WO2019230215A1 - Image capture device - Google Patents
Image capture device Download PDFInfo
- Publication number
- WO2019230215A1 WO2019230215A1 PCT/JP2019/016081 JP2019016081W WO2019230215A1 WO 2019230215 A1 WO2019230215 A1 WO 2019230215A1 JP 2019016081 W JP2019016081 W JP 2019016081W WO 2019230215 A1 WO2019230215 A1 WO 2019230215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical path
- unit
- image
- imaging
- hole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/954—Inspecting the inner surface of hollow bodies, e.g. bores
Definitions
- the present invention relates to an imaging device that images an inner peripheral surface of a hole formed in a hole forming direction from the surface of an imaging object.
- three-dimensional workpieces such as metal parts, resin parts, and rubber parts
- holes including recesses and through holes
- an inspection technique has been proposed in which an inner peripheral surface of a hole is imaged using an imaging device described in Patent Document 1 and a workpiece is inspected based on an image obtained by the imaging device.
- a lens barrel that can be inserted into and removed from a hole of a workpiece is extended in the vertical direction.
- An objective mirror is disposed on the lower end side of the lens barrel at an angle of 45 ° with respect to the axis of the lens barrel, and the illumination light directed downward from above along the axis of the lens barrel is folded back in the horizontal direction. Irradiate the inner peripheral surface of the hole. The reflected light reflected by the inner peripheral surface of the hole is folded upward by the objective mirror and received by the camera unit via the light control unit. Thereby, the partial image of the inner peripheral surface of the hole is taken by the camera unit.
- the lens barrel and the objective mirror are rotated around the axis in order to image the inner peripheral surface of the hole over the entire circumference. Further, since the reflected light emitted from the lens barrel rotates around the axis along with the rotation, the dimmer is rotated around the axis.
- the light incident on the camera unit is prevented from rotating around the axis, and the orientation of the image captured by the camera unit is maintained constant. In this way, it is possible to satisfactorily capture an entire peripheral image of the inner peripheral surface of the hole at the insertion height position of the lens barrel and the objective mirror.
- each insertion is performed while switching the insertion height position of the lens barrel and objective mirror in multiple stages. It is necessary to rotate the lens barrel and the objective mirror at the height position and to repeatedly capture the entire circumference image by the camera unit while rotating the light control unit in synchronization with the rotation. Therefore, it may take a long time to image the inner peripheral surface of the hole.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide an imaging device capable of imaging the inner peripheral surface of a hole satisfactorily in a short time.
- An image pickup apparatus is an image pickup apparatus that picks up an image of an inner peripheral surface of a hole formed in a hole forming direction from a surface of an object to be imaged, and emits illumination light for illuminating the inner peripheral surface.
- Light source and a plurality of folding mirrors, and each of the plurality of folding mirrors guides the illumination light to different areas in the hole forming direction on the inner peripheral surface and extracts reflected light reflected by the areas from the holes
- a head portion that rotates around a rotation axis parallel to the hole forming direction while being inserted into the hole, and a head that rotates around the rotation axis so that the rotation angle per unit time is a half rotation angle of the head portion.
- An image rotation correction unit that guides a plurality of reflected lights extracted from the image pickup unit toward the image pickup unit and maintains the orientation of an image picked up by the image pickup unit, and each reflected light emitted from the image rotation correction unit From the image rotation correction unit to the imaging unit It is characterized in that it comprises an optical path length difference correcting unit for guiding to the imaging unit while adjusting in response to the optical path length difference of a plurality of reflected light in the head portion of the optical path length of the reflected light in.
- a plurality of folding mirrors are provided in the head portion inserted into the hole, and the illumination light is guided to different areas in the hole forming direction on the inner peripheral surface and reflected by the areas. The reflected light is extracted from the hole. Then, each reflected light is guided to the imaging unit. For this reason, it is possible to image the inner peripheral surface of the hole in a plurality of regions different from each other in the hole forming direction at a time.
- an optical path length difference occurs between the plurality of reflected lights in the head unit, but the optical path length difference until the reflected light enters the imaging unit.
- the correction unit adjusts the optical path length of the reflected light from the image rotation correction unit to the imaging unit for each reflected light emitted from the image rotation correction unit. For this reason, the optical path length from the inner peripheral surface to the imaging unit is the same for any reflected light, and the inner peripheral surface of the hole can be imaged satisfactorily for each region.
- the head portion is provided with a plurality of folding mirrors, and the optical path length difference of the reflected light at the head portion that occurs with the mirror is adjusted by the optical path length difference correction portion.
- Good imaging can be performed in a short time.
- a plurality of constituent elements of each aspect of the present invention described above are not essential, and some or all of the effects described in the present specification are to be solved to solve part or all of the above-described problems.
- technical features included in one embodiment of the present invention described above A part or all of the technical features included in the above-described other aspects of the present invention may be combined to form an independent form of the present invention.
- FIG. 3 It is a figure which shows one Embodiment of the imaging device which concerns on this invention. It is a figure which shows typically the head part, image rotation correction
- FIG. 1 is a diagram showing an embodiment of an imaging apparatus according to the present invention.
- FIG. 2 is a diagram schematically showing a head unit, an image rotation correction unit, and an optical path length difference correction unit, which are the main components of the imaging apparatus shown in FIG.
- FIG. 3 is a diagram schematically illustrating an optical path in which light reflected by the inner peripheral surface of the through hole, that is, reflected light is guided to the imaging unit.
- a workpiece 1 having a through hole 13 drilled from a front surface 11 to a rear surface 12 in the center of a disk-shaped metal plate is used as an imaging target, and the rear surface 12 of the workpiece 1 is held by a workpiece holding table 2.
- This is an apparatus for imaging the inner peripheral surface 14 of the through-hole 13 of the workpiece 1 in the state where the work is performed.
- the hole forming direction in which the through hole 13 is formed is referred to as “Z direction”.
- the head portion 3 is provided so as to be detachable from the (+ Z) direction with respect to the through hole 13 of the workpiece 1 held on the workpiece holding table 2. And when imaging the workpiece
- An image rotation correction unit 4, an optical path length difference correction unit 5, and an imaging unit 6 are provided in this order above the head unit 3, that is, in the (+ Z) direction, and a light source 7 is provided on the side surface of the imaging unit 6. It is attached.
- the light source 7 emits illumination light for illuminating the inner peripheral surface 14 of the through hole 13.
- the illumination light IL emitted from the light source 7 is irradiated toward the half mirror 61 provided in the imaging unit 6.
- the illumination light IL is folded back in the ( ⁇ Z) direction by the half mirror 61 and further enters the head unit 3 via the optical path length difference correction unit 5 and the image rotation correction unit 4.
- the illumination light IL is folded back in the ( ⁇ X) direction and is applied to the inner peripheral surface 14 of the through hole 13.
- the reflected light reflected by the inner peripheral surface 14 of the through hole 13 travels in the (+ X) direction, is folded back in the (+ Z) direction by the head portion 3, and is taken out from the through hole 13 of the workpiece 1. Then, the reflected light enters the imaging unit 6 through the image rotation correction unit 4 and the optical path length difference correction unit 5, passes through the half mirror 61, and is received by the imaging device 62. As a result, the imaging unit 6 images an area of the inner peripheral surface 14 of the through hole 13 that has been irradiated with the illumination light IL.
- the head unit 3 has two folding mirrors 31 and 32.
- the folding mirrors 31 and 32 are displaced from each other in the Z direction. More specifically, the folding mirror 32 is arranged so as to be shifted in the ( ⁇ Z) direction from the folding mirror 31 and is located on the tip side in the Z direction. That is, the folding mirror 32 corresponds to an example of the “tip folding mirror” of the present invention.
- the folding mirror 32 is also displaced in the ( ⁇ Y) direction from the folding mirror 31 in the Y direction orthogonal to the X direction and the Z direction. Therefore, as shown in FIG. 3, the illumination light IL (FIG.
- the reflected light RL1 and RL2 reflected by the regions R1 and R2 are extracted from the through hole 13 via the folding mirrors 31 and 32, respectively.
- the reflected light RL2 corresponds to an example of “tip reflected light” of the present invention.
- symbol A1 indicates the reflection position of the illumination light IL in the region R1
- symbol A2 indicates the reflection position of the illumination light IL in the region R2.
- reference numeral B ⁇ b> 1 is a folding position where the reflected light RL ⁇ b> 1 is folded back by the mirror surface 311 of the folding mirror 31
- reference numeral B ⁇ b> 2 is a folding position where the reflected light RL ⁇ b> 2 is folded by the mirror surface 321 of the folding mirror 32.
- the folding mirrors 31 and 32 are provided so that the surface normal of the mirror surface 311 is slightly inclined with respect to the surface normal of the mirror surface 312 and the reflected light RL2 is emitted in the Z direction.
- the reflected light RL1 travels gradually away from the reflected light RL2 in the Y direction (see FIG. 7). The reason will be described in detail later.
- the head portion 3 having the two folding mirrors 31 and 32 is configured such that the folding mirrors 31 and 32 are rotatable integrally with the central axis 13a of the through hole 13 extending parallel to the Z direction as a rotation axis. .
- the head unit 3 is mechanically connected to the head rotation driving unit 33 as shown in FIGS. For this reason, when the head rotation drive unit 33 is actuated in response to a rotation command from the control unit 9 that controls the entire apparatus, the head unit 3 rotates around the central axis 13a.
- the regions R1 and R2 move in the circumferential direction of the inner peripheral surface 14 to rotate the head portion 3 once, whereby the reflected lights RL1 and RL2 are extracted over the entire circumference of the inner peripheral surface 14 of the through hole 13.
