Nothing Special   »   [go: up one dir, main page]

WO2019134918A1 - Procede pour diagnostiquer un etat d'usure d'un frein de parking d'aeronef - Google Patents

Procede pour diagnostiquer un etat d'usure d'un frein de parking d'aeronef Download PDF

Info

Publication number
WO2019134918A1
WO2019134918A1 PCT/EP2019/050041 EP2019050041W WO2019134918A1 WO 2019134918 A1 WO2019134918 A1 WO 2019134918A1 EP 2019050041 W EP2019050041 W EP 2019050041W WO 2019134918 A1 WO2019134918 A1 WO 2019134918A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
classification
actuator
classification method
parking brake
Prior art date
Application number
PCT/EP2019/050041
Other languages
English (en)
Inventor
Adrien PERIGORD
Nicolas LIPARI
Mathieu BRUNO
Original Assignee
Safran Electronics & Defense
Safran Landing Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics & Defense, Safran Landing Systems filed Critical Safran Electronics & Defense
Priority to US16/959,861 priority Critical patent/US11760332B2/en
Priority to CN201980007375.1A priority patent/CN111566375B/zh
Publication of WO2019134918A1 publication Critical patent/WO2019134918A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D66/02Apparatus for indicating wear
    • F16D66/021Apparatus for indicating wear using electrical detection or indication means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/006Arrangements for monitoring working conditions, e.g. wear, temperature without direct measurement of the quantity monitored, e.g. wear or temperature calculated form force and duration of braking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a method for diagnosing a state of wear of an electric actuator such as that of a brake system, including, but not limited to, an aircraft wheel.
  • the invention also relates to an apparatus for implementing such a method.
  • an aircraft wheel brake comprises integral friction elements for some of the wheel and for others of a stator, and a brake cylinder arranged to exert sufficient force on the friction elements. lice rotate the aircraft wheel.
  • the brake cylinder is activated by a dedicated control device (here called parking brake system) and separate from the control device of the brake cylinder during the landing phase.
  • the parking brake system comprises a hydraulic distributor commonly called PBSV (Park Brake Selector Valve) which is controlled by an actuator comprising two electric motors.
  • PBSV Park Brake Selector Valve
  • the parking brake system can be activated in the event of an emergency in the event of a failure of the brake control device during the landing phase, it is provided as a security measure that the aircraft is not authorized to take off. if the parking brake system is down.
  • the electric motors driving the PBSV are the main source of failure of the parking brake system.
  • Maintenance tests to check the correct movement of the brake cylinder under the control of the PBSV are carried out, but their efficiency is limited because they only allow to detect a frank failure of one of the electric motors and not to diagnose the state of wear of the parking brake system.
  • the smooth running of a maintenance test therefore does not guarantee the correct operation of the parking brake system after the maintenance test.
  • the invention therefore aims to provide a means for diagnosing a state of wear of an electric actuator such as that of an aircraft parking brake system.
  • the invention proposes a method for diagnosing a state of wear of an actuator comprising at least one electric motor.
  • the method comprises the steps of:
  • - execute a windowing algorithm on the signal to obtain a standardized data set including the first and second maximums, - use at least one classification method in at least two classes to establish a score of the dataset for each class of the classification method.
  • the implementation of a data windowing algorithm allows automatic extraction of relevant signal data in a standardized format.
  • the duration of the signal analysis is thus shortened and the quality of the scores obtained by the classification method is improved since learning of said method can be done from comparable data between them.
  • the actuator comprises two electric motors.
  • the recorded signal is the power supply current of the electric motor.
  • the windowing algorithm comprises the steps of sampling the signal at a determined sampling frequency, searching for the first and the second maximum of the signal and defining a first time window. around the first maximum and a second time window around the second maximum.
  • Such a windowing algorithm notably makes it possible to ignore the time that has elapsed between the activation and deactivation of the actuator controlled by the operator during the recording of the signal.
  • the first and second time windows have an identical temporal dimension.
  • the signal resulting from the activation of the actuator and the signal resulting from the deactivation of the actuator thus extend on the same time scale.
  • a factor is applied to the signal to be able to compare it to another signal.
  • the classification method uses the technique of vector support machines.
  • the classification method uses the technique of neural networks.
  • the classification method uses the technique of "random forests".
  • a learning of the classification method uses a first group of data sets divided into the classes of the said method to understand the classification associated with each data set.
  • a parameterization of the classification method is determined by using a second group of data sets to improve the reliability level of the scores established by said method.
  • the classification method is arranged to achieve a classification into four classes.
  • the four classes of the classification method are for example "new”, “run-in”, “worn” and “out of use”.
  • the invention also provides a diagnostic apparatus for carrying out the method of the invention.
  • the diagnostic apparatus comprises recording means for recording the electric motor signal and a calculating unit for executing the windowing algorithm and implement the classification method.
  • the apparatus comprises a connection device capable of being interposed between an electrical network of an aircraft and the parking brake for controlling the electric motor and / or recording the signal of the electric motor of the brake actuator. parking.
  • FIG. 1 represents a schematic diagram of a diagnostic apparatus according to a particular mode of
  • FIG. 2 represents steps of a method according to a first embodiment of the invention
  • FIG. 3 represents a signal recorded by the diagnostic apparatus illustrated in FIG. 1 on which a windowing algorithm is applied;
  • FIG. 4 represents steps of a windowing algorithm
  • FIG. 5 represents a table of the scores of a signal obtained for different classification methods
  • FIG. 6 represents steps of a method according to a second embodiment of the invention.
  • the invention is here described in application to a brake of an aircraft wheel.
  • the brake comprises, in a manner known per se, integral friction elements for some of the wheel and for others of a stator, and a brake cylinder arranged to exert on the friction elements sufficient force to lock in rotation. the aircraft wheel.
  • the brake cylinder is associated with a parking brake system.
  • an aircraft 1 comprises a parking brake system 2 comprising a hydraulic distributor driven by a first electric motor 3 and a second electric motor 4.
  • the electrical distributor controls the movement of a jack to exert efforts on brake friction elements in order to lock in rotation the wheels 5 of the aircraft 1.
  • an apparatus 6 for diagnosing a state of wear of a parking brake comprises a connection device 7 which, during a maintenance, is interposed between an electrical network 8 of the aircraft 1 and the system 2.
  • the connection device 7 allows the apparatus 6 to control the motors 3, 4 of the parking brake system 2 via a control unit 9.
  • the apparatus 6 also comprises recording means 10 for recording signals from the motors 3, 4, and more particularly current supply signals from the motors, these signals being picked up by the connection device 7.
  • the apparatus 6 also comprises a computing unit 11 enabling it to carry out a processing of the recorded signals.
  • Information concerning the processing and in particular a treatment result can be displayed via a display 12.
  • the apparatus performs a sequence of operations of which a first step 100 consists in controlling the first motor 3 to successively activate and deactivate the parking brake 2 while the second motor 4 is inactive, then to control the second motor 4 for successively '
  • the apparatus 6 records a first signal 23 for supplying power to the first motor 3 and then a second signal 24 for supplying the second motor 4.
  • the first signal 23 and the second signal 24 are representative of the forces supplied. by the first motor 3 and the second motor 4 in use and therefore the wear of the parking brake 2.
  • the first signal 23, like the second signal 24, comprises, as illustrated in FIG. 3, a first peak
  • the first peak 30a and the second peak 30b respectively correspond to an activation and deactivation of the parking brake 2 and respectively have a first maximum 31a and a second maximum 31b.
  • the first peak 30a and the second peak 30b extend over durations 32a, 32b substantially identical to each other, here equal to 0.2 s, corresponding to the time required to respectively activate and deactivate the parking brake 2
