지 않아 플라즈마의 특성을 정확하게 측정할 수 있는 효과가 있다.
도 1은 풉(foup)의 일 예시를 도시한 도면이다.
도 2는 웨이퍼가 풉에서 챔버로 이송되어 공정된 후 다시 풉으로 이송되는 과정을 도시한 플로우 차트다.
도 3a는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 분해도를 도시하고 있는 도면이다.
도 3b는 본 발명의 다른 일 실시 예에 따른 플라즈마 공정 측정 센서의 분해도를 도시하고 있는 도면이다.
도 4는 본 발명의 일 실시 예에 따른 패드의 구조를 도시하고 있는 도면이다.
도 5는 본 발명의 일 실시 예에 따른 패드를 제작하는 과정을 도시한 플로우 차트다.
도 6은 본 발명의 일 실시 예에 따른 상판과 프로브가 결합되는 과정을 도시한 플로우 차트다.
도 7은 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서를 제작하는 과정을 도시한 플로우 차트다.
도 8은 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 평면을 도시하고 있는 도면이다.
도 9a, 9b, 9c는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 구조의 측면을 도시하고 있는 도면이다.
도 10은 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 평면이 복수의 프로브들로 구성되어 있는 것을 도시하고 있는 도면이다.
도 11은 본 발명의 일 실시 예에 따른 플라즈마 측정 원리를 도시하고 있는 도면이다.
도 12는 본 발명의 일 실시 예에 따른 프로브들이 발생시키는 신호를 그래프로 도시하고 있는 도면이다.
도 13은 본 발명의 다른 일 실시 예에 따른 플라즈마 측정 원리를 도시하고 있는 도면이다.
도 14는 본 발명의 다른 일 실시 예에 따른 프로브들이 발생시키는 신호를 그래프로 도시하고 있는 도면이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시 예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부도면을 참조하여 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시 예들은 통상의 기술자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 발명에 따른 실시 예의 설명에 있어서, 각 구성요소의 "상(위)" 또는 "하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 구성요소가 서로 직접(directly)접촉되거나 하나 이상의 다른 구성요소가 상기 두 구성요소 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)(on or under)”로 표현되는 경우 하나의 구성요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 이하에서 이용되는 "제1" 및 "제2," "상부" 및 "하부" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서만 이용될 수도 있다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1은 풉(100)의 일 예시를 도시한 도면이다.
풉(Front Opening Unified Pod; FOUP; 100)은 일반적으로 반도체 제조에 사용되는 장치 중 하나이다. 상세하게는 웨이퍼(110)는 반도체 제조 공정에 따라 다양한 공정 장비를 거치게 되므로, 외부 변수들을 가능한 차단하면서 보관 및 운반에 용이하도록 풉(100)에 웨이퍼(110)들을 적재한다.
웨이퍼(110)들이 풉(100)에 적재되고 나면, 웨이퍼(110)들이 올바르게 위치해 있는지 여부를 확인한다. 예를 들면, 풉(100)의 내부의 웨이퍼(110)들을 레이저로 스캔하여 풉(100)의 슬롯에 하나의 웨이퍼(110)가 적재되어 있는지, 올바른 위치에 적재되어 있는지 여부를 확인한다. 예를 들어, 레이저로 풉(100)의 내부를 스캔 할 때, 웨이퍼(110)의 두께가 1.2mm 이상으로 측정된다면 웨이퍼(110)가 하나만 적재되어야 하는 하나의 슬롯에 두 장의 웨이퍼가 적재되어 있는 것으로 판단할 수 있다.
도 2는 웨이퍼(110)가 풉(100)에서 챔버로 이송되어 공정된 후 다시 풉(100)으로 이송되는 과정을 도시한 플로우 차트다.
풉(100)이 로드 포트로 적재되고 나면, 풉(100) 도어를 오픈한다(210). 풉(100) 도어가 오픈되면, 이송 장치는 풉(100) 내부에 있는 웨이퍼(100)들 중 하나를 선택한다(220). 이후에, 이송 장치는 선택한 웨이퍼(110)를 챔버로 이송한다(230). 챔버에서는 플라즈마를 발생시켜 웨이퍼(110)에 식각 공정, 증착 공정 등을 수행한다(240). 공정이 완료된 웨이퍼는 다시 이송 장치를 통해 풉(100)으로 이송된다(260). 반도체들이 모두 풉(100)에 들어오면 풉(100) 도어는 클로즈된다(260).
