WO2019192210A1 - Constant-temperature and constant-humidity indoor unit, constant-temperature and constant-humidity system, and control method therefor - Google Patents
Constant-temperature and constant-humidity indoor unit, constant-temperature and constant-humidity system, and control method therefor Download PDFInfo
- Publication number
- WO2019192210A1 WO2019192210A1 PCT/CN2018/121530 CN2018121530W WO2019192210A1 WO 2019192210 A1 WO2019192210 A1 WO 2019192210A1 CN 2018121530 W CN2018121530 W CN 2018121530W WO 2019192210 A1 WO2019192210 A1 WO 2019192210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- humidity
- temperature
- constant temperature
- evaporator
- amb
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/144—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
Definitions
- the invention relates to the technical field of constant temperature and humidity equipment, in particular to a constant temperature and humidity internal machine, a constant temperature and humidity system and a control method thereof.
- the constant temperature and humidity machine is a kind of commercial special air conditioner.
- the product development process has national standard restrictions, which is completely different from the constant temperature and humidity control of air conditioners or air conditioners with constant temperature and humidity function.
- the principle of air conditioning dehumidification is to blow the wind through the evaporator with lower temperature, so that the temperature of the wind after heat exchange is lower than the dew point temperature. In this case, the water vapor part of the wind will condense into liquid water droplets.
- air conditioners using conventional refrigerants they are generally dehumidified during cooling. To increase the dehumidification effect, the internal air volume or the evaporation temperature can be increased.
- the air conditioning unit will generally increase the compressor frequency (increasing the compressor high and low pressure difference to reduce the system low pressure and evaporation temperature) and open the large electronic expansion valve step.
- the method of increasing the amount of refrigerant circulation to lower the evaporation temperature is used to dehumidify.
- the fan in the constant temperature and humidity machine generally uses an AC motor, and the rotation speed is not adjustable. Dehumidification in the case of constant air volume will lead to a result: the compressor up-conversion will lead to an increase in cooling capacity, and in the case of constant indoor load, in order to maintain constant temperature and humidity, it is necessary to turn on the electric auxiliary heat to offset the excess cooling amount, which leads to Invalid energy consumption.
- the invention discloses a constant temperature and humidity internal machine, a constant temperature and humidity system and a control method thereof, which solves the problem that the existing constant temperature and humidity system will generate excess cooling amount due to the constant air volume during dehumidification.
- a constant temperature and humidity internal machine comprising: a fan; a first evaporator; a second evaporator, and the second evaporator and the first evaporator are constant at the constant temperature a refrigerant compression cycle of the wet inner machine is arranged in parallel; a first electronic expansion valve is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the first evaporator, and the first electronic expansion valve is used Controlling the flow rate of the refrigerant in the first evaporator.
- the constant temperature and humidity internal machine further includes a return air outlet, and the first evaporator is located between the second evaporator and the return air inlet.
- first evaporator and the second evaporator are disposed obliquely and form a V-shaped structure.
- a constant temperature and humidity system comprising a refrigerant compression cycle and the above-described constant temperature and humidity internal combustion machine, the refrigerant compression cycle comprising: a compressor; a first heat exchange circuit, a first end Connected to the condenser, the second end of the first heat exchange circuit is in communication with the inlet of the compressor; the second heat exchange circuit is connected in parallel with the first heat exchange circuit; the constant temperature and humidity internal machine
- the first evaporator and the first electronic expansion valve are disposed on the first heat exchange circuit, and the first electronic expansion valve is located upstream of the first evaporator; the constant temperature and humidity
- the second evaporator of the machine is disposed on the second heat exchange circuit.
- a control method of a constant temperature and humidity system is disclosed.
- the constant temperature and humidity system is the above constant temperature and humidity system, and the control method includes: Step S10: acquiring an ambient temperature T ID-Amb Obtaining a set temperature T ID-Tar , acquiring an ambient humidity RH ID-Amb , acquiring a set humidity RH ID-Tar ; step S20: according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , The ambient humidity RH ID-Amb and the set humidity RH ID-Tar determine whether the constant temperature and humidity system enters the dehumidification enhancement mode.
- step S20 includes the following steps: Step S21: determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range; step S22: when T ID-Amb ⁇ T ID- Tar +T deviation , and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode; step S23: when T ID-Amb ⁇ T ID-Tar +T deviation +1 or RH ID -Amb ⁇ RH ID-Tar , controlling the constant temperature and humidity system to exit the dehumidification enhancement mode; wherein T deviation is temperature accuracy.
- the compressor (9) is up-converted, and the opening degree of the first electronic expansion valve (4) is controlled to be gradually reduced.
- the opening degree of the first electronic expansion valve (4) is controlled by the following formula:
- EXV ID-Tar is the first electronic expansion valve target opening degree
- EXV ID-Pnt is the current opening degree of the first electronic expansion valve
- T ID-Amb is the indoor ambient temperature
- T ID-Tar is the indoor set temperature.
- the opening degree of the first electronic expansion valve is gradually increased.
- a control method of a constant temperature and humidity system is disclosed.
- the constant temperature and humidity system is the above constant temperature and humidity system, and the control method includes: Step S10: acquiring an ambient temperature T ID-Amb Obtaining a set temperature T ID-Tar , acquiring an ambient humidity RH ID-Amb , acquiring a set humidity RH ID-Tar , and acquiring a refrigerant inlet pipe temperature T ID-In of the second evaporator; Step S20: Ambient temperature T ID-Amb , set temperature T ID-Tar , ambient humidity RH ID-Amb , set humidity RH ID-Tar , refrigerant inlet temperature T ID of the second evaporator In , it is determined whether the constant temperature and humidity system enters the dehumidification enhancement mode.
- step S20 includes the following steps: Step S21: determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet pipe temperature T ID-In are in a preset range; Step S22: When the conditions of T ID-Amb ⁇ T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar , T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter the dehumidification enhancement mode; step S23: When any of T ID-Amb ⁇ T ID-Tar + T deviation +1, RH ID-Amb ⁇ RH ID-Tar or T ID-In ⁇ B is satisfied, the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode; Where T deviation is temperature accuracy, A is the preset safe temperature, and B is the preset supercooling temperature.
- the compressor is up-converted, and the opening degree of the first electronic expansion valve is controlled to be gradually reduced.
- the opening degree of the first electronic expansion valve (4) is controlled by the following formula:
- the EXV ID-Tar is the target opening of the first electronic expansion valve
- the EXV ID-Pnt is the current opening degree of the first electronic expansion valve
- the T ID-Amb is the indoor ambient temperature
- the T ID-Tar is the indoor set temperature.
- the opening degree of the first electronic expansion valve is gradually increased.
- the invention sets the two evaporators in parallel, and uses the electronic expansion valve to control the flow rate of one of the refrigerants.
- the unit enters the dehumidification strengthening mode, wherein the first electronic expansion
- the valve is fully closed, dehumidified by the second evaporator, and the refrigerant that has passed through the two evaporators is now only passed through the second evaporator, which causes the circulation of the refrigerant passing through the second evaporator to increase, and the heat load is constant.
- the evaporating temperature drops, which is more conducive to dehumidification, while the first electronic expansion valve is closed, and only the second evaporator is used to complete the cooling and dehumidification.
- This situation is equivalent to reducing the evaporation area and the air volume, and does not return because of the compressor up-conversion.
- the refrigeration capacity is increased, thereby avoiding the situation that the constant temperature and humidity machine generates excess cooling due to the constant air volume, and the high-power electric auxiliary heat is turned on without energy saving.
- FIG. 1 is a schematic structural view of a constant temperature and humidity internal machine according to an embodiment of the present invention
- FIG. 2 is a working principle diagram of a constant temperature and humidity system according to an embodiment of the present invention.
- 3 is a flow chart showing the control method of the constant temperature and humidity system according to the embodiment of the present invention.
- FIG. 4 is a flow chart showing the control method of the constant temperature and humidity system according to another embodiment of the present invention.
- the invention discloses a constant temperature and humidity internal machine, comprising: a fan 1, a first evaporator 2, a second evaporator 3 and a first electronic expansion valve 4.
- the fan 1 is arranged in the air duct of the constant temperature and humidity internal machine At the tuyere; the first evaporator 2 is disposed between the fan 1 and the return air opening 6 of the air duct; the second evaporator 3 is disposed between the fan 1 and the return air opening 6, and the second evaporator 3 and the first evaporator 2
- the first electronic expansion valve 4 is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the first evaporator 2, and the first electronic expansion valve 4 is used The flow rate of the refrigerant in the first evaporator 2 is controlled.
- the unit enters the dehumidification strengthening mode, wherein the first electronic expansion valve 4 Fully closed, dehumidified by the second evaporator 3, the refrigerant that originally passed through the two evaporators, now only passes through the second evaporator 3, which causes the circulation of the refrigerant passing through the second evaporator 3 to increase, and the heat load is constant It will cause the evaporation temperature to drop, which is more conducive to dehumidification, while the first electronic expansion valve 4 is closed, and only the second evaporator 3 is used to complete the cooling and dehumidification.
- This situation is equivalent to reducing the evaporation area and the heat exchange volume, and does not return. Because the compressor is up-converted, the refrigeration capacity is increased, thereby avoiding the excess cooling capacity due to the constant air volume of the constant temperature and humidity machine, which causes the high-power electric auxiliary heat to be turned on without energy saving.
