Nothing Special   »   [go: up one dir, main page]

WO2019192210A1 - 恒温恒湿内机、恒温恒湿系统及其控制方法 - Google Patents

恒温恒湿内机、恒温恒湿系统及其控制方法 Download PDF

Info

Publication number
WO2019192210A1
WO2019192210A1 PCT/CN2018/121530 CN2018121530W WO2019192210A1 WO 2019192210 A1 WO2019192210 A1 WO 2019192210A1 CN 2018121530 W CN2018121530 W CN 2018121530W WO 2019192210 A1 WO2019192210 A1 WO 2019192210A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
temperature
constant temperature
evaporator
amb
Prior art date
Application number
PCT/CN2018/121530
Other languages
English (en)
French (fr)
Inventor
周志宾
冯志文
陈博强
戴永福
尤文超
杨瑞
周涯宸
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019192210A1 publication Critical patent/WO2019192210A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements

Definitions

  • the invention relates to the technical field of constant temperature and humidity equipment, in particular to a constant temperature and humidity internal machine, a constant temperature and humidity system and a control method thereof.
  • the constant temperature and humidity machine is a kind of commercial special air conditioner.
  • the product development process has national standard restrictions, which is completely different from the constant temperature and humidity control of air conditioners or air conditioners with constant temperature and humidity function.
  • the principle of air conditioning dehumidification is to blow the wind through the evaporator with lower temperature, so that the temperature of the wind after heat exchange is lower than the dew point temperature. In this case, the water vapor part of the wind will condense into liquid water droplets.
  • air conditioners using conventional refrigerants they are generally dehumidified during cooling. To increase the dehumidification effect, the internal air volume or the evaporation temperature can be increased.
  • the air conditioning unit will generally increase the compressor frequency (increasing the compressor high and low pressure difference to reduce the system low pressure and evaporation temperature) and open the large electronic expansion valve step.
  • the method of increasing the amount of refrigerant circulation to lower the evaporation temperature is used to dehumidify.
  • the fan in the constant temperature and humidity machine generally uses an AC motor, and the rotation speed is not adjustable. Dehumidification in the case of constant air volume will lead to a result: the compressor up-conversion will lead to an increase in cooling capacity, and in the case of constant indoor load, in order to maintain constant temperature and humidity, it is necessary to turn on the electric auxiliary heat to offset the excess cooling amount, which leads to Invalid energy consumption.
  • the invention discloses a constant temperature and humidity internal machine, a constant temperature and humidity system and a control method thereof, which solves the problem that the existing constant temperature and humidity system will generate excess cooling amount due to the constant air volume during dehumidification.
  • a constant temperature and humidity internal machine comprising: a fan; a first evaporator; a second evaporator, and the second evaporator and the first evaporator are constant at the constant temperature a refrigerant compression cycle of the wet inner machine is arranged in parallel; a first electronic expansion valve is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the first evaporator, and the first electronic expansion valve is used Controlling the flow rate of the refrigerant in the first evaporator.
  • the constant temperature and humidity internal machine further includes a return air outlet, and the first evaporator is located between the second evaporator and the return air inlet.
  • first evaporator and the second evaporator are disposed obliquely and form a V-shaped structure.
  • a constant temperature and humidity system comprising a refrigerant compression cycle and the above-described constant temperature and humidity internal combustion machine, the refrigerant compression cycle comprising: a compressor; a first heat exchange circuit, a first end Connected to the condenser, the second end of the first heat exchange circuit is in communication with the inlet of the compressor; the second heat exchange circuit is connected in parallel with the first heat exchange circuit; the constant temperature and humidity internal machine
  • the first evaporator and the first electronic expansion valve are disposed on the first heat exchange circuit, and the first electronic expansion valve is located upstream of the first evaporator; the constant temperature and humidity
  • the second evaporator of the machine is disposed on the second heat exchange circuit.
  • a control method of a constant temperature and humidity system is disclosed.
  • the constant temperature and humidity system is the above constant temperature and humidity system, and the control method includes: Step S10: acquiring an ambient temperature T ID-Amb Obtaining a set temperature T ID-Tar , acquiring an ambient humidity RH ID-Amb , acquiring a set humidity RH ID-Tar ; step S20: according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , The ambient humidity RH ID-Amb and the set humidity RH ID-Tar determine whether the constant temperature and humidity system enters the dehumidification enhancement mode.
