Nothing Special   »   [go: up one dir, main page]

WO2019220615A1 - 光学系、光学機器、および光学系の製造方法 - Google Patents

光学系、光学機器、および光学系の製造方法 Download PDF

Info

Publication number
WO2019220615A1
WO2019220615A1 PCT/JP2018/019266 JP2018019266W WO2019220615A1 WO 2019220615 A1 WO2019220615 A1 WO 2019220615A1 JP 2018019266 W JP2018019266 W JP 2018019266W WO 2019220615 A1 WO2019220615 A1 WO 2019220615A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
conditional expression
lens group
optical system
object side
Prior art date
Application number
PCT/JP2018/019266
Other languages
English (en)
French (fr)
Inventor
知之 幸島
三郎 真杉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2018/019266 priority Critical patent/WO2019220615A1/ja
Priority to JP2020518917A priority patent/JPWO2019220615A1/ja
Publication of WO2019220615A1 publication Critical patent/WO2019220615A1/ja
Priority to JP2022123776A priority patent/JP2022140661A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an optical system, an optical apparatus, and a method for manufacturing the optical system.
  • the optical system according to the first aspect includes a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power, which are arranged in order from the object side.
  • the second lens group moves along the optical axis at the time of focusing and satisfies the following conditional expression.
  • f2 Focal length of the second lens group
  • f3 Focal length of the third lens group
  • f Focal length of the optical system
  • G1R1 Object side in the lens component arranged closest to the object side of the first lens group Radius of curvature of lens surface
  • the optical apparatus according to the second aspect includes the above optical system.
  • the optical system manufacturing method has a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a negative refractive power, which are arranged in order from the object side.
  • a method of manufacturing an optical system having a third lens group, wherein the second lens group moves along the optical axis at the time of focusing so that the following conditional expression is satisfied. Arrange each lens.
  • f2 Focal length of the second lens group
  • f3 Focal length of the third lens group
  • f Focal length of the optical system
  • G1R1 Object side in the lens component arranged closest to the object side of the first lens group Radius of curvature of lens surface
  • FIG. 2A is a diagram illustrating various aberrations when the optical system according to the first example is focused at infinity
  • FIG. 2B is a diagram illustrating various aberrations when the optical system according to the first example is focused at a short distance.
  • FIG. 4A is a diagram illustrating various aberrations when the optical system according to the second example is focused at infinity
  • FIG. 4B is a diagram illustrating various aberrations when the optical system according to the second example is focused at a short distance.
  • FIG. 4A is a diagram illustrating various aberrations when the optical system according to the second example is focused at infinity
  • FIG. 4B is a diagram illustrating various aberrations when the optical system according to the second example is focused at a short distance.
  • FIG. 6A is a diagram showing various aberrations when the optical system according to the third example is focused at infinity
  • FIG. 6B is a diagram showing various aberrations when the optical system according to the third example is focused at a short distance.
  • FIG. 8A is a diagram showing various aberrations when the optical system according to the fourth example is focused at infinity
  • FIG. 8B is a diagram showing various aberrations when the optical system according to the fourth example is focused at a short distance.
  • FIG. 8A is a diagram showing various aberrations when the optical system according to the fourth example is focused at infinity
  • FIG. 8B is a diagram showing various aberrations when the optical system according to the fourth example is focused at a short distance.
  • FIG. 10A is a diagram illustrating various aberrations of the optical system according to the fifth example when focusing on infinity
  • FIG. 10B is a diagram illustrating various aberrations of the optical system according to Example 5 when focusing on a short distance.
  • FIG. 12A is a diagram illustrating various aberrations of the optical system according to the sixth example when focusing on infinity
  • FIG. 12B is a diagram illustrating various aberrations of the optical system according to Example 6 when focusing on a short distance.
  • FIG. 12A is a diagram illustrating various aberrations of the optical system according to the sixth example when focusing on infinity
  • FIG. 12B is a diagram illustrating various aberrations of the optical system according to Example 6 when focusing on a short distance.
  • FIG. 12A is a diagram illustrating various aberrations of the optical system according to the sixth example when focusing on infinity
  • FIG. 12B is a diagram illustrating various aberrations of the optical system according to Example 6 when focusing on a short distance
  • FIG. 14A is a diagram showing various aberrations when the optical system according to the seventh example is focused at infinity
  • FIG. 14B is a diagram showing various aberrations when the optical system according to the seventh example is focused at a short distance.
  • FIG. 16A is a diagram illustrating various aberrations of the optical system according to the eighth example when focusing on infinity
  • FIG. 16B is a diagram illustrating various aberrations of the optical system according to the eighth example when focusing on short distance.
  • FIG. 16A is a diagram illustrating various aberrations of the optical system according to the eighth example when focusing on infinity
  • FIG. 16B is a diagram illustrating various aberrations of the optical system according to the eighth example when focusing on short distance.
  • FIG. 18A is a diagram of various aberrations when the optical system according to Example 9 is in focus at infinity
  • FIG. 18B is various aberrations when the optical system according to Example 9 is in focus at short distances.
  • FIG. 20A is a diagram illustrating various aberrations of the optical system according to the tenth example when focusing on infinity
  • FIG. 20B is a diagram illustrating various aberrations of the optical system according to Example 10 when focusing on a short distance.
  • FIG. 20A is a diagram illustrating various aberrations of the optical system according to the tenth example when focusing on infinity
  • FIG. 20B is a diagram illustrating various aberrations of the optical system according to Example 10 when focusing on a short distance.
  • FIG. 22A is a diagram showing various aberrations when the optical system according to the eleventh example is focused at infinity
  • FIG. 22B is a diagram showing various aberrations when the optical system according to the eleventh example is focused at a short distance.
  • FIG. 24A is a diagram of various aberrations of the optical system according to Example 12 when focusing on infinity
  • FIG. 24B is a diagram of various aberrations of the optical system according to Example 12 when focusing on a short distance.
  • FIG. 24A is a diagram of various aberrations of the optical system according to Example 12 when focusing on infinity
  • FIG. 24B is a diagram of various aberrations of the optical system according to Example 12 when focusing on a short distance.
  • FIG. 26A is a diagram showing various aberrations of the optical system according to the thirteenth example when focusing on infinity
  • FIG. 26B is a diagram showing various aberrations when the optical system according to the thirteenth example is focused at short distance.
  • FIG. 28A is a diagram illustrating various aberrations of the optical system according to Example 14 when focused on infinity
  • FIG. 28B is a diagram illustrating various aberrations of the optical system according to Example 14 when focusing on a short distance.
  • FIG. 28A is a diagram illustrating various aberrations of the optical system according to Example 14 when focused on infinity
  • FIG. 28B is a diagram illustrating various aberrations of the optical system according to Example 14 when focusing on a short distance.
  • FIG. 30A is a diagram illustrating various aberrations of the optical system according to Example 15 when focusing on infinity
  • FIG. 30B is a diagram illustrating various aberrations when focusing on the optical system according to Example 15 at short distance.
  • FIG. 32A is a diagram illustrating various aberrations of the optical system according to Example 16 when focused on infinity
  • FIG. 32B is a diagram illustrating various aberrations of the optical system according to Example 16 when focusing on a short distance.
  • FIG. 32A is a diagram illustrating various aberrations of the optical system according to Example 16 when focused on infinity
  • FIG. 32B is a diagram illustrating various aberrations of the optical system according to Example 16 when focusing on a short distance.
  • FIG. 34A is a diagram illustrating various aberrations of the optical system according to Example 17 when focusing on infinity
  • FIG. 34B is a diagram illustrating various aberrations when focusing on the optical system according to Example 17 at short distance.
  • FIG. 36A is a diagram illustrating various aberrations of the optical system according to Example 18 when focusing on infinity
  • FIG. 36B is a diagram illustrating various aberrations when focusing on the optical system according to Example 18 at short distance.
  • FIG. 36A is a diagram illustrating various aberrations of the optical system according to Example 18 when focusing on infinity
  • FIG. 36B is a diagram illustrating various aberrations when focusing on the optical system according to Example 18 at short distance.
  • FIG. 38A is a diagram illustrating various aberrations of the optical system according to Example 19 when focused on infinity
  • FIG. 38B is a diagram illustrating various aberrations of the optical system according to Example 19 when focusing on a short distance.
  • FIG. 40A is a diagram illustrating various aberrations of the optical system according to Example 20 when focused on infinity
  • FIG. 40B is a diagram illustrating various aberrations when focusing on the optical system according to Example 20 at short distance.
  • FIG. 40A is a diagram illustrating various aberrations of the optical system according to Example 20 when focused on infinity
  • FIG. 40B is a diagram illustrating various aberrations when focusing on the optical system according to Example 20 at short distance.
  • FIG. 42A is a diagram illustrating various aberrations of the optical system according to Example 21 when focusing on infinity
  • FIG. 42B is a diagram illustrating various aberrations of the optical system according to Example 21 when focusing on a short distance.
  • FIG. 44A is a diagram showing various aberrations of the optical system according to Example 22 when focusing on infinity
  • FIG. 44B is a diagram showing various aberrations when focusing on the optical system according to Example 22 at short distance.
  • FIG. 44A is a diagram showing various aberrations of the optical system according to Example 22 when focusing on infinity
  • FIG. 44B is a diagram showing various aberrations when focusing on the optical system according to Example 22 at short distance.
  • FIG. 46A is a diagram of various aberrations of the optical system according to Example 23 when focusing on infinity
  • FIG. 46B is a diagram of various aberrations of the optical system according to Example 23 when focusing on a short distance.
  • FIG. 48A is a diagram of various aberrations of the optical system according to Example 24 when focused on infinity
  • FIG. 48B is a diagram of various aberrations of the optical system according to Example 24 when focusing on a short distance.
  • FIG. 48A is a diagram of various aberrations of the optical system according to Example 24 when focused on infinity
  • FIG. 48B is a diagram of various aberrations of the optical system according to Example 24 when focusing on a short distance.
  • FIG. 50A is a diagram illustrating various aberrations of the optical system according to Example 25 when focusing on infinity
  • FIG. 50B is a diagram illustrating various aberrations when focusing on the optical system according to Example 25 at short distance.
  • FIG. 52A is a diagram illustrating various aberrations of the optical system according to Example 26 when focusing on infinity
  • FIG. 52B is a diagram illustrating various aberrations when focusing on the optical system according to Example 26 at short distance.
  • FIG. 52A is a diagram illustrating various aberrations of the optical system according to Example 26 when focusing on infinity
  • FIG. 52B is a diagram illustrating various aberrations when focusing on the optical system according to Example 26 at short distance.
  • FIG. 54A is a diagram of various aberrations of the optical system according to Example 27 when focusing on infinity
  • FIG. 54B is a diagram of various aberrations of the optical system according to Example 27 when focusing on a short distance.
  • FIG. 56A is a diagram showing various aberrations of the optical system according to Example 28 when focusing on infinity
  • FIG. 56B is a diagram showing various aberrations when focusing on the optical system according to Example 28 at short distance.
  • FIG. 56A is a diagram showing various aberrations of the optical system according to Example 28 when focusing on infinity
  • FIG. 56B is a diagram showing various aberrations when focusing on the optical system according to Example 28 at short distance.
  • FIG. 60A is a diagram of various aberrations of the optical system according to Example 30 when focusing on infinity
  • FIG. 60B is a diagram of various aberrations of the optical system according to Example 30 when focusing on a short distance.
  • FIG. 60A is a diagram of various aberrations of the optical system according to Example 30 when focusing on infinity
  • FIG. 60B is a diagram of various aberrations of the optical system according to Example 30 when focusing on a short distance.
  • FIG. 62A is a diagram of various aberrations of the optical system according to Example 31 when focusing on infinity
  • FIG. 62B is a diagram of various aberrations of the optical system according to Example 31 when focusing on a short distance.
  • FIG. It is a figure which shows the structure of the camera provided with the optical system which concerns on this embodiment. It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.
  • This camera 1 is a digital camera provided with the optical system according to the present embodiment as a photographing lens 2 as shown in FIG.
  • the photographing lens 2 In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. Thereby, the light from the subject is picked up by the image pickup device 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • This camera may be a mirrorless camera or a single-lens reflex camera having a quick return mirror.
  • An optical system LS (1) as an example of the optical system (photographing lens) LS according to the present embodiment includes a first lens group G1 having a positive refractive power and arranged in order from the object side, as shown in FIG.
  • the second lens group G2 moves along the optical axis. This makes it possible to obtain good optical performance while suppressing a change in image magnification from the infinitely focused state to the short-distance focused state.
  • the optical system LS according to the present embodiment is not limited to the optical system LS (1) shown in FIG. 1, but may be the optical system LS (2) shown in FIG. Similarly, the optical system LS according to this embodiment may be an optical system LS (3) to LS (31) shown in FIG.
  • the optical system LS according to the present embodiment satisfies the following conditional expression.
  • Conditional expression (1) defines an appropriate range of the ratio between the radius of curvature of the lens surface closest to the object side of the first lens group G1 and the focal length of the entire optical system LS. Satisfying conditional expression (1) makes it possible to ensure good optical performance in an infinitely focused state.
  • the lens component indicates a single lens or a cemented lens.
  • conditional expression (1) exceeds the upper limit value, the radius of curvature of the lens surface closest to the object side of the first lens group G1 becomes small, so that the amount of various aberrations increases and the coma at the time of focusing is increased. Aberration variation increases.
  • the upper limit value of conditional expression (1) is set to 300.000, 200.000, 100.000, 85.000, 75.000, 60.000, 45.000. 30.000, more preferably 20.000.
  • the lower limit value of the conditional expression (1) is set to ⁇ 3,000, ⁇ 2,000, ⁇ 1,000, 0.010, 0.100, 0.200, It is preferable to set 0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550, 0.600, 0.650, and further 0.700.
  • Conditional expression (2) defines an appropriate range of the ratio between the focal length of the second lens group G2 and the focal length of the third lens group G3. Satisfying conditional expression (2) makes it possible to ensure good optical performance in a short distance in-focus state.
  • conditional expression (2) exceeds the upper limit value, the focal length of the second lens group G2 becomes longer, so the amount of movement of the second lens group G2 at the time of focusing increases, and at the time of focusing. Variations in spherical aberration and field curvature increase.
  • the upper limit value of conditional expression (2) is set to 0.95, 0.90, 0.88, 0.85, 0.80, 0.77, 0.75. , 0.72, 0.70, and preferably 0.68.
  • the focal length of the second lens group G2 is shortened, so that the amount of various aberrations increases and the fluctuation of coma during focusing is increased.
  • the focal length of the third lens group G3 becomes longer on the minus side, it becomes difficult to correct various aberrations, and the fluctuation of the field curvature during focusing increases.
  • the lower limit value of conditional expression (2) is set to 0.29, 0.35, 0.37, 0.39, 0.40, 0.41, 42 is preferable.
  • the optical system LS of the present embodiment satisfies the following conditional expression (3). -5.000 ⁇ (-G1R1) / f1 ⁇ 50000 (3)
  • F1 Focal length of the first lens group G1
  • Conditional expression (3) defines an appropriate range of the ratio between the radius of curvature of the lens surface closest to the object side of the first lens group G1 and the focal length of the first lens group G1. Satisfying conditional expression (3) makes it possible to ensure good optical performance in an infinitely focused state.
  • conditional expression (3) When the corresponding value of the conditional expression (3) exceeds the upper limit value, the radius of curvature of the lens surface closest to the object side of the first lens group G1 becomes small, so that the amount of various aberrations increases and the coma at the time of focusing is increased. Aberration variation increases.
  • the upper limit value of conditional expression (3) is 30.000, 20.000, 10.000, and further 5.000.
  • conditional expression (3) When the corresponding value of conditional expression (3) is below the lower limit, the radius of curvature of the lens surface closest to the object side of the first lens group G1 becomes large, and it becomes difficult to correct coma.
  • the lower limit value of conditional expression (3) is set to ⁇ 3,000, ⁇ 2,000, ⁇ 1,000, 0.010, 0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, and further preferably 0.500.
  • the optical system LS of the present embodiment may satisfy the following conditional expression (3-1). 0.010 ⁇ (-G1R1) / f1 ⁇ 1.100 (3-1) F1: Focal length of the first lens group G1
  • Conditional expression (3-1) is the same expression as conditional expression (3), and the same effect as conditional expression (3) can be obtained. This range is preferable because various aberrations such as coma are corrected well.
  • the lower limit value of conditional expression (3-1) is set to 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0. .400, 0.450, and further preferably 0.500.
  • the optical system LS of the present embodiment may satisfy the following conditional expression (3-2). 1.000 ⁇ (-G1R1) / f1 ⁇ 50.000 (3-2)
  • F1 Focal length of the first lens group G1
  • Conditional expression (3-2) is the same expression as conditional expression (3), and the same effect as conditional expression (3) can be obtained. This range is preferable because various aberrations such as coma are corrected well. In particular, by setting the upper limit value of conditional expression (3-2) to 40.000, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3-2) to 30.000, 20.000, 10.000, and even 5.000.
  • the first lens group G1 has a stop.
  • various aberrations such as coma and astigmatism in the short distance in-focus state can be corrected satisfactorily.
  • the optical system LS of the present embodiment it is desirable that the first lens group G1 is fixed. Thereby, the whole optical system LS can be reduced in size.
  • the optical system LS of the present embodiment satisfies the following conditional expression (4). 0.010 ⁇ f / f1 ⁇ 5.000 (4)
  • F1 Focal length of the first lens group G1
  • Conditional expression (4) defines an appropriate range of the ratio between the focal length of the entire optical system LS and the focal length of the first lens group G1. Satisfying conditional expression (4) makes it possible to ensure good optical performance in an infinitely focused state.
  • the focal length of the first lens group G1 is shortened, so that the amount of various aberrations increases and the fluctuation of coma aberration during focusing increases.
  • the upper limit value of conditional expression (4) is set to 4.000, 3.500, 3.000, 2.500, 2.000, 1.500, 1.200. Further, it is preferable to set it to 1.000.
  • the lower limit value of conditional expression (4) is set to 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400. , 0.450, 0.500, and more preferably 0.550.
  • the optical system LS of the present embodiment desirably satisfies the following conditional expression (5). 0.010 ⁇ f / f2 ⁇ 5.000 (5)
  • Conditional expression (5) defines an appropriate range of the ratio between the focal length of the entire optical system LS and the focal length of the second lens group G2. Satisfying conditional expression (5) makes it possible to ensure good optical performance in a short distance in-focus state.
  • the focal length of the second lens group G2 is shortened, so that the amount of various aberrations increases and the fluctuation of coma aberration during focusing is increased.
  • the upper limit value of conditional expression (5) is set to 4.000, 3.500, 3.000, 2.500, 2.000, 1.800, 1.500. Furthermore, it is preferable to set to 1.300.
  • the focal length of the second lens group G2 becomes long, so the amount of movement of the second lens group G2 during focusing increases, Variations in spherical aberration and field curvature increase.
  • the lower limit value of conditional expression (5) is set to 0.100, 0.150, 0.200, 0.250, 0.300, 0.350, 0.400. 0.450, 0.500, 0.550, 0.600, and preferably 0.650.
  • the optical system LS of the present embodiment desirably satisfies the following conditional expression (6). 0.010 ⁇ f1 / f2 ⁇ 5.000 (6)
  • F1 Focal length of the first lens group G1
  • Conditional expression (6) defines an appropriate range of the ratio between the focal length of the first lens group G1 and the focal length of the second lens group G2. Satisfying conditional expression (6) makes it possible to ensure good optical performance in an infinitely focused state and a short-distance focused state.
  • conditional expression (6) When the corresponding value of the conditional expression (6) exceeds the upper limit value, the focal length of the second lens group G2 is shortened, so that the amount of various aberrations increases, and the variation of coma aberration during focusing increases.
  • the upper limit value of conditional expression (6) is 3.500, 3.000, 2.500, 2.000, and further 1.800.
  • the focal length of the second lens group G2 becomes longer, so the amount of movement of the second lens group G2 during focusing increases, Variations in spherical aberration and field curvature increase.
  • the lower limit value of conditional expression (6) is set to 0.200, 0.250, 0.300, 0.350, 0.400, 0.450, 0.500. , 0.600, 0.700, 0.800, and further preferably 0.900.
  • the optical system LS of the present embodiment satisfies the following conditional expression (7). 0.100 ⁇ BFa / f ⁇ 0.500 (7)
  • Bfa Air-converted distance on the optical axis from the lens surface on the image side to the image plane in the lens disposed closest to the image side of the optical system LS
  • Conditional expression (7) defines an appropriate range of the ratio between the focal length of the entire optical system LS and the back focus. By satisfying conditional expression (7), astigmatism can be favorably corrected.
  • conditional expression (7) If the corresponding value of conditional expression (7) exceeds the upper limit, it is difficult to correct astigmatism.
  • the upper limit of conditional expression (7) By setting the upper limit of conditional expression (7) to 0.450, the effect of this embodiment can be made more reliable.
  • conditional expression (7) Astigmatism correction becomes difficult even if the corresponding value of conditional expression (7) is below the lower limit.
  • the lower limit value of conditional expression (7) is set to 0.110, 0.140, 0.150, 0.160, and further 0.170. Is preferred.
  • the optical system LS of the present embodiment desirably satisfies the following conditional expression (8). 0.10 ⁇ fF / fR ⁇ 3.00 (8)
  • fF combined focal length of the lens disposed on the object side from the stop in the optical system LS
  • fR combined focal length of the lens disposed on the image side from the stop in the optical system LS
  • Conditional expression (8) defines an appropriate range of the ratio between the combined focal length of the lens disposed on the object side from the stop and the combined focal length of the lens disposed on the image side from the stop.
  • Each composite focal length is a composite focal length in an infinitely focused state.
  • conditional expression (8) exceeds the upper limit value, it is difficult to correct astigmatism and distortion.
  • the upper limit value of conditional expression (8) it is preferable to set the upper limit of conditional expression (8) to 2.00, 1.80, 1.50, 1.20, and further 1.10.
  • conditional expression (8) Even if the corresponding value of conditional expression (8) is below the lower limit, it is difficult to correct astigmatism and distortion.
  • the lower limit value of conditional expression (8) it is preferable to set the lower limit value of conditional expression (8) to 0.25, 0.27, 0.30, 0.34, and further 0.35.
  • the optical system LS of the present embodiment satisfies the following conditional expression (9). -10.0 ⁇ (G1R2 + G1R1) / (G1R2-G1R1) ⁇ 10.0 (9)
  • G1R2 radius of curvature of the lens surface on the image side in the lens component arranged closest to the object side in the first lens group G1
  • Conditional expression (9) defines the shape factor of the lens component arranged on the most object side of the first lens group G1. Satisfying conditional expression (9) makes it possible to ensure good optical performance in an infinitely focused state.
  • the corresponding value of the conditional expression (9) exceeds the upper limit value, the curvature of the lens surface on the object side in the lens component arranged closest to the object side in the first lens group G1 becomes tight, so that the amount of various aberrations increases. However, the fluctuation of coma aberration at the time of focusing increases.
  • the upper limit value of the conditional expression (9) is 7.0, 6.0, 5.0, or 4.0.
  • conditional expression (9) When the corresponding value of conditional expression (9) is less than the lower limit value, the curvature of the lens surface on the object side in the lens component arranged closest to the object side in the first lens group G1 becomes loose, so that correction of coma aberration becomes difficult. Become.
  • the lower limit value of conditional expression (9) By setting the lower limit value of conditional expression (9) to ⁇ 8.0, the effect of this embodiment can be made more reliable.
  • the lower limit value of conditional expression (9) is set to ⁇ 7.0, ⁇ 6.0, ⁇ 5.0, ⁇ 4.0, ⁇ 3.0, and ⁇ 2.0 is preferable.
  • the optical system LS of the present embodiment desirably satisfies the following conditional expression (10). 0.30 ⁇ 1- ( ⁇ 2) 2 ⁇ ⁇ ( ⁇ 3) 2 ⁇ 2.00 (10)
  • ⁇ 2 lateral magnification of the second lens group G2 in the infinitely focused state
  • ⁇ 3 lateral magnification of the third lens group G3
  • Conditional expression (10) defines the amount of displacement of the focal position with respect to the movement of the second lens group G2. By satisfying conditional expression (10), good optical performance can be ensured in the short-distance in-focus state on the axis and off-axis.
  • conditional expression (10) exceeds the upper limit value, it becomes difficult to correct coma and astigmatism in the close focus state.
  • the upper limit value of conditional expression (10) is set to 1.60, 1.40, 1.20, 1.00, 0.95, 0.91, and further to 0.00. 89 is preferable.
  • conditional expression (10) Even if the corresponding value of the conditional expression (10) is below the lower limit value, it is difficult to correct coma and astigmatism in the close focus state.
  • the lower limit value of conditional expression (10) it is preferable that the lower limit value of the conditional expression (10) is 0.40, 0.45, 0.48, and further 0.50.
  • optical system LS of the present embodiment satisfies the following conditional expression (11). 0.50 ⁇ FNO ⁇ (f1 / f) ⁇ 5.50 (11)
  • FNO F number of optical system LS f1: Focal length of first lens group G1
  • Conditional expression (11) defines a value corresponding to the F number of the first lens group G1. By satisfying conditional expression (11), various aberrations such as coma can be corrected well.
  • conditional expression (11) If the corresponding value of conditional expression (11) exceeds the upper limit value, correction of coma and astigmatism becomes difficult.
  • the upper limit value of conditional expression (11) is 4.50, 4.00, 3.50, 3.20, and further 3.00.
  • conditional expression (11) Even if the corresponding value of conditional expression (11) is lower than the lower limit, it is difficult to correct spherical aberration and coma.
  • the lower limit of conditional expression (11) By setting the lower limit of conditional expression (11) to 0.80, the effect of the present embodiment can be made more reliable.
  • optical system LS of the present embodiment satisfies the following conditional expression (12). 15.0 ° ⁇ 2 ⁇ ⁇ 85.0 ° (12) 2 ⁇ : Angle of view of optical system LS
  • Conditional expression (12) defines the angle of view of the optical system LS.
  • various aberrations can be favorably corrected while having a wide angle of view.
  • the upper limit value of conditional expression (12) is 80.0 °, the effect of the present embodiment can be made more reliable.
  • the upper limit value of conditional expression (12) is 75.0 °, 70.0 °, 68.0 °, and further 65.0 °.
  • the lower limit value of conditional expression (12) is 18.0 °, 20.0 °, 22.0 °, and further 25.0 °.
  • the lens disposed closest to the object side of the first lens group G1 may be a negative lens. Thereby, coma aberration can be corrected satisfactorily.
  • the lens disposed closest to the object side of the second lens group G2 may be a negative lens. Thereby, curvature of field can be corrected satisfactorily.
  • the second lens group G2 may include at least one positive lens and at least one negative lens. Thereby, various aberrations such as chromatic aberration can be corrected satisfactorily.
  • the third lens group G3 may include at least one positive lens and at least one negative lens. Thereby, various aberrations such as chromatic aberration can be corrected satisfactorily.
  • a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power are arranged in order from the object side.
  • the second lens group G2 is configured to move along the optical axis during focusing (step ST2).
  • each lens is arranged in the lens barrel so as to satisfy at least the conditional expressions (1) and (2) (step ST3). According to such a manufacturing method, it is possible to manufacture an optical system capable of obtaining good optical performance while suppressing a change in image magnification from an infinitely focused state to a short-range focused state.
  • FIG. 1 is a cross-sectional view showing the configuration and refractive power distribution of the optical system LS ⁇ LS (1) ⁇ according to the first example.
  • FIGS. 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 show optical systems LS ⁇ LS (2) according to the second to eleventh examples.
  • FIGS. 23, 25, 27, 29, 31, 33, 35, 37, 39, and 41 show the optical systems LS ⁇ LS (12) to LS according to the twelfth to twenty-first embodiments. It is sectional drawing which shows the structure and refractive power distribution of (21) ⁇ .
  • each lens group is represented by a combination of symbol G and a number
  • each lens is represented by a combination of symbol L and a number.
  • the lens groups and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 31 are shown below, and Tables 1 to 31 are each a table showing various data in the first to 31st examples.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • is the half angle of view (unit is ° (degrees))
  • Y is the image height.
  • TL indicates a distance obtained by adding BF to the distance from the forefront lens to the final lens surface on the optical axis at the time of focusing on infinity
  • BF is an image from the final lens surface on the optical axis at the time of focusing on infinity.
  • the distance to the surface I (back focus) is indicated
  • BFa indicates the air equivalent length of the back focus.
  • the surface number indicates the order of the optical surfaces from the object side along the light traveling direction, and R indicates the radius of curvature of each optical surface (the surface where the center of curvature is located on the image side).
  • D is a positive value
  • D is a surface interval that is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the optical member material with respect to d-line
  • ⁇ d is optical The Abbe numbers based on the d-line of the material of the member are shown.
  • the curvature radius “ ⁇ ” indicates a plane or an aperture, and (aperture S) indicates the aperture aperture S.
  • the description of the refractive index of air nd 1.0000 is omitted.
  • the optical surface is an aspherical surface, the surface number is marked with *, and the column of curvature radius R indicates the paraxial curvature radius.
  • the table of [variable distance data] shows the surface distance Di to the next surface in the surface number i where the surface distance is “variable” in the table indicating [lens specifications].
  • surface intervals D11, D17, and D23 at surface numbers 11, 17, and 23 are shown. These values are shown for the infinite focus state and the short distance (closest distance) focus state, respectively.
  • the [Lens Group Data] table shows the start surface (most object side surface) and focal length of each lens group.
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.
  • FIG. 1 is a diagram illustrating a lens configuration of the optical system according to the first example of the present embodiment in an infinitely focused state.
  • the optical system LS (1) according to the first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed.
  • the sign (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group, and this is the same in all the following embodiments.
  • the first lens group G1 includes, in order from the object side, a meniscus first negative lens L11 having a concave surface facing the object side, a meniscus first positive lens L12 having a concave surface facing the object side, and a biconvex shape.
  • a second positive lens L13 having a shape, a third positive lens L14 having a biconvex shape, a second negative meniscus lens L15 having a convex surface facing the object side, and an aperture stop S are included.
  • the second positive lens L13 has two aspheric lens surfaces.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 is composed of a meniscus positive lens L31 having a concave surface facing the object side and a biconcave negative lens L32 arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3.
  • an optical filter FL that can be inserted and removed is disposed.
  • an NC filter neutral color filter
  • a color filter a color filter
  • a polarizing filter a ND filter (a neutral density filter)
  • an IR filter infrared cut filter
  • Table 1 below lists values of specifications of the optical system according to the first example.
  • FIG. 2A is a diagram of various aberrations of the optical system according to Example 1 when focused on infinity.
  • FNO indicates an F number
  • A indicates a half angle of view.
  • the spherical aberration diagram shows the F-number value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum half field angle
  • the lateral aberration diagram shows the half field angle value.
  • FIG. 2B is a diagram of various aberrations when the optical system according to Example 1 is in focus at a short distance (closest distance).
  • NA represents the numerical aperture
  • H0 represents the object height.
  • the spherical aberration diagram shows the numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum object height
  • the lateral aberration diagram shows the value of each object height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the optical system according to the first example has excellent imaging performance with various aberrations corrected satisfactorily.
  • FIG. 3 is a diagram illustrating a lens configuration of the optical system according to the second example of the present embodiment in an infinitely focused state.
  • the optical system LS (2) according to the second example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a cemented lens that is arranged in order from the object side and includes a meniscus first negative lens L11 having a concave surface facing the object side and a meniscus first positive lens L12 having a convex surface facing the object side.
  • a meniscus second positive lens L13 having a concave surface facing the object side
  • a biconvex third positive lens L14 Comprising a meniscus second positive lens L13 having a concave surface facing the object side, a biconvex third positive lens L14, a biconvex fourth positive lens L15 and a biconcave second negative lens L16. It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 includes, in order from the object side, a meniscus positive lens L31 having a concave surface facing the object side, a meniscus first negative lens L32 having a concave surface facing the object side, and a concave surface facing the object side And a plano-concave second negative lens L33.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 2 lists values of specifications of the optical system according to the second example. Note that the thirteenth surface is a virtual surface.
  • FIG. 4A is a diagram of various aberrations of the optical system according to Example 2 when focused on infinity.
  • FIG. 4B is a diagram illustrating various aberrations when the optical system according to Example 2 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the second example has excellent imaging performance with various aberrations corrected well.
  • FIG. 5 is a diagram showing a lens configuration of the optical system according to the third example of the present embodiment in an infinitely focused state.
  • the optical system LS (3) according to the third example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a cemented lens including a biconcave first negative lens L11 and a biconvex first positive lens L12 arranged in order from the object side, and a meniscus-shaped first lens having a concave surface facing the object side.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 includes, in order from the object side, a meniscus positive lens L31 having a concave surface facing the object side, a meniscus first negative lens L32 having a concave surface facing the object side, and a biconcave shape. And a second negative lens L33.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 3 lists the values of the specifications of the optical system according to the third example.
  • the sixth surface and the fourteenth surface are virtual surfaces.
  • FIG. 6A is a diagram of various aberrations of the optical system according to Example 3 when focused on infinity.
