Nothing Special   »   [go: up one dir, main page]

WO2019102834A1 - Display device and method for producing display device - Google Patents

Display device and method for producing display device Download PDF

Info

Publication number
WO2019102834A1
WO2019102834A1 PCT/JP2018/041046 JP2018041046W WO2019102834A1 WO 2019102834 A1 WO2019102834 A1 WO 2019102834A1 JP 2018041046 W JP2018041046 W JP 2018041046W WO 2019102834 A1 WO2019102834 A1 WO 2019102834A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
wiring
display device
film
groove
Prior art date
Application number
PCT/JP2018/041046
Other languages
French (fr)
Japanese (ja)
Inventor
武 栗谷川
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2019102834A1 publication Critical patent/WO2019102834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • One embodiment of the present invention relates to a display device, for example, a display device having an organic light emitting element as a display element, and a method of manufacturing the same.
  • Examples of the display device include a liquid crystal display device and an organic EL (Electroluminescence) display device. These display devices each have a liquid crystal element or an organic light emitting element (hereinafter, light emitting element) as a display element in each of a plurality of pixels formed on a substrate.
  • a liquid crystal element or a light emitting element has a layer containing a compound exhibiting liquid crystallinity, or a layer containing a light emitting organic compound (hereinafter referred to as an electroluminescent layer or an EL layer), between a pair of electrodes (cathode and anode) It is driven by applying a voltage or supplying a current between the electrodes.
  • a display device having a curved shape and a display device which can be freely deformed by the user can be provided.
  • the area ratio of the display area is apparently increased by bending the substrate so that the portion not involved in the display overlaps the display area as disclosed in Patent Document 1, and the designability is improved.
  • the display device includes: a substrate having a display region and a wiring region, a pixel on the display region, a substrate in contact with the substrate on the wiring region, an organic compound, an insulating film having a groove, and an insulating film And a wiring extending from the display area to the edge of the substrate.
  • the wiring intersects the groove.
  • One of the embodiments of the present invention is a method of manufacturing a display device.
  • an undercoat that overlaps the display area and the wiring area is formed on a substrate having the display area and the wiring area, a semiconductor film, a gate electrode, and a semiconductor film and a gate electrode on the undercoat of the display area.
  • a gate insulating film to be sandwiched such that the gate insulating film extends from the display region to the wiring region, forming an interlayer film overlapping the semiconductor film, the gate electrode, and the gate insulating film of the wiring region, an undercoat, Exposing the substrate in the wiring region by partially removing the gate insulating film and the interlayer film, forming an insulating film in contact with the exposed substrate in the wiring region, forming a trench in the insulating film, Forming a wire that intersects the trench.
  • FIG. 1 is a schematic top view of a display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic side view of a display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic top view of a display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic top view of a display device according to an embodiment of the present invention.
  • 6 illustrates an example of an equivalent circuit of a pixel of a display device according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
  • the plurality of films when a plurality of films are formed by performing etching or light irradiation on a certain film, the plurality of films may have different functions and roles. However, the plurality of films are derived from the film formed as the same layer in the same step, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
  • a certain structure is exposed from another structure means an aspect in which a part of a certain structure is not covered by another structure.
  • the part not covered by the structure also includes the aspect covered by another structure.
  • the structure of the display device 100 which is one of the embodiments of the present invention will be described.
  • a schematic top view of the display device 100 is shown in FIG.
  • the display device 100 has a substrate 102, and has various insulating films, semiconductor films, and conductive films patterned thereon. By appropriately combining these films, a scan line driver circuit 108 for driving the plurality of pixels 104 and the pixels 104 is formed.
  • Each pixel 104 is a minimum unit for providing color information, and is an area including a pixel circuit for driving a display element as described later.
  • the plurality of pixels 104 are periodically arranged to define a display area 106.
  • a light emitting element is used as a display element will be described.
  • the scanning line side drive circuit 108 is disposed around the display area 106.
  • Wiring 112 extends from the display area 106 and the scanning line drive circuit 108 to the end of the substrate 102, and the wiring is exposed near the end of the substrate 102 to form a terminal 128 (described later).
  • These terminals 128 are electrically connected to a connector 114 such as a flexible printed circuit board (FPC).
  • a drive IC 116 having an integrated circuit formed on a semiconductor substrate is further mounted on the connector 114. Video signals and power are transmitted from the external circuit (not shown) to the scan line driver circuit 108 and each pixel 104 through the driver IC 116, the connector 114, and the wiring 112.
  • the pixels 104 are controlled and driven based on these video signals and power sources, and a video is displayed on the display area 106.
  • the mode of the drive circuit and the drive IC 116 is not limited to the mode shown in FIG. 1.
  • the drive IC 116 may be mounted on the substrate 102, and a part of the functions of the drive IC 116 is formed on the substrate 102 as a drive circuit. It is also good.
  • the display device 100 can be deformed into any shape.
  • the display device 100 can be bent in a region (hereinafter, a wiring region) 120 in which the wiring 112 is provided, that is, a region between the display region 106 and an end portion of the substrate 102.
  • a wiring region 120 A schematic side view of the three-dimensional structure at this time is shown in FIG.
  • FIG. 2 by bending the wiring region 120 and the wiring 112 provided in this region, the end portion of the substrate 102 and the connector 114 can be arranged so as to overlap with the display region 106.
  • a spacer 122 may be provided to stabilize the three-dimensional structure.
  • FIGS. 3A and 3B An enlarged top view of the wiring area 120 is schematically shown in FIGS. 3A and 3B.
  • the wiring 112 is provided between the display area 106 and the edge of the substrate 102. As shown in FIG. 3A, the wiring 112 may be formed in a straight line from the display area 106 and the scanning line driver circuit 108 to the end of the substrate 102, and as shown in FIG. 3B, a zigzag shape in plan view It may be formed to have In the latter case, each wire 112 has a plurality of straight portions, and the directions of the vectors of the adjacent straight portions are different.
  • the insulating film 124 is provided under the wiring 112, and the insulating film 124 is provided with one or a plurality of grooves 126 intersecting with the wiring 112.
  • Pixel structure 2-1. Pixel Circuit
  • a pixel circuit including the light emitting element OLED is formed of various patterned insulating films, semiconductor films, and conductive films.
  • the configuration of the pixel circuit can be arbitrarily selected, an example of which is shown in FIG. 4 as an equivalent circuit.
  • the pixel circuit shown by the equivalent circuit of FIG. 4 includes, in addition to the light emitting element OLED, a drive transistor DRT, a light emission control transistor BCT, a correction transistor CCT, an initialization transistor IST, a write transistor SST, a holding capacitance Cs, and an additional capacitance Cad. ing.
  • the capacitance Cel is not an independent capacitance element but a parasitic capacitance of the light emitting element OLED.
  • the high potential power supply line 130 is supplied with the high potential PVDD, and this potential is supplied to the pixels 104 arranged in each column via the current supply line 132.
  • the light emitting element OLED, the drive transistor DRT, the light emission control transistor BCT, and the correction transistor CCT are connected in series between the high potential power supply line 130 and the low potential power supply line 134.
  • Low potential power supply line 134 is supplied with low potential PVSS.
  • One terminal of the drive transistor DRT is electrically connected to the high potential power supply line 130 via the light emission control transistor BCT and the correction transistor CCT, and the other terminal is electrically connected to the light emitting element OLED.
  • the gate of the drive transistor DRT is electrically connected to the first signal line 136 via the initialization transistor IST, and electrically connected to the second signal line 138 via the write transistor SST.
  • the initialization signal Vini is applied to the first signal line 136, and the video signal Vsig is applied to the second signal line 138.
  • the initialization signal Vini is a signal giving an initialization potential of a fixed level.
  • Write transistor SST has its operation (on / off) controlled by scan signal SG applied to write control scan line 140 connected to its gate.
  • the gate of the initialization transistor IST is connected to an initialization control scan line 142 to which an initialization control signal IG is applied, and the operation is controlled by the initialization control signal IG.
  • the write transistor SST is on and the initialization transistor IST is off, the potential of the video signal Vsig is applied to the gate of the drive transistor DRT.
  • the write transistor SST is off and the initialization transistor IST is on, the potential of the initialization signal Vini is applied to the gate of the drive transistor DRT.
  • a correction control scanning line 144 to which a correction control signal CG is applied and a light emission control scanning line 148 to which a light emission control signal BG is applied are connected to the gates of the correction transistor CCT and the light emission control transistor BCT, respectively.
  • the reset control line 146 is connected to one terminal of the drive transistor DRT via the correction transistor CCT.
  • the reset control line 146 is connected to a reset transistor RST provided in the scan line driver circuit 108.
  • the reset transistor RST is controlled by the reset control signal RG, whereby the reset potential Vrst applied to the reset signal line 150 can be applied to one terminal of the drive transistor DRT via the correction transistor CCT.
  • a storage capacitor Cs is provided between the other terminal of the drive transistor DRT and the gate.
  • One terminal of the additional capacitance Cad is connected to the other terminal of the drive transistor DRT, and the other terminal is connected to the high potential power supply line 130.
  • the additional capacitance Cad may be provided such that the other terminal is connected to the low potential power supply line 134.
  • the storage capacitor Cs and the additional capacitor Cad are provided to hold a gate-source voltage Vgs according to the video signal Vsig when the video signal Vsig is applied to the gate of the drive transistor DRT.
  • the drive IC 116 outputs the initialization signal Vini and the video signal Vsig to the first signal line 136 and the second signal line 138, respectively.
  • the scanning line drive circuit 108 outputs the scanning signal SG to the write control scanning line 140, outputs the initialization control signal IG to the initialization control scanning line 142, and outputs the correction control signal CG to the correction control scanning line 144.
  • the light emission control signal BG is output to the light emission control scanning line 148, and the reset control signal RG is output to the gate of the reset transistor RST.
  • FIG. 5 shows a schematic cross-sectional view of the display device 100. As shown in FIG. FIG. 5 shows a cross-sectional structure of the drive transistor DRT, the storage capacitor Cs, the additional capacitor Cad, and the light emitting element OLED among the pixel circuits of the three adjacent pixels 104 formed on the substrate 102.
  • the substrate 102 can include glass, quartz, or plastic. By using a plastic, the substrate 102 can have flexibility. Examples of the plastic include polymers such as polyimide, polyamide, polyester, polycarbonate and the like, and among them, polyimide having high heat resistance is preferable.
  • the undercoat 160 may have a single layer structure as shown in FIG. 5 or may be composed of a plurality of films. In the case of using a plurality of films, a film containing silicon oxide, a film containing silicon nitride, and a film containing silicon oxide may be sequentially formed over the substrate 102.
  • the driving transistor DRT includes a semiconductor film 162, a gate insulating film 164, a gate electrode 166, and source / drain electrodes 168 and 170.
  • the gate insulating film 164 is sandwiched between the gate electrode 166 and the semiconductor film 162.
  • the gate electrode 166 is disposed to intersect at least a part of the semiconductor film 162 with the gate insulating film 164 interposed therebetween, and a channel region 162 a is formed in a region where the gate electrode 166 of the semiconductor film 162 overlaps.
  • the semiconductor film 162 further includes a channel region 162a, a low concentration impurity region 162c doped with an impurity, and a source / drain region 162b doped with an impurity.
  • the impurity concentration of the low concentration impurity region 162c is lower than that of the source / drain region 162b.
  • the drive transistor DRT is a top gate type transistor, but there is no limitation on the structure of the transistor included in the pixel circuit, and it may be a bottom gate type transistor.
  • the upper / lower relationship between the source / drain electrodes 168 and 170 and the semiconductor film 162 is not limited.
  • a capacitor electrode 172 present in the same layer as the gate electrode 166 is provided to overlap with one of the source / drain regions 162 b via the gate insulating film 164.
  • An interlayer film 174 is provided on the gate electrode 166 and the capacitor electrode 172.
  • An opening reaching the semiconductor film 162 is formed in the interlayer film 174 and the gate insulating film 164, and source / drain electrodes 168 and 170 are disposed to cover the opening.
  • a part of the source / drain electrode 170 overlaps with a part of the source / drain region 162 b and the capacitor electrode 172 through the interlayer film 174, and a part of the source / drain region 162 b, a part of the gate insulating film 164, a capacitor electrode A storage capacitance Cs is formed by the portion 172, the interlayer film 174, and a part of the source / drain electrode 170.
  • a planarization film 176 is further provided on the drive transistor DRT and the storage capacitor Cs.
  • the planarization film 176 has an opening reaching the source / drain electrode 170, and a connection electrode 178 covering the opening and a part of the top surface of the planarization film 176 is provided in contact with the source / drain electrode 170.
  • An additional capacitance electrode 180 is further provided on the planarization film 176.
  • the connection electrode 178 and the additional capacitance electrode 180 may be formed at the same time, or may be formed in different steps so as to have different materials. In the former case, the connection electrode 178 and the additional capacitance electrode 180 exist in the same layer and have the same composition.
  • An additional capacitance insulating film 182 is formed to cover the connection electrode 178 and the additional capacitance electrode 180.
  • the additional capacitance insulating film 182 does not cover a part of the connection electrode 178 at the opening of the planarization film 176, and exposes the upper surface of the connection electrode 178. Thereby, the electrical connection between the pixel electrode 190 and the source / drain electrode 170 provided thereon is enabled via the connection electrode 178.
  • the additional capacitance insulating film 182 may be provided with an opening 186 for permitting contact between the partition 184 provided thereon and the planarizing film 176. The formation of the connection electrode 178 and the opening 186 is optional.
  • connection electrode 178 By providing the connection electrode 178, corrosion of the surface of the source / drain electrode 168 can be prevented in a subsequent process, and an increase in contact resistance of the source / drain electrode 168 can be prevented. Impurities in the planarization film 176 can be removed through the opening 186, which can improve the reliability of the pixel circuit and the light emitting element OLED included in the pixel circuit.
  • a pixel electrode 190 is provided on the additional capacitance insulating film 182 so as to cover the connection electrode 178 and the additional capacitance electrode 180.
  • the storage capacitor insulating film 182 is sandwiched between the storage capacitor electrode 180 and the pixel electrode 190, and a storage capacitor Cad is formed by this structure.
  • the pixel electrode 190 is shared by the additional capacitance Cad and the light emitting element OLED.
  • a partition 184 covering the end of the pixel electrode 190 is provided on the pixel electrode 190.
  • the partition wall 184 unevenness due to the pixel electrode 190 can be alleviated, and cutting of the electroluminescent layer (hereinafter, EL layer) 192 and the counter electrode 194 provided thereon can be prevented.
  • An EL layer 192 and a counter electrode 194 covering the EL layer 192 are provided to cover the partition wall 184 and the pixel electrode 190.
  • the pixel electrode 190 is configured to transmit visible light.
  • the pixel electrode 190 is configured to reflect visible light.
  • the pixel electrode 190 contains a metal such as silver or aluminum having a high reflectance of visible light.
  • the pixel electrode 190 may have a stacked structure of a film containing a conductive oxide and a film containing a metal with high reflectance. For example, a stacked structure of a first conductive film containing a conductive oxide, a second conductive film containing a metal such as silver or aluminum, and a third conductive film containing a conductive oxide can be employed.
  • the structure of the EL layer 192 is arbitrary, and the EL layer 192 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, a hole blocking layer, an exciton blocking layer, etc. These functional layers can be combined as appropriate.
  • the structure of the EL layer 192 may be the same between all the pixels 104, and some structures may differ between the adjacent pixels 104.
  • the pixels 104 may be configured such that the structure or material of the light emitting layer is different between adjacent pixels 104, and the other layers have the same structure.
  • a hole transport layer 192a, a light emitting layer 192b, and an electron transport layer 192c are shown as representative functional layers in consideration of easy viewing.
  • the counter electrode 194 is configured to reflect visible light.
  • the counter electrode 194 is formed using a metal with high reflectance such as aluminum, silver, magnesium or an alloy thereof (for example, an alloy of magnesium and silver).
  • the pixel electrode 190 is configured to include a conductive oxide capable of transmitting visible light.
  • the above-described metal or alloy film may be formed to a thickness that allows visible light to pass. In this case, a conductive oxide film showing translucency to visible light may be further formed.
  • a passivation film 196 is disposed on the counter electrode 194 as an optional configuration.
  • the structure of the passivation film 196 can be arbitrarily determined, and either a single layer structure or a laminated structure may be employed. In the case of having a stacked structure, for example, a structure in which a first layer 196a containing a silicon-containing inorganic compound, a second layer 196b containing a resin, and a third layer 196c containing a silicon-containing inorganic compound can be sequentially stacked can be employed.
  • the silicon-containing inorganic compound include silicon nitride and silicon oxide.
  • the resin include epoxy resin, acrylic resin, polyester, polycarbonate and the like.
  • FIG. 6 is a schematic cross-sectional view taken along the dashed-dotted line AA 'in FIG.
  • the undercoat 160, the gate insulating film 164, and the interlayer film 174 are provided in the display region 106. These are provided so as to extend also in the wiring region 120, but some of these are removed in the wiring region 120 as shown in FIG. That is, the undercoat 160, the gate insulating film 164, and the interlayer film 174 all have openings overlapping each other, and the substrate 102 is exposed at these openings. In the example shown in FIG. 6, the entire opening of the undercoat 160 overlaps the opening of the gate insulating film 164 and the interlayer film 174.