- the cooling amount may be excessively large, and the heat generated by the electric auxiliary heat is insufficient to offset the indoor environment temperature out of control.
- the constant temperature and humidity internal machine further includes: a second electronic expansion valve 5, the second electronic expansion valve 5 is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the second evaporator 3,
- the first evaporator 2 is located between the second evaporator 3 and the return air port 6, and the first evaporator 2 and the second evaporator 3 are disposed obliquely and form a V-shaped structure.
- the unit can control the flow of the refrigerant in the evaporator through the electronic expansion valve, and only use the second evaporator 3 to dehumidify without causing The cooling capacity is increased, thereby effectively preventing the indoor temperature from being out of control or increasing the energy consumption.
- the first evaporator 2 is located between the second evaporator 3 and the return air opening 6, and the first evaporator 2 and the second evaporator 3 form a V-shaped angle structure, the wind field distribution is adjusted, from the back.
- the air volume and the wind speed are relatively reduced, so that the air volume and the wind force passing through the second evaporator 3 are also relatively reduced, and the decrease in the air volume is prevented. If the heat exchange rate is too large, the wind speed will be reduced to remove the condensation of water vapor in the return air, so that the constant temperature and humidity machine can not increase the excess cooling capacity while improving the dehumidification effect.
- the constant temperature constant internal humidity machine further includes: a first electric auxiliary heat device 7 and a second electric auxiliary heat device 8, the first electric auxiliary heat device 7 is disposed between the first evaporator 2 and the fan 1; The second electric auxiliary heat device 8 is disposed between the second evaporator 3 and the blower 1.
- the temperature can be further controlled by the electric auxiliary heat device.
- a constant temperature and humidity system comprising a refrigerant compression cycle and the above-described constant temperature and humidity internal combustion machine, the refrigerant compression cycle comprising: a compressor 9, a first heat exchange circuit 10, and a second heat exchange In the circuit 11, the first end of the first heat exchange circuit 10 is connected to the condenser, the second end of the first heat exchange circuit 10 is in communication with the intake port of the compressor 9, and the second heat exchange circuit 11 and the first heat exchange circuit 10 in parallel; the first evaporator 2 of the constant temperature and humidity internal machine and the first electronic expansion valve 4 are disposed on the first heat exchange circuit 10, and the first electronic expansion valve 4 is located upstream of the first evaporator 2; constant temperature and humidity The second evaporator 3 of the internal machine is disposed on the second heat exchange circuit 11.
- the indoor load is When the temperature is not high, the unit enters the dehumidification enhancement mode, in which the first electronic expansion valve 4 upstream of the first evaporator 2 is fully closed, and the second evaporator 3 is dehumidified, and the refrigerant that has passed through the two evaporators is now only from the first The second evaporator 3 passes, which causes the circulation of the refrigerant passing through the second heat exchange circuit 11 where the second evaporator 3 is located to increase.
- a control method of a constant temperature and humidity system is disclosed.
- the constant temperature and humidity system is the above constant temperature and humidity system, and the second heat exchange circuit 11 is provided with a second electronic expansion valve 5, and a second The electronic expansion valve 5 is used for controlling the flow rate of the refrigerant in the second evaporator 3, and the control method includes:
- Step S10 Acquire an ambient temperature T ID-Amb , obtain a set temperature T ID-Tar , obtain an ambient humidity RH ID-Amb , and obtain a set humidity RH ID-Tar ;
- Step S20 Determine whether the constant temperature and humidity system enters the dehumidification enhancement mode according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , and the set humidity RH ID-Tar .
- step S20 includes the following steps:
- Step S21 determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range
- Step S22 When T ID-Amb ⁇ T ID-Tar +T deviation and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode;
- Step S23 When T ID-Amb ⁇ T ID-Tar + T deviation +1 or RH ID-Amb ⁇ RH ID-Tar , the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode;
- T deviation is temperature accuracy.
- the compressor 9 when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor 9 is up-converted, the opening degree of the first electronic expansion valve 4 is controlled to be gradually closed, and the opening degree of the second electronic expansion valve 5 is unchanged.
- the opening degree of the first electronic expansion valve 4 is controlled by the following formula:
- EXV ID-Tar is the target opening of the electronic expansion valve
- EXV ID-Pnt is the current opening of the electronic expansion valve
- T ID-Amb is the indoor ambient temperature
- T ID-Tar is the indoor set temperature.
- the opening degree of the first electronic expansion valve 4 is gradually increased, and the opening degree of the second electronic expansion valve 5 is unchanged.
- the evaporation temperature is lowered, which is more favorable for dehumidification, and at the same time, since the first electronic expansion valve 4 is closed, only the second evaporator 3 performs cooling and dehumidification, which is equivalent to reducing the heat exchange area and the air volume. Therefore, the increase in the refrigeration capacity due to the up-conversion of the compressor is avoided, and the situation in which the high-power electric auxiliary heat is turned on is not effectively avoided.
- the first electronic expansion valve 4 Since the first electronic expansion valve 4 is closed in the dehumidification-enhanced mode, the amount of refrigerant circulation through the other second evaporator 3 is increased, and the refrigerant inlet temperature of the second evaporator 3 is lowered on the original basis, when the second evaporation
- the evaporator When the temperature of the refrigerant inlet pipe is lower than -1 °C, the evaporator will not evaporate completely under the condition that the indoor heat load is constant, resulting in a large amount of liquid return to the compressor, and the general constant temperature and humidity system is provided with anti-freeze protection, not only This results in reduced cooling efficiency and unstable system operation.
- the embodiment discloses a control method for a constant temperature and humidity system.
- the constant temperature and humidity system is the above constant temperature and humidity system
- the second heat exchange circuit 11 is provided with a second electronic expansion valve 5 for controlling the flow rate of the refrigerant in the second evaporator 3, a refrigerant sensor 12 disposed on the refrigerant inlet line of the second evaporator 3, and a temperature sensor 12 for acquiring The refrigerant inlet temperature of the second evaporator 3,
- the control method includes:
- Step S10 Acquire ambient temperature T ID-Amb , obtain set temperature T ID-Tar , acquire ambient humidity RH ID-Amb , acquire set humidity RH ID-Tar , and obtain refrigerant inlet temperature T ID of second evaporator 3. -In ;
- Step S20 determining whether the constant temperature and humidity system enters according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , the set humidity RH ID-Tar , and the refrigerant inlet temperature T ID-In Dehumidification enhancement mode.
- step S20 includes the following steps:
- Step S21 determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet temperature T ID-In are in a preset range;
- Step S22 When the conditions of T ID-Amb ⁇ T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar and T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter the dehumidification strengthening mode;
- Step S23 When T ID-Amb ⁇ T ID-Tar +T deviation +1 ⁇ T ID-Amb ⁇ T ID -Tar +T deviation +1, RH ID-Amb ⁇ RH ID-Tar or T ID-In ⁇ is satisfied In any of the conditions B, the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode;
- T deviation is temperature accuracy, generally 0.5 ° C
- A is the preset safe temperature
- B is the preset supercooling temperature
- A has a value ranging from 3 ° C to 5 ° C.
- B has a value ranging from 1 ° C to 3 ° C.
- step S22 when the constant temperature and humidity system is in the dehumidification-enhanced mode, the operating frequency of the compressor 9 is gradually increased, and the opening degree of the first electronic expansion valve 4 is gradually closed, and the second electronic expansion valve is gradually closed.
- the opening of 5 is unchanged.
- the opening degree of the first electronic expansion valve 4 is controlled by the following formula:
- the EXV ID-Tar is the target opening of the first electronic expansion valve
- the EXV ID-Pnt is the current opening degree of the first electronic expansion valve
- the T ID-Amb is the indoor ambient temperature
- the T ID-Tar is the indoor set temperature.
- step S23 when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve 4 gradually increases to normal, and the opening degree of the second electronic expansion valve 5 does not change.
- the refrigeration capacity is increased by avoiding the frequency increase of the compressor, and the situation that the high-power electric auxiliary heat is turned on is not effectively avoided.
- the temperature sensor is disposed on the inlet pipe of the second evaporator 3, by detecting the inlet temperature of the second evaporator and using it as a control condition, it is possible to prevent the anti-freeze protection from being entered due to entering the dehumidification strengthening mode, and the dehumidification is improved. The ability to ensure the reliability of the system at the same time.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
A constant-temperature and constant-humidity indoor unit, a constant-temperature and constant-humidity system, and a control method therefor, wherein the constant-temperature and constant-humidity indoor unit comprising: a fan (1); a first evaporator (2); a second evaporator (3), wherein the second evaporator (3) and the first evaporator (2) are arranged in parallel in a refrigerant compression cycle of the constant-temperature and constant-humidity indoor unit; and a first electronic expansion valve (4) that is disposed in the refrigerant compression cycle of the constant-temperature and constant-humidity indoor unit and is arranged in series with the first evaporator (2), wherein the first electronic expansion valve (4) is used for controlling the flow rate of a refrigerant in the first evaporator (2). By means of arranging two evaporators in parallel, wherein the first electronic expansion valve (4) is fully closed and de-humidification is performed by the second evaporator (3), a frequency increase of a compressor (9) is avoided, resulting in an increase in cooling capacity, thus effectively avoiding circumstances in which high-power electric auxiliary heat is turned on and energy is not conserved.