  • FIG. 6B is a diagram of various aberrations when the optical system according to Example 3 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the third example has excellent imaging performance with various aberrations corrected well.
  • FIG. 7 is a diagram showing a lens configuration of the optical system according to the fourth example of the present embodiment in an infinitely focused state.
  • the optical system LS (4) according to the fourth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • a second meniscus second positive lens L13 facing toward the object a third meniscus positive lens L14 having a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape.
  • It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 includes, in order from the object side, a meniscus positive lens L31 having a concave surface facing the object side, a meniscus first negative lens L32 having a concave surface facing the object side, and a concave surface facing the object side And a second negative lens L33 having a meniscus shape facing the surface.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 4 lists values of specifications of the optical system according to the fourth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 8A is a diagram of various aberrations of the optical system according to Example 4 when focused on infinity.
  • FIG. 8B is a diagram illustrating various aberrations when the optical system according to Example 4 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the fourth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 9 is a diagram illustrating a lens configuration of the optical system according to Example 5 of the present embodiment in an infinitely focused state.
  • the optical system LS (5) according to the fifth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • a second meniscus second positive lens L13 facing toward the object a third meniscus positive lens L14 having a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape.
  • It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 5 lists values of specifications of the optical system according to the fifth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 10A is a diagram of various aberrations of the optical system according to Example 5 when focused on infinity.
  • FIG. 10B is a diagram of various types of aberration when the optical system according to Example 5 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the fifth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 11 is a diagram illustrating a lens configuration of the optical system according to Example 6 of the present embodiment in an infinitely focused state.
  • the optical system LS (6) according to the sixth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a cemented lens including a biconcave first negative lens L11 arranged in order from the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and a biconvex first lens.
  • a cemented lens including a second positive lens L13, a meniscus third positive lens L14 having a convex surface facing the object side, a biconvex fourth positive lens L15, and a biconcave second negative lens L16, and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 6 lists values of specifications of the optical system according to the sixth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 12A is a diagram of various aberrations of the optical system according to Example 6 when focused on infinity.
  • FIG. 12B is a diagram of various types of aberration when the optical system according to Example 6 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the sixth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 13 is a diagram showing a lens configuration of the optical system according to Example 7 of the present embodiment in an infinitely focused state.
  • the optical system LS (7) according to the seventh example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • a second meniscus second positive lens L13 facing toward the object a third meniscus positive lens L14 having a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape.
  • It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 7 lists the values of the specifications of the optical system according to the seventh example. Note that the thirteenth surface is a virtual surface.
  • FIG. 14A is a diagram of various aberrations during focusing on the optical system according to Example 7 at infinity.
  • FIG. 14B is a diagram illustrating various aberrations when the optical system according to Example 7 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be understood that the optical system according to the seventh example has excellent imaging performance with various aberrations corrected well.
  • FIG. 15 is a diagram showing a lens configuration of the optical system according to Example 8 of the present embodiment in the infinitely focused state.
  • the optical system LS (8) according to the eighth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • a second meniscus second positive lens L13 facing toward the object a third meniscus positive lens L14 having a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape.
  • It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 8 lists the values of the specifications of the optical system according to the eighth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 16A is a diagram of various aberrations of the optical system according to Example 8 when focusing on infinity.
  • FIG. 16B is a diagram of various types of aberration when the optical system according to Example 8 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the eighth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 17 is a diagram showing a lens configuration of the optical system according to Example 9 of the present embodiment in an infinitely focused state.
  • the optical system LS (9) according to the ninth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • a second meniscus second positive lens L13 facing toward the object a third meniscus positive lens L14 having a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape.
  • It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 9 lists values of specifications of the optical system according to the ninth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 18A is a diagram of various aberrations during focusing on the optical system according to Example 9 at infinity.
  • FIG. 18B is a diagram of various types of aberration when the optical system according to Example 9 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the ninth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 19 is a diagram illustrating a lens configuration of the optical system according to Example 10 of the present embodiment in an infinitely focused state.
  • the optical system LS (10) according to the tenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • a second meniscus second positive lens L13 facing toward the object a third meniscus positive lens L14 having a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape.
  • It consists of a cemented lens and an aperture stop S.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconvex first positive lens L22, and a meniscus second positive lens L23 having a concave surface facing the object side. Is composed of.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 10 lists values of specifications of the optical system according to the tenth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 20A is a diagram of various aberrations of the optical system according to Example 10 when focused on infinity.
  • FIG. 20B is a diagram of various types of aberration when the optical system according to Example 10 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be understood that the optical system according to the tenth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 21 is a diagram showing a lens configuration of the optical system according to Example 11 of the present embodiment in the infinitely focused state.
  • the optical system LS (11) according to the eleventh example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11, a biconcave second negative lens L12, and a meniscus first positive lens L13 having a convex surface facing the object, which are arranged in order from the object side.
  • a cemented lens composed of: a biconvex second positive lens L14; a biconvex third positive lens L15; a biconvex fourth positive lens L16; and a biconcave third negative lens L17. It comprises a lens and an aperture stop S.
  • the third positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a biconvex second positive lens L23. Is composed of.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus positive lens L31 having a convex surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 11 lists values of specifications of the optical system according to the eleventh example.
  • the 14th surface is a virtual surface.
  • FIG. 22A is a diagram of various aberrations of the optical system according to Example 11 when focused on infinity.
  • FIG. 22B is a diagram of various types of aberration when the optical system according to Example 11 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the eleventh example has excellent imaging performance with various aberrations corrected well.
  • FIG. 23 is a diagram showing a lens configuration of the optical system according to the twelfth example of the present embodiment in the infinitely focused state.
  • the optical system LS (12) according to the twelfth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11, a biconcave second negative lens L12, and a meniscus first positive lens L13 having a convex surface facing the object, which are arranged in order from the object side.
  • a cemented lens composed of: a biconvex second positive lens L14; a biconvex third positive lens L15; a biconvex fourth positive lens L16; and a biconcave third negative lens L17. It comprises a lens and an aperture stop S.
  • the third positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a meniscus first positive lens L22 having a concave surface facing the object side, and a biconvex shape.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus positive lens L31 having a concave surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 12 below lists values of specifications of the optical system according to the twelfth example.
  • the 14th surface is a virtual surface.
  • FIG. 24A is a diagram of various aberrations of the optical system according to Example 12 when focusing on infinity.
  • FIG. 24B is a diagram of various aberrations during focusing on the short distance (closest distance) of the optical system according to the twelfth example. From the various aberration diagrams, it can be seen that the optical system according to the twelfth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 25 is a diagram illustrating a lens configuration of the optical system according to the thirteenth example of the present embodiment in the infinitely focused state.
  • the optical system LS (13) according to the thirteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11, a biconcave second negative lens L12, and a meniscus first positive lens L13 having a convex surface facing the object, which are arranged in order from the object side.
  • a cemented lens composed of: a biconvex second positive lens L14; a biconvex third positive lens L15; a biconvex fourth positive lens L16; and a biconcave third negative lens L17. It comprises a lens and an aperture stop S.
  • the third positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a meniscus first positive lens L22 having a concave surface facing the object side, and a biconvex shape.
  • the first positive lens L22 has an aspheric lens surface on the object side.
  • the third lens group G3 includes a meniscus positive lens L31 having a convex surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 13 below lists values of specifications of the optical system according to the thirteenth example.
  • the 14th surface is a virtual surface.
  • FIG. 26A is a diagram of various aberrations of the optical system according to Example 13 when focusing on infinity.
  • FIG. 26B is a diagram of various types of aberration when the optical system according to Example 13 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the thirteenth example has excellent aberrations and excellent imaging performance.
  • FIG. 27 is a diagram showing a lens configuration of the optical system according to the 14th example of the present embodiment in the infinitely focused state.
  • the optical system LS (14) according to the fourteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus second negative lens L12 having a convex surface facing the object side, and a meniscus shape having a convex surface facing the object side.
  • the third positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a meniscus first positive lens L22 having a concave surface facing the object side, and a biconvex shape.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus positive lens L31 having a convex surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 14 below lists values of specifications of the optical system according to the fourteenth example.
  • the 14th surface is a virtual surface.
  • FIG. 28A is a diagram of various aberrations of the optical system according to Example 14 when focused on infinity.
  • FIG. 28B is a diagram of various types of aberration when the optical system according to Example 14 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the fourteenth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 29 is a diagram illustrating a lens configuration of the optical system according to Example 15 of the present embodiment in the infinitely focused state.
  • the optical system LS (15) according to the fifteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus second negative lens L12 having a convex surface facing the object side, and a meniscus shape having a convex surface facing the object side.
  • a cemented lens composed of the first positive lens L13, a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third. It is composed of a cemented lens made up of a negative lens L17 and an aperture stop S.
  • the third positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a meniscus first positive lens L22 having a concave surface facing the object side, and a biconvex shape.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus negative lens L31 having a concave surface directed toward the object side.
  • the negative lens L31 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 15 lists values of specifications of the optical system according to the fifteenth example.
  • the 14th surface is a virtual surface.
  • FIG. 30A is a diagram of various aberrations of the optical system according to Example 15 at the time of focusing on infinity.
  • FIG. 30B is a diagram of various types of aberration when the optical system according to Example 15 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the fifteenth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 31 is a diagram showing a lens configuration of the optical system according to Example 16 of the present embodiment in the infinitely focused state.
  • the optical system LS (16) according to the sixteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction, which are arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus second negative lens L12 having a convex surface facing the object side, and a meniscus shape having a convex surface facing the object side.
  • a cemented lens composed of the first positive lens L13, a biconvex second positive lens L14, a biconvex third positive lens L15, a biconvex fourth positive lens L16, and a biconcave third. It is composed of a cemented lens made up of a negative lens L17 and an aperture stop S.
  • the third positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side.
  • the second positive lens L23 and a meniscus third positive lens L24 having a concave surface facing the object side.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus positive lens L31 having a convex surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 16 below provides values of specifications of the optical system according to the sixteenth example.
  • the 14th surface is a virtual surface.
  • FIG. 32A is a diagram of various aberrations of the optical system according to Example 16 when focusing on infinity.
  • FIG. 32B is a diagram of various types of aberration when the optical system according to Example 16 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the sixteenth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 33 is a diagram showing a lens configuration of the optical system according to the 17th example of the present embodiment in the infinitely focused state.
  • the optical system LS (17) according to the seventeenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and a meniscus having a concave surface facing the object side.
  • the second positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 17 lists values of specifications of the optical system according to the seventeenth example. Note that the thirteenth surface is a virtual surface.
  • FIG. 34A is a diagram of various types of aberration when the optical system according to Example 17 is in focus at infinity.
  • FIG. 34B is a diagram of various types of aberration when the optical system according to Example 17 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to Example 17 has various aberrations corrected well and has excellent imaging performance.
  • FIG. 35 is a diagram illustrating a lens configuration of the optical system according to Example 18 of the present embodiment in the infinitely focused state.
  • the optical system LS (18) according to the eighteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11, a biconvex first positive lens L12, and a meniscus second negative lens with a concave surface facing the object, which are arranged in order from the object side.
  • the second negative lens L13 has an aspheric lens surface on the image plane I side.
  • the second positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes a biconvex first positive lens L21 arranged in order from the object side, a meniscus negative lens L22 having a concave surface facing the object side, and a biconvex second positive lens L23.
  • a meniscus third positive lens L24 having a concave surface facing the object side.
  • the second positive lens L23 has aspherical lens surfaces on both sides.
  • the third lens group G3 is arranged in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a first negative lens L32 having a biconcave shape, and a concave surface facing the object side. And a plano-concave second negative lens L33.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 18 below provides values of specifications of the optical system according to the eighteenth example.
  • FIG. 36A is a diagram of various aberrations of the optical system according to Example 18 when focusing on infinity.
  • FIG. 36B is a diagram of various types of aberration when the optical system according to Example 18 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the eighteenth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 37 is a diagram showing a lens configuration of the optical system according to Example 19 of the present embodiment in an infinitely focused state.
  • the optical system LS (19) according to the nineteenth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus first positive lens L12 having a convex surface facing the object, and a biconvex second positive lens.
  • L13 a cemented lens composed of a biconvex third positive lens L14 and a biconcave second negative lens L15, and an aperture stop S.
  • the second positive lens L13 has two aspheric lens surfaces.
  • the second lens group G2 includes, in order from the object side, a plano-convex first positive lens L21 having a convex surface facing the image surface I, a meniscus negative lens L22 having a concave surface facing the object side,
  • the lens includes a convex second positive lens L23 and a meniscus third positive lens L24 having a concave surface facing the object.
  • the second positive lens L23 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a meniscus first negative lens L32 having a concave surface facing the object side; And a plano-concave second negative lens L33 having a concave surface on the side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 19 below provides values of specifications of the optical system according to the nineteenth example.
  • the fifth surface and the sixth surface are virtual surfaces.
  • FIG. 38 (A) is a diagram of various types of aberration when the optical system according to Example 19 is in focus at infinity.
  • FIG. 38B is a diagram of various types of aberration when the optical system according to Example 19 is in close focus (closest distance). From the various aberration diagrams, it can be understood that the optical system according to the nineteenth example has excellent image forming performance with various aberrations corrected well.
  • FIG. 39 is a diagram showing a lens configuration of the optical system according to Example 20 of the present embodiment in an infinitely focused state.
  • the optical system LS (20) according to the twentieth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 is arranged in order from the object side, the meniscus first negative lens L11 having a convex surface facing the object side, the meniscus second negative lens L12 having a convex surface facing the object side, and the object side.
  • a cemented lens composed of a meniscus first positive lens L13 having a convex surface, a meniscus third negative lens L14 having a concave surface facing the object side, a biconvex second positive lens L15, and a biconvex shape
  • the lens includes a cemented lens including a third positive lens L16 and a biconcave fourth negative lens L17, and an aperture stop S.
  • the second positive lens L15 has an aspheric lens surface on the object side.
  • the second lens group G2 includes a biconcave negative lens L21 arranged in order from the object side, a meniscus first positive lens L22 having a concave surface facing the object side, and a biconvex second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the object side.
  • the third lens group G3 includes a meniscus first negative lens L31 having a convex surface facing the object side and a meniscus second negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side. Is done.
  • the second negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 20 below provides values of specifications of the optical system according to the twentieth example.
  • FIG. 40A is a diagram of various types of aberration when the optical system according to Example 20 is in focus at infinity.
  • FIG. 40B is a diagram of various types of aberration when the optical system according to Example 20 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twentieth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 41 is a diagram showing a lens configuration of the optical system according to Example 21 of the present embodiment in the infinitely focused state.
  • the optical system LS (21) according to the twenty-first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction, which are arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus second negative lens L12 having a convex surface facing the object side, and a meniscus shape having a convex surface facing the object side.
  • the second positive lens L15 has two aspheric lens surfaces.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a meniscus first positive lens L22 having a concave surface facing the object side, and a biconvex shape.
  • the first positive lens L22 has an aspheric lens surface on the object side.
  • the third lens group G3 includes, in order from the object side, a meniscus first negative lens L31 having a convex surface facing the object side, and a plano-concave second negative lens L32 having a concave surface facing the object side. Composed.
  • the second negative lens L32 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 21 below lists values of specifications of the optical system according to the 21st example.
  • FIG. 42A is a diagram of various types of aberration when the optical system according to Example 21 is in focus at infinity.
  • FIG. 42B is a diagram of various types of aberration when the optical system according to Example 21 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-first example has excellent imaging performance with various aberrations corrected well.
  • FIG. 43 is a diagram showing a lens configuration of the optical system according to Example 22 of the present embodiment in the infinitely focused state.
  • the optical system LS (22) according to the twenty-second example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 is composed of a meniscus negative lens L21 having a concave surface facing the object side and a biconvex positive lens L22 arranged in order from the object side.
  • the positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus positive lens L31 having a concave surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 22 lists values of specifications of the optical system according to the 22nd example. Note that the twelfth surface is a virtual surface.
  • FIG. 44A is a diagram of various types of aberration when the optical system according to Example 22 is in focus at infinity.
  • FIG. 44B is a diagram of various types of aberration when the optical system according to Example 22 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-second example has excellent imaging performance with various aberrations corrected well.
  • FIG. FIG. 45 is a diagram showing a lens configuration of the optical system according to Example 23 of the present embodiment in the infinitely focused state.
  • the optical system LS (23) according to the twenty-third example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a cemented lens including a biconcave first negative lens L11 and a meniscus first positive lens L12 having a convex surface facing the object side, and a concave surface facing the object side.
  • the third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus first positive lens L21 having a concave surface facing the object side, a meniscus negative lens L22 having a concave surface facing the object side, and a biconvex shape. And a second positive lens L23.
  • the second positive lens L23 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes, in order from the object side, a meniscus first negative lens L31 having a concave surface facing the object side, and a meniscus second negative lens L32 having a concave surface facing the object side. Is done.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 23 below lists values of specifications of the optical system according to Example 23.
  • the 20th surface is a virtual surface.
  • FIG. 46A is a diagram of various types of aberration when the optical system according to Example 23 is in focus at infinity.
  • FIG. 46B is a diagram of various types of aberration when the optical system according to Example 23 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to Example 23 has excellent imaging performance with various aberrations corrected well.
  • FIG. 47 is a diagram showing a lens configuration of the optical system according to Example 24 of the present embodiment in an infinitely focused state.
  • the optical system LS (24) according to the twenty-fourth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus first positive lens L12 having a concave surface facing the object side, and a meniscus having a convex surface facing the object side.
  • a cemented lens including a second positive lens L13 having a shape, a third meniscus positive lens L14 having a convex surface facing the object side, and a second negative lens L15 having a convex surface facing the object side, and an aperture stop S Is composed of.
  • the second positive lens L13 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus first positive lens L21 having a concave surface facing the object side, a meniscus negative lens L22 having a concave surface facing the object side, and a biconvex shape. And a second positive lens L23.
  • the second positive lens L23 has aspherical lens surfaces on both sides.
  • the third lens group G3 includes a meniscus positive lens L31 having a convex surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 24 below provides values of specifications of the optical system according to the twenty-fourth example.
  • FIG. 48A is a diagram of various types of aberration when the optical system according to Example 24 is in focus at infinity.
  • FIG. 48B is a diagram of various types of aberration when the optical system according to Example 24 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-fourth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 49 is a diagram showing a lens configuration of the optical system according to Example 25 of the present embodiment in the infinitely focused state.
  • the optical system LS (25) according to the twenty-fifth embodiment includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes a biconcave first negative lens L11 arranged in order from the object side, a meniscus first positive lens L12 having a concave surface facing the object side, and a meniscus having a convex surface facing the object side.
  • the lens includes a second positive lens L13 having a shape, a second negative meniscus lens L14 having a convex surface facing the object side, and an aperture stop S.
  • the second positive lens L13 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus first positive lens L21 having a concave surface facing the object side, a meniscus negative lens L22 having a concave surface facing the object side, and a biconvex shape. And a second positive lens L23.
  • the second positive lens L23 has aspherical lens surfaces on both sides.
  • the third lens group G3 is composed of a meniscus positive lens L31 having a convex surface facing the object side and a plano-concave negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 25 below lists values of specifications of the optical system according to Example 25.
  • FIG. 50 (A) is a diagram of various types of aberration when the optical system according to Example 25 is in focus at infinity.
  • FIG. 50B is a diagram of various types of aberration when the optical system according to Example 25 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-fifth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 51 is a diagram showing a lens configuration of the optical system according to Example 26 of the present embodiment in an infinitely focused state.
  • the optical system LS (26) according to the twenty-sixth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 includes a first partial group G2A having negative refractive power and a second partial group G2B having positive refractive power, which are arranged in order from the object side.
  • the first partial group G2A and the second partial group G2B of the second lens group G2 move with different amounts of movement along the optical axis.
  • the first lens group G1 and the third lens group G3 are fixed.
  • the first lens group G1 includes a cemented lens including a biconcave first negative lens L11 arranged in order from the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and a biconcave first lens.
  • 2 negative lens L13, biconvex second positive lens L14, biconvex third positive lens L15, biconvex fourth positive lens L16 and biconcave third negative lens L17 It comprises a lens and an aperture stop S.
  • the third positive lens L15 has two aspheric lens surfaces.
  • the first partial group G2A of the second lens group G2 includes a meniscus negative lens L21 having a concave surface directed toward the object side.
  • the second partial group G2B of the second lens group G2 includes a biconvex first positive lens L22 arranged in order from the object side, and a meniscus second positive lens L23 having a concave surface facing the object side. Is done.
  • the first positive lens L22 has aspherical lens surfaces on both sides.
  • the third lens group G3 is arranged in order from the object side, a cemented lens including a meniscus positive lens L31 having a concave surface facing the object side and a first negative lens L32 having a biconcave shape, and a concave surface facing the object side. And a plano-concave second negative lens L33.
  • the second negative lens L33 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 26 below provides values of specifications of the optical system according to Example 26.
  • FIG. 52 (A) is a diagram of various types of aberration when the optical system according to Example 26 is in focus at infinity.
  • FIG. 52B is a diagram of various types of aberration when the optical system according to Example 26 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-sixth example has excellent imaging performance with various aberrations corrected well.
  • FIG. 53 is a diagram showing a lens configuration of the optical system according to Example 27 of the present embodiment in the infinitely focused state.
  • the optical system LS (27) according to the twenty-seventh example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a meniscus first negative lens L11 having a concave surface facing the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and biconvex A cemented lens including a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape And an aperture stop S.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 includes a meniscus positive lens L31 having a concave surface facing the object side and a meniscus negative lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 27 below provides values of specifications of the optical system according to Example 27.
  • FIG. 54A is a diagram of various types of aberration when the optical system according to Example 27 is in focus at infinity.
  • FIG. 54B is a diagram of various types of aberration when the optical system according to Example 27 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-seventh example has excellent imaging performance with various aberrations corrected well.
  • FIG. FIG. 55 is a diagram showing a lens configuration of the optical system according to Example 28 of the present embodiment in an infinitely focused state.
  • the optical system LS (28) according to the twenty-eighth example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction, which are arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a meniscus first negative lens L11 having a concave surface facing the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and biconvex A cemented lens including a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape And an aperture stop S.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 is composed of a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 28 below provides values of specifications of the optical system according to Example 28.
  • FIG. 56A is a diagram of various types of aberration when the optical system according to Example 28 is in focus at infinity.
  • FIG. 56B is a diagram of various types of aberration when the optical system according to Example 28 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the twenty-eighth example has excellent imaging performance with various aberrations corrected well.
  • FIG. FIG. 57 is a diagram showing a lens configuration of the optical system according to Example 29 of the present embodiment in an infinitely focused state.
  • the optical system LS (29) according to Example 29 includes a first lens group G1 having positive refractive power, a second lens group G2 having positive refractive power, and negative refraction, which are arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a meniscus first negative lens L11 having a concave surface facing the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and biconvex A cemented lens including a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape And an aperture stop S.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 is composed of a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 29 below provides values of specifications of the optical system according to Example 29.
  • FIG. 58A is a diagram of various types of aberration when the optical system according to Example 29 is focused on infinity.
  • FIG. 58B is a diagram of various types of aberration when the optical system according to Example 29 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to Example 29 has various aberrations corrected well and has excellent imaging performance.
  • FIG. FIG. 59 is a diagram showing a lens configuration of the optical system according to Example 30 of the present embodiment in the infinitely focused state.
  • the optical system LS (30) according to the thirtieth embodiment includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction, which are arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a meniscus first negative lens L11 having a concave surface facing the object side, a meniscus first positive lens L12 having a convex surface facing the object side, and biconvex A cemented lens including a second positive lens L13 having a shape, a third positive lens L14 having a meniscus shape with a convex surface facing the object side, a fourth positive lens L15 having a biconvex shape, and a second negative lens L16 having a biconcave shape And an aperture stop S.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 is composed of a meniscus positive lens L31 having a concave surface facing the object side and a biconcave negative lens L32 arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 30 lists values of specifications of the optical system according to the 30th example.
  • FIG. 60A is a diagram of various types of aberration when the optical system according to Example 30 is focused on infinity.
  • FIG. 60B is a diagram of various types of aberration when the optical system according to Example 30 is in close focus (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the thirtieth example has excellent imaging performance with various aberrations corrected well.
  • FIG. FIG. 61 is a diagram showing a lens configuration of the optical system according to Example 31 of the present embodiment in the infinitely focused state.
  • the optical system LS (31) according to the thirty-first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and negative refraction arranged in order from the object side. And a third lens group G3 having power.
  • the second lens group G2 moves to the object side along the optical axis, and the first lens group G1 and the third lens group G3 are fixed. .
  • the first lens group G1 includes, in order from the object side, a biconcave first negative lens L11, a biconvex first positive lens L12, a biconvex second positive lens L13, and an object side.
  • a third meniscus positive lens L14 having a convex surface
  • a fourth positive lens L15 having a convex surface facing the object side
  • a fifth positive lens L16 having a biconvex shape
  • a second negative lens L17 having a biconcave shape.
  • an aperture stop S The third positive lens L14 has an aspheric lens surface on the object side.
  • the second lens group G2 includes, in order from the object side, a meniscus negative lens L21 having a concave surface facing the object side, a biconvex first positive lens L22, and a meniscus shape having a concave surface facing the object side. And a second positive lens L23.
  • the first positive lens L22 has an aspheric lens surface on the image plane I side.
  • the third lens group G3 is composed of a meniscus positive lens L31 having a concave surface facing the object side and a biconcave negative lens L32 arranged in order from the object side.
  • An image plane I is disposed on the image side of the third lens group G3. Between the third lens group G3 and the image plane I, an optical filter FL that can be inserted and removed is disposed.
  • Table 31 below provides values of specifications of the optical system according to Example 31.
  • FIG. 62 (A) is a diagram of various types of aberration when the optical system according to Example 31 is in focus at infinity.
  • FIG. 62B is a diagram of various types of aberration when the optical system according to Example 31 is in focus at a short distance (closest distance). From the various aberration diagrams, it can be seen that the optical system according to the thirty-first example has excellent image forming performance with various aberrations corrected well.
  • each of the above embodiments shows a specific example of the present invention, and the present invention is not limited to these.
  • the focusing lens group indicates a portion having at least one lens separated by an air interval that changes at the time of focusing (for example, the second lens group of the present embodiment). That is, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object.
  • This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Either is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • Each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast optical performance. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