  • a duration 33 during which the supply current is zero separates the first peak 30a and the second peak 30b.
  • the duration 33 corresponds to the time elapsed between an end of the activation of the parking brake and a beginning of the deactivation of the parking brake.
  • a duration 34 during which the supply current is zero precedes the first peak 30a.
  • the duration 34 corresponds to the time elapsed between a start of the recording and a start of the activation of the parking brake.
  • a duration in which the supply current is zero follows the second peak 30b.
  • a second step 200 consists of executing a windowing algorithm 40 on the first signal 23 and the second signal 24. As illustrated in FIG. 4, the algorithm consists in a first step of sampling the first signal 23 and the second signal 24 following a determined sampling frequency, then to seek for said first and second signal 23, 24 the first maximum 31a of the first peak 30a and the second maximum 31b of the second peak 30b to define a first window 41a and a second window 41b respectively surrounding the first maximum 31a and second maximum 31b.
  • the dimensions of the first window 41a and the second window 41b are chosen so that the first window 41a and the second window 41b respectively include the entirety of the first peak 30a and the second peak 30b and are between the beginning and the end of the recording in question.
  • the first window 41a and the second window 41b here extend over an identical duration equal to 0.4 s.
  • the position of the first peak 30a in the first window 41a is substantially similar to the position of the second peak 30b in the second window 41b.
  • the windowing algorithm 40 alerts the operator of a recording error, for example via the display 12 of the apparatus 6, and asks him to disregard the incriminated recording and start it over again.
  • the windowing algorithm 40 thus makes it possible to automatically transform the first signal 23 and the second signal 24 into a first set of data 53 and a second set of standardized data 54 which are therefore comparable with one another, but also with a brake system. parking to another.
  • the windowing algorithm 40 also makes it possible to overcome registration differences not relevant, such as the time elapsed between an activation command and a parking brake deactivation command. If necessary, a factor may be applied to the first signal 23 and / or the second signal 24 in order to be able to compare them with each other or with other signals from another parking brake, especially in the case where the voltage Rated power differs from motor to motor.
  • the purpose of the windowing algorithm 40 is therefore to preprocess the signal to eliminate recording differences in order to facilitate analysis.
  • a third step 300 consists in analyzing the first set of data 53 and the second set of data 54 by implementing a classification method A in four classes, each class being representative of a state of wear of the parking brake. namely: N-N N, R-Rodé, U-Usé U and H-Out of use.
  • the method could for example use the technique of vector support machines (SVM), neural networks (neural networks), or even "random forests”.
  • the purpose of the classification method A is to assign to the first data set 53 and the second data set 54 a score louse each of the classes N, R, U, H.
  • the classification method A requires a sample data sets here divided into two groups of equal size: a first group of data sets 60, called learning, which are distributed in the classes N, R, ü, H so that the classification method A includes the classification to be adopted, and a second group of data sets 70, called test, which are also distributed in classes N, R, ü, H but to verify the reliability level of the scores established by said method.
  • the sample of datasets here comes from parking brakes just out of production and parking brakes returned to the workshop following a suspected failure on an aircraft.
  • the training data sets 60 and the test data sets 70 are here manually distributed in the classes N, R, U, H by a braking system expert able to classify data sets according to the shape and the amplitude of the recorded peaks.
  • the test data sets 70 are also used to improve a reliability level 95 of the classification method A by determining a parameterization 80 of said method which makes it possible to obtain a prediction of the state of wear of the parking brake presenting a rate the lowest possible error. To do this, a set of parameter combinations is traversed for each of the test data sets 70. The combination of parameters presenting the best error rate is then selected. The parameterization 80 is thus optimized.
  • FIG. 5 illustrates an example of scores of the first set of data 23 established by the classification method A for each of the classes N, R, U, H.
  • Each of the scores represents a percentage of membership of the first set of data 23 at a given time.
  • the class which obtains the highest score is representative of the state of wear of the engine and is therefore attributed to the first data set 23.
  • the motor 3 is considered as used by the classification method A.
  • One prediction 90 of the state of wear of the motor 3 is then determined, to which is associated the level of reliability of the classification method A. previously calculated.
  • the classification method A uses the technique of vector-support machines, the classification method B that of neural networks and the classification method C that of "random forests”. Taken separately, each of the methods of classification A, B, C has a prediction rate of just over 99%.
  • A, B, C are made as previously from the same sample of data sets.
  • the wear state of the parking brake 2 is determined by combining the scores A, B, C respectively obtained by each of the classification methods A, B, C for the first motor 3 and the second motor. 4.
  • a combination algorithm 350 assigns a class to the data set using, for example, weighting coefficients on each of the classes N, R, 0, H scores A, B, C according to the known capabilities of each of the classification methods A, B, C.
  • the combination algorithm 350 can also use, in addition to said weighting coefficients, a function which, for each classification method A, B, C, bring back the scores A, B, C on the same scale.
  • the scores of each of the classification methods A, B, C are comparable to each other and are weighted according to their respective reliability levels.
  • the classification methods A, B, C return for example the scores A, B, C below, the highest score of the method of Classification A h 'does not necessarily indicate a better prediction of the state of wear of the actuator than that of the classification method B or C.
  • a first step of the combination algorithm 350 can then include calculating the sum of the scores of each of the classification methods A, B, C to deduce a coefficient for reducing the sum to 1. This results in the scores A ', B', C 'recalculated as follows:
  • the combination algorithm 350 can, during a second so-called normalization step, apply to each of the scores A ', B', C 'a function which depends for each of the classification methods of the class for which the score is the highest.
  • the function also called the correction function, is defined according to the results obtained on the learning data sets and makes it possible to reduce the scores A ', B', C 'on a single scale.
  • the scores A ', B', C ' are now directly comparable from one classification method to another. It is then possible during a third step to qualify and compare the ability of each of the classification methods to properly recognize the class corresponding to the actual state of the actuator;
  • the weighting depends on the class for which the score is highest and said weighting can be defined according to the learning datasets.
  • the combination algorithm 350 can thus calculate, for example, the reliability level of each of the classes assigned by a given classification method (when the classification method A assigns the class N, it is right in 98.6% of the cases; the classification method B gives the result of the class N, it is right in 81.3% of cases, etc ).
  • the sequence of operations performed by the diagnostic apparatus 6 remains unchanged when the number of Electric motors driving the parking brake system 2 is equal to one or greater than two. It is performed on each electric motor of the parking brake actuator,
  • the sequence of operations performed by the diagnostic apparatus 6 remains unchanged when the signals 23, 24 of the electric motors 3, 4 comprise a number of maximums (ie a number of peaks) equal to one or greater than two.
  • the windowing algorithm 40 defines as many windows as there are maximums,
  • the diagnostic device controls the parking brake motors to record their signal when in use
  • the motor control can be activated manually by an operator while the signal is being recorded.
  • a signal other than the motor supply current may be recorded to evaluate the state of wear of the parking brake, such as, for example, the supply voltage or the motor torque.
  • diagnostic device is nomadic so that it can be connected to several aircraft, it can also be fixed, either embedded in an aircraft and dedicated to it.
  • the data sets 53, 54 can be automatically added to the training data sets 60 to improve the scores established by the classification methods A, B, C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

