Nothing Special   »   [go: up one dir, main page]

JPWO2020095843A1 - Coaxial lighting device - Google Patents

Coaxial lighting device Download PDF

Info

Publication number
JPWO2020095843A1
JPWO2020095843A1 JP2020556043A JP2020556043A JPWO2020095843A1 JP WO2020095843 A1 JPWO2020095843 A1 JP WO2020095843A1 JP 2020556043 A JP2020556043 A JP 2020556043A JP 2020556043 A JP2020556043 A JP 2020556043A JP WO2020095843 A1 JPWO2020095843 A1 JP WO2020095843A1
Authority
JP
Japan
Prior art keywords
half mirror
work
light source
diaphragm
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020556043A
Other languages
Japanese (ja)
Inventor
大輔 岡本
板垣 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCS Inc
Original Assignee
CCS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Inc filed Critical CCS Inc
Publication of JPWO2020095843A1 publication Critical patent/JPWO2020095843A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

小型でありながらも視野を広くすることができるとともに、調整作業を簡易なものにできる同軸照明装置を提供するために、観察対象であるワークWと当該ワークWを観察する観察部Mとを結ぶ観察軸A1上に斜めに配置されたハーフミラー1と、前記観察軸A1とは異なる方向からハーフミラー1に対して光を照射し、前記ハーフミラー1で反射された光が前記ワークWに照射されるように配置された光源2と、前記ハーフミラーと前記ワークとの間に設けられたレンズ3と、前記光源2と前記ハーフミラー1との間に設けられた第1絞り4と、を備え、前記第1絞り4が、前記光源2と前記ハーフミラー1とを結ぶ照射軸A2上における前記レンズ3の焦点に配置した。 In order to provide a coaxial lighting device that can widen the field of view while being compact and can simplify the adjustment work, the work W to be observed and the observation unit M for observing the work W are connected. The half mirror 1 obliquely arranged on the observation axis A1 and the half mirror 1 are irradiated with light from a direction different from that of the observation axis A1, and the light reflected by the half mirror 1 irradiates the work W. A light source 2 arranged so as to be formed, a lens 3 provided between the half mirror and the work, and a first aperture 4 provided between the light source 2 and the half mirror 1. The first aperture 4 is arranged at the focal point of the lens 3 on the irradiation axis A2 connecting the light source 2 and the half mirror 1.

Description

本発明は、同軸照明装置に関するものである。 The present invention relates to a coaxial lighting device.

例えば、表面検査用の照明装置として、特許文献1に示されるように光源から観察方向とは異なる方向に向けて射出された光を、ハーフミラーによってカメラ等による観察方向と同じ方向に反射して観察対象であるワークを照明する同軸照明が知られている。 For example, as a lighting device for surface inspection, as shown in Patent Document 1, light emitted from a light source in a direction different from the observation direction is reflected by a half mirror in the same direction as the observation direction by a camera or the like. Coaxial illumination that illuminates the workpiece to be observed is known.

このような同軸照明装置は、光源やハーフミラーだけでなく、レンズ等の光学素子が筺体内に保持され、例えばカメラで撮像される画像が表面検査に適したものに調整できるように、例えばそれぞれの相対位置関係が調節可能に構成されている。 In such a coaxial lighting device, not only a light source and a half mirror, but also an optical element such as a lens is held in the housing, and for example, the image captured by the camera can be adjusted to be suitable for surface inspection. The relative positional relationship of is adjustable.

しかしながら、光源側のレンズやカメラ側のレンズ等複数のレンズが設けられていると、それぞれに調整が必要なので手間がかかるとともに、適切な画像を得られるように調整するのは難しい。 However, if a plurality of lenses such as a lens on the light source side and a lens on the camera side are provided, adjustment is required for each lens, which is troublesome and difficult to adjust so as to obtain an appropriate image.

また、ワークを観察できる視野を大きくしようとすると、複数の部材をそれぞれ大型化しなくてはならず、それらを内部に保持する筺体も大きくなってしまい、結果として同軸照明装置全体として大型化してしまう。加えて、大型化に伴い、製造コストが大幅に上昇してしまう。 Further, in order to increase the field of view in which the work can be observed, it is necessary to increase the size of each of the plurality of members, and the housing that holds them inside also becomes large, and as a result, the size of the coaxial illuminating device as a whole becomes large. .. In addition, the manufacturing cost will increase significantly as the size increases.