光学系(LS)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群(G1)と、正の屈折力を有する第2レンズ群(G2)と、負の屈折力を有する第3レンズ群(G3)とを有し、合焦の際、第2レンズ群(G2)が光軸に沿って移動し、以下の条件式を満足する。 -5.000<(-G1R1)/f<500.000 0.20<f2/(-f3)<1.20 但し、f2:第2レンズ群(G2)の焦点距離 f3:第3レンズ群(G3)の焦点距離 f:光学系(LS)の焦点距離 G1R1:第1レンズ群(G1)の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径

Description

光学系、光学機器、および光学系の製造方法
 本発明は、光学系、光学機器、および光学系の製造方法に関する。
 従来から、絞りの像側に配置された正レンズ群を物体側に繰り出して合焦を行うインナーフォーカス方式の単焦点光学系(例えば、特許文献1を参照)が提案されている。このような光学系では、大口径化した場合に、諸収差を良好に補正することが難しかった。
特開2012-234169号公報
 第1の態様に係る光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有し、合焦の際、前記第2レンズ群が光軸に沿って移動し、以下の条件式を満足する。
 -5.000<(-G1R1)/f<500.000
 0.20<f2/(-f3)<1.20
 但し、f2:前記第2レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
    f:前記光学系の焦点距離
    G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
 第2の態様に係る光学機器は、上記光学系を備えて構成される。
 第3の態様に係る光学系の製造方法は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、合焦の際、前記第2レンズ群が光軸に沿って移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 -5.000<(-G1R1)/f<500.000
 0.20<f2/(-f3)<1.20
 但し、f2:前記第2レンズ群の焦点距離
    f3:前記第3レンズ群の焦点距離
    f:前記光学系の焦点距離
    G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図2(A)は第1実施例に係る光学系の無限遠合焦時の諸収差図であり、図2(B)は第1実施例に係る光学系の近距離合焦時の諸収差図である。 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図4(A)は第2実施例に係る光学系の無限遠合焦時の諸収差図であり、図4(B)は第2実施例に係る光学系の近距離合焦時の諸収差図である。 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図6(A)は第3実施例に係る光学系の無限遠合焦時の諸収差図であり、図6(B)は第3実施例に係る光学系の近距離合焦時の諸収差図である。 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図8(A)は第4実施例に係る光学系の無限遠合焦時の諸収差図であり、図8(B)は第4実施例に係る光学系の近距離合焦時の諸収差図である。 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図10(A)は第5実施例に係る光学系の無限遠合焦時の諸収差図であり、図10(B)は第5実施例に係る光学系の近距離合焦時の諸収差図である。 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図12(A)は第6実施例に係る光学系の無限遠合焦時の諸収差図であり、図12(B)は第6実施例に係る光学系の近距離合焦時の諸収差図である。 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図14(A)は第7実施例に係る光学系の無限遠合焦時の諸収差図であり、図14(B)は第7実施例に係る光学系の近距離合焦時の諸収差図である。 第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図16(A)は第8実施例に係る光学系の無限遠合焦時の諸収差図であり、図16(B)は第8実施例に係る光学系の近距離合焦時の諸収差図である。 第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図18(A)は第9実施例に係る光学系の無限遠合焦時の諸収差図であり、図18(B)は第9実施例に係る光学系の近距離合焦時の諸収差図である。 第10実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図20(A)は第10実施例に係る光学系の無限遠合焦時の諸収差図であり、図20(B)は第10実施例に係る光学系の近距離合焦時の諸収差図である。 第11実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図22(A)は第11実施例に係る光学系の無限遠合焦時の諸収差図であり、図22(B)は第11実施例に係る光学系の近距離合焦時の諸収差図である。 第12実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図24(A)は第12実施例に係る光学系の無限遠合焦時の諸収差図であり、図24(B)は第12実施例に係る光学系の近距離合焦時の諸収差図である。 第13実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図26(A)は第13実施例に係る光学系の無限遠合焦時の諸収差図であり、図26(B)は第13実施例に係る光学系の近距離合焦時の諸収差図である。 第14実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図28(A)は第14実施例に係る光学系の無限遠合焦時の諸収差図であり、図28(B)は第14実施例に係る光学系の近距離合焦時の諸収差図である。 第15実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図30(A)は第15実施例に係る光学系の無限遠合焦時の諸収差図であり、図30(B)は第15実施例に係る光学系の近距離合焦時の諸収差図である。 第16実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図32(A)は第16実施例に係る光学系の無限遠合焦時の諸収差図であり、図32(B)は第16実施例に係る光学系の近距離合焦時の諸収差図である。 第17実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図34(A)は第17実施例に係る光学系の無限遠合焦時の諸収差図であり、図34(B)は第17実施例に係る光学系の近距離合焦時の諸収差図である。 第18実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図36(A)は第18実施例に係る光学系の無限遠合焦時の諸収差図であり、図36(B)は第18実施例に係る光学系の近距離合焦時の諸収差図である。 第19実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図38(A)は第19実施例に係る光学系の無限遠合焦時の諸収差図であり、図38(B)は第19実施例に係る光学系の近距離合焦時の諸収差図である。 第20実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図40(A)は第20実施例に係る光学系の無限遠合焦時の諸収差図であり、図40(B)は第20実施例に係る光学系の近距離合焦時の諸収差図である。 第21実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図42(A)は第21実施例に係る光学系の無限遠合焦時の諸収差図であり、図42(B)は第21実施例に係る光学系の近距離合焦時の諸収差図である。 第22実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図44(A)は第22実施例に係る光学系の無限遠合焦時の諸収差図であり、図44(B)は第22実施例に係る光学系の近距離合焦時の諸収差図である。 第23実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図46(A)は第23実施例に係る光学系の無限遠合焦時の諸収差図であり、図46(B)は第23実施例に係る光学系の近距離合焦時の諸収差図である。 第24実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図48(A)は第24実施例に係る光学系の無限遠合焦時の諸収差図であり、図48(B)は第24実施例に係る光学系の近距離合焦時の諸収差図である。 第25実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図50(A)は第25実施例に係る光学系の無限遠合焦時の諸収差図であり、図50(B)は第25実施例に係る光学系の近距離合焦時の諸収差図である。 第26実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図52(A)は第26実施例に係る光学系の無限遠合焦時の諸収差図であり、図52(B)は第26実施例に係る光学系の近距離合焦時の諸収差図である。 第27実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図54(A)は第27実施例に係る光学系の無限遠合焦時の諸収差図であり、図54(B)は第27実施例に係る光学系の近距離合焦時の諸収差図である。 第28実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図56(A)は第28実施例に係る光学系の無限遠合焦時の諸収差図であり、図56(B)は第28実施例に係る光学系の近距離合焦時の諸収差図である。 第29実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図58(A)は第29実施例に係る光学系の無限遠合焦時の諸収差図であり、図58(B)は第29実施例に係る光学系の近距離合焦時の諸収差図である。 第30実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図60(A)は第30実施例に係る光学系の無限遠合焦時の諸収差図であり、図60(B)は第30実施例に係る光学系の近距離合焦時の諸収差図である。 第31実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図62(A)は第31実施例に係る光学系の無限遠合焦時の諸収差図であり、図62(B)は第31実施例に係る光学系の近距離合焦時の諸収差図である。 本実施形態に係る光学系を備えたカメラの構成を示す図である。 本実施形態に係る光学系の製造方法を示すフローチャートである。
 以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図63に基づいて説明する。このカメラ1は、図63に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とを有して構成される。合焦の際、第2レンズ群G2が光軸に沿って移動する。これにより、無限遠合焦状態から近距離合焦状態に亘り、像倍率変化を抑えつつ、良好な光学性能を得ることが可能になる。
 本実施形態に係る光学系LSは、図1に示す光学系LS(1)に限られるものではなく、図3に示す光学系LS(2)でも良い。同様に、本実施形態に係る光学系LSは、図5以降に示す光学系LS(3)~LS(31)でも良い。
 上記構成の下、本実施形態に係る光学系LSは、以下の条件式を満足する。
 -5.000<(-G1R1)/f<500.000 ・・・(1)
 0.20<f2/(-f3)<1.20 ・・・(2)
 但し、f2:第2レンズ群G2の焦点距離
    f3:第3レンズ群G3の焦点距離
    f:光学系LSの焦点距離
    G1R1:第1レンズ群G1の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
 条件式(1)は、第1レンズ群G1の最も物体側のレンズ面の曲率半径と光学系LS全系の焦点距離との比の適正範囲を規定するものである。条件式(1)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。本実施形態において、レンズ成分は、単レンズ又は接合レンズを示すものである。
 条件式(1)の対応値が上限値を上回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が小さくなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(1)の上限値を400.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、300.000、200.000、100.000、85.000、75.000、60.000、45.000、30.000、さらに20.000とすることが好ましい。
 条件式(1)の対応値が下限値を下回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が大きくなるため、コマ収差の補正が困難になる。条件式(1)の下限値を-4.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の下限値を、-3.000、-2.000、-1.000、0.010、0.100、0.200、0.250、0.300、0.350、0.400、0.450、0.500、0.550、0.600、0.650、さらに0.700とすることが好ましい。
 条件式(2)は、第2レンズ群G2の焦点距離と第3レンズ群G3の焦点距離との比の適正範囲を規定するものである。条件式(2)を満足することで、近距離合焦状態において良好な光学性能を確保することができる。
 条件式(2)の対応値が上限値を上回ると、第2レンズ群G2の焦点距離が長くなるため、合焦の際の第2レンズ群G2の移動量が増加し、合焦の際の球面収差と像面湾曲の変動が大きくなる。条件式(2)の上限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を、0.95、0.90、0.88、0.85、0.80、0.77、0.75、0.72、0.70、さらに0.68とすることが好ましい。
 条件式(2)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。また、第3レンズ群G3の焦点距離がマイナス側に長くなるため、諸収差の補正が困難になり、合焦の際の像面湾曲の変動が大きくなる。条件式(2)の下限値を0.23に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、0.29、0.35、0.37、0.39、0.40、0.41、さらに0.42とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(3)を満足することが望ましい。
 -5.000<(-G1R1)/f1<50.000 ・・・(3)
 但し、f1:第1レンズ群G1の焦点距離
 条件式(3)は、第1レンズ群G1の最も物体側のレンズ面の曲率半径と第1レンズ群G1の焦点距離との比の適正範囲を規定するものである。条件式(3)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。
 条件式(3)の対応値が上限値を上回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が小さくなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(3)の上限値を40.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の上限値を、30.000、20.000、10.000、さらに5.000とすることが好ましい。
 条件式(3)の対応値が下限値を下回ると、第1レンズ群G1の最も物体側のレンズ面の曲率半径が大きくなるため、コマ収差の補正が困難になる。条件式(3)の下限値を-4.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を、-3.000、-2.000、-1.000、0.010、0.050、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、さらに0.500とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(3-1)を満足してもよい。
 0.010<(-G1R1)/f1<1.100 ・・・(3-1)
 但し、f1:第1レンズ群G1の焦点距離
 条件式(3-1)は、条件式(3)と同様の式であり、条件式(3)と同様の効果を得ることができる。この範囲のとき、コマ収差等の諸収差が良好に補正されるので好ましい。特に、条件式(3-1)の下限値を0.050に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-1)の下限値を、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、さらに0.500とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(3-2)を満足してもよい。
 1.000<(-G1R1)/f1<50.000 ・・・(3-2)
 但し、f1:第1レンズ群G1の焦点距離
 条件式(3-2)は、条件式(3)と同様の式であり、条件式(3)と同様の効果を得ることができる。この範囲のとき、コマ収差等の諸収差が良好に補正されるので好ましい。特に、条件式(3-2)の上限値を40.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-2)の上限値を、30.000、20.000、10.000、さらに5.000とすることが好ましい。
 本実施形態の光学系LSにおいて、第1レンズ群G1は、絞りを有することが望ましい。これにより、近距離合焦状態におけるコマ収差、非点収差等の諸収差を良好に補正することができる。
 本実施形態の光学系LSにおいて、第1レンズ群G1が固定されることが望ましい。これにより、光学系LSの全体を小型化することができる。
 本実施形態の光学系LSは、以下の条件式(4)を満足することが望ましい。
 0.010<f/f1<5.000 ・・・(4)
 但し、f1:第1レンズ群G1の焦点距離
 条件式(4)は、光学系LS全系の焦点距離と第1レンズ群G1の焦点距離との比の適正範囲を規定するものである。条件式(4)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。
 条件式(4)の対応値が上限値を上回ると、第1レンズ群G1の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(4)の上限値を4.500に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の上限値を、4.000、3.500、3.000、2.500、2.000、1.500、1.200、さらに1.000とすることが好ましい。
 条件式(4)の対応値が下限値を下回ると、第1レンズ群G1の焦点距離が長くなるため、コマ収差の補正が困難になる。条件式(4)の下限値を0.050に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、0.500、さらに0.550とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(5)を満足することが望ましい。
 0.010<f/f2<5.000 ・・・(5)
 条件式(5)は、光学系LS全系の焦点距離と第2レンズ群G2の焦点距離との比の適正範囲を規定するものである。条件式(5)を満足することで、近距離合焦状態において良好な光学性能を確保することができる。
 条件式(5)の対応値が上限値を上回ると、第2レンズ群G2の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(5)の上限値を4.500に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の上限値を、4.000、3.500、3.000、2.500、2.000、1.800、1.500、さらに1.300とすることが好ましい。
 条件式(5)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が長くなるため、合焦の際の第2レンズ群G2の移動量が増加し、合焦の際の球面収差と像面湾曲の変動が大きくなる。条件式(5)の下限値を0.050に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、0.100、0.150、0.200、0.250、0.300、0.350、0.400、0.450、0.500、0.550、0.600、さらに0.650とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(6)を満足することが望ましい。
 0.010<f1/f2<5.000 ・・・(6)
 但し、f1:第1レンズ群G1の焦点距離
 条件式(6)は、第1レンズ群G1の焦点距離と第2レンズ群G2の焦点距離との比の適正範囲を規定するものである。条件式(6)を満足することで、無限遠合焦状態および近距離合焦状態において良好な光学性能を確保することができる。
 条件式(6)の対応値が上限値を上回ると、第2レンズ群G2の焦点距離が短くなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(6)の上限値を4.000に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の上限値を、3.500、3.000、2.500、2.000、さらに1.800とすることが好ましい。
 条件式(6)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が長くなるため、合焦の際の第2レンズ群G2の移動量が増加し、合焦の際の球面収差と像面湾曲の変動が大きくなる。条件式(6)の下限値を0.100に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の下限値を、0.200、0.250、0.300、0.350、0.400、0.450、0.500、0.600、0.700、0.800、さらに0.900とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(7)を満足することが望ましい。
 0.100<BFa/f<0.500 ・・・(7)
 但し、Bfa:光学系LSの最も像側に配置されたレンズにおける像側のレンズ面から像面までの光軸上の空気換算距離
 条件式(7)は、光学系LS全系の焦点距離とバックフォーカスとの比の適正範囲を規定するものである。条件式(7)を満足することで、非点収差を良好に補正することができる。
 条件式(7)の対応値が上限値を上回ると、非点収差の補正が困難になる。条件式(7)の上限値を0.450に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、0.420、0.400、0.380、0.350、さらに0.320とすることが好ましい。
 条件式(7)の対応値が下限値を下回っても、非点収差の補正が困難になる。条件式(7)の下限値を0.110に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の下限値を、0.120、0.130、0.140、0.150、0.160、さらに0.170とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(8)を満足することが望ましい。
 0.10<fF/fR<3.00 ・・・(8)
 但し、fF:光学系LSにおける絞りより物体側に配置されたレンズの合成焦点距離
    fR:光学系LSにおける絞りより像側に配置されたレンズの合成焦点距離
 条件式(8)は、絞りより物体側に配置されたレンズの合成焦点距離と絞りより像側に配置されたレンズの合成焦点距離との比の適正範囲を規定するものである。なお、各合成焦点距離は、無限遠合焦状態での合成焦点距離である。条件式(8)を満足することで、非点収差および歪曲収差を良好に補正することができる。
 条件式(8)の対応値が上限値を上回ると、非点収差および歪曲収差の補正が困難になる。条件式(8)の上限値を2.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、2.00、1.80、1.50、1.20、さらに1.10とすることが好ましい。
 条件式(8)の対応値が下限値を下回っても、非点収差および歪曲収差の補正が困難になる。条件式(8)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の下限値を、0.25、0.27、0.30、0.34、さらに0.35とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(9)を満足することが望ましい。
 -10.0<(G1R2+G1R1)/(G1R2-G1R1)<10.0 ・・・(9)
 但し、G1R2:第1レンズ群G1の最も物体側に配置されたレンズ成分における像側のレンズ面の曲率半径
 条件式(9)は、第1レンズ群G1の最も物体側に配置されたレンズ成分のシェイプファクターを規定するものである。条件式(9)を満足することで、無限遠合焦状態において良好な光学性能を確保することができる。
 条件式(9)の対応値が上限値を上回ると、第1レンズ群G1の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率がきつくなるため、諸収差の発生量が増加し、合焦の際のコマ収差の変動が大きくなる。条件式(9)の上限値を8.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の上限値を、7.0、6.0、5.0、さらに4.0とすることが好ましい。
 条件式(9)の対応値が下限値を下回ると、第1レンズ群G1の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率が緩くなるため、コマ収差の補正が困難になる。条件式(9)の下限値を-8.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の下限値を、-7.0、-6.0、-5.0、-4.0、-3.0、さらに-2.0とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(10)を満足することが望ましい。
 0.30<{1-(β2)2}×(β3)2<2.00 ・・・(10)
 但し、β2:無限遠合焦状態における第2レンズ群G2の横倍率
    β3:第3レンズ群G3の横倍率
 条件式(10)は、第2レンズ群G2の移動に対する焦点位置の変位量を規定するものである。条件式(10)を満足することで、軸上および軸外で、近距離合焦状態において良好な光学性能を確保することができる。
 条件式(10)の対応値が上限値を上回ると、近距離合焦状態におけるコマ収差および非点収差の補正が困難になる。条件式(10)の上限値を1.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の上限値を、1.60、1.40、1.20、1.00、0.95、0.91、さらに0.89とすることが好ましい。
 条件式(10)の対応値が下限値を下回っても、近距離合焦状態におけるコマ収差および非点収差の補正が困難になる。条件式(10)の下限値を0.35に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の下限値を、0.40、0.45、0.48、さらに0.50とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(11)を満足することが望ましい。
 0.50<FNO×(f1/f)<5.50 ・・・(11)
 但し、FNO:光学系LSのFナンバー
    f1:第1レンズ群G1の焦点距離
 条件式(11)は、第1レンズ群G1のFナンバーに相当する値を規定するものである。条件式(11)を満足することで、コマ収差等の諸収差を良好に補正することができる。
 条件式(11)の対応値が上限値を上回ると、コマ収差および非点収差の補正が困難になる。条件式(11)の上限値を5.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(11)の上限値を、4.50、4.00、3.50、3.20、さらに3.00とすることが好ましい。
 条件式(11)の対応値が下限値を下回っても、球面収差およびコマ収差の補正が困難になる。条件式(11)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(11)の下限値を、1.00、1.40、1.60、1.80、さらに1.95とすることが好ましい。
 本実施形態の光学系LSは、以下の条件式(12)を満足することが望ましい。
 15.0°<2ω<85.0° ・・・(12)
 但し、2ω:光学系LSの画角
 条件式(12)は、光学系LSの画角を規定するものである。条件式(12)を満足することで、広い画角を有しつつ、諸収差を良好に補正することができる。条件式(12)の上限値を80.0°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(12)の上限値を、75.0°、70.0°、68.0°、さらに65.0°とすることが好ましい。条件式(12)の下限値を17.0°に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(12)の下限値を、18.0°、20.0°、22.0°、さらに25.0°とすることが好ましい。
 本実施形態の光学系LSにおいて、第1レンズ群G1の最も物体側に配置されたレンズが負レンズであってもよい。これにより、コマ収差を良好に補正することができる。
 本実施形態の光学系LSにおいて、第2レンズ群G2の最も物体側に配置されたレンズが負レンズであってもよい。これにより、像面湾曲を良好に補正することができる。
 本実施形態の光学系LSにおいて、第2レンズ群G2は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有してもよい。これにより、色収差等の諸収差を良好に補正することができる。
 本実施形態の光学系LSにおいて、第3レンズ群G3は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有してもよい。これにより、色収差等の諸収差を良好に補正することができる。
 続いて、図64を参照しながら、上述の光学系LSの製造方法について概説する。まず、物体側から順に並べて、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とを配置する(ステップST1)。そして、合焦の際、第2レンズ群G2が光軸に沿って移動するように構成する(ステップST2)。また、少なくとも上記条件式(1)~(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST3)。このような製造方法によれば、無限遠合焦状態から近距離合焦状態に亘り、像倍率変化を抑えつつ、良好な光学性能を得ることが可能な光学系を製造することができる。
 以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。図1は、第1実施例に係る光学系LS{LS(1)}の構成及び屈折力配分を示す断面図である。同様に、図3、図5、図7、図9、図11、図13、図15、図17、図19、図21は、第2~第11実施例に係る光学系LS{LS(2)~LS(11)}の構成及び屈折力配分を示す断面図である。図23、図25、図27、図29、図31、図33、図35、図37、図39、図41は、第12~第21実施例に係る光学系LS{LS(12)~LS(21)}の構成及び屈折力配分を示す断面図である。図43、図45、図47、図49、図51、図53、図55、図57、図59、図61は、第22~第31実施例に係る光学系LS{LS(22)~LS(31)}の構成及び屈折力配分を示す断面図である。各断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。
 これらの図において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表31を示すが、この表1~表31は、第1~第31実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、ωは半画角(単位は°(度))、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示し、BFaはバックフォーカスの空気換算長を示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 [可変間隔データ]の表には、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号iにおける次の面までの面間隔Diを示す。例えば、第1実施例では、面番号11,17,23での面間隔D11,D17,D23を示す。これらの値は、無限遠合焦状態、近距離(至近距離)合焦状態におけるそれぞれについて示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [条件式対応値]の表には、各条件式に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凹面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、両凸形状の第3正レンズL14と、物体側に凸面を向けたメニスカス形状の第2負レンズL15と、開口絞りSと、から構成される。第2正レンズL13は、両側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。なお、後述する第2~第31実施例に記載の抜き差し交換可能な光学フィルターFLについても同様である。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
  f    51.59
FNO     1.85
  ω    22.6
  Y    21.70
 TL    80.800
 BF    13.599
 BFa   13.054
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -37.21999   1.800   1.60342   38.0
  2    -301.75553   2.422
  3     -50.10561   3.350   1.49782   82.6
  4     -32.57310   0.200
  5*     45.59156   5.050   1.82080   42.7
  6*    -214.20431   0.200
  7     24.72595   7.194   1.59319   67.9
  8    -5040.38050   0.100
  9    1752.78680   1.000   1.60342   38.0
  10     18.45027   5.608
  11      ∞     D11(可変)     (絞りS)
  12    -23.43011   1.000   1.67270   32.2
  13    -582.82234   0.200
  14*    127.87476   4.350   1.82080   42.7
  15*    -43.94757   1.950
  16    -157.95993   5.600   1.60300   65.4
  17    -28.85150   D17(可変)
  18    -374.08672   3.200   2.00100   29.1
  19    -68.25108   4.109
  20    -36.81307   1.500   1.69895   30.1
  21    177.00000   11.000
  22      ∞     1.600   1.51680   63.9
  23      ∞     D23(可変)
[非球面データ]
 第5面
 κ=1.00000
 A4=-1.10646E-06, A6=-5.14585E-10, A8=0.00000E+00, A10=0.00000E+00
 第6面
 κ=1.00000
 A4=3.82437E-07, A6=-2.48354E-10, A8=0.00000E+00, A10=0.00000E+00
 第14面
 κ=1.00000
 A4=2.59966E-06, A6=2.78570E-09, A8=0.00000E+00, A10=0.00000E+00
 第15面
 κ=1.00000
 A4=9.97453E-06, A6=1.00933E-08, A8=0.00000E+00, A10=0.00000E+00
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.59    β=-0.1508
 D0     ∞       319.20
 D11    15.367       5.165
 D17    3.000       13.203
 D23    0.999       0.999
[レンズ群データ]
 群   始面   焦点距離
 G1    1    68.17
 G2    12    56.22
 G3    18   -101.37
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.721
 条件式(2)  f2/(-f3)=0.555
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.546
 条件式(4)  f/f1=0.757
 条件式(5)  f/f2=0.918
 条件式(6)  f1/f2=1.213
 条件式(7)  BFa/f=0.253
 条件式(8)  fF/fR=0.646
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=1.281
 条件式(10)  {1-(β2)2}×(β3)2=0.613
 条件式(11)  FNO×(f1/f)=2.451
 条件式(12)  2ω=45.2
 図2(A)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(A)の各収差図において、FNOはFナンバー、Aは半画角をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では半画角の最大値をそれぞれ示し、横収差図では各半画角の値を示す。図2(B)は、第1実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。図2(B)の各収差図において、NAは開口数、H0は物体高をそれぞれ示す。なお、球面収差図では最大口径に対応する開口数の値を示し、非点収差図および歪曲収差図では物体高の最大値をそれぞれ示し、横収差図では各物体高の値を示す。また、図2(A)および図2(B)の非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の第1負レンズL32と、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表2)
[全体諸元]
  f    51.60
FNO     1.85
  ω    22.8
  Y    21.70
 TL    88.456
 BF    13.100
 BFa   12.555