L'invention concerne un procédé pour diagnostiquer un état d'usure d'un actionneur comportant au moins un moteur électrique. Le procédé comprend les étapes suivantes: - enregistrer un signal provenant du moteur pendant une activation et une désactivation de l'actionneur, le signal comportant un premier maximum pendant l'activation et un deuxième maximum pendant la désactivation, - exécuter un algorithme de fenêtrage sur le signal pour obtenir un jeu de données standardisé comprenant les premier et deuxième maximums, - utiliser au moins une méthode de classification dans au moins deux classes pour établir un score du jeu de données pour chacune des classes de la méthode de la classification, - évaluer l'état d'usure de l'actionneur à partir des scores du jeu de données.

Description

PROCEDE POUR DIAGNOSTIQUER UN ETAT D’USURE D UN FREIN DE PARKING D’AERONEF
La présente invention concerne un procédé pour diagnostiquer un état d'usure d'un actionneur électrique tel que celui d'un système de frein notamment, bien que non exclusivement, d'une roue d'aéronef. L'invention concerne également un appareil pour la mise en œuvre d'un tel procédé.
ARRIERE PLAN DE L' INVENTION
D'une manière générale, un frein de roue d'aéronef comporte des éléments de friction solidaires pour certains de la roue et pour d'autres d'un stator, et un vérin de frein agencé pour exercer sur les éléments de friction un effort suffisant poux bloquer en rotation la roue d'aéronef.
Au parking, le vérin de frein est activé par un dispositif de commande dédié (appelé ici système de frein de parking) et distinct du dispositif de commande du vérin de frein en phase d'atterrissage. Le système de frein de parking comporte un distributeur hydraulique communément appelé PBSV (Park Brake Selector Valve) qui est piloté par un actionneur comprenant deux moteurs électriques .
Comme le système de frein de parking peut être sollicité en cas d'urgence lors d'une défaillance du dispositif de commande du frein en phase d'atterrissage, il est prévu par mesure de sécurité, que l'aéronef ne soit pas autorisé à décoller si le système de frein de parking est en panne.
II est reconnu que les moteurs électriques pilotant le PBSV sont la principale source de défaillance du système de frein de parking. Des tests de maintenance consistant à vérifier le bon déplacement du vérin de frein sous le contrôle du PBSV sont réalisés, mais leur efficacité est limitée car ils permettent uniquement de détecter une panne franche d'un des moteurs électriques et non de diagnostiquer l'état d'usure du système de frein de parking. Le bon déroulement d'un test de maintenance ne permet donc pas de garantir le bon fonctionnement du système de frein de parking après le test de maintenance.
De nombreuses pannes du système de frein de parking sont ainsi détectées en service, ce qui engendre des retards ou des annulations de vols très coûteux pour les compagnies aériennes.
Il serait donc intéressant de pouvoir planifier un remplacement de l' actionneur avant qu'une défaillance de l'un des deux moteurs électriques soit détectée en service, et en veillant à ne pas trop anticiper son remplacement pour des raisons économiques évidentes.
OBJET DE L' INVENTION
L'invention a donc pour objet de fournir un moyen pour diagnostiquer un état d'usure d'un actionneur électrique tel que celui d'un système de frein de parking d' aéronef .
RESUME DE L’INVENTION
En vue de la réalisation de cet objet, l'invention propose un procédé pour diagnostiquer un état d'usure d'un actionneur comprenant au moins un moteur électrique. Le procédé comprend les étapes de :
- enregistrer un signal provenant du moteur pendant une activation et une désactivation de 1' actionneur, le signal comportant un premier maximum pendant l'activation et un deuxième maximum pendant la désactivation,
- exécuter un algorithme de fenêtrage sur le signal pour obtenir un jeu de données standardisé comprenant les premier et deuxième maximums, - utiliser au moins une méthode de classification dans au moins deux classes pour établir un score du jeu de données pour chacune des classes de la méthode de la classification.
- évaluer l' état d'usure de l' actionneur à partir des scores du jeu de données.
La mise en œuvre d' un algorithme de fenêtrage des données permet une extraction automatique des données pertinentes du signal dans un format standardisé. La durée d'analyse du signal est ainsi raccourcie et la qualité des scores obtenus par la méthode de classification est améliorée puisqu' un apprentissage de ladite méthode pourra se faire à partir de données comparables entre elles.
Selon une caractéristique particulière,
1' actionneur comprend deux moteurs électriques.
Selon une autre caractéristique particulière, le signal enregistré est le courant d' alimentation du moteur électrique .
Selon un mode de réalisation préféré de l'invention, l'algorithme de fenêtrage comprend les étapes d'échantillonner le signal suivant une fréquence d'échantillonnage déterminée, de rechercher le premier et le second maximum du signal et de définir une première fenêtre de temps autour du premier maximum et une deuxième fenêtre de temps autour du deuxième maximum.
Un tel algorithme de fenêtrage permet notamment de ne pas tenir compte du temps qui s'est écoulé entre l'activation et la désactivation de l' actionneur commandé par l'opérateur lors de l'enregistrement du signal.
Avantageusement, la première et la deuxième fenêtre de temps ont une dimension temporelle identique. Le signal résultant de l'activation de l' actionneur et le signal résultant de la désactivation de l' actionneur s'étendent ainsi sur une même échelle de temps. De manière particulière, un facteur est appliqué au signal pour pouvoir notamment le comparer à un autre signal .
Selon une caractéristique particulière, la méthode de classification utilise la technique des machines à support de vecteurs.
Selon une autre caractéristique particulière, la méthode de classification utilise la technique des réseaux neuronaux.
Selon encore une autre caractéristique particulière, la méthode de classification utilise la technique des « forêts aléatoires ».
Selon un mode de réalisation particulier de lf invention, un apprentissage de la méthode de classification utilise un premier groupe de jeux de données répartis dans les classes de ladite méthode pour comprendre la classification associée à chaque jeu de données .
