WO2019228303A1 - 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 - Google Patents
一种固态离子传导层及含该固态离子传导层的固态电致变色器件 Download PDFInfo
- Publication number
- WO2019228303A1 WO2019228303A1 PCT/CN2019/088562 CN2019088562W WO2019228303A1 WO 2019228303 A1 WO2019228303 A1 WO 2019228303A1 CN 2019088562 W CN2019088562 W CN 2019088562W WO 2019228303 A1 WO2019228303 A1 WO 2019228303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- film
- layer
- state
- aluminum oxide
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
- G02F1/1525—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
Definitions
- the invention relates to the technical field of materials, in particular to a solid-state ion-conducting layer having a special multilayer film structure and a solid-state electrochromic device containing the solid-state ion-conducting layer, which can be used in the technical fields of electrochromic glass and displays.
- the electrochromic device can reversibly change its optical properties such as transmittance and reflectivity under the action of an external electric field. It can be widely used in architectural glass and windows of automobiles, trains, ships, aircrafts and other vehicles to achieve comfort and energy saving. At the same time, it can also be used in semiconductor products such as various displays. In various forms of electrochromic devices, all film layers in the structure are all-solid-state electrochromic devices with solid inorganic materials. Due to their high adjustment efficiency and good stability, they have the broadest application prospects.
- a typical solid-state electrochromic device generally consists of a transparent substrate and a first transparent conductive layer, a first electrochromic layer, an ion conductive layer (or electrolyte layer), and a second electrochromic layer formed in this order on the transparent substrate. , A second transparent conductive layer, and a protective layer.
- the ion-conducting layer is responsible for the fast path for colored particles to move under the action of an electric field. Its structure and manufacturing process are one of the most important technologies to ensure the performance of the device.
- the ion-conducting layer in an all-solid-state electrochromic device must also be an inorganic solid-state substance.
- tantalum oxide (Ta 2 O 5 ) is by far the most widely used inorganic ion conductive film in electrochromic devices. Since the preparation of Ta 2 O 5 thin film can be achieved by reactive DC magnetron sputtering using a metal tantalum target, it has the advantages of easy target preparation, high deposition efficiency, and suitability for large-scale continuous coating production.
- the Ta 2 O 5 ion-conducting layer also has several disadvantages, such as: 1) low visible light transmittance; 2) additional processes such as lithiation are required to introduce lithium ions; 3) if direct sputtering lithium tantalate is used
- a lithium tantalate ceramic target material needs to be used for RF magnetron sputtering, the target material is complicated, and the deposition efficiency is low, etc., which adversely affects the electrochromic large-scale device manufacturing process.
- Patent Document 1 (Chinese Patent Application No. 201710333624.9) provides a lithium-aluminum double ion-containing solid electrolyte obtained by co-sputtering using an alumina-lithium ceramic target and a tantalum metal target ( Ion conduction) layer.
- a lithium-lithium-aluminum ceramic target is used in the co-sputtering, so RF power has to be used for magnetron sputtering.
- the deposition rate is extremely low; and the co-sputtering method cannot be applied to a large-scale device coating process.
- Patent Document 2 (Chinese Patent Application No. 201710240528.X) provides an ion-conducting layer and a method for preparing the same, including preparing an inorganic solid-state dielectric layer, and preparing a separate lithium alloy layer, and lithium is incorporated into the inorganic layer by applying electricity.
- the solid dielectric layer on-current lithiation
- this method requires subsequent lithiation engineering, which increases the complexity of the process.
- the current is lithiated and accompanied by the disappearance of the lithium alloy layer, which makes the overall structure of the lithium-containing ion conductive layer lack consistency and uniformity.
- the resulting ion-conducting layer can only be a single film of a compound or a mixture, and its optical properties, such as visible light transmittance, cannot achieve the best performance effect.
- an object of the present invention is to provide an ion-conducting multilayer film structure composed of high and low refractive index materials.
- the optimal optical effect can be obtained through structural optimization design, and lithium ions can be directly introduced during film formation without the need for Subsequent lithiation processes and multi-layer film formation processes are achieved using a metal target by DC or IF magnetron sputtering, with fast deposition rate and high efficiency, which meets the needs of large-scale rapid coating.
- the present invention provides a multilayer film in which the solid ion conductive layer is a lithium aluminum oxide thin film and a tantalum oxide thin film alternately laminated, and the chemical formula of the lithium aluminum oxide thin film is LiAl x O y , Among them, 0.4 ⁇ x ⁇ 1.2, preferably 0.44 ⁇ x ⁇ 1, more preferably 0.45 ⁇ x ⁇ 0.67; 0.5 ⁇ y ⁇ 3, preferably 0.5 ⁇ y ⁇ 2.5, and more preferably 0.5 ⁇ y ⁇ 2.
- Lithium-aluminum oxide is used as a solid ion-conducting layer (such as lithium-aluminum oxide LiAlO 2 etc.) because it is a lithium-containing transparent ion conductor.
- the device pair By controlling the composition ratio of lithium in the multilayer film, the device pair can be fully satisfied. Electrochromic performance requirements.
- the refractive index of lithium aluminum oxide is relatively low (for example, LiAlO 2 , n ⁇ 1.62), in addition to having a high visible light transmittance, it can also be based on the principle of multi-layer film antireflection, and has a higher refractive index oxidation.
- Tantalum (Ta 2 O 5 , n ⁇ 2.15) forms a multilayer film structure with alternating high and low refractive index substances, and obtains higher visible light transmittance than any single thin film.
- the chemical formula of the lithium aluminum oxide thin film is selected as LiAl x O y , where 0.4 ⁇ x ⁇ 1.2, preferably 0.44 ⁇ x ⁇ 1, more preferably 0.45 ⁇ x ⁇ 0.67; 0.5 ⁇ y ⁇ 3, preferably 0.5 ⁇ y ⁇ 2.5, more preferably 0.5 ⁇ y ⁇ 2.
- the tantalum oxide film is Ta 2 O 5 . It should be noted that if more lithium ions need to be introduced, the smaller the value of x in LiAl x O y , the better.
- metal lithium has a low melting point and has a strong chemically active type
- its metal target is difficult to prepare; if the x value is too high, although the alloy target is highly stable and easy to prepare, it cannot provide sufficient lithium ions for the structure .
- the value range of y depends on the range of x, and the main consideration is to achieve the best optical performance such as the visible light transmittance of the film.
- the solid-state ion conductive layer includes at least one lithium aluminum oxide film and one tantalum oxide film (the positions of the two can be interchanged).
- the multilayer film includes at least one lithium aluminum oxide thin film and is sandwiched between two tantalum oxide thin films, or one tantalum oxide thin film is sandwiched between two lithium aluminum oxide thin films.
- the principle of film interference, multilayer film can obtain better anti-reflective effect.