위의 단계들 중에서, 플라즈마를 이용하여 웨이퍼를 공정하는 단계(240)의 결과에 따라서 웨이퍼의 성능과 수율이 달라지게 된다. 따라서 플라즈마의 상태를 정확하게 측정함으로써 공정의 결과를 정확하게 예측할 수 있게 된다.
기존에는 플라즈마의 상태를 측정하기 위해 단일 량뮤어 탐침법(Single Langmuir Probe)을 주로 사용했다. 단일 량뮤어 탐침법은 플라즈마에 작은 금속 탐칩을 삽입하여 탐침에 인가되는 전압 변화에 따른 전류 곡선을 기초로 플라즈마 변수를 측정한다. 다만, 탐침에 인가한 전압에 의해 플라즈마에 영향을 미치고, 이로 인해 플라즈마 측정에도 오차가 발생한다. 또한, 탐침에 유전물질이 증착되는 경우에도 플라즈마 측정에 오차가 발생한다. 또한, 유선으로 탐침을 연결하는 경우 챔버 내부의 탐침과 챔버 외부에 위치하고 있는 데이터 분석 장치 간의 데이터 라인이 필요하므로 실제 공정 장비에 적용하기에 어려운 부분이 있다.
따라서 본 발명의 일 실시 예에서는 고조파 섭동을 이용하여 플라즈마의 변수인 플라즈마 밀도, 이온 플럭스(flux), 전자 온도 등을 측정한다.
구체적으로 살펴보면, 본 발명의 일 실시 예에서 센서는 플라즈마와 접하는 프로브 부분과 일정한 전압을 갖는 정현파를 발생시키고 신호를 센싱할 수 있는 측정 회로부로 나눌 수 있다. 신호를 센싱하여 측정된 신호는 고속 푸리에 변환(Fast Fourier Transform)을 이용하여 제 1 고조파 성분과 제 2 고조파 성분으로 나눌 수 있다.
본 발명의 일 실시 예에서 플라즈마의 측정 원리는 다음과 같다. 우선 프로브에 전류를 흘려보내고, 프로브에 흐르는 전류를 수정 Bessel 함수(Modified Bessel Function)를 이용하여 각 주파수 별로 분류한다. 그리고 기본주파수 전류 성분과 제 2 고조파 전류 성분의 비를 이용하여 전자 온도를 측정한다. 그 다음 측정한 전자 온도와 프로브에 대한 변수, 제 1 고조파 전류를 이용하여 이온 밀도를 구할 수 있다.
고조파를 이용하여 플라즈마를 분석하게 될 경우, 프로브에 정현파 전압을 인가하기 때문에 플라즈마 섭동이 적으며, 정현파의 주파수를 높일수록 프로브에 유전 물질이 증착되어도 플라즈마를 진단할 수 있게 된다.
또한, 본 발명의 일 실시 예에 따르면, 플라즈마 공정 측정 센서는 웨이퍼의 형태를 갖는다. 웨이퍼의 형태를 가짐으로써 기존의 반도체 장비를 교체하거나 업그레이드 할 필요 없이, 웨이퍼 공정 프로세스에 웨이퍼 형태의 센서가 섞여 들어가 있음으로써 플라즈마 공정이 수행될 때 센서는 플라즈마를 정확하게 측정할 수 있게 된다. 또한, 센서는 무선으로 작동하므로, 별도의 유선 데이터 케이블 등을 필요로 하지 않는다.
또한, 본 발명의 일 실시 예에 따르면, 웨이퍼 형태의 센서에 다수의 프로브들을 구성함으로써, 플라즈마를 측정한 변수들을 2차원 공간 분포로 표현할 수 있다.
도 3a는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 분해도를 도시하고 있는 도면이다.
본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 웨이퍼의 형태를 가지며, 상판(310a), 패드(320a), 프로브(330a), 회로판(340a), 패드(350a), 및 하판(360a)으로 구성되며, 중판은 생략되어있다. 이하에서, 프로브(330a)는 센서 또는 팁으로도 지칭될 수 있다. 또한, 하판(360a)는 기판으로도 지칭될 수 있다.
상판(310a) 및 하판(360a)은 전도성 물질 또는 반도체 물질로 구성될 수 있다. 또한, 상판(310a) 및 하판(360a)은 플라즈마로 공정되는 제품과 동일한 물질로 구성될 수 있다. 예를 들면, 상판(310a) 및 하판(360a)은 Silicon계 반도체 물질 또는 Aluminum계 도체로 구성될 수 있다. 즉, 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 챔버 내에서 직접 플라즈마와 접하기 때문에 상판(310a) 및 하판(360a)은 플라즈마에 대한 반응성이 낮은 물질로 구성되는 것이 바람직하다.