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -39.70605   1.800   1.73800   32.3
  2     68.44172   3.469   1.92286   20.9
  3     740.55070   0.985
  4    -250.61896   4.504   1.59319   67.9
  5     -42.16654   0.200
  6*     41.73745   0.103   1.56093   36.6
  7     40.99975   5.408   1.83481   42.7
  8    -316.20679   0.200
  9     36.83151   7.628   1.49782   82.6
  10    -47.01014   1.500   1.62004   36.4
  11     25.38130   4.386
  12      ∞     D12(可変)     (絞りS)
  13      ∞     3.000
  14    -22.68035   1.100   1.64769   33.7
  15    219.09880   0.200
  16     85.95366   4.848   1.83481   42.7
  17    -48.70070   0.100   1.56093   36.6
  18*    -38.65718   2.196
  19    -133.55548   6.300   1.60300   65.4
  20    -26.81373   D20(可変)
  21    -112.24414   2.782   1.90265   35.7
  22    -53.62057   5.134
  23    -41.69274   2.000   1.53172   48.8
  24    -133.37205   2.166
  25    -49.50596   2.000   1.60342   38.0
  26      ∞    10.500
  27      ∞     1.600   1.51680   64.1
  28      ∞     D28(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-8.44128E-07, A6= 9.38473E-10, A8=-2.90073E-12, A10= 6.84753E-15
 第18面
 κ=1.00000
 A4= 1.66834E-05, A6= 1.07396E-08, A=8 3.36895E-11, A10=-1.25245E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1562
 D0     ∞       311.54
 D12     10.848      2.392
 D20     2.500      10.956
 D28     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    78.05
 G2    13    49.80
 G3    21    -88.77
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.769
 条件式(2)  f2/(-f3)=0.561
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.509
 条件式(4)  f/f1=0.661
 条件式(5)  f/f2=1.036
 条件式(6)  f1/f2=1.567
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.877
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.898
 条件式(10)  {1-(β2)2}×(β3)2=0.827
 条件式(11)  FNO×(f1/f)=2.805
 条件式(12)  2ω=45.6
 図4(A)は、第2実施例に係る光学系の無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6および表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および両凸形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の第1負レンズL32と、両凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。なお、第6面および第14面は仮想面である。
(表3)
[全体諸元]
  f    51.60
FNO     1.86
  ω    23.0
  Y    21.70
 TL    95.000
 BF    13.826
 BFa   13.291
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -43.62202   1.800   1.95375   32.3
  2     62.41759   5.000   1.84666   23.8
  3    -281.93425   0.654   
  4    -167.37782   5.500   1.59319   67.9
  5     -40.10469   0.476   
  6       ∞     0.000   
  7*     39.95627   0.100   1.56093   36.6
  8     41.35117   6.000   1.83481   42.7
  9    -308.32218   0.200   
  10     32.49687   8.500   1.49782   82.6
  11    -50.34522   1.500   1.58144   41.0
  12     20.84633   5.400   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.100     
  15    -19.87542   1.100   1.67270   32.2
  16    -102.49215   0.200   
  17    349.06334   4.800   1.75500   52.3
  18    -33.68733   0.100   1.56093   36.6
  19*    -30.20400   1.700   
  20    -294.17915   6.900   1.49782   82.6
  21    -26.73936   D21(可変)
  22    -208.87897   3.500   2.00069   25.5
  23    -59.64897   4.172   
  24    -45.02223   2.000   1.62004   36.4
  25    -133.33333   2.419   
  26    -45.00000   2.000   1.62004   36.4
  27    224.57692   11.236  
  28      ∞     1.600   1.51680   64.1
  29      ∞     D29(可変)
[非球面データ]
 第7面
 κ=1.00000
 A4=-1.17140E-06, A6= 4.04242E-10, A8= 0.00000E+00, A10= 0.00000E+00
 第19面
 κ=1.00000
 A4= 1.13379E-05, A6= 1.62636E-08, A8= 0.00000E+00, A10= 0.00000E+00
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1591
 D0     ∞       305.00
 D13    11.043       2.821
 D21    3.000       11.223
 D29    1.000       1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    82.69
 G2    14    49.27
 G3    22    -80.88
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.845
 条件式(2)  f2/(-f3)=0.609
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.528
 条件式(4)  f/f1=0.624
 条件式(5)  f/f2=1.047
 条件式(6)  f1/f2=1.678
 条件式(7)  BFa/f=0.258
 条件式(8)  fF/fR=0.923
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=1.366
 条件式(10)  {1-(β2)2}×(β3)2=0.881
 条件式(11)  FNO×(f1/f)=2.983
 条件式(12)  2ω=46.0
 図6(A)は、第3実施例に係る光学系の無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の第1負レンズL32と、物体側に凹面を向けたメニスカス形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表4)
[全体諸元]
  f    51.60
FNO     1.85
  ω    23.0
  Y    21.70
 TL    93.423
 BF    13.099
 BFa   12.554
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -49.34582   1.800   1.64769   33.7
  2     46.34338   4.852   1.94595   18.0
  3     88.17135   2.830   
  4    -385.68443   6.805   1.75500   52.3
  5     -55.81519   0.100   
  6*     32.37146   0.300   1.56093   36.6
  7     34.78660   6.291   1.75500   52.3
  8    3421.80810   0.200   
  9     34.21341   7.021   1.59319   67.9
  10    -76.80721   1.500   1.64769   33.7
  11     20.90542   5.045   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.99823   1.100   1.64769   33.7
  15    814.45031   0.200   
  16     93.44777   5.100   1.80400   46.6
  17    -40.16052   0.152   1.56093   36.6
  18*    -34.60672   3.204   
  19    -128.30142   6.400   1.49782   82.6
  20    -26.31276   D20(可変)
  21    -78.26552   2.798   1.94595   18.0
  22    -44.00653   2.232   
  23    -46.73961   2.000   1.64769   33.7
  24    -150.55235   2.958   
  25    -40.00000   1.900   1.64769   33.7
  26    -179.87126   10.500   
  27      ∞     1.600   1.51680   64.1
  28      ∞     D28(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-1.82369E-06, A6=-1.73726E-09, A8= 2.00735E-12, A10=-4.32700E-15
 第18面
 κ=1.00000
 A4= 1.61711E-05, A6= 1.10899E-08, A8= 3.81964E-11, A10=-1.19949E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1563
 D0     ∞       306.58
 D12     10.336      2.398
 D20     2.500      10.438
 D28     0.999      0.999
[レンズ群データ]
 群   始面   焦点距離
 G1    1    73.48
 G2    13    47.81
 G3    21    -81.77
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.956
 条件式(2)  f2/(-f3)=0.585
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.672
 条件式(4)  f/f1=0.702
 条件式(5)  f/f2=1.079
 条件式(6)  f1/f2=1.537
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.773
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.282
 条件式(10)  {1-(β2)2}×(β3)2=0.879
 条件式(11)  FNO×(f1/f)=2.640
 条件式(12)  2ω=46.0
 図8(A)は、第4実施例に係る光学系の無限遠合焦時の諸収差図である。図8(B)は、第4実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表5)
[全体諸元]
  f    51.61
FNO     1.85
  ω    22.8
  Y    21.70
 TL    94.298
 BF    13.104
 BFa   12.558
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -55.81981   2.351   1.67270   32.2
  2     40.92718   3.030   1.94595   18.0
  3     73.81686   2.866   
  4    -2179.29960   8.923   1.75500   52.3
  5     -55.86755   0.100   
  6*     31.91227   0.300   1.56093   36.6
  7     33.62812   5.941   1.80400   46.6
  8     179.47342   0.200   
  9     31.36834   7.114   1.59319   67.9
  10    -117.41333   1.500   1.67270   32.2
  11     20.83074   5.078   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.88176   1.100   1.64769   33.7
  15    -464.00395   0.306   
  16*    107.59212   4.886   1.77377   47.2
  17*    -34.57866   3.604   
  18    -87.29087   6.386   1.49782   82.6
  19    -24.79412   D19(可変)
  20    -168.93770   2.949   1.94595   18.0
  21    -62.61109   1.900   1.62004   36.4
  22    -408.98106   2.897   
  23    -49.70122   1.900   1.64769   33.7
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-9.25285E-07, A6=-2.44172E-10, A8=-5.83429E-13, A10= 9.84913E-16
 第16面
 κ=1.00000
 A4= 2.83184E-06, A6= 1.30771E-08, A8= 3.97727E-11, A10= 2.50432E-13
 第17面
 κ=1.00000
 A4= 1.51803E-05, A6= 3.07472E-08, A8=-2.44486E-11, A10= 5.97193E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.61    β=-0.1566
 D0     ∞       305.70
 D12     10.295      2.359
 D19     4.868      12.804
 D26     1.004      1.004
[レンズ群データ]
 群   始面   焦点距離
 G1    1    74.25
 G2    13    47.70
 G3    20    -83.87
[条件式対応値]
 条件式(1)  (-G1R1)/f=1.082
 条件式(2)  f2/(-f3)=0.569
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.752
 条件式(4)  f/f1=0.695
 条件式(5)  f/f2=1.082
 条件式(6)  f1/f2=1.556
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.805
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.139
 条件式(10)  {1-(β2)2}×(β3)2=0.883
 条件式(11)  FNO×(f1/f)=2.668
 条件式(12)  2ω=45.6
 図10(A)は、第5実施例に係る光学系の無限遠合焦時の諸収差図である。図10(B)は、第5実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図11~図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表6)
[全体諸元]
  f    51.61
FNO     1.85
  ω    22.7
  Y    21.70
 TL    94.879
 BF    13.103
 BFa   12.558
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -59.41700   3.521   1.67270   32.2
  2     39.22460   3.028   1.94595   18.0
  3     67.63630   2.963   
  4    3381.87660   8.656   1.75500   52.3
  5     -56.77477   0.200   
  6*     32.10469   0.100   1.56093   36.6
  7     32.39825   5.977   1.77250   49.6
  8     150.72327   0.200   
  9     29.50426   7.110   1.59319   67.9
  10    -150.81319   1.500   1.64769   33.7
  11     20.38598   5.145   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.88655   1.100   1.64769   33.7
  15   11241.53800   0.200   
  16*    115.09348   4.892   1.77377   47.2
  17*    -33.45446   3.784   
  18    -154.31773   6.454   1.49782   82.6
  19    -26.83890   D19(可変)
  20    -99.15080   2.941   1.94595   18.0
  21    -50.06903   1.900   1.60342   38.0
  22    -157.80139   2.610   
  23    -45.69693   1.900   1.64769   33.7
  24    -615.80945   10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-7.49375E-07, A6=-1.64453E-10, A8=-6.23627E-13, A10= 1.37024E-15
 第16面
 κ=1.00000
 A4= 4.71706E-08, A6= 1.49836E-08, A8= 4.37655E-13, A10= 2.84793E-13
 第17面
 κ=1.00000
 A4= 1.11172E-05, A6=  3.11358E-08, A8=-9.41425E-11, A10= 7.16057E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.61    β=-0.1560
 D0     ∞       305.12
 D12     10.330      2.348
 D19     4.563      12.545
 D26     1.003      1.005
[レンズ群データ]
 群   始面   焦点距離
 G1    1    71.11
 G2    13    47.97
 G3    20    -83.32
[条件式対応値]
 条件式(1)  (-G1R1)/f=1.151
 条件式(2)  f2/(-f3)=0.576
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.836
 条件式(4)  f/f1=0.726
 条件式(5)  f/f2=1.076
 条件式(6)  f1/f2=1.482
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.731
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.065
 条件式(10)  {1-(β2)2}×(β3)2=0.886
 条件式(11)  FNO×(f1/f)=2.555
 条件式(12)  2ω=45.4
 図12(A)は、第6実施例に係る光学系の無限遠合焦時の諸収差図である。図12(B)は、第6実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図13~図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表7)
[全体諸元]
  f    51.60
FNO     1.85
  ω    23.0
  Y    21.70
 TL    92.606
 BF    13.099
 BFa   12.554
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -45.97401   3.464   1.67270   32.2
  2     49.61070   3.386   1.94595   18.0
  3     104.71966   2.977   
  4    -171.07801   4.990   1.72916   54.6
  5     -45.04067   0.200   
  6*     34.58722   0.100   1.56093   36.6
  7     35.08925   6.046   1.80400   46.6
  8     271.36284   0.200   
  9     30.75373   7.301   1.59319   67.9
  10    -109.57751   1.500   1.64769   33.7
  11     21.09749   5.107   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.42611   1.100   1.64769   33.7
  15    1293.83890   0.200   
  16*    96.25206   5.000   1.77377   47.2
  17*    -33.63182   2.984   
  18    -84.68095   6.400   1.49782   82.6
  19    -24.24361   D19(可変)
  20    -198.33414   2.923   1.94595   18.0
  21    -66.60448   2.000   1.64769   33.7
  22   -1255.72680   2.962   
  23    -53.07631   2.000   1.64769   33.7
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-9.44039E-07, A6=-7.11276E-10, A8= 1.77477E-12, A10=-1.49090E-15
 第16面
 κ=1.00000
 A4=-7.09863E-07, A6= 1.39281E-08, A8=-7.11118E-11, A10=-9.85203E-14
 第17面
 κ=1.00000
 A4= 1.29000E-05, A6= 1.77000E-08, A8= 4.64016E-11, A10=-4.30856E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1564
 D0     ∞       307.39
 D12     10.322      2.393
 D19     5.645      13.574
 D26     0.999      0.999
[レンズ群データ]
 群   始面   焦点距離
 G1    1    73.64
 G2    13     48.40
 G3    20    -83.16
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.891
 条件式(2)  f2/(-f3)=0.582
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.624
 条件式(4)  f/f1=0.701
 条件式(5)  f/f2=1.066
 条件式(6)  f1/f2=1.522
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.769
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.390
 条件式(10)  {1-(β2)2}×(β3)2=0.883
 条件式(11)  FNO×(f1/f)=2.646
 条件式(12)  2ω=46.0
 図14(A)は、第7実施例に係る光学系の無限遠合焦時の諸収差図である。図14(B)は、第7実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第8実施例)
 第8実施例について、図15~図16および表8を用いて説明する。図15は、本実施形態の第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第8実施例に係る光学系LS(8)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表8)
[全体諸元]
  f    51.60
FNO     1.85
  ω    22.9
  Y    21.70
 TL    93.035
 BF    13.101
 BFa   12.556
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -49.74101   3.508   1.67270   32.2
  2     51.83840   3.342   1.94595   18.0
  3     105.00000   2.890   
  4    -198.79923   5.698   1.72916   54.6
  5     -48.74109   0.216   
  6*     39.85460   0.100   1.56093   36.6
  7     39.94369   5.459   1.80400   46.6
  8     306.55979   0.200   
  9     27.39919   7.979   1.59319   67.9
  10    -244.36823   1.500   1.64769   33.7
  11     21.09582   5.098   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.37434   1.100   1.64769   33.7
  15    630.74141   0.200   
  16*    88.88240   5.000   1.77377   47.2
  17*    -34.54296   2.466   
  18    -91.09112   6.400   1.49782   82.6
  19    -24.26835   D19(可変)
  20    -173.73017   2.915   1.94595   18.0
  21    -63.36086   2.000   1.64769   33.7
  22    -410.38800   2.872   
  23    -49.55593   1.900   1.64769   33.7
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-1.98971E-07, A6=-9.88462E-10, A8= 4.89667E-12, A10=-4.46361E-15
 第16面
 κ=1.00000
 A4=-1.30154E-06, A6= 1.97109E-08, A8=-1.12019E-10, A10=-2.74309E-14
 第17面
 κ=1.00000
 A4= 1.29000E-05, A6= 1.77000E-08, A8= 4.40194E-11, A10=-4.63161E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1566
 D0     ∞       306.96
 D12     10.321      2.394
 D19     6.070      13.997
 D26     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    73.37
 G2    13    48.59
 G3    20    -81.56
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.964
 条件式(2)  f2/(-f3)=0.596
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.678
 条件式(4)  f/f1=0.703
 条件式(5)  f/f2=1.062
 条件式(6)  f1/f2=1.510
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.747
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.357
 条件式(10)  {1-(β2)2}×(β3)2=0.885
 条件式(11)  FNO×(f1/f)=2.636
 条件式(12)  2ω=45.8
 図16(A)は、第8実施例に係る光学系の無限遠合焦時の諸収差図である。図16(B)は、第8実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第8実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第9実施例)
 第9実施例について、図17~図18および表9を用いて説明する。図17は、本実施形態の第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第9実施例に係る光学系LS(9)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表9に、第9実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表9)
[全体諸元]
  f    51.60
FNO     1.85
  ω    22.9
  Y    21.70
 TL    92.330
 BF    13.100
 BFa   12.554
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -48.06457   2.000   1.67270   32.2
  2     50.03333   2.861   1.94595   18.0
  3     105.00000   2.805   
  4    -226.31231   6.827   1.72916   54.6
  5     -47.98013   0.644   
  6*     36.64910   0.100   1.56093   36.6
  7     36.85687   5.622   1.80400   46.6
  8     217.92780   0.200   
  9     28.49361   7.332   1.59319   67.9
  10    -161.37986   1.500   1.64769   33.7
  11     20.99038   5.164   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.41799   1.100   1.64769   33.7
  15    998.77224   0.200   
  16*    85.12299   5.000   1.77377   47.2
  17*    -35.29338   2.485   
  18    -73.80381   6.400   1.49782   82.6
  19    -23.23519   D19(可変)
  20    -177.75440   2.927   1.94595   18.0
  21    -63.69645   1.900   1.64769   33.7
  22    -482.01125   2.887   
  23    -50.20764   1.900   1.64769   33.7
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-4.74106E-07, A6=-3.40824E-10, A8= 2.15394E-12, A10=-1.54492E-15
 第16面
 κ=1.00000
 A4=-1.95205E-07, A6= 1.94342E-08, A8=-8.61846E-11, A10=-2.07763E-13
 第17面
 κ=1.00000
 A4= 1.47643E-05, A6= 2.08671E-08, A8= 8.44852E-11, A10=-6.93210E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1565
 D0     ∞       307.67
 D12     10.320      2.409
 D19     6.356      14.267
 D26     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    73.63
 G2    13    48.76
 G3    20    -81.76
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.964
 条件式(2)  f2/(-f3)=0.596
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.676
 条件式(4)  f/f1=0.701
 条件式(5)  f/f2=1.058
 条件式(6)  f1/f2=1.510
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.748
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.357
 条件式(10)  {1-(β2)2}×(β3)2=0.888
 条件式(11)  FNO×(f1/f)=2.645
 条件式(12)  2ω=45.8
 図18(A)は、第9実施例に係る光学系の無限遠合焦時の諸収差図である。図18(B)は、第9実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第9実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第10実施例)
 第10実施例について、図19~図20および表10を用いて説明する。図19は、本実施形態の第10実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第10実施例に係る光学系LS(10)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表10に、第10実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表10)
[全体諸元]
  f    51.61
FNO     1.85
  ω    23.0
  Y    21.70
 TL    92.630
 BF    13.111
 BFa   12.566
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -47.48420   2.000   1.67270   32.2
  2     49.34200   2.900   1.94595   18.0
  3     105.06869   2.850   
  4    -214.61709   6.650   1.72916   54.6
  5     -47.45376   0.640   
  6*     36.92032   0.100   1.56093   36.6
  7     37.08029   5.650   1.80400   46.6
  8     227.67817   0.250   
  9     28.81243   7.400   1.59319   67.9
  10    -141.32000   1.500   1.64769   33.7
  11     21.19231   5.130   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -23.47056   1.100   1.64769   33.7
  15    682.91466   0.200   
  16*    83.29512   5.000   1.77377   47.2
  17*    -35.02672   2.570   
  18    -71.96528   6.400   1.49782   82.6
  19    -23.20263   D19(可変)
  20    -192.79576   2.950   1.94595   18.0
  21    -65.62300   2.000   1.64769   33.7
  22    -664.53730   2.909   
  23    -51.20031   1.900   1.64769   33.7