特開2002―39956号公報JP-A-2002-39956

本発明は、上述したような問題に鑑みてなされたものであり、小型でありながらも視野を広くすることができるとともに、調整作業を簡易なものにできる同軸照明装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a coaxial lighting device capable of widening a field of view while being compact and simplifying adjustment work. do.

すなわち、本発明に係る同軸照明装置は、観察対象であるワークと当該ワークを観察する観察部とを結ぶ観察軸上に斜めに配置されたハーフミラーと、前記観察軸とは異なる方向からハーフミラーに対して光を照射し、前記ハーフミラーで反射された光が前記ワークに照射されるように配置された光源と、前記ハーフミラーと前記ワークとの間に設けられたレンズと、前記光源と前記ハーフミラーとの間に設けられた第1絞りと、を備え、前記第1絞りが、前記光源と前記ハーフミラーとを結ぶ照射軸上における前記レンズの焦点に配置されていることを特徴とする。 That is, the coaxial illumination device according to the present invention includes a half mirror obliquely arranged on an observation axis connecting a work to be observed and an observation unit for observing the work, and a half mirror from a direction different from the observation axis. A light source arranged so that the light reflected by the half mirror is irradiated to the work, a lens provided between the half mirror and the work, and the light source. A first aperture provided between the half mirror and the first aperture is provided, and the first aperture is arranged at the focal point of the lens on an irradiation axis connecting the light source and the half mirror. do.

このようなものであれば、前記光源、前記第1絞り、前記レンズによってテレセントリック光学系を構成してワークに平行光を照射できるとともに、観察部側においても前記レンズを共用することができる。したがって、従来の同軸照明装置よりも使用するレンズの個数を減らすことができ、調整作業の手間を軽減することができる。 In such a case, the telecentric optical system can be configured by the light source, the first diaphragm, and the lens to irradiate the work with parallel light, and the lens can be shared on the observation unit side as well. Therefore, the number of lenses used can be reduced as compared with the conventional coaxial illuminating device, and the labor of adjustment work can be reduced.

また、部品点数を減らすことができるので、同軸照明装置をそれほど大きくしなくても観察部における視野を大きくすることが可能となる。 Further, since the number of parts can be reduced, it is possible to increase the field of view in the observation unit without making the coaxial illumination device so large.

さらに、前記光源から射出された光は平行光としてワークに照射することができ、前記光源のNAについても前記第1絞りで調節できる。このため、例えば観察部で観察される前記ワークの明るさについても適宜調整しやすい。例えばワークの表面に微小なうねりが存在するために観察したい対象やその周辺からの反射光又は散乱光が観察部に到達しにくい場合がある。このような場合には、前記光源のNAを大きくして、観察部の視野内に反射光又は散乱光が入射する量が多くなるようにして表面にうねりがあったとしても観察したい対象を鮮明に捉える事が可能となる。 Further, the light emitted from the light source can be applied to the work as parallel light, and the NA of the light source can also be adjusted by the first diaphragm. Therefore, for example, the brightness of the work observed in the observation unit can be easily adjusted as appropriate. For example, due to the presence of minute waviness on the surface of the work, it may be difficult for the reflected light or scattered light from the object to be observed or its surroundings to reach the observation portion. In such a case, the NA of the light source is increased so that the amount of reflected light or scattered light incident in the field of view of the observation unit is large so that the object to be observed is clear even if the surface is wavy. It becomes possible to catch it.

前記ワークに照射される光の調整作業を簡素化でき、装置全体を小型化しやすくするには、前記光源と前記ハーフミラーとの間には、光学素子として前記第1絞りのみが設けられていればよい。 In order to simplify the adjustment work of the light applied to the work and facilitate the miniaturization of the entire apparatus, only the first diaphragm is provided as an optical element between the light source and the half mirror. Just do it.

前記ワークの各点に対して均一で輝度ムラの少ない平行光が照射されるようにするには、前記光源が、平面状の発光面を有し、前記発光面が、前記照射軸と前記観察軸とが直交するように配置されていればよい。 In order to irradiate each point of the work with uniform and less uneven brightness, the light source has a flat light emitting surface, and the light emitting surface is the irradiation axis and the observation. It suffices if they are arranged so as to be orthogonal to the axis.