- the total number of layers of the multilayer film in which the lithium aluminum oxide thin film and the tantalum oxide thin film are alternately laminated is 2-20, preferably 3-15, and more preferably 3-5.
- using a multilayer film structure with more than 3 layers can further improve the visible light anti-reflection effect of the multilayer film and make lithium ion diffusion more uniform.
- the total number of multilayer films formed by alternately stacking the lithium aluminum oxide film and tantalum oxide film is limited to 2-20, preferably 3-15, and more preferably 3-5. . Because too many coating layers will increase the complexity of equipment and processes, too few coating layers will not have an obvious effect of anti-reflection.
- the total thickness of the solid-state ion-conducting layer is designed to be 100 nm to 1000 nm, preferably 200 nm to 600 nm. Because, if the total thickness is too large, the deposition time is long and the efficiency is low; if it is too small, sufficient ion storage and conduction effects cannot be achieved. When designing the structure of the film thickness of each layer, it should simultaneously meet the needs of providing sufficient lithium ions and achieving the maximum optical effect.
- the thickness of the lithium aluminum oxide film is 10 to 500 nm, preferably 50 to 400 nm; the thickness of the tantalum oxide film is 50-500 nm, preferably 50 to 200 nm.
- the solid-state ion-conducting layer having a multi-layer film structure has a visible light transmittance higher than a lithium aluminum oxide single-layer film or tantalum oxide single-layer film of the same film thickness; meanwhile, the structure is sufficient Utilize the excellent ion conductivity and stability of tantalum oxide; at the same time, the structure provides enough lithium ions to meet the needs of the device's discoloration; finally, the multilayer film can be prepared with metal targets to achieve high efficiency.
- the lithium aluminum oxide thin film in the solid ion conductive layer is prepared by a reactive magnetron sputtering method using an aluminum lithium alloy target material
- the aluminum lithium alloy target material is At least one of a solid solution composed of AlLi x , an Al 2 Li 3 crystal phase, and an Al 4 Li 9 crystal phase.
- the aluminum-lithium alloy target may be any one of a solid solution alloy with a composition of AlLi x (for example, x may be ⁇ 1), or an alloy with a composition of Al 2 Li 3 or Al 4 Li 9 , or two More than one mixed alloy.
- the preparation parameters of the lithium aluminum oxide thin film are: background vacuum 1 ⁇ 10 -5 to 5 ⁇ 10 -3 Pa, substrate temperature is 20 ° C to 200 ° C, coating time is 1 to 60 min, working atmosphere For an atmosphere containing oxygen and argon, the working pressure is 0.5 to 5 Pa, and the sputtering power density is 1 to 10 W / cm 2 .
- the tantalum oxide film is prepared by a reactive magnetron sputtering method using a metal tantalum target; preferably, the preparation parameters of the tantalum oxide film are: background vacuum 1 ⁇ 10 -5 to 5 ⁇ 10 -3 Pa, the substrate temperature is 20 ° C to 200 ° C, the coating time is 1 to 60 min, the working atmosphere is an atmosphere containing oxygen and argon, the working pressure is 0.5 to 5 Pa, and the sputtering power density is 1 to 10 W / cm 2 .
- the preparation parameters of the tantalum oxide film are: background vacuum 1 ⁇ 10 -5 to 5 ⁇ 10 -3 Pa, the substrate temperature is 20 ° C to 200 ° C, the coating time is 1 to 60 min, the working atmosphere is an atmosphere containing oxygen and argon, the working pressure is 0.5 to 5 Pa, and the sputtering power density is 1 to 10 W / cm 2 .
- tantalum oxide is a well-known electrochromic solid-state ion-conducting layer,
- the present invention also provides an all-solid-state electrochromic device having a structure including a substrate, and a first transparent conductive layer, a first electrochromic layer, and the solid-state ion according to the present invention.
- the first electrochromic layer is nickel oxide and has a thickness of 100 to 500 nm; the second electrochromic layer is tungsten oxide and has a thickness of 200 to 600 nm; the transparent conductive layer is ITO and has a thickness of 50-500 nm; the protective layer is silicon aluminum nitride oxide, and the thickness is 50-500 nm.
- the device has a variable reflectance and can be used for anti-glare and other purposes in automobiles.
- the invention has the following advantages: 1) The high- and low-refractive index substances are used to alternately form a solid-state ion-conducting layer of a multilayer film. According to the principle of multilayer film antireflection, the visible light transmittance of its optimized structure is higher than that of lithium aluminum oxide of the same film thickness Material single-layer film or tantalum oxide single-layer film; 2) using tantalum oxide as a high refractive index component to maximize its excellent ion conduction characteristics and stability; 3) solid state by increasing the lithium content in lithium aluminum oxide The ion-conducting layer provides enough lithium ions to meet the device's discoloration needs; 4) Each film layer in the solid-state ion-conducting layer can use metal targets and DC (or intermediate frequency) magnetron sputtering processes, with high efficiency and low cost. Therefore, the present invention solves many problems such as high material cost, complicated process, low film formation rate, and insufficient optical performance in the current ion conductive layer structure and preparation process, and lays
- FIG. 1 is a schematic structural diagram of a solid-state electrochromic device in the present invention.
- 3 is a visible light transmittance reflectance curve and a visible light transmittance integrated value of a solid-state ion-conducting layer optimized structure having a three-layer film structure;
- the solid ion conductive layer is a multilayer film in which lithium aluminum oxide thin films and tantalum oxide thin films are alternately laminated.
- the chemical formula of the lithium aluminum oxide thin films is LiAl x O y , where 0.4 ⁇ x ⁇ 1.2, preferably 0.44 ⁇ x ⁇ 1, more preferably 0.45 ⁇ x ⁇ 0.67; 0.5 ⁇ y ⁇ 3, preferably 0.5 ⁇ y ⁇ 2.5, more preferably 0.5 ⁇ y ⁇ 2; the tantalum oxide film is tantalum pentoxide ( Ta 2 O 5 ).
- the solid-state ion-conducting layer includes at least one lithium aluminum oxide film and one tantalum oxide film, and the positions of the two can be interchanged. More preferably, the solid ion-conducting layer includes at least one lithium aluminum oxide film and is sandwiched between two tantalum oxide films, or one tantalum oxide film is sandwiched between two lithium aluminum oxide films.
- the total number of layers of the multilayer film in which the lithium aluminum oxide thin film and the tantalum oxide thin film are alternately laminated is 2-20, preferably 3-15, and more preferably 3-5.
- the total thickness of the solid ion conductive layer is 100 nm to 1000 nm, and preferably 200 nm to 600 nm.
- the lithium aluminum oxide thin film in the solid ion conductive layer is prepared by using an aluminum-lithium alloy target through reactive magnetron sputtering.