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-4.82693E-07, A6=-2.32147E-10, A8= 1.82978E-12, A10=-1.19713E-15
 第16面
 κ=1.00000
 A4=-2.77465E-07, A6= 1.84476E-08, A8=-7.60811E-11, A10=-2.05509E-13
 第17面
 κ=1.00000
 A4= 1.46947E-05, A6= 2.13572E-08, A8= 8.25934E-11, A10=-6.58549E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.61    β=-0.1568
 D0     ∞       307.37
 D12     10.320      2.403
 D19     6.400      14.317
 D26     1.011      1.011
[レンズ群データ]
 群   始面   焦点距離
 G1    1    74.30
 G2    13    48.80
 G3    20    -82.85
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.920
 条件式(2)  f2/(-f3)=0.589
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.639
 条件式(4)  f/f1=0.695
 条件式(5)  f/f2=1.058
 条件式(6)  f1/f2=1.523
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.768
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.377
 条件式(10)  {1-(β2)2}×(β3)2=0.890
 条件式(11)  FNO×(f1/f)=2.670
 条件式(12)  2ω=46.0
 図20(A)は、第10実施例に係る光学系の無限遠合焦時の諸収差図である。図20(B)は、第10実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第10実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第11実施例)
 第11実施例について、図21~図22および表11を用いて説明する。図21は、本実施形態の第11実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第11実施例に係る光学系LS(11)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凹形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、両凸形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表11に、第11実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。
(表11)
[全体諸元]
  f    37.63
FNO     1.85
  ω    30.0
  Y    21.70
 TL    110.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -662.83160   3.000   1.80920   33.6
  2     33.87219   9.404   
  3    -109.33916   3.000   1.48749   70.4
  4     89.77072   4.000   1.94595   18.0
  5     317.57072   1.945   
  6     44.26915   8.500   1.48749   70.4
  7    -112.47821   3.972   
  8*     41.20576   6.500   1.80400   46.6
  9    -255.27183   0.200   
  10     26.75656   9.000   1.59319   67.9
  11    -57.15784   1.500   1.67270   32.2
  12     17.14008   5.399   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.000   
  15    -21.57444   1.000   1.67270   32.2
  16   -1291.14570   0.200   
  17*    157.44017   4.500   1.77377   47.2
  18*    -44.84339   0.200   
  19    155.77289   9.000   1.59319   67.9
  20    -25.32306   D20(可変)
  21     71.98835   3.000   1.94595   18.0
  22     81.46254   6.736   
  23*    -41.56282   1.500   1.64769   33.7
  24    -168.89768   7.000   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4=-1.90145E-06, A6=-9.52591E-10, A8=-1.08708E-12, A10=-6.77034E-16
 第17面
 κ=1.00000
 A4= 6.23513E-06, A6=-1.23942E-08, A8= 3.34827E-11, A10=-3.01713E-13
 第18面
 κ=1.00000
 A4= 1.88293E-05, A6= 1.24857E-08, A8= 2.84962E-11, A10=-3.23051E-13
 第23面
 κ=1.00000
 A4= 5.43854E-06, A6=-1.52554E-08, A8= 0.00000E+00, A10= 0.00000E+00
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=37.63    β=-0.2078
 D0     ∞       151.72
 D13     11.387      2.404
 D20     3.456      12.439
 D26     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    58.79
 G2    14    43.00
 G3    21   -104.59
[条件式対応値]
 条件式(1)  (-G1R1)/f=17.613
 条件式(2)  f2/(-f3)=0.411
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=11.275
 条件式(4)  f/f1=0.640
 条件式(5)  f/f2=0.875
 条件式(6)  f1/f2=1.367
 条件式(7)  BFa/f=0.241
 条件式(8)  fF/fR=0.945
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.903
 条件式(10)  {1-(β2)2}×(β3)2=0.728
 条件式(11)  FNO×(f1/f)=2.893
 条件式(12)  2ω=60.0
 図22(A)は、第11実施例に係る光学系の無限遠合焦時の諸収差図である。図22(B)は、第11実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第11実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第12実施例)
 第12実施例について、図23~図24および表12を用いて説明する。図23は、本実施形態の第12実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第12実施例に係る光学系LS(12)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凹形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表12に、第12実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。
(表12)
[全体諸元]
  f    37.70
FNO     1.88
  ω    30.0
  Y    21.70
 TL    110.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -3112.32120   3.000   1.73282   32.6
  2     32.68764   8.690   
  3    -440.00413   3.000   1.48749   70.4
  4     57.93171   4.000   1.94595   18.0
  5     108.74454   3.168   
  6     42.60783   8.500   1.50267   62.2
  7    -141.78756   3.866   
  8*     45.06258   6.500   1.80400   46.6
  9    -210.82291   0.200   
  10     36.02017   9.000   1.59319   67.9
  11    -45.79266   1.500   1.67270   32.2
  12     22.46589   5.399   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.000   
  15    -22.15003   1.000   1.67270   32.2
  16    -98.33346   0.318   
  17*   -130.89892   2.500   1.77377   47.2
  18*    -43.35291   1.224   
  19    101.79100   5.500   1.59319   67.9
  20    -53.62571   0.100   
  21    -81.82793   6.000   1.59319   67.9
  22    -25.48031   D22(可変)
  23    -75.16977   3.000   1.94595   18.0
  24    -63.16701   8.776   
  25*    -25.51533   1.500   1.64769   33.7
  26    -99.50792   7.000   
  27      ∞     1.600   1.51680   64.1
  28      ∞     D28(可変)
[非球面データ]
 第8面
 κ=1.00000
 A6=-1.62936E-06, A6=-1.61898E-09, A8= 3.72851E-12, A10=-6.56781E-15
 第17面
 κ=1.00000
 A4= 3.15178E-05, A6= 1.77790E-07, A8=-3.27517E-10, A10=-1.26227E-12
 第18面
 κ=1.00000
 A4= 4.17433E-05, A6= 1.91618E-07, A8= 1.40927E-10, A10=-2.86119E-12
 第25面
 κ=1.00000
 A4= 1.10584E-05, A6=-1.56481E-10, A8= 0.00000E+00, A10= 0.00000E+00
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=37.70    β=-0.1179
 D0     ∞       290.00
 D13     6.605      2.441
 D22     4.053      8.217
 D28     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    63.38
 G2    14    39.22
 G3    23    -62.57
[条件式対応値]
 条件式(1)  (-G1R1)/f=82.547
 条件式(2)  f2/(-f3)=0.627
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=49.101
 条件式(4)  f/f1=0.595
 条件式(5)  f/f2=0.961
 条件式(6)  f1/f2=1.616
 条件式(7)  BFa/f=0.240
 条件式(8)  fF/fR=0.873
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.979
 条件式(10)  {1-(β2)2}×(β3)2=0.994
 条件式(11)  FNO×(f1/f)=3.160
 条件式(12)  2ω=60.0
 図24(A)は、第12実施例に係る光学系の無限遠合焦時の諸収差図である。図24(B)は、第12実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第12実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第13実施例)
 第13実施例について、図25~図26および表13を用いて説明する。図25は、本実施形態の第13実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第13実施例に係る光学系LS(13)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凹形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表13に、第13実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。
(表13)
[全体諸元]
  f    36.52
FNO     1.85
  ω    30.6
  Y    21.70
 TL    100.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -344.23276   3.000   1.71736   29.6
  2     31.47663   8.864   
  3    -5197.94500   3.000   1.48749   70.3
  4     59.50193   4.000   1.94595   18.0
  5     141.00357   0.152   
  6     49.20783   7.500   1.60300   65.4
  7    -563.87665   4.981   
  8*     39.11480   6.000   1.77250   49.6
  9    -139.68211   0.427   
  10     28.58681   8.000   1.59319   67.9
  11    -50.06370   1.500   1.67270   32.2
  12     19.18437   5.399   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.000   
  15    -22.50724   1.000   1.67270   32.2
  16    -81.31951   0.549   
  17*    -74.31824   3.000   1.77377   47.2
  18    -35.67165   0.203   
  19    180.93759   5.000   1.59319   67.9
  20    -43.85092   0.500   
  21    -132.62507   6.000   1.59319   67.9
  22    -29.07561   D22(可変)
  23    317.64282   3.000   1.94595   18.0
  24    314.90339   6.932   
  25*    -26.84153   1.500   1.64769   33.7
  26    -77.55848   7.000   
  27      ∞     1.600   1.51680   64.1
  28      ∞     D28(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4=-1.59558E-06, A6=-1.61180E-09, A8= 2.67206E-12, A10=-4.02129E-15
 第17面
 κ=1.00000
 A4=-1.62012E-05, A6=-2.42502E-08, A8= 1.25145E-10, A10=-1.02694E-12
 第25面
 κ=1.00000
 A4= 7.25982E-06, A6= 1.79235E-08, A8=-4.70327E-11, A10= 2.68072E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.52    β=-0.1131
 D0     ∞       290.00
 D13     6.346      1.987
 D22     0.549      4.907
 D28     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    52.27
 G2    14    37.19
 G3    23    -64.36
[条件式対応値]
 条件式(1)  (-G1R1)/f=9.427
 条件式(2)  f2/(-f3)=0.578
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=6.586
 条件式(4)  f/f1=0.699
 条件式(5)  f/f2=0.982
 条件式(6)  f1/f2=1.406
 条件式(7)  BFa/f=0.248
 条件式(8)  fF/fR=0.724
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.832
 条件式(10)  {1-(β2)2}×(β3)2=0.853
 条件式(11)  FNO×(f1/f)=2.645
 条件式(12)  2ω=61.2
 図26(A)は、第13実施例に係る光学系の無限遠合焦時の諸収差図である。図26(B)は、第13実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第13実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第14実施例)
 第14実施例について、図27~図28および表14を用いて説明する。図27は、本実施形態の第14実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第14実施例に係る光学系LS(14)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、物体側に凸面を向けたメニスカス形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表14に、第14実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。
(表14)
[全体諸元]
  f    36.50
FNO     1.85
  ω    30.7
  Y    21.70
 TL    100.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -328.51209   3.000   1.71736   29.6
  2     30.62735   8.724   
  3     862.45645   3.000   1.48749   70.3
  4     57.42336   4.000   1.94595   18.0
  5     141.63170   0.100   
  6     44.98135   7.500   1.60300   65.4
  7    5539.31740   5.241   
  8*     41.34810   6.000   1.77250   49.6
  9    -119.73719   0.200   
  10     28.47480   8.000   1.59319   67.9
  11    -45.24565   1.500   1.67270   32.2
  12     19.20206   5.399   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.000   
  15    -23.51305   1.000   1.67270   32.2
  16    -129.15388   0.457   
  17*   -103.44705   3.000   1.77377   47.2
  18*    -39.20704   0.417   
  19    131.40567   5.000   1.59319   67.9
  20    -48.12075   0.500   
  21    -100.00000   6.000   1.59319   67.9
  22    -26.83541   D22(可変)
  23    102.68371   3.000   1.94595   18.0
  24    106.30512   6.996   
  25*    -28.73049   1.500   1.64769   33.7
  26    -98.04242   7.000   
  27      ∞     1.600   1.51680   64.1
  28      ∞     D28(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4=-1.74572E-06, A6=-1.86902E-09, A8= 3.70243E-12, A10=-5.65794E-15
 第17面
 κ=1.00000
 A4=-4.49752E-06, A6=-4.35264E-08, A8= 1.70129E-10, A10=-7.71012E-13
 第18面
 κ=1.00000
 A4= 1.06552E-05, A6= 0.00000E+00, A8= 0.00000E+00, A10= 0.00000E+00
 第25面
 κ=1.00000
 A4= 6.97711E-06, A6= 8.30426E-09, A8=-3.04728E-11, A10=-2.65514E-15
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.50    β=-0.1131
 D0     ∞       290.00
 D13     6.366      1.830
 D22     0.500      5.036
 D28     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    52.56
 G2    14    38.05
 G3    23    -66.26
[条件式対応値]
 条件式(1)  (-G1R1)/f=9.000
 条件式(2)  f2/(-f3)=0.574
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=6.250
 条件式(4)  f/f1=0.694
 条件式(5)  f/f2=0.959
 条件式(6)  f1/f2=1.381
 条件式(7)  BFa/f=0.248
 条件式(8)  fF/fR=0.729
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.829
 条件式(10)  {1-(β2)2}×(β3)2=0.815
 条件式(11)  FNO×(f1/f)=2.664
 条件式(12)  2ω=61.4
 図28(A)は、第14実施例に係る光学系の無限遠合焦時の諸収差図である。図28(B)は、第14実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第14実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第15実施例)
 第15実施例について、図29~図30および表15を用いて説明する。図29は、本実施形態の第15実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第15実施例に係る光学系LS(15)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側に凹面を向けたメニスカス形状の負レンズL31から構成される。負レンズL31は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表15に、第15実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。
(表15)
[全体諸元]
  f    36.50
FNO     1.87
  ω    30.7
  Y    21.70
 TL    100.000
 BF     9.600
 BFa    9.054
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -188.20085   3.000   1.71736   29.6
  2     30.66496   8.404   
  3     547.03690   3.000   1.48749   70.3
  4     62.69373   4.000   1.94595   18.0
  5     190.11798   0.100   
  6     45.62385   7.500   1.60300   65.4
  7   -115579.46000   5.673   
  8*     44.63892   6.000   1.77250   49.6
  9    -102.19551   0.200   
  10     28.17341   8.000   1.59319   67.9
  11    -42.44281   1.500   1.67270   32.2
  12     19.02911   5.399   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.000   
  15    -23.61092   1.000   1.67270   32.2
  16    -109.82047   0.899   
  17*    -60.75679   3.000   1.77377   47.2
  18*    -33.74626   0.200   
  19    105.85192   5.000   1.59319   67.9
  20    -52.67684   0.500   
  21    -100.00000   6.000   1.59319   67.9
  22    -26.83541   D22(可変)
  23*    -35.17199   1.500   1.64769   33.7
  24    -148.75840   7.000   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4=-1.59317E-06, A6=-1.58329E-09, A8= 3.51477E-12, A10=-5.52433E-15
 第17面
 κ=1.00000
 A4=-1.23191E-05, A6=-4.63629E-08, A8= 2.30352E-10, A10=-1.55636E-12
 第18面
 κ=1.00000
 A4= 3.43104E-06, A6= 0.00000E+00, A8= 0.00000E+00, A10= 0.00000E+00
 第23面
 κ=1.00000
 A4= 2.07644E-06, A6= 2.61568E-09, A8= -1.43218E-11, A10=-5.83085E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.50    β=-0.1132
 D0     ∞       290.00
 D13     6.253      1.764
 D22     10.273      14.761
 D28     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    52.70
 G2    14    38.26
 G3    23    -71.49
[条件式対応値]
 条件式(1)  (-G1R1)/f=5.156
 条件式(2)  f2/(-f3)=0.535
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=3.571
 条件式(4)  f/f1=0.693
 条件式(5)  f/f2=0.954
 条件式(6)  f1/f2=1.377
 条件式(7)  BFa/f=0.248
 条件式(8)  fF/fR=0.758
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.720
 条件式(10)  {1-(β2)2}×(β3)2=0.828
 条件式(11)  FNO×(f1/f)=2.696
 条件式(12)  2ω=61.4
 図30(A)は、第15実施例に係る光学系の無限遠合焦時の諸収差図である。図30(B)は、第15実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第15実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第16実施例)
 第16実施例について、図31~図32および表16を用いて説明する。図31は、本実施形態の第16実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第16実施例に係る光学系LS(16)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表16に、第16実施例に係る光学系の諸元の値を掲げる。なお、第14面は仮想面である。
(表16)
[全体諸元]
  f    36.50
FNO     1.86
  ω    30.8
  Y    21.70
 TL    100.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -133.60683   2.000   1.71736   29.6
  2     32.54620   8.076   
  3     388.71645   2.500   1.48749   70.3
  4     65.47753   4.000   1.94595   18.0
  5     219.57835   0.100   
  6     57.60424   7.000   1.60300   65.4
  7    -387.08519   6.523   
  8*     44.24367   6.000   1.77250   49.6
  9    -104.52830   0.200   
  10     31.09490   9.000   1.59319   67.9
  11    -42.99037   1.500   1.67270   32.2
  12     20.68411   5.399   
  13      ∞     D13(可変)     (絞りS)
  14      ∞     3.000   
  15    -23.39527   1.000   1.67270   32.2
  16    -374.05277   0.224   
  17*    89.21164   4.000   1.77377   47.2
  18*    -62.00927   1.388   
  19    -586.47623   4.500   1.59319   67.9
  20    -38.88857   0.500   
  21    -100.00000   5.500   1.59319   67.9
  22    -29.94109   D22(可変)
  23     59.66877   3.000   1.94595   18.0
  24     59.44379   6.722   
  25*    -32.82899   1.500   1.64769   33.7
  26    -177.92654   7.000   
  27      ∞     1.600   1.51680   63.9
  28      ∞     D28(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4=-1.04917E-06, A6=-1.42831E-09, A8= 4.66129E-12, A10=-6.33796E-15
 第17面
 κ=1.00000
 A4= 1.65960E-05, A6= 5.96989E-08, A6=-6.57382E-11, A10= 1.19611E-13
 第18面
 κ=1.00000
 A4= 2.95825E-05, A6= 7.91633E-08, A8= 0.00000E+00, A10= 0.00000E+00
 第25面
 κ=1.00000
 A4= 4.39415E-06, A6=-1.10198E-08, A8= 5.26933E-11, A10=-1.66739E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.50    β=-0.1137
 D0     ∞       290.00
 D13     6.258      1.649
 D22     0.509      5.118
 D28     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    53.58
 G2    14    39.30
 G3    23    -65.49
[条件式対応値]
 条件式(1)  (-G1R1)/f=3.660
 条件式(2)  f2/(-f3)=0.600
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=2.494
 条件式(4)  f/f1=0.681
 条件式(5)  f/f2=0.929
 条件式(6)  f1/f2=1.363
 条件式(7)  BFa/f=0.248
 条件式(8)  fF/fR=0.714
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.608
 条件式(10)  {1-(β2)2}×(β3)2=0.810
 条件式(11)  FNO×(f1/f)=2.734
 条件式(12)  2ω=61.6
 図32(A)は、第16実施例に係る光学系の無限遠合焦時の諸収差図である。図32(B)は、第16実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第16実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第17実施例)
 第17実施例について、図33~図34および表17を用いて説明する。図33は、本実施形態の第17実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第17実施例に係る光学系LS(17)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、物体側に凹面を向けたメニスカス形状の第2負レンズL13と、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15および両凹形状の第3負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第2負レンズL13は、像面I側のレンズ面が非球面である。第2正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表17に、第17実施例に係る光学系の諸元の値を掲げる。なお、第13面は仮想面である。
(表17)
[全体諸元]
  f    36.05
FNO     1.85
  ω    31.6
  Y    21.70
 TL    99.592
 BF    13.100
 BFa   12.555
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -500.00000   2.000   1.59270   35.3
  2     27.30135   8.716   
  3     60.46320   3.840   1.94594   18.0
  4     220.11217   9.742   
  5     -29.41908   1.659   1.77377   47.2
  6*    -33.35969   1.884   
  7*     47.17368   10.592   1.76801   49.2
  8     -60.97010   0.200   
  9     27.06671   6.869   1.59319   67.9
  10    -38.40610   1.500   1.69895   30.1
  11     22.53254   3.899   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.700   
  14    -20.48042   1.100   1.64769   33.7
  15    -452.00052   0.648   
  16*    80.79578   4.788   1.77377   47.2
  17*    -31.41145   0.568   
  18    -137.97943   6.400   1.49782   82.6
  19    -21.82018   D19(可変)
  20    -72.37319   4.704   1.94594   18.0
  21    -25.72015   1.900   1.80518   25.4
  22    -96.08935   2.660   
  23    -34.82473   1.900   1.64769   33.7
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-1.02986E-07, A6= 4.20882E-09, A8=-1.01963E-11, A10= 2.17897E-14
 第7面
 κ=1.00000
 A4=-2.57635E-07, A6= 3.44388E-09, A8=-9.56027E-12, A10= 7.45193E-15
 第16面
 κ=1.00000
 A4=-2.53184E-06, A6= 4.68537E-08, A8=-1.77268E-11, A10=-7.02284E-13
 第17面
 κ=1.00000
 A4= 2.23902E-05, A6= 1.94868E-08, A8= 4.29642E-10, A10=-1.80787E-12
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.05    β=-0.1049
 D0     ∞       314.50
 D12     5.722      2.550
 D19     2.500      5.667
 D26     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    49.49
 G2    13    36.41
 G3    20    -55.61
[条件式対応値]
 条件式(1)  (-G1R1)/f=13.870