패드(320a, 350a)는 접착, 절연 EMI (Electro Magnetic Interference) 차폐의 역할을 하며 박형으로 제조된다.
프로브(330a)는 플라즈마를 측정하는 센서로서 직경 20 mm 이하로 구성된다. 프로브(330a)는 전도성 물질 또는 반도체 물질로 구성될 수 있다. 또한, 프로브(330a)는 플라즈마로 공정되는 제품과 동일한 물질로 구성될 수 있다. 예를 들면, 프로브(330a)는 Silicon계 반도체 물질 또는 Aluminum계 도체로 구성될 수 있다. 즉, 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 챔버 내에서 직접 플라즈마와 접하기 때문에 프로브(330a)는 플라즈마에 대한 반응성이 낮은 물질로 구성되는 것이 바람직하다.
회로판(340a)은 프로브(330a)와 전기적으로 연결된 회로를 포함한다.
도 3b는 본 발명의 다른 일 실시 예에 따른 플라즈마 공정 측정 센서의 분해도를 도시하고 있는 도면이다.
도3a에 도시된 플라즈마 공정 측정 센서와 달리, 도 3b에 도시된 플라즈마 공정 측정 센서는 하판 도어(370b)를 더 포함한다. 즉, 본 발명의 다른 일 실시 예에 따른 플라즈마 공정 측정 센서는 웨이퍼의 형태를 가지며, 상판(310b), 패드(320b), 프로브(330b), 회로판(340b), 패드(350b), 하판(360b), 및 하판 도어(370b)로 구성되며, 중판은 생략되어있다.
하판 도어(370b)는 플라즈마 공정 측정 센서의 디버그(debug)를 위해 하판(360b)의 중앙 영역에 위치하며, 하판(360b)에서 하판 도어(370b)를 분리하여 플라즈마 공정 측정 센서 전체를 분해하지 않고 회로판(340b)의 회로를 확인할 수 있도록 구성된다.
상판(310b), 하판(360b), 및 하판 도어(370b)는 전도성 물질 또는 반도체 물질로 구성될 수 있다. 또한, 상판(310b), 하판(360b), 및 하판 도어(370b)는 플라즈마로 공정되는 제품과 동일한 물질로 구성될 수 있다. 예를 들면, 상판(310b), 하판(360b), 및 하판 도어(370b)는 Silicon계 반도체 물질 또는 Aluminum계 도체로 구성될 수 있다. 즉, 본 발명의 다른 일 실시 예에 따른 플라즈마 공정 측정 센서는 챔버 내에서 직접 플라즈마와 접하기 때문에 상판(310b), 하판(360b), 및 하판 도어(370b)는 플라즈마에 대한 반응성이 낮은 물질로 구성되는 것이 바람직하다.
패드(320b, 350b)는 접착, 절연, EMI 차폐의 역할을 하며 박형으로 제조된다.
프로브(330b)는 플라즈마를 측정하는 센서로서 직경 20 mm 이하로 구성된다. 프로브(330b)는 전도성 물질 또는 반도체 물질로 구성될 수 있다. 또한, 프로브(330b)는 플라즈마로 공정되는 제품과 동일한 물질로 구성될 수 있다. 예를 들면, 프로브(330b)는 Silicon계 반도체 물질 또는 Aluminum계 도체로 구성될 수 있다. 즉, 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 챔버 내에서 직접 플라즈마와 접하기 때문에 프로브(330b)는 플라즈마에 대한 반응성이 낮은 물질로 구성되는 것이 바람직하다.
회로판(340b)은 프로브(330b)와 전기적으로 연결된 회로를 포함한다.
도 4는 본 발명의 일 실시 예에 따른 패드의 구조를 도시하고 있는 도면이다.
패드는 절연, EMI 차폐, 접착의 기능을 수행하고 있으며, 접착층(410), 절연층(420), 금속층(430), 절연층(440), 및 접착층(450)을 포함한다.
패드의 상기 기능들을 실현하기 위해 패드의 절연층들(420, 440)은 다공성 구조 또는 단열 구조를 가지며, 패드의 금속층(430)은 박막 또는 Mesh 구조를 갖는다. 접착층(410) 및 절연층(420)은 하나의 층으로 결합될 수 있으며, 접착층(450) 및 절연층(440) 역시 하나의 층으로 결합될 수 있다.