- the image rotation correction unit 4 having the same configuration as the light control unit of Patent Document 1 is provided.
- the image rotation correction unit 4 includes three correction mirrors 41 to 43, and the correction mirrors 41 to 43 are integrally rotatable with the central axis 13a of the through hole 13 as a rotation axis.
- the image rotation correction unit 4 is mechanically connected to the image rotation drive unit 44 as shown in FIGS. When the image rotation driving unit 44 is actuated in response to a rotation command from the control unit 9, the image rotation correction unit 4 rotates about the central axis 13a.
- the rotation is controlled so that the rotation speed, that is, the rotation angle ⁇ per unit time becomes a half rotation angle ( ⁇ / 2) of the head unit 3.
- the reflected lights RL1 and RL2 do not rotate but are directly guided to the imaging unit 6 via the optical path length difference correction unit 5, and the orientation of the image captured by the imaging unit 6 is maintained constant. Since the configuration and operation of the image rotation correction unit 4 are described in detail in Patent Document 1, description of the configuration and operation of the image rotation correction unit 4 in this specification is omitted.
- the folding mirror 32 is further away from the image rotation correction unit 4 than the folding mirror 31 in the head unit 3, that is, on the tip side. Therefore, the optical path length of the reflected light RL2 is longer than the optical path length of the reflected light RL1. For this reason, if the reflected lights RL1 and RL2 emitted from the image rotation correction unit 4 enter the imaging unit 6 as they are, a focus shift occurs between the regions R1 and R2, and the images are captured well together. Difficult to do. Therefore, in this embodiment, the optical path length difference correction unit 5 in which two optical path changing mirrors 51 and 52 are combined is interposed between the image rotation correction unit 4 and the imaging unit 6.
- the optical path length difference correction unit 5 includes an optical path changing mirror 51 that is disposed in the Y direction away from the optical path of the reflected light RL2 and reflects only the reflected light RL1, and an optical path changing mirror 51.
- An optical path changing mirror 52 that turns the reflected light RL1 that is turned back toward the imaging unit 6 is provided. Therefore, in the optical path length difference correction unit 5, as shown in FIG. 3, the reflected light RL1 is reflected by the amount of the reflected light RL1 that is reflected at the reflection position C1 of the optical path change mirror 51 and the reflection position D1 of the optical path change mirror 52.
- the optical path length becomes longer than the optical path length of the reflected light RL2.
- the optical path length of the reflected light from the image rotation correction unit 4 to the imaging unit 6 is reflected by the reflected light RL1 and RL2 in the head unit 3. It is adjusted according to the optical path length difference.
- the optical path length of the reflected light RL1 from the reflection position A1 to the incident position E1 (FIG. 3) to the imaging unit 6 and the reflected light RL2 from the reflection position A2 to the incident position E2 (FIG. 3) to the imaging unit 6. It is possible to make the optical path lengths substantially coincide with each other. The analysis will be described later with reference to FIGS.
- FIG. 4 is a diagram showing a main configuration of the imaging unit.
- the imaging unit 6 includes an optical system 63 including two lenses 631 and 632 and a diaphragm 633 in addition to the half mirror 61 and the imaging element 62 described above, and constitutes so-called object-side telecentric and reflection.
- Lights RL ⁇ b> 1 and RL ⁇ b> 2 are condensed on the imaging surface 621 of the imaging device 62, respectively, and images of the regions R ⁇ b> 1 and R ⁇ b> 2 are formed on the imaging surface 621.
- the illumination light IL from the light source 7 is emitted from the imaging unit 6, the optical path length correction unit 5, the image rotation correction unit 4, and the head unit 3 as described above.
- This is a so-called coaxial epi-illumination system that irradiates the inner peripheral surface 14 of the through-hole 13 via the. For this reason, the following effects are obtained.
- the workpiece 1 is made of metal, the through-hole 13 is formed by cutting or the like, and the inner peripheral surface 14 often requires relatively high accuracy. For this reason, the inner peripheral surface 14 is in a state close to a mirror surface.
- a defect portion such as a scratch or chip exists on the inner peripheral surface 14
- scattered light is generated in the defect portion.
- the mirror surface state is maintained at the part other than the defect part, and the scattered light component from the mirror surface part is small. Therefore, by combining the feature of object-side telecentricity and the feature of adopting coaxial epi-illumination as in the present embodiment, the reflected light RL1 and RL2 become specularly reflected light, and there is a defect part. Includes a defective part clearly in the image picked up by the image pickup unit 6. As a result, it is possible to easily inspect whether or not a defect exists.
- the head portion 3 in which the folding mirrors 31 and 32 are arranged at different positions in the Z direction is inserted into the through hole 13 of the workpiece 1.
- the illumination light IL is guided to the regions R1 and R2 that are different from each other in the Z direction in the inner peripheral surface 14 in the inserted state, and the reflected lights RL1 and RL2 reflected by the regions R1 and R2 are taken out from the through hole 13.
- the image sensor 62 of the imaging unit 6 receives light. For this reason, it is possible to simultaneously image the two regions R1 and R2 included in the inner peripheral surface 14 of the through hole 13, and the inner peripheral surface 14 of the through hole 13 can be imaged in a short time.
- the optical path length difference occurs between the reflected lights RL 1 and RL 2 in the head unit 3, but by providing the optical path length difference correction unit 5, as shown in FIG.
- the optical path length from the inner peripheral surface 14 to the incident side lens 631 of the reflected light RL1 and RL2 is several dimensions and values based on the apparatus specifications as described in detail below. Can be set equal to each other, and the focus can be made to coincide for each of the regions R1 and R2, and the inner peripheral surface 14 of the through hole 13 can be imaged satisfactorily.
- FIG. 5 is a plan view of the optical path length difference correction unit 5, the image rotation correction unit 4 and the head unit 3 shown in FIG. 3 viewed from the Z direction, that is, an XY plan view.
- FIG. 6 is a side view of the optical path length difference correcting unit 5, the image rotation correcting unit 4 and the head unit 3 shown in FIG. 3 as viewed from the Y direction, that is, an XZ plan view.
- 7 is a side view of the optical path length difference correction unit 5, the image rotation correction unit 4 and the head unit 3 shown in FIG. 3 as viewed from the X direction, that is, a YZ plan view. 5 and 7, the illustration of the image rotation correction unit 4 is omitted.
- the symbols dx, dy1, dy2, dz, L1, L2, L3, and rw in FIGS. 5 to 7 are as follows.
- dx distance between mirrors of the optical path changing mirrors 51 and 52 in the X direction
- dy1 the distance between the mirrors 31 and 32 in the Y direction
- dy2 distance between mirrors of the folding mirror 31 and the optical path changing mirror 51 in the Y direction
- dz the distance between the mirrors 31 and 32 in the Z direction
- L1 Distance between mirrors of folding mirror 31 and optical path changing mirror 51 in the Z direction (however, including reflection of reflected light by correction mirrors 41 to 43)
- L2 Distance between mirrors of the optical path changing mirrors 51 and 52 in the Z direction
- L3 distance between the optical path changing mirror 52 and the entrance surface of the lens 631 in the Z direction
- rw radius of the inner peripheral surface 14
- ⁇ 1 Reflection angle of the folding mirror 31 in the YZ plane
- ⁇ 2x reflection angle of the optical path changing mirror 51 in the XZ plane
- ⁇ 2y Reflection angle of the optical path changing mirror 51 in the YZ plane.
- the optical path length of the reflected light RL1 will be examined.
- the reflected light RL1 is incident on the imaging unit 6 through an optical path of position A1-position B1- (image rotation correction unit 4) -position C1-position D1-position E1.
- the distance between adjacent positions is as shown in the following equation.
- the reflected light RL2 is incident on the imaging unit 6 through an optical path of position A2-position B2- (image rotation correction unit 4) -position C2-position D2-position E2.
- the distance between adjacent positions is as shown in the following equation.
- the reflection angle ⁇ 1 of the folding mirror 31 in the YZ plane, the reflection angle ⁇ 2x of the optical path changing mirror 51 in the XZ plane, and the reflection angle ⁇ 2y of the optical path changing mirror 51 in the YZ plane are shown in FIGS. As is clear, it is expressed by the following equation.
- the optical path changing mirrors 51 and 52 in the Z direction are determined based on the condition that the optical path lengths of the reflected lights RL1 and RL2 are equal.
- a mirror distance L2 is obtained.
- the reflection angles ⁇ 1, ⁇ 2x, and ⁇ 2y are uniquely determined from the above equation of the reflection angle. In this way, the specific configuration of each part of the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3 can be determined.
- the two reflected lights RL1 Not only can the inner peripheral surface 14 be imaged in a short time by receiving light of the RL 2 by the imaging unit 6, but also the inner peripheral surface 14 of the through hole 13 can be favorably imaged.
- the reflection mirrors 31 and 32 are arranged so that the surface normal of the mirror surface 311 is slightly inclined with respect to the surface normal of the mirror surface 312, and the reflection angle ⁇ 1 is provided.
- the reflected light RL1 and RL2 incident on the optical path length difference correction unit 5 are separated in the Y direction, and the reflected light RL2 passes through the side of the optical path changing mirror 51 and is guided to the imaging unit 6.
- the reflected light RL1 is guided to the imaging unit 6 after being reflected by the optical path changing mirrors 51 and 52.
- the reflected lights RL1 and RL2 have a spread corresponding to the object-side numerical aperture, the reflected lights RL1 and RL2 can be separated and guided along a desired optical path as described above.