 条件式(2)  f2/(-f3)=0.655
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=10.103
 条件式(4)  f/f1=0.728
 条件式(5)  f/f2=0.990
 条件式(6)  f1/f2=1.359
 条件式(7)  BFa/f=0.348
 条件式(8)  fF/fR=0.554
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.896
 条件式(10)  {1-(β2)2}×(β3)2=1.114
 条件式(11)  FNO×(f1/f)=2.534
 条件式(12)  2ω=63.2
 図34(A)は、第17実施例に係る光学系の無限遠合焦時の諸収差図である。図34(B)は、第17実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第17実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第18実施例)
 第18実施例について、図35~図36および表18を用いて説明する。図35は、本実施形態の第18実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第18実施例に係る光学系LS(18)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凸形状の第1正レンズL12と、物体側に凹面を向けたメニスカス形状の第2負レンズL13と、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15および両凹形状の第3負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第2負レンズL13は、像面I側のレンズ面が非球面である。第2正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凸形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および両凹形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表18に、第18実施例に係る光学系の諸元の値を掲げる。
(表18)
[全体諸元]
  f    36.05
FNO     1.86
  ω    31.6
  Y    21.70
 TL    99.539
 BF    13.100
 BFa   12.555
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -500.00000   2.000   1.59270   35.3
  2     31.30252   8.752   
  3     77.05411   4.224   1.94594   18.0
  4    -4995.87340   12.332   
  5     -34.14226   3.140   1.77377   47.2
  6*    -47.59110   0.100   
  7*     41.62130   5.898   1.76801   49.2
  8     -65.35489   0.294   
  9     31.07689   6.046   1.59319   67.9
  10    -44.14843   1.500   1.69895   30.1
  11     22.96400   3.883   
  12      ∞     D12(可変)     (絞りS)
  13     95.03984   2.062   1.49782   82.6
  14    -345.94097   2.289   
  15    -19.00516   1.100   1.64769   33.7
  16    -992.59484   1.622   
  17*    123.45937   4.722   1.77377   47.2
  18*    -28.92599   0.200   
  19    -129.08817   6.400   1.49782   82.6
  20    -21.31763   D20(可変)
  21    -134.41671   5.154   1.94594   18.0
  22    -26.15911   1.900   1.80518   25.4
  23    1225.10730   3.764   
  24    -34.85007   1.900   1.64769   33.7
  25      ∞    10.500   
  26      ∞     1.600   1.51680   64.1
  27      ∞     D27(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4= 9.02554E-07, A6= 3.14643E-09, A8=-1.89905E-12, A10= 1.77634E-14
 第7面
 κ=1.00000
 A4=-1.81054E-07, A6= 2.54149E-09, A8=-7.43973E-12, A10= 8.48515E-15
 第17面
 κ=1.00000
 A4= 3.23226E-07, A6= 4.85057E-08, A8= 1.37810E-11, A10=-1.32577E-13
 第18面
 κ=1.00000
 A4= 2.32157E-05, A6= 3.57378E-08, A8= 3.07145E-10, A10=-6.42283E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.05    β=-0.1053
 D0     ∞       314.50
 D12     4.656      2.000
 D20     2.500      5.150
 D27     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    58.73
 G2    13    33.00
 G3    21    -46.85
[条件式対応値]
 条件式(1)  (-G1R1)/f=13.870
 条件式(2)  f2/(-f3)=0.704
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=8.514
 条件式(4)  f/f1=0.614
 条件式(5)  f/f2=1.092
 条件式(6)  f1/f2=1.780
 条件式(7)  BFa/f=0.348
 条件式(8)  fF/fR=0.765
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.882
 条件式(10)  {1-(β2)2}×(β3)2=1.369
 条件式(11)  FNO×(f1/f)=3.025
 条件式(12)  2ω=63.2
 図36(A)は、第18実施例に係る光学系の無限遠合焦時の諸収差図である。図36(B)は、第18実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第18実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第19実施例)
 第19実施例について、図37~図38および表19を用いて説明する。図37は、本実施形態の第19実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第19実施例に係る光学系LS(19)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、両凸形状の第3正レンズL14および両凹形状の第2負レンズL15からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL13は、両側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、像面I側に凸面を向けた平凸形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および物体側に凹面を向けたメニスカス形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表19に、第19実施例に係る光学系の諸元の値を掲げる。なお、第5面および第6面は仮想面である。
(表19)
[全体諸元]
  f    36.05
FNO     1.87
  ω    31.2
  Y    21.70
 TL    99.566
 BF    13.100
 BFa   12.555
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -500.00000   2.000   1.59270   35.3
  2     26.44740   11.431   
  3     54.58955   3.977   1.94594   18.0
  4     151.93034   2.197   
  5       ∞     0.000
  6       ∞    10.067   
  7*     40.90811   5.557   1.76801   49.2
  8*    -104.02802   0.200   
  9     29.51647   6.609   1.59319   67.9
  10    -42.76988   1.500   1.69895   30.1
  11     23.53316   6.210   
  12      ∞     D12(可変)     (絞りS)
  13      ∞     2.090   1.49782   82.6
  14    -74.67300   2.012   
  15    -18.81061   1.100   1.64769   33.7
  16    -248.50402   1.512   
  17*    118.78898   4.866   1.77377   47.2
  18*    -28.64501   0.200   
  19    -125.10532   6.400   1.49782   82.6
  20    -22.16547   D20(可変)
  21    -66.18341   4.709   1.94594   18.0
  22    -24.96921   1.900   1.80518   25.4
  23    -199.98195   2.935   
  24    -38.28094   1.900   1.64769   33.7
  25      ∞    10.500   
  26      ∞     1.600   1.51680   64.1
  27      ∞     D27(可変)
[非球面データ]
 第7面
 κ=1.00000
 A4= 3.16584E-07, A6= 2.60390E-09, A8=-1.78975E-11, A10= 5.41316E-14
 第8面
 κ=1.00000
 A4= 4.34400E-08, A6=-4.51994E-10, A8=-7.80080E-12, A10= 3.78367E-14
 第17面
 κ=1.00000
 A4=-3.61366E-06, A6= 5.25325E-08, A8=-5.32628E-12, A10= 1.17020E-14
 第18面
 κ=1.00000
 A4= 2.00858E-05, A6= 3.18374E-08, A8= 2.71615E-10, A10=-4.03272E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.05    β=-0.1049
 D0     ∞       314.50
 D12     4.594      2.000
 D20     2.500      5.088
 D27     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    53.15
 G2    13    32.25
 G3    21    -45.20
[条件式対応値]
 条件式(1)  (-G1R1)/f=13.870
 条件式(2)  f2/(-f3)=0.714
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=9.407
 条件式(4)  f/f1=0.678
 条件式(5)  f/f2=1.118
 条件式(6)  f1/f2=1.648
 条件式(7)  BFa/f=0.348
 条件式(8)  fF/fR=0.626
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.900
 条件式(10)  {1-(β2)2}×(β3)2=1.388
 条件式(11)  FNO×(f1/f)=2.751
 条件式(12)  2ω=62.4
 図38(A)は、第19実施例に係る光学系の無限遠合焦時の諸収差図である。図38(B)は、第19実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第19実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第20実施例)
 第20実施例について、図39~図40および表20を用いて説明する。図39は、本実施形態の第20実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第20実施例に係る光学系LS(20)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第3負レンズL14と、両凸形状の第2正レンズL15と、両凸形状の第3正レンズL16および両凹形状の第4負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL15は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1負レンズL31と、物体側に凹面を向けたメニスカス形状の第2負レンズL32と、から構成される。第2負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表20に、第20実施例に係る光学系の諸元の値を掲げる。
(表20)
[全体諸元]
  f    36.41
FNO     1.45
  ω    30.7
  Y    21.70
 TL    120.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1     117.52540   2.000   1.71736   29.6
  2     26.99520   8.652   
  3     42.97983   2.500   1.48749   70.3
  4     34.72137   5.000   1.94595   18.0
  5     45.17490   9.389   
  6     -52.71945   6.000   1.60300   65.4
  7    -131.66451   0.200   
  8*     55.12835   9.000   1.77250   49.6
  9     -66.63993   0.200   
  10     57.67591   13.000   1.59319   67.9
  11    -28.99052   1.500   1.67270   32.2
  12    230.60272   5.399   
  13      ∞     D13(可変)     (絞りS)
  14    -30.96994   1.000   1.67270   32.2
  15    1151.90580   2.000   
  16*   -406.76312   4.000   1.77377   47.2
  17    -45.06075   0.881   
  18    140.10078   6.000   1.59319   67.9
  19    -58.07296   0.500   
  20    -100.00000   7.000   1.59319   67.9
  21    -30.10496   D21(可変)
  22     74.17179   3.000   1.94595   18.0
  23     67.04188   7.824   
  24*    -26.97932   1.500   1.64769   33.7
  25    -290.34268   7.000   
  26      ∞     1.600   1.51680   63.9
  27      ∞     D27(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4=-6.93107E-07, A6=-4.54051E-10, A8= 1.72053E-12, A10=-1.39325E-15
 第16面
 κ=1.00000
 A4=-1.46752E-05, A6=-1.19814E-08, A8= 3.20679E-11, A10=-2.43972E-13
 第24面
 κ=1.00000
 A4= 1.09875E-05, A6= 2.56103E-09, A8=-8.64670E-12, A10=-3.14024E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.41    β=-0.1095
 D0     ∞       290.00
 D13     13.354      9.399
 D21     0.500      4.455
 D27     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    48.51
 G2    14    38.61
 G3    22    -44.33
[条件式対応値]
 条件式(1)  (-G1R1)/f=-3.228
 条件式(2)  f2/(-f3)=0.871
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=-2.423
 条件式(4)  f/f1=0.751
 条件式(5)  f/f2=0.943
 条件式(6)  f1/f2=1.256
 条件式(7)  BFa/f=0.249
 条件式(8)  fF/fR=0.358
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-1.596
 条件式(10)  {1-(β2)2}×(β3)2=0.914
 条件式(11)  FNO×(f1/f)=1.936
 条件式(12)  2ω=61.4
 図40(A)は、第20実施例に係る光学系の無限遠合焦時の諸収差図である。図40(B)は、第20実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第20実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第21実施例)
 第21実施例について、図41~図42および表21を用いて説明する。図41は、本実施形態の第21実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第21実施例に係る光学系LS(21)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第2負レンズL12および物体側に凸面を向けたメニスカス形状の第1正レンズL13からなる接合レンズと、両凹形状の第3負レンズL14と、両凸形状の第2正レンズL15と、物体側に凸面を向けたメニスカス形状の第3正レンズL16と、物体側に凸面を向けたメニスカス形状の第4負レンズL17および物体側に凸面を向けたメニスカス形状の第4正レンズL18からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL15は、両側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、物体側に凹面を向けたメニスカス形状の第1正レンズL22と、両凸形状の第2正レンズL23と、物体側に凹面を向けたメニスカス形状の第3正レンズL24と、から構成される。第1正レンズL22は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の第1負レンズL31と、物体側に凹面を向けた平凹形状の第2負レンズL32と、から構成される。第2負レンズL32は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表21に、第21実施例に係る光学系の諸元の値を掲げる。
(表21)
[全体諸元]
  f    36.00
FNO     1.42
  ω    31.2
  Y    21.70
 TL    125.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -2103.91320   2.000   1.67884   31.5
  2     35.70457   7.893   
  3     323.10172   2.500   1.49086   69.1
  4     67.22138   5.500   1.94595   18.0
  5     787.71792   7.911   
  6     -39.04627   2.000   1.69166   30.1
  7     213.89102   0.100   
  8*    137.58827   12.000   1.85135   40.1
  9*    -47.56574   0.200   
  10     39.72534   7.000   1.83481   42.7
  11    181.94050   2.130   
  12    117.83429   1.500   1.75520   27.6
  13     23.80746   9.000   1.59319   67.9
  14    183.46004   3.500   
  15      ∞     D15(可変)     (絞りS)
  16    -34.21404   1.000   1.67270   32.2
  17    -122.91319   2.000   
  18*    -86.16442   3.500   1.77377   47.2
  19    -48.56224   2.416   
  20    1800.15400   5.500   1.59319   67.9
  21    -42.45537   0.500   
  22    -100.00000   6.500   1.59319   67.9
  23    -30.05033   D23(可変)
  24     39.40559   3.000   1.94595   18.0
  25     34.37457   9.136   
  26*    -44.57372   1.500   1.64769   33.7
  27      ∞     7.000   
  28      ∞     1.600   1.51680   63.9
  29      ∞     D29(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4= 3.90875E-07, A6= 5.99792E-10, A8=-1.78965E-12, A10= 1.89102E-15
 第9面
 κ=1.00000
 A4= 5.52339E-07, A6= 1.13820E-09, A8=-1.99242E-12, A10= 2.23323E-15
 第18面
 κ=1.00000
 A4=-1.62045E-05, A6=-1.75085E-08, A8= 3.19334E-11, A10=-3.05989E-13
 第26面
 κ=1.00000
 A4=-1.48857E-06, A6=-3.93600E-09, A8= 2.22864E-12, A10=-4.82017E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=36.00    β=-0.1086
 D0     ∞       290.00
 D15     16.614      12.490
 D23     0.500      4.624
 D29     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    52.88
 G2    16    39.96
 G3    24    -59.46
[条件式対応値]
 条件式(1)  (-G1R1)/f=58.442
 条件式(2)  f2/(-f3)=0.672
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=39.787
 条件式(4)  f/f1=0.681
 条件式(5)  f/f2=0.901
 条件式(6)  f1/f2=1.323
 条件式(7)  BFa/f=0.252
 条件式(8)  fF/fR=0.622
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=-0.967
 条件式(10)  {1-(β2)2}×(β3)2=0.867
 条件式(11)  FNO×(f1/f)=2.080
 条件式(12)  2ω=62.4
 図42(A)は、第21実施例に係る光学系の無限遠合焦時の諸収差図である。図42(B)は、第21実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第21実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第22実施例)
 第22実施例について、図43~図44および表22を用いて説明する。図43は、本実施形態の第22実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第22実施例に係る光学系LS(22)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の正レンズL22と、から構成される。正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表22に、第22実施例に係る光学系の諸元の値を掲げる。なお、第12面は仮想面である。
(表22)
[全体諸元]
  f    51.50
FNO     1.85
  ω    22.9
  Y    21.70
 TL    89.489
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -47.35217   2.500   1.67270   32.2
  2     94.47970   3.500   1.94595   18.0
  3     340.13397   3.236   
  4    -287.21979   5.000   1.72916   54.6
  5     -56.34930   0.100   
  6*     35.86692   6.000   1.80400   46.6
  7    -2318.43510   0.200   
  8     45.67330   7.000   1.59319   67.9
  9     -80.81919   1.500   1.64769   33.7
  10     23.62983   4.933   
  11      ∞     D11(可変)     (絞りS)
  12      ∞     3.000   
  13    -19.53832   1.100   1.75520   27.6
  14    -43.18210   1.500   
  15*    190.26772   7.000   1.75501   51.2
  16*    -24.77289   D16(可変)
  17    -104.87147   2.500   1.94595   18.0
  18    -78.84438   14.090   
  19    -38.56539   1.900   1.64769   33.7
  20    -200.67448   7.000   
  21      ∞     1.600   1.51680   64.1
  22      ∞     D22(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-1.58615E-06, A6=-8.54477E-10, A8=-4.09102E-13, A10= 5.85218E-16
 第15面
 κ=1.00000
 A4= 4.66858E-07, A6=-2.10629E-08, A8= 1.67228E-10, A10=-2.90665E-13
 第16面
 κ=1.00000
 A4= 8.47233E-06, A6= 2.18602E-10, A8= 2.67616E-11, A10= 1.23427E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.50    β=-0.1588
 D0     ∞       305.05
 D11     12.719      2.695
 D16     2.111      12.136
 D22     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    75.53
 G2    12    56.74
 G3    17   -100.37
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.919
 条件式(2)  f2/(-f3)=0.565
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.627
 条件式(4)  f/f1=0.682
 条件式(5)  f/f2=0.908
 条件式(6)  f1/f2=1.331
 条件式(7)  BFa/f=0.176
 条件式(8)  fF/fR=0.762
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.756
 条件式(10)  {1-(β2)2}×(β3)2=0.687
 条件式(11)  FNO×(f1/f)=2.716
 条件式(12)  2ω=45.8
 図44(A)は、第22実施例に係る光学系の無限遠合焦時の諸収差図である。図44(B)は、第22実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第22実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第23実施例)
 第23実施例について、図45~図46および表23を用いて説明する。図45は、本実施形態の第23実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第23実施例に係る光学系LS(23)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、物体側に凹面を向けたメニスカス形状の第2正レンズL13と、両凸形状の第3正レンズL14と、物体側に凸面を向けたメニスカス形状の第4正レンズL15および物体側に凸面を向けたメニスカス形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL31と、物体側に凹面を向けたメニスカス形状の第2負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表23に、第23実施例に係る光学系の諸元の値を掲げる。なお、第20面は仮想面である。
(表23)
[全体諸元]
  f    51.08
FNO     1.86
  ω    23.0
  Y    21.70
 TL    90.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -52.31571   2.500   1.67270   32.2
  2     167.47695   3.500   1.94595   18.0
  3     223.17328   4.121   
  4     -82.07390   4.000   1.72916   54.6
  5     -45.42951   0.100   
  6*     38.12626   6.000   1.80400   46.6
  7    -3600.28350   1.699   
  8     27.04928   5.000   1.59319   67.9
  9     41.33566   1.500   1.64769   33.7
  10     20.68760   5.718   
  11      ∞     D11(可変)     (絞りS)
  12    -22.93194   2.500   1.49700   81.6
  13    -17.98615   0.500   
  14    -17.23374   1.100   1.67270   32.2
  15    -49.04852   1.500   
  16*    279.75740   6.000   1.75501  51.2
  17*    -26.00590   D17(可変)
  18    -221.46549   2.500   1.94595   18.0
  19    -230.39803   0.000   
  20      ∞    10.724   
  21    -38.50025   1.900   1.64769   33.7
  22    -110.45885   7.000   
  23      ∞     1.600   1.51680   63.9
  24      ∞     D24(可変)
[非球面データ]
 第6面
 κ=1.00000
 A4=-1.19548E-06, A6=-9.73538E-10, A8= 3.03150E-12, A10=-5.31839E-15
 第16面
 κ=1.00000
 A4=-1.22099E-06, A6=-9.91302E-09, A8= 8.68866E-11, A10=-1.19726E-13
 第17面
 κ=1.00000
 A4= 5.66916E-06, A6= 2.72450E-09, A8=-8.54602E-12, A10= 1.63651E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.08    β=-0.1171
 D0     ∞       413.36
 D11     12.216      4.956
 D17     7.322      14.582
 D24     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    68.94
 G2    12    58.61
 G3    18    -90.38
[条件式対応値]
 条件式(1)  (-G1R1)/f=1.024
 条件式(2)  f2/(-f3)=0.648
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.759
 条件式(4)  f/f1=0.741
 条件式(5)  f/f2=0.872
 条件式(6)  f1/f2=1.176
 条件式(7)  BFa/f=0.177
 条件式(8)  fF/fR=0.542
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.620
 条件式(10)  {1-(β2)2}×(β3)2=0.721
 条件式(11)  FNO×(f1/f)=2.508
 条件式(12)  2ω=46.0
 図46(A)は、第23実施例に係る光学系の無限遠合焦時の諸収差図である。図46(B)は、第23実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第23実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第24実施例)
 第24実施例について、図47~図48および表24を用いて説明する。図47は、本実施形態の第24実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第24実施例に係る光学系LS(24)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凹面を向けたメニスカス形状の第1正レンズL12と、物体側に凸面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14および物体側に凸面を向けたメニスカス形状の第2負レンズL15からなる接合レンズと、開口絞りSと、から構成される。第2正レンズL13は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表24に、第24実施例に係る光学系の諸元の値を掲げる。
(表24)
[全体諸元]
  f    51.50
FNO     1.85
  ω    22.9
  Y    21.70
 TL    82.941
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -47.29734   2.000   1.67270   32.2
  2    2331.06620   3.670   
  3     -71.21945   4.000   1.72916   54.6
  4     -42.49265   0.100   
  5*     34.70954   6.000   1.80400   46.6
  6    6260.90290   0.947   
  7     27.53256   5.000   1.59319   67.9
  8     40.45186   1.500   1.64769   33.7
  9     19.48030   5.755   
  10      ∞     D10(可変)     (絞りS)
  11    -21.95759   2.500   1.49700   81.6
  12    -17.97990   0.500   
  13    -17.33726   1.100   1.67270   32.2
  14    -65.42718   0.387   
  15*    210.98797   6.000   1.75501   51.2
  16*    -24.41048   D16(可変)
  17     79.42309   2.500   1.94595   18.0
  18    102.63179   8.767   
  19    -46.77211   1.900   1.84666   23.8
  20    -182.21442   7.000   
  21      ∞     1.600   1.51680   63.9
  22      ∞     D22(可変)
[非球面データ]
 第5面
 κ=1.00000
 A4=-1.79931E-06, A6=-1.35228E-09, A8= 1.30531E-12, A10=-3.27717E-15
 第15面
 κ=1.00000
 A4=-1.14256E-06, A6=-1.30370E-08, A8= 1.13854E-10, A10=-1.79669E-13
 第16面
 κ=1.00000
 A4= 6.47116E-06, A6= 6.32503E-09, A8=-2.44521E-11, A10= 2.46075E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.50    β=-0.1181
 D0     ∞       413.36
 D10     14.069      5.072
 D16     6.646      15.643
 D22     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    68.06