  • these openings may be formed so that the sidewalls of the openings of the undercoat 160, the gate insulating film 164, and the interlayer film 174 are coplanar.
  • An insulating film 124 is provided to cover these openings. The insulating film 124 covers the undercoat 160, the gate insulating film 164, and part of the interlayer film 174.
  • the insulating film 124 contains an organic compound, and examples of the organic compound include polymers such as resin.
  • the polymer is selected from acrylic resins, epoxy resins, polyimides, polyamides, polyesters, polyolefins, polycarbonates, polysiloxanes, etc., and may have a chain structure or may be crosslinked between molecules .
  • the insulating film 124 is provided with one or more grooves 126. As shown in FIGS. 3A and 3B, the groove 126 may be disposed parallel to the short side of the substrate 102 or may be disposed to be inclined from the short side.
  • the width of the groove 126 can be, for example, 100 ⁇ m to 2 mm, 100 ⁇ m to 1 mm, or 200 ⁇ m to 500 ⁇ m.
  • the wiring 112 is provided on the insulating film 124, contacts the insulating film 124 in the wiring region 120, and intersects with the groove 126 as shown in FIGS. 3A and 3B. Therefore, the wiring 112 is also in contact with the side wall and the bottom of the groove 126.
  • the interlayer film 174 is in contact with the wiring 112 in a region where the insulating film 124 is not provided in the wiring region 120.
  • the wiring 112 may be any of the first signal line 136, the second signal line 138, or the current supply line 132 shown in FIG.
  • the wiring 112 is configured to transmit the initialization signal Vini
  • the wiring 112 is configured to transmit the video signal Vsig
  • the high potential PVDD is configured to be transmitted.
  • the wiring 112 may be in the same layer as the source / drain electrodes of the transistor provided in the pixel 104 (eg, the source / drain electrodes 168 and 170 of the driving transistor DRT).
  • a current supply line 132 not shown in FIG. 5 is provided between the gate electrode 166 and the source / drain electrodes 168 and 170, and exists in the same layer as the current supply line 132.
  • the wiring 112 may be formed by the following wiring.
  • the thickness of the insulating film 124 can be set arbitrarily.
  • the thickness T between adjacent grooves 126 is the total thickness of the undercoat 160, the gate insulating film 164, and the interlayer film 174. It may be smaller or the same. In this case, as shown in FIG. 6, the insulating film 124 may have a convex portion in a region overlapping with the interlayer film 174.
  • the thickness T may be larger than the total thickness of the undercoat 160, the gate insulating film 164, and the interlayer film 174.
  • the groove 126 may be provided to expose the substrate 102 in the groove 126. In this case, the wiring 112 is in contact with the substrate 102 in the groove 126.
  • an insulating film is provided on the wiring 112 and the wiring 112 is protected.
  • the additional capacitance insulating film 182 provided in the pixel 104 extends from the display region 106 to the wiring region 120 and is disposed on the wiring 112 so as to be in contact with the wiring 112.
  • the wire 112 extends to near the end of the substrate 102 and is exposed from the additional capacitance insulating film 182 to provide a terminal 128.
  • a protective conductive film 188 for protecting the wiring 112 is provided over the wiring 112, and the additional capacitance insulating film 182 covers a part of the protective conductive film 188.
  • the protective conductive film 188 is present, for example, in the same layer as the connection electrode 178 or the additional capacitance electrode 180, and preferably contains a conductive oxide such as ITO or IZO.
  • planarizing film 176 and the passivation film 196 do not overlap with the insulating film 124 in the example shown in FIG. 6, the planarizing film 176 may overlap with part of the insulating film 124 as shown in FIG. However, it may overlap with all of the plurality of grooves 126. Further, as shown in FIG. 10, the passivation film 196 may overlap with part of the insulating film 124, and although not shown, it may overlap with all of the plurality of grooves 126.
  • the cross-sectional shape of the groove 126 of the insulating film 124 does not have to be a strict polygon. For example, as shown in the enlarged view (FIG. 11) of the region surrounded by the dotted line in FIG. May be formed.
  • the insulating film 124 may be formed so that the top of the insulating film 124 located on the interlayer film 174 is also rounded.
  • the cross-sectional shape of the wiring 112 in the wiring region 120 is constituted by a plurality of straight portions, and the adjacent straight portions have different vector directions.
  • the wiring 112 has a plurality of bending points. Therefore, when the wiring region 120 is bent to deform the display device 100, not only the deformation of the linear portion but also the change in angle between the vectors of two adjacent linear portions contributes to the deformation of the display device 100. be able to. Therefore, the force applied to the wiring 112 at the time of deformation of the display device 100 is delocalized, and destruction of the wiring 112 can be prevented. Accordingly, the occurrence of defects due to the disconnection of the wiring 112 can be suppressed, and high reliability can be given to the display device 100.
  • FIGS. 12A to 20 a method for manufacturing the flexible display device 100 will be described with reference to FIGS. 12A to 20.
  • the one on the left shows the pixel 104 in the display area 106 and corresponds to a part of the cross-sectional view of FIG.
  • the drawing on the right side is a cross-sectional view of a part of the wiring region 120, which corresponds to a part of the cross-sectional view of FIG. Description of the same or similar configuration as the first embodiment may be omitted.
  • the substrate 102 is formed on the support substrate 118 (FIG. 12A).
  • the support substrate 118 contains glass, quartz or the like, and its size and thickness can be arbitrarily selected.
  • a glass plate having a size of 68 cm ⁇ 88 cm, 110 cm ⁇ 130 cm, 150 cm ⁇ 185 cm, or 220 cm ⁇ 250 cm can be used as the support substrate 118.
  • the thickness of the support substrate 118 can be arbitrarily selected in the range of 0.1 mm to 10 mm, and is typically 0.5 mm to 0.7 mm.
  • the substrate 102 is an insulating film exhibiting flexibility, and can include a material selected from polymeric materials exemplified by polyimide, polyamide, polyester, and polycarbonate.
  • the substrate 102 is formed by applying a wet film forming method such as a printing method, an inkjet method, a spin coating method, a dip coating method, or a laminating method. When flexibility is not given to the display device 100, the formation of the substrate 102 may be omitted.
  • an undercoat 160 is formed on the substrate 102 (FIG. 12A).
  • the undercoat 160 is provided in both the display area 106 and the wiring area 120.
  • FIG. 12A shows a form in which the undercoat 160 is composed of a single layer, the undercoat 160 may have a three-layer structure as described in the first embodiment.
  • the undercoat 160 can be formed using a chemical vapor deposition (CVD) method or a sputtering method.
  • CVD chemical vapor deposition
  • a light shielding film that blocks visible light may be provided in a region where a transistor is formed.
  • a semiconductor film 162 is formed on the undercoat 160 (FIG. 12A).
  • the semiconductor film 162 may be formed by a CVD method using a silane gas or the like as a raw material.
  • the obtained amorphous silicon may be crystallized by heat treatment or light irradiation with a laser or the like.
  • a resist mask (not shown) is formed in a region where the channel region 162a and the low concentration impurity region 162c of the semiconductor film 162 are formed, and doping (first doping) is performed on the semiconductor film 162 to form a source / drain region 162b.
  • Form FIG. 12A. Doping can be carried out by applying known methods.
  • a gate insulating film 164 is formed to cover the semiconductor film 162 (FIG. 12B).
  • the gate insulating film 164 is also provided on the undercoat 160 in the wiring region 120.
  • the gate insulating film 164 also includes one or more films containing silicon nitride or silicon oxide, and is formed by applying a CVD method or a sputtering method.
  • the gate electrode 166 and the capacitor electrode 172 are formed on the gate insulating film 164 by sputtering or CVD (FIG. 12B).
  • various scanning lines write control scanning line 140, initialization control scanning line 142, correction control scanning line 144, light emission control scanning line 148, reset control line 146, etc.
  • the metal contained in the gate electrode 166 and the capacitor electrode 172 include titanium, aluminum, copper, molybdenum, tungsten, tantalum, an alloy of these, and the like.
  • These electrodes and wirings may have a single-layer structure or a stacked structure. For example, a structure in which a metal having high conductivity such as copper or aluminum is sandwiched between metals having a high melting point such as molybdenum or titanium can be employed.
  • doping (second doping) is performed on the semiconductor film 162 by a known method using the gate electrode 166 as a mask.
  • a low concentration impurity region 162c is formed, and a channel region 162a overlapping with the gate electrode 166 is formed (FIG. 12C).
  • an interlayer film 174 is formed over the gate electrode 166 and the capacitor electrode 172 (FIG. 12C). Interlayer film 174 is also formed in interconnection region 120.
  • the interlayer film 174 also contains a material that can be used for the undercoat 160 and the gate insulating film 164, and is formed to have a single layer structure or a laminated structure by applying a CVD method or a sputtering method.
  • the interlayer film 174 and the gate insulating film 164 are etched to form an opening 210 reaching the source / drain region 162b (FIG. 13A). At this time, etching is simultaneously performed on the interlayer film 174 and the gate insulating film 164 located in the wiring region 120 to form the opening 212.
  • the undercoat 160 is exposed in the wiring region 120.
  • the exposed undercoat 160 in the wiring area 120 is etched to form an opening 214 for exposing the substrate 102 (FIG. 13B).
  • the openings 210, 212, and 214 can be formed, for example, by performing plasma etching in a gas containing a fluorine-containing hydrocarbon.
  • the insulating film 124 is formed in the wiring region 120.
  • the polymer described in the first embodiment is used as a basic skeleton, and a photosensitive resin (hereinafter, photosensitive resin) 200 is formed on the substrate 102 (FIG. 13C).
  • the photosensitive resin 200 is formed on the display area 106 and the wiring area 120 using a spin coating method, a printing method, an inkjet method, or the like.
  • the upper surface of the photosensitive resin 200 may be at a position lower than the upper surface of the photosensitive resin 200 in the area where the openings 212 and 214 do not exist.
  • the photomask 204 is a half tone mask or a gray tone mask which has a substrate 204 a which transmits light to be irradiated, and on which a light shielding portion 204 b and a semi-light transmitting portion 204 c are provided. A portion where neither the light shielding portion 204 b nor the semi-light transmitting portion 204 c is provided functions as a light transmitting portion, and the transmittance for the irradiation light is, for example, 75% to 100%, or 80% to 100%.
  • the light blocking portion 204b is a region that blocks the irradiation light, and the transmittance thereof is, for example, 0% or more and 5% or less, 0% or more and 2% or less, or 0% or more and 1% or less, and may be substantially 0%.
  • the semi-transparent portion 204c partially transmits the irradiation light and blocks a part. Therefore, the transmittance to the irradiation light is 20% or more and 60% or less, 30% or more and 50% or less, and typically 40%.
  • the photo mask is formed so that the semitransparent portion 204c overlaps the region where the groove 126 is provided, the light shielding portion 204b overlaps the region where the groove 126 is not formed although the insulating film 124 is provided, and the light transmission portion overlaps the region where the insulating film 124 is not formed.
  • the semi-translucent part 204 c when the substrate 102 is exposed in the groove 126, the semi-translucent part 204 c is not provided, and a photo is emitted so that the region where the groove 126 is to be formed is transmitted through the translucent part.
  • the mask 204 may be designed and arranged.
  • a metal film is formed on the substrate 102, and etching is performed to form the source / drain electrodes 168 and 170 connected to the source / drain region 162b.
  • the wiring 112 in contact with the film 124 is formed (FIG. 14B).
  • the first signal line 136, the second signal line 138, the high potential power supply line 130, the low potential power supply line 134, and the current supply line 132 may be formed.
  • the drive transistor DRT and the storage capacitor Cs are formed by the process up to this point.
  • the current supply line 132 is formed on the interlayer film 174, and the second interlayer film is formed thereon, and then the first signal line 136, the second signal line 138, the high potential power supply line 130, and the low potential
  • the power supply line 134 may be formed simultaneously with the wiring 112 and the source / drain electrodes 168 and 170.
  • a planarization film 176 is formed to cover the drive transistor DRT, the storage capacitor Cs, and the like (FIG. 14B).
  • the planarizing film 176 contains a polymer material such as epoxy resin, acrylic resin, polyimide, polyester, polycarbonate, etc., and can be formed by applying a spin coating method, an ink jet method, a printing method, a dip coating method, or the like. Thereafter, the planarizing film 176 is etched to form an opening reaching the source / drain electrode 170, and the unnecessary planarizing film 176 is appropriately removed in the wiring region 120 to expose a part of the wiring 112 (see FIG. Figure 14C).
  • connection electrode 178 is formed so as to cover the opening for exposing the source / drain electrode 168, and the additional capacitance electrode 180 is formed on the flattening film 176 (FIG. 14C).
  • a protective conductive film 188 is simultaneously formed on the wiring 112 (see FIG. 6).
  • the connection electrode 178, the additional capacitance electrode 180, and the protective conductive film 188 can be formed, for example, by sputtering a conductive oxide.
  • a storage capacitor insulating film 182 is formed so as to cover the connection electrode 178, the storage capacitor electrode 180, and the protective conductive film 188 (FIG. 15A, FIG. 6).
  • the additional capacitance insulating film 182 can also contain an inorganic compound such as silicon nitride or silicon oxide, and can be formed by applying a CVD method or a sputtering method.
  • the additional capacitance insulating film 182 has an opening that exposes a part of the top surface of the connection electrode 178. In this opening, electrical connection between the pixel electrode 190 of the light emitting element OLED and the connection electrode 178 is performed.
  • the pixel electrode 190 is formed using a sputtering method or a CVD method so as to be in contact with the connection electrode 178 and to overlap with the additional capacitance electrode 180. (FIG. 15A). Thereafter, a partition wall 184 is formed to cover the end of the pixel electrode 190 (FIG. 15B).
  • the partition wall 184 can be formed using a polymer material such as an epoxy resin or an acrylic resin, and using a spin coating method, an inkjet method, or the like.
  • the partition wall 184 can absorb a difference in level due to the pixel electrode 190 and the like, and electrically insulate the pixel electrodes 190 of the adjacent pixels 104 from each other.
  • the EL layer 192 and the counter electrode 194 of the light emitting element OLED are formed so as to cover the pixel electrode 190 and the partition 184 (FIG. 16A).
  • the EL layer 192 is formed by applying a dry film formation method such as an inkjet method, a printing method, or a vapor deposition method.
  • the counter electrode 194 can also be formed using a sputtering method or an evaporation method.
  • a passivation film 196 is formed. As shown in FIG. 5, when the passivation film 196 has a three-layer structure, first, the first layer 196a is formed to cover the counter electrode 194 (FIG. 16A).
  • the first layer 196a contains an inorganic material such as silicon nitride or silicon oxide, for example, and is formed by applying a CVD method or a sputtering method.
  • the first layer 196 a can be provided so as to overlap with the wiring 112 and may be formed so as to cover the protective conductive film 188 although not shown.
  • the second layer 196 b is formed.
  • the second layer 196 b may be formed to have a flat surface so as to absorb unevenness due to the partition wall 184 and to provide a flat surface as shown in FIG. 16B.
  • the second layer 196 b can be formed by a printing method, an inkjet method, a spin coating method, or the like.
  • the oligomer serving as a raw material of the resin described in the first embodiment is atomized or gasified under reduced pressure, sprayed onto the first layer 196a, and then the second layer 196b is formed by polymerizing the oligomer. You may form.
  • the second layer 196 b is preferably formed so as not to cover the terminal 128. In the example shown in FIG.
  • the second layer 196 b is provided such that its end is farther from the terminal 128 than the end of the planarization film 176. That is, the second layer 196 b is formed such that the entire second layer 196 b overlaps with the planarization film 176.
  • a third layer 196c is formed in contact with the second layer 196b (FIG. 17).
  • the third layer 196c can comprise the materials available for the first layer 196a and can be formed in a manner applicable to the formation of the first layer 196a.
  • the third layer 196 c may also be formed to cover the protective conductive film 188.
  • a resin mask 216 is formed to cover the display region 106 and a part of the wiring region 120 (FIG. 17), and the first layer 196a exposed from the resin mask 216 is used.
  • the three layers 196c are removed by etching (FIG. 18). Although not shown, this exposes the protective conductive film 188 at the terminal 128.
  • the cap film 220 is disposed via the adhesive layer 218 so as to cover the display area 106 and the wiring area 120 (FIG. 19).
  • the cap film 220 can include a polyester such as poly (ethylene terephthalate), poly (ethylene naphthalate), a polyolefin such as polyethylene or polypropylene, a polymer such as polycarbonate, polyacrylate, or the like.
  • the cap film 220 can be formed by a lamination method or a wet film formation method.
  • the surface of the cap film 220 may be provided with a fluorine-containing polymer film such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene, or a polymer film having low gas permeability such as polyvinylidene chloride.
  • PVDF polyvinylidene fluoride
  • a polymer film having low gas permeability such as polyvinylidene chloride.
  • a light source such as a laser light source or a flash lamp to reduce the adhesion between the support substrate 118 and the substrate 102.
  • the support substrate 118 is physically peeled along the interface shown by the arrow in FIG. 19, that is, the interface between the support substrate 118 and the substrate 102. Thereby, the bottom surface of the substrate 102 is exposed.
  • the base film 222 is fixed to the bottom of the substrate 102 as an optional configuration.
  • the base film 222 can be fixed using a laminating method.
  • an adhesive layer may be used.
  • Base film 222 can include materials that can be used for cap film 220.
  • the flexible display device 100 can be manufactured by the above process.
  • the display device 100 can be manufactured by using a normal semiconductor manufacturing process. Therefore, by applying the present embodiment, it is possible to provide a highly reliable display device and a flexible display device without burdening the process.
  • an EL display device is mainly illustrated as a disclosed example
  • an electronic paper type display having another self-light emitting display device, a liquid crystal display device, or an electrophoretic element as another application example Devices include any flat panel type display device. Moreover, it is applicable without particular limitation from medium size to large size.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This display device comprises: a substrate (102) which has a display region (106) and a wiring region (120); a pixel (104) on the display region (106); an insulating film (124) which is in contact with the substrate (102) on the wiring region (120), and which contains an organic compound, while being provided with a groove (126); and a wiring line (112) which is positioned on the insulating film (124) and is in contact with the insulating film (124), while extending from the display region (106) to an end of the substrate (102). The wiring line (112) intersects with the groove (126). The wiring line (112) may be in contact with the substrate (102) in the groove (126). The pixel (104) may have a transistor which comprises a gate insulating film (164); and in this case, the gate insulating film (164) extends to the wiring region (120) and the insulating film (124) covers a part of the gate insulating film (164).