  • step S20 includes the following steps: Step S21: determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range; step S22: when T ID-Amb ⁇ T ID- Tar +T deviation , and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode; step S23: when T ID-Amb ⁇ T ID-Tar +T deviation +1 or RH ID -Amb ⁇ RH ID-Tar , controlling the constant temperature and humidity system to exit the dehumidification enhancement mode; wherein T deviation is temperature accuracy.
  • the compressor (9) is up-converted, and the opening degree of the first electronic expansion valve (4) is controlled to be gradually reduced.
  • the opening degree of the first electronic expansion valve (4) is controlled by the following formula:
  • EXV ID-Tar is the first electronic expansion valve target opening degree
  • EXV ID-Pnt is the current opening degree of the first electronic expansion valve
  • T ID-Amb is the indoor ambient temperature
  • T ID-Tar is the indoor set temperature.
  • the opening degree of the first electronic expansion valve is gradually increased.
  • a control method of a constant temperature and humidity system is disclosed.
  • the constant temperature and humidity system is the above constant temperature and humidity system, and the control method includes: Step S10: acquiring an ambient temperature T ID-Amb Obtaining a set temperature T ID-Tar , acquiring an ambient humidity RH ID-Amb , acquiring a set humidity RH ID-Tar , and acquiring a refrigerant inlet pipe temperature T ID-In of the second evaporator; Step S20: Ambient temperature T ID-Amb , set temperature T ID-Tar , ambient humidity RH ID-Amb , set humidity RH ID-Tar , refrigerant inlet temperature T ID of the second evaporator In , it is determined whether the constant temperature and humidity system enters the dehumidification enhancement mode.
  • step S20 includes the following steps: Step S21: determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet pipe temperature T ID-In are in a preset range; Step S22: When the conditions of T ID-Amb ⁇ T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar , T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter the dehumidification enhancement mode; step S23: When any of T ID-Amb ⁇ T ID-Tar + T deviation +1, RH ID-Amb ⁇ RH ID-Tar or T ID-In ⁇ B is satisfied, the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode; Where T deviation is temperature accuracy, A is the preset safe temperature, and B is the preset supercooling temperature.
  • the compressor is up-converted, and the opening degree of the first electronic expansion valve is controlled to be gradually reduced.
  • the opening degree of the first electronic expansion valve (4) is controlled by the following formula:
  • the EXV ID-Tar is the target opening of the first electronic expansion valve
  • the EXV ID-Pnt is the current opening degree of the first electronic expansion valve
  • the T ID-Amb is the indoor ambient temperature
  • the T ID-Tar is the indoor set temperature.
  • the opening degree of the first electronic expansion valve is gradually increased.
  • the invention sets the two evaporators in parallel, and uses the electronic expansion valve to control the flow rate of one of the refrigerants.
  • the unit enters the dehumidification strengthening mode, wherein the first electronic expansion
  • the valve is fully closed, dehumidified by the second evaporator, and the refrigerant that has passed through the two evaporators is now only passed through the second evaporator, which causes the circulation of the refrigerant passing through the second evaporator to increase, and the heat load is constant.
  • the evaporating temperature drops, which is more conducive to dehumidification, while the first electronic expansion valve is closed, and only the second evaporator is used to complete the cooling and dehumidification.
  • This situation is equivalent to reducing the evaporation area and the air volume, and does not return because of the compressor up-conversion.
  • the refrigeration capacity is increased, thereby avoiding the situation that the constant temperature and humidity machine generates excess cooling due to the constant air volume, and the high-power electric auxiliary heat is turned on without energy saving.
  • FIG. 1 is a schematic structural view of a constant temperature and humidity internal machine according to an embodiment of the present invention
  • FIG. 2 is a working principle diagram of a constant temperature and humidity system according to an embodiment of the present invention.
  • 3 is a flow chart showing the control method of the constant temperature and humidity system according to the embodiment of the present invention.
  • FIG. 4 is a flow chart showing the control method of the constant temperature and humidity system according to another embodiment of the present invention.
  • the invention discloses a constant temperature and humidity internal machine, comprising: a fan 1, a first evaporator 2, a second evaporator 3 and a first electronic expansion valve 4.