Description
本申请要求于2018年4月4日提交中国专利局、申请号为201810297561.0、发明名称为“恒温恒湿内机、恒温恒湿系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application filed on April 4, 2018, the Chinese Patent Office, the application number is 201810297561.0, and the invention name is "constant temperature and humidity internal machine, constant temperature and humidity system and its control method". This is incorporated herein by reference.
本发明涉及恒温恒湿设备技术领域,具体涉及一种恒温恒湿内机、恒温恒湿系统及其控制方法。The invention relates to the technical field of constant temperature and humidity equipment, in particular to a constant temperature and humidity internal machine, a constant temperature and humidity system and a control method thereof.
恒温恒湿机是商用特种空调的一种,其产品开发过程中有国标限制,与具有恒温恒湿功能的空调或者空调的恒温恒湿控制完全不同。The constant temperature and humidity machine is a kind of commercial special air conditioner. The product development process has national standard restrictions, which is completely different from the constant temperature and humidity control of air conditioners or air conditioners with constant temperature and humidity function.
空调除湿原理是将使风吹过温度较低的蒸发器,使得换热后的风的温度低于露点温度,这种情况下风中的水蒸气部分会凝露成液态的水滴。对于使用常规冷媒的空调,在制冷的时候一般都会除湿,想要增大除湿效果,可以增大内机风量或降低蒸发温度。对于变频恒温恒湿空调机,当室内环境有除湿需求的时候,空调机组一般会通过升高压缩机频率(加大压缩机高低压差从而降低系统低压和蒸发温度)和开大电子膨胀阀步数(增大冷媒循环量从而降低蒸发温度)的方法来除湿。The principle of air conditioning dehumidification is to blow the wind through the evaporator with lower temperature, so that the temperature of the wind after heat exchange is lower than the dew point temperature. In this case, the water vapor part of the wind will condense into liquid water droplets. For air conditioners using conventional refrigerants, they are generally dehumidified during cooling. To increase the dehumidification effect, the internal air volume or the evaporation temperature can be increased. For variable frequency constant temperature and humidity air conditioners, when the indoor environment has dehumidification demand, the air conditioning unit will generally increase the compressor frequency (increasing the compressor high and low pressure difference to reduce the system low pressure and evaporation temperature) and open the large electronic expansion valve step. The method of increasing the amount of refrigerant circulation to lower the evaporation temperature is used to dehumidify.
但是,恒温恒湿机内风机一般都会使用交流电机,转速不可调。风量不变的情况下除湿会导致一个结果:压缩机升频会导致制冷能力提高,室内负荷不变的情况下,为了维持恒温恒湿需要打开电辅热抵消多余的冷量,这就导致了无效耗能。However, the fan in the constant temperature and humidity machine generally uses an AC motor, and the rotation speed is not adjustable. Dehumidification in the case of constant air volume will lead to a result: the compressor up-conversion will lead to an increase in cooling capacity, and in the case of constant indoor load, in order to maintain constant temperature and humidity, it is necessary to turn on the electric auxiliary heat to offset the excess cooling amount, which leads to Invalid energy consumption.
发明内容Summary of the invention
本发明公开了一种恒温恒湿内机、恒温恒湿系统及其控制方法,解决了现有恒温恒湿系统除湿时因风量不变会产生多余冷量的问题。The invention discloses a constant temperature and humidity internal machine, a constant temperature and humidity system and a control method thereof, which solves the problem that the existing constant temperature and humidity system will generate excess cooling amount due to the constant air volume during dehumidification.
根据本发明的一个方面,公开了一种恒温恒湿内机,包括:风机;第一蒸发器;第二蒸发器,且所述第二蒸发器与所述第一蒸发器在所述恒温恒湿内机的冷媒压缩循环中并联设置;第一电子膨胀阀,设置 在所述恒温恒湿内机的冷媒压缩循环中并且与所述第一蒸发器串联设置,所述第一电子膨胀阀用于控制所述第一蒸发器内的冷媒流量。According to an aspect of the invention, a constant temperature and humidity internal machine is disclosed, comprising: a fan; a first evaporator; a second evaporator, and the second evaporator and the first evaporator are constant at the constant temperature a refrigerant compression cycle of the wet inner machine is arranged in parallel; a first electronic expansion valve is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the first evaporator, and the first electronic expansion valve is used Controlling the flow rate of the refrigerant in the first evaporator.
进一步地,所述恒温恒湿内机还包括回风口,所述第一蒸发器位于所述第二蒸发器与所述回风口之间。Further, the constant temperature and humidity internal machine further includes a return air outlet, and the first evaporator is located between the second evaporator and the return air inlet.
进一步地,所述第一蒸发器与所述第二蒸发器倾斜设置并形成V型结构。Further, the first evaporator and the second evaporator are disposed obliquely and form a V-shaped structure.
根据本发明的另一个方面,公开了一种恒温恒湿系统,包括冷媒压缩循环和上述的恒温恒湿内机,所述冷媒压缩循环,包括:压缩机;第一热交换回路,第一端与冷凝器连接,所述第一热交换回路的第二端与所述压缩机的进气口连通;第二热交换回路,与所述第一热交换回路并联;所述恒温恒湿内机的所述第一蒸发器和所述第一电子膨胀阀设置在所述第一热交换回路上,且所述第一电子膨胀阀位于所述第一蒸发器的上游;所述恒温恒湿内机的所述第二蒸发器设置在所述第二热交换回路上。According to another aspect of the present invention, a constant temperature and humidity system is disclosed, comprising a refrigerant compression cycle and the above-described constant temperature and humidity internal combustion machine, the refrigerant compression cycle comprising: a compressor; a first heat exchange circuit, a first end Connected to the condenser, the second end of the first heat exchange circuit is in communication with the inlet of the compressor; the second heat exchange circuit is connected in parallel with the first heat exchange circuit; the constant temperature and humidity internal machine The first evaporator and the first electronic expansion valve are disposed on the first heat exchange circuit, and the first electronic expansion valve is located upstream of the first evaporator; the constant temperature and humidity The second evaporator of the machine is disposed on the second heat exchange circuit.
根据本发明的另一个方面,公开了一种恒温恒湿系统的控制方法,所述恒温恒湿系统为上述的恒温恒湿系统,所述控制方法包括:步骤S10:获取环境温度T
ID-Amb,获取设定温度T
ID-Tar,获取环境湿度RH
ID-Amb,获取设定湿度RH
ID-Tar;步骤S20:根据所述环境温度T
ID-Amb、所述设定温度T
ID-Tar、所述环境湿度RH
ID-Amb、所述设定湿度RH
ID-Tar,判断所述恒温恒湿系统是否进入除湿加强模式。
According to another aspect of the present invention, a control method of a constant temperature and humidity system is disclosed. The constant temperature and humidity system is the above constant temperature and humidity system, and the control method includes: Step S10: acquiring an ambient temperature T ID-Amb Obtaining a set temperature T ID-Tar , acquiring an ambient humidity RH ID-Amb , acquiring a set humidity RH ID-Tar ; step S20: according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , The ambient humidity RH ID-Amb and the set humidity RH ID-Tar determine whether the constant temperature and humidity system enters the dehumidification enhancement mode.
进一步地,所述步骤S20包括以下步骤:步骤S21:判断所述环境温度T
ID-Amb和所述环境湿度RH
ID-Amb是否处于预设范围;步骤S22:当T
ID-Amb<T
ID-Tar+T
deviation,且RH
ID-Amb>RH
ID-Tar时,控制所述恒温恒湿系统进入除湿加强模式;步骤S23:当T
ID-Amb≥T
ID-Tar+T
deviation+1或RH
ID-Amb<RH
ID-Tar时,控制所述恒温恒湿系统退出除湿加强模式;其中,T
deviation为温度精度。
Further, the step S20 includes the following steps: Step S21: determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range; step S22: when T ID-Amb <T ID- Tar +T deviation , and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode; step S23: when T ID-Amb ≥T ID-Tar +T deviation +1 or RH ID -Amb <RH ID-Tar , controlling the constant temperature and humidity system to exit the dehumidification enhancement mode; wherein T deviation is temperature accuracy.
进一步地,当所述恒温恒湿系统在除湿加强模式下,压缩机(9)升频,控制所述第一电子膨胀阀(4)的开度逐渐关小。Further, when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor (9) is up-converted, and the opening degree of the first electronic expansion valve (4) is controlled to be gradually reduced.
进一步地,所述第一电子膨胀阀(4)的开度按下列公式控制:Further, the opening degree of the first electronic expansion valve (4) is controlled by the following formula:
其中,EXV
ID-Tar为第一电子膨胀阀目标开度,EXV
ID-Pnt为第一电子膨 胀阀当前开度,T
ID-Amb为室内环境温度,T
ID-Tar为室内设定温度。
Among them, EXV ID-Tar is the first electronic expansion valve target opening degree, EXV ID-Pnt is the current opening degree of the first electronic expansion valve, T ID-Amb is the indoor ambient temperature, and T ID-Tar is the indoor set temperature.
进一步地,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀的开度逐渐增大。Further, when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve is gradually increased.