Description

表示装置、および表示装置の作製方法Display device and method of manufacturing display device
 本発明の実施形態の一つは、表示装置、例えば有機発光素子を表示素子として有する表示装置とその製造方法に関する。 One embodiment of the present invention relates to a display device, for example, a display device having an organic light emitting element as a display element, and a method of manufacturing the same.
 表示装置の一例として、液晶表示装置や有機EL(Electroluminescence)表示装置が挙げられる。これらの表示装置は、基板上に形成された複数の画素の各々に表示素子として液晶素子や有機発光素子(以下、発光素子)を有している。液晶素子や発光素子は一対の電極(陰極、陽極)間に液晶性を示す化合物を含む層、あるいは発光性有機化合物を含む層(以下、電界発光層、あるいはEL層)を有しており、電極間に電圧を印加する、あるいは電流を供給することで駆動される。 Examples of the display device include a liquid crystal display device and an organic EL (Electroluminescence) display device. These display devices each have a liquid crystal element or an organic light emitting element (hereinafter, light emitting element) as a display element in each of a plurality of pixels formed on a substrate. A liquid crystal element or a light emitting element has a layer containing a compound exhibiting liquid crystallinity, or a layer containing a light emitting organic compound (hereinafter referred to as an electroluminescent layer or an EL layer), between a pair of electrodes (cathode and anode) It is driven by applying a voltage or supplying a current between the electrodes.
 基板として可撓性を有する基板を用いることで、表示装置全体に可撓性を付与することができる。これにより、湾曲した形状を有する表示装置や、ユーザが自由に変形可能な表示装置が提供される。表示装置を湾曲させる場合、特許文献1に開示されているように、表示に関与しない部分が表示領域と重なるように基板を折り曲げることで、見かけ上、表示領域の面積割合が増大し、デザイン性に優れた表示装置を提供することができる。 By using a flexible substrate as the substrate, flexibility can be given to the entire display device. Thereby, a display device having a curved shape and a display device which can be freely deformed by the user can be provided. When the display device is curved, the area ratio of the display area is apparently increased by bending the substrate so that the portion not involved in the display overlaps the display area as disclosed in Patent Document 1, and the designability is improved. Can provide a superior display device.
特開2016-126041号公報JP, 2016-126041, A
 本発明の実施形態の一つは表示装置である。この表示装置は、表示領域と配線領域を有する基板、表示領域上の画素、配線領域上で基板と接し、有機化合物を含み、溝を有する絶縁膜、および絶縁膜の上に位置し、絶縁膜と接し、表示領域から基板の端部へ延伸する配線を有する。配線は溝と交差する。 One of the embodiments of the present invention is a display device. The display device includes: a substrate having a display region and a wiring region, a pixel on the display region, a substrate in contact with the substrate on the wiring region, an organic compound, an insulating film having a groove, and an insulating film And a wiring extending from the display area to the edge of the substrate. The wiring intersects the groove.
 本発明の実施形態の一つは表示装置を作製する方法である。この方法は、表示領域と配線領域を有する基板上に、表示領域と配線領域と重なるアンダーコートを形成すること、表示領域のアンダーコート上に、半導体膜、ゲート電極、および半導体膜とゲート電極に挟まれるゲート絶縁膜を、ゲート絶縁膜が表示領域から配線領域に延伸するように形成すること、半導体膜、ゲート電極、および配線領域のゲート絶縁膜と重なる層間膜を形成すること、アンダーコート、ゲート絶縁膜、および層間膜を部分的に除去することによって配線領域で基板を露出させること、配線領域に、露出した基板と接する絶縁膜を形成すること、絶縁膜に溝を形成すること、および溝と交差する配線を形成することを含む。 One of the embodiments of the present invention is a method of manufacturing a display device. In this method, an undercoat that overlaps the display area and the wiring area is formed on a substrate having the display area and the wiring area, a semiconductor film, a gate electrode, and a semiconductor film and a gate electrode on the undercoat of the display area. Forming a gate insulating film to be sandwiched such that the gate insulating film extends from the display region to the wiring region, forming an interlayer film overlapping the semiconductor film, the gate electrode, and the gate insulating film of the wiring region, an undercoat, Exposing the substrate in the wiring region by partially removing the gate insulating film and the interlayer film, forming an insulating film in contact with the exposed substrate in the wiring region, forming a trench in the insulating film, Forming a wire that intersects the trench.
本発明の実施形態の表示装置の模式的上面図。FIG. 1 is a schematic top view of a display device according to an embodiment of the present invention. 本発明の実施形態の表示装置の模式的側面図。FIG. 1 is a schematic side view of a display device according to an embodiment of the present invention. 本発明の実施形態の表示装置の模式的上面図。FIG. 1 is a schematic top view of a display device according to an embodiment of the present invention. 本発明の実施形態の表示装置の模式的上面図。FIG. 1 is a schematic top view of a display device according to an embodiment of the present invention. 本発明の実施形態の表示装置の画素の等価回路の一例。6 illustrates an example of an equivalent circuit of a pixel of a display device according to an embodiment of the present invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の模式的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing of the display apparatus of embodiment of this invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention. 本発明の実施形態の表示装置の作製方法を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the display device of the embodiment of the present invention.
 以下、本発明の各実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. However, the present invention can be implemented in various modes without departing from the scope of the present invention, and the present invention is not interpreted as being limited to the description of the embodiments exemplified below.
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。 Although the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part in comparison with the actual embodiment in order to clarify the explanation, the drawings are merely an example, and the interpretation of the present invention is limited. It is not something to do. In the present specification and the drawings, elements having the same functions as those described with reference to the drawings in the drawings may be denoted by the same reference numerals, and overlapping descriptions may be omitted.
 本発明において、ある一つの膜に対してエッチングや光照射を行って複数の膜を形成した場合、これら複数の膜は異なる機能、役割を有することがある。しかしながら、これら複数の膜は同一の工程で同一層として形成された膜に由来し、同一の層構造、同一の材料を有する。したがって、これら複数の膜は同一層に存在しているものと定義する。 In the present invention, when a plurality of films are formed by performing etching or light irradiation on a certain film, the plurality of films may have different functions and roles. However, the plurality of films are derived from the film formed as the same layer in the same step, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
 本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。 In the present specification and claims, when expressing an aspect in which another structure is disposed on a certain structure, in the case where it is simply referred to as “above”, in a certain structure, unless otherwise specified. It includes both the case where another structure is arranged immediately above and the case where another structure is arranged above another structure via another structure so as to be in contact with each other.
 本明細書および請求項において、「ある構造体が他の構造体から露出するという」という表現は、ある構造体の一部が他の構造体によって覆われていない態様を意味し、この他の構造体によって覆われていない部分は、さらに別の構造体によって覆われる態様も含む。 In the present specification and claims, the expression "a certain structure is exposed from another structure" means an aspect in which a part of a certain structure is not covered by another structure. The part not covered by the structure also includes the aspect covered by another structure.
(第1実施形態)
[1.全体構成]
 本発明の実施形態の一つである表示装置100の構造を説明する。図1に表示装置100の上面模式図を示す。表示装置100は基板102を有し、その上にパターニングされた種々の絶縁膜、半導体膜、導電膜を有する。これらの膜を適宜組み合わせることにより、複数の画素104や画素104を駆動するための走査線側駆動回路108が形成される。各画素104は色情報を与える最小単位であり、後述するように表示素子を駆動するための画素回路を含む領域である。複数の画素104は周期的に配置され、表示領域106を定義する。以下、表示素子として発光素子を用いた例について説明する。
First Embodiment
[1. overall structure]
The structure of the display device 100 which is one of the embodiments of the present invention will be described. A schematic top view of the display device 100 is shown in FIG. The display device 100 has a substrate 102, and has various insulating films, semiconductor films, and conductive films patterned thereon. By appropriately combining these films, a scan line driver circuit 108 for driving the plurality of pixels 104 and the pixels 104 is formed. Each pixel 104 is a minimum unit for providing color information, and is an area including a pixel circuit for driving a display element as described later. The plurality of pixels 104 are periodically arranged to define a display area 106. Hereinafter, an example in which a light emitting element is used as a display element will be described.
 走査線側駆動回路108は表示領域106の周辺に配置される。表示領域106や走査線側駆動回路108からは配線112が基板102の端部へ延び、配線は基板102の端部付近で露出されて端子128(後述)を形成する。これらの端子128はフレキシブル印刷回路基板(FPC)などのコネクタ114と電気的に接続される。ここで示した例では、半導体基板上に形成された集積回路を有する駆動IC116がコネクタ114上にさらに搭載される。駆動IC116やコネクタ114、配線112を介して外部回路(図示せず)から映像信号や電源が走査線側駆動回路108や各画素104に伝送される。これらの映像信号や電源に基づいて画素104が制御、駆動され、表示領域106上に映像が表示される。駆動回路や駆動IC116の態様については図1に示す態様に限られず、例えば駆動IC116は基板102上に実装されてもよく、駆動IC116の機能の一部を駆動回路として基板102上に形成してもよい。 The scanning line side drive circuit 108 is disposed around the display area 106. Wiring 112 extends from the display area 106 and the scanning line drive circuit 108 to the end of the substrate 102, and the wiring is exposed near the end of the substrate 102 to form a terminal 128 (described later). These terminals 128 are electrically connected to a connector 114 such as a flexible printed circuit board (FPC). In the example shown here, a drive IC 116 having an integrated circuit formed on a semiconductor substrate is further mounted on the connector 114. Video signals and power are transmitted from the external circuit (not shown) to the scan line driver circuit 108 and each pixel 104 through the driver IC 116, the connector 114, and the wiring 112. The pixels 104 are controlled and driven based on these video signals and power sources, and a video is displayed on the display area 106. The mode of the drive circuit and the drive IC 116 is not limited to the mode shown in FIG. 1. For example, the drive IC 116 may be mounted on the substrate 102, and a part of the functions of the drive IC 116 is formed on the substrate 102 as a drive circuit. It is also good.
 基板102として可撓性を有する基板を用いることで、表示装置100に対して可撓性を付与することができ、表示装置100を任意の形状に変形することができる。例えば、配線112が設けられる領域(以下、配線領域)120、すなわち表示領域106と基板102の端部との間の領域で表示装置100を折り曲げることができる。この時の三次元構造の模式的側面図を図2に示す。図2に示すように、配線領域120とこの領域に設けられる配線112を屈曲させることで、基板102の端部やコネクタ114を表示領域106と重なるように配置することができる。この時、三次元構造を安定化させるためにスペーサ122を設けてもよい。このように表示装置100を変形することにより、表示領域106が占める見かけ上の面積の割合を大きくすることができ、デザイン性に優れた表示装置を提供することができる。 By using a flexible substrate as the substrate 102, flexibility can be given to the display device 100, and the display device 100 can be deformed into any shape. For example, the display device 100 can be bent in a region (hereinafter, a wiring region) 120 in which the wiring 112 is provided, that is, a region between the display region 106 and an end portion of the substrate 102. A schematic side view of the three-dimensional structure at this time is shown in FIG. As shown in FIG. 2, by bending the wiring region 120 and the wiring 112 provided in this region, the end portion of the substrate 102 and the connector 114 can be arranged so as to overlap with the display region 106. At this time, a spacer 122 may be provided to stabilize the three-dimensional structure. By deforming the display device 100 in this manner, the ratio of the apparent area occupied by the display region 106 can be increased, and a display device excellent in design can be provided.
 配線領域120の拡大上面図を図3A、図3Bに模式的に示す。配線112は表示領域106と基板102の端部の間に設けられる。図3Aに示すように、配線112は表示領域106や走査線側駆動回路108から基板102の端部に至るまで直線状に形成されてもよく、図3Bに示すように、平面視においてジグザグ形状を有するよう形成されてもよい。後者の場合、各配線112は複数の直線部を有し、隣接する直線部のベクトルの方向が異なる。 An enlarged top view of the wiring area 120 is schematically shown in FIGS. 3A and 3B. The wiring 112 is provided between the display area 106 and the edge of the substrate 102. As shown in FIG. 3A, the wiring 112 may be formed in a straight line from the display area 106 and the scanning line driver circuit 108 to the end of the substrate 102, and as shown in FIG. 3B, a zigzag shape in plan view It may be formed to have In the latter case, each wire 112 has a plurality of straight portions, and the directions of the vectors of the adjacent straight portions are different.
 詳細は後述するが、配線領域120には、配線112の下に絶縁膜124が設けられ、絶縁膜124には配線112と交差する一つ、あるいは複数の溝126が設けられる。この構成により、後述するように、配線領域120を屈曲しても配線112の断線を防止することができ、信頼性の高い表示装置を提供することが可能となる。 Although details will be described later, in the wiring region 120, the insulating film 124 is provided under the wiring 112, and the insulating film 124 is provided with one or a plurality of grooves 126 intersecting with the wiring 112. With this configuration, as described later, even if the wiring region 120 is bent, disconnection of the wiring 112 can be prevented, and a highly reliable display device can be provided.
[2.画素の構造]
2-1.画素回路
 上述したように、各画素104には、パターニングされた種々の絶縁膜や半導体膜、導電膜によって発光素子OLEDを含む画素回路が形成される。画素回路の構成は任意に選択することができ、その一例を等価回路として図4に示す。
[2. Pixel structure]
2-1. Pixel Circuit As described above, in each pixel 104, a pixel circuit including the light emitting element OLED is formed of various patterned insulating films, semiconductor films, and conductive films. The configuration of the pixel circuit can be arbitrarily selected, an example of which is shown in FIG. 4 as an equivalent circuit.
 図4の等価回路で示す画素回路は、発光素子OLEDに加え、駆動トランジスタDRT、発光制御トランジスタBCT、補正トランジスタCCT、初期化トランジスタIST、書込トランジスタSST、保持容量Cs、付加容量Cadを有している。容量Celは独立した容量素子ではなく、発光素子OLEDの寄生容量である。高電位電源線130には高電位PVDDが与えられ、この電位が電流供給線132を介して各列に配置される画素104に供給される。発光素子OLED、駆動トランジスタDRT、発光制御トランジスタBCT、補正トランジスタCCTは、高電位電源線130と低電位電源線134との間で直列に接続される。低電位電源線134には低電位PVSSが与えられる。 The pixel circuit shown by the equivalent circuit of FIG. 4 includes, in addition to the light emitting element OLED, a drive transistor DRT, a light emission control transistor BCT, a correction transistor CCT, an initialization transistor IST, a write transistor SST, a holding capacitance Cs, and an additional capacitance Cad. ing. The capacitance Cel is not an independent capacitance element but a parasitic capacitance of the light emitting element OLED. The high potential power supply line 130 is supplied with the high potential PVDD, and this potential is supplied to the pixels 104 arranged in each column via the current supply line 132. The light emitting element OLED, the drive transistor DRT, the light emission control transistor BCT, and the correction transistor CCT are connected in series between the high potential power supply line 130 and the low potential power supply line 134. Low potential power supply line 134 is supplied with low potential PVSS.
 駆動トランジスタDRTの一方の端子は発光制御トランジスタBCTと補正トランジスタCCTを介して高電位電源線130と電気的に接続され、他方の端子は発光素子OLEDと電気的に接続される。駆動トランジスタDRTのゲートは、初期化トランジスタISTを介して第1の信号線136と電気的に接続されるとともに、書込トランジスタSSTを介して第2の信号線138と電気的に接続される。第1の信号線136には初期化信号Viniが与えられ、第2の信号線138には映像信号Vsigが与えられる。初期化信号Viniは一定レベルの初期化電位を与える信号である。書込トランジスタSSTは、そのゲートに接続される書込制御走査線140に与えられる走査信号SGによって動作(オン/オフ)が制御される。初期化トランジスタISTのゲートは、初期化制御信号IGが与えられる初期化制御走査線142と接続され、初期化制御信号IGにより動作が制御される。書込トランジスタSSTがオン、初期化トランジスタISTがオフのとき、映像信号Vsigの電位が駆動トランジスタDRTのゲートに与えられる。一方、書込トランジスタSSTがオフ、初期化トランジスタISTがオンのとき、初期化信号Viniの電位が駆動トランジスタDRTのゲートに与えられる。 One terminal of the drive transistor DRT is electrically connected to the high potential power supply line 130 via the light emission control transistor BCT and the correction transistor CCT, and the other terminal is electrically connected to the light emitting element OLED. The gate of the drive transistor DRT is electrically connected to the first signal line 136 via the initialization transistor IST, and electrically connected to the second signal line 138 via the write transistor SST. The initialization signal Vini is applied to the first signal line 136, and the video signal Vsig is applied to the second signal line 138. The initialization signal Vini is a signal giving an initialization potential of a fixed level. Write transistor SST has its operation (on / off) controlled by scan signal SG applied to write control scan line 140 connected to its gate. The gate of the initialization transistor IST is connected to an initialization control scan line 142 to which an initialization control signal IG is applied, and the operation is controlled by the initialization control signal IG. When the write transistor SST is on and the initialization transistor IST is off, the potential of the video signal Vsig is applied to the gate of the drive transistor DRT. On the other hand, when the write transistor SST is off and the initialization transistor IST is on, the potential of the initialization signal Vini is applied to the gate of the drive transistor DRT.