- the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
- two folding mirrors 31 and 32 are provided in the head unit 3 and two regions R1 and R2 that are different from each other in the Z direction are simultaneously imaged.
- the number of folding mirrors is three or more.
- the plurality of folding mirrors may be configured to guide the illumination light IL to different regions in the Z direction on the inner peripheral surface 14 and to extract the reflected light reflected by the region from the through hole 13. .
- the number of optical path changing mirrors provided in the optical path length difference correction unit 5 may be increased as the number of folding mirrors increases.
- work 1 in which the through-hole 13 was formed is used as the "imaging target object" of this invention, it can also image the workpiece
- the “hole” of the present invention includes both a through hole and a recess.
- the material of the workpiece is not limited to a metal material, and may be a ceramic material, a resin material, or a rubber material, and various workpieces can be imaged as an imaging object. While the invention has been described with reference to specific embodiments, this description is not intended to be construed in a limiting sense. Reference to the description of the invention, as well as other embodiments of the present invention, various modifications of the disclosed embodiments will become apparent to those skilled in the art. Accordingly, the appended claims are intended to include such modifications or embodiments without departing from the true scope of the invention.
- the present invention can be applied to all imaging devices that image the inner peripheral surface of a hole formed in the hole forming direction from the surface of the imaging object.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Studio Devices (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
In order to excellently capture an image of the inner circumferential surface of a hole in a short time, the present invention is provided with: a light source that emits illumination light for illuminating the inner circumferential surface of a hole that is formed in a hole forming direction from a surface of an image-capture subject; a head part that has a plurality of folding mirrors, and that rotates about a rotation axis parallel with the hole forming direction in a state of being inserted in the hole such that the plurality of folding mirrors guide the illumination light to regions, of the inner circumferential surface, different with respect to the hole forming direction and reflection light beams having been reflected by the regions are taken out from the hole; an image rotation correcting unit that keeps the orientation of an image captured by an image capture unit constant, by guiding, toward the image capture unit, a plurality of the reflection light beams taken out by the head part, while rotating about the rotation axis such that the rotation angle of the image rotation correcting unit per unit time becomes equal to one half of the rotation angle of the head part; and an optical path length difference correcting unit that guides the reflection light beams emitted from the image rotation correcting unit to the image capture unit while adjusting, for each of the reflection light beams, the optical length of the reflection light beam from the image rotation correcting unit to the image-capture unit according to the optical length difference among the plurality of reflection light beams in the head part.
Description
この発明は、撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像する撮像装置に関するものである。
以下に示す日本出願の明細書、図面および特許請求の範囲における開示内容は、参照によりその全内容が本書に組み入れられる:
特願2018-103494(2018年5月30日出願)。 The present invention relates to an imaging device that images an inner peripheral surface of a hole formed in a hole forming direction from the surface of an imaging object.
The disclosures in the following specification, drawings, and claims of the Japanese application are incorporated herein by reference in their entirety:
Japanese Patent Application No. 2018-103494 (filed on May 30, 2018).
以下に示す日本出願の明細書、図面および特許請求の範囲における開示内容は、参照によりその全内容が本書に組み入れられる:
特願2018-103494(2018年5月30日出願)。 The present invention relates to an imaging device that images an inner peripheral surface of a hole formed in a hole forming direction from the surface of an imaging object.
The disclosures in the following specification, drawings, and claims of the Japanese application are incorporated herein by reference in their entirety:
Japanese Patent Application No. 2018-103494 (filed on May 30, 2018).
金属製部品、樹脂製部品やゴム製部品などの立体的なワークの一つとして、ワークの表面から孔(凹部や貫通孔などを含む)が設けられたものがある。例えば円盤状の金属プレートの表面に対して円筒形状の孔を切削加工により形成した場合、その孔の内周面が所望の周面状態で形成されているか否かを検査する必要がある。そこで、例えば特許文献1に記載の撮像装置を用いて孔の内周面を撮像するとともに、当該撮像装置により得られた画像に基づいてワークを検査する検査技術が提案されている。
As one of three-dimensional workpieces such as metal parts, resin parts, and rubber parts, there are those in which holes (including recesses and through holes) are provided from the surface of the work. For example, when a cylindrical hole is formed by cutting on the surface of a disk-shaped metal plate, it is necessary to inspect whether or not the inner peripheral surface of the hole is formed in a desired peripheral surface state. Therefore, for example, an inspection technique has been proposed in which an inner peripheral surface of a hole is imaged using an imaging device described in Patent Document 1 and a workpiece is inspected based on an image obtained by the imaging device.
特許文献1に記載の撮像装置では、ワークの孔に挿脱自在な鏡筒が上下方向に延設されている。この鏡筒の下端側には、鏡筒の軸線に対して45゜傾けた状態で対物ミラーが配置されており、鏡筒の軸線に沿って上方から下方に向かう照明光を水平方向に折り返して孔の内周面に照射する。また、孔の内周面で反射された反射光は対物ミラーで上方に折り返され、調光部を介してカメラユニットに受光される。これによって、孔の内周面の部分画像がカメラユニットにより撮像される。
In the imaging apparatus described in Patent Document 1, a lens barrel that can be inserted into and removed from a hole of a workpiece is extended in the vertical direction. An objective mirror is disposed on the lower end side of the lens barrel at an angle of 45 ° with respect to the axis of the lens barrel, and the illumination light directed downward from above along the axis of the lens barrel is folded back in the horizontal direction. Irradiate the inner peripheral surface of the hole. The reflected light reflected by the inner peripheral surface of the hole is folded upward by the objective mirror and received by the camera unit via the light control unit. Thereby, the partial image of the inner peripheral surface of the hole is taken by the camera unit.
この撮像装置では、孔の内周面を全周にわたって撮像するために、鏡筒および対物ミラーは軸線まわりに回転される。また、鏡筒から出射される反射光は上記回転に伴って軸線まわりに回転することから上記調光部を軸線まわりに回転させている。このような構成を採用することで、カメラユニットに入射する光が軸線まわりに回転するのを防止し、カメラユニットにより撮像される像の向きが一定に維持される。こうして、鏡筒および対物ミラーの挿入高さ位置で孔の内周面の全周画像を良好に撮像することが可能となっている。
In this imaging apparatus, the lens barrel and the objective mirror are rotated around the axis in order to image the inner peripheral surface of the hole over the entire circumference. Further, since the reflected light emitted from the lens barrel rotates around the axis along with the rotation, the dimmer is rotated around the axis. By adopting such a configuration, the light incident on the camera unit is prevented from rotating around the axis, and the orientation of the image captured by the camera unit is maintained constant. In this way, it is possible to satisfactorily capture an entire peripheral image of the inner peripheral surface of the hole at the insertion height position of the lens barrel and the objective mirror.
ただし、上下方向における対物ミラーのサイズに比べて十分に深い孔について内周面の全周画像を撮像するためには、鏡筒および対物ミラーの挿入高さ位置を多段階に切り替えながら、各挿入高さ位置で鏡筒および対物ミラーを回転させるとともに当該回転に同期して調光部を回転させつつカメラユニットによる全周画像の撮像を繰り返して行う必要がある。したがって、孔の内周面の撮像に多大な時間を要することがある。
However, in order to capture an image of the entire circumference of the inner surface of a hole that is sufficiently deep compared to the size of the objective mirror in the vertical direction, each insertion is performed while switching the insertion height position of the lens barrel and objective mirror in multiple stages. It is necessary to rotate the lens barrel and the objective mirror at the height position and to repeatedly capture the entire circumference image by the camera unit while rotating the light control unit in synchronization with the rotation. Therefore, it may take a long time to image the inner peripheral surface of the hole.
この発明は上記課題に鑑みなされたものであり、孔の内周面を短時間で良好に撮像することができる撮像装置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an imaging device capable of imaging the inner peripheral surface of a hole satisfactorily in a short time.
この発明に係る撮像装置は、撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像部により撮像する撮像装置であって、内周面を照明するための照明光を発光する光源と、複数の折返ミラーを有し、複数の折返ミラーがそれぞれ内周面のうち孔形成方向において互いに異なる領域に照明光を導光するとともに領域で反射される反射光を孔から取り出すように孔に挿入された状態で孔形成方向と平行な回転軸まわりに回転するヘッド部と、単位時間当たりの回転角がヘッド部の半分の回転角となるように回転軸まわりに回転しながらヘッド部から取り出された複数の反射光を撮像部に向けて導光して撮像部で撮像される像の向きを一定に維持する像回転補正部と、像回転補正部から出射される反射光毎に、像回転補正部から撮像部までの反射光の光路長をヘッド部における複数の反射光の光路長差に応じて調整しながら撮像部に導光する光路長差補正部とを備えることを特徴としている。
An image pickup apparatus according to the present invention is an image pickup apparatus that picks up an image of an inner peripheral surface of a hole formed in a hole forming direction from a surface of an object to be imaged, and emits illumination light for illuminating the inner peripheral surface. Light source and a plurality of folding mirrors, and each of the plurality of folding mirrors guides the illumination light to different areas in the hole forming direction on the inner peripheral surface and extracts reflected light reflected by the areas from the holes A head portion that rotates around a rotation axis parallel to the hole forming direction while being inserted into the hole, and a head that rotates around the rotation axis so that the rotation angle per unit time is a half rotation angle of the head portion. An image rotation correction unit that guides a plurality of reflected lights extracted from the image pickup unit toward the image pickup unit and maintains the orientation of an image picked up by the image pickup unit, and each reflected light emitted from the image rotation correction unit From the image rotation correction unit to the imaging unit It is characterized in that it comprises an optical path length difference correcting unit for guiding to the imaging unit while adjusting in response to the optical path length difference of a plurality of reflected light in the head portion of the optical path length of the reflected light in.