Selon un autre mode de réalisation de l' invention, un paramétrage de la méthode de classification est déterminé en utilisant un deuxième groupe de jeux de données pour améliorer le niveau de fiabilité des scores établis par ladite méthode.
De manière particulière, la méthode de classification est agencée pour réaliser une classification en quatre classes .
Les quatre classes de la méthode de classification sont par exemple « neuf », « rodé », « usé » et « hors d'usage ».
L' invention propose également un appareil de diagnostic pour la mise en œuvre du procédé de 1' invention. L'appareil de diagnostic comporte des moyens d'enregistrement pour enregistrer le signal du moteur électrique et une unité de calcul pour exécuter l'algorithme de fenêtrage et mettre en œuvre la méthode de classification.
De manière particulière, l'appareil comporte un dispositif de branchement apte à s'intercaler entre un réseau électrique d'un aéronef et le frein de parking pour commander le moteur électrique et/ou enregistrer le signal du moteur électrique de l'actionneur du frein de parking.
BREVE DESCRIPTION DES FIGURES
L'invention sera mieux comprise à 1a lumière de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées parmi lesquelles :
- la figure 1 représente un schéma de principe d'un appareil de diagnostic selon un mode particulier de
1' invention ;
- la figure 2 représente des étapes d'un procédé selon un premier mode de réalisation de l'invention ;
- la figure 3 représente un signal enregistré par l'appareil de diagnostic illustré à la figure 1 sur lequel est appliqué un algorithme de fenêtrage ;
- la figure 4 représente des étapes d'un algorithme de fenêtrage ;
- la figure 5 représente un tableau des scores d'un signal obtenus pour différentes méthodes de classification ;
- la figure 6 représente des étapes d'un procédé selon un deuxième mode de réalisation de l'invention.
DESCRIPTION DETAILLEE DE L'INVENTION L'invention est ici décrite en application à un frein d'une roue d'aéronef. Le frein comprend de manière connue en elle-même des éléments de friction solidaires pour certains de la roue et pour d'autres d'un stator, et un vérin de frein agencé pour exercer sur les éléments de friction un effort suffisant pour bloquer en rotation la roue d'aéronef. Le vérin de frein est associé à un système de frein de parking.
En référence à la figure 1 , un aéronef 1 comporte un système de frein de parking 2 comprenant un distributeur hydraulique piloté par un premier moteur 3 électrique et un deuxième moteur 4 électrique. Le distributeur électrique commande le déplacement d'un vérin pour exercer des efforts sur des éléments de friction de frein dans le but de bloquer en rotation des roues 5 de l'aéronef 1.
Selon l'invention, un appareil 6 pour diagnostiquer un état d'usure d'un frein de parking comprend un dispositif de branchement 7 qui, lors d'une maintenance, est intercalé entre un réseau électrique 8 de l'aéronef 1 et le système de frein de parking 2. Le dispositif de branchement 7 permet à l'appareil 6 de commander les moteurs 3, 4 du système de frein de parking 2 par l'intermédiaire d'une unité de commande 9. L'appareil 6 comprend également des moyens d' enregistrements 10 pour enregistrer des signaux issus des moteurs 3, 4, et plus particulièrement des signaux d'alimentation en courant des moteurs, ces signaux étant captés par le dispositif de branchement 7.
L'appareil 6 comporte également une unité de calcul 11 lui permettant de réaliser un traitement des signaux enregistrés. Des informations concernant le traitement et notamment un résultat de traitement peuvent être affichés via un afficheur 12.
Selon un premier mode de réalisation de l'invention illustré à la figure 2, l'appareil effectue une séquence d'opérations dont une première étape 100 consiste à commander le premier moteur 3 pour successivement activer et désactiver le frein de parking 2 alors que le deuxième moteur 4 est inactif, puis à commander le deuxième moteur 4 pour successivement '
activer et désactiver le frein de parking 2 alors que le premier moteur 3 est inactif. En parallèle, l' appareil 6 enregistre un premier signal 23 en courant d'alimentation du premier moteur 3 puis un deuxième signal 24 en courant d'alimentation du deuxième moteur 4. Le premier signal 23 et le deuxième signal 24 sont représentatifs des efforts fournis par le premier moteur 3 et le deuxième moteur 4 en service et donc de l'usure du frein de parking 2.
Le premier signal 23, comme le deuxième signal 24, comporte comme illustré à la figure 3 un premier pic
30a et un deuxième pic 30b de forme générale identique et dans lesquels le courant d'alimentation est non nul. Le premier pic 30a et le deuxième pic 30b correspondent respectivement à une activation et à une désactivation du frein de parking 2 et présentent respectivement un premier maximum 31a et un deuxième maximum 31b.
Le premier pic 30a et le deuxième pic 30b s'étendent sur des durées 32a, 32b sensiblement identiques l'une à l'autre, égales ici à 0,2 s, correspondant au temps nécessaire pour respectivement activer et désactiver le frein de parking 2. Une durée 33 au cours de laquelle le courant d'alimentation est nul sépare le premier pic 30a et le deuxième pic 30b. La durée 33 correspond au temps écoulé entre une fin de l'activation du frein de parking et un début de la désactivation du frein de parking. Une durée 34 au cours de laquelle le courant d'alimentation est nul précède le premier pic 30a. La durée 34 correspond au temps écoulé entre un début de l'enregistrement et un début de l'activation du frein de parking. Une durée 35 au cours de laquelle le courant d' alimentation est nul suit le deuxième pic 30b. La durée 35 correspond au temps écoulé entre une fin de la désactivation du frein de parking 2 et une fin de l'enregistrement. One deuxième étape 200 consiste à exécuter un algorithme de fenêtrage 40 sur le premier signal 23 et le deuxième signal 24. Comme illustré à la figure 4, l'algorithme consiste dans un premier temps à échantillonner le premier signal 23 et le deuxième signal 24 suivant une fréquence d'échantillonnage déterminée, puis à rechercher pour ledit premier et deuxième signal 23, 24 le premier maximum 31a du premier pic 30a et le deuxième maximum 31b du deuxième pic 30b pour définir une première fenêtre 41a et une deuxième fenêtre 41b entourant respectivement le premier maximum 31a et le deuxième maximum 31b. Les dimensions de la première fenêtre 41a et de la deuxième fenêtre 41b sont choisies de façon à ce que la première fenêtre 41a et la deuxième fenêtre 41b englobent respectivement l'intégralité du premier pic 30a et du deuxième pic 30b et soient comprises entre le début et la fin de l'enregistrement considéré. La première fenêtre 41a et la deuxième fenêtre 41b s'étendent ici sur une durée identique égale à 0,4 s. La position du premier pic 30a dans la première fenêtre 41a est sensiblement similaire à la position du deuxième pic 30b dans la deuxième fenêtre 41b.