 補正トランジスタCCTと発光制御トランジスタBCTのゲートにはそれぞれ、補正制御信号CGが印加される補正制御走査線144、発光制御信号BGが印加される発光制御走査線148が接続される。駆動トランジスタDRTの一方の端子には、補正トランジスタCCTを介し、リセット制御線146が接続される。リセット制御線146は、走査線側駆動回路108に設けられるリセットトランジスタRSTと接続される。リセットトランジスタRSTはリセット制御信号RGによって制御され、これによりリセット信号線150に与えられるリセット電位Vrstを補正トランジスタCCTを介して駆動トランジスタDRTの一方の端子に印加することができる。 A correction control scanning line 144 to which a correction control signal CG is applied and a light emission control scanning line 148 to which a light emission control signal BG is applied are connected to the gates of the correction transistor CCT and the light emission control transistor BCT, respectively. The reset control line 146 is connected to one terminal of the drive transistor DRT via the correction transistor CCT. The reset control line 146 is connected to a reset transistor RST provided in the scan line driver circuit 108. The reset transistor RST is controlled by the reset control signal RG, whereby the reset potential Vrst applied to the reset signal line 150 can be applied to one terminal of the drive transistor DRT via the correction transistor CCT.
 駆動トランジスタDRTの他方の端子とゲートとの間には、保持容量Csが設けられる。付加容量Cadの一方の端子は駆動トランジスタDRTの他方の端子に接続され、他方の端子が高電位電源線130に接続される。付加容量Cadは、他方の端子が低電位電源線134に接続されるように設けてもよい。保持容量Csと付加容量Cadは、映像信号Vsigを駆動トランジスタDRTのゲートに与えるとき、映像信号Vsigに応じたゲート-ソース間電圧Vgsを保持するために設けられる。 A storage capacitor Cs is provided between the other terminal of the drive transistor DRT and the gate. One terminal of the additional capacitance Cad is connected to the other terminal of the drive transistor DRT, and the other terminal is connected to the high potential power supply line 130. The additional capacitance Cad may be provided such that the other terminal is connected to the low potential power supply line 134. The storage capacitor Cs and the additional capacitor Cad are provided to hold a gate-source voltage Vgs according to the video signal Vsig when the video signal Vsig is applied to the gate of the drive transistor DRT.
 駆動IC116は、第1の信号線136と第2の信号線138に初期化信号Viniと映像信号Vsigをそれぞれ出力する。一方、走査線側駆動回路108は書込制御走査線140に走査信号SGを出力し、初期化制御走査線142に初期化制御信号IGを出力し、補正制御走査線144に補正制御信号CGを出力し、発光制御走査線148に発光制御信号BGを出力し、リセットトランジスタRSTのゲートにリセット制御信号RGを出力する。 The drive IC 116 outputs the initialization signal Vini and the video signal Vsig to the first signal line 136 and the second signal line 138, respectively. On the other hand, the scanning line drive circuit 108 outputs the scanning signal SG to the write control scanning line 140, outputs the initialization control signal IG to the initialization control scanning line 142, and outputs the correction control signal CG to the correction control scanning line 144. The light emission control signal BG is output to the light emission control scanning line 148, and the reset control signal RG is output to the gate of the reset transistor RST.
2-2.断面構造
 図5に表示装置100の模式的断面図を示す。図5では、基板102上に形成された隣接する三つの画素104の画素回路のうち、駆動トランジスタDRT、保持容量Cs、付加容量Cad、発光素子OLEDの断面構造が示されている。
2-2. Cross-Sectional Structure FIG. 5 shows a schematic cross-sectional view of the display device 100. As shown in FIG. FIG. 5 shows a cross-sectional structure of the drive transistor DRT, the storage capacitor Cs, the additional capacitor Cad, and the light emitting element OLED among the pixel circuits of the three adjacent pixels 104 formed on the substrate 102.
 画素回路に含まれる各素子はアンダーコート160を介し、基板102上に設けられる。基板102はガラスや石英、あるいはプラスチックを含むことができる。プラスチックを用いることで基板102に可撓性を付与することができる。プラスチックとしては、ポリイミドやポリアミド、ポリエステル、ポリカルボナートなどの高分子が挙げられ、中でも耐熱性の高いポリイミドが好適である。 Each element included in the pixel circuit is provided on the substrate 102 via the undercoat 160. The substrate 102 can include glass, quartz, or plastic. By using a plastic, the substrate 102 can have flexibility. Examples of the plastic include polymers such as polyimide, polyamide, polyester, polycarbonate and the like, and among them, polyimide having high heat resistance is preferable.
 アンダーコート160は図5に示すように単層構造を有していてもよく、複数の膜から構成されていてもよい。複数の膜を用いる場合、酸化シリコンを含む膜、窒化シリコンを含む膜、および酸化シリコンを含む膜を順次基板102上に形成すればよい。 The undercoat 160 may have a single layer structure as shown in FIG. 5 or may be composed of a plurality of films. In the case of using a plurality of films, a film containing silicon oxide, a film containing silicon nitride, and a film containing silicon oxide may be sequentially formed over the substrate 102.
 駆動トランジスタDRTは、半導体膜162、ゲート絶縁膜164、ゲート電極166、ソース/ドレイン電極168、170を含む。ゲート絶縁膜164はゲート電極166と半導体膜162によって挟まれる。ゲート電極166は、ゲート絶縁膜164を介して半導体膜162の少なくとも一部と交差するように配置され、半導体膜162のゲート電極166が重なる領域にチャネル領域162aが形成される。半導体膜162はさらに、チャネル領域162aを挟持し、不純物がドープされた低濃度不純物領域162c、およびこれらを挟持し、不純物がドープされたソース/ドレイン領域162bを有する。低濃度不純物領域162cの不純物の濃度は、ソース/ドレイン領域162bのそれよりも低い。図5に示した例では駆動トランジスタDRTはトップゲート型のトランジスタであるが、画素回路に含まれるトランジスタの構造に制約は無く、ボトムゲート型トランジスタでも良い。また、ソース/ドレイン電極168、170と半導体膜162との上下関係にも制約は無い。 The driving transistor DRT includes a semiconductor film 162, a gate insulating film 164, a gate electrode 166, and source / drain electrodes 168 and 170. The gate insulating film 164 is sandwiched between the gate electrode 166 and the semiconductor film 162. The gate electrode 166 is disposed to intersect at least a part of the semiconductor film 162 with the gate insulating film 164 interposed therebetween, and a channel region 162 a is formed in a region where the gate electrode 166 of the semiconductor film 162 overlaps. The semiconductor film 162 further includes a channel region 162a, a low concentration impurity region 162c doped with an impurity, and a source / drain region 162b doped with an impurity. The impurity concentration of the low concentration impurity region 162c is lower than that of the source / drain region 162b. In the example shown in FIG. 5, the drive transistor DRT is a top gate type transistor, but there is no limitation on the structure of the transistor included in the pixel circuit, and it may be a bottom gate type transistor. In addition, the upper / lower relationship between the source / drain electrodes 168 and 170 and the semiconductor film 162 is not limited.
 ゲート絶縁膜164を介し、ゲート電極166と同一の層に存在する容量電極172が一方のソース/ドレイン領域162bと重なるように設けられる。ゲート電極166、容量電極172の上には層間膜174が設けられる。層間膜174とゲート絶縁膜164には、半導体膜162に達する開口が形成され、この開口を覆うようにソース/ドレイン電極168、170が配置される。ソース/ドレイン電極170の一部は、層間膜174を介してソース/ドレイン領域162bの一部と容量電極172と重なり、ソース/ドレイン領域162bの一部、ゲート絶縁膜164の一部、容量電極172、層間膜174、およびソース/ドレイン電極170の一部によって保持容量Csが形成される。 A capacitor electrode 172 present in the same layer as the gate electrode 166 is provided to overlap with one of the source / drain regions 162 b via the gate insulating film 164. An interlayer film 174 is provided on the gate electrode 166 and the capacitor electrode 172. An opening reaching the semiconductor film 162 is formed in the interlayer film 174 and the gate insulating film 164, and source / drain electrodes 168 and 170 are disposed to cover the opening. A part of the source / drain electrode 170 overlaps with a part of the source / drain region 162 b and the capacitor electrode 172 through the interlayer film 174, and a part of the source / drain region 162 b, a part of the gate insulating film 164, a capacitor electrode A storage capacitance Cs is formed by the portion 172, the interlayer film 174, and a part of the source / drain electrode 170.
 駆動トランジスタDRTや保持容量Csの上にはさらに平坦化膜176が設けられる。平坦化膜176は、ソース/ドレイン電極170に達する開口を有し、この開口と平坦化膜176の上面の一部を覆う接続電極178がソース/ドレイン電極170と接するように設けられる。平坦化膜176上にはさらに付加容量電極180が設けられる。接続電極178や付加容量電極180は同時に形成してもよく、異なる材料を有するように異なる工程で形成してもよい。前者の場合、接続電極178や付加容量電極180は同一の層に存在し、同一の組成を有する。 A planarization film 176 is further provided on the drive transistor DRT and the storage capacitor Cs. The planarization film 176 has an opening reaching the source / drain electrode 170, and a connection electrode 178 covering the opening and a part of the top surface of the planarization film 176 is provided in contact with the source / drain electrode 170. An additional capacitance electrode 180 is further provided on the planarization film 176. The connection electrode 178 and the additional capacitance electrode 180 may be formed at the same time, or may be formed in different steps so as to have different materials. In the former case, the connection electrode 178 and the additional capacitance electrode 180 exist in the same layer and have the same composition.
 接続電極178と付加容量電極180を覆うように付加容量絶縁膜182が形成される。付加容量絶縁膜182は、平坦化膜176の開口では接続電極178の一部を覆わず、接続電極178の上面を露出する。これにより、接続電極178を介し、その上に設けられる画素電極190とソース/ドレイン電極170間の電気的接続が可能となる。付加容量絶縁膜182には、その上に設けられる隔壁184と平坦化膜176の接触を許容するための開口186を設けてもよい。接続電極178や開口186の形成は任意である。接続電極178を設けることにより、その後のプロセスにおいてソース/ドレイン電極168の表面の腐食を防止することができ、ソース/ドレイン電極168のコンタクト抵抗の増大を防止することができる。開口186を通して平坦化膜176中の不純物を除去することができ、これによって画素回路やこれに含まれる発光素子OLEDの信頼性を向上させることができる。 An additional capacitance insulating film 182 is formed to cover the connection electrode 178 and the additional capacitance electrode 180. The additional capacitance insulating film 182 does not cover a part of the connection electrode 178 at the opening of the planarization film 176, and exposes the upper surface of the connection electrode 178. Thereby, the electrical connection between the pixel electrode 190 and the source / drain electrode 170 provided thereon is enabled via the connection electrode 178. The additional capacitance insulating film 182 may be provided with an opening 186 for permitting contact between the partition 184 provided thereon and the planarizing film 176. The formation of the connection electrode 178 and the opening 186 is optional. By providing the connection electrode 178, corrosion of the surface of the source / drain electrode 168 can be prevented in a subsequent process, and an increase in contact resistance of the source / drain electrode 168 can be prevented. Impurities in the planarization film 176 can be removed through the opening 186, which can improve the reliability of the pixel circuit and the light emitting element OLED included in the pixel circuit.
 付加容量絶縁膜182上には、接続電極178と付加容量電極180を覆うように、画素電極190が設けられる。付加容量絶縁膜182は付加容量電極180と画素電極190によって挟持され、この構造によって付加容量Cadが形成される。画素電極190は、付加容量Cadと発光素子OLEDによって共有される。 A pixel electrode 190 is provided on the additional capacitance insulating film 182 so as to cover the connection electrode 178 and the additional capacitance electrode 180. The storage capacitor insulating film 182 is sandwiched between the storage capacitor electrode 180 and the pixel electrode 190, and a storage capacitor Cad is formed by this structure. The pixel electrode 190 is shared by the additional capacitance Cad and the light emitting element OLED.
 画素電極190の上には、画素電極190の端部を覆う隔壁184が設けられる。隔壁184により、画素電極190に起因する凹凸が緩和され、この上に設けられる電界発光層(以下、EL層)192や対向電極194の切断を防止することができる。隔壁184と画素電極190を覆うようにEL層192、およびEL層192を覆う対向電極194が設けられる。発光素子OLEDからの発光を画素電極190を通して取り出す場合には、画素電極190は可視光を透過するように構成される。この場合、具体的な材料としてはインジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)などの可視光を透過可能な導電性酸化物が用いられる。一方、発光素子OLEDからの発光を対向電極194を通して取り出す場合には、画素電極190は可視光を反射するように構成される。この場合、画素電極190は銀やアルミニウムなどの可視光の反射率が高い金属を含む。あるいは画素電極190は、導電性酸化物を含む膜と反射率が高い金属を含む膜の積層構造を有してもよい。例えば、導電性酸化物を含む第1の導電膜、銀、アルミニウムなどの金属を含む第2の導電膜、導電性酸化物を含む第3の導電膜の積層構造を採用することができる。 A partition 184 covering the end of the pixel electrode 190 is provided on the pixel electrode 190. By the partition wall 184, unevenness due to the pixel electrode 190 can be alleviated, and cutting of the electroluminescent layer (hereinafter, EL layer) 192 and the counter electrode 194 provided thereon can be prevented. An EL layer 192 and a counter electrode 194 covering the EL layer 192 are provided to cover the partition wall 184 and the pixel electrode 190. When light emitted from the light emitting element OLED is extracted through the pixel electrode 190, the pixel electrode 190 is configured to transmit visible light. In this case, as a specific material, a conductive oxide capable of transmitting visible light such as indium-tin oxide (ITO) or indium-zinc oxide (IZO) is used. On the other hand, when light emitted from the light emitting element OLED is taken out through the counter electrode 194, the pixel electrode 190 is configured to reflect visible light. In this case, the pixel electrode 190 contains a metal such as silver or aluminum having a high reflectance of visible light. Alternatively, the pixel electrode 190 may have a stacked structure of a film containing a conductive oxide and a film containing a metal with high reflectance. For example, a stacked structure of a first conductive film containing a conductive oxide, a second conductive film containing a metal such as silver or aluminum, and a third conductive film containing a conductive oxide can be employed.
 EL層192の構造は任意であり、EL層192は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、電子ブロッキング層、正孔ブロッキング層、励起子ブロッキング層などの機能層を適宜組み合わせて形成することができる。EL層192の構造はすべての画素104間で同一でもよく、隣接する画素104間で一部の構造が異なってもよい。例えば隣接する画素104間で発光層の構造、あるいは材料が異なり、他の層は同一の構造を有するよう、画素104を構成してもよい。図5では、見やすさを考慮し、代表的な機能層としてホール輸送層192a、発光層192b、電子輸送層192cが示されている。 The structure of the EL layer 192 is arbitrary, and the EL layer 192 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, a hole blocking layer, an exciton blocking layer, etc. These functional layers can be combined as appropriate. The structure of the EL layer 192 may be the same between all the pixels 104, and some structures may differ between the adjacent pixels 104. For example, the pixels 104 may be configured such that the structure or material of the light emitting layer is different between adjacent pixels 104, and the other layers have the same structure. In FIG. 5, a hole transport layer 192a, a light emitting layer 192b, and an electron transport layer 192c are shown as representative functional layers in consideration of easy viewing.
 発光素子OLEDからの発光を画素電極190を通して取り出す場合には、対向電極194は可視光を反射するように構成される。具体的には、対向電極194はアルミニウム、銀、マグネシウムなどの反射率の高い金属やこれらの合金(例えばマグネシウムと銀の合金)を用いて形成される。一方、発光素子OLEDからの発光を対向電極194を通して取り出す場合には、可視光を透過可能な導電性酸化物を含むように画素電極190が構成される。あるいは、上述した金属や合金の膜を可視光が透過可能な厚さで形成してもよい。この場合、可視光に対して透光性を示す導電性酸化物の膜をさらに形成してもよい。 When light emitted from the light emitting element OLED is extracted through the pixel electrode 190, the counter electrode 194 is configured to reflect visible light. Specifically, the counter electrode 194 is formed using a metal with high reflectance such as aluminum, silver, magnesium or an alloy thereof (for example, an alloy of magnesium and silver). On the other hand, when light emitted from the light emitting element OLED is extracted through the counter electrode 194, the pixel electrode 190 is configured to include a conductive oxide capable of transmitting visible light. Alternatively, the above-described metal or alloy film may be formed to a thickness that allows visible light to pass. In this case, a conductive oxide film showing translucency to visible light may be further formed.
 任意の構成として、対向電極194上にはパッシベーション膜196が配置される。パッシベーション膜196の構造も任意に決定することができ、単層構造、積層構造のいずれを採用してもよい。積層構造を有する場合、例えばケイ素含有無機化合物を含む第1の層196a、樹脂を含む第2の層196b、ケイ素含有無機化合物を含む第3の層196cが順次積層した構造を採用することができる。ケイ素含有無機化合物としては窒化ケイ素や酸化ケイ素が挙げられる。樹脂としてはエポキシ樹脂やアクリル樹脂、ポリエステル、ポリカルボナートなどが挙げられる。 A passivation film 196 is disposed on the counter electrode 194 as an optional configuration. The structure of the passivation film 196 can be arbitrarily determined, and either a single layer structure or a laminated structure may be employed. In the case of having a stacked structure, for example, a structure in which a first layer 196a containing a silicon-containing inorganic compound, a second layer 196b containing a resin, and a third layer 196c containing a silicon-containing inorganic compound can be sequentially stacked can be employed. . Examples of the silicon-containing inorganic compound include silicon nitride and silicon oxide. Examples of the resin include epoxy resin, acrylic resin, polyester, polycarbonate and the like.
[3.配線領域の構造]
 図1の鎖線A-A´に沿った断面模式図を図6に示す。上述したように、表示領域106にはアンダーコート160、ゲート絶縁膜164、層間膜174が設けられる。これらは配線領域120にも延伸するように設けられるが、図6に示すように、これらの一部は配線領域120において除去される。すなわち、アンダーコート160、ゲート絶縁膜164、層間膜174はいずれも互いに重なる開口を有し、これらの開口において基板102が露出する。図6に示した例では、アンダーコート160の開口の全体がゲート絶縁膜164と層間膜174の開口と重なる。図示しないが、アンダーコート160、ゲート絶縁膜164、層間膜174の開口の側壁が同一平面上に存在するよう、これらの開口を形成してもよい。これらの開口を覆うように、絶縁膜124が設けられる。絶縁膜124はアンダーコート160、ゲート絶縁膜164、層間膜174の一部を覆う。
[3. Structure of wiring area]
FIG. 6 is a schematic cross-sectional view taken along the dashed-dotted line AA 'in FIG. As described above, the undercoat 160, the gate insulating film 164, and the interlayer film 174 are provided in the display region 106. These are provided so as to extend also in the wiring region 120, but some of these are removed in the wiring region 120 as shown in FIG. That is, the undercoat 160, the gate insulating film 164, and the interlayer film 174 all have openings overlapping each other, and the substrate 102 is exposed at these openings. In the example shown in FIG. 6, the entire opening of the undercoat 160 overlaps the opening of the gate insulating film 164 and the interlayer film 174. Although not shown, these openings may be formed so that the sidewalls of the openings of the undercoat 160, the gate insulating film 164, and the interlayer film 174 are coplanar. An insulating film 124 is provided to cover these openings. The insulating film 124 covers the undercoat 160, the gate insulating film 164, and part of the interlayer film 174.