このように構成した発明では、孔に挿入されたヘッド部には複数の折返ミラーが設けられ、それぞれ内周面のうち孔形成方向において互いに異なる領域に照明光を導光するとともに領域で反射される反射光を孔から取り出す。そして、各反射光が撮像部に導光される。このため、一度に孔形成方向において互いに異なる複数の領域について孔の内周面を撮像することが可能となっている。
In the invention configured as described above, a plurality of folding mirrors are provided in the head portion inserted into the hole, and the illumination light is guided to different areas in the hole forming direction on the inner peripheral surface and reflected by the areas. The reflected light is extracted from the hole. Then, each reflected light is guided to the imaging unit. For this reason, it is possible to image the inner peripheral surface of the hole in a plurality of regions different from each other in the hole forming direction at a time.
また、上記のように複数の折返ミラーをヘッド部に設けることでヘッド部では複数の反射光の間で光路長差が生じるが、それらの反射光が撮像部に入射されるまでに光路長差補正部が、像回転補正部から出射される反射光毎に、像回転補正部から撮像部までの反射光の光路長を調整する。このため、いずれの反射光についても内周面から撮像部までの光路長は等しくなり、各領域について孔の内周面を良好に撮像することが可能となっている。
In addition, by providing a plurality of folding mirrors in the head unit as described above, an optical path length difference occurs between the plurality of reflected lights in the head unit, but the optical path length difference until the reflected light enters the imaging unit. The correction unit adjusts the optical path length of the reflected light from the image rotation correction unit to the imaging unit for each reflected light emitted from the image rotation correction unit. For this reason, the optical path length from the inner peripheral surface to the imaging unit is the same for any reflected light, and the inner peripheral surface of the hole can be imaged satisfactorily for each region.
以上のように、ヘッド部に複数の折返ミラーを設けるとともに、それに伴って発生するヘッド部での反射光の光路長差を光路長差補正部で調整しているため、孔の内周面を短時間で良好に撮像することができる。
上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。 As described above, the head portion is provided with a plurality of folding mirrors, and the optical path length difference of the reflected light at the head portion that occurs with the mirror is adjusted by the optical path length difference correction portion. Good imaging can be performed in a short time.
A plurality of constituent elements of each aspect of the present invention described above are not essential, and some or all of the effects described in the present specification are to be solved to solve part or all of the above-described problems. In order to achieve the above, it is possible to appropriately change, delete, replace with another new component, and partially delete the limited contents of some of the plurality of components. In order to solve part or all of the above-described problems or to achieve part or all of the effects described in this specification, technical features included in one embodiment of the present invention described above. A part or all of the technical features included in the above-described other aspects of the present invention may be combined to form an independent form of the present invention.
上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。 As described above, the head portion is provided with a plurality of folding mirrors, and the optical path length difference of the reflected light at the head portion that occurs with the mirror is adjusted by the optical path length difference correction portion. Good imaging can be performed in a short time.
A plurality of constituent elements of each aspect of the present invention described above are not essential, and some or all of the effects described in the present specification are to be solved to solve part or all of the above-described problems. In order to achieve the above, it is possible to appropriately change, delete, replace with another new component, and partially delete the limited contents of some of the plurality of components. In order to solve part or all of the above-described problems or to achieve part or all of the effects described in this specification, technical features included in one embodiment of the present invention described above. A part or all of the technical features included in the above-described other aspects of the present invention may be combined to form an independent form of the present invention.
図1はこの発明に係る撮像装置の一実施形態を示す図である。図2は図1に示す撮像装置の主要構成であるヘッド部、像回転補正部および光路長差補正部を模式的に示す図である。図3は、貫通孔の内周面で反射された光、つまり反射光が撮像部に導光される光路を模式的に示す図である。この撮像装置100は、円盤状の金属プレートの中央部に表面11から裏面12に貫通孔13が穿設されたワーク1を撮像対象物とし、当該ワーク1の裏面12をワーク保持テーブル2で保持した状態でワーク1の貫通孔13の内周面14を撮像する装置である。なお、以下の各図において、貫通孔13が形成された孔形成方向を「Z方向」としている。
FIG. 1 is a diagram showing an embodiment of an imaging apparatus according to the present invention. FIG. 2 is a diagram schematically showing a head unit, an image rotation correction unit, and an optical path length difference correction unit, which are the main components of the imaging apparatus shown in FIG. FIG. 3 is a diagram schematically illustrating an optical path in which light reflected by the inner peripheral surface of the through hole, that is, reflected light is guided to the imaging unit. In this imaging apparatus 100, a workpiece 1 having a through hole 13 drilled from a front surface 11 to a rear surface 12 in the center of a disk-shaped metal plate is used as an imaging target, and the rear surface 12 of the workpiece 1 is held by a workpiece holding table 2. This is an apparatus for imaging the inner peripheral surface 14 of the through-hole 13 of the workpiece 1 in the state where the work is performed. In each of the following drawings, the hole forming direction in which the through hole 13 is formed is referred to as “Z direction”.
撮像装置100では、ワーク保持テーブル2に保持されたワーク1の貫通孔13に対してヘッド部3が(+Z)方向から挿脱自在に設けられている。そして、ワーク1の撮像を行う際には、図1および図3に示すように、ヘッド部3がワーク1の貫通孔13に挿入される。また、ヘッド部3の上方、つまり(+Z)方向には、像回転補正部4、光路長差補正部5および撮像部6がこの順序で設けられるとともに、撮像部6の側面には光源7が取り付けられている。
In the imaging apparatus 100, the head portion 3 is provided so as to be detachable from the (+ Z) direction with respect to the through hole 13 of the workpiece 1 held on the workpiece holding table 2. And when imaging the workpiece | work 1, the head part 3 is inserted in the through-hole 13 of the workpiece | work 1 as shown in FIG. 1 and FIG. An image rotation correction unit 4, an optical path length difference correction unit 5, and an imaging unit 6 are provided in this order above the head unit 3, that is, in the (+ Z) direction, and a light source 7 is provided on the side surface of the imaging unit 6. It is attached.
光源7は貫通孔13の内周面14を照明するための照明光を発光する。そして、図1に示すように、光源7から発光された照明光ILが撮像部6に設けられたハーフミラー61に向けて照射される。照明光ILはハーフミラー61により(-Z)方向に折り返され、さらに光路長差補正部5および像回転補正部4を介してヘッド部3に入射する。このヘッド部3では、照明光ILは(-X)方向に折り返され、貫通孔13の内周面14に照射される。
The light source 7 emits illumination light for illuminating the inner peripheral surface 14 of the through hole 13. As shown in FIG. 1, the illumination light IL emitted from the light source 7 is irradiated toward the half mirror 61 provided in the imaging unit 6. The illumination light IL is folded back in the (−Z) direction by the half mirror 61 and further enters the head unit 3 via the optical path length difference correction unit 5 and the image rotation correction unit 4. In the head unit 3, the illumination light IL is folded back in the (−X) direction and is applied to the inner peripheral surface 14 of the through hole 13.
一方、貫通孔13の内周面14で反射された反射光は(+X)方向に進み、ヘッド部3で(+Z)方向に折り返され、ワーク1の貫通孔13から取り出される。そして、当該反射光は像回転補正部4および光路長差補正部5を介して撮像部6に入射され、ハーフミラー61を通過して撮像素子62で受光される。これにより撮像部6は貫通孔13の内周面14のうち照明光ILの照射を受けた領域を撮像する。
On the other hand, the reflected light reflected by the inner peripheral surface 14 of the through hole 13 travels in the (+ X) direction, is folded back in the (+ Z) direction by the head portion 3, and is taken out from the through hole 13 of the workpiece 1. Then, the reflected light enters the imaging unit 6 through the image rotation correction unit 4 and the optical path length difference correction unit 5, passes through the half mirror 61, and is received by the imaging device 62. As a result, the imaging unit 6 images an area of the inner peripheral surface 14 of the through hole 13 that has been irradiated with the illumination light IL.
本実施形態では、図2に示すように、ヘッド部3は2つの折返ミラー31、32を有している。折返ミラー31、32はZ方向に相互にずれて配置されている。より詳しくは、折返ミラー32は折返ミラー31よりも(-Z)方向にずれて配置され、Z方向において先端側に位置している。つまり、折返ミラー32が本発明の「先端折返ミラー」の一例に相当している。また、X方向およびZ方向に対して直交するY方向においても折返ミラー32は折返ミラー31よりも(-Y)方向にずれている。このため、図3に示すように、内周面14のうちZ方向において互いに異なる2つの領域R1、R2に照明光IL(図1)がそれぞれ折返ミラー31、32を介して照射されるとともに、領域R1、R2で反射される反射光RL1、RL2がそれぞれ折返ミラー31、32を介して貫通孔13から取り出される。これらの反射光のうち反射光RL2が本発明の「先端反射光」の一例に相当している。
In the present embodiment, as shown in FIG. 2, the head unit 3 has two folding mirrors 31 and 32. The folding mirrors 31 and 32 are displaced from each other in the Z direction. More specifically, the folding mirror 32 is arranged so as to be shifted in the (−Z) direction from the folding mirror 31 and is located on the tip side in the Z direction. That is, the folding mirror 32 corresponds to an example of the “tip folding mirror” of the present invention. The folding mirror 32 is also displaced in the (−Y) direction from the folding mirror 31 in the Y direction orthogonal to the X direction and the Z direction. Therefore, as shown in FIG. 3, the illumination light IL (FIG. 1) is irradiated to the two regions R <b> 1 and R <b> 2 that are different from each other in the Z direction on the inner peripheral surface 14 through the folding mirrors 31 and 32, respectively. The reflected lights RL1 and RL2 reflected by the regions R1 and R2 are extracted from the through hole 13 via the folding mirrors 31 and 32, respectively. Of these reflected lights, the reflected light RL2 corresponds to an example of “tip reflected light” of the present invention.