도 5는 본 발명의 일 실시 예에 따른 패드를 제작하는 과정을 도시한 플로우 차트다.
본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 웨이퍼 형태를 가지며, 실제 웨이퍼와 유사한 두께여야 하므로, 패드는 가능한 얇게 제작한다. 패드를 제작하기 위해 먼저 절연층을 제작하고(510), 금속층을 제작하고(520), 절연층을 제작하고(530), 마지막으로 상하부 접착층을 제작한다(540). 이하에서는, 박형의 패드를 제작하기 위한 각층의 제작 방법을 설명한다.
절연층 제작 단계(510, 530)에서는 스프레이(spray) 공정 또는 스퍼터(sputter) 공정을 통해 절연층을 제작한다. 절연층을 메탈캔 방식으로 제작하게 될 경우 스프레이 공정 또는 스퍼터 공정으로 제작한 것보다 두꺼워지므로 스프레이 공정 또는 스퍼터 공정으로 제작한다. 스프레이 공정 또는 스퍼터 공정을 통해 제작된 절연층은 다공성 구조 또는 단열 구조를 갖는다.
금속층 제작 단계(520)에서는 스프레이 공정 또는 스퍼터 공정을 통해 금속층을 제작한다. 절연층을 메탈캔 방식으로 제작하게 될 경우 스프레이 공정 또는 스퍼터 공정으로 제작한 것보다 두꺼워지므로 스프레이 공정 또는 스퍼터 공정으로 제작한다. 스프레이 공정 또는 스퍼터 공정을 통해 제작된 금속층은 박막 또는 Mesh 구조를 갖는다.
상하부 접착층 제작 단계(540)에서는 스프레이 공정 또는 페이스트(paste) 도포 공정을 통해 접착층을 제작한다. 다만, 접착층과 절연층은 하나의 층으로 결합될 수 있으며, 결합될 경우 별도의 접착층 제조 공정 단계는 생략 가능하다.
도 6은 본 발명의 일 실시 예에 따른 상판과 프로브가 결합되는 과정을 도시한 플로우 차트다.
상판과 프로브는 전도성 물질 또는 반도체 물질로 구성되는데, 상판과 프로브 둘 다 전도성 물질로 구성될 때는 통전이 되어 플라즈마가 제대로 측정이 되지 않는다. 또한, 상판과 프로브가 반도체 물질로 구성되더라도 고온의 챔버에 들어가면 반도체 물질이 도체로 변하므로 역시 통전이 되어 플라즈마가 제대로 측정이 되지 않는다. 따라서 상판과 프로브를 하나의 층으로 구성하되 서로 절연시켜야 한다.
따라서 먼저 상판을 준비하고(610), 상판에 절연막 또는 산화막을 생성한다(620).
다만, 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서는 웨이퍼 형태를 가지며, 실제 웨이퍼와 유사한 두께이어야 하므로, 상판을 최대한 얇게 유지하면서 절연막 또는 산화막을 형성해야 한다.
실험 결과, 상판이 Silicon 계열 반도체 물질로 구성될 경우, 상판에 산화막인 경우에는 SiO 2막으로, 절연막인 경우에는 SiN막 또는 Y 2O 3막으로 형성했을 때 크랙이 발생하지 않는 한도에서 두께를 0.5mm까지 얇게 제작할 수 있다.
실험 결과, 상판이 Aluminum 계열 도체 물질로 구성될 경우, 상판에 산화막으로 Alumina(Al 2O 3)막으로 형성했을 때 크랙이 발생하지 않는 한도에서 두께를 0.5mm까지 또는 더 얇게 제작할 수 있다.
상판에 절연막 또는 산화막을 생성하고(620), 그 다음에 상판에 프로브를 결합하게 되면(630) 상판과 프로브가 서로 절연되므로 프로브에서 플라즈마를 정확하게 측정할 수 있게 된다.
도 7은 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서를 제작하는 과정을 도시한 플로우 차트다.
먼저, 기판을 준비한다(710). 기판은 하판을 지칭하는 또 다른 명칭을 의미한다. 그 다음 기판 위에 회로판을 적층하고(720), 회로판 위에 프로브를 적층하고(730) 마지막으로 도 6에서 살펴본 절연된 상판을 기판 및 회로판 위에 적층하게 된다(740).