- the aluminum-lithium alloy target is A solid solution having AlLi x (0.4 ⁇ x ⁇ 1.2, for example, x may be ⁇ 1), or any one or a mixture of two or more of Al 2 Li 3 crystal phases or Al 4 Li 9 crystal phases.
- the preparation parameters of the lithium aluminum oxide thin film are as follows: the background vacuum is 1 ⁇ 10 -5 to 5 ⁇ 10 -3 Pa, the substrate temperature is 20 ° C to 200 ° C, the coating time is 1 to 60 minutes, and the working atmosphere is oxygen-containing and In an argon atmosphere, the working pressure is 0.5 to 5 Pa, and the sputtering power density is 1 to 10 W / cm 2 . It should be noted that, as long as a lithium-aluminum oxide film of a predetermined thickness and a predetermined quality can be obtained, its deposition method should not be limited.
- the tantalum oxide thin film is prepared by a reactive magnetron sputtering method using a metal tantalum target, and the preparation parameters are: background vacuum 1 ⁇ 10 -5 to 5 ⁇ 10 -3 Pa, substrate The temperature is 20 ° C to 200 ° C, the coating time is 1 to 60 minutes, the working atmosphere is an atmosphere containing oxygen and argon, the working pressure is 0.5 to 5Pa, and the sputtering power density is 1 to 10W / cm 2 . It should be noted that, as long as a tantalum oxide thin film of a predetermined thickness and a predetermined quality can be obtained, its deposition method should not be limited.
- the solid-state ion-conducting layer of a lithium aluminum oxide / tantalum oxide multilayer film is formed by a lithium aluminum oxide single layer film or a tantalum oxide single layer film of the same thickness.
- Solid ion-conducting layer For example, an ion-conducting multilayer film formed by sandwiching only one layer of tantalum oxide film between two layers of lithium aluminum oxide films (such as lithium aluminum oxide) has optical performance that exceeds the respective single-layer films of the same thickness.
- a tantalum oxide film having excellent performance is also used at the same time, the structure has good stability and durability.
- both can be formed by sputtering a metal target, which has high efficiency and low cost.
- the beneficial effects of the ion-conducting layer are: 1) the best optical performance; 2) the metal target can be used to achieve magnetron sputtering of DC or intermediate frequency power supply, the target is easy to prepare, and the production efficiency is high; 3) it has enough Ionization concentration without additional complicated processes such as lithiation; 4) Uniform composition and structure distribution.
- a solid-state electrochromic device is formed by using a solid-state ion conductive layer, and its structure is shown in FIG. 1.
- the manufacturing characteristics of the solid electrochromic device are: selecting a transparent substrate (eg, glass, plexiglass, etc.), and sequentially forming a first transparent conductive layer (ITO, AZO, FTO, ATO, etc.) with a certain thickness, and the first electrochromic Layer (eg, nickel oxide film), solid ion conductive layer (lithium aluminum oxide / tantalum oxide multilayer film), second electrochromic layer (eg, tungsten oxide film), second transparent conductive layer (ITO conductive film, AZO, FTO, ATO, etc.), and protective layers (for example, silicon nitride, silicon oxide, silicon oxynitride, silicon aluminum oxynitride, etc.), the above-mentioned film layers constitute a complete solid-state electrochromic device.
- a transparent substrate eg, glass, plexiglass,
- the thickness of the first electrochromic layer may be 100-500nm
- the thickness of the second electrochromic layer may be 200-600nm
- the thickness of the first and second transparent conductive layers may be 50- 500nm
- protective layer thickness is 50-500nm.
- the above structure is an example of the solid-state electrochromic device in the present invention.
- the order of some film layers can be changed according to needs, such as swapping the positions of the tungsten oxide film and the nickel oxide film. You can also add some dielectric films as needed, and so on.
- the solid-state electrochromic device includes the ion-conducting layer of the multilayer film structure specified in the present invention, other combinations should not have any restrictions.
- one of the transparent conductive layers in the solid electrochromic device structure can also be replaced with a reflective conductive metal, such as silver, chromium, or an alloy thereof, to make the device an electrochromic device with a change in reflectance.
- each film layer in a solid electrochromic device can be adjusted as needed, and as long as each film layer of a predetermined thickness and a predetermined quality can be obtained, its deposition method can be prepared by referring to a lithium aluminum oxide film, or for other preparations The method should not be limited.
- the solid-state ion-conducting layer with a special multilayer film structure has extremely excellent optical performance, low material cost, simple coating process, and fast rate.
- the solid-state electrochromic device formed has good performance and is suitable for large-scale industrial production. .
- the product of the invention can be widely used in the fields of automobiles, trains, ships, aircrafts, and energy-saving glass and display panels in the construction industry.
- the main work includes the following steps:
- Tantalum oxide single-layer films (Ta 2 O 5 with a thickness of 100-200 nm) and lithium aluminum oxide single-layer films (Ta 2 O 5 with the required thickness) were prepared on glass and single crystal silicon substrates by reactive magnetron sputtering, respectively. LiAl x O y with a thickness of 100-200 nm).
- the tantalum oxide single-layer film uses a metal tantalum target
- the lithium-aluminum oxide single-layer film uses an aluminum-lithium alloy target, and is prepared by reactive DC magnetron sputtering.
- the process parameters of the DC magnetron sputtering include a background vacuum of 1 ⁇ 10 -4 Pa, a substrate temperature of room temperature, a working atmosphere containing oxygen and argon, a working pressure of 2 Pa, and a sputtering power density of 1 to 1.25 W. / cm 2 , coating time is 10 ⁇ 30min;
- the optimized structure was prepared by magnetron sputtering, and its optical performance was evaluated and verified.
- Fig. 2 shows the visible light transmittance and the visible light transmittance of a multi-layer ion-conducting layer structure with "lithium aluminum oxide (thickness t1) / tantalum oxide (50nm) / lithium aluminum oxide (thickness t2) / glass substrate" as an example.
- the relationship between the thickness of each film layer was optimized using the measured optical constants and optical software.
- Figure 3 shows an optimized multilayer with "lithium aluminum oxide (LAO: 80 to 120 nm) / tantalum oxide (TO: 160 to 200 nm) / lithium aluminum oxide (LAO: 80 to 120 nm) / glass substrate (G)"
- LAO lithium aluminum oxide
- G glass substrate
- the visible light transmittance curve of the alternating multilayer film is higher than that of the other two types of films, and the integrated value of visible light transmittance (98.4%) is much higher than lithium aluminum oxide (94.3%) and tantalum oxide (94.3%) of the same thickness. 90.2%) single-layer film.
- tantalum oxide or lithium aluminum oxide can be prepared by using a metal target (metal tantalum or aluminum-lithium alloy target) by a direct current or intermediate frequency magnetron sputtering method, it has high efficiency and large scale, and is suitable for large-scale device production processes.