 G2    11    64.03
 G3    17    -99.89
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.918
 条件式(2)  f2/(-f3)=0.641
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.695
 条件式(4)  f/f1=0.757
 条件式(5)  f/f2=0.804
 条件式(6)  f1/f2=1.063
 条件式(7)  BFa/f=0.176
 条件式(8)  fF/fR=0.514
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.960
 条件式(10)  {1-(β2)2}×(β3)2=0.563
 条件式(11)  FNO×(f1/f)=2.445
 条件式(12)  2ω=45.8
 図48(A)は、第24実施例に係る光学系の無限遠合焦時の諸収差図である。図48(B)は、第24実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第24実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第25実施例)
 第25実施例について、図49~図50および表25を用いて説明する。図49は、本実施形態の第25実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第25実施例に係る光学系LS(25)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、物体側に凹面を向けたメニスカス形状の第1正レンズL12と、物体側に凸面を向けたメニスカス形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第2負レンズL14と、開口絞りSと、から構成される。第2正レンズL13は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1正レンズL21と、物体側に凹面を向けたメニスカス形状の負レンズL22と、両凸形状の第2正レンズL23と、から構成される。第2正レンズL23は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けた平凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表25に、第25実施例に係る光学系の諸元の値を掲げる。
(表25)
[全体諸元]
  f    50.81
FNO     1.85
  ω    23.1
  Y    21.70
 TL    80.000
 BF     9.600
 BFa    9.055
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -48.70279   2.000   1.67270   32.2
  2     958.65257   2.567   
  3     -87.18050   3.500   1.72916   54.6
  4     -45.33683   0.100   
  5*     28.25675   6.500   1.77250   49.6
  6     735.50092   0.365   
  7     28.50942   2.465   1.67270   32.2
  8     19.47871   6.238   
  9       ∞     D9(可変)     (絞りS)
  10    -21.86257   2.000   1.49700   81.6
  11    -18.15776   0.500   
  12    -17.46272   1.100   1.67270   32.2
  13    -78.54612   0.200   
  14*    259.64263   6.500   1.75501   51.2
  15*    -23.47358   D15(可変)
  16     45.54867   2.500   1.94595   18.0
  17     56.06952   6.419   
  18    -49.21248   1.900   1.84666   23.8
  19      ∞     7.000   
  20      ∞     1.600   1.51680   63.9
  21      ∞     D21(可変)
[非球面データ]
 第5面
 κ=1.00000
 A4=-3.06009E-06, A6=-3.83923E-09, A8= 3.08021E-12, A10=-1.31813E-14
 第14面
 κ=1.00000
 A4=-2.38445E-06, A6=-7.07397E-10, A8= 4.93804E-11, A10=-6.99716E-14
 第15面
 κ=1.00000
 A4= 6.07250E-06, A6= 1.41158E-08, A8=-5.03385E-11, A10= 2.68237E-13
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=50.81    β=-0.1180
 D0     ∞       413.36
 D9     14.286      5.350
 D15     11.261      20.197
 D21     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    67.37
 G2    10    68.93
 G3    16    -83.91
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.958
 条件式(2)  f2/(-f3)=0.821
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.723
 条件式(4)  f/f1=0.754
 条件式(5)  f/f2=0.737
 条件式(6)  f1/f2=0.977
 条件式(7)  BFa/f=0.178
 条件式(8)  fF/fR=0.349
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.903
 条件式(10)  {1-(β2)2}×(β3)2=0.567
 条件式(11)  FNO×(f1/f)=2.456
 条件式(12)  2ω=46.2
 図50(A)は、第25実施例に係る光学系の無限遠合焦時の諸収差図である。図50(B)は、第25実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第25実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第26実施例)
 第26実施例について、図51~図52および表26を用いて説明する。図51は、本実施形態の第26実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第26実施例に係る光学系LS(26)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。また、第2レンズ群G2は、物体側から順に並んだ、負の屈折力を有する第1部分群G2Aと、正の屈折力を有する第2部分群G2Bとから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2の第1部分群G2Aと第2部分群G2Bとが、光軸に沿って互いに異なる移動量で物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11および物体側に凸面を向けたメニスカス形状の第1正レンズL12からなる接合レンズと、両凹形状の第2負レンズL13と、両凸形状の第2正レンズL14と、両凸形状の第3正レンズL15と、両凸形状の第4正レンズL16および両凹形状の第3負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL15は、両側のレンズ面が非球面である。
 第2レンズ群G2の第1部分群G2Aは、物体側に凹面を向けたメニスカス形状の負レンズL21から構成される。第2レンズ群G2の第2部分群G2Bは、物体側から順に並んだ、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、両側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31および両凹形状の第1負レンズL32からなる接合レンズと、物体側に凹面を向けた平凹形状の第2負レンズL33と、から構成される。第2負レンズL33は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表26に、第26実施例に係る光学系の諸元の値を掲げる。
(表26)
[全体諸元]
  f    51.60
FNO     1.44
  ω    22.7
  Y    21.70
 TL    113.685
 BF    13.100
 BFa   12.555
[レンズ諸元]
 面番号     R     D     nd    νd
  1    -171.72474   2.000   1.62588   35.7
  2     35.44631   5.392   1.94594   18.0
  3     74.33039   6.970   
  4     -53.50931   3.610   1.75520   27.6
  5     91.70821   0.200   
  6     74.06522   7.512   1.90265   35.7
  7    -104.97613   0.100   
  8*     56.97323   7.742   1.85135   40.1
  9*    -173.82221   0.200   
  10     38.89486   12.894   1.59319   67.9
  11    -34.37837   1.500   1.74077   27.7
  12     37.65571   4.597   
  13      ∞     D13(可変)     (絞りS)
  14    -22.59808   1.100   1.64769   33.7
  15    -145.29857   D15(可変)
  16*    85.83165   6.797   1.77377   47.2
  17*    -32.92442   1.000   
  18    -62.36306   6.400   1.49782   82.6
  19    -26.53221   D19(可変)
  20   -15532.87600   5.451   1.94594   18.0
  21    -42.26207   4.169   1.75520   27.6
  22    1509.21760   3.688   
  23*    -47.39475   1.900   1.88202   37.2
  24      ∞    10.500   
  25      ∞     1.600   1.51680   64.1
  26      ∞     D26(可変)
[非球面データ]
 第8面
 κ=1.00000
 A4= 1.10048E-06, A6= 1.15261E-10, A8= 4.34134E-12, A10=-9.02791E-16
 第9面
 κ=1.00000
 A4= 2.53480E-06, A6=-1.36378E-09, A8= 6.90741E-12, A10=-6.44423E-15
 第16面
 κ=1.00000
 A4=-2.74525E-06, A6= 1.71160E-08, A8=-1.40699E-11, A10= 1.45752E-14
 第17面
 κ=1.00000
 A4= 1.20601E-05, A6= 1.19411E-08, A8= 3.74420E-11, A10=-3.48136E-14
 第23面
 κ=1.00000
 A4= 1.37602E-06, A6=-3.97295E-09, A8= 7.39073E-12, A10=-9.76367E-15
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=51.60    β=-0.1471
 D0     ∞       314.50
 D13     13.416      6.329
 D15     1.447      1.481
 D19     2.500      9.547
 D26     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    81.01
 G2    14    42.29
 (G2A   14    -41.46)
 (G2B   16    25.11)
 G4    20    -70.49
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.922
 条件式(2)  f2/(-f3)=0.614
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.588
 条件式(4)  f/f1=0.637
 条件式(5)  f/f2=1.192
 条件式(6)  f1/f2=1.871
 条件式(7)  BFa/f=0.243
 条件式(8)  fF/fR=0.976
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.219
 条件式(10)  {1-(β2)2}×(β3)2=0.957
 条件式(11)  FNO×(f1/f)=2.263
 条件式(12)  2ω=45.4
 図52(A)は、第26実施例に係る光学系の無限遠合焦時の諸収差図である。図52(B)は、第26実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第26実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第27実施例)
 第27実施例について、図53~図54および表27を用いて説明する。図53は、本実施形態の第27実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第27実施例に係る光学系LS(27)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、物体側に凹面を向けたメニスカス形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表27に、第27実施例に係る光学系の諸元の値を掲げる。
(表27)
[全体諸元]
  f    85.00
FNO     1.86
  ω    14.2
  Y    21.70
 TL    115.209
 BF    21.685
 BFa   21.004
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -64.83088   2.500   1.67270   32.2
  2    -188.98518   0.300   
  3     153.82997   4.500   1.94595   18.0
  4     508.32386   0.300   
  5     420.81318   6.000   1.72916   54.6
  6    -110.04917   0.100   
  7     48.16622   7.000   1.72916   54.6
  8     79.79724   0.200   
  9     40.00000   10.958   1.59282   68.7
  10    -125.87904   2.500   1.67270   32.2
  11     25.51317   7.152   
  12      ∞     D12(可変)     (絞りS)
  13    -30.69513   1.500   1.64769   33.7
  14   -1583.64670   1.500   
  15     84.28063   5.000   1.77377   47.2
  16*    -60.30181   1.500   
  17    -115.77812   4.500   1.49700   81.6
  18    -35.95414   D18(可変)
  19    -79.69114   4.000   1.94595   18.0
  20    -48.89207   6.639   
  21    -37.38750   2.000   1.64769   33.7
  22    -237.55752   18.685   
  23      ∞     2.000   1.51680   64.1
  24      ∞     D24(可変)
[非球面データ]
 第16面
 κ=1.00000
 A4= 4.07807E-06, A6= 3.17226E-09, A8=-8.77566E-12, A10= 1.60757E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=85.00    β=-0.1252
 D0     ∞       661.16
 D12     17.304      5.692
 D18     8.071      19.684
 D24     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    129.04
 G2    13    75.91
 G3    19   -161.19
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.763
 条件式(2)  f2/(-f3)=0.471
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.502
 条件式(4)  f/f1=0.659
 条件式(5)  f/f2=1.120
 条件式(6)  f1/f2=1.700
 条件式(7)  BFa/f=0.247
 条件式(8)  fF/fR=1.054
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=2.044
 条件式(10)  {1-(β2)2}×(β3)2=0.804
 条件式(11)  FNO×(f1/f)=2.825
 条件式(12)  2ω=28.4
 図54(A)は、第27実施例に係る光学系の無限遠合焦時の諸収差図である。図54(B)は、第27実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第27実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第28実施例)
 第28実施例について、図55~図56および表28を用いて説明する。図55は、本実施形態の第28実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第28実施例に係る光学系LS(28)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表28に、第28実施例に係る光学系の諸元の値を掲げる。
(表28)
[全体諸元]
  f    85.00
FNO     1.83
  ω    14.2
  Y    21.70
 TL    115.187
 BF    19.721
 BFa   19.039
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -72.98373   2.500   1.67270   32.2
  2    -170.26652   0.300   
  3     117.64422   4.500   1.94595   18.0
  4     186.71439   0.436   
  5     189.13820   6.000   1.72916   54.6
  6    -151.29429   0.100   
  7     50.47764   7.000   1.72916   54.6
  8     72.74698   0.200   
  9     40.25986   11.919   1.59282   68.7
  10    -195.06452   2.500   1.67270   32.2
  11     26.55143   6.702   
  12      ∞     D12(可変)     (絞りS)
  13    -29.45199   1.500   1.64769   33.7
  14    -432.91007   1.500   
  15     95.51607   5.000   1.77377   47.2
  16*    -57.35798   1.500   
  17    -90.11025   4.500   1.49700   81.6
  18    -33.31937   D18(可変)
  19   17922.25800   4.000   1.94595   18.0
  20    -128.51263   6.878   
  21    -63.86657   2.000   1.64769   33.7
  22    153.63984   16.721   
  23      ∞     2.000   1.51680   64.1
  24      ∞     D24(可変)
[非球面データ]
 第16面
 κ=1.00000
 A4= 4.53083E-06, A6= 3.16311E-09, A8=-8.83761E-12, A10= 1.81194E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=85.00    β=-0.1247
 D0     ∞       661.16
 D12     18.306      5.696
 D18     8.127      20.736
 D24     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    131.54
 G2    13    77.05
 G3    19   -160.72
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.859
 条件式(2)  f2/(-f3)=0.479
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.555
 条件式(4)  f/f1=0.646
 条件式(5)  f/f2=1.103
 条件式(6)  f1/f2=1.707
 条件式(7)  BFa/f=0.224
 条件式(8)  fF/fR=1.101
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=2.500
 条件式(10)  {1-(β2)2}×(β3)2=0.727
 条件式(11)  FNO×(f1/f)=2.839
 条件式(12)  2ω=28.4
 図56(A)は、第28実施例に係る光学系の無限遠合焦時の諸収差図である。図56(B)は、第28実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第28実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第29実施例)
 第29実施例について、図57~図58および表29を用いて説明する。図57は、本実施形態の第29実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第29実施例に係る光学系LS(29)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表29に、第29実施例に係る光学系の諸元の値を掲げる。
(表29)
[全体諸元]
  f    85.00
FNO     1.85
  ω    14.2
  Y    21.70
 TL    115.297
 BF    15.435
 BFa   14.754
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -75.54007   2.500   1.67270   32.2
  2    -147.54550   0.300   
  3     88.89576   4.500   1.94595   18.0
  4     118.01688   0.648   
  5     127.59306   6.000   1.80400   46.6
  6    -246.54425   0.100   
  7     47.61283   6.000   1.59282   68.6
  8     67.76235   0.200   
  9     40.00000   10.476   1.59282   68.7
  10    -185.31557   2.500   1.67270   32.2
  11     26.38137   6.867   
  12      ∞     D12(可変)     (絞りS)
  13    -28.70718   1.500   1.64769   33.7
  14    -336.87946   1.500   
  15     97.83173   5.000   1.77377   47.2
  16*    -54.59764   1.500   
  17    -87.32308   4.500   1.49700   81.6
  18    -32.94421   D18(可変)
  19    3326.05740   4.000   1.94595   18.0
  20    -105.25167   4.274   
  21    -57.51449   2.000   1.64769   33.7
  22    111.93382   12.435   
  23      ∞     2.000   1.51680   64.1
  24      ∞     D24(可変)
[非球面データ]
 第16面
 κ=1.00000
 A4= 4.61985E-06, A6= 4.41333E-09, A8=-1.50995E-11, A10= 2.98769E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=85.00    β=-0.1232
 D0     ∞       661.16
 D12     21.713      9.146
 D18     13.783      26.349
 D24     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    131.08
 G2    13    74.60
 G3    19   -140.71
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.889
 条件式(2)  f2/(-f3)=0.530
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.576
 条件式(4)  f/f1=0.648
 条件式(5)  f/f2=1.139
 条件式(6)  f1/f2=1.757
 条件式(7)  BFa/f=0.174
 条件式(8)  fF/fR=1.081
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=3.098
 条件式(10)  {1-(β2)2}×(β3)2=0.717
 条件式(11)  FNO×(f1/f)=2.850
 条件式(12)  2ω=28.4
 図58(A)は、第29実施例に係る光学系の無限遠合焦時の諸収差図である。図58(B)は、第29実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第29実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第30実施例)
 第30実施例について、図59~図60および表30を用いて説明する。図59は、本実施形態の第30実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第30実施例に係る光学系LS(30)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の第1負レンズL11と、物体側に凸面を向けたメニスカス形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、両凸形状の第4正レンズL15および両凹形状の第2負レンズL16からなる接合レンズと、開口絞りSと、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表30に、第30実施例に係る光学系の諸元の値を掲げる。
(表30)
[全体諸元]
  f    85.00
FNO     1.85
  ω    14.2
  Y    21.70
 TL    115.242
 BF    14.943
 BFa   14.261
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -74.95148   2.500   1.67270   32.2
  2    -131.91024   0.300   
  3     85.64889   4.000   1.94595   18.0
  4     120.40884   0.300   
  5     115.73186   7.000   1.59282   68.6
  6    -191.64403   0.100   
  7     48.88487   5.000   1.80400   46.6
  8     63.21824   0.200   
  9     40.00000   10.246   1.59282   68.7
  10    -287.51510   2.500   1.67270   32.2
  11     26.35774   7.011   
  12      ∞     D12(可変)     (絞りS)
  13    -28.44113   1.500   1.64769   33.7
  14    -287.07114   1.500   
  15    102.04030   5.000   1.77377   47.2
  16*    -53.66013   1.500   
  17    -88.84311   4.500   1.49700   81.6
  18    -33.17367   D18(可変)
  19    -397.22387   4.000   1.94595   18.0
  20    -86.37143   4.578   
  21    -52.43868   2.000   1.64769   33.7
  22    143.09995   11.943   
  23      ∞     2.000   1.51680   64.1
  24      ∞     D24(可変)
[非球面データ]
 第16面
 κ=1.00000
 A4= 4.49957E-06, A6= 4.10925E-09, A8=-1.26128E-11, A10= 2.42467E-14
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=85.00    β=-0.1242
 D0     ∞       661.16
 D12     20.672      8.633
 D18     15.892      27.931
 D24     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    134.72
 G2    13    74.30
 G3    19   -130.08
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.882
 条件式(2)  f2/(-f3)=0.571
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.556
 条件式(4)  f/f1=0.631
 条件式(5)  f/f2=1.144
 条件式(6)  f1/f2=1.813
 条件式(7)  BFa/f=0.168
 条件式(8)  fF/fR=1.075
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=3.632
 条件式(10)  {1-(β2)2}×(β3)2=0.766
 条件式(11)  FNO×(f1/f)=2.929
 条件式(12)  2ω=28.4
 図60(A)は、第30実施例に係る光学系の無限遠合焦時の諸収差図である。図60(B)は、第30実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第30実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第31実施例)
 第31実施例について、図61~図62および表31を用いて説明する。図61は、本実施形態の第31実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第31実施例に係る光学系LS(31)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動し、第1レンズ群G1および第3レンズ群G3が固定される。
 第1レンズ群G1は、物体側から順に並んだ、両凹形状の第1負レンズL11と、両凸形状の第1正レンズL12と、両凸形状の第2正レンズL13と、物体側に凸面を向けたメニスカス形状の第3正レンズL14と、物体側に凸面を向けたメニスカス形状の第4正レンズL15と、両凸形状の第5正レンズL16および両凹形状の第2負レンズL17からなる接合レンズと、開口絞りSと、から構成される。第3正レンズL14は、物体側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の負レンズL21と、両凸形状の第1正レンズL22と、物体側に凹面を向けたメニスカス形状の第2正レンズL23と、から構成される。第1正レンズL22は、像面I側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凹面を向けたメニスカス形状の正レンズL31と、両凹形状の負レンズL32と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。
 以下の表31に、第31実施例に係る光学系の諸元の値を掲げる。
(表31)
[全体諸元]
  f    85.00
FNO     1.42
  ω    14.2
  Y    21.70
 TL    145.265
 BF    14.071
 BFa   13.389
[レンズ諸元]
 面番号     R     D     nd    νd
  1     -79.06766   3.000   1.67270   32.2
  2     104.61579   5.110   
  3     243.58488   6.500   1.94595   18.0
  4    -628.66078   0.300   
  5     109.12437   16.500   1.59282   68.6
  6    -110.85187   0.100   
  7*     63.25612   11.500   1.77250   49.6
  8     360.60495   0.200   
  9     52.11101   8.500   1.59282   68.7
  10     88.79834   0.200   
  11     71.03249   8.500   1.59282   68.6
  12    -790.77200   2.500   1.85025   30.0
  13     30.29304   9.299   
  14      ∞     D14(可変)     (絞りS)
  15    -35.50553   1.500   1.67270   32.2
  16   -19114.07500   1.500   
  17     96.59624   6.000   1.77377   47.2
  18*    -65.15132   1.500   
  19    -154.43166   6.000   1.49700   81.6
  20    -40.92465   D20(可変)
  21    -793.09360   4.000   1.94595   18.0
  22    -123.62638   9.551   
  23    -59.68219   2.000   1.64769   33.7
  24    388.46258   11.071   
  25      ∞     2.000   1.51680   63.9
  26      ∞     D26(可変)
[非球面データ]
 第7面
 A4=-1.31502E-07, A6=-4.69010E-11, A8= 1.13722E-14, A10=-8.34540E-18
 第18面
 κ=1.00000
 A4= 2.96560E-06, A6= 2.23513E-09, A8=-5.41262E-12, A10= 7.26232E-15
[可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=85.00    β=-0.1177
 D0     ∞       661.16
 D14     23.433      7.955
 D20     3.500      18.978
 D26     1.000      1.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    117.63
 G2    15    83.50
 G3    21   -188.48
[条件式対応値]
 条件式(1)  (-G1R1)/f=0.930
 条件式(2)  f2/(-f3)=0.443
 条件式(3),(3-1),(3-2)
         (-G1R1)/f1=0.672
 条件式(4)  f/f1=0.723
 条件式(5)  f/f2=1.018
 条件式(6)  f1/f2=1.409
 条件式(7)  BFa/f=0.158
 条件式(8)  fF/fR=0.943
 条件式(9)  (G1R2+G1R1)/(G1R2-G1R1)=0.139
 条件式(10)  {1-(β2)2}×(β3)2=0.510
 条件式(11)  FNO×(f1/f)=1.968
 条件式(12)  2ω=28.4
 図62(A)は、第31実施例に係る光学系の無限遠合焦時の諸収差図である。図62(B)は、第31実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。各諸収差図より、第31実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 上記各実施例によれば、無限遠合焦状態から近距離合焦状態に亘り、像倍率変化を抑えつつ、良好な光学性能を得ることが可能な光学系を実現することができる。
 ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すもの(例えば、本実施形態の第2レンズ群)とする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 本実施形態の光学系の各実施例において、防振機能を有していない構成のものを示したが、本願はこれに限られず、防振機能を有する構成とすることができる。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群
  I 像面               S 開口絞り