前記ワークで反射又は散乱された光が前記観察部において観察される態様をさらに微調整できるようにするには、前記ハーフミラーと前記観察部との間にさらに第2絞りが設けられたものであればよい。 In order to further fine-tune the mode in which the light reflected or scattered by the work is observed in the observation unit, a second diaphragm is further provided between the half mirror and the observation unit. All you need is.

ワークWの表面にうねりなどがあって当該表面からの反射光又は散乱光が観察部に到達しにくくなるのを防ぎ、表面検査を精度良く行えるようにするには、第1絞りで規定されるNAが、第2絞りで規定されるNAよりも大きい、又は、大きくできるように構成されていればよい。 In order to prevent the surface of the work W from being undulated and the reflected light or scattered light from the surface from reaching the observation part, and to enable accurate surface inspection, it is specified by the first diaphragm. The NA may be configured to be larger or larger than the NA specified by the second diaphragm.

例えば調整作業が必要な箇所を前記第1絞りだけに限定することができ、調整作業の手間を従来よりも大幅に低減できるようにするには、前記ハーフミラー、前記光源、前記第1絞り、及び、前記レンズの間の位置関係を固定してそれぞれを保持する筺体をさらに備えたものであればよい。 For example, in order to limit the place where the adjustment work is required to only the first diaphragm and to greatly reduce the labor of the adjustment work as compared with the conventional case, the half mirror, the light source, the first diaphragm, and the like. In addition, a housing that fixes the positional relationship between the lenses and holds each of them may be further provided.

このように本発明に係る同軸照明装置によれば、前記レンズが、前記光源に対してはテレセントリックレンズとして作用するとともに、前記観察部に対して前記ワークからの反射光又は散乱光を集光する集光レンズとして作用させることができる。このため、前記光源と前記観察部のそれぞれにレンズを設ける必要がなく、部品点数を減らして装置全体を小型化しつつ、視野を大きくしやすい。また、レンズの配置数を減らすことができるので、従来よりも前記ワークを適切に観察するための調整作業を簡素化できる。 As described above, according to the coaxial illumination device according to the present invention, the lens acts as a telecentric lens with respect to the light source and collects the reflected light or the scattered light from the work with respect to the observation unit. It can act as a condenser lens. Therefore, it is not necessary to provide a lens for each of the light source and the observation unit, and it is easy to increase the field of view while reducing the number of parts and reducing the size of the entire device. Further, since the number of lens arrangements can be reduced, the adjustment work for appropriately observing the work can be simplified as compared with the conventional case.

本発明の第1実施形態に係る表面検査システム、及び、同軸照明装置を示す模式図。The schematic diagram which shows the surface inspection system and the coaxial lighting apparatus which concerns on 1st Embodiment of this invention. 第1実施形態に係る同軸照明装置を示す模式的斜視図。The schematic perspective view which shows the coaxial lighting apparatus which concerns on 1st Embodiment. 第1実施形態に係る同軸照明装置の模式的断面斜視図。The schematic sectional perspective view of the coaxial lighting apparatus which concerns on 1st Embodiment. 第1実施形態に係る同軸照明装置によるワークへの光の照射態様を示す模式図。The schematic diagram which shows the mode of irradiating the work with light by the coaxial lighting apparatus which concerns on 1st Embodiment. 第1実施形態に係る同軸照明装置により光源側のNAを変更することによる効果の一例を示す模式図。The schematic diagram which shows an example of the effect by changing NA on the light source side by the coaxial lighting apparatus which concerns on 1st Embodiment. 本発明の第2実施形態に係る表面検査システム、及び、同軸照明装置を示す模式図。The schematic diagram which shows the surface inspection system and the coaxial lighting apparatus which concerns on 2nd Embodiment of this invention.