- a uniform ion-conducting layer structure containing a predetermined lithium ion concentration can be directly obtained.
- Example 2 describes the preparation process of the all-solid-state electrochromic device with the ion-conducting layer structure of the present invention in detail:
- An ITO conductive target is magnetron sputtered in an inert atmosphere to prepare a first transparent conductive layer (with a thickness of 120 nm).
- the preparation parameters include a background vacuum of 1 ⁇ 10 -4 Pa, a substrate temperature of 200 ° C, and an argon working atmosphere. Gas, working pressure is 1Pa, sputtering power density is 1.25W / cm 2 , and coating time is 10-30 minutes;
- the first electrochromic layer (with a thickness of 100 nm) was prepared by a reactive magnetron sputtering method using a metallic nickel target in an oxygen-containing atmosphere.
- the preparation parameters included a background vacuum of 1 ⁇ 10 -4 Pa and a substrate temperature of At room temperature, the working atmosphere contains oxygen and argon, the working pressure is 3Pa, the sputtering power density is 2W / cm 2 , and the coating time is 10-30 minutes;
- a tantalum oxide thin film (with a thickness of 160 nm) was prepared by a reactive magnetron sputtering method in an oxygen-containing atmosphere.
- the preparation parameters included a background vacuum of 1 ⁇ 10 -4 Pa and a substrate temperature of room temperature.
- the atmosphere contains oxygen and argon, the working pressure is 3Pa, the sputtering power density is 2W / cm 2 , and the coating time is 10-30 minutes;
- a lithium tantalate (LiTaO 3 ) target was used and prepared by radio frequency magnetron sputtering, and other parameters were the same as above.
- a W metal target was used to prepare a second electrochromic layer (with a thickness of 450 nm) by reactive magnetron sputtering in an oxygen-containing atmosphere.
- the preparation parameters included a background vacuum of 1 ⁇ 10 -4 Pa and a substrate temperature of At room temperature, the working atmosphere contains oxygen and argon, the working pressure is 3Pa, the sputtering power density is 2W / cm 2 , and the coating time is 10-30 minutes;
- Samples taken out, into another sputtering apparatus used SiAl m alloy target in an oxygen-containing nitrogen atmosphere by a reactive magnetron sputtering method SiAlN m O n was prepared protective layer (having a thickness of 50 ⁇ 200nm), the The preparation parameters include: background vacuum 1 ⁇ 10 -4 Pa, substrate temperature is room temperature, working atmosphere contains oxygen, nitrogen and argon, working pressure is 1Pa, sputtering power density is 2W / cm 2 , and coating time is 10 ⁇ 30min;
- the electrodes are used to connect the first transparent conductive layer and the second transparent conductive layer in the all-solid-state electrochromic device), and voltage is applied to test the device ’s coloring-achromatic transmittance spectrum after the forward and reverse voltage imprinting, and the transmittance and Regulation rate.
- Table 2 Compared with a single-layer Ta 2 O 5 (using a lithium tantalate target) and a single-layer LiAl x O y ion-conducting layer, the results are shown in Table 2.
- the experimental results show that the electrochromic device using the special multilayer solid-state ion-conducting layer structure of the present invention can improve the visible light transmittance and the dimming rate of the electrochromic device using the single-layer solid-state ion-conducting layer structure.
- the increase aspect has great advantages.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明提供一种固态离子传导层及含该固态离子传导层的固态电致变色器件,所述固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAlxOy,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。