また、図3における符号A1は領域R1での照明光ILの反射位置を示し、符号A2は領域R2での照明光ILの反射位置を示している。また、図3における符号B1は折返ミラー31のミラー面311で反射光RL1を折り返している折返位置であり、符号B2は折返ミラー32のミラー面321で反射光RL2を折り返している折返位置である。なお、本実施形態では、ミラー面311の面法線がミラー面312の面法線に対して僅かながら傾斜するように折返ミラー31、32は設けられており、反射光RL2はZ方向に出射する一方、反射光RL1はY方向において反射光RL2から徐々に離れながら進む(図7参照)が、その理由については後で詳述する。
In FIG. 3, symbol A1 indicates the reflection position of the illumination light IL in the region R1, and symbol A2 indicates the reflection position of the illumination light IL in the region R2. In FIG. 3, reference numeral B <b> 1 is a folding position where the reflected light RL <b> 1 is folded back by the mirror surface 311 of the folding mirror 31, and reference numeral B <b> 2 is a folding position where the reflected light RL <b> 2 is folded by the mirror surface 321 of the folding mirror 32. . In the present embodiment, the folding mirrors 31 and 32 are provided so that the surface normal of the mirror surface 311 is slightly inclined with respect to the surface normal of the mirror surface 312 and the reflected light RL2 is emitted in the Z direction. On the other hand, the reflected light RL1 travels gradually away from the reflected light RL2 in the Y direction (see FIG. 7). The reason will be described in detail later.
また、このように2つの折返ミラー31、32を有するヘッド部3はZ方向と平行に延びる貫通孔13の中心軸13aを回転軸として折返ミラー31、32が一体的に回転自在となっている。また、ヘッド部3は図1および図2に示すようにヘッド回転駆動部33と機械的に接続されている。このため、装置全体を制御する制御部9からの回転指令に応じてヘッド回転駆動部33が作動すると、ヘッド部3が中心軸13aまわりに回転する。その結果、上記領域R1、R2が内周面14の周方向に移動してヘッド部3を1回転させることで貫通孔13の内周面14の全周にわたって反射光RL1、RL2が取り出される。
Further, in this way, the head portion 3 having the two folding mirrors 31 and 32 is configured such that the folding mirrors 31 and 32 are rotatable integrally with the central axis 13a of the through hole 13 extending parallel to the Z direction as a rotation axis. . The head unit 3 is mechanically connected to the head rotation driving unit 33 as shown in FIGS. For this reason, when the head rotation drive unit 33 is actuated in response to a rotation command from the control unit 9 that controls the entire apparatus, the head unit 3 rotates around the central axis 13a. As a result, the regions R1 and R2 move in the circumferential direction of the inner peripheral surface 14 to rotate the head portion 3 once, whereby the reflected lights RL1 and RL2 are extracted over the entire circumference of the inner peripheral surface 14 of the through hole 13.
このようにヘッド部3を回転させると、その回転に応じて反射光RL1、RL2も回転する。そこで、本実施形態に係る撮像装置100においても、特許文献1の調光部と同様の構成を有する像回転補正部4が設けられている。像回転補正部4は3枚の補正用ミラー41~43で構成されるとともに、貫通孔13の中心軸13aを回転軸として補正用ミラー41~43が一体的に回転自在となっている。また、像回転補正部4は図1および図2に示すように像回転駆動部44と機械的に接続されている。そして、制御部9からの回転指令に応じて像回転駆動部44が作動すると、像回転補正部4が中心軸13aまわりに回転する。ただし、その回転速度、つまり単位時間当たりの回転角θがヘッド部3の半分の回転角(θ/2)となるように回転制御される。その結果、反射光RL1、RL2は回転せず、そのまま光路長差補正部5を介して撮像部6に導光され、撮像部6により撮像される像の向きは一定に維持される。なお、像回転補正部4の構成および動作は、特許文献1に詳述されているため、本明細書での像回転補正部4の構成および動作の説明は省略する。
When the head unit 3 is thus rotated, the reflected light RL1 and RL2 are also rotated according to the rotation. Therefore, also in the imaging apparatus 100 according to the present embodiment, the image rotation correction unit 4 having the same configuration as the light control unit of Patent Document 1 is provided. The image rotation correction unit 4 includes three correction mirrors 41 to 43, and the correction mirrors 41 to 43 are integrally rotatable with the central axis 13a of the through hole 13 as a rotation axis. The image rotation correction unit 4 is mechanically connected to the image rotation drive unit 44 as shown in FIGS. When the image rotation driving unit 44 is actuated in response to a rotation command from the control unit 9, the image rotation correction unit 4 rotates about the central axis 13a. However, the rotation is controlled so that the rotation speed, that is, the rotation angle θ per unit time becomes a half rotation angle (θ / 2) of the head unit 3. As a result, the reflected lights RL1 and RL2 do not rotate but are directly guided to the imaging unit 6 via the optical path length difference correction unit 5, and the orientation of the image captured by the imaging unit 6 is maintained constant. Since the configuration and operation of the image rotation correction unit 4 are described in detail in Patent Document 1, description of the configuration and operation of the image rotation correction unit 4 in this specification is omitted.
ここで、像回転補正部4から出射した反射光RL1、RL2の光路長を比較すると、ヘッド部3において折返ミラー32が折返ミラー31よりも像回転補正部4から離れている、つまり先端側に配置されているため、反射光RL2の光路長が反射光RL1の光路長よりも長くなっている。このため、像回転補正部4から出射した反射光RL1、RL2をそのまま撮像部6に入射してしまうと、領域R1、R2の間で、フォーカスのずれが生じ、画像を一括して良好に撮像することが困難である。そこで、本実施形態では、2枚の光路変更ミラー51、52を組み合わせた光路長差補正部5が像回転補正部4と撮像部6との間に介挿されている。
Here, when the optical path lengths of the reflected lights RL1 and RL2 emitted from the image rotation correction unit 4 are compared, the folding mirror 32 is further away from the image rotation correction unit 4 than the folding mirror 31 in the head unit 3, that is, on the tip side. Therefore, the optical path length of the reflected light RL2 is longer than the optical path length of the reflected light RL1. For this reason, if the reflected lights RL1 and RL2 emitted from the image rotation correction unit 4 enter the imaging unit 6 as they are, a focus shift occurs between the regions R1 and R2, and the images are captured well together. Difficult to do. Therefore, in this embodiment, the optical path length difference correction unit 5 in which two optical path changing mirrors 51 and 52 are combined is interposed between the image rotation correction unit 4 and the imaging unit 6.
光路長差補正部5は、図2および図3に示すように、反射光RL2の光路からY方向に外れて配置されて反射光RL1のみを反射する光路変更ミラー51と、光路変更ミラー51で折り返された反射光RL1を撮像部6に向けて折り返す光路変更ミラー52とを備えている。このため、光路長差補正部5では、図3に示すように、光路変更ミラー51の反射位置C1および光路変更ミラー52の反射位置D1で反射光RL1の折り返しを行った分だけ反射光RL1の光路長が反射光RL2の光路長よりも長くなる。つまり、本実施形態では、像回転補正部4から出射される反射光RL1、RL2毎に、像回転補正部4から撮像部6までの反射光の光路長をヘッド部3における反射光RL1、RL2の光路長差に応じて調整している。これによって、反射位置A1から撮像部6への入射位置E1(図3)までの反射光RL1の光路長と、反射位置A2から撮像部6への入射位置E2(図3)までの反射光RL2の光路長とをほぼ一致させることが可能となっている。なお、その解析は後で図5ないし図7を参照しつつ説明する。
2 and 3, the optical path length difference correction unit 5 includes an optical path changing mirror 51 that is disposed in the Y direction away from the optical path of the reflected light RL2 and reflects only the reflected light RL1, and an optical path changing mirror 51. An optical path changing mirror 52 that turns the reflected light RL1 that is turned back toward the imaging unit 6 is provided. Therefore, in the optical path length difference correction unit 5, as shown in FIG. 3, the reflected light RL1 is reflected by the amount of the reflected light RL1 that is reflected at the reflection position C1 of the optical path change mirror 51 and the reflection position D1 of the optical path change mirror 52. The optical path length becomes longer than the optical path length of the reflected light RL2. That is, in the present embodiment, for each of the reflected lights RL1 and RL2 emitted from the image rotation correction unit 4, the optical path length of the reflected light from the image rotation correction unit 4 to the imaging unit 6 is reflected by the reflected light RL1 and RL2 in the head unit 3. It is adjusted according to the optical path length difference. Thereby, the optical path length of the reflected light RL1 from the reflection position A1 to the incident position E1 (FIG. 3) to the imaging unit 6, and the reflected light RL2 from the reflection position A2 to the incident position E2 (FIG. 3) to the imaging unit 6. It is possible to make the optical path lengths substantially coincide with each other. The analysis will be described later with reference to FIGS.