200・・・表面検査システム
100・・・同軸照明
1 ・・・ハーフミラー
2 ・・・光源
3 ・・・レンズ
4 ・・・第1絞り
5 ・・・第2絞り
7 ・・・筺体
200 ・ ・ ・ Surface inspection system 100 ・ ・ ・ Coaxial lighting 1 ・ ・ ・ Half mirror 2 ・ ・ ・ Light source 3 ・ ・ ・ Lens 4 ・ ・ ・ 1st diaphragm 5 ・ ・ ・ 2nd diaphragm 7 ・ ・ ・ Housing

本発明の第1実施形態に係る同軸照明装置100、それを用いた表面検査システム200について図1乃至図3を参照しながら説明する。第1実施形態の同軸照明装置100は、例えば製品などの対象物であるワークWに光を照射して、ワークW表面の傷や文字等をカメラなどで観察して自動検査する表面検査等に用いられるものである。具体的には図1に示すように、ワークWと当該ワークWを観察する例えばカメラ等の観察部Mとを結ぶ観察軸A1上において、ワークWと観察部Mとの間に同軸照明装置100は設置される。このように配置された同軸照明装置100と観察部Mによって表面検査システム200が構成される。 The coaxial lighting device 100 according to the first embodiment of the present invention and the surface inspection system 200 using the coaxial lighting device 100 will be described with reference to FIGS. 1 to 3. The coaxial lighting device 100 of the first embodiment is used for surface inspection or the like, for example, by irradiating a work W which is an object such as a product with light and observing scratches or characters on the surface of the work W with a camera or the like for automatic inspection. It is used. Specifically, as shown in FIG. 1, the coaxial illuminating device 100 is located between the work W and the observation unit M on the observation axis A1 connecting the work W and the observation unit M such as a camera for observing the work W. Is installed. The surface inspection system 200 is composed of the coaxial illumination device 100 and the observation unit M arranged in this way.

以下では同軸照明装置100の詳細について説明する。 The details of the coaxial lighting device 100 will be described below.

図1乃至図3に示すように同軸照明装置100は、観察軸A1上に配置されたハーフミラー1と、ハーフミラー1に向けて光を照射する光源2と、ハーフミラー1とワークWとの間に配置されるレンズ3と、ハーフミラー1と光源2との間に配置された第1絞り4と、ハーフミラー1と観察部Mとの間に配置された第2絞り5と、第2絞り5と観察部Mとの間に配置される観察側レンズ6、これらを収容する筺体7と、を備えている。 As shown in FIGS. 1 to 3, the coaxial illumination device 100 includes a half mirror 1 arranged on the observation axis A1, a light source 2 that irradiates light toward the half mirror 1, a half mirror 1, and a work W. A lens 3 arranged between them, a first aperture 4 arranged between the half mirror 1 and the light source 2, a second aperture 5 arranged between the half mirror 1 and the observation unit M, and a second aperture. It includes an observation side lens 6 arranged between the diaphragm 5 and the observation unit M, and a housing 7 for accommodating these.

ハーフミラー1は、2つのプリズムを組み合わせて立方体状に形成されたキューブハーフミラーである。各プリズムの接合面に誘電体多層膜や金属薄膜がコーティングされており、接合面が観察軸A1及び光源2の照射軸A2に対してそれぞれ45度をなすように配置される。 The half mirror 1 is a cube half mirror formed in a cubic shape by combining two prisms. A dielectric multilayer film or a metal thin film is coated on the joint surface of each prism, and the joint surface is arranged so as to form 45 degrees with respect to the observation axis A1 and the irradiation axis A2 of the light source 2, respectively.

光源2は矩形状、例えば正方形状の発光面から面発光するものであり、当該発光面から均一化された拡散光を射出するものである。この光源2は、例えば基板上に多数のLEDチップをアレイ状に並べて形成される。第1実施形態では光源2とハーフミラー1との間には第1絞り4以外の光学素子は存在していない。また、光源2は筺体7に固定されており、筺体7内における位置は固定されている。 The light source 2 emits surface light from a rectangular, for example, square light emitting surface, and emits uniform diffused light from the light emitting surface. The light source 2 is formed, for example, by arranging a large number of LED chips on a substrate in an array. In the first embodiment, there is no optical element other than the first diaphragm 4 between the light source 2 and the half mirror 1. Further, the light source 2 is fixed to the housing 7, and the position in the housing 7 is fixed.