Description
本发明涉及材料技术领域,特别涉及一种具有特殊多层膜结构的固态离子传导层及含有该固态离子传导层的固态电致变色器件,可用于电致变色玻璃、显示器等技术领域。
电致变色器件可在外界电场作用下可逆改变其透反射率等光学性能,可广泛应用于建筑玻璃以及汽车,列车,船舶,飞机等交通工具的窗口,达到舒适节能目的。同时,也可以用于各种显示器等半导体产品行业。在各种形式的电致变色器件中,结构中各膜层均为固态无机材料的全固态电致变色器件,由于调节效率高,稳定性好,因而具有最广泛的应用前景。
典型的固态电致变色器件一般由透明基材及在透明基材上依次形成的第一透明导电层,第一电致变色层,离子传导层(或称电解质层)、第二电致变色层,第二透明导电层,和保护层构成。其中,离子传导层担负着电场作用下着色粒子移动的快速通道,其结构与制备工艺是保证器件性能最重要的技术之一。理所当然,全固态电致变色器件中的离子传导层也必须是无机固态物质。
氧化钽(Ta
2O
5)由于具有低泄漏电流,高介电常数,快离子输送,以及较高的热力学和化学稳定性,是迄今电致变色器件中应用最广泛的无机离子传导膜。由于Ta
2O
5薄膜的制备可以使用金属钽靶材通过反应性直流磁控溅射实现,因而具有靶材制备容易,沉积效率高,适合大规模连续镀膜生产的优点。但是,Ta
2O
5离子传导层也存在若干不足,如:1)可见光透过率低;2)需采取锂化等附加工艺额外引入锂离子;3)若采用直接溅射钽酸锂的引入锂离子的工艺,则需采用钽酸锂陶瓷靶材进行射频磁控溅射,靶材复杂,沉积效率低,等等,对电致变色大规模器件制备工艺产生不良影响。
针对现有上述问题,专利文献1(中国专利申请号:201710333624.9)提供了一种采用氧化铝锂陶瓷靶材和钽金属靶材通过共溅射方式获得一种含锂铝双离子的固态电解质(离子传导)层。但显而易见,采用共溅射的方式所形成的是一种混合物,其组成和结构难以控制;其次,共溅射中使用了氧化铝锂陶瓷靶材,因而不得不使用射频电源进行磁控溅射,沉积速率极低;并且,共溅射的方式是无法应用在大规模器件镀膜工艺上。
类似地,专利文献2(中国专利申请号:201710240528.X)提供了一种离子传导层及其制备方法,包括制备无机固态介质层,并且制备单独的锂合金层,经通电使锂掺入无机固态介质层中(通电锂化)以形成含锂的离子传导层。但是,这种方式需要进行后续锂化工程,增加了工艺复杂性,其次,通电锂化并伴随锂合金层的消失,使含锂的离子传导层整体结构缺乏一致性和均匀性;并且,由于这种最终形成的离子传导层只能是一种化合物或混合物的单一膜层,其光学性能,如可见光透过率等,无法达到最佳的性能效果。
针对上述问题,本发明的目的在于提供一种由高低折射率材料交替而成的离子传导多层膜结构,通过结构优化设计可获得最佳光学效果,在成膜过程中直接导入锂离子而无需后续锂化工艺,多层膜形成工艺均使用金属靶材通过直流或中频磁控溅射方式得以实现,沉积速率快效率高,满足大规模快速镀膜需求。
具体而言,本发明提供了一种所述固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAl
xO
y,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。
采用锂铝氧化物作为固态离子传导层(例如锂铝氧化物LiAlO
2等),是因为其本身为一种含锂透明离子导体,通过控制多层膜中的锂的成分比完全可以满足器件对电致变色性能的要求。同时,由于锂铝氧化物折射率相对较低(例如LiAlO
2,n≈1.62),除具有较高的可见光透过率外,并且可根据多层膜增透原理,与折射率较高的氧化钽(Ta
2O
5,n≈2.15)形成具有交替高低折射率物质的多层膜结构,获得比任一种单独薄膜更高的可见光透过率。其中,选择所述锂铝氧化物薄膜的化学式为LiAl
xO
y,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。而所述氧化钽薄膜为Ta
2O
5。应注意,如果需要引入较多的锂离子,LiAl
xO
y中x值应越小越好。但是,由于金属锂熔点低并具有极强的化学活泼型,其金属靶材很难制备;而若x值过高,虽然合金靶材稳定性高容易制备,但不能为结构提供足够的锂离子。y取值范围根据x范围而定,主要考虑实现膜层的可见光透过率等最佳光学性能。
较佳地,为同时实现锂离子的供给并产生可见光增透效应,所述固态离子传导层至少包含一个锂铝氧化物薄膜和一个氧化钽薄膜(两者位置可以互换)。
又,较佳地,所述多层膜至少包含一个锂铝氧化物薄膜并夹在两个氧化钽薄膜之间,或一个氧化钽薄膜夹在两个锂铝氧化物薄膜之间,根据多层膜干涉原理,多层膜可获得更好的增透效应。
较佳地,所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数为2~20,优选3~15,更优选3~5。当然,采用3层以上的多层膜结构可进一步提高多层膜的可见光增透效果并使锂离子扩散更加均匀。但考虑到实现大规模生产的工艺可行性,所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数限定为2~20,优选3~15,更优选3~5。因为,膜层过多将增加设备和工艺的复杂性,膜层过少则增透效果不明显。
较佳地,所述固态离子传导层总厚度设计为100nm~1000nm,优选200nm~600nm。因为,总厚度过大,则沉积时间长效率低;过小,不能起到足够的离子储存与传导效应。在对各层膜厚进行结构设计时,应同时满足提供足够的锂离子及实现最大光学效果的需求。
较佳地,所述锂铝氧化物薄膜的厚度为10~500
nm,优选为50~400
nm;所述氧化钽薄膜的厚度为50~500
nm,优选为50~200
nm。
依据多层膜增透原理,所述具有多层膜结构的固态离子传导层,其可见光透过率高于同等膜厚的锂铝氧化物单层膜或氧化钽单层膜;同时,结构充分利用氧化钽优异的离子传导性和稳定性;同时,结构提供了足够的锂离子,满足器件的变色需求;最后,多层膜均可使用金属靶材实现高效率制备。
较佳地,所述固态离子传导层(多层膜固态离子传导层)中的锂铝氧化物薄膜使用铝锂合金靶材通过反应性磁控溅射方式制备,所述铝锂合金靶材为AlLi
x组成的固溶体、Al
2Li
3晶相、和Al
4Li
9晶相中的至少一种。也就是说,铝锂合金靶材可采用组成为AlLi
x(例如,x可≈1)的固溶体合金,或组成为Al
2Li
3或Al
4Li
9的合金中的任何一种,或其中两种以上的混合合金。
较佳地,所述锂铝氧化物薄膜制备参数为:本底真空1×10
-5~5×10
-3Pa,基底温度为20℃~200℃,镀膜时间为1~60 min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm
2。
较佳地,所述氧化钽薄膜使用金属钽靶材通过反应性磁控溅射方式制备;优选地,所述氧化钽薄膜制备参数为:本底真空1×10
-5~5×10
-3Pa,基底温度为20℃~200℃,镀膜时间为1~60 min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm
2。应注意,氧化钽为公知的电致变色固态离子传导层,所有公知的制备方式均可采用,具体制备条件此处不再赘述。
另一方面,本发明还提供了一种全固态电致变色器件,结构包括基板,以及依次设置于所述基板上的第一透明导电层、第一电致变色层、本发明所述固态离子传导层、第二电致变色层、第二透明导电层和保护层。
较佳地,所述第一电致变色层为氧化镍,厚度为100~500nm;所述第二电致变色层为氧化钨,厚度为200~600nm;所述透明导电层为ITO,厚度为50~500nm;所述保护层为硅铝氮氧化物,厚度为50~500nm。
较佳地,将所述全固态电致变色器件中第一透明导电层或第二透明导电层替换为反射型金属导电膜,则器件具有可变的反射率,可用于汽车防眩等用途。
本发明具有以下诸多优点:1)采用高低折射率物质交替形成多层膜的固态离子传导层,根据多层膜增透原理,其优化结构的可见光透过率高于同等膜厚的锂铝氧化物单层膜或氧化钽单层膜;2)采用氧化钽作为高折射率组分,最大限度利用其优异的离子传导特性和稳定性;3)通过提高锂铝氧化物中的锂含量为固态离子传导层提供足够的锂离子,满足器件的变色需求;4)固态离子传导层中各膜层均可使用金属靶材和直流(或中频)磁控溅射工艺,效率高成本低。因此本发明解决了目前离子传导层结构与制备工艺中存在的材料成本高,工艺复杂,成膜率低,光学性能不足等诸多问题,为实现大规模器件生产打下了坚实基础。
图1为本发明中固态电致变色器件结构示意图;