根据本发明的另一个方面,公开了一种恒温恒湿系统的控制方法,所述恒温恒湿系统为上述的恒温恒湿系统,所述控制方法包括:步骤S10:获取环境温度T
ID-Amb,获取设定温度T
ID-Tar,获取环境湿度RH
ID-Amb,获取设定湿度RH
ID-Tar,获取所述第二蒸发器的冷媒进管温度T
ID-In;步骤S20:根据所述环境温度T
ID-Amb、所述设定温度T
ID-Tar、所述环境湿度RH
ID-Amb、所述设定湿度RH
ID-Tar、所述第二蒸发器的冷媒进管温度T
ID-In,判断所述恒温恒湿系统是否进入除湿加强模式。
According to another aspect of the present invention, a control method of a constant temperature and humidity system is disclosed. The constant temperature and humidity system is the above constant temperature and humidity system, and the control method includes: Step S10: acquiring an ambient temperature T ID-Amb Obtaining a set temperature T ID-Tar , acquiring an ambient humidity RH ID-Amb , acquiring a set humidity RH ID-Tar , and acquiring a refrigerant inlet pipe temperature T ID-In of the second evaporator; Step S20: Ambient temperature T ID-Amb , set temperature T ID-Tar , ambient humidity RH ID-Amb , set humidity RH ID-Tar , refrigerant inlet temperature T ID of the second evaporator In , it is determined whether the constant temperature and humidity system enters the dehumidification enhancement mode.
进一步地,步骤S20包括以下步骤:步骤S21:判断所述环境温度T
ID-Amb、所述环境湿度RH
ID-Amb、所述冷媒进管温度T
ID-In是否处于预设范围;步骤S22:当同时满足T
ID-Amb<T
ID-Tar+T
deviation、RH
ID-Amb>RH
ID-Tar、T
ID-In>A条件时,控制所述恒温恒湿系统进入除湿加强模式;步骤S23:当满足T
ID-Amb≥T
ID-Tar+T
deviation+1、RH
ID-Amb<RH
ID-Tar或T
ID-In≤B中的任一条件时,控制恒温恒湿系统退出除湿加强模式;其中,T
deviation为温度精度,A为预设安全温度,B为预设过冷温度。
Further, the step S20 includes the following steps: Step S21: determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet pipe temperature T ID-In are in a preset range; Step S22: When the conditions of T ID-Amb <T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar , T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter the dehumidification enhancement mode; step S23: When any of T ID-Amb ≥ T ID-Tar + T deviation +1, RH ID-Amb <RH ID-Tar or T ID-In ≤ B is satisfied, the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode; Where T deviation is temperature accuracy, A is the preset safe temperature, and B is the preset supercooling temperature.
进一步地,当所述恒温恒湿系统在除湿加强模式下,压缩机升频,控制所述第一电子膨胀阀的开度逐渐关小。Further, when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor is up-converted, and the opening degree of the first electronic expansion valve is controlled to be gradually reduced.
进一步地,所述第一电子膨胀阀(4)的开度按下列公式控制:Further, the opening degree of the first electronic expansion valve (4) is controlled by the following formula:
其中,among them,
EXV
ID-Tar为第一电子膨胀阀目标开度,EXV
ID-Pnt为第一电子膨胀阀当前开度,T
ID-Amb为室内环境温度,T
ID-Tar为室内设定温度。
The EXV ID-Tar is the target opening of the first electronic expansion valve, the EXV ID-Pnt is the current opening degree of the first electronic expansion valve, the T ID-Amb is the indoor ambient temperature, and the T ID-Tar is the indoor set temperature.
进一步地,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀的开度逐渐增大。Further, when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve is gradually increased.
本发明通过将两个蒸发器并联设置,并利用电子膨胀阀控制其中一个的冷媒流量大小,当室内除湿需求较大但室内负荷不高的时候,机组进入除湿加强模式,其中,第一电子膨胀阀全关,由第二蒸发器除湿,本来经过两个蒸发器的冷媒,现在只从第二蒸发器经过,这导致经过第二蒸发器的冷媒循环量增加,热负荷一定的情况下会导致蒸 发温度下降,更有利于除湿,同时第一电子膨胀阀关闭,只由第二蒸发器去完成制冷和除湿,这种情况相当于减小了蒸发面积和风量,不回因为压缩机升频而使制冷能力增加,从而避免了由于恒温恒湿机因风量不变产生多余冷量,导致大功率电辅热开启不节能的情况。The invention sets the two evaporators in parallel, and uses the electronic expansion valve to control the flow rate of one of the refrigerants. When the indoor dehumidification demand is large but the indoor load is not high, the unit enters the dehumidification strengthening mode, wherein the first electronic expansion The valve is fully closed, dehumidified by the second evaporator, and the refrigerant that has passed through the two evaporators is now only passed through the second evaporator, which causes the circulation of the refrigerant passing through the second evaporator to increase, and the heat load is constant. The evaporating temperature drops, which is more conducive to dehumidification, while the first electronic expansion valve is closed, and only the second evaporator is used to complete the cooling and dehumidification. This situation is equivalent to reducing the evaporation area and the air volume, and does not return because of the compressor up-conversion. The refrigeration capacity is increased, thereby avoiding the situation that the constant temperature and humidity machine generates excess cooling due to the constant air volume, and the high-power electric auxiliary heat is turned on without energy saving.
图1是本发明实施例的恒温恒湿内机的结构示意图;1 is a schematic structural view of a constant temperature and humidity internal machine according to an embodiment of the present invention;
图2是本发明实施例的恒温恒湿系统的工作原理图;2 is a working principle diagram of a constant temperature and humidity system according to an embodiment of the present invention;
图3是本发明实施例的恒温恒湿系统的控制方法工作流程图;3 is a flow chart showing the control method of the constant temperature and humidity system according to the embodiment of the present invention;
图4是本发明另一实施例的恒温恒湿系统的控制方法工作流程图;4 is a flow chart showing the control method of the constant temperature and humidity system according to another embodiment of the present invention;
图例:1、风机;2、第一蒸发器;3、第二蒸发器;4、第一电子膨胀阀;5、第二电子膨胀阀;6、回风口;7、第一电辅热装置;8、第二电辅热装置;9、压缩机;10、第一热交换回路;11、第二热交换回路;12、温度传感器。Legend: 1, fan; 2, first evaporator; 3, second evaporator; 4, first electronic expansion valve; 5, second electronic expansion valve; 6, return air; 7, first electric auxiliary heat device; 8. Second electric auxiliary heat device; 9. Compressor; 10. First heat exchange circuit; 11. Second heat exchange circuit; 12. Temperature sensor.
下面结合实施例对本发明做进一步说明,但不局限于说明书上的内容。The present invention will be further described below in conjunction with the embodiments, but is not limited to the contents of the specification.
本发明公开了一种恒温恒湿内机,包括:风机1、第一蒸发器2、第二蒸发器3和第一电子膨胀阀4,风机1设置在恒温恒湿内机的风道内的出风口处;第一蒸发器2设置在风机1与风道的回风口6之间;第二蒸发器3设置在风机1与回风口6之间,且第二蒸发器3与第一蒸发器2在恒温恒湿内机的冷媒压缩循环中并联设置;第一电子膨胀阀4设置在恒温恒湿内机的冷媒压缩循环中并且与第一蒸发器2串联设置,第一电子膨胀阀4用于控制第一蒸发器2内的冷媒流量。The invention discloses a constant temperature and humidity internal machine, comprising: a fan 1, a first evaporator 2, a second evaporator 3 and a first electronic expansion valve 4. The fan 1 is arranged in the air duct of the constant temperature and humidity internal machine At the tuyere; the first evaporator 2 is disposed between the fan 1 and the return air opening 6 of the air duct; the second evaporator 3 is disposed between the fan 1 and the return air opening 6, and the second evaporator 3 and the first evaporator 2 Provided in parallel in the refrigerant compression cycle of the constant temperature and humidity internal machine; the first electronic expansion valve 4 is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the first evaporator 2, and the first electronic expansion valve 4 is used The flow rate of the refrigerant in the first evaporator 2 is controlled.
通过将两个蒸发器并联设置,并利用电子膨胀阀控制其中一个的冷媒流量大小,当室内除湿需求较大但室内负荷不高的时候,机组进入除湿加强模式,其中,第一电子膨胀阀4全关,由第二蒸发器3除湿,本来经过两个蒸发器的冷媒,现在只从第二蒸发器3经过,这导致经过第二蒸发器3的冷媒循环量增加,热负荷一定的情况下会导致蒸发温度下降,更有利于除湿,同时第一电子膨胀阀4关闭,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了蒸发面积和换热风量,不 回因为压缩机升频而使制冷能力增加,从而避免了由于恒温恒湿机风量不变会产生多余冷量,导致大功率电辅热开启不节能的情况。By setting the two evaporators in parallel and using the electronic expansion valve to control the flow rate of one of the refrigerants, when the indoor dehumidification demand is large but the indoor load is not high, the unit enters the dehumidification strengthening mode, wherein the first electronic expansion valve 4 Fully closed, dehumidified by the second evaporator 3, the refrigerant that originally passed through the two evaporators, now only passes through the second evaporator 3, which causes the circulation of the refrigerant passing through the second evaporator 3 to increase, and the heat load is constant It will cause the evaporation temperature to drop, which is more conducive to dehumidification, while the first electronic expansion valve 4 is closed, and only the second evaporator 3 is used to complete the cooling and dehumidification. This situation is equivalent to reducing the evaporation area and the heat exchange volume, and does not return. Because the compressor is up-converted, the refrigeration capacity is increased, thereby avoiding the excess cooling capacity due to the constant air volume of the constant temperature and humidity machine, which causes the high-power electric auxiliary heat to be turned on without energy saving.