レンズ3は、単一又は複数のレンズから構成されるものであり、筺体7のワーク側開口71の周辺に固定されている。光源2から射出されてハーフミラー1で反射された光は、このレンズ3で屈折されてワークWに垂直に照射される。また、ワークWで反射又は散乱された光はこのレンズ3で集光されてハーフミラー1を透過し、その後観察部Mへと入射する。このようにレンズ3は光源2及び観察部Mの両方において共用される。このレンズ3の焦点は照射軸A2上における光源2とハーフミラー1との間、及び、観察軸A1上におけるハーフミラー1と観察部Mとの間に存在するように当該レンズ3は配置されている。 The lens 3 is composed of a single lens or a plurality of lenses, and is fixed around the work-side opening 71 of the housing 7. The light emitted from the light source 2 and reflected by the half mirror 1 is refracted by the lens 3 and irradiated perpendicularly to the work W. Further, the light reflected or scattered by the work W is collected by the lens 3 and transmitted through the half mirror 1 and then incident on the observation unit M. In this way, the lens 3 is shared by both the light source 2 and the observation unit M. The lens 3 is arranged so that the focal point of the lens 3 exists between the light source 2 and the half mirror 1 on the irradiation axis A2 and between the half mirror 1 and the observation unit M on the observation axis A1. There is.

第1絞り4は、照射軸A2上のレンズ3の焦点に配置されている。すなわち、光源2、第1絞り4、レンズ3はテレセントリック光学系をなしており、光源2から射出された光はレンズ3により平行化されてワークWに照射される。第1絞り4は可変絞りであって、筺体7の外側に突出している調整つまみ41により、その開口径を適宜調整できるように構成されている。また、第1実施形態の同軸照明装置100ではこの第1絞り4のみ調整可能に構成されている。この第1絞り4も筺体7内においてその位置が固定されている。 The first diaphragm 4 is arranged at the focal point of the lens 3 on the irradiation axis A2. That is, the light source 2, the first diaphragm 4, and the lens 3 form a telecentric optical system, and the light emitted from the light source 2 is parallelized by the lens 3 and irradiated to the work W. The first diaphragm 4 is a variable diaphragm, and is configured so that the opening diameter thereof can be appropriately adjusted by an adjustment knob 41 projecting to the outside of the housing 7. Further, in the coaxial lighting device 100 of the first embodiment, only the first diaphragm 4 is adjustable. The position of the first diaphragm 4 is also fixed in the housing 7.

第2絞り5は、観察軸A1上におけるレンズ3の焦点に配置されている。すなわち、ワークW、レンズ3、第2絞り5はテレセントリック光学系をなしており、ワークWにおいて反射又は散乱された光のうち観察軸A1と平行な方向に光軸を有する光のみが第2絞り5を通過して観察部Mに到達できる。第1実施形態では第2絞り5は固定絞りであり、その開口径は予め定められた大きさに固定されている。また、第1絞り4で規定されるNAは第2絞り5で規定されるNAよりも大きくできるように構成されている。 The second diaphragm 5 is arranged at the focal point of the lens 3 on the observation axis A1. That is, the work W, the lens 3, and the second diaphragm 5 form a telecentric optical system, and of the light reflected or scattered by the work W, only the light having an optical axis in the direction parallel to the observation axis A1 is the second diaphragm. The observation unit M can be reached after passing through 5. In the first embodiment, the second diaphragm 5 is a fixed diaphragm, and its opening diameter is fixed to a predetermined size. Further, the NA defined by the first diaphragm 4 is configured to be larger than the NA defined by the second diaphragm 5.

観察側レンズ6は、第2絞り5を通過した光を屈折させて観察部Mへと入射させる。例えば観察側レンズ6の焦点は第2絞り5上に存在するようにして、観察側レンズ6を通過する光を平行化して観察部Mに入射するようにしてもよい。 The observation side lens 6 refracts the light that has passed through the second diaphragm 5 and causes the light to enter the observation unit M. For example, the focal point of the observation side lens 6 may be located on the second diaphragm 5, and the light passing through the observation side lens 6 may be parallelized and incident on the observation unit M.

筺体7は観察軸A1に沿った縦断面が概略横向きT字状をなすものである。ハーフミラー1とレンズ3との離間距離が、光源2とハーフミラー1との離間距離よりも長くなるように、この筺体7は構成されている。またワークW側の開口よりも観察部M側の開口である観察孔72の直径は小さく形成されている。 The housing 7 has a vertical cross section along the observation axis A1 having a substantially horizontal T-shape. The housing 7 is configured so that the separation distance between the half mirror 1 and the lens 3 is longer than the separation distance between the light source 2 and the half mirror 1. Further, the diameter of the observation hole 72, which is the opening on the observation portion M side, is formed smaller than the opening on the work W side.