图2为具有三层膜结构的固态离子传导层中各膜层厚度与可见光透过率的关系;
图3为一个具有三层膜结构的固态离子传导层优化结构的可见光透反射率曲线与可见光透过率积分值;
图4为表1;
图5为表2
图号说明:
100 透明基板;
110 第一透明导电膜;
120 电致变色层;
130 离子传导层;
140 电致变色层;
150 第二透明导电层;
160 保护层;
131 LiAl
xO
y;
132 Ta
2O
5;
13
n LiAl
xO
y(重复131与132结构至第13
n层)。
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本发明一实施方式中,固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAl
xO
y,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2;所述氧化钽薄膜为五氧化二钽(Ta
2O
5)。
在可选的实施方式中,所述固态离子传导层至少包含一个锂铝氧化物薄膜和一个氧化钽薄膜,两者位置可以互换。更优选地,所述的固态离子传导层至少包含一个锂铝氧化物薄膜并夹在两个氧化钽薄膜之间,或一个氧化钽薄膜并夹在两个锂铝氧化物薄膜之间。所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数为2~20,优选3~15,更优选3~5。所述固态离子传导层总厚度为100nm~1000nm,优选为200nm~600nm。
在可选的实施方式中,固态离子传导层(多层膜固态离子传导层)中的锂铝氧化物薄膜使用铝锂合金靶材通过反应性磁控溅射方式制备,铝锂合金靶材为具有AlLi
x(0.4≤x≤1.2,例如,x可≈1)组成的固溶体,或Al
2Li
3晶相,或Al
4Li
9晶相中的任何一种或两种以上混合物。所述锂铝氧化物薄膜制备参数为:本底真空1×10
-5~5×10
-3Pa,基底温度为20℃~200℃,镀膜时间为1~60 min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm
2。应注意,只要能获得所定厚度所定质量的锂铝氧化物薄膜,其沉积方式不应有所限制。
在可选的实施方式中,所述氧化钽薄膜使用金属钽靶材通过反应性磁控溅射方式制备,其制备参数为:本底真空1×10
-5~5×10
-3Pa,基底温度为20℃~200℃,镀膜时间为1~60 min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm
2。应注意,只要能获得所定厚度所定质量的氧化钽薄膜,其沉积方式不应有所限制。
本公开中,由于多层膜增透原理,锂铝氧化物/氧化钽多层膜固态离子传导层可见光透过率高于同样厚度的锂铝氧化物单层膜或氧化钽单层膜所构成的固态离子传导层。例如,仅以一层氧化钽薄膜夹在两层锂铝氧化物薄膜(如锂铝氧化物)之间形成的离子传导多层膜,其光学性能已超过同样厚度的各自的单层膜。并且,由于同时也使用了性能优异的氧化钽薄膜,结构具有良好的稳定性和耐久性。再有,两者均可采用金属靶材溅射形成,效率高,成本低。
在本公开中,离子传导层的有益效果:1)光学性能最佳;2)可使用金属靶材实现直流或中频电源的磁控溅射,靶材易于制备,生产效率高;3)具有足够的离离子浓度,而无需另外附加通电锂化等复杂工艺;4)组成和结构分布均匀。
在本发明一实施方式中,利用固态离子传导层构成固态电致变色器件,其结构如图1所示。该固态电致变色器件制作特点是:选择透明基板(例如,玻璃,有机玻璃等),并依次形成一定厚度的第一透明导电层(ITO、AZO、FTO,ATO等),第一电致变色层(例如,氧化镍膜),固态离子传导层(锂铝氧化物/氧化钽多层膜),第二电致变色层(例如,氧化钨膜),第二透明导电层(ITO导电薄膜、AZO、FTO,ATO等),和保护层(例如、氮化硅、氧化硅,氮氧化硅,氮氧化硅铝等),上述膜层构成完整的固态电致变色器件。在可选的实施方式中,第一电致变色层的厚度可为100~500nm,第二电致变色层的厚度可为200~600nm,第一和第二透明导电层的厚度可为50-500nm,保护层厚度为50-500nm。
上述结构是本发明中固态电致变色器件的一个示例。当然,根据需要可以改变部分膜层顺序,如将氧化钨膜和氧化镍膜位置调换。也可根据需要增加部分介质膜,等等。只要在固态电致变色器件中包含本发明所规定的多层膜结构的离子传导层,其他组合不应有任何限制。此外,也可以将固态电致变色器件结构中的透明导电层中的一层换成反射型导电金属,如银,铬或其合金,使器件成为具有反射率变化的电致变色器件。应注意,固态电致变色器件中各个膜层厚度根据需要可进行调节,且只要能获得所定厚度和所定质量的各个膜层,其沉积方式可参照锂铝氧化物薄膜进行制备,或对于其他制备方式不应有所限制。
在本公开中,具有特殊多层膜结构的固态离子传导层,其光学性能极其优异、材料成本低,镀膜工艺简单,速率快,所形成的固态电致变色器件性能良好,适合大规模工业生产。本发明的产品可广泛应用于汽车,列车,船舶,飞行器以及建筑行业的节能玻璃以及显示屏等领域。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例
1
本实施例1中,首先就多层膜离子传导层的光学性能进行了理论和实践两方面的验证,主要工作包括以下步骤:
1)选择具有离子传导特性的锂铝氧化物和氧化钽作为主要研究对象。利用反应性磁控溅射法分别在玻璃和单晶硅衬底上制备出所需厚度的氧化钽单层薄膜(Ta
2O
5,厚度为100-200nm)和锂铝氧化物单层薄膜(LiAl
xO
y,厚度为100~200nm)。其中,氧化钽单层薄膜使用金属钽靶材,锂铝氧化物单层薄膜使用铝锂合金靶材,通过反应性直流磁控溅射制备而成。所述直流磁控溅射的工艺参数包括:本底真空1×10
-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为2Pa,溅射功率密度为1~1.25W/cm
2,镀膜时间为10~30min;
2)通利用椭偏仪对上述薄膜在可见光领域的光学常数(折射率)进行了测定。测定结果表明,锂铝氧化物和氧化钽的折射率具有较大差异,分别为n=1.615和n=2.126,根据多层膜干涉理论,充分具备了高低折射率交替多层膜增透条件;
3)利用光学软件对具有多层(三层)膜“锂铝氧化物/氧化钽/锂铝氧化物/玻璃衬底”结构,以可见光透过率为目标,通过改变多层膜中各膜层的厚度进行了结构的优化设计,遴选出其中的最佳膜层结构;
4)利用磁控溅射方式制备出所述优化结构,并对其光学性能进行了评价和验证。
首先利用所测光学常数,利用光学软件对结构进行了优化设计。图2显示了其中一例即具有“锂铝氧化物(厚度t1)/氧化钽(50nm)/锂铝氧化物(厚度t2)/玻璃衬底”多层膜离子传导层结构的可见光透过率与各膜层厚度的关系。当t1=t2=0即只有氧化钽单层膜时,可见光透过率非常低(图2中横向箭头所示);而当引入上下两层锂铝氧化物薄膜后,可见光透过率呈波浪式上升,并在一定条件下达到最大值(如图中纵向箭头所示)。理论计算充分显示了本发明的优越性和可行性。
考虑器件中离子传导层的实际使用厚度范围进一步进行了结构设计与优化计算。图3显示了具有“锂铝氧化物(LAO: 80~120nm)/氧化钽(TO: 160~200nm)/锂铝氧化物(LAO: 80~120nm)/玻璃衬底(G)”优化多层膜结构之一的可见光透过光谱,并与具有同样总厚度的锂铝氧化物单独薄膜和氧化钽单独薄膜的透过率曲线进行了比较。图中可见,交替多层膜的可见光透过率曲线高于其他两类薄膜,其可见光透过率积分值(98.4%)远高于同样厚度的锂铝氧化物(94.3%)和氧化钽(90.2%)单层薄膜。
上述计算表明,采用具有高低折射率值的氧化钽/锂铝氧化物交替多层膜结构,在仅使用简单的三层膜结构的情况下,其可见光透过率已经远高于具有同样厚度的氧化钽或锂铝氧化物单独薄膜。这样,本发明从理论与结构优化实验上展示了多层膜离子传导层在可见光透过率性能方面的巨大优越性。显然,采用可见光透过率较高的离子传导层直接导致电致变色器件具有较高的可见光透过性,作为建筑节能窗的应用性获得提升。并且,由于氧化钽或锂铝氧化物均可以使用金属靶材(金属钽或铝锂合金靶材)利用直流或中频磁控溅射方式制备,效率高易于大型化,适宜大规模器件生产工艺。另外,通过调节铝锂合金成分比以及增加膜层数量等方法,可以直接获得含有所定锂离子浓度的均匀离子传导层结构。
以下将对优化设计结果进行试验验证。参照上述氧化钽和锂铝氧化物薄膜的制备参数,在玻璃衬底上制备了多层膜的固态离子传导层(“锂铝氧化物(LiAl
xO
y:
80~120nm)/氧化钽(Ta
2O