Dans le cas où le premier pic 30a ou le deuxième pic 30b est inexistant ou incomplet, l'algorithme de fenêtrage 40 alerte l'opérateur d'une erreur d'enregistrement, par exemple via l'afficheur 12 de l'appareil 6, et lui propose de ne pas tenir compte de l'enregistrement incriminé et de le recommencer.
L'algorithme de fenêtrage 40 permet ainsi de transformer automatiquement le premier signal 23 et le deuxième signal 24 en un premier jeu de données 53 et un deuxième jeu de données 54 standardisés qui sont donc comparables entre eux mais aussi d'un système de frein de parking à un autre. L'algorithme de fenêtrage 40 permet également de s'affranchir de différences d'enregistrement non pertinentes, comme par exemple celle du temps écoulé entre une commande d'activation et une commande de désactivation du frein de parking. Si nécessaire, un facteur pourra être appliqué au premier signal 23 et/ou au deuxième signal 24 dans le but de pouvoir les comparer entre eux ou à d'autres signaux issus d' un autre frein de parking, notamment dans le cas où la tension nominale d'alimentation diffère d'un moteur à l'autre.
L'objet de l'algorithme de fenêtrage 40 est donc de prétraiter le signal pour éliminer les différences d'enregistrement afin d'en faciliter l'analyse.
Une troisième étape 300 consiste à analyser le premier jeu de données 53 et le deuxième jeu de données 54 en mettant en œuvre une méthode de classification A dans quatre classes, chacune des classes étant représentative d'un état d'usure du frein de parking, à savoir : N-Neuf N, R-Rodé, U-Usé U et H-Hors d'usage. La méthode pourra par exemple utiliser la technique des machines à support de vecteurs (SVM) , des réseaux neuronaux (neural networks ) , ou bien encore des « forêts aléatoires » (random forests).
Un choix des paramètres de la technique SVM pourra par exemple être réalisé de la manière suivante :
- Noyau = polynomial (le choix du noyau linéaire n'est pas approprié au vu de la distribution des jeux de données ) ,
Degré = 2 (entier positif strictement supérieur à 1 et choisi dans un intervalle [2:10]),
- Type = C (pour la facilité d'optimisation et la vitesse de calcul),
- C = 1 (pour éviter à la fois un problème de variance élevée et de biais élevé) ,
- g = 0,005 pour environ 2000 jeux de données d'apprentissage (l'utilisation du paramètre g permet de partir de l' idée que des valeurs proches de l'inverse des déciles d'un jeu de données sont proches d'un optimum},
Pondération : N=0 , 1 R=2 U=2 H=1 (la volonté de pouvoir utiliser une base de jeux de données d'apprentissage quel que soit la répartition des classes impose des intervalles relativement larges afin d' obtenir dans tous les cas des résultats intéressants) ,
Le but de la méthode de classification A est d'attribuer au premier jeu de données 53 et au deuxième jeu de données 54 un score poux chacune des classes N, R, U, H, Pour se faire, la méthode de classification A nécessite un échantillon de jeux de données répartis ici en deux groupes de taille égale : un premier groupe de jeux de données 60, dit d'apprentissage, qui sont repartis dans les classes N, R, ü, H pour que la méthode de classification A comprenne la classification à adopter, et un deuxième groupe de jeux de données 70, dit test, qui eux aussi sont repartis dans les classes N, R, ü, H mais pour vérifier le niveau de fiabilité des scores établis par ladite méthode.
L'échantillon de jeux de données est ici issu de freins de parking tout juste sortis de production et de freins de parking retournés en atelier suite à une suspicion de panne sur un aéronef. Les jeux de données d'apprentissage 60 et les jeux de données test 70 sont ici répartis manuellement dans les classes N, R, U, H par un expert en système de freinage apte à classer des jeux de données en fonction de la forme et de l'amplitude des pics enregistrés.
Les jeux de données test 70 sont aussi utilisés pour améliorer un niveau de fiabilité 95 de la méthode de classification A en déterminant un paramétrage 80 de ladite méthode qui permet d'obtenir une prédiction de l'état d'usure du frein de parking présentant un taux d'erreur le plus faible possible. Pour ce faire, un ensemble de combinaisons de paramètres est parcouru pour chacun des jeux de données test 70. La combinaison de paramètres présentant le meilleur taux d'erreur est alors sélectionnée. Le paramétrage 80 est ainsi optimisé.
La figure 5 illustre un exemple de scores du premier jeu de données 23 établis par 1a méthode de classification A pour chacune des classes N, R, U, H. Chacun des scores représente un pourcentage d'appartenance du premier jeu de données 23 à une des classes N, R, U, H. Ainsi, il est convenu que la classe qui obtient le score le plus élevé est représentative de l'état d'usure du moteur et est donc attribuée au premier jeu de données 23. Dans le cas de la figure 5, le moteur 3 est considéré comme usé par la méthode de classification A. One prédiction 90 de l'état d'usure du moteur 3 est alors déterminée, à laquelle est associé le niveau de fiabilité de la méthode de classification A précédemment calculé. Il est entendu que l'état d'usure du premier moteur 3 combiné à celui du deuxième moteur 4 déterminé dans les mêmes conditions que celui du premier moteur 3 permet, dans une quatrième étape 400, d'évaluer l'état d'usure du système de frein de parking 2. Un remplacement du premier moteur 3 et/ou du deuxième moteur 4 peut alors être décidé.