このように構成された第1実施形態の同軸照明装置100であれば、筺体7のワーク側開口71にのみレンズ3が設けられているので、従来に比べて使用するレンズの個数を減らすことができる。したがって、従来のように光源側と観察部側のレンズのそれぞれについて調整作業をしていた場合に比べてそのような手間を大幅に軽減することができる。 In the coaxial illumination device 100 of the first embodiment configured in this way, since the lens 3 is provided only in the work-side opening 71 of the housing 7, the number of lenses used can be reduced as compared with the conventional case. can. Therefore, such labor can be significantly reduced as compared with the case where the adjustment work is performed for each of the lenses on the light source side and the observation unit side as in the conventional case.

また、同軸照明を構成する部品点数を減らすことができるので、装置全体をそれほど大きくしなくても観察部Mにおける視野を大きくできる。 Further, since the number of parts constituting the coaxial illumination can be reduced, the field of view in the observation unit M can be increased without making the entire device so large.

さらに、光源2、第1絞り4、レンズ3はテレセントリック光学系をなすので、光源2から射出された光は平行光としてワークWに照射することができ、光源2のNA(開口数)についても第1絞り4で調節できる。具体的には図4(a)と図4(b)に示すように第1絞り4によって光源2のNAが変更されると、ワークWの表面の各点において光が入射できる立体角の範囲をそれぞれ一律に変更することができる。第1実施形態では観察部MのNAは固定絞りである第2絞り5で固定されているので、第1絞り4の開口径を変更することで、観察部MのNAよりも光源2のNAを十分に大きくすることができる。 Further, since the light source 2, the first diaphragm 4, and the lens 3 form a telecentric optical system, the light emitted from the light source 2 can be applied to the work W as parallel light, and the NA (numerical aperture) of the light source 2 is also increased. It can be adjusted with the first aperture 4. Specifically, as shown in FIGS. 4A and 4B, when the NA of the light source 2 is changed by the first diaphragm 4, the range of solid angles at which light can be incident at each point on the surface of the work W. Can be changed uniformly. In the first embodiment, the NA of the observation unit M is fixed by the second aperture 5 which is a fixed aperture. Therefore, by changing the aperture diameter of the first aperture 4, the NA of the light source 2 is higher than the NA of the observation unit M. Can be made large enough.

例えば図5(a)に示すようにワークWが平面上に刻印された文字をマシンビジョンで検査する場合、文字以外の部分で表面に微小なうねりのある領域Dがあると、図5(b)に示すようにその領域Dだけでなく、文字から観察部Mに到達する反射光又は散乱光の光量が少なくなり、マシンビジョンによる検査が精度良く行えないことがある。これはうねりによって反射光や散乱光が観察軸A1と平行な方向に進行せず、観察部Mに対して入射できなくなるためである。このような状況において図4(a)から図4(b)のように光源2のNAを大きくすると、ワークWの領域Dで反射又は散乱された光の一部に観察軸A1と平行な方向に進行する成分を発生させて、観察部Mまで入射させることができる。したがって、図5(c)に示すようにうねりのある領域Dについても観察部Mに一定量の反射光や散乱光を到達させることができ、マシンビジョンによる検査を精度良く行う事が可能となる。 For example, as shown in FIG. 5A, when the work W inspects a character engraved on a flat surface by machine vision, if there is a region D having a minute undulation on the surface other than the character, FIG. 5B ), The amount of reflected light or scattered light that reaches the observation unit M from the characters as well as the area D is reduced, and the inspection by machine vision may not be performed accurately. This is because the reflected light and the scattered light do not travel in the direction parallel to the observation axis A1 due to the swell, and cannot be incident on the observation unit M. In such a situation, when the NA of the light source 2 is increased as shown in FIGS. 4 (a) to 4 (b), a direction parallel to the observation axis A1 is provided in a part of the light reflected or scattered in the region D of the work W. It is possible to generate a component that progresses to the above and make it incident on the observation unit M. Therefore, as shown in FIG. 5C, a certain amount of reflected light or scattered light can reach the observation unit M even in the wavy region D, and the inspection by machine vision can be performed with high accuracy. ..