도 8은 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 평면을 도시하고 있는 도면이다.
본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서(800)는 위에서 보면 복수의 프로브(810)들과 프로브와 하나의 층을 이루고 있는 상판(820)으로 구성되며, 프로브(810)들의 위치나 개수는 필요에 따라 변경될 수 있다.
도 9a, 9b, 9c는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 구조의 측면을 도시하고 있는 도면이다.
도 9a는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 결합 전 각 구성요소로서, 상판(910), 프로브(920), 회로판(930), 중판(ring; 940), 및 하판(950)을 도시하고 있다.
중판(940)은 도면상 하판 위에 위치해 있지만, 상판(910) 또는 하판(950)과 일체형으로 구성될 수 있다. 또한, 중판(940)은 전도성 물질, 반도체 물질 외에 에폭시계, 실리콘계 접착제로 대체될 수 있다.
도 9b는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 결합 전에 상판(910)에 절연막 또는 산화막이 형성하는 것을 도시하고 있다. 그 다음으로는 하판(950)에 중판(940), 회로판(930) 및 프로브(920)을 적층하고, 절연막 또는 산화막이 형성된 상판(915)을 덮는다.
도 9c는 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 결합 후의 측면을 도시하고 있으며, 절연막 또는 산화막이 형성된 상판(915), 프로브(920), 회로판(930), 중판(940), 및 하판(950)을 도시하고 있다.
도 10 내지 도 14에서는 본 발명의 일 실시 예에 따른 플라즈마의 측정 원리에 대해서 구체적으로 서술한다.
도 10은 본 발명의 일 실시 예에 따른 플라즈마 공정 측정 센서의 평면이 복수의 프로브들로 구성되어 있는 것을 도시하고 있는 도면이다.
도 10에 도시된 플라즈마 공정 측정 센서(1000)는 도 8에 도시된 플라즈마 공정 측정 센서(800)와 동일한 구조를 가지며, 복수의 프로브들은 각자 고유한 번호를 갖는다. 복수의 프로브들은 1 내지 49의 번호를 가지는 것으로 도시되어 있으나, 프로브의 개수와 위치는 실시 예 또는 필요에 따라서 변경될 수 있다.
종래에는 각각의 프로브들이 독자적으로 플라즈마를 측정했으나, 본원 발명의 일 실시 예에 따르면 두 개의 프로브가 페어링되어 상호 작용함으로써 플라즈마를 측정하게 된다. 복수의 프로브들은 모두 MUX(multiplexer)에 접속되어 있으며, 플라즈마 측정시 MUX를 통해 한번에 근접한 두 개의 프로브들을 페어링(paring)하여 구동한다. 예를 들면, 1 내지 49 프로브들 중에서 1과 2 프로브, 2와 3 프로브, 3과 4 프로브, 9와 2 프로브, 10과 11 프로브 등과 같이 인접한 프로브들을 선택하여 페어링한다.
또한, 프로브들은 플라즈마를 측정하기 전에 캘리브레이션(calibration)작업을 수행한다. 프로브들을 캘리브레이션하기 위해 플라즈마를 이용할 수 있지만, 이는 비효율적이므로 본 발명의 일 실시 예에 따른 프로브들은 플라즈마 대신에 특정 임피던스를 연결하고, 임피던스의 측정값을 기초로 프로브들의 세팅 값들을 조절한다.
도 11은 본 발명의 일 실시 예에 따른 플라즈마 측정 원리를 도시하고 있는 도면이다.
교류 전원부(1110)에서는 정현파 전압 신호를 발생시키고, 정현파 전압 신호는 신호처리부(1130)를 지나 제 1 프로브(1140)로 이동한다. 이하에서 정현파 전압 신호는 정현파 신호로 지칭될 수 있다.
GND(ground; 1120)에서는 신호 접지(signal grounding)된 신호를 발생시키고, 신호 접지된 신호는 신호처리부(1130)를 지나 제 2 프로브(1150)로 이동한다. 이하에서 신호 접지된 신호는 접지 신호로 지칭될 수 있다.
제 1 프로브(1140)는 플라즈마에 대해 정현파 신호를 발생시키고, 그에 대한 반응 신호를 측정한다. 제 2 프로브(1150)는 플라즈마에 대해 접지 신호를 발생시키고, 제 1 프로브(1140)에서 그에 대한 반응 신호를 측정한다. 제 1 프로브(1140)는 수신한 두 신호를 신호처리부(1130)로 보내고, 신호처리부(1130)에서는 수신한 두 신호를 분석하여 플라즈마의 밀도를 구한다.