図4は撮像部の主要構成を示す図である。撮像部6は、上記したハーフミラー61および撮像素子62以外に、2枚のレンズ631、632と絞り633とで構成される光学系63を有しており、いわゆる物体側テレセントリックを構成するとともに反射光RL1、RL2をそれぞれ撮像素子62の撮像面621に集光させて各領域R1、R2の像を撮像面621上に結像する。また、図4への図示を省略しているが、撮像装置100では上記したように光源7からの照明光ILを撮像部6、光路長差補正部5、像回転補正部4およびヘッド部3を介して貫通孔13の内周面14に照射する、いわゆる同軸落射照明系となっている。このため、次のような作用効果が得られる。
FIG. 4 is a diagram showing a main configuration of the imaging unit. The imaging unit 6 includes an optical system 63 including two lenses 631 and 632 and a diaphragm 633 in addition to the half mirror 61 and the imaging element 62 described above, and constitutes so-called object-side telecentric and reflection. Lights RL <b> 1 and RL <b> 2 are condensed on the imaging surface 621 of the imaging device 62, respectively, and images of the regions R <b> 1 and R <b> 2 are formed on the imaging surface 621. Although not shown in FIG. 4, in the imaging apparatus 100, the illumination light IL from the light source 7 is emitted from the imaging unit 6, the optical path length correction unit 5, the image rotation correction unit 4, and the head unit 3 as described above. This is a so-called coaxial epi-illumination system that irradiates the inner peripheral surface 14 of the through-hole 13 via the. For this reason, the following effects are obtained.
上記したようにワーク1は金属製であり、貫通孔13は切削加工などにより形成され、その内周面14については比較的高い精度が要求されることが多い。このため、内周面14は鏡面に近い状態となっている。このような内周面14に傷や欠けなどの欠陥部が存在すると、当該欠陥部において散乱光が発生する。逆に、欠陥部以外の部位では鏡面状態が維持されており、当該鏡面部位からの散乱光成分は少ない。したがって、本実施形態のように物体側テレセントリックであるという特徴と同軸落射照明を採用しているという特徴とを兼ね備えることで、反射光RL1、RL2は正反射光となり、仮に欠陥部が存在する場合には撮像部6により撮像される像に欠陥部が明瞭に含まれる。その結果、欠陥部が存在するか否かを容易に検査することが可能となっている。
As described above, the workpiece 1 is made of metal, the through-hole 13 is formed by cutting or the like, and the inner peripheral surface 14 often requires relatively high accuracy. For this reason, the inner peripheral surface 14 is in a state close to a mirror surface. When a defect portion such as a scratch or chip exists on the inner peripheral surface 14, scattered light is generated in the defect portion. On the other hand, the mirror surface state is maintained at the part other than the defect part, and the scattered light component from the mirror surface part is small. Therefore, by combining the feature of object-side telecentricity and the feature of adopting coaxial epi-illumination as in the present embodiment, the reflected light RL1 and RL2 become specularly reflected light, and there is a defect part. Includes a defective part clearly in the image picked up by the image pickup unit 6. As a result, it is possible to easily inspect whether or not a defect exists.
以上のように、本実施形態によれば、Z方向において互いに異なる位置に折返ミラー31、32を配置したヘッド部3をワーク1の貫通孔13に挿入している。そして、その挿入状態のまま内周面14のうちZ方向において互いに異なる領域R1、R2に照明光ILを導光するとともに領域R1、R2で反射される反射光RL1、RL2を貫通孔13から取り出し、撮像部6の撮像素子62で受光している。このため、貫通孔13の内周面14に含まれる2つの領域R1、R2を同時に撮像することが可能となっており、貫通孔13の内周面14を短時間で撮像することができる。
As described above, according to the present embodiment, the head portion 3 in which the folding mirrors 31 and 32 are arranged at different positions in the Z direction is inserted into the through hole 13 of the workpiece 1. The illumination light IL is guided to the regions R1 and R2 that are different from each other in the Z direction in the inner peripheral surface 14 in the inserted state, and the reflected lights RL1 and RL2 reflected by the regions R1 and R2 are taken out from the through hole 13. The image sensor 62 of the imaging unit 6 receives light. For this reason, it is possible to simultaneously image the two regions R1 and R2 included in the inner peripheral surface 14 of the through hole 13, and the inner peripheral surface 14 of the through hole 13 can be imaged in a short time.
また、2つの折返ミラー31、32をヘッド部3に設けることでヘッド部3では反射光RL1、RL2の間で光路長差が生じるが、光路長差補正部5を設けることで図4に示すように反射光RL1、RL2のいずれについても内周面14から撮像部6における物体側のレンズ631に入射するまでの光路長は、次に詳細説明するように装置仕様から数個の寸法や値を適切に決めることで、等しく設定することができ、各領域R1、R2についてフォーカスを一致させ貫通孔13の内周面14を良好に撮像することができる。
In addition, by providing the two folding mirrors 31 and 32 in the head unit 3, an optical path length difference occurs between the reflected lights RL 1 and RL 2 in the head unit 3, but by providing the optical path length difference correction unit 5, as shown in FIG. As described above, the optical path length from the inner peripheral surface 14 to the incident side lens 631 of the reflected light RL1 and RL2 is several dimensions and values based on the apparatus specifications as described in detail below. Can be set equal to each other, and the focus can be made to coincide for each of the regions R1 and R2, and the inner peripheral surface 14 of the through hole 13 can be imaged satisfactorily.
次に、内周面14から撮像部6における物体側のレンズ631に入射するまでの光路長について図3、図5ないし図7を参照しつつ詳述する。図5は図3に示す光路長差補正部5、像回転補正部4およびヘッド部3をZ方向から見た平面図、つまりXY平面図である。また、図6は図3に示す光路長差補正部5、像回転補正部4およびヘッド部3をY方向から見た側面図、つまりXZ平面図である。さらに、図7は図3に示す光路長差補正部5、像回転補正部4およびヘッド部3をX方向から見た側面図、つまりYZ平面図である。なお、図5および図7においては像回転補正部4の図示を省略している。また、図5~図7における符号dx、dy1、dy2、dz、L1、L2、L3、rwはそれぞれ以下のとおりである。
Next, the optical path length from the inner peripheral surface 14 to the incident side lens 631 in the imaging unit 6 will be described in detail with reference to FIGS. FIG. 5 is a plan view of the optical path length difference correction unit 5, the image rotation correction unit 4 and the head unit 3 shown in FIG. 3 viewed from the Z direction, that is, an XY plan view. FIG. 6 is a side view of the optical path length difference correcting unit 5, the image rotation correcting unit 4 and the head unit 3 shown in FIG. 3 as viewed from the Y direction, that is, an XZ plan view. 7 is a side view of the optical path length difference correction unit 5, the image rotation correction unit 4 and the head unit 3 shown in FIG. 3 as viewed from the X direction, that is, a YZ plan view. 5 and 7, the illustration of the image rotation correction unit 4 is omitted. Also, the symbols dx, dy1, dy2, dz, L1, L2, L3, and rw in FIGS. 5 to 7 are as follows.
dx:X方向における光路変更ミラー51、52のミラー間距離、
dy1:Y方向における折返ミラー31、32のミラー間距離、
dy2:Y方向における折返ミラー31と光路変更ミラー51とのミラー間距離、
dz:Z方向における折返ミラー31、32のミラー間距離、
L1:Z方向における折返ミラー31と光路変更ミラー51とのミラー間距離(ただし、補正用ミラー41~43による反射光の折り返しを含む)、
L2:Z方向における光路変更ミラー51、52のミラー間距離、
L3:Z方向における光路変更ミラー52とレンズ631の入射面との距離、
rw:内周面14の半径、
α1:YZ平面内での折返ミラー31の反射角、
α2x:XZ平面内での光路変更ミラー51の反射角、
α2y:YZ平面内での光路変更ミラー51の反射角。 dx: distance between mirrors of the optical path changing mirrors 51 and 52 in the X direction,
dy1: the distance between the mirrors 31 and 32 in the Y direction,
dy2: distance between mirrors of thefolding mirror 31 and the optical path changing mirror 51 in the Y direction,
dz: the distance between the mirrors 31 and 32 in the Z direction,
L1: Distance between mirrors of foldingmirror 31 and optical path changing mirror 51 in the Z direction (however, including reflection of reflected light by correction mirrors 41 to 43),
L2: Distance between mirrors of the optical path changing mirrors 51 and 52 in the Z direction,
L3: distance between the opticalpath changing mirror 52 and the entrance surface of the lens 631 in the Z direction,
rw: radius of the innerperipheral surface 14,
α1: Reflection angle of thefolding mirror 31 in the YZ plane,
α2x: reflection angle of the opticalpath changing mirror 51 in the XZ plane,
α2y: Reflection angle of the opticalpath changing mirror 51 in the YZ plane.
dy1:Y方向における折返ミラー31、32のミラー間距離、
dy2:Y方向における折返ミラー31と光路変更ミラー51とのミラー間距離、
dz:Z方向における折返ミラー31、32のミラー間距離、
L1:Z方向における折返ミラー31と光路変更ミラー51とのミラー間距離(ただし、補正用ミラー41~43による反射光の折り返しを含む)、
L2:Z方向における光路変更ミラー51、52のミラー間距離、
L3:Z方向における光路変更ミラー52とレンズ631の入射面との距離、
rw:内周面14の半径、
α1:YZ平面内での折返ミラー31の反射角、
α2x:XZ平面内での光路変更ミラー51の反射角、
α2y:YZ平面内での光路変更ミラー51の反射角。 dx: distance between mirrors of the optical
dy1: the distance between the
dy2: distance between mirrors of the
dz: the distance between the
L1: Distance between mirrors of folding
L2: Distance between mirrors of the optical
L3: distance between the optical
rw: radius of the inner
α1: Reflection angle of the
α2x: reflection angle of the optical
α2y: Reflection angle of the optical
ここでは、まず反射光RL1の光路長について検討する。反射光RL1は図6に示すように位置A1-位置B1-(像回転補正部4)-位置C1-位置D1-位置E1という光路で撮像部6に入射される。このため、互いに隣接する位置間の距離は次式で示す通りである。
Here, first, the optical path length of the reflected light RL1 will be examined. As shown in FIG. 6, the reflected light RL1 is incident on the imaging unit 6 through an optical path of position A1-position B1- (image rotation correction unit 4) -position C1-position D1-position E1. For this reason, the distance between adjacent positions is as shown in the following equation.