而且,在热负荷不高,室内电辅热功率不高的情况下,为保证除湿效果,可能会导致冷量过大,电辅热产生的热量不足以抵消导致室内环境温度失控。通过将两个蒸发器并联设置,并利用电子膨胀阀控制其中一个的冷媒流量大小,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了蒸发面积和风量,从而避免出现温度失控的现象。Moreover, in the case where the heat load is not high and the indoor electric auxiliary heat power is not high, in order to ensure the dehumidification effect, the cooling amount may be excessively large, and the heat generated by the electric auxiliary heat is insufficient to offset the indoor environment temperature out of control. By setting the two evaporators in parallel and controlling the flow rate of one of the refrigerants by using an electronic expansion valve, only the second evaporator 3 performs cooling and dehumidification, which is equivalent to reducing the evaporation area and the air volume, thereby avoiding There is a phenomenon that the temperature is out of control.
在上述实施例中,恒温恒湿内机还包括:第二电子膨胀阀5,第二电子膨胀阀5设置在恒温恒湿内机的冷媒压缩循环中并且与第二蒸发器3串联设置,用于控制第二蒸发器3内的冷媒流量,第一蒸发器2位于第二蒸发器3与回风口6之间,第一蒸发器2与第二蒸发器3倾斜设置并形成V型结构。通过由电子膨胀阀单独控制,当室内环境对除湿需求较大但是热负荷不高时,机组可以通过电子膨胀阀控制蒸发器内的冷媒流量,只利用第二蒸发器3除湿,而不会导致制冷量增加,从而有效避免室内温度失控或者能耗增加。而且,由于第一蒸发器2位于第二蒸发器3与回风口6之间,且将第一蒸发器2与第二蒸发器3形成V型夹角结构,从而调整了风场分布,从回风口6进入的回风经过靠近回风口6的第一蒸发器2后,风量和风速都相对减小,从而使经过第二蒸发器3的风量和风度也相对减小,风量的减小会防止换热量过大,风速减低会更有利于除去回风中水蒸气凝结,从而使恒温恒湿机在提高除湿效果的同时,还不会产生多余冷量。In the above embodiment, the constant temperature and humidity internal machine further includes: a second electronic expansion valve 5, the second electronic expansion valve 5 is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the second evaporator 3, In order to control the flow rate of the refrigerant in the second evaporator 3, the first evaporator 2 is located between the second evaporator 3 and the return air port 6, and the first evaporator 2 and the second evaporator 3 are disposed obliquely and form a V-shaped structure. By the individual control of the electronic expansion valve, when the indoor environment has a large demand for dehumidification but the heat load is not high, the unit can control the flow of the refrigerant in the evaporator through the electronic expansion valve, and only use the second evaporator 3 to dehumidify without causing The cooling capacity is increased, thereby effectively preventing the indoor temperature from being out of control or increasing the energy consumption. Moreover, since the first evaporator 2 is located between the second evaporator 3 and the return air opening 6, and the first evaporator 2 and the second evaporator 3 form a V-shaped angle structure, the wind field distribution is adjusted, from the back. After the return air entering the tuyere 6 passes through the first evaporator 2 near the return air outlet 6, the air volume and the wind speed are relatively reduced, so that the air volume and the wind force passing through the second evaporator 3 are also relatively reduced, and the decrease in the air volume is prevented. If the heat exchange rate is too large, the wind speed will be reduced to remove the condensation of water vapor in the return air, so that the constant temperature and humidity machine can not increase the excess cooling capacity while improving the dehumidification effect.
在上述实施例中,恒温恒内湿机还包括:第一电辅热装置7和第二电辅热装置8,第一电辅热装置7设置在第一蒸发器2与风机1之间;第二电辅热装置8设置在第二蒸发器3与风机1之间。通过电辅热装置可以进一步保证温度失控。In the above embodiment, the constant temperature constant internal humidity machine further includes: a first electric auxiliary heat device 7 and a second electric auxiliary heat device 8, the first electric auxiliary heat device 7 is disposed between the first evaporator 2 and the fan 1; The second electric auxiliary heat device 8 is disposed between the second evaporator 3 and the blower 1. The temperature can be further controlled by the electric auxiliary heat device.
根据本发明的另一方面,公开了一种恒温恒湿系统,包括冷媒压缩循环和上述的恒温恒湿内机,冷媒压缩循环包括:压缩机9、第一热交换回路10和第二热交换回路11,第一热交换回路10的第一端与冷凝器连接,第一热交换回路10的第二端与压缩机9的进气口连通;第二热交换回路11与第一热交换回路10并联;恒温恒湿内机的第一蒸发器2和第一电子膨胀阀4设置在第一热交换回路10上,且第一电子 膨胀阀4位于第一蒸发器2的上游;恒温恒湿内机的第二蒸发器3设置在第二热交换回路11上。通过设置两个并联的热交换回路,并将两个蒸发器分别设置在两个热交换回路上,并利用电子膨胀阀控制其中一个蒸发器内的冷媒流量大小,当室内除湿需求强烈但室内负荷不高的时候,机组进入除湿加强模式,其中,第一蒸发器2上游的第一电子膨胀阀4全关,由第二蒸发器3除湿,本来经过两个蒸发器的冷媒,现在只从第二蒸发器3经过,这导致经过第二蒸发器3所在的第二热交换回路11的冷媒循环量增加,热负荷一定的情况下会导致蒸发温度下降,更有利于除湿,同时第一电子膨胀阀4关闭,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了蒸发面积和风量,因此,避免了压缩机升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。According to another aspect of the present invention, a constant temperature and humidity system is disclosed, comprising a refrigerant compression cycle and the above-described constant temperature and humidity internal combustion machine, the refrigerant compression cycle comprising: a compressor 9, a first heat exchange circuit 10, and a second heat exchange In the circuit 11, the first end of the first heat exchange circuit 10 is connected to the condenser, the second end of the first heat exchange circuit 10 is in communication with the intake port of the compressor 9, and the second heat exchange circuit 11 and the first heat exchange circuit 10 in parallel; the first evaporator 2 of the constant temperature and humidity internal machine and the first electronic expansion valve 4 are disposed on the first heat exchange circuit 10, and the first electronic expansion valve 4 is located upstream of the first evaporator 2; constant temperature and humidity The second evaporator 3 of the internal machine is disposed on the second heat exchange circuit 11. By setting two parallel heat exchange circuits, and setting two evaporators on two heat exchange circuits, and using an electronic expansion valve to control the flow rate of the refrigerant in one of the evaporators, when the indoor dehumidification demand is strong, the indoor load is When the temperature is not high, the unit enters the dehumidification enhancement mode, in which the first electronic expansion valve 4 upstream of the first evaporator 2 is fully closed, and the second evaporator 3 is dehumidified, and the refrigerant that has passed through the two evaporators is now only from the first The second evaporator 3 passes, which causes the circulation of the refrigerant passing through the second heat exchange circuit 11 where the second evaporator 3 is located to increase. When the heat load is constant, the evaporation temperature is lowered, which is more favorable for dehumidification and the first electronic expansion. The valve 4 is closed, and only the second evaporator 3 is used to complete the cooling and dehumidification. This situation is equivalent to reducing the evaporation area and the air volume. Therefore, the increase in the refrigeration capacity due to the up-conversion of the compressor is avoided, and the high-power electric auxiliary heat is effectively avoided. Turn on the situation that does not save energy.
根据本发明的另一方面,公开了一种恒温恒湿系统的控制方法,恒温恒湿系统为上述的恒温恒湿系统,第二热交换回路11上设置有第二电子膨胀阀5,第二电子膨胀阀5用于控制第二蒸发器3内的冷媒流量大小,控制方法包括:According to another aspect of the present invention, a control method of a constant temperature and humidity system is disclosed. The constant temperature and humidity system is the above constant temperature and humidity system, and the second heat exchange circuit 11 is provided with a second electronic expansion valve 5, and a second The electronic expansion valve 5 is used for controlling the flow rate of the refrigerant in the second evaporator 3, and the control method includes:
步骤S10:获取环境温度T
ID-Amb,获取设定温度T
ID-Tar,获取环境湿度RH
ID-Amb,获取设定湿度RH
ID-Tar;
Step S10: Acquire an ambient temperature T ID-Amb , obtain a set temperature T ID-Tar , obtain an ambient humidity RH ID-Amb , and obtain a set humidity RH ID-Tar ;
步骤S20:根据环境温度T
ID-Amb、设定温度T
ID-Tar、环境湿度RH
ID-Amb、设定湿度RH
ID-Tar,判断恒温恒湿系统是否进入除湿加强模式。
Step S20: Determine whether the constant temperature and humidity system enters the dehumidification enhancement mode according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , and the set humidity RH ID-Tar .
在上述实施例中,步骤S20包括以下步骤:In the above embodiment, step S20 includes the following steps:
步骤S21:判断环境温度T
ID-Amb和环境湿度RH
ID-Amb是否处于预设范围;
Step S21: determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range;
步骤S22:当T
ID-Amb<T
ID-Tar+T
deviation,且RH
ID-Amb>RH
ID-Tar时,控制恒温恒湿系统进入除湿加强模式;
Step S22: When T ID-Amb <T ID-Tar +T deviation and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode;
步骤S23:当T
ID-Amb≥T
ID-Tar+T
deviation+1或RH
ID-Amb<RH
ID-Tar时,控制恒温恒湿系统退出除湿加强模式;
Step S23: When T ID-Amb ≥ T ID-Tar + T deviation +1 or RH ID-Amb <RH ID-Tar , the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode;
其中,T
deviation为温度精度。
Among them, T deviation is temperature accuracy.