Selon un deuxième mode de réalisation de l'invention illustré à la figure 6, ce n'est pas une mais trois méthodes de classification A, B, C différentes qui sont mises en œuvre pour évaluer l'état d'usure du frein de parking 2. La méthode de classification A utilise la technique des machines à support de vecteurs, la méthode de classification B celle des réseaux neuronaux et la méthode de classification C celle des « forêts aléatoires ». Prises séparément, chacune des méthodes de classification A, B, C présente un taux de prédiction juste supérieur à 99%.
Un apprentissage et un paramétrage des méthodes
A, B, C sont réalisés comme précédemment à partir d'un même échantillon de jeux de données. L'état d'usure du frein de parking 2 est par contre cette fois-ci déterminé en combinant les scores A, B, C obtenus respectivement par chacune des méthodes de classification A, B, C pour le premier moteur 3 et le deuxième moteur 4.
Dans le cas où les méthodes de classification A,
B, C qui utilisent des techniques différentes attribuent une même classe pour un même jeu de données (ce qui représente une majorité des cas}, l'état d'usure du moteur de frein de parking associé au jeu de donnée est alors évalué avec un niveau de fiabilité important.
Dans le cas où les méthodes A, B, C attribuent des classes différentes pour un même jeu de données, un algorithme de combinaison 350 attribue une classe au jeu de données en utilisant par exemple des coefficients de pondération sur chacune des classes N, R, 0, H des scores A, B, C en fonction des capacités connues de chacune des méthodes de classification A, B, C.
Lorsque la somme de chacun des scores A, B, C n'est pas identique, l'algorithme de combinaison 350 peut aussi utiliser, en plus desdits coefficients de pondération, une fonction qui, pour chaque méthode de classification A, B, C, ramène les scores A, B, C sur une même échelle.
De cette façon, les scores de chacune des méthodes de classification A, B, C sont comparables entre eux et sont pondérés en fonction de leurs niveaux de fiabilité respectifs.
En effet, lorsque les méthodes de classification A, B, C retournent par exemple les scores A, B, C ci- dessous, le score le plus élevé de la méthode de classification A h' indique pas nécessairement une meilleure prédiction de l'état d'usure de l' actionneur que celui de la méthode de classification B ou C.
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0007
Figure imgf000015_0003
Une première étape de l'algorithme de combinaison 350 peut alors notamment consister à calculer la somme des scores de chacune des méthodes de classification A, B, C pour en déduire un coefficient permettant de ramener ladite somme à 1. On obtient ainsi les scores A' , B', C' recalculés suivants :
Figure imgf000015_0004
Figure imgf000015_0005
Figure imgf000015_0008
Figure imgf000015_0006
Pour autant, les scores ', B', C' ne sont toujours pas directement comparables d'une méthode de classification à une autre. A cet effet, l'algorithme de combinaison 350 peut, lors d'une deuxième étape dite de normalisation, appliquer à chacun des scores A' , B' , C' une fonction qui dépend pour chacune des méthodes de classification de la classe pour laquelle le score est le plus élevé. La fonction, appelée aussi fonction de correction, est définie en fonction des résultats obtenus sur les jeux de données d'apprentissage et permet de ramener les scores A', B', C' sur une échelle unique.
Ainsi corrigés, les scores A', B', C' sont désormais directement comparables d'une méthode de classification à une autre. Il est alors possible lors d'une troisième étape de qualifier et de comparer la capacité de chacune des méthodes de classification à reconnaître correctement la classe correspondant à l'état réel de l' actionneur ;
- probabilité forte de détecter la classe qui correspond à l'état réel de l' actionneur,
- probabilité faible d'attribuer une classe qui ne correspond pas à l'état réel de l' actionneur (« faux positif ») ,
Une pondération unique sur tous les scores A' ,
B' , C' corrigés de chacune des méthodes de classification peut ainsi être appliquée. La pondération dépend de la classe pour laquelle le score est le plus élevé et ladite pondération peut être définie en fonction des jeux de données d'apprentissage.
L'algorithme de combinaison 350 peut ainsi calculer par exemple le niveau de fiabilité de chacune des classes attribuées par une méthode de classification donnée (lorsque la méthode de classification A attribue la classe N, elle a raison dans 98,6% des cas ; lorsque la méthode de classification B attribue pour résultat la classe N, elle a raison dans 81,3% des cas ; etc...).
L'utilisation de plusieurs méthodes de classification permet ainsi de tirer parti des spécificités de chacune des méthodes et d'obtenir une prédiction finale à la fois précise et fiable qui élimine virtuellement le risque d'erreur de classification et de panne imprévue du premier moteur 3 et du deuxième moteur 4.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits mais englobe toute variante entrant dans le champ de l'invention telle que définie par les revendications.
La séquence d'opérations effectuée par l'appareil de diagnostic 6 reste inchangée lorsque le nombre de moteurs électriques pilotant le système de frein de parking 2 est égal à un ou est supérieur à deux. Elle est effectuée sur chaque moteur électrique de l'actionneur du frein de parking,
De même, la séquence d'opérations effectuée par l'appareil de diagnostic 6 reste inchangée lorsque les signaux 23, 24 des moteurs électriques 3, 4 comportent un nombre de maximums (soit un nombre de pics) égal à un ou supérieur à deux. L'algorithme 40 de fenêtrage définit autant de fenêtres qu'il y a de maximums,
Bien qu' ici ce soit l'appareil de diagnostic qui commande les moteurs du frein de parking pour enregistrer leur signal lorsqu'ils sont en service, la commande des moteurs peut être activée manuellement par un opérateur pendant que le signal est enregistré.
Un signal autre que le courant d'alimentation des moteurs peut être enregistré pour évaluer l'état d'usure du frein de parking, comme par exemple la tension d'alimentation ou le couple des moteurs.
Bien qu' ici l'appareil de diagnostic soit nomade afin de pouvoir être branché sur plusieurs aéronefs, il peut aussi être fixe, soit embarqué dans un aéronef et dédié à celui-ci.
Après chaque utilisation de l'appareil de diagnostic, les jeux de données 53, 54 peuvent être automatiquement ajoutés aux jeux de données d'apprentissage 60 pour améliorer les scores établis par les méthodes de classification A, B, C.