 絶縁膜124は有機化合物を含み、有機化合物としては樹脂などの高分子が挙げられる。高分子は、アクリル樹脂、エポキシ樹脂、ポリイミド、ポリアミド、ポリエステル、ポリオレフィン、ポリカルボナート、ポリシロキサンなどがから選択され、鎖状構造を有していてもよく、分子間で架橋していてもよい。絶縁膜124には一つ、あるいは複数の溝126が設けられる。図3A、図3Bに示すように、溝126は基板102の短辺に平行に配置してもよく、短辺から傾くように配置してもよい。溝126の幅は、例えば100μmから2mm、100μmから1mm、あるいは200μmから500μmとすることができる。配線112は絶縁膜124上に設けられ、配線領域120において絶縁膜124と接し、図3A、図3Bに示すように溝126と交差する。したがって、配線112は溝126の側壁や底面とも接する。配線領域120において絶縁膜124が設けられれない領域では、層間膜174は配線112と接する。 The insulating film 124 contains an organic compound, and examples of the organic compound include polymers such as resin. The polymer is selected from acrylic resins, epoxy resins, polyimides, polyamides, polyesters, polyolefins, polycarbonates, polysiloxanes, etc., and may have a chain structure or may be crosslinked between molecules . The insulating film 124 is provided with one or more grooves 126. As shown in FIGS. 3A and 3B, the groove 126 may be disposed parallel to the short side of the substrate 102 or may be disposed to be inclined from the short side. The width of the groove 126 can be, for example, 100 μm to 2 mm, 100 μm to 1 mm, or 200 μm to 500 μm. The wiring 112 is provided on the insulating film 124, contacts the insulating film 124 in the wiring region 120, and intersects with the groove 126 as shown in FIGS. 3A and 3B. Therefore, the wiring 112 is also in contact with the side wall and the bottom of the groove 126. The interlayer film 174 is in contact with the wiring 112 in a region where the insulating film 124 is not provided in the wiring region 120.
 配線112は、図4に示す第1の信号線136、第2の信号線138、あるいは電流供給線132のいずれでも良い。配線112が第1の信号線136の場合、配線112は初期化信号Viniを伝送するように構成され、第2の信号線138の場合、配線112は映像信号Vsigを伝送するように構成され、電流供給線132の場合、高電位PVDDが伝送されるように構成される。配線112は、画素104に設けられるトランジスタのソース/ドレイン電極(例えば駆動トランジスタDRTのソース/ドレイン電極168、170)と同一の層内に存在してもよい。あるいは、配線112が電流供給線132の場合、ゲート電極166とソース/ドレイン電極168、170の間に図5では示されない電流供給線132を設け、この電流供給線132と同一の層内に存在する配線で配線112を形成してもよい。 The wiring 112 may be any of the first signal line 136, the second signal line 138, or the current supply line 132 shown in FIG. When the wiring 112 is the first signal line 136, the wiring 112 is configured to transmit the initialization signal Vini, and in the case of the second signal line 138, the wiring 112 is configured to transmit the video signal Vsig, In the case of the current supply line 132, the high potential PVDD is configured to be transmitted. The wiring 112 may be in the same layer as the source / drain electrodes of the transistor provided in the pixel 104 (eg, the source / drain electrodes 168 and 170 of the driving transistor DRT). Alternatively, when the wire 112 is a current supply line 132, a current supply line 132 not shown in FIG. 5 is provided between the gate electrode 166 and the source / drain electrodes 168 and 170, and exists in the same layer as the current supply line 132. The wiring 112 may be formed by the following wiring.
 絶縁膜124の厚さは任意に設定することができ、例えば図6に示すように、隣接する溝126間における厚さTは、アンダーコート160、ゲート絶縁膜164、層間膜174の合計膜厚よりも小さくてもよく、あるいは同一でも良い。この場合、図6に示すように、絶縁膜124は層間膜174と重なる領域において凸部を有してもよい。あるいは図7に示すように、厚さTはアンダーコート160、ゲート絶縁膜164、層間膜174の合計膜厚よりも大きくてもよい。溝126の深さにも制約は無く、例えば図8に示すように、溝126において基板102が露出するよう、溝126を設けてもよい。この場合、配線112は溝126において基板102と接する。 The thickness of the insulating film 124 can be set arbitrarily. For example, as shown in FIG. 6, the thickness T between adjacent grooves 126 is the total thickness of the undercoat 160, the gate insulating film 164, and the interlayer film 174. It may be smaller or the same. In this case, as shown in FIG. 6, the insulating film 124 may have a convex portion in a region overlapping with the interlayer film 174. Alternatively, as shown in FIG. 7, the thickness T may be larger than the total thickness of the undercoat 160, the gate insulating film 164, and the interlayer film 174. There is no restriction on the depth of the groove 126. For example, as shown in FIG. 8, the groove 126 may be provided to expose the substrate 102 in the groove 126. In this case, the wiring 112 is in contact with the substrate 102 in the groove 126.
 配線112上には絶縁膜が備えられ、配線112が保護される。例えば図6に示した例では、画素104に設けられる付加容量絶縁膜182が表示領域106から配線領域120へ延伸し、配線112と接するように、配線112上に配置される。配線112は基板102の端部付近まで延伸し、付加容量絶縁膜182から露出され、端子128を与える。端子128では、配線112を保護するための保護導電膜188が配線112上に設けられ、付加容量絶縁膜182は保護導電膜188の一部を覆う。保護導電膜188は、例えば接続電極178、あるいは付加容量電極180と同一の層内に存在し、好ましくはITOやIZOなどの導電性酸化物を含む。 An insulating film is provided on the wiring 112 and the wiring 112 is protected. For example, in the example illustrated in FIG. 6, the additional capacitance insulating film 182 provided in the pixel 104 extends from the display region 106 to the wiring region 120 and is disposed on the wiring 112 so as to be in contact with the wiring 112. The wire 112 extends to near the end of the substrate 102 and is exposed from the additional capacitance insulating film 182 to provide a terminal 128. In the terminal 128, a protective conductive film 188 for protecting the wiring 112 is provided over the wiring 112, and the additional capacitance insulating film 182 covers a part of the protective conductive film 188. The protective conductive film 188 is present, for example, in the same layer as the connection electrode 178 or the additional capacitance electrode 180, and preferably contains a conductive oxide such as ITO or IZO.
 図6に示した例では、平坦化膜176やパッシベーション膜196は絶縁膜124と重ならないが、図9に示すように、平坦化膜176は絶縁膜124の一部と重なってもよく、図示しないが、複数の溝126のすべてと重なってもよい。また、図10に示すように、パッシベーション膜196は絶縁膜124の一部と重なってもよく、図示しないが、複数の溝126のすべてと重なってもよい。 Although the planarizing film 176 and the passivation film 196 do not overlap with the insulating film 124 in the example shown in FIG. 6, the planarizing film 176 may overlap with part of the insulating film 124 as shown in FIG. However, it may overlap with all of the plurality of grooves 126. Further, as shown in FIG. 10, the passivation film 196 may overlap with part of the insulating film 124, and although not shown, it may overlap with all of the plurality of grooves 126.
 絶縁膜124の溝126の断面形状は厳密な多角形でなくてもよく、例えば図6の点線で囲った領域の拡大図(図11)に示すように、角が丸みを帯びるように溝126を形成してもよい。層間膜174上に位置する絶縁膜124の頂点も丸みを帯びるように絶縁膜124を形成してもよい。 The cross-sectional shape of the groove 126 of the insulating film 124 does not have to be a strict polygon. For example, as shown in the enlarged view (FIG. 11) of the region surrounded by the dotted line in FIG. May be formed. The insulating film 124 may be formed so that the top of the insulating film 124 located on the interlayer film 174 is also rounded.
 上述した構造を有する表示装置100では、配線領域120において配線112の断面形状は複数の直線部によって構成され、隣接する直線部はそのベクトル方向が異なる。その結果、配線領域120では配線112は複数の屈曲点を有することになる。このため、配線領域120を折り曲げて表示装置100を変形した場合、配線112は直線部の変形のみならず、隣接する二つの直線部のベクトル間の角度の変化が表示装置100の変形に寄与することができる。したがって、表示装置100の変形時に配線112に加えられる力が非局在化され、配線112の破壊を防ぐことができる。これにより、配線112の断線による不良発生が抑制され、表示装置100に高い信頼性を付与することができる。 In the display device 100 having the above-described structure, the cross-sectional shape of the wiring 112 in the wiring region 120 is constituted by a plurality of straight portions, and the adjacent straight portions have different vector directions. As a result, in the wiring area 120, the wiring 112 has a plurality of bending points. Therefore, when the wiring region 120 is bent to deform the display device 100, not only the deformation of the linear portion but also the change in angle between the vectors of two adjacent linear portions contributes to the deformation of the display device 100. be able to. Therefore, the force applied to the wiring 112 at the time of deformation of the display device 100 is delocalized, and destruction of the wiring 112 can be prevented. Accordingly, the occurrence of defects due to the disconnection of the wiring 112 can be suppressed, and high reliability can be given to the display device 100.
(第2実施形態)
 本実施形態では、可撓性を有する表示装置100の作製方法について、図12Aから図20を用いて説明する。これらの図のそれぞれにおいて、左側の図は表示領域106中の画素104を示し、図5の断面図の一部に対応する。一方、右側の図は配線領域120の一部の断面図であり、図6の断面図の一部に相当する。第1実施形態と同一、あるいは類似する構成については説明を割愛することがある。
Second Embodiment
In this embodiment, a method for manufacturing the flexible display device 100 will be described with reference to FIGS. 12A to 20. In each of these figures, the one on the left shows the pixel 104 in the display area 106 and corresponds to a part of the cross-sectional view of FIG. On the other hand, the drawing on the right side is a cross-sectional view of a part of the wiring region 120, which corresponds to a part of the cross-sectional view of FIG. Description of the same or similar configuration as the first embodiment may be omitted.
 まず、支持基板118上に基板102を形成する(図12A)。支持基板118はガラスや石英などを含み、その大きさや厚さは任意に選択することができる。例えば68cm×88cm、110cm×130cm、150cm×185cm、あるいは220cm×250cmの大きさを有するガラス板を支持基板118として用いることができる。支持基板118の厚さは0.1mmから10mmの範囲で任意に選択することができ、典型的には0.5mmから0.7mmである。 First, the substrate 102 is formed on the support substrate 118 (FIG. 12A). The support substrate 118 contains glass, quartz or the like, and its size and thickness can be arbitrarily selected. For example, a glass plate having a size of 68 cm × 88 cm, 110 cm × 130 cm, 150 cm × 185 cm, or 220 cm × 250 cm can be used as the support substrate 118. The thickness of the support substrate 118 can be arbitrarily selected in the range of 0.1 mm to 10 mm, and is typically 0.5 mm to 0.7 mm.
 基板102は可撓性を示す絶縁膜であり、ポリイミド、ポリアミド、ポリエステル、ポリカーボナートに例示される高分子材料から選択される材料を含むことができる。基板102は、印刷法やインクジェット法、スピンコート法、ディップコーティング法などの湿式成膜法、あるいはラミネート法などを適用して形成される。表示装置100に可撓性を付与しない場合、基板102の形成を省略すればよい。 The substrate 102 is an insulating film exhibiting flexibility, and can include a material selected from polymeric materials exemplified by polyimide, polyamide, polyester, and polycarbonate. The substrate 102 is formed by applying a wet film forming method such as a printing method, an inkjet method, a spin coating method, a dip coating method, or a laminating method. When flexibility is not given to the display device 100, the formation of the substrate 102 may be omitted.
 次に、基板102上にアンダーコート160を形成する(図12A)。アンダーコート160は、表示領域106と配線領域120の両方に設けられる。図12Aでは、アンダーコート160が単一の層から構成される形態が示されているが、第1実施形態で述べたように、アンダーコート160は三層構造を有してもよい。アンダーコート160は、化学気相堆積(CVD)法やスパッタリング法を用いて形成することができる。図示しないが、トランジスタを形成する領域に可視光をブロックする遮光膜を設けてもよい。 Next, an undercoat 160 is formed on the substrate 102 (FIG. 12A). The undercoat 160 is provided in both the display area 106 and the wiring area 120. Although FIG. 12A shows a form in which the undercoat 160 is composed of a single layer, the undercoat 160 may have a three-layer structure as described in the first embodiment. The undercoat 160 can be formed using a chemical vapor deposition (CVD) method or a sputtering method. Although not shown, a light shielding film that blocks visible light may be provided in a region where a transistor is formed.
 次に、半導体膜162をアンダーコート160上に形成する(図12A)。半導体膜162はシランガスなどを原料として用い、CVD法によって形成すればよい。得られるアモルファスシリコンに対して加熱処理、あるいはレーザなどの光を照射することで結晶化を行ってもよい。 Next, a semiconductor film 162 is formed on the undercoat 160 (FIG. 12A). The semiconductor film 162 may be formed by a CVD method using a silane gas or the like as a raw material. The obtained amorphous silicon may be crystallized by heat treatment or light irradiation with a laser or the like.
 次に、半導体膜162のチャネル領域162aと低濃度不純物領域162cを形成する領域に図示しないレジストマスクを形成し、半導体膜162に対してドーピング(第1のドーピング)を行い、ソース/ドレイン領域162bを形成する(図12A)。ドーピングは公知の方法を適用して行うことができる。引き続き、半導体膜162を覆うようにゲート絶縁膜164を形成する(図12B)。ゲート絶縁膜164は、配線領域120のアンダーコート160上にも設けられる。アンダーコート160と同様、ゲート絶縁膜164も窒化ケイ素や酸化ケイ素を含む膜を一つ、あるいは複数含み、CVD法やスパッタリング法を適用して形成される。 Next, a resist mask (not shown) is formed in a region where the channel region 162a and the low concentration impurity region 162c of the semiconductor film 162 are formed, and doping (first doping) is performed on the semiconductor film 162 to form a source / drain region 162b. Form (FIG. 12A). Doping can be carried out by applying known methods. Subsequently, a gate insulating film 164 is formed to cover the semiconductor film 162 (FIG. 12B). The gate insulating film 164 is also provided on the undercoat 160 in the wiring region 120. Like the undercoat 160, the gate insulating film 164 also includes one or more films containing silicon nitride or silicon oxide, and is formed by applying a CVD method or a sputtering method.
 その後、ゲート絶縁膜164上にゲート電極166、および容量電極172をスパッタリング法やCVD法を用いて形成する(図12B)。この時、各種走査線(書込制御走査線140、初期化制御走査線142、補正制御走査線144、発光制御走査線148、リセット制御線146など)が形成される。ゲート電極166や容量電極172に含まれる金属としては、チタンやアルミニウム、銅、モリブデン、タングステン、タンタル、あるいはこれらの合金などが挙げらる。これらの電極や配線は単層構造を有していて良く、積層構造を有していても良い。例えば導電性の高い銅やアルミニウムなど金属が融点の高いモリブデンやチタンなどの金属で挟まれた構造を採用することができる。 After that, the gate electrode 166 and the capacitor electrode 172 are formed on the gate insulating film 164 by sputtering or CVD (FIG. 12B). At this time, various scanning lines (write control scanning line 140, initialization control scanning line 142, correction control scanning line 144, light emission control scanning line 148, reset control line 146, etc.) are formed. Examples of the metal contained in the gate electrode 166 and the capacitor electrode 172 include titanium, aluminum, copper, molybdenum, tungsten, tantalum, an alloy of these, and the like. These electrodes and wirings may have a single-layer structure or a stacked structure. For example, a structure in which a metal having high conductivity such as copper or aluminum is sandwiched between metals having a high melting point such as molybdenum or titanium can be employed.
 この後、ゲート電極166をマスクとして用い、公知の方法により、半導体膜162に対してドーピング(第2のドーピング)を行う。これにより、低濃度不純物領域162cが形成されるとともに、ゲート電極166と重なるチャネル領域162aが形成される(図12C)。 After that, doping (second doping) is performed on the semiconductor film 162 by a known method using the gate electrode 166 as a mask. Thus, a low concentration impurity region 162c is formed, and a channel region 162a overlapping with the gate electrode 166 is formed (FIG. 12C).
 次にゲート電極166や容量電極172上に層間膜174を形成する(図12C)。層間膜174は配線領域120にも形成される。層間膜174もアンダーコート160やゲート絶縁膜164で使用可能な材料を含み、CVD法やスパッタリング法を適用して単層構造、あるいは積層構造を有するように形成される。引き続き層間膜174とゲート絶縁膜164に対してエッチングを行い、ソース/ドレイン領域162bに達する開口210を形成する(図13A)。この時、配線領域120に位置する層間膜174とゲート絶縁膜164に対してもエッチングが同時に行われ、開口212が形成される。これにより、配線領域120においてアンダーコート160が露出する。引き続き配線領域120で露出したアンダーコート160に対してエッチングを行い、基板102を露出する開口214を形成する(図13B)。開口210、212、214は、例えばフッ素含有炭化水素を含むガス中でプラズマエッチングを行うことで形成することができる。 Next, an interlayer film 174 is formed over the gate electrode 166 and the capacitor electrode 172 (FIG. 12C). Interlayer film 174 is also formed in interconnection region 120. The interlayer film 174 also contains a material that can be used for the undercoat 160 and the gate insulating film 164, and is formed to have a single layer structure or a laminated structure by applying a CVD method or a sputtering method. Subsequently, the interlayer film 174 and the gate insulating film 164 are etched to form an opening 210 reaching the source / drain region 162b (FIG. 13A). At this time, etching is simultaneously performed on the interlayer film 174 and the gate insulating film 164 located in the wiring region 120 to form the opening 212. Thereby, the undercoat 160 is exposed in the wiring region 120. Subsequently, the exposed undercoat 160 in the wiring area 120 is etched to form an opening 214 for exposing the substrate 102 (FIG. 13B). The openings 210, 212, and 214 can be formed, for example, by performing plasma etching in a gas containing a fluorine-containing hydrocarbon.
 次に、絶縁膜124を配線領域120に形成する。具体的には、まず、第1実施形態で述べた高分子を基本骨格とし、感光性を示す樹脂(以下、感光性樹脂)200を基板102上に形成する(図13C)。感光性樹脂200は、スピンコート法や印刷法、インクジェット法などを利用し、表示領域106と配線領域120上に形成される。この時、開口212、214内では、感光性樹脂200の上面は、開口212、214が存在しない領域における感光性樹脂200の上面よりも低い位置にあってもよい。 Next, the insulating film 124 is formed in the wiring region 120. Specifically, first, the polymer described in the first embodiment is used as a basic skeleton, and a photosensitive resin (hereinafter, photosensitive resin) 200 is formed on the substrate 102 (FIG. 13C). The photosensitive resin 200 is formed on the display area 106 and the wiring area 120 using a spin coating method, a printing method, an inkjet method, or the like. At this time, in the openings 212 and 214, the upper surface of the photosensitive resin 200 may be at a position lower than the upper surface of the photosensitive resin 200 in the area where the openings 212 and 214 do not exist.