在上述实施例中,当恒温恒湿系统在除湿加强模式下,压缩机9升频,控制第一电子膨胀阀4的开度逐渐关小,第二电子膨胀阀5的开度不变。In the above embodiment, when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor 9 is up-converted, the opening degree of the first electronic expansion valve 4 is controlled to be gradually closed, and the opening degree of the second electronic expansion valve 5 is unchanged.
在上述实施例中,第一电子膨胀阀4的开度按下列公式控制:In the above embodiment, the opening degree of the first electronic expansion valve 4 is controlled by the following formula:
其中,among them,
EXV
ID-Tar为电子膨胀阀目标开度,EXV
ID-Pnt为电子膨胀阀当前开度,T
ID-Amb为室内环境温度,T
ID-Tar为室内设定温度。
EXV ID-Tar is the target opening of the electronic expansion valve, EXV ID-Pnt is the current opening of the electronic expansion valve, T ID-Amb is the indoor ambient temperature, and T ID-Tar is the indoor set temperature.
在上述实施例中,当恒温恒湿控制系统退出除湿加强模式时,控制第一电子膨胀阀4的开度逐渐增大,第二电子膨胀阀5的开度不变。In the above embodiment, when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve 4 is gradually increased, and the opening degree of the second electronic expansion valve 5 is unchanged.
通过上述方法,由于除湿加强模式的条件是T
ID-Amb<T
ID-Tar+T
deviation,所以T
ID-Amb-T
ID-Tar+T
deviation是个负数,所以EXV
ID-Tar=EXV
ID-Pnt+负数,第一电子膨胀阀4会一直关小直到0,第一热交换回路10关闭,这导致经过第二蒸发器3所在的第二热交换回路11的冷媒循环量增加,热负荷一定的情况下会导致蒸发温度下降,更有利于除湿,同时由于第一电子膨胀阀4关闭,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了换热面积和风量,因此,避免了压缩机升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。
By the above method, since the condition of the dehumidification enhancement mode is T ID-Amb <T ID-Tar +T deviation , T ID-Amb -T ID-Tar +T deviation is a negative number, so EXV ID-Tar =EXV ID-Pnt + negative, the first electronic expansion valve 4 will be kept off until 0, and the first heat exchange circuit 10 is closed, which causes the circulation of the refrigerant passing through the second heat exchange circuit 11 where the second evaporator 3 is located to increase, and the heat load is constant. In this case, the evaporation temperature is lowered, which is more favorable for dehumidification, and at the same time, since the first electronic expansion valve 4 is closed, only the second evaporator 3 performs cooling and dehumidification, which is equivalent to reducing the heat exchange area and the air volume. Therefore, the increase in the refrigeration capacity due to the up-conversion of the compressor is avoided, and the situation in which the high-power electric auxiliary heat is turned on is not effectively avoided.
由于除湿加强模式下会关闭第一电子膨胀阀4,导致经过另第二蒸发器3的冷媒循环量增加,第二蒸发器3的冷媒进管温度会在原来的基础上降低,当第二蒸发器的冷媒进管温度低于-1℃时,在室内热负荷不变的情况下蒸发器会蒸发不完全,导致压缩机大量回液,而一般恒温恒湿系统都设置有防冻结保护,不仅导致制冷效率降低,而且系统运行不稳定。Since the first electronic expansion valve 4 is closed in the dehumidification-enhanced mode, the amount of refrigerant circulation through the other second evaporator 3 is increased, and the refrigerant inlet temperature of the second evaporator 3 is lowered on the original basis, when the second evaporation When the temperature of the refrigerant inlet pipe is lower than -1 °C, the evaporator will not evaporate completely under the condition that the indoor heat load is constant, resulting in a large amount of liquid return to the compressor, and the general constant temperature and humidity system is provided with anti-freeze protection, not only This results in reduced cooling efficiency and unstable system operation.
为了解决上述问题,本发明公开了另一个实施例,该实施例公开了一种恒温恒湿系统的控制方法,恒温恒湿系统为上述的恒温恒湿系统,第二热交换回路11上设置有第二电子膨胀阀5,第二电子膨胀阀5用于控制第二蒸发器3内的冷媒流量大小,第二蒸发器3的冷媒入口管路上设置有温度传感器12,温度传感器12用于获取第二蒸发器3的冷媒进管温度,控制方法包括:In order to solve the above problems, the present invention discloses another embodiment. The embodiment discloses a control method for a constant temperature and humidity system. The constant temperature and humidity system is the above constant temperature and humidity system, and the second heat exchange circuit 11 is provided with a second electronic expansion valve 5 for controlling the flow rate of the refrigerant in the second evaporator 3, a refrigerant sensor 12 disposed on the refrigerant inlet line of the second evaporator 3, and a temperature sensor 12 for acquiring The refrigerant inlet temperature of the second evaporator 3, the control method includes:
步骤S10:获取环境温度T
ID-Amb,获取设定温度T
ID-Tar,获取环境湿度RH
ID-Amb,获取设定湿度RH
ID-Tar,获取第二蒸发器3的冷媒进管温度T
ID-In;
Step S10: Acquire ambient temperature T ID-Amb , obtain set temperature T ID-Tar , acquire ambient humidity RH ID-Amb , acquire set humidity RH ID-Tar , and obtain refrigerant inlet temperature T ID of second evaporator 3. -In ;
步骤S20:根据环境温度T
ID-Amb、设定温度T
ID-Tar、环境湿度RH
ID-Amb、 设定湿度RH
ID-Tar,冷媒进管温度T
ID-In,判断恒温恒湿系统是否进入除湿加强模式。
Step S20: determining whether the constant temperature and humidity system enters according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , the set humidity RH ID-Tar , and the refrigerant inlet temperature T ID-In Dehumidification enhancement mode.
在上述实施例中,步骤S20包括以下步骤:In the above embodiment, step S20 includes the following steps:
步骤S21:判断环境温度T
ID-Amb、环境湿度RH
ID-Amb、冷媒进管温度T
ID-In是否处于预设范围;
Step S21: determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet temperature T ID-In are in a preset range;
步骤S22:当同时满足T
ID-Amb<T
ID-Tar+T
deviation、RH
ID-Amb>RH
ID-Tar、T
ID-In>A条件时,控制恒温恒湿系统进入除湿加强模式;
Step S22: When the conditions of T ID-Amb <T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar and T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter the dehumidification strengthening mode;
步骤S23:当满足T
ID-Amb≥T
ID-Tar+T
deviation+1≥T
ID-Amb≥T
ID-Tar+T
deviation+1、RH
ID-Amb<RH
ID-Tar或T
ID-In≤B中的任一条件时,控制恒温恒湿系统退出除湿加强模式;
Step S23: When T ID-Amb ≥T ID-Tar +T deviation +1≥T ID-Amb ≥T ID -Tar +T deviation +1, RH ID-Amb <RH ID-Tar or T ID-In ≤ is satisfied In any of the conditions B, the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode;
其中,T
deviation为温度精度,一般为0.5℃,A为预设安全温度,B为预设过冷温度。
Where T deviation is temperature accuracy, generally 0.5 ° C, A is the preset safe temperature, and B is the preset supercooling temperature.
在上述实施例中,A的取值范围为3℃~5℃。In the above embodiment, A has a value ranging from 3 ° C to 5 ° C.
在上述实施例中,B的取值范围为1℃~3℃。In the above embodiment, B has a value ranging from 1 ° C to 3 ° C.
在上述实施例中,在步骤S22中,当恒温恒湿系统在除湿加强模式下,压缩机9工作频率逐渐增大,且第一电子膨胀阀4的开度逐渐关小,第二电子膨胀阀5的开度不变。In the above embodiment, in step S22, when the constant temperature and humidity system is in the dehumidification-enhanced mode, the operating frequency of the compressor 9 is gradually increased, and the opening degree of the first electronic expansion valve 4 is gradually closed, and the second electronic expansion valve is gradually closed. The opening of 5 is unchanged.
在上述实施例中,第一电子膨胀阀4的开度按下列公式控制:In the above embodiment, the opening degree of the first electronic expansion valve 4 is controlled by the following formula:
其中,among them,
EXV
ID-Tar为第一电子膨胀阀目标开度,EXV
ID-Pnt为第一电子膨胀阀当前开度,T
ID-Amb为室内环境温度,T
ID-Tar为室内设定温度。
The EXV ID-Tar is the target opening of the first electronic expansion valve, the EXV ID-Pnt is the current opening degree of the first electronic expansion valve, the T ID-Amb is the indoor ambient temperature, and the T ID-Tar is the indoor set temperature.
在上述实施例中,在步骤S23中,当恒温恒湿控制系统退出除湿加强模式时,第一电子膨胀阀4的开度逐渐增大至正常,第二电子膨胀阀5的开度不变。In the above embodiment, in step S23, when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve 4 gradually increases to normal, and the opening degree of the second electronic expansion valve 5 does not change.