Claims

REVENDICATIONS
1. Procédé pour diagnostiquer un état d'usure d'un actionneur comportant au moins un moteur électrique, le procédé comprenant les étapes de :
- enregistrer un signal provenant du moteur pendant au moins une activation et/ou une désactivation de l' actionneur, le signal comportant un premier maximum pendant l'activation et un deuxième maximum pendant la désactivation,
- exécuter un algorithme de fenêtrage sur le signal pour obtenir un jeu de données standardisé comprenant les premier et deuxième maximums,
- utiliser au moins une méthode de classification dans au moins deux classes pour établir un score du jeu de données pour chacune des classes de la méthode de la classification,
évaluer l'état d'usure de 1/ actionneur à partir des scores du jeu de données.
2. Procédé selon la revendication 1, dans lequel 1' actionneur comprend deux moteurs électriques.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel le signal enregistré est le courant d'alimentation du moteur électrique.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'algorithme de fenêtrage comprend les étapes de :
- échantillonner le signal suivant une fréquence d'échantillonnage déterminée,
rechercher le premier et le second maximum du signal,
- définir une première fenêtre de temps autour du premier maximum et une deuxième fenêtre de temps autour du deuxième maximum.
5. Procédé selon la revendication 4, dans lequel la première et la deuxième fenêtre de temps ont une dimension temporelle identique.
6. Procédé selon les revendications 4 ou 5, dans lequel un facteur est appliqué au signal.
7. Procédé selon la revendication 1, dans lequel la méthode de classification utilise la technique des machines à support de vecteurs.
8. Procédé selon la revendication 1, dans lequel la méthode de classification utilise la technique des réseaux neuronaux.
9. Procédé selon la revendication 1, dans lequel la méthode de classification utilise la technique des « forêts aléatoires ».
10. Procédé selon l' une quelconque des revendications précédentes, dans lequel un apprentissage de la méthode de classification utilise un premier groupe de jeux de données répartis dans les classes de ladite méthode pour comprendre la classification associée à chaque jeu de données.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel un paramétrage de la méthode de classification est déterminé en utilisant un deuxième groupe de jeux de données pour améliorer le niveau de fiabilité des scores établis par ladite méthode.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel la méthode de classification est agencée pour réaliser une classification en quatre classes .
13. Procédé selon la revendication 12, dans lequel les quatre classes de la méthode de classification sont « neuf », « rodé », « usé » et « hors d'usage »
14. Appareil de diagnostic pour la mise en œuvre du précédé selon l'une quelconque des revendications précédentes, comportant des moyens d'enregistrement pour enregistrer le signal et une unité de calcul pour exécuter l'algorithme de fenêtrage et mettre en œuvre la méthode de classification.
15. Appareil selon la revendication 14, comportant un dispositif de branchement apte à s'intercaler entre un réseau électrique d'un aéronef et le frein de parking pour commander le moteur électrique et/ou enregistrer le signal du moteur électrique de l'actionneur du frein de parking .
PCT/EP2019/050041 2018-01-04 2019-01-02 Procede pour diagnostiquer un etat d'usure d'un frein de parking d'aeronef WO2019134918A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/959,861 US11760332B2 (en) 2018-01-04 2019-01-02 Method for diagnosing a state of wear of an aircraft parking brake
CN201980007375.1A CN111566375B (zh) 2018-01-04 2019-01-02 用于诊断飞行器驻停制动器的磨损状态的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850053A FR3076267B1 (fr) 2018-01-04 2018-01-04 Procede pour diagnostiquer un etat d'usure d'un frein de parking d'aeronef
FR1850053 2018-01-04

Publications (1)

Publication Number Publication Date
WO2019134918A1 true WO2019134918A1 (fr) 2019-07-11

Family

ID=61521740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/050041 WO2019134918A1 (fr) 2018-01-04 2019-01-02 Procede pour diagnostiquer un etat d'usure d'un frein de parking d'aeronef

Country Status (4)

Country Link
US (1) US11760332B2 (fr)
CN (1) CN111566375B (fr)
FR (1) FR3076267B1 (fr)
WO (1) WO2019134918A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111209955A (zh) * 2020-01-03 2020-05-29 山东超越数控电子股份有限公司 基于深度神经网络和随机森林的飞机电源系统故障识别方法
IT202000011830A1 (it) * 2020-05-21 2021-11-21 Cnh Ind Italia Spa Sistema di monitoraggio di usura di un freno di stazionamento idraulico
EP4095760B1 (fr) * 2021-05-25 2024-02-21 Axis AB Équilibrage de l'apprentissage multitâche par l'exploration conditionnelle ou parallèle par lots
CN117515081B (zh) * 2023-12-29 2024-04-02 杭州杭叉桥箱有限公司 一种叉车制动器用磨损程度评估方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012043A1 (fr) * 2000-08-04 2002-02-14 Dunlop Aerospace Limited Surveillance de l'etat de freins
US20030061872A1 (en) * 2001-09-27 2003-04-03 Folke Giessler Method for detecting wear in a brake or a clutch
DE10228115A1 (de) * 2002-06-24 2004-01-22 Lucas Automotive Gmbh Elektrisch betätigbare Fahrzeugbremse und Verfahren zur Steuerung einer elektrisch betätigbaren Fahrzeugbremse
DE10361042B3 (de) * 2003-12-23 2005-05-25 Lucas Automotive Gmbh Feststellbremse und Verfahren zur Steuerung derselben
EP1800809A1 (fr) * 2005-12-19 2007-06-27 ABB Technology AG Dispositif de freinage pour un actionneur de robot et méthode pour surveiller l'état d'un frein
EP2149721A1 (fr) * 2008-07-30 2010-02-03 Honeywell International Inc. Procédé, système et appareil pour le suivi de l'usure des plaquettes de friction et de l'état des freins
DE102010029225A1 (de) * 2009-06-23 2010-12-30 Continental Teves Ag & Co. Ohg Elektromechanisches Bremssystem, insbesondere Feststellbremssystem und Verfahren zum Betreiben des Bremssystems
US20120221184A1 (en) * 2011-02-28 2012-08-30 Pfohl Kevin L Measuring Brake Wear
DE102011016126A1 (de) * 2011-04-05 2012-10-11 Lucas Automotive Gmbh Technik zum Bestimmen des Verschleißzustands eines Bremsbelags
DE102011077786A1 (de) * 2011-06-20 2012-12-20 Continental Teves Ag & Co. Ohg Aktuatorsystem und Betriebsverfahren für ein Aktuatorsystem
WO2016184912A1 (fr) * 2015-05-19 2016-11-24 Tellmeplus Procede et systeme de prediction de la realisation d'un etat predetermine d'un objet
WO2017202526A1 (fr) * 2016-05-24 2017-11-30 Robert Bosch Gmbh Procédé pour surveiller la force de freinage dans un véhicule