 その後、フォトマスク204を介して感光性樹脂200に対して露光を行う。フォトマスク204は照射する光を透過する基板204aを有し、その上に遮光部204bと半透光部204cが設けられるハーフトーンマスク、あるいはグレイトーンマスクである。遮光部204bと半透光部204cのいずれも設けられない部分は透光部として機能し、照射光に対する透過率は、例えば75%以上100%以下、あるいは80%以上100%以下である。遮光部204bは照射光を遮る領域であり、その透過率は、例えば0%以上5%以下、0%以上2%以下、あるいは0%以上1%以下であり、実質的に0%でもよい。半透光部204cは照射光を一部透過し、一部を遮る。したがって照射光に対する透過率は、20%以上60%以下、30%以上50%以下であり、典型的には40%である。溝126を設ける領域に半透光部204cが重なり、絶縁膜124は設けるものの溝126を形成しない領域に遮光部204bが重なり、絶縁膜124を形成しない領域に透光部が重なるよう、フォトマスク204を配置する。その後露光、現像、焼成を行うことで、図14Aに示すように、開口212を覆い、アンダーコート160、ゲート絶縁膜164、層間膜174の一部を覆う絶縁膜124を得ることができる。焼成時に絶縁膜124の一部をリフローさせることで、図11に示すように、断面において溝126の角に丸みを持たせることも可能である。 Thereafter, the photosensitive resin 200 is exposed to light through the photomask 204. The photomask 204 is a half tone mask or a gray tone mask which has a substrate 204 a which transmits light to be irradiated, and on which a light shielding portion 204 b and a semi-light transmitting portion 204 c are provided. A portion where neither the light shielding portion 204 b nor the semi-light transmitting portion 204 c is provided functions as a light transmitting portion, and the transmittance for the irradiation light is, for example, 75% to 100%, or 80% to 100%. The light blocking portion 204b is a region that blocks the irradiation light, and the transmittance thereof is, for example, 0% or more and 5% or less, 0% or more and 2% or less, or 0% or more and 1% or less, and may be substantially 0%. The semi-transparent portion 204c partially transmits the irradiation light and blocks a part. Therefore, the transmittance to the irradiation light is 20% or more and 60% or less, 30% or more and 50% or less, and typically 40%. The photo mask is formed so that the semitransparent portion 204c overlaps the region where the groove 126 is provided, the light shielding portion 204b overlaps the region where the groove 126 is not formed although the insulating film 124 is provided, and the light transmission portion overlaps the region where the insulating film 124 is not formed. Arrange 204. Thereafter, exposure, development, and baking are performed to obtain the insulating film 124 which covers the opening 212 and partially covers the undercoat 160, the gate insulating film 164, and the interlayer film 174 as shown in FIG. 14A. By reflowing part of the insulating film 124 at the time of baking, as shown in FIG. 11, it is also possible to round the corners of the groove 126 in the cross section.
 なお、図8に示すように、溝126において基板102を露出させる場合には、半透光部204cを設けず、溝126を形成する領域が透光部を介して光照射されるよう、フォトマスク204を設計、配置すればよい。 Note that, as shown in FIG. 8, when the substrate 102 is exposed in the groove 126, the semi-translucent part 204 c is not provided, and a photo is emitted so that the region where the groove 126 is to be formed is transmitted through the translucent part. The mask 204 may be designed and arranged.
 次に、金属膜を基板102上に形成し、エッチングを行って成形し、ソース/ドレイン領域162bに接続されるソース/ドレイン電極168、170を形成するとともに、配線領域120では層間膜174や絶縁膜124と接する配線112を形成する(図14B)。同時に、第1の信号線136、第2の信号線138、高電位電源線130、低電位電源線134、電流供給線132を形成してもよい。ここまでのプロセスにより、駆動トランジスタDRTや保持容量Csが形成される。なお、第1の信号線136、第2の信号線138、高電位電源線130、低電位電源線134、電流供給線132のすべてをソース/ドレイン電極168、170と同時に形成する必要は無い。例えば層間膜174上に電流供給線132を形成し、その上に第2の層間膜を形成し、その後、第1の信号線136、第2の信号線138、高電位電源線130、低電位電源線134を配線112やソース/ドレイン電極168、170と同時に形成してもよい。 Next, a metal film is formed on the substrate 102, and etching is performed to form the source / drain electrodes 168 and 170 connected to the source / drain region 162b. The wiring 112 in contact with the film 124 is formed (FIG. 14B). At the same time, the first signal line 136, the second signal line 138, the high potential power supply line 130, the low potential power supply line 134, and the current supply line 132 may be formed. The drive transistor DRT and the storage capacitor Cs are formed by the process up to this point. Note that it is not necessary to form all of the first signal line 136, the second signal line 138, the high potential power supply line 130, the low potential power supply line 134, and the current supply line 132 simultaneously with the source / drain electrodes 168 and 170. For example, the current supply line 132 is formed on the interlayer film 174, and the second interlayer film is formed thereon, and then the first signal line 136, the second signal line 138, the high potential power supply line 130, and the low potential The power supply line 134 may be formed simultaneously with the wiring 112 and the source / drain electrodes 168 and 170.
 次に平坦化膜176を、駆動トランジスタDRTや保持容量Csなどを覆うように形成する(図14B)。平坦化膜176はエポキシ樹脂やアクリル樹脂、ポリイミド、ポリエステル、ポリカルボナートなどの高分子材料を含み、スピンコーティング法、インクジェット法、印刷法、ディップコーティング法などを適用して形成することができる。その後、平坦化膜176に対してエッチングを行い、ソース/ドレイン電極170に達する開口を形成するとともに、配線領域120において不要な平坦化膜176を適宜除去し、配線112の一部を露出する(図14C)。 Next, a planarization film 176 is formed to cover the drive transistor DRT, the storage capacitor Cs, and the like (FIG. 14B). The planarizing film 176 contains a polymer material such as epoxy resin, acrylic resin, polyimide, polyester, polycarbonate, etc., and can be formed by applying a spin coating method, an ink jet method, a printing method, a dip coating method, or the like. Thereafter, the planarizing film 176 is etched to form an opening reaching the source / drain electrode 170, and the unnecessary planarizing film 176 is appropriately removed in the wiring region 120 to expose a part of the wiring 112 (see FIG. Figure 14C).
 引き続き、ソース/ドレイン電極168を露出する開口を覆うように接続電極178を形成するとともに、付加容量電極180を平坦化膜176上に形成する(図14C)。この時、保護導電膜188が配線112上に同時に形成される(図6参照)。接続電極178や付加容量電極180、保護導電膜188は、例えば導電性酸化物をスパッタリングすることで形成することができる。 Subsequently, the connection electrode 178 is formed so as to cover the opening for exposing the source / drain electrode 168, and the additional capacitance electrode 180 is formed on the flattening film 176 (FIG. 14C). At this time, a protective conductive film 188 is simultaneously formed on the wiring 112 (see FIG. 6). The connection electrode 178, the additional capacitance electrode 180, and the protective conductive film 188 can be formed, for example, by sputtering a conductive oxide.
 その後、接続電極178や付加容量電極180、保護導電膜188を覆うように付加容量絶縁膜182を形成する(図15A、図6)。付加容量絶縁膜182も窒化ケイ素や酸化ケイ素などの無機化合物を含むことができ、CVD法やスパッタリング法を適用して形成することができる。付加容量絶縁膜182は、接続電極178の上面の一部を露出する開口を有する。この開口において、発光素子OLEDの画素電極190と接続電極178の電気的接続が行われる。 After that, a storage capacitor insulating film 182 is formed so as to cover the connection electrode 178, the storage capacitor electrode 180, and the protective conductive film 188 (FIG. 15A, FIG. 6). The additional capacitance insulating film 182 can also contain an inorganic compound such as silicon nitride or silicon oxide, and can be formed by applying a CVD method or a sputtering method. The additional capacitance insulating film 182 has an opening that exposes a part of the top surface of the connection electrode 178. In this opening, electrical connection between the pixel electrode 190 of the light emitting element OLED and the connection electrode 178 is performed.
 次に、接続電極178と接するように、かつ、付加容量電極180と重なるように、画素電極190をスパッタリング法やCVD法を利用して形成する。(図15A)。その後、画素電極190の端部を覆うように、隔壁184を形成する(図15B)。隔壁184はエポキシ樹脂やアクリル樹脂などの高分子材料を用い、スピンコート法やインクジェット法などを利用して形成することができる。隔壁184により、画素電極190などに起因する段差を吸収し、かつ、隣接する画素104の画素電極190同士を互いに電気的に絶縁することができる。 Next, the pixel electrode 190 is formed using a sputtering method or a CVD method so as to be in contact with the connection electrode 178 and to overlap with the additional capacitance electrode 180. (FIG. 15A). Thereafter, a partition wall 184 is formed to cover the end of the pixel electrode 190 (FIG. 15B). The partition wall 184 can be formed using a polymer material such as an epoxy resin or an acrylic resin, and using a spin coating method, an inkjet method, or the like. The partition wall 184 can absorb a difference in level due to the pixel electrode 190 and the like, and electrically insulate the pixel electrodes 190 of the adjacent pixels 104 from each other.
 次に発光素子OLEDのEL層192、および対向電極194を、画素電極190と隔壁184を覆うように形成する(図16A)。EL層192はインクジェット法や印刷法、あるいは蒸着法などの乾式成膜法を適用して形成される。対向電極194もスパッタリング法、あるいは蒸着法を利用して形成することができる。 Next, the EL layer 192 and the counter electrode 194 of the light emitting element OLED are formed so as to cover the pixel electrode 190 and the partition 184 (FIG. 16A). The EL layer 192 is formed by applying a dry film formation method such as an inkjet method, a printing method, or a vapor deposition method. The counter electrode 194 can also be formed using a sputtering method or an evaporation method.
 次にパッシベーション膜196を形成する。図5に示すように、パッシベーション膜196が三層の構造を有している場合、まず第1の層196aを対向電極194を覆うように形成する(図16A)。第1の層196aは、例えば窒化ケイ素や酸化ケイ素などの無機材料を含み、CVD法やスパッタリング法を適用して形成される。第1の層196aは配線112と重なるように設けることができ、また、図示しないが、保護導電膜188を覆うように形成してもよい。 Next, a passivation film 196 is formed. As shown in FIG. 5, when the passivation film 196 has a three-layer structure, first, the first layer 196a is formed to cover the counter electrode 194 (FIG. 16A). The first layer 196a contains an inorganic material such as silicon nitride or silicon oxide, for example, and is formed by applying a CVD method or a sputtering method. The first layer 196 a can be provided so as to overlap with the wiring 112 and may be formed so as to cover the protective conductive film 188 although not shown.
 引き続き第2の層196bを形成する。第2の層196bは、図16Bに示すように、隔壁184に起因する凹凸を吸収するよう、また、平坦な面を与えるような厚さで形成してもよい。第2の層196bは、印刷法やインクジェット法、スピンコート法などによって形成することができる。あるいは、第1実施形態で述べた樹脂の原料となるオリゴマーを減圧下で霧状あるいはガス状にし、これを第1の層196aに吹き付けて、その後オリゴマーを重合することによって第2の層196bを形成してもよい。第2の層196bは、端子128を覆わないように形成することが好ましい。図16Bに示す例では、第2の層196bは、その端部が平坦化膜176の端部よりも端子128から遠くなるよう設けられる。すなわち、第2の層196bの全体が平坦化膜176と重なるよう、第2の層196bが形成される。 Subsequently, the second layer 196 b is formed. The second layer 196 b may be formed to have a flat surface so as to absorb unevenness due to the partition wall 184 and to provide a flat surface as shown in FIG. 16B. The second layer 196 b can be formed by a printing method, an inkjet method, a spin coating method, or the like. Alternatively, the oligomer serving as a raw material of the resin described in the first embodiment is atomized or gasified under reduced pressure, sprayed onto the first layer 196a, and then the second layer 196b is formed by polymerizing the oligomer. You may form. The second layer 196 b is preferably formed so as not to cover the terminal 128. In the example shown in FIG. 16B, the second layer 196 b is provided such that its end is farther from the terminal 128 than the end of the planarization film 176. That is, the second layer 196 b is formed such that the entire second layer 196 b overlaps with the planarization film 176.
 その後、第3の層196cを第2の層196bと接するように形成する(図17)。第3の層196cは、第1の層196aで使用可能な材料を含むことができ、第1の層196aの形成に適用可能な方法で形成することができる。第3の層196cも保護導電膜188を覆うように形成してもよい。 After that, a third layer 196c is formed in contact with the second layer 196b (FIG. 17). The third layer 196c can comprise the materials available for the first layer 196a and can be formed in a manner applicable to the formation of the first layer 196a. The third layer 196 c may also be formed to cover the protective conductive film 188.
 この後、樹脂マスク216を表示領域106、および配線領域120の一部を覆うように形成し(図17)、樹脂マスク216をマスクとして用い、樹脂マスク216から露出した第1の層196a、第3の層196cをエッチングにより除去する(図18)。図示しないが、これにより端子128において保護導電膜188が露出される。 After that, a resin mask 216 is formed to cover the display region 106 and a part of the wiring region 120 (FIG. 17), and the first layer 196a exposed from the resin mask 216 is used. The three layers 196c are removed by etching (FIG. 18). Although not shown, this exposes the protective conductive film 188 at the terminal 128.
 この後、表示領域106や配線領域120を覆うように、接着層218を介してキャップフィルム220を配置する(図19)。キャップフィルム220はポリ(エチレンテレフタレート)、ポリ(エチレンナフタレート)などのポリエステル、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリカーボナート、ポリアクリル酸エステルなどの高分子を含むことができる。キャップフィルム220はラミネート法、あるいは湿式成膜法によって形成することができる。キャップフィルム220の表面に、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレンなどの含フッ素高分子フィルム、あるいはポリ塩化ビニリデンなどのガス透過性の低い高分子フィルムを設けてもよい。図示しないが、キャップフィルム220は端子128を覆わないように形成される。あるいは、キャップフィルム220を端子128を覆うように形成した後、端子128と重なる部分を除去してもよい。 Thereafter, the cap film 220 is disposed via the adhesive layer 218 so as to cover the display area 106 and the wiring area 120 (FIG. 19). The cap film 220 can include a polyester such as poly (ethylene terephthalate), poly (ethylene naphthalate), a polyolefin such as polyethylene or polypropylene, a polymer such as polycarbonate, polyacrylate, or the like. The cap film 220 can be formed by a lamination method or a wet film formation method. The surface of the cap film 220 may be provided with a fluorine-containing polymer film such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene, or a polymer film having low gas permeability such as polyvinylidene chloride. Although not shown, the cap film 220 is formed so as not to cover the terminal 128. Alternatively, after the cap film 220 is formed to cover the terminal 128, the portion overlapping with the terminal 128 may be removed.
 引き続き、支持基板118側からレーザ光源やフラッシュランプなどの光源を用いて光照射を行い、支持基板118と基板102間の接着力を低下させる。その後、図19の矢印で示す界面、すなわち、支持基板118と基板102の界面に沿って物理的に支持基板118を剥離する。これにより、基板102の底面が露出する。 Subsequently, light is irradiated from the side of the support substrate 118 using a light source such as a laser light source or a flash lamp to reduce the adhesion between the support substrate 118 and the substrate 102. After that, the support substrate 118 is physically peeled along the interface shown by the arrow in FIG. 19, that is, the interface between the support substrate 118 and the substrate 102. Thereby, the bottom surface of the substrate 102 is exposed.
 その後、図20に示すように、任意の構成としてベースフィルム222を基板102の底面に固定する。ベースフィルム222はラミネート法を用いて固定することができる。この時、接着層を用いてもよい。ベースフィルム222はキャップフィルム220で使用可能な材料を含むことができる。 Thereafter, as shown in FIG. 20, the base film 222 is fixed to the bottom of the substrate 102 as an optional configuration. The base film 222 can be fixed using a laminating method. At this time, an adhesive layer may be used. Base film 222 can include materials that can be used for cap film 220.
 以上のプロセスにより、可撓性の表示装置100を製造することができる。 The flexible display device 100 can be manufactured by the above process.
 上記説明から理解されるように、表示装置100は通常の半導体製造プロセスを利用することで作製することができる。したがって、本実施形態を適用することにより、プロセスに大きな負担をかけることなく、信頼性の高い表示装置、可撓性表示装置を提供することが可能である。 As understood from the above description, the display device 100 can be manufactured by using a normal semiconductor manufacturing process. Therefore, by applying the present embodiment, it is possible to provide a highly reliable display device and a flexible display device without burdening the process.
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 The embodiments described above as the embodiments of the present invention can be implemented in combination as appropriate as long as they do not contradict each other. In addition, those in which a person skilled in the art appropriately adds, deletes or changes the design of components based on the display device of each embodiment or those in which steps are added, omitted or conditions changed are also included in the present invention. It is included in the scope of the present invention as long as it comprises the gist.
 本明細書においては、開示例として主にEL表示装置の場合を例示したが、他の適用例として、その他の自発光型表示装置、液晶表示装置、あるいは電気泳動素子などを有する電子ペーパ型表示装置など、あらゆるフラットパネル型の表示装置が挙げられる。また、中小型から大型まで、特に限定することなく適用が可能である。 In the present specification, although the case of an EL display device is mainly illustrated as a disclosed example, an electronic paper type display having another self-light emitting display device, a liquid crystal display device, or an electrophoretic element as another application example Devices include any flat panel type display device. Moreover, it is applicable without particular limitation from medium size to large size.
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 Even if other effects or effects different from the effects brought about by the aspects of the above-described embodiments are apparent from the description of the present specification or those which can be easily predicted by those skilled in the art, it is natural. It is understood that the present invention provides.
 100:表示装置、102:基板、104:画素、106:表示領域、108:走査線側駆動回路、112:配線、114:コネクタ、118:支持基板、120:配線領域、122:スペーサ、124:絶縁膜、126:溝、128:端子、130:高電位電源線、132:電流供給線、134:低電位電源線、136:第1の信号線、138:第2の信号線、140:書込制御走査線、142:初期化制御走査線、144:補正制御走査線、146:リセット制御線、148:発光制御走査線、150:リセット信号線、160:アンダーコート、162:半導体膜、162a:チャネル領域、162b:ソース/ドレイン領域、162c:低濃度不純物領域、164:ゲート絶縁膜、166:ゲート電極、168:ソース/ドレイン電極、170:ソース/ドレイン電極、172:容量電極、174:層間膜、176:平坦化膜、178:接続電極、180:付加容量電極、182:付加容量絶縁膜、184:隔壁、186:開口、188:保護導電膜、190:画素電極、192:EL層、192a:ホール輸送層、192b:発光層、192c:電子輸送層、194:対向電極、196:パッシベーション膜、196a:第1の層、196b:第2の層、196c:第3の層、200:樹脂、204:フォトマスク、204a:基板、204b:遮光部、204c:半透光部、210:開口、212:開口、214:開口、216:樹脂マスク、218:接着層、220:キャップフィルム、222:ベースフィルム 100: display device 102: substrate 104: pixel 106: display region 108: scanning line driver circuit 112: wiring 114: connector 118: support substrate 120: wiring region 122: spacer 124: Insulating film 126: groove 128: terminal 130: high potential power line 132: current supply line 134: low potential power line 136: first signal line 138: second signal line 140: writing Load control scan line 142: Initialization control scan line 144: Correction control scan line 146: Reset control line 148: Light emission control scan line 150: Reset signal line 160: Undercoat 162: Semiconductor film 162a Channel region 162b: source / drain region 162c: low concentration impurity region 164: gate insulating film 166: gate electrode 168: source / drain Anode 170: source / drain electrode 172: capacitance electrode 174: interlayer film 176: planarizing film 178: connection electrode 180: additional capacitance electrode 182: additional capacitance insulating film 184: partition wall 186: opening , 188: protective conductive film, 190: pixel electrode, 192: EL layer, 192a: hole transport layer, 192b: light emitting layer, 192c: electron transport layer, 194: counter electrode, 196: passivation film, 196a: first layer , 196b: second layer, 196c: third layer, 200: resin, 204: photomask, 204a: substrate, 204b: light shielding portion, 204c: semi-light transmitting portion, 210: opening, 212: opening, 214: Opening, 216: resin mask, 218: adhesive layer, 220: cap film, 222: base film