5:160~200nm)/锂铝氧化物(LiAl
xO
y: 80~120nm)/玻璃衬底(G)”),测定了其可见光透过率积分值,并与同样总厚度的氧化钽和锂铝氧化物单层膜进行了比较,结果如表1所示。
实际镀膜实验结果证明,本发明多层膜结构相对单层膜而言具有更高的可见光透过率,本实验其中一个结构达到了94.1%的最大值。当然,由于膜厚控制精度的影响,实验结果与理论优化计算尚有一定差距,但也同时展示了性能的进一步提升空间。
实施例
2
实施例2对具有本发明离子传导层结构的全固态电致变色器件的制备过程做详细说明:
器件制备在小型磁控溅射仪(4靶位,φ4英寸靶材,旋转基板)上进行;
选择玻璃基板,经清洗后放入磁控溅射设备;
在惰性气氛中磁控溅射ITO导电靶材,制备第一透明导电层(厚度为120nm),所述制备参数包括:本底真空1×10
-4Pa,基底温度200℃,工作气氛为氩气,工作气压为1Pa,溅射功率密度为1.25W/cm
2,镀膜时间为10~30min;
采用金属镍靶,在含氧气气氛中通过反应性磁控溅射方法制备第1电致变色层(厚度为100nm),所述制备参数包括:本底真空1×10
-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm
2,镀膜时间为10~30min;
采用LiAl
x合金靶,在含氧气气氛中通过反应性磁控溅射方式制备离子传导层中的第一层锂铝氧化物薄膜(厚度为100nm,LiAl
xO
y,x=0.5~0.8,y=1.8~2.2),所述制备参数包括:本底真空1×10
-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm
2,镀膜时间为10~30min;
采用金属钽靶,在含氧气气氛中通过反应性磁控溅射方法制备氧化钽薄膜(厚度为160nm),所述制备参数包括:本底真空1×10
-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm
2,镀膜时间为10~30min;
在制备具有氧化钽单独离子传导层结构的电致变色器件时,为了导入锂离子,采用了钽酸锂(LiTaO
3)靶材并通过射频磁控溅射制备,其他参数与上述同样。
制备厚度为100nm的第二层锂铝氧化物薄膜(LiAl
xO
y,x=0.5~0.8,y=1.8~2.2),条件与第一层锂铝氧化物薄膜制备同样;
采用W金属靶,在含氧气气氛中通过反应性磁控溅射方式制备第二电致变色层(厚度为450nm),所述制备参数包括:本底真空1×10
-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm
2,镀膜时间为10~30min;
取出上述样品,放入另一磁控溅射仪,采用SiAl
m合金靶,在含氧气氮气气氛中通过反应性磁控溅射方式制备SiAlN
mO
n保护层(厚度为50~200nm),所述制备参数包括:本底真空1×10
-4Pa,基底温度为室温,工作气氛为含氧气、氮气和氩气,工作气压为1Pa,溅射功率密度为2W/cm
2,镀膜时间为10~30min;
经上述步骤获得全固体电致变色器件多层膜结构。
利用电极连接全固态电致变色器件中第一透明导电层和第二透明导电层)并加以电压,测试正反向电压印加后的器件着色-消色透射率光谱,积分求出透光率和调节率。与单层Ta
2O
5(使用钽酸锂靶材)及单层LiAl
xO
y离子传导层相比较,结果由表2所示。
实验结果表明,使用本发明特殊多层膜固态离子传导层结构的电致变色器件,比使用单层膜固态离子传导层结构的电致变色器件,在可见光透过率的提升和调光率的增大方面具有极大的优越性。
Claims (12)
- 一种固态离子传导层,其特征在于,所述固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAl xO y,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。
- 根据权利要求1所述的固态离子传导层,其特征在于,所述多层膜至少包含一个锂铝氧化物薄膜和一个氧化钽薄膜。
- 根据权利要求2所述的固态离子传导层,其特征在于,所述多层膜至少包含一个锂铝氧化物薄膜并夹在两个氧化钽薄膜之间,或一个氧化钽薄膜并夹在两个锂铝氧化物薄膜之间。
- 根据权利要求1-3中任一项所述的固态离子传导层,其特征在于,所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数为2~20,优选3~15,更优选3~5。
- 根据权利要求1-4中任一项所述的固态离子传导层,其特征在于,所述固态离子传导层总厚度为100nm~1000nm,优选为200nm~600nm。
- 根据权利要求1-5中任一项所述的固态离子传导层,其特征在于,所述锂铝氧化物薄膜的厚度为10~500 nm,优选为50~400 nm;所述氧化钽薄膜的厚度为50~500 nm,优选为50~200 nm。
- 根据权利要求1-6中任一项所述的固态离子传导层,其特征在于,所述固态离子传导层中的锂铝氧化物薄膜使用铝锂合金靶材通过反应性磁控溅射方式制备,所述铝锂合金靶材为AlLi x组成的固溶体、Al 2Li 3晶相、和Al 4Li 9晶相中的至少一种。
- 根据权利要求7所述的固态离子传导层,其特征在于,所述锂铝氧化物薄膜制备参数为:本底真空1×10 -5~5×10 -3Pa,基底温度为20℃~200℃,镀膜时间为1~60 min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm 2。
- 根据权利要求1-8中任一项所述的固态离子传导层,其特征在于,所述氧化钽薄膜使用金属钽靶材通过反应性磁控溅射方式制备;优选地,所述氧化钽薄膜制备参数为:本底真空1×10 -5~5×10 -3Pa,基底温度为20℃~200℃,镀膜时间为1~60 min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm 2。
- 一种全固态电致变色器件,其特征在于,结构包括基板,以及依次设置于所述基板上的第一透明导电层、第一电致变色层、权利要求1-9中任一项所述的固态离子传导层、第二电致变色层、第二透明导电层和保护层。
- 根据权利要求10所述的全固态电致变色器件,其特征在于,所述第一电致变色层为氧化镍,厚度为100~500nm;所述第二电致变色层为氧化钨,厚度为200~600nm;所述透明导电层为ITO,厚度为50~500nm;所述保护层为硅铝氮氧化物,厚度为50~500nm。
- 根据权利要求10或11所述的全固态电致变色器件,其特征在于,将所述全固态电致变色器件中第一透明导电层或第二透明导电层替换为反射型金属导电膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810535285.7A CN108761949B (zh) | 2018-05-29 | 2018-05-29 | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 |
CN201810535285.7 | 2018-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019228303A1 true WO2019228303A1 (zh) | 2019-12-05 |
Family
ID=64003840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/088562 WO2019228303A1 (zh) | 2018-05-29 | 2019-05-27 | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108761949B (zh) |
WO (1) | WO2019228303A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108761949B (zh) * | 2018-05-29 | 2020-11-10 | 中国科学院上海硅酸盐研究所 | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 |
CN109782506B (zh) * | 2019-01-10 | 2021-08-03 | 上海理工大学 | 一种光学可变玻璃及光学可变悬浮展示装置 |
CN112631034A (zh) * | 2019-10-09 | 2021-04-09 | 中国科学院上海硅酸盐研究所 | 一种全固态电致变色器件及其制备方法 |