また、第1実施形態ではワークWへの光の照射態様は第1絞り4の開口径だけで調整できるので、表面検査に適した輝度、明るさ等の照射態様を簡単な調整作業だけで実現しやすい。 Further, in the first embodiment, since the irradiation mode of light to the work W can be adjusted only by the opening diameter of the first diaphragm 4, the irradiation mode such as brightness and brightness suitable for surface inspection can be realized only by a simple adjustment work. It's easy to do.

次に本発明の第2実施形態に係る同軸照明装置100について図6を参照しながら説明する。なお、第1実施形態において説明した部材に対応する部材には同じ符号を付すこととする。 Next, the coaxial lighting device 100 according to the second embodiment of the present invention will be described with reference to FIG. The members corresponding to the members described in the first embodiment are designated by the same reference numerals.

第2実施形態の同軸照明装置100は、ハーフミラー1と観察部Mとの間に可変絞りである第2絞り6を備えている点で第1実施形態と異なっている。 The coaxial illumination device 100 of the second embodiment is different from the first embodiment in that the second diaphragm 6 which is a variable diaphragm is provided between the half mirror 1 and the observation unit M.

このような第2絞り6を備えていることによって、観察部Mに入射する光量を調整する事が可能となり、さらに表面検査に適した画像を得やすくすることが可能となる。 By providing such a second diaphragm 6, it is possible to adjust the amount of light incident on the observation unit M, and it is possible to easily obtain an image suitable for surface inspection.

その他の実施形態について説明する。 Other embodiments will be described.

本発明に係る同軸照明装置は、表面検査だけに用いられるものではなく、その他の外観検査等の検査においても用いることができる。 The coaxial lighting device according to the present invention is not only used for surface inspection, but can also be used for other inspections such as visual inspection.

光源については、LEDに限られず、その他の種類のものを用いても構わない。レンズについても凸レンズに限られず、フレネルレンズ等を用いても構わない。加えて、観察軸に対して照射軸が直交しておらず、単に交差するように構成してもよい。 The light source is not limited to the LED, and other types may be used. The lens is not limited to a convex lens, and a Fresnel lens or the like may be used. In addition, the irradiation axes may not be orthogonal to the observation axis but may simply intersect.

その他、本発明の趣旨に反しない限りにおいて様々な実施形態の一部同士を組み合わせて変形しても構わない。 In addition, a part of various embodiments may be combined and modified as long as it does not contradict the gist of the present invention.

本発明であれば、小型でありながらも視野を広くすることができるとともに、調整作業を簡易な同軸照明装置を提供できる。 According to the present invention, it is possible to provide a coaxial lighting device that can be compact but has a wide field of view and can easily perform adjustment work.

Claims (6)

観察対象であるワークと当該ワークを観察する観察部とを結ぶ観察軸上に斜めに配置されたハーフミラーと、
前記観察軸とは異なる方向からハーフミラーに対して光を照射し、前記ハーフミラーで反射された光が前記ワークに照射されるように配置された光源と、
前記ハーフミラーと前記ワークとの間に設けられたレンズと、
前記光源と前記ハーフミラーとの間に設けられた第1絞りと、を備え、
前記第1絞りが、前記光源と前記ハーフミラーとを結ぶ照射軸上における前記レンズの焦点に配置されていることを特徴とする同軸照明装置。
A half mirror diagonally arranged on the observation axis connecting the work to be observed and the observation unit for observing the work,
A light source arranged so that the half mirror is irradiated with light from a direction different from the observation axis and the light reflected by the half mirror is irradiated to the work.
A lens provided between the half mirror and the work
A first diaphragm provided between the light source and the half mirror is provided.
A coaxial illuminating device, wherein the first diaphragm is arranged at the focal point of the lens on an irradiation axis connecting the light source and the half mirror.
前記光源と前記ハーフミラーとの間には、光学素子として前記第1絞りのみが設けられている請求項1記載の同軸照明装置。 The coaxial lighting device according to claim 1, wherein only the first diaphragm is provided as an optical element between the light source and the half mirror. 前記光源が、平面状の発光面を有し、
前記発光面が、前記照射軸と前記観察軸とが直交するように配置されている請求項1記載の同軸照明装置。
The light source has a flat light emitting surface and has a flat light emitting surface.
The coaxial lighting device according to claim 1, wherein the light emitting surface is arranged so that the irradiation axis and the observation axis are orthogonal to each other.
前記ハーフミラーと前記観察部との間にさらに第2絞りが設けられた請求項1記載の同軸照明装置。 The coaxial lighting device according to claim 1, wherein a second diaphragm is further provided between the half mirror and the observation unit. 第1絞りで規定されるNAが、第2絞りで規定されるNAよりも大きい、又は、大きくできるように構成されている請求項4記載の同軸照明装置。 The coaxial lighting device according to claim 4, wherein the NA defined by the first diaphragm is larger than or can be made larger than the NA defined by the second diaphragm. 前記ハーフミラー、前記光源、前記第1絞り、及び、前記レンズの間の位置関係を固定してそれぞれを保持する筺体をさらに備えた請求項1記載の同軸照明装置。 The coaxial lighting device according to claim 1, further comprising a housing that fixes and holds the positional relationship between the half mirror, the light source, the first diaphragm, and the lens.
JP2020556043A 2018-11-07 2019-11-01 Coaxial lighting device Pending JPWO2020095843A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018209620 2018-11-07
JP2018209620 2018-11-07
PCT/JP2019/043065 WO2020095843A1 (en) 2018-11-07 2019-11-01 Coaxial lighting device