通过上述方法,在避免了压缩机升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。同时,由于在第二蒸发器3进管上的设置温度传感器,通过检测第二蒸发器进管温度并将其作为控制条件,从而能防止因为进入除湿加强模式而导致防冻结保护,提高除湿降能力的同时保证系统运行可靠性。Through the above method, the refrigeration capacity is increased by avoiding the frequency increase of the compressor, and the situation that the high-power electric auxiliary heat is turned on is not effectively avoided. At the same time, since the temperature sensor is disposed on the inlet pipe of the second evaporator 3, by detecting the inlet temperature of the second evaporator and using it as a control condition, it is possible to prevent the anti-freeze protection from being entered due to entering the dehumidification strengthening mode, and the dehumidification is improved. The ability to ensure the reliability of the system at the same time.
显然,本发明的上述实施方式仅仅是为清楚地说明本发明所作的 举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。It is apparent that the above-described embodiments of the present invention are merely illustrative of the present invention and are not intended to limit the embodiments of the present invention. Other variations or modifications of the various forms may be made by those skilled in the art in light of the above description. It is not possible to exhaust all implementations here. Obvious changes or variations that come within the scope of the invention are still within the scope of the invention.
Claims (14)
- 一种恒温恒湿内机,其特征在于,包括:A constant temperature and humidity internal machine, comprising:风机(1);Fan (1);第一蒸发器(2);First evaporator (2);第二蒸发器(3),且所述第二蒸发器(3)与所述第一蒸发器(2)在所述恒温恒湿内机的冷媒压缩循环中并联设置;a second evaporator (3), and the second evaporator (3) and the first evaporator (2) are arranged in parallel in a refrigerant compression cycle of the constant temperature and humidity internal machine;第一电子膨胀阀(4),设置在所述恒温恒湿内机的冷媒压缩循环中并且与所述第一蒸发器(2)串联设置,所述第一电子膨胀阀(4)用于控制所述第一蒸发器(2)内的冷媒流量。a first electronic expansion valve (4) disposed in a refrigerant compression cycle of the constant temperature and humidity internal machine and disposed in series with the first evaporator (2), the first electronic expansion valve (4) being used for control The flow rate of the refrigerant in the first evaporator (2).
- 根据权利要求1所述的恒温恒湿内机,其特征在于,所述恒温恒湿内机还包括回风口(6),所述第一蒸发器(2)位于所述第二蒸发器(3)与所述回风口(6)之间。The constant temperature and humidity internal machine according to claim 1, wherein the constant temperature and humidity internal machine further comprises a return air (6), and the first evaporator (2) is located at the second evaporator (3) ) between the return air outlet (6).
- 根据权利要求2所述的恒温恒湿内机,其特征在于,所述第一蒸发器(2)与所述第二蒸发器(3)倾斜设置并形成V型结构。The constant temperature and humidity internal machine according to claim 2, characterized in that the first evaporator (2) and the second evaporator (3) are disposed obliquely and form a V-shaped structure.
- 一种恒温恒湿系统,其特征在于,包括冷媒压缩循环和权利要求1-3任一项所述的恒温恒湿内机,所述冷媒压缩循环,包括:A constant temperature and humidity system, comprising: a refrigerant compression cycle and the constant temperature and humidity internal machine according to any one of claims 1 to 3, wherein the refrigerant compression cycle comprises:压缩机(9);Compressor (9);第一热交换回路(10),第一端与冷凝器连接,所述第一热交换回路(10)的第二端与所述压缩机(9)的进气口连通;a first heat exchange circuit (10), the first end is connected to the condenser, and the second end of the first heat exchange circuit (10) is in communication with the air inlet of the compressor (9);第二热交换回路(11),与所述第一热交换回路(10)并联;a second heat exchange circuit (11) in parallel with the first heat exchange circuit (10);所述恒温恒湿内机的所述第一蒸发器(2)和所述第一电子膨胀阀(4)设置在所述第一热交换回路(10)上,且所述第一电子膨胀阀(4)位于所述第一蒸发器(2)的上游;The first evaporator (2) and the first electronic expansion valve (4) of the constant temperature and humidity internal machine are disposed on the first heat exchange circuit (10), and the first electronic expansion valve (4) located upstream of the first evaporator (2);所述恒温恒湿内机的所述第二蒸发器(3)设置在所述第二热交换回路(11)上。The second evaporator (3) of the constant temperature and humidity internal machine is disposed on the second heat exchange circuit (11).
- 一种恒温恒湿系统的控制方法,所述恒温恒湿系统为权利要求4所述的恒温恒湿系统,其特征在于,所述控制方法包括:A constant temperature and humidity system according to claim 4, wherein the constant temperature and humidity system is the constant temperature and humidity system according to claim 4, wherein the control method comprises:步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar; Step S10: Acquire an ambient temperature T ID-Amb , obtain a set temperature T ID-Tar , obtain an ambient humidity RH ID-Amb , and obtain a set humidity RH ID-Tar ;步骤S20:根据所述环境温度T ID-Amb、所述设定温度T ID-Tar、所述环境湿度RH ID-Amb、所述设定湿度RH ID-Tar,判断所述恒温恒湿系统是否进入除湿加强模式。 Step S20: determining whether the constant temperature and humidity system is based on the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , and the set humidity RH ID-Tar Enter the dehumidification enhancement mode.
- 根据权利要求5所述的控制方法,其特征在于,所述步骤S20包括以下步骤:The control method according to claim 5, wherein the step S20 comprises the following steps:步骤S21:判断所述环境温度T ID-Amb和所述环境湿度RH ID-Amb是否处于预设范围; Step S21: determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range;步骤S22:当T ID-Amb<T ID-Tar+T deviation,且RH ID-Amb>RH ID-Tar时,控制所述恒温恒湿系统进入除湿加强模式; Step S22: When T ID-Amb <T ID-Tar +T deviation and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode;步骤S23:当T ID-Amb≥T ID-Tar+T deviation+1或RH ID-Amb<RH ID-Tar时,控制所述恒温恒湿系统退出除湿加强模式; Step S23: When T ID-Amb ≥ T ID-Tar + T deviation +1 or RH ID-Amb <RH ID-Tar , controlling the constant temperature and humidity system to exit the dehumidification enhancement mode;其中,T deviation为温度精度。 Among them, T deviation is temperature accuracy.
- 根据权利要求6所述的控制方法,其特征在于,当所述恒温恒湿系统在除湿加强模式下,压缩机(9)升频,控制所述第一电子膨胀阀(4)的开度逐渐关小。The control method according to claim 6, wherein when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor (9) is up-converted, and the opening degree of the first electronic expansion valve (4) is controlled gradually. turn down.
- 根据权利要求7所述的控制方法,其特征在于,所述第一电子膨胀阀(4)的开度按下列公式控制:The control method according to claim 7, characterized in that the opening degree of the first electronic expansion valve (4) is controlled by the following formula:其中,among them,EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。 The EXV ID-Tar is the target opening of the first electronic expansion valve, the EXV ID-Pnt is the current opening degree of the first electronic expansion valve, the T ID-Amb is the indoor ambient temperature, and the T ID-Tar is the indoor set temperature.
- 根据权利要求6所述的控制方法,其特征在于,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀(4)的开度逐渐增大。The control method according to claim 6, wherein when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve (4) is controlled to gradually increase.
- 一种恒温恒湿系统的控制方法,所述恒温恒湿系统为权利要求4所述的恒温恒湿系统,其特征在于,所述控制方法包括:A constant temperature and humidity system according to claim 4, wherein the constant temperature and humidity system is the constant temperature and humidity system according to claim 4, wherein the control method comprises:步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar,获取所述第二蒸发器(3)的冷媒进管温度T ID-In; Step S10: Obtain the ambient temperature T ID-Amb , obtain the set temperature T ID-Tar , acquire the ambient humidity RH ID-Amb , obtain the set humidity RH ID-Tar , and obtain the refrigerant inlet of the second evaporator (3). Tube temperature T ID-In ;步骤S20:根据所述环境温度T ID-Amb、所述设定温度T ID-Tar、所述环境湿度RH ID-Amb、所述设定湿度RH ID-Tar、所述第二蒸发器(3)的冷媒进管温度T ID-In,判断所述恒温恒湿系统是否进入除湿加强模式。 Step S20: According to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , the set humidity RH ID-Tar , the second evaporator (3 The refrigerant inlet pipe temperature T ID-In determines whether the constant temperature and humidity system enters the dehumidification enhancement mode.
- 根据权利要求10所述的控制方法,其特征在于,步骤S20包括以下步骤:The control method according to claim 10, wherein the step S20 comprises the following steps:步骤S21:判断所述环境温度T ID-Amb、所述环境湿度RH ID-Amb、所述冷媒进管温度T ID-In是否处于预设范围; Step S21: determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet pipe temperature T ID-In are in a preset range;步骤S22:当同时满足T ID-Amb<T ID-Tar+T deviation、RH ID-Amb>RH ID-Tar、T ID-In>A条件时,控制所述恒温恒湿系统进入除湿加强模式; Step S22: When the conditions of T ID-Amb <T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar and T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter a dehumidification enhancement mode;步骤S23:当满足T ID-Amb≥T ID-Tar+T deviation+1、RH ID-Amb<RH ID-Tar或T ID-In≤B中的任一条件时,控制恒温恒湿系统退出除湿加强模式; Step S23: When any condition of T ID-Amb ≥ T ID-Tar + T deviation +1, RH ID-Amb <RH ID-Tar or T ID-In ≤ B is satisfied, the constant temperature and humidity system is controlled to exit the dehumidification Strengthen mode其中,T deviation为温度精度,A为预设安全温度,B为预设过冷温度。 Where T deviation is temperature accuracy, A is the preset safe temperature, and B is the preset supercooling temperature.