CN112731691A (zh) * | 2020-12-29 | 2021-04-30 | 中国科学院上海硅酸盐研究所 | 一种基于双离子协同调控的双响应复合薄膜及其制备方法 |
CN112764286B (zh) * | 2021-01-29 | 2023-07-07 | 哈尔滨工业大学 | 一种智能调控红外发射率的热控器件及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010014917A (ja) * | 2008-07-03 | 2010-01-21 | Bridgestone Corp | エレクトロクロミック素子及びその製造方法 |
CN101765808A (zh) * | 2007-06-07 | 2010-06-30 | 索拉迪格姆公司 | 电致变色装置及制造方法 |
US7961375B2 (en) * | 2008-06-25 | 2011-06-14 | Soladigm, Inc. | Multi-cell solid-state electrochromic device |
CN107015412A (zh) * | 2017-04-13 | 2017-08-04 | 吉晟光电(深圳)有限公司 | 一种固态全薄膜电致变色器件的结构及制备方法 |
CN107085339A (zh) * | 2017-03-01 | 2017-08-22 | 江苏繁华玻璃股份有限公司 | 一种全固态电致变色器件的制备方法 |
CN108761949A (zh) * | 2018-05-29 | 2018-11-06 | 中国科学院上海硅酸盐研究所 | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100575565C (zh) * | 2007-11-09 | 2009-12-30 | 中国科学院上海光学精密机械研究所 | 在铝酸锂晶片表面低温制备氮化铝薄膜的方法 |
TWI432866B (zh) * | 2011-01-10 | 2014-04-01 | Univ Nat Cheng Kung | 電致變色裝置和儲存裝置及其製造方法 |
EP3304617B1 (en) * | 2015-06-05 | 2020-09-02 | Applied Materials, Inc. | Battery separator with dielectric coating |
-
2018
- 2018-05-29 CN CN201810535285.7A patent/CN108761949B/zh active Active
-
2019
- 2019-05-27 WO PCT/CN2019/088562 patent/WO2019228303A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101765808A (zh) * | 2007-06-07 | 2010-06-30 | 索拉迪格姆公司 | 电致变色装置及制造方法 |
US7961375B2 (en) * | 2008-06-25 | 2011-06-14 | Soladigm, Inc. | Multi-cell solid-state electrochromic device |
JP2010014917A (ja) * | 2008-07-03 | 2010-01-21 | Bridgestone Corp | エレクトロクロミック素子及びその製造方法 |
CN107085339A (zh) * | 2017-03-01 | 2017-08-22 | 江苏繁华玻璃股份有限公司 | 一种全固态电致变色器件的制备方法 |
CN107015412A (zh) * | 2017-04-13 | 2017-08-04 | 吉晟光电(深圳)有限公司 | 一种固态全薄膜电致变色器件的结构及制备方法 |
CN108761949A (zh) * | 2018-05-29 | 2018-11-06 | 中国科学院上海硅酸盐研究所 | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 |
Also Published As
Publication number | Publication date |
---|---|
CN108761949B (zh) | 2020-11-10 |
CN108761949A (zh) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019228303A1 (zh) | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 | |
CN103771724B (zh) | 全固态薄膜电致变色玻璃及其制备方法 | |
CN107085339B (zh) | 一种全固态电致变色器件的制备方法 | |
RU2711523C2 (ru) | Противоэлектрод для электрохромных устройств | |
CN110032018B (zh) | 铝锂合金固态离子传导层及其制备方法与电致变色器件 | |
CN202953940U (zh) | 全固态薄膜电致变色玻璃 | |
CN112456813B (zh) | 一种氧化镍电致变色薄膜及其制备方法与应用 | |
CN101188886A (zh) | 一种无机全固态电致变色元件及其制备方法 | |
CN110764331B (zh) | 一种超快响应、防过充电致变色器件及其制备方法 | |
CN110045558B (zh) | 铝酸锂固态离子传导层及制备方法与全固态电致变色器件 | |
Wang et al. | Influence of Ag incorporation on the structural, optical and electrical properties of ITO/Ag/ITO multilayers for inorganic all-solid-state electrochromic devices | |
CN208351218U (zh) | 一种固态离子传导层及含该固态离子传导层的固态电致变色器件 | |
Ito et al. | Electrochromic properties of iridium oxide thin films prepared by reactive sputtering in O2 or H2O atmosphere | |
CN110095911B (zh) | 一种电致变色器件的制备方法 | |
Xiao et al. | Electro-optical performance of inorganic monolithic electrochromic device with a pulsed DC sputtered Li x Mg y N ion conductor | |
CN110646997B (zh) | 一种全无机固态电致变色器件及其制备方法 | |
CN205643982U (zh) | 电致变色结构 | |
Yoshimura et al. | TiO 2 electrochromic thin films by reactive direct current magnetron sputtering | |
CN107045242A (zh) | 电致变色结构及其形成方法 | |
TWI495944B (zh) | 電致變色混合膜及其應用之電致變色元件 | |
US11500257B2 (en) | Inorganic solid-state electrochromic module containing inorganic transparent conductive film | |
CN113138510A (zh) | 调光玻璃及其制备方法 | |
CN115128877B (zh) | 基于氮化锂离子传导层的电致变色器件及其制备方法 | |
CN115745418B (zh) | 一种快速响应的氧化镍电致变色薄膜及其制备方法和应用 | |
CN112987432A (zh) | 调光玻璃 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19812142 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19812142 Country of ref document: EP Kind code of ref document: A1 |