Publications (1)

Publication Number Publication Date
JPWO2020095843A1 true JPWO2020095843A1 (en) 2021-10-14

Family

ID=70612054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556043A Pending JPWO2020095843A1 (en) 2018-11-07 2019-11-01 Coaxial lighting device

Country Status (2)

Country Link
JP (1) JPWO2020095843A1 (en)
WO (1) WO2020095843A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124057A1 (en) * 2020-12-08 2022-06-16 シーシーエス株式会社 Led light radiating device, and inspection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727709A (en) * 1993-05-13 1995-01-31 Olympus Optical Co Ltd Inspecting apparatus surface defect
JPH1152247A (en) * 1997-07-29 1999-02-26 New Kurieishiyon:Kk Light irradiation device and surface inspecting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329538A (en) * 1999-05-24 2000-11-30 Dainippon Printing Co Ltd Surface-inspecting apparatus
JP2007114087A (en) * 2005-10-21 2007-05-10 Nano System Solutions:Kk Surface inspection method
JP2009063383A (en) * 2007-09-05 2009-03-26 Ricoh Co Ltd Inspection device and inspection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727709A (en) * 1993-05-13 1995-01-31 Olympus Optical Co Ltd Inspecting apparatus surface defect
JPH1152247A (en) * 1997-07-29 1999-02-26 New Kurieishiyon:Kk Light irradiation device and surface inspecting device

Also Published As

Publication number Publication date
WO2020095843A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
US8928892B2 (en) Wavefront analysis inspection apparatus and method
US9606071B2 (en) Defect inspection method and device using same
CN107561089B (en) Inner hole detection optical system and inner hole detection equipment
US9863759B2 (en) Illumination apparatus, pattern irradiation device, and system
TWI700487B (en) System and method for inspecting object
JP4974993B2 (en) Inspection linear illumination device
JP6370626B2 (en) Illumination optical system, illumination device, and illumination optical element
US20070033680A1 (en) Optical inspection system and its illumination method
JP6895768B2 (en) Defect inspection equipment and defect inspection method
EP3140638B1 (en) Illumination system, inspection tool with illumination system, and method of operating an illumination system
US5523846A (en) Apparatus for detecting marks formed on a sample surface
JPWO2020095843A1 (en) Coaxial lighting device
KR101895593B1 (en) Optical inspection system and optical imaging system
TWI393873B (en) Device and method for controlling an angular coverage of a light beam
JP2004516491A (en) Method and apparatus for measuring the position of a contact element of an electronic component
JP6546079B2 (en) Appearance inspection apparatus and appearance inspection method
US11251347B2 (en) Semiconductor light source
KR101447857B1 (en) Particle inspectiing apparatus for lens module
TWI632971B (en) Laser processing apparatus and laser processing method
JP3139398U (en) Surface imaging device
JP2016081898A (en) Lighting device, pattern radiation device and system
WO2019230215A1 (en) Image capture device
CN102834759B (en) Observation optical system and laser processing device
KR20120086333A (en) High speed optical inspection system with adaptive focusing
KR101857399B1 (en) 0.5㎛ pin-hole detection device at optical magnification 5x

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241105