  • the fan 1 is arranged in the air duct of the constant temperature and humidity internal machine At the tuyere; the first evaporator 2 is disposed between the fan 1 and the return air opening 6 of the air duct; the second evaporator 3 is disposed between the fan 1 and the return air opening 6, and the second evaporator 3 and the first evaporator 2
  • the first electronic expansion valve 4 is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the first evaporator 2, and the first electronic expansion valve 4 is used The flow rate of the refrigerant in the first evaporator 2 is controlled.
  • the unit enters the dehumidification strengthening mode, wherein the first electronic expansion valve 4 Fully closed, dehumidified by the second evaporator 3, the refrigerant that originally passed through the two evaporators, now only passes through the second evaporator 3, which causes the circulation of the refrigerant passing through the second evaporator 3 to increase, and the heat load is constant It will cause the evaporation temperature to drop, which is more conducive to dehumidification, while the first electronic expansion valve 4 is closed, and only the second evaporator 3 is used to complete the cooling and dehumidification.
  • This situation is equivalent to reducing the evaporation area and the heat exchange volume, and does not return. Because the compressor is up-converted, the refrigeration capacity is increased, thereby avoiding the excess cooling capacity due to the constant air volume of the constant temperature and humidity machine, which causes the high-power electric auxiliary heat to be turned on without energy saving.
  • the cooling amount may be excessively large, and the heat generated by the electric auxiliary heat is insufficient to offset the indoor environment temperature out of control.
  • the constant temperature and humidity internal machine further includes: a second electronic expansion valve 5, the second electronic expansion valve 5 is disposed in the refrigerant compression cycle of the constant temperature and humidity internal machine and is disposed in series with the second evaporator 3,
  • the first evaporator 2 is located between the second evaporator 3 and the return air port 6, and the first evaporator 2 and the second evaporator 3 are disposed obliquely and form a V-shaped structure.
  • the unit can control the flow of the refrigerant in the evaporator through the electronic expansion valve, and only use the second evaporator 3 to dehumidify without causing The cooling capacity is increased, thereby effectively preventing the indoor temperature from being out of control or increasing the energy consumption.
  • the first evaporator 2 is located between the second evaporator 3 and the return air opening 6, and the first evaporator 2 and the second evaporator 3 form a V-shaped angle structure, the wind field distribution is adjusted, from the back.
  • the air volume and the wind speed are relatively reduced, so that the air volume and the wind force passing through the second evaporator 3 are also relatively reduced, and the decrease in the air volume is prevented. If the heat exchange rate is too large, the wind speed will be reduced to remove the condensation of water vapor in the return air, so that the constant temperature and humidity machine can not increase the excess cooling capacity while improving the dehumidification effect.
  • the constant temperature constant internal humidity machine further includes: a first electric auxiliary heat device 7 and a second electric auxiliary heat device 8, the first electric auxiliary heat device 7 is disposed between the first evaporator 2 and the fan 1; The second electric auxiliary heat device 8 is disposed between the second evaporator 3 and the blower 1.
  • the temperature can be further controlled by the electric auxiliary heat device.
  • a constant temperature and humidity system comprising a refrigerant compression cycle and the above-described constant temperature and humidity internal combustion machine, the refrigerant compression cycle comprising: a compressor 9, a first heat exchange circuit 10, and a second heat exchange In the circuit 11, the first end of the first heat exchange circuit 10 is connected to the condenser, the second end of the first heat exchange circuit 10 is in communication with the intake port of the compressor 9, and the second heat exchange circuit 11 and the first heat exchange circuit 10 in parallel; the first evaporator 2 of the constant temperature and humidity internal machine and the first electronic expansion valve 4 are disposed on the first heat exchange circuit 10, and the first electronic expansion valve 4 is located upstream of the first evaporator 2; constant temperature and humidity The second evaporator 3 of the internal machine is disposed on the second heat exchange circuit 11.
  • the indoor load is When the temperature is not high, the unit enters the dehumidification enhancement mode, in which the first electronic expansion valve 4 upstream of the first evaporator 2 is fully closed, and the second evaporator 3 is dehumidified, and the refrigerant that has passed through the two evaporators is now only from the first The second evaporator 3 passes, which causes the circulation of the refrigerant passing through the second heat exchange circuit 11 