- 根据权利要求11所述的控制方法,其特征在于,当所述恒温恒湿系统在除湿加强模式下,压缩机(9)升频,控制所述第一电子膨胀阀(4)的开度逐渐关小。The control method according to claim 11, wherein when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor (9) is up-converted, and the opening degree of the first electronic expansion valve (4) is controlled gradually. turn down.
- 根据权利要求12所述的控制方法,其特征在于,所述第一电子膨胀阀(4)的开度按下列公式控制:The control method according to claim 12, characterized in that the opening degree of the first electronic expansion valve (4) is controlled by the following formula:其中,among them,EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。 The EXV ID-Tar is the target opening of the first electronic expansion valve, the EXV ID-Pnt is the current opening degree of the first electronic expansion valve, the T ID-Amb is the indoor ambient temperature, and the T ID-Tar is the indoor set temperature.
- 根据权利要求11所述的控制方法,其特征在于,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀(4)的开度逐渐增大。The control method according to claim 11, wherein when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve (4) is controlled to gradually increase.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810297561.0 | 2018-04-04 | ||
CN201810297561.0A CN108518736A (en) | 2018-04-04 | 2018-04-04 | Constant-temperature and constant-humidity inner machine, constant-temperature and constant-humidity system and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019192210A1 true WO2019192210A1 (en) | 2019-10-10 |
Family
ID=63431861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/121530 WO2019192210A1 (en) | 2018-04-04 | 2018-12-17 | Constant-temperature and constant-humidity indoor unit, constant-temperature and constant-humidity system, and control method therefor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108518736A (en) |
WO (1) | WO2019192210A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108518736A (en) * | 2018-04-04 | 2018-09-11 | 珠海格力电器股份有限公司 | Constant-temperature and constant-humidity inner machine, constant-temperature and constant-humidity system and control method thereof |
CN109114795A (en) * | 2018-10-30 | 2019-01-01 | 广东欧科空调制冷有限公司 | A kind of heat exchanger and air-conditioning |
CN109489198A (en) * | 2018-10-31 | 2019-03-19 | 珠海格力电器股份有限公司 | Dehumidification control method and device for air conditioning system and air conditioner |
CN109595740A (en) * | 2018-12-18 | 2019-04-09 | 珠海格力电器股份有限公司 | air conditioner control method, air conditioner control device and air conditioner |
CN110017541A (en) * | 2019-04-17 | 2019-07-16 | 广东美的制冷设备有限公司 | Air conditioner, progress control method and computer readable storage medium |
CN111059729B (en) * | 2019-12-25 | 2021-03-30 | 珠海格力电器股份有限公司 | Control method of air conditioner adaptive to human body comfort degree and air conditioner |
CN111609592B (en) * | 2020-04-24 | 2021-07-13 | 珠海格力电器股份有限公司 | Dual-temperature air conditioning system, control method and air conditioner |
CN112432330B (en) * | 2020-11-26 | 2021-11-16 | 珠海格力电器股份有限公司 | Constant-temperature dehumidification control method and device, electronic equipment and air conditioner |
CN113757936B (en) * | 2021-09-13 | 2023-01-03 | 海信空调有限公司 | Air conditioner control system, air conditioner and control method of air conditioner |
CN114060961B (en) * | 2021-10-28 | 2022-12-20 | 青岛海尔空调器有限总公司 | Method and device for dehumidifying air conditioner, storage medium and air conditioner |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120272669A1 (en) * | 2011-02-11 | 2012-11-01 | Johnson Controls Technology Company | Hvac unit with hot gas reheat |
CN103562657A (en) * | 2011-04-12 | 2014-02-05 | 清华大学 | Heat and cold sources of temperature and humidity independent control air conditioning system |
EP2787293A1 (en) * | 2013-03-04 | 2014-10-08 | Carrier Corporation | Integrated membrane dehumidification system |
CN107024041A (en) * | 2017-05-31 | 2017-08-08 | 郑州云海信息技术有限公司 | A kind of anti-condensation refrigeration system of data center |
CN206410268U (en) * | 2016-12-29 | 2017-08-15 | 广东申菱环境系统股份有限公司 | Shunting Wind-cooling type thermostatic and humidistatic air conditioning unit |
CN108518736A (en) * | 2018-04-04 | 2018-09-11 | 珠海格力电器股份有限公司 | Constant-temperature and constant-humidity inner machine, constant-temperature and constant-humidity system and control method thereof |
CN208075149U (en) * | 2018-04-04 | 2018-11-09 | 珠海格力电器股份有限公司 | Constant temperature and humidity inner unit and constant temperature and humidity system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611201A (en) * | 1992-06-26 | 1994-01-21 | Daikin Ind Ltd | Air conditioning apparatus |
CN102809192A (en) * | 2011-05-31 | 2012-12-05 | 青岛海信日立空调系统有限公司 | Indoor unit heat exchange structure and indoor unit provided with same |
CN105276679A (en) * | 2014-07-23 | 2016-01-27 | 韶关市曲江天瑞德化工有限公司 | Double-frequency-conversion constant-humidity dehumidifier and dehumidification method |
CN106288178A (en) * | 2016-08-12 | 2017-01-04 | 青岛海尔空调器有限总公司 | A kind of method utilizing temperature and humidity in double back air compressor control room and air-conditioning |
-
2018
- 2018-04-04 CN CN201810297561.0A patent/CN108518736A/en active Pending
- 2018-12-17 WO PCT/CN2018/121530 patent/WO2019192210A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120272669A1 (en) * | 2011-02-11 | 2012-11-01 | Johnson Controls Technology Company | Hvac unit with hot gas reheat |
CN103562657A (en) * | 2011-04-12 | 2014-02-05 | 清华大学 | Heat and cold sources of temperature and humidity independent control air conditioning system |
EP2787293A1 (en) * | 2013-03-04 | 2014-10-08 | Carrier Corporation | Integrated membrane dehumidification system |
CN206410268U (en) * | 2016-12-29 | 2017-08-15 | 广东申菱环境系统股份有限公司 | Shunting Wind-cooling type thermostatic and humidistatic air conditioning unit |
CN107024041A (en) * | 2017-05-31 | 2017-08-08 | 郑州云海信息技术有限公司 | A kind of anti-condensation refrigeration system of data center |
CN108518736A (en) * | 2018-04-04 | 2018-09-11 | 珠海格力电器股份有限公司 | Constant-temperature and constant-humidity inner machine, constant-temperature and constant-humidity system and control method thereof |
CN208075149U (en) * | 2018-04-04 | 2018-11-09 | 珠海格力电器股份有限公司 | Constant temperature and humidity inner unit and constant temperature and humidity system |
Also Published As
Publication number | Publication date |
---|---|
CN108518736A (en) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019192210A1 (en) | Constant-temperature and constant-humidity indoor unit, constant-temperature and constant-humidity system, and control method therefor | |
CN108105919B (en) | Variable frequency air conditioner system for dry working condition refrigeration and control method thereof | |
CN102878615A (en) | Variable frequency air conditioning unit | |
US11480353B2 (en) | Peak demand response operation of HVAC system with face-split evaporator | |
CN107143973A (en) | A kind of control method of multi-connected machine underload refrigerating operaton | |
WO2021135277A1 (en) | Heat pump system and air conditioner | |
CN106052031A (en) | Frequency conversion control system and method for constant temperature and humidity device | |
CN107166582B (en) | air conditioner cooling water system, air conditioner system and air conditioner cooling water system control method | |
JPWO2003029728A1 (en) | Air conditioner | |
WO2023029653A1 (en) | Defrosting control method for outdoor unit of air conditioner, and air conditioner | |
CN109405366B (en) | Air conditioner circulation system, control method of air conditioner circulation system and air conditioner | |
CN112555997B (en) | Fresh air handling unit and air outlet temperature and humidity control method thereof | |
CN111928432B (en) | Control method of air conditioner | |
CN112880122A (en) | Control method for lower limit of refrigeration humidity of air pipe type air conditioner | |
CN208075149U (en) | Constant temperature and humidity inner unit and constant temperature and humidity system | |
CN207674639U (en) | A kind of air conditioner heat pump system of temperature control throttling | |
CN207350996U (en) | Air-conditioning device with dehumidify evaporimeter | |
JP3996321B2 (en) | Air conditioner and its control method | |
JP4074422B2 (en) | Air conditioner and its control method | |
CN109595841A (en) | Air-conditioning system and its control method | |
CN209147486U (en) | Refrigerating system | |
CN207797292U (en) | A kind of frequency-conversion air-conditioning system of dry cooling condition refrigeration | |
JPH0252955A (en) | Cooling device and control method thereof | |
CN116772471B (en) | Optimal control method for cooling water system of water chilling unit and cooling water system | |
TWI824828B (en) | Control method for cooling the inverter of a chiller with refrigerant and the refrigerant bypass pipeline thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18913555 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18913555 Country of ref document: EP Kind code of ref document: A1 |