Claims (20)

  1.  表示領域と配線領域を有する基板、
     前記表示領域上の画素、
     前記配線領域上で前記基板と接し、有機化合物を含み、溝を有する絶縁膜、および
     前記絶縁膜の上に位置し、前記絶縁膜と接し、前記表示領域から前記基板の端部へ延伸する配線を有し、
     前記配線は前記溝と交差する表示装置。
    A substrate having a display area and a wiring area,
    Pixels on the display area,
    An insulating film in contact with the substrate over the wiring area, containing an organic compound and having a groove, and a wiring located on the insulating film, in contact with the insulating film, and extending from the display area to the end of the substrate Have
    The display device in which the wiring intersects the groove.
  2.  前記配線は、前記溝において前記基板と接する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the wiring is in contact with the substrate in the groove.
  3.  前記画素は、ゲート絶縁膜を含むトランジスタを有し、
     前記ゲート絶縁膜は前記配線領域に延伸し、
     前記絶縁膜は前記ゲート絶縁膜の一部を覆う、請求項1に記載の表示装置。
    The pixel includes a transistor including a gate insulating film.
    The gate insulating film extends to the wiring region,
    The display device according to claim 1, wherein the insulating film covers a part of the gate insulating film.
  4.  前記表示領域と前記配線領域上にアンダーコートをさらに有し、
     前記絶縁膜は、前記アンダーコートの一部を覆う、請求項3に記載の表示装置。
    It further has an undercoat on the display area and the wiring area,
    The display device according to claim 3, wherein the insulating film covers a part of the undercoat.
  5.  前記トランジスタはさらに、
      前記ゲート絶縁膜に接するゲート電極、および
      前記ゲート電極と前記ゲート絶縁膜の上に層間膜を有し、
     前記層間膜は前記配線領域に延伸し、
     前記絶縁膜は前記層間膜の一部を覆う、請求項4に記載の表示装置。
    The transistor is further
    A gate electrode in contact with the gate insulating film; and an interlayer film on the gate electrode and the gate insulating film,
    The interlayer film extends to the wiring area,
    The display device according to claim 4, wherein the insulating film covers a part of the interlayer film.
  6.  前記絶縁膜は第2の溝をさらに有し、
     前記配線は前記第2の溝と交差する、請求項1に記載の表示装置。
    The insulating film further comprises a second groove,
    The display device according to claim 1, wherein the wiring intersects the second groove.
  7.  前記絶縁膜は第2の溝をさらに有し、
     前記配線は前記第2の溝と交差し、
     前記溝と前記第2の溝の間における前記絶縁膜の厚さは、前記アンダーコートの厚さ、前記ゲート絶縁膜の厚さ、および前記層間膜の厚さの合計よりも小さい、請求項5に記載の表示装置。
    The insulating film further comprises a second groove,
    The wire intersects the second groove;
    The thickness of the insulating film between the groove and the second groove is smaller than the sum of the thickness of the undercoat, the thickness of the gate insulating film, and the thickness of the interlayer film. The display device as described in.
  8.  前記トランジスタは、前記配線と同一の層内に存在するソース/ドレイン電極をさらに有する、請求項3に記載の表示装置。 The display device according to claim 3, wherein the transistor further includes a source / drain electrode present in the same layer as the wiring.
  9.  表示素子を前記画素内にさらに有する、請求項1に記載の表示装置。 The display device according to claim 1, further comprising a display element in the pixel.
  10.  前記配線は、平面視においてジグザグ構造を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the wiring has a zigzag structure in plan view.
  11.  前記表示装置は、前記配線が屈曲した三次元構造を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the display device has a three-dimensional structure in which the wiring is bent.
  12.  表示領域と配線領域を有する基板上に、前記表示領域と前記配線領域と重なるアンダーコートを形成すること、
     前記表示領域の前記アンダーコート上に、半導体膜、ゲート電極、および前記半導体膜と前記ゲート電極に挟まれるゲート絶縁膜を、前記ゲート絶縁膜が前記表示領域から前記配線領域に延伸するように形成すること、
     前記半導体膜、前記ゲート電極、および前記配線領域の前記ゲート絶縁膜と重なる層間膜を形成すること、
     前記アンダーコート、前記ゲート絶縁膜、および前記層間膜を部分的に除去することによって前記配線領域で前記基板を露出させること、
     前記配線領域に、露出した前記基板と接する絶縁膜を形成すること、
     前記絶縁膜に溝を形成すること、および
     前記溝と交差する配線を形成することを含む、表示装置を作製する方法。
    Forming an undercoat overlapping the display area and the wiring area on a substrate having the display area and the wiring area;
    A semiconductor film, a gate electrode, and a gate insulating film sandwiched between the semiconductor film and the gate electrode are formed on the undercoat of the display area such that the gate insulating film extends from the display area to the wiring area To do,
    Forming an interlayer film overlapping the semiconductor film, the gate electrode, and the gate insulating film in the wiring region;
    Exposing the substrate in the wiring area by partially removing the undercoat, the gate insulating film, and the interlayer film;
    Forming an insulating film in contact with the exposed substrate in the wiring region;
    A method of manufacturing a display device, comprising: forming a groove in the insulating film; and forming a wiring crossing the groove.
  13.  前記溝は、前記基板を露出するように形成される、請求項12に記載の方法。 The method of claim 12, wherein the groove is formed to expose the substrate.
  14.  前記絶縁膜は、前記ゲート絶縁膜の一部を覆うように形成される、請求項12に記載の方法。 The method according to claim 12, wherein the insulating film is formed to cover a part of the gate insulating film.
  15.  前記絶縁膜は、前記アンダーコートの一部を覆うように形成される、請求項12に記載の方法。 The method according to claim 12, wherein the insulating film is formed to cover a part of the undercoat.
  16.  前記絶縁膜は、前記層間膜の一部を覆うように形成される、請求項12に記載の方法。 The method according to claim 12, wherein the insulating film is formed to cover a part of the interlayer film.
  17.  前記溝の形成時、前記絶縁膜に第2の溝を形成することをさらに含む、請求項12に記載の方法。 The method according to claim 12, further comprising forming a second groove in the insulating film when forming the groove.
  18.  前記溝と前記第2の溝の間における前記絶縁膜の厚さは、前記アンダーコートの厚さ、前記ゲート絶縁膜の厚さ、および前記層間膜の厚さの合計よりも小さい、請求項17に記載の方法。 The thickness of the insulating film between the groove and the second groove is smaller than the sum of the thickness of the undercoat, the thickness of the gate insulating film, and the thickness of the interlayer film. The method described in.
  19.  前記配線の形成時、前記半導体膜と電気的に接続されるソース/ドレイン電極を形成することをさらに含む、請求項12に記載の方法。 The method according to claim 12, further comprising forming source / drain electrodes electrically connected to the semiconductor film when the wiring is formed.
  20.  前記ソース/ドレイン電極と電気的に接続される表示素子を形成することをさらに含む、請求項19に記載の方法。 The method according to claim 19, further comprising forming a display element electrically connected to the source / drain electrode.
PCT/JP2018/041046 2017-11-24 2018-11-05 Display device and method for producing display device WO2019102834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-225662 2017-11-24
JP2017225662A JP2019095646A (en) 2017-11-24 2017-11-24 Display device and display device manufacturing method