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377220A (en) * 1980-05-21 1983-03-22 Dravo Corporation Automatic rail clamp
DE10336611A1 (de) * 2003-08-08 2005-03-03 Wabco Gmbh & Co.Ohg Druckmittelbetriebene Bremsanlage für ein Fahrzeug
US8548652B2 (en) * 2006-01-31 2013-10-01 Hydro-Aire, Inc., Subsidiary Of Crane Co. System for reducing carbon brake wear
DE102007035219A1 (de) * 2007-07-25 2009-01-29 Robert Bosch Gmbh Objektklassifizierungsverfahren und Einparkhilfesystem
DE102008049754A1 (de) * 2008-09-30 2010-04-08 Continental Automotive Gmbh Verfahren und Vorrichtung zur Verschleißdiagnose eines Kraftfahrzeugs
WO2011089649A1 (fr) * 2010-01-22 2011-07-28 株式会社日立製作所 Appareil de diagnostic et procédé de diagnostic
CN201834649U (zh) * 2010-09-30 2011-05-18 北京工业大学 一种矿用提升机盘式制动器状态监测装置
FR2970387B1 (fr) * 2011-01-10 2013-12-13 Messier Bugatti Actionneur electromecanique a double excitation.
KR101406654B1 (ko) * 2013-04-23 2014-06-11 기아자동차주식회사 가속페달 장치의 답력 능동 조절방법
DE102013112972A1 (de) * 2013-11-25 2015-05-28 Wirtgen Gmbh Verschleißprognoseverfahren und Wartungsverfahren
EP2886804B1 (fr) * 2013-12-20 2017-08-16 Safran Aero Boosters SA Dispositif d'étanchéité pour un compresseur de turbomachine
DE102014113371A1 (de) * 2014-09-17 2016-03-17 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zur Überwachung und Diagnose von Komponenten eines Schienenfahrzeugs, mit erweiterbarer Auswertungssoftware
DE102015001152A1 (de) * 2015-02-02 2016-08-04 Wabco Europe Bvba Verfahren zur Überwachung einer Bremse für Kraftfahrzeuge, Bremssystem zur Durchführung des Verfahrens sowie Kraftfahrzeug mit einem solchen
JP6414118B2 (ja) * 2016-03-28 2018-10-31 トヨタ自動車株式会社 車両用ブレーキシステムおよび摩擦部材摩耗検知方法
CN106769052B (zh) * 2017-03-21 2018-12-21 桂林电子科技大学 一种基于聚类分析的机械系统滚动轴承智能故障诊断方法
CN107180016B (zh) * 2017-05-23 2018-08-24 南京工业大学 应用磨损比耗指数预测滚刀磨损量的分层求和法
CN107194427A (zh) * 2017-05-26 2017-09-22 温州大学 一种铣削刀具故障监测与识别方法及系统
CN107505850B (zh) * 2017-07-04 2021-06-22 南京航空航天大学 一种刀具换刀判断方法
CN107378641B (zh) * 2017-08-23 2019-02-01 东北电力大学 一种基于图像特征和lltsa算法的刀具磨损状态监测方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012043A1 (fr) * 2000-08-04 2002-02-14 Dunlop Aerospace Limited Surveillance de l'etat de freins
US20030061872A1 (en) * 2001-09-27 2003-04-03 Folke Giessler Method for detecting wear in a brake or a clutch
DE10228115A1 (de) * 2002-06-24 2004-01-22 Lucas Automotive Gmbh Elektrisch betätigbare Fahrzeugbremse und Verfahren zur Steuerung einer elektrisch betätigbaren Fahrzeugbremse
DE10361042B3 (de) * 2003-12-23 2005-05-25 Lucas Automotive Gmbh Feststellbremse und Verfahren zur Steuerung derselben
EP1800809A1 (fr) * 2005-12-19 2007-06-27 ABB Technology AG Dispositif de freinage pour un actionneur de robot et méthode pour surveiller l'état d'un frein
EP2149721A1 (fr) * 2008-07-30 2010-02-03 Honeywell International Inc. Procédé, système et appareil pour le suivi de l'usure des plaquettes de friction et de l'état des freins
DE102010029225A1 (de) * 2009-06-23 2010-12-30 Continental Teves Ag & Co. Ohg Elektromechanisches Bremssystem, insbesondere Feststellbremssystem und Verfahren zum Betreiben des Bremssystems
US20120221184A1 (en) * 2011-02-28 2012-08-30 Pfohl Kevin L Measuring Brake Wear
DE102011016126A1 (de) * 2011-04-05 2012-10-11 Lucas Automotive Gmbh Technik zum Bestimmen des Verschleißzustands eines Bremsbelags
DE102011077786A1 (de) * 2011-06-20 2012-12-20 Continental Teves Ag & Co. Ohg Aktuatorsystem und Betriebsverfahren für ein Aktuatorsystem
WO2016184912A1 (fr) * 2015-05-19 2016-11-24 Tellmeplus Procede et systeme de prediction de la realisation d'un etat predetermine d'un objet
WO2017202526A1 (fr) * 2016-05-24 2017-11-30 Robert Bosch Gmbh Procédé pour surveiller la force de freinage dans un véhicule

Also Published As

Publication number Publication date
FR3076267B1 (fr) 2020-01-17
US20200331448A1 (en) 2020-10-22
CN111566375B (zh) 2022-05-27
US11760332B2 (en) 2023-09-19
CN111566375A (zh) 2020-08-21
FR3076267A1 (fr) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2019134918A1 (fr) Procede pour diagnostiquer un etat d'usure d'un frein de parking d'aeronef
CA2418476C (fr) Procede d'identification d'une source d'un signal
EP3250974B1 (fr) Procédé, système et programme d'ordinateur pour phase d'apprentissage d'une analyse acoustique ou vibratoire d'une machine
EP3097455B1 (fr) Procede de prediction d'une anomalie de fonctionnement des equipements d'un aeronef ou d'une flotte d'aeronefs
EP1476339B1 (fr) Estimation du coefficient d'adherence maximal a partir de la connaissance des efforts et du couple d'autoalignement generes dans l'aire de contact d'un pneu
EP2561193A1 (fr) Procede et systeme de surveillance du niveau d'huile contenue dans un reservoir d'un moteur d'aeronef
WO2016075409A1 (fr) Procédé de surveillance d'un moteur d'aéronef en fonctionnement dans un environnement donné
EP2966526A1 (fr) Procédé et système de fusion d'indicateurs de surveillance d'un dispositif
EP3593154B1 (fr) Procede de surveillance d'un equipement de type actionneur electromecanique
CA2837523A1 (fr) Systeme de prescription de maintenance d'un moteur d'helicoptere
EP3298549A1 (fr) Procédé et système de prédiction de la réalisation d'un etat prédeterminé d'un objet
EP3511781B1 (fr) Dispositif et procédé de collecte, de sauvegarde, d'analyse ainsi que de mise à disposition des résultats de l'analyse de données de pièces d'horlogerie
FR3102870A1 (fr) Procédé pour déterminer une déviation non autorisée du comportement systémique d’une installation technique par rapport à une plage de valeurs normalisées
WO2021069824A1 (fr) Dispositif, procédé et programme d'ordinateur de suivi de moteur d'aéronef
FR2970796A1 (fr) Procede de traitement de messages de pannes generes dans un appareil a systemes complexes
FR3005757A1 (fr) Dispositif et procede de regulation de la vitesse d'un equipement de transport
EP4441663A1 (fr) Procédé de diagnostic automatique d'une pièce
EP4450318A1 (fr) Procédé d'ajustement du fonctionnement d'un système d' alimentation électrique de véhicules ferroviaires, produit programme d'ordinateur, dispositif électronique d'ajustement et système d'alimentation électrique associés
EP3246726A1 (fr) Procede d'optimisation de la detection de cibles marine et radar mettant en oeuvre un tel procede
WO2024194570A1 (fr) Procédé de détection de la présence d'un arc électrique et dispositif associé
FR3143802A3 (fr) Détection d’anomalies dans les données billettiques de transport en commun
WO2024062204A1 (fr) Procede et dispositif de detection d'anomalie de fonctionnement d'un aeronef
FR3147005A1 (fr) Procédé de détection de la présence d’arcs électriques et dispositif associé
WO2024141739A1 (fr) Procédé de détermination d'un indicateur de défaut structurel
EP0571295A1 (fr) Dispositif de cotation d'un lubrifiant, notamment de moteur de véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19700124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19700124

Country of ref document: EP

Kind code of ref document: A1