종래에는 프로브 하나에서 신호를 발생시키고, 이를 다시 측정하여 신호를 분석하였다. 그러나 신호에 노이즈가 발생하는 등과 같이 측정값의 정확도가 떨어지는 경우에는 정확도를 향상시키기 위해 신호의 전압을 증폭시켜 측정하였다. 그러나 신호의 전압을 증폭시키게 되면 전력 소모가 커지게 되고, 무선 디바이스 등과 같이 전력 소비에 민감한 디바이스들에 적용하기 어려운 문제점이 있다.
따라서 본 발명의 일 실시 예에 따르면, 프로브 두 개를 이용하되, 제 1 프로브에서는 정현파 신호를 발생시키고, 제 2 프로브에서는 접지 신호를 발생시킨다. 따라서 정현파 신호에 대한 플라즈마 측정값 하나를 분석하는 것 보다 정현파 신호에 대한 플라즈마 측정값과 접지 신호에 대한 플라즈마 측정값을 비교분석 하면 종래와 같이 전압을 증폭시키지 않고도 정확한 분석 결과를 얻을 수 있어 전력소비를 감소시킬 수 있는 효과가 있다.
도 12는 도 11에 도시된 회로에 따른 프로브들이 발생시키는 신호를 그래프로 도시하고 있는 도면이다.
제 1 프로브가 발생시키는 정현파 신호(1210)와 제 2 프로브가 발생시키는 접지 신호(1220)를 비교하여 분석하면, 정현파의 송출 전력을 높이지 않고 전위차를 높인 것과 같은 효과를 얻을 수 있다.
도 13은 본 발명의 다른 일 실시 예에 따른 플라즈마 측정 원리를 도시하고 있는 도면이다. 도 11에 도시된 회로와 달리, 도 13에서는 신호 접지 대신에 추가적인 교류 전원부를 갖는 것을 특징으로 하고 있다.
제 1 교류 전원부(1310)에서는 제 1 정현파 전압 신호를 발생시키고, 제 1 정현파 전압 신호는 신호처리부(1330)를 지나 제 1 프로브(1340)로 이동한다. 이하에서, 제 1 정현파 전압 신호는 제 1 정현파 신호로 지칭될 수 있다.
제 2 교류 전원부(1320)에서는 제 1 정현파 전압 신호와 위상이 180도 반전된 제 2 정현파 전압 신호를 발생시키고, 제 2 정현파 전압 신호는 신호처리부(1330)를 지나 제 2 프로브(1350)로 이동한다. 이하에서, 제 2 정현파 전압 신호는 제 2 정현파 신호로 지칭될 수 있다. 제 1 정현파 전압 신호와 제 2 정현파 전압 신호의 위상 차이는 실시 예 또는 필요에 따라 변경될 수 있다.
제 1 프로브(1340)는 플라즈마에 대해 제 1 정현파 신호를 발생시키고, 그에 대한 반응 신호를 측정한다. 제 2 프로브(1350)는 플라즈마에 대해 제 2 정현파 신호를 발생시키고, 제 1 프로브(1340)에서 그에 대한 반응 신호를 측정한다. 제 1 프로브(1340)는 수신한 두 신호를 신호처리부(1330)로 보내고, 신호처리부(1330)에서는 수신한 두 신호를 분석하여 플라즈마의 밀도를 구한다.
따라서 본 발명의 다른 일 실시 예에 따르면, 프로브 두 개를 이용하되, 제 1 프로브에서는 제 1 정현파 신호를 발생시키고, 제 2 프로브에서는 제 1 정현파 신호와 위상이 180도 반전된 제 2 정현파 신호 발생시킨다. 따라서 제 1 정현파 신호에 대한 플라즈마 측정값 하나를 분석하는 것 보다 제 1 정현파 신호에 대한 플라즈마 측정값과 제 2 정현파 신호에 대한 플라즈마 측정값을 비교분석 하면 종래와 같이 전압을 증폭시키지 않고도 정확한 분석 결과를 얻을 수 있어 전력소비를 감소시킬 수 있는 효과가 있다.
도 14는 도 13에 도시된 회로에 따른 프로브들이 발생시키는 신호를 그래프로 도시하고 있는 도면이다.