一方、反射光RL2は図6に示すように位置A2-位置B2-(像回転補正部4)-位置C2-位置D2-位置E2という光路で撮像部6に入射される。このため、互いに隣接する位置間の距離は次式で示す通りである。
On the other hand, as shown in FIG. 6, the reflected light RL2 is incident on the imaging unit 6 through an optical path of position A2-position B2- (image rotation correction unit 4) -position C2-position D2-position E2. For this reason, the distance between adjacent positions is as shown in the following equation.
そして、反射光RL1、RL2の光路長を等しくするためには、次式を満足する必要がある。
And in order to make the optical path length of reflected light RL1 and RL2 equal, it is necessary to satisfy the following formula.
これに上述の数1および数2を代入してZ方向における光路変更ミラー51、52のミラー間距離L2について整理すると、次式が得られる。
Substituting the above formulas 1 and 2 into this and rearranging the inter-mirror distance L2 of the optical path changing mirrors 51 and 52 in the Z direction, the following formula is obtained.
他方、YZ平面内での折返ミラー31の反射角α1、XZ平面内での光路変更ミラー51の反射角α2x、およびYZ平面内での光路変更ミラー51の反射角α2yは図6や図7から明らかなように次式で表される。
On the other hand, the reflection angle α1 of the folding mirror 31 in the YZ plane, the reflection angle α2x of the optical path changing mirror 51 in the XZ plane, and the reflection angle α2y of the optical path changing mirror 51 in the YZ plane are shown in FIGS. As is clear, it is expressed by the following equation.
よって、撮像装置100の各部仕様から、距離dx、dy1、dy2、dz、L1、L3を決めると、反射光RL1、RL2の光路長を等しくするという条件からZ方向における光路変更ミラー51、52のミラー間距離L2が求まる。しかも、上記した反射角の式から反射角α1、α2x、α2yが一義的に決まる。こうして、光路長差補正部5、像回転補正部4およびヘッド部3の各部の具体的な構成を決定することができ、これにしたがって組み立てられた撮像装置100では、2本の反射光RL1、RL2を撮像部6で受光することで内周面14を短時間で撮像することができるだけでなく、貫通孔13の内周面14を良好に撮像することができる。
Therefore, when the distances dx, dy1, dy2, dz, L1, and L3 are determined from the specifications of each part of the imaging apparatus 100, the optical path changing mirrors 51 and 52 in the Z direction are determined based on the condition that the optical path lengths of the reflected lights RL1 and RL2 are equal. A mirror distance L2 is obtained. In addition, the reflection angles α1, α2x, and α2y are uniquely determined from the above equation of the reflection angle. In this way, the specific configuration of each part of the optical path length difference correction unit 5, the image rotation correction unit 4, and the head unit 3 can be determined. In the imaging device 100 assembled in accordance with this, the two reflected lights RL1, Not only can the inner peripheral surface 14 be imaged in a short time by receiving light of the RL 2 by the imaging unit 6, but also the inner peripheral surface 14 of the through hole 13 can be favorably imaged.
また、上記したようにミラー面311の面法線がミラー面312の面法線に対して僅かながら傾斜するように折返ミラー31、32を配置して反射角α1を設けている。これによって、光路長差補正部5に入射してくる反射光RL1、RL2はY方向に分離され、反射光RL2が光路変更ミラー51の側方を通過して撮像部6に導光されるとともに反射光RL1が光路変更ミラー51、52で折り返された後で撮像部6に導光する。その結果、反射光RL1、RL2は物体側開口数に応じた広がりを有しているものの、上記したように反射光RL1、RL2を分離して所望の光路に沿って導光することができる。
Further, as described above, the reflection mirrors 31 and 32 are arranged so that the surface normal of the mirror surface 311 is slightly inclined with respect to the surface normal of the mirror surface 312, and the reflection angle α1 is provided. As a result, the reflected light RL1 and RL2 incident on the optical path length difference correction unit 5 are separated in the Y direction, and the reflected light RL2 passes through the side of the optical path changing mirror 51 and is guided to the imaging unit 6. The reflected light RL1 is guided to the imaging unit 6 after being reflected by the optical path changing mirrors 51 and 52. As a result, although the reflected lights RL1 and RL2 have a spread corresponding to the object-side numerical aperture, the reflected lights RL1 and RL2 can be separated and guided along a desired optical path as described above.
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、ヘッド部3に2つの折返ミラー31、32を設け、Z方向において互いに異なる2つの領域R1、R2を同時に撮像しているが、折返ミラーの個数は3以上であってもよい。要は、複数の折返ミラーがそれぞれ内周面14のうちZ方向において互いに異なる領域に照明光ILを導光するとともに領域で反射される反射光を貫通孔13から取り出すように構成してもよい。この場合、折返ミラーの個数の増大に伴って光路長差補正部5に設ける光路変更ミラーの個数も増大させればよい。
Note that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, two folding mirrors 31 and 32 are provided in the head unit 3 and two regions R1 and R2 that are different from each other in the Z direction are simultaneously imaged. However, the number of folding mirrors is three or more. Also good. In short, the plurality of folding mirrors may be configured to guide the illumination light IL to different regions in the Z direction on the inner peripheral surface 14 and to extract the reflected light reflected by the region from the through hole 13. . In this case, the number of optical path changing mirrors provided in the optical path length difference correction unit 5 may be increased as the number of folding mirrors increases.
また、上記実施形態では、貫通孔13が形成されたワーク1を本発明の「撮像対象物」としているが、表面11から金属プレートの厚みよりも浅い凹部が形成されたワークを撮像することも可能である。つまり、本発明の「孔」は貫通孔および凹部の両方を含む。また、ワークの材質は金属材料に限定されるものではなく、セラミック材料、樹脂材料やゴム材料であってもよく、種々のワークを撮像対象物として撮像可能である。
以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 Moreover, in the said embodiment, although the workpiece |work 1 in which the through-hole 13 was formed is used as the "imaging target object" of this invention, it can also image the workpiece | work in which the recessed part shallower than the thickness of the metal plate was formed from the surface 11. Is possible. That is, the “hole” of the present invention includes both a through hole and a recess. The material of the workpiece is not limited to a metal material, and may be a ceramic material, a resin material, or a rubber material, and various workpieces can be imaged as an imaging object.
While the invention has been described with reference to specific embodiments, this description is not intended to be construed in a limiting sense. Reference to the description of the invention, as well as other embodiments of the present invention, various modifications of the disclosed embodiments will become apparent to those skilled in the art. Accordingly, the appended claims are intended to include such modifications or embodiments without departing from the true scope of the invention.
以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 Moreover, in the said embodiment, although the workpiece |
While the invention has been described with reference to specific embodiments, this description is not intended to be construed in a limiting sense. Reference to the description of the invention, as well as other embodiments of the present invention, various modifications of the disclosed embodiments will become apparent to those skilled in the art. Accordingly, the appended claims are intended to include such modifications or embodiments without departing from the true scope of the invention.
この発明は、撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像する撮像装置全般に適用することができる。
The present invention can be applied to all imaging devices that image the inner peripheral surface of a hole formed in the hole forming direction from the surface of the imaging object.