Claims (17)

  1.  物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有し、
     合焦の際、前記第2レンズ群が光軸に沿って移動し、
     以下の条件式を満足する光学系。
     -5.000<(-G1R1)/f<500.000
     0.20<f2/(-f3)<1.20
     但し、f2:前記第2レンズ群の焦点距離
        f3:前記第3レンズ群の焦点距離
        f:前記光学系の焦点距離
        G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
  2.  以下の条件式を満足する請求項1に記載の光学系。
     -5.000<(-G1R1)/f1<50.000
     但し、f1:前記第1レンズ群の焦点距離
  3.  以下の条件式を満足する請求項1に記載の光学系。
     0.010<(-G1R1)/f1<1.100
     但し、f1:前記第1レンズ群の焦点距離
  4.  以下の条件式を満足する請求項1に記載の光学系。
     1.000<(-G1R1)/f1<50.000
     但し、f1:前記第1レンズ群の焦点距離
  5.  前記第1レンズ群は、絞りを有する請求項1~4のいずれか一項に記載の光学系。
  6.  合焦の際、前記第1レンズ群が固定される請求項1~5のいずれか一項に記載の光学系。
  7.  以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     0.010<f/f1<5.000
     但し、f1:前記第1レンズ群の焦点距離
  8.  以下の条件式を満足する請求項1~7のいずれか一項に記載の光学系。
     0.010<f/f2<5.000
  9.  以下の条件式を満足する請求項1~8のいずれか一項に記載の光学系。
     0.010<f1/f2<5.000
     但し、f1:前記第1レンズ群の焦点距離
  10.  以下の条件式を満足する請求項1~9のいずれか一項に記載の光学系。
     0.100<BFa/f<0.500
     但し、Bfa:前記光学系の最も像側に配置されたレンズにおける像側のレンズ面から像面までの光軸上の空気換算距離
  11.  以下の条件式を満足する請求項1~10のいずれか一項に記載の光学系。
     0.10<fF/fR<3.00
     但し、fF:前記光学系における絞りより物体側に配置されたレンズの合成焦点距離
        fR:前記光学系における絞りより像側に配置されたレンズの合成焦点距離
  12.  以下の条件式を満足する請求項1~11のいずれか一項に記載の光学系。
     -10.0<(G1R2+G1R1)/(G1R2-G1R1)<10.0
     但し、G1R2:前記第1レンズ群の最も物体側に配置されたレンズ成分における像側のレンズ面の曲率半径
  13.  以下の条件式を満足する請求項1~12のいずれか一項に記載の光学系。
     0.30<{1-(β2)2}×(β3)2<2.00
     但し、β2:無限遠合焦状態における前記第2レンズ群の横倍率
        β3:前記第3レンズ群の横倍率
  14.  以下の条件式を満足する請求項1~13のいずれか一項に記載の光学系。
     0.50<FNO×(f1/f)<5.50
     但し、FNO:前記光学系のFナンバー
        f1:前記第1レンズ群の焦点距離
  15.  以下の条件式を満足する請求項1~14のいずれか一項に記載の光学系。
     15.0°<2ω<85.0°
     但し、2ω:前記光学系の画角
  16.  請求項1~15のいずれか一項に記載の光学系を備えて構成される光学機器。
  17.  物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     合焦の際、前記第2レンズ群が光軸に沿って移動し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     -5.000<(-G1R1)/f<500.000
     0.20<f2/(-f3)<1.20
     但し、f2:前記第2レンズ群の焦点距離
        f3:前記第3レンズ群の焦点距離
        f:前記光学系の焦点距離
        G1R1:前記第1レンズ群の最も物体側に配置されたレンズ成分における物体側のレンズ面の曲率半径
PCT/JP2018/019266 2018-05-18 2018-05-18 光学系、光学機器、および光学系の製造方法 WO2019220615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/019266 WO2019220615A1 (ja) 2018-05-18 2018-05-18 光学系、光学機器、および光学系の製造方法
JP2020518917A JPWO2019220615A1 (ja) 2018-05-18 2018-05-18 光学系、光学機器、および光学系の製造方法
JP2022123776A JP2022140661A (ja) 2018-05-18 2022-08-03 光学系、および光学機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019266 WO2019220615A1 (ja) 2018-05-18 2018-05-18 光学系、光学機器、および光学系の製造方法

Publications (1)

Publication Number Publication Date
WO2019220615A1 true WO2019220615A1 (ja) 2019-11-21

Family

ID=68539919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019266 WO2019220615A1 (ja) 2018-05-18 2018-05-18 光学系、光学機器、および光学系の製造方法

Country Status (2)

Country Link
JP (2) JPWO2019220615A1 (ja)
WO (1) WO2019220615A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116687A1 (en) * 2019-10-17 2021-04-22 Canon Kabushiki Kaisha Optical system, image pickup apparatus, and image pickup system
US20210247596A1 (en) * 2018-05-18 2021-08-12 Nikon Corporation Optical system, optical apparatus, and method of manufacturing optical system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338910A (ja) * 1991-02-07 1992-11-26 Olympus Optical Co Ltd 近距離収差変動の少ない高変倍率ズームレンズ
JPH06294932A (ja) * 1993-04-07 1994-10-21 Canon Inc ズームレンズ
JP2002098894A (ja) * 2000-09-26 2002-04-05 Canon Inc ズームレンズ及びそれを有した光学機器
JP2011209352A (ja) * 2010-03-29 2011-10-20 Konica Minolta Opto Inc 光学系及びレンズ位置調整方法
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
JP2012234169A (ja) * 2011-04-18 2012-11-29 Sigma Corp 防振機構を備えた結像光学系
JP2012255842A (ja) * 2011-06-07 2012-12-27 Sony Corp 撮像レンズおよび撮像装置
JP2013061570A (ja) * 2011-09-14 2013-04-04 Ricoh Co Ltd 結像レンズおよびカメラおよび携帯情報端末装置
JP2013125213A (ja) * 2011-12-15 2013-06-24 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
JP2014102358A (ja) * 2012-11-19 2014-06-05 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327991A (ja) * 2006-06-06 2007-12-20 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP5839174B2 (ja) * 2011-09-14 2016-01-06 株式会社リコー 結像レンズ、撮影レンズユニット及び撮像装置
CN104094156B (zh) * 2012-02-06 2016-05-25 富士胶片株式会社 广角镜头和摄像装置
CN104094157B (zh) * 2012-02-06 2016-08-24 富士胶片株式会社 超广角镜头和摄像装置
JP5846973B2 (ja) * 2012-03-12 2016-01-20 オリンパス株式会社 インナーフォーカスレンズ系及びそれを備えた撮像装置
JP5957990B2 (ja) * 2012-03-16 2016-07-27 株式会社リコー 広角レンズ、撮像レンズユニット及び撮像装置
JP6064422B2 (ja) * 2012-08-09 2017-01-25 株式会社リコー 撮像光学系およびカメラ装置および携帯情報端末装置
JP6253012B2 (ja) * 2012-12-27 2017-12-27 パナソニックIpマネジメント株式会社 インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
JP6164894B2 (ja) * 2013-04-02 2017-07-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6040105B2 (ja) * 2013-06-17 2016-12-07 富士フイルム株式会社 撮像レンズおよび撮像装置
US10656372B2 (en) * 2016-01-26 2020-05-19 Sony Corporation Imaging lens and imaging apparatus
JP6887671B2 (ja) * 2017-06-05 2021-06-16 株式会社シグマ 大口径広角レンズ
JP6997600B2 (ja) * 2017-11-15 2022-01-17 コニカミノルタ株式会社 撮像レンズ,撮像光学装置及びデジタル機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338910A (ja) * 1991-02-07 1992-11-26 Olympus Optical Co Ltd 近距離収差変動の少ない高変倍率ズームレンズ
JPH06294932A (ja) * 1993-04-07 1994-10-21 Canon Inc ズームレンズ
JP2002098894A (ja) * 2000-09-26 2002-04-05 Canon Inc ズームレンズ及びそれを有した光学機器
JP2011209352A (ja) * 2010-03-29 2011-10-20 Konica Minolta Opto Inc 光学系及びレンズ位置調整方法
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
JP2012234169A (ja) * 2011-04-18 2012-11-29 Sigma Corp 防振機構を備えた結像光学系
JP2012255842A (ja) * 2011-06-07 2012-12-27 Sony Corp 撮像レンズおよび撮像装置
JP2013061570A (ja) * 2011-09-14 2013-04-04 Ricoh Co Ltd 結像レンズおよびカメラおよび携帯情報端末装置
JP2013125213A (ja) * 2011-12-15 2013-06-24 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
JP2014102358A (ja) * 2012-11-19 2014-06-05 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210247596A1 (en) * 2018-05-18 2021-08-12 Nikon Corporation Optical system, optical apparatus, and method of manufacturing optical system
US20210116687A1 (en) * 2019-10-17 2021-04-22 Canon Kabushiki Kaisha Optical system, image pickup apparatus, and image pickup system
US12007538B2 (en) * 2019-10-17 2024-06-11 Canon Kabushiki Kaisha Optical system, image pickup apparatus, and image pickup system

Also Published As

Publication number Publication date
JPWO2019220615A1 (ja) 2021-04-22
JP2022140661A (ja) 2022-09-26

Similar Documents

Publication Publication Date Title
WO2019220616A1 (ja) 光学系、光学機器、および光学系の製造方法
JP7409442B2 (ja) 光学系、および光学機器
JP5904273B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP5742100B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JPH05173071A (ja) 広角ズームレンズ
WO2016121966A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2017099243A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP7047905B2 (ja) 光学系および光学機器
JP2022140661A (ja) 光学系、および光学機器
WO2018092293A1 (ja) 変倍光学系、これを用いた光学機器および撮像機器、並びにこの変倍光学系の製造方法
WO2017094665A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP7131609B2 (ja) 光学系および光学機器
WO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2018092292A1 (ja) 変倍光学系、これを用いた光学機器および撮像機器、並びにこの変倍光学系の製造方法
WO2017057658A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2016104742A1 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP2017107065A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2018092294A1 (ja) 変倍光学系、これを用いた光学機器および撮像機器、並びにこの変倍光学系の製造方法
JP6281200B2 (ja) 変倍光学系及び光学装置
JP6620400B2 (ja) ズームレンズ及び光学機器
JP7491415B2 (ja) 変倍光学系および光学機器
JP7552701B2 (ja) 変倍光学系および光学機器
JP6583574B2 (ja) ズームレンズ及び撮像装置
WO2019220629A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2019220628A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918698

Country of ref document: EP

Kind code of ref document: A1