제 1 프로브가 발생시키는 제 1 정현파 신호(1410)와 제 2 프로브가 발생시키는 제 2 정현파 신호(1220)를 비교하여 분석하면, 정현파의 송출 전력을 높이지 않고 전위차를 높인 것과 같은 효과를 얻을 수 있다.
본 명세서에서 동작의 특정한 구조 및 세부내용이 도시되고 설명되었으나, 이들 설명은 예시적이며 다른 실시 예들 및 균등물이 본 발명의 기술사상 및 범위로부터 벗어남이 없이 통상의 기술자 의해 용이하게 만들어 질 수 있음이 이해된다. 따라서, 본 발명은 특허청구범위의 기술사상 및 범위 내에 있는 모든 이러한 대안 및 균등물을 포함하는 것으로 의도되어 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 플라즈마 공정에 적용될 수 있다.

Claims (10)

  1. 복수의 프로브(probe)를 이용하는 플라즈마 측정 방법에 있어서,
    제 1 프로브와 제 2 프로브를 페어링 하는 단계;
    상기 제 1 프로브가 신호를 발생시키는 단계;
    상기 제 2 프로브가 신호를 발생시키는 단계;
    상기 제 1 프로브가 상기 제 1 프로브 및 상기 제 2 프로브에서 발생시킨 신호들을 수신하여 플라즈마의 특성을 측정하고,
    상기 제 1 프로브와 상기 제 2 프로브는 서로 인접한 것을 특징으로 하는, 복수의 프로브를 이용하는 플라즈마 측정 방법.
  2. 제 1 항에 있어서,
    상기 제 1 프로브가 신호를 발생 시키는 단계는,
    상기 제 1 프로브가 제 1 정현파 신호를 발생시키는 것을 특징으로 하는, 복수의 프로브를 이용하는 플라즈마 측정 방법.
  3. 제 1 항에 있어서,
    상기 제 2 프로브가 신호를 발생시키는 단계는,
    상기 제 2 프로브가 신호 접지(signal grounding)된 신호를 발생시키는 것을 특징으로 하는, 복수의 프로브를 이용하는 플라즈마 측정 방법.
  4. 제 2 항에 있어서,
    상기 제 2 프로브가 신호를 발생시키는 단계는,
    상기 제 2 프로브가 제 2 정현파 신호를 발생시키는 것을 특징으로 하는, 복수의 프로브를 이용하는 플라즈마 측정 방법.
  5. 제 4 항에 있어서,
    상기 제 1 정현파 신호의 위상과 상기 제 2 정현파 신호의 위상은 상이한 것을 특징으로 하는, 복수의 프로브를 이용하는 플라즈마 측정 방법.
  6. 복수의 프로브를 이용하는 플라즈마 공정 측정 센서에 있어서,
    하판;
    상기 하판 위의 중판(ring);
    상기 하판 위에 있고, 상기 중판과 중첩하지 않는 회로판;
    상기 회로판 위의 제 1 프로브(probe) 및 제 2 프로브; 및
    상기 제 1 프로브 및 상기 제 2 프로브 위의 상판을 포함하고,
    상기 제 1 프로브 및 상기 제 2 프로브 사이의 상호 작용을 통해 플라즈마의 특성을 측정하고,
    상기 제 1 프로브와 상기 제 2 프로브는 서로 인접한 것을 특징으로 하는, 플라즈마 공정 측정 센서.
  7. 제 6 항에 있어서,
    상기 제 1 프로브는 정현파 신호를 발생시키고,
    상기 제 2 프로브는 신호 접지된 신호를 발생시키고,
    상기 제 1 프로브는 상기 제 1 프로브 및 상기 제 2 프로브에서 발생시킨 신호를 수신하여 플라즈마의 특성을 측정하는 것을 특징으로 하는, 플라즈마 공정 측정 센서.
  8. 제 6 항에 있어서,
    상기 제 1 프로브는 제 1 정현파 신호를 발생시키고,
    상기 제 2 프로브는 제 2 정현파 신호를 발생시키고,
    상기 제 1 프로브는 상기 제 1 프로브 및 상기 제 2 프로브에서 발생시킨 신호를 수신하여 플라즈마의 특성을 측정하는 것을 특징으로 하는, 플라즈마 공정 측정 센서.
  9. 제 8 항에 있어서,
    상기 제 1 정현파의 위상과 상기 제 2 정현파의 위상은 상이한 것을 특징으로 하는, 플라즈마 공정 측정 센서.