Publications (1)

Publication Number Publication Date
WO2019102834A1 true WO2019102834A1 (en) 2019-05-31

Family

ID=66630804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041046 WO2019102834A1 (en) 2017-11-24 2018-11-05 Display device and method for producing display device

Country Status (2)

Country Link
JP (1) JP2019095646A (en)
WO (1) WO2019102834A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150105A (en) * 2003-10-24 2005-06-09 Semiconductor Energy Lab Co Ltd Display device and manufacturing method thereof
JP2011034066A (en) * 2009-07-07 2011-02-17 Semiconductor Energy Lab Co Ltd Display
JP2014232300A (en) * 2013-05-28 2014-12-11 エルジー ディスプレイ カンパニー リミテッド Flexible display device and manufacturing method therefor
JP2015072361A (en) * 2013-10-03 2015-04-16 株式会社ジャパンディスプレイ Display device and manufacturing method of the same
US20160172427A1 (en) * 2014-12-10 2016-06-16 Lg Display Co., Ltd. Flexible display device with bridged wire traces
US20160174304A1 (en) * 2014-12-10 2016-06-16 Lg Display Co., Ltd. Flexible display device with multiple types of micro-coating layers
JP2016119291A (en) * 2014-10-17 2016-06-30 株式会社半導体エネルギー研究所 Light-emitting device, module, electronic apparatus, and manufacturing method of light-emitting device
JP2017111435A (en) * 2015-12-15 2017-06-22 エルジー ディスプレイ カンパニー リミテッド Flexible display device
JP2017138570A (en) * 2015-09-30 2017-08-10 株式会社半導体エネルギー研究所 Electronic device, display device, method for manufacturing the same, and system including a plurality of display devices
JP2018036761A (en) * 2016-08-30 2018-03-08 株式会社ジャパンディスプレイ Display device
JP2018180413A (en) * 2017-04-19 2018-11-15 株式会社ジャパンディスプレイ Display device and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150105A (en) * 2003-10-24 2005-06-09 Semiconductor Energy Lab Co Ltd Display device and manufacturing method thereof
JP2011034066A (en) * 2009-07-07 2011-02-17 Semiconductor Energy Lab Co Ltd Display
JP2014232300A (en) * 2013-05-28 2014-12-11 エルジー ディスプレイ カンパニー リミテッド Flexible display device and manufacturing method therefor
JP2015072361A (en) * 2013-10-03 2015-04-16 株式会社ジャパンディスプレイ Display device and manufacturing method of the same
JP2016119291A (en) * 2014-10-17 2016-06-30 株式会社半導体エネルギー研究所 Light-emitting device, module, electronic apparatus, and manufacturing method of light-emitting device
US20160172427A1 (en) * 2014-12-10 2016-06-16 Lg Display Co., Ltd. Flexible display device with bridged wire traces
US20160174304A1 (en) * 2014-12-10 2016-06-16 Lg Display Co., Ltd. Flexible display device with multiple types of micro-coating layers
JP2017138570A (en) * 2015-09-30 2017-08-10 株式会社半導体エネルギー研究所 Electronic device, display device, method for manufacturing the same, and system including a plurality of display devices
JP2017111435A (en) * 2015-12-15 2017-06-22 エルジー ディスプレイ カンパニー リミテッド Flexible display device
JP2018036761A (en) * 2016-08-30 2018-03-08 株式会社ジャパンディスプレイ Display device
JP2018180413A (en) * 2017-04-19 2018-11-15 株式会社ジャパンディスプレイ Display device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019095646A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US11251412B2 (en) Organic light emitting display device and a method of manufacturing organic light emitting display device
KR102631254B1 (en) Display panel
KR20240037929A (en) Display apparatus
US9634288B2 (en) Organic light emitting display device
US9136311B2 (en) Flexible substrate, flexible display device, and method for manufacturing flexible display device
CN111092102A (en) Display device and mask for manufacturing the same
US9825109B2 (en) Display device
CN112018153A (en) Display device
JP6456317B2 (en) Display device and flexible display device
US10529790B2 (en) Organic light-emitting diode display and method of manufacturing the same with no cladding process
WO2019012768A1 (en) Display device
KR102653424B1 (en) Display panel
JP6726973B2 (en) Display device
WO2019012769A1 (en) Display device and method for producing display device
US20180226611A1 (en) Display device
US11626449B2 (en) Display device and method for producing display device
KR20190118221A (en) Organic light emitting display device
US11644702B2 (en) Semiconductor substrate
US10672856B2 (en) Display device and method of manufacturing display device
WO2019049461A1 (en) Display device and manufacturing method for display device
WO2019102834A1 (en) Display device and method for producing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881201

Country of ref document: EP

Kind code of ref document: A1