1…ワーク(撮像対象物)
3…ヘッド部
4…像回転補正部
5…光路長差補正部
6…撮像部
7…光源
11…(ワークの)表面
13…貫通孔
14…(貫通孔の)内周面
31…折返ミラー
32…(先端)折返ミラー
51,52…光路変更ミラー
63…光学系
100…撮像装置
IL…照明光
R1,R2…領域
RL1…反射光
RL2…(先端)反射光
Z…孔形成方向
θ…回転角 1 ... Work (object to be imaged)
DESCRIPTION OFSYMBOLS 3 ... Head part 4 ... Image rotation correction | amendment part 5 ... Optical path length difference correction part 6 ... Imaging part 7 ... Light source 11 ... Surface of (work) 13 ... Through-hole 14 ... Inner peripheral surface (of through-hole) 31 ... Folding mirror 32 ... (tip) folding mirror 51, 52 ... optical path changing mirror 63 ... optical system 100 ... imaging device IL ... illumination light R1, R2 ... area RL1 ... reflected light RL2 ... (tip) reflected light Z ... hole forming direction θ ... rotation angle
3…ヘッド部
4…像回転補正部
5…光路長差補正部
6…撮像部
7…光源
11…(ワークの)表面
13…貫通孔
14…(貫通孔の)内周面
31…折返ミラー
32…(先端)折返ミラー
51,52…光路変更ミラー
63…光学系
100…撮像装置
IL…照明光
R1,R2…領域
RL1…反射光
RL2…(先端)反射光
Z…孔形成方向
θ…回転角 1 ... Work (object to be imaged)
DESCRIPTION OF
Claims (5)
- 撮像対象物の表面から孔形成方向に形成された孔の内周面を撮像部により撮像する撮像装置であって、
前記内周面を照明するための照明光を発光する光源と、
複数の折返ミラーを有し、前記複数の折返ミラーがそれぞれ前記内周面のうち前記孔形成方向において互いに異なる領域に前記照明光を導光するとともに前記領域で反射される反射光を前記孔から取り出すように前記孔に挿入された状態で前記孔形成方向と平行な回転軸まわりに回転するヘッド部と、
単位時間当たりの回転角が前記ヘッド部の半分の回転角となるように前記回転軸まわりに回転しながら前記ヘッド部から取り出された前記複数の反射光を前記撮像部に向けて導光して前記撮像部で撮像される像の向きを一定に維持する像回転補正部と、
前記像回転補正部から出射される前記反射光毎に、前記像回転補正部から前記撮像部までの前記反射光の光路長を前記ヘッド部における前記複数の反射光の光路長差に応じて調整しながら前記撮像部に導光する光路長差補正部と
を備えることを特徴とする撮像装置。 An imaging device that images an inner peripheral surface of a hole formed in a hole forming direction from the surface of an imaging object by an imaging unit,
A light source that emits illumination light for illuminating the inner peripheral surface;
A plurality of folding mirrors, and each of the plurality of folding mirrors guides the illumination light to different areas of the inner circumferential surface in the hole forming direction and reflects reflected light reflected by the areas from the holes. A head portion that rotates around a rotation axis parallel to the hole forming direction while being inserted into the hole so as to be removed;
The plurality of reflected lights extracted from the head unit are guided toward the imaging unit while rotating around the rotation axis so that a rotation angle per unit time is a half rotation angle of the head unit. An image rotation correction unit that maintains a constant orientation of an image captured by the imaging unit;
For each reflected light emitted from the image rotation correction unit, an optical path length of the reflected light from the image rotation correction unit to the imaging unit is adjusted according to an optical path length difference of the plurality of reflected lights in the head unit. An imaging apparatus comprising: an optical path length difference correction unit configured to guide light to the imaging unit. - 請求項1に記載の撮像装置であって、
前記撮像部は、撮像素子と、前記光路長差補正部から出射された前記複数の反射光を前記撮像素子に入射させて前記内周面を前記撮像素子上に結像する光学系とを有し、
前記光源から発光された前記照明光は、前記光学系、前記光路長差補正部、前記像回転補正部および前記ヘッド部を介して前記内周面に照射される撮像装置。 The imaging apparatus according to claim 1,
The image pickup unit includes an image pickup device and an optical system that causes the plurality of reflected lights emitted from the optical path length difference correction unit to enter the image pickup device and forms an image of the inner peripheral surface on the image pickup device. And
The imaging apparatus in which the illumination light emitted from the light source is applied to the inner peripheral surface via the optical system, the optical path length difference correction unit, the image rotation correction unit, and the head unit. - 請求項1または2に記載の撮像装置であって、
前記複数の折返ミラーは前記孔形成方向と直交する平面内において互いに異なる位置に配置される撮像装置。 The imaging apparatus according to claim 1, wherein:
The imaging apparatus in which the plurality of folding mirrors are arranged at different positions in a plane orthogonal to the hole forming direction. - 請求項3に記載の撮像装置であって、
前記複数の折返ミラーのうち前記像回転補正部から最も離れた折返ミラーを先端折返ミラーとするとともに、前記先端折返ミラーにより取り出された前記反射光を先端反射光とするとき、
前記光路長差補正部は、前記先端反射光の光路から外れて配置される光路変更ミラーを有し、前記像回転補正部から出射してくる前記複数の反射光のうち前記先端反射光以外の前記反射光を前記光路変更ミラーで反射して光路を変更して前記撮像部に導光する一方、前記先端反射光をそのまま前記撮像部に導光して光路長を調整する撮像装置。 The imaging apparatus according to claim 3,
When the folding mirror that is farthest from the image rotation correction unit among the plurality of folding mirrors is used as a tip folding mirror, and the reflected light extracted by the tip folding mirror is used as a tip reflected light,
The optical path length difference correction unit includes an optical path changing mirror arranged out of the optical path of the tip reflection light, and the optical path length difference correction unit other than the tip reflection light among the plurality of reflection lights emitted from the image rotation correction unit. An imaging apparatus that reflects the reflected light by the optical path changing mirror to change an optical path and guides the reflected light to the imaging unit, and guides the reflected light at the tip as it is to the imaging unit to adjust an optical path length. - 請求項4に記載の撮像装置であって、
前記複数の折返ミラーのうち前記先端折返ミラー以外の折返ミラーは前記先端折返ミラーの面法線に対して傾斜した面法線を有し、前記反射光を前記光路変更ミラーに導光する撮像装置。 The imaging apparatus according to claim 4,
An imaging device for guiding the reflected light to the optical path changing mirror, wherein a folding mirror other than the tip folding mirror among the plurality of folding mirrors has a surface normal inclined with respect to a surface normal of the tip folding mirror .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018103494A JP6966974B2 (en) | 2018-05-30 | 2018-05-30 | Imaging device |
JP2018-103494 | 2018-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019230215A1 true WO2019230215A1 (en) | 2019-12-05 |
Family
ID=68698027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016081 WO2019230215A1 (en) | 2018-05-30 | 2019-04-15 | Image capture device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6966974B2 (en) |
TW (1) | TWI686660B (en) |
WO (1) | WO2019230215A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199885A (en) * | 2021-12-09 | 2022-03-18 | 合肥御微半导体技术有限公司 | Wafer detection device and method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000097846A (en) * | 1998-09-21 | 2000-04-07 | Olympus Optical Co Ltd | Optical scanning probe device |
US20020183625A1 (en) * | 1999-02-01 | 2002-12-05 | Scimed Life Systems, Inc. | Medical scanning system and related method of scanning |
KR20070006043A (en) * | 2005-07-07 | 2007-01-11 | 유재민 | Apparatus for inspection the inside wall of hole |
JP2008125939A (en) * | 2006-11-24 | 2008-06-05 | Fujifilm Corp | Optical probe and optical treatment diagnostic system with it |
JP2012049624A (en) * | 2010-08-24 | 2012-03-08 | Yuki Giken Kk | Imaging device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2019310B1 (en) * | 2006-05-16 | 2019-02-13 | Nagano Automation Co., Ltd. | Surface inspection apparatus and surface inspection head device |
JP2009139807A (en) * | 2007-12-10 | 2009-06-25 | Sony Corp | Imaging device |
EP2998776A1 (en) * | 2014-09-22 | 2016-03-23 | Nanolive SA | Tomographic phase microscope |
JP6478560B2 (en) * | 2014-10-29 | 2019-03-06 | キヤノン株式会社 | Optical scanning device and image forming apparatus using the same |
-
2018
- 2018-05-30 JP JP2018103494A patent/JP6966974B2/en active Active
-
2019
- 2019-04-15 WO PCT/JP2019/016081 patent/WO2019230215A1/en active Application Filing
- 2019-04-22 TW TW108114005A patent/TWI686660B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000097846A (en) * | 1998-09-21 | 2000-04-07 | Olympus Optical Co Ltd | Optical scanning probe device |
US20020183625A1 (en) * | 1999-02-01 | 2002-12-05 | Scimed Life Systems, Inc. | Medical scanning system and related method of scanning |
KR20070006043A (en) * | 2005-07-07 | 2007-01-11 | 유재민 | Apparatus for inspection the inside wall of hole |
JP2008125939A (en) * | 2006-11-24 | 2008-06-05 | Fujifilm Corp | Optical probe and optical treatment diagnostic system with it |
JP2012049624A (en) * | 2010-08-24 | 2012-03-08 | Yuki Giken Kk | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
JP6966974B2 (en) | 2021-11-17 |
TW202004320A (en) | 2020-01-16 |
JP2019207188A (en) | 2019-12-05 |
TWI686660B (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11656429B2 (en) | Systems, devices, and methods for automatic microscopic focus | |
US10007100B2 (en) | Light sheet illumination microscope and light sheet illumination method | |
JP6895768B2 (en) | Defect inspection equipment and defect inspection method | |
JP2009529370A (en) | Method for illuminating and imaging the inner diameter of a stent | |
JP2008203093A (en) | Illumination device and image measurement apparatus | |
JP6643328B2 (en) | Optical system for producing lithographic structures | |
JP5311195B2 (en) | Microscope equipment | |
CN111819485A (en) | Autofocus device, optical device provided with same, and microscope | |
JP5559644B2 (en) | Inspection device | |
US20160054552A1 (en) | Confocal laser scanning microscope | |
JP6387381B2 (en) | Autofocus system, method and image inspection apparatus | |
WO2019230215A1 (en) | Image capture device | |
JP3048168B2 (en) | Surface condition inspection apparatus and exposure apparatus having the same | |
JP6903449B2 (en) | Defect inspection equipment and defect inspection method | |
US11372222B2 (en) | Confocal microscope and method for taking image using the same | |
CN109506570B (en) | Displacement sensor | |
TWI632971B (en) | Laser processing apparatus and laser processing method | |
JP2014121727A (en) | Laser machining apparatus | |
TWI764801B (en) | Method and system for measuring geometric parameters of through holes | |
JP6839916B2 (en) | Internal inspection system and its optical system | |
JP3328573B2 (en) | Position detecting apparatus and method using oblique optical axis optical system | |
JPH05118999A (en) | X-ray analyzing device | |
JPWO2020095843A1 (en) | Coaxial lighting device | |
JP2007042858A (en) | Projection aligner | |
JP7292457B1 (en) | Surface profile inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19810651 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19810651 Country of ref document: EP Kind code of ref document: A1 |