  10. 제 6 항에 있어서,
    상기 제 1 프로브 및 상기 제 2 프로브는 임피던스에 연결하여 캘리브레이션(calibration)된 것을 특징으로 하는, 플라즈마 공정 측정 센서.
PCT/KR2018/010307 2018-06-05 2018-09-04 플라즈마 측정 방법 및 플라즈마 공정 측정 센서 WO2019235690A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180064926A KR102616493B1 (ko) 2018-06-05 2018-06-05 플라즈마 측정 방법 및 플라즈마 공정 측정 센서
KR10-2018-0064926 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019235690A1 true WO2019235690A1 (ko) 2019-12-12

Family

ID=68770466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010307 WO2019235690A1 (ko) 2018-06-05 2018-09-04 플라즈마 측정 방법 및 플라즈마 공정 측정 센서

Country Status (2)

Country Link
KR (1) KR102616493B1 (ko)
WO (1) WO2019235690A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208295A (ja) * 1999-01-11 2000-07-28 Hitachi Ltd プラズマ計測電極およびそれを用いた計測方法
US20050067102A1 (en) * 2003-09-30 2005-03-31 Baldwin Craig T. Method and apparatus for detecting a plasma
JP2012047548A (ja) * 2010-08-26 2012-03-08 Chube Univ プラズマ電子密度測定プローブ及び測定装置
KR20140112586A (ko) * 2013-03-11 2014-09-24 삼성전자주식회사 플라즈마 진단방법 및 장치
US20150020972A1 (en) * 2010-01-21 2015-01-22 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208295A (ja) * 1999-01-11 2000-07-28 Hitachi Ltd プラズマ計測電極およびそれを用いた計測方法
US20050067102A1 (en) * 2003-09-30 2005-03-31 Baldwin Craig T. Method and apparatus for detecting a plasma
US20150020972A1 (en) * 2010-01-21 2015-01-22 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
JP2012047548A (ja) * 2010-08-26 2012-03-08 Chube Univ プラズマ電子密度測定プローブ及び測定装置
KR20140112586A (ko) * 2013-03-11 2014-09-24 삼성전자주식회사 플라즈마 진단방법 및 장치

Also Published As

Publication number Publication date
KR102616493B1 (ko) 2023-12-21
KR20190138454A (ko) 2019-12-13

Similar Documents

Publication Publication Date Title
US6424141B1 (en) Wafer probe station
JP5166270B2 (ja) プラズマ加工の電気パラメータを測定するセンサ装置
US6673636B2 (en) Method of real-time plasma charging voltage measurement on powered electrode with electrostatic chuck in plasma process chambers
JP2017069212A (ja) プラズマチャンバのためのプロセス条件検知デバイス及び方法
TW550385B (en) Capacitively coupled RF voltage probe
JP3710081B2 (ja) プラズマ処理装置
WO2019216493A1 (ko) 플라즈마 공정 측정 센서 및 그 제조 방법
WO2019235690A1 (ko) 플라즈마 측정 방법 및 플라즈마 공정 측정 센서
TWI591683B (zh) 電漿處理系統中用來偵測方位角不均勻性之方法與設備
WO2020218690A1 (ko) 저온 초정밀 열수송 측정용 프로브 시스템 및 이를 포함하는 측정장치
CN114705902A (zh) 电流检测装置及其封装结构
WO2011019160A2 (ko) 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법
US9739828B2 (en) Probe device
JP2004279081A (ja) 静電容量センサ式計測装置
US20030139043A1 (en) Apparatus and method for monitoring a plasma etch process
JP2004063486A (ja) プローバのチャック機構
WO2023158227A1 (ko) 플라즈마 공정 모니터링 방법, 플라즈마 공정 모니터링 장치 및 플라즈마 발생 장치
WO2018199601A1 (ko) 센서 탑재 웨이퍼
JPH0762691B2 (ja) 電気特性測定装置
JP3606546B2 (ja) 高空間分解能の近磁界プローブまたは近磁界プローブシステム
WO2019212198A1 (ko) 전계 효과를 이용한 압력 센서 및 이의 제조 방법
JP4007597B2 (ja) 静電容量センサ式計測装置
WO2023063657A1 (ko) 대면적 측정이 가능한 모니터링 기기
CN217404385U (zh) 电流检测装置及其封装结构
WO2024080588A1 (ko) 임피던스 스펙트럼 측정 장치의 초기값 보정을 위한 보정 장치 및 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921567

Country of ref document: EP

Kind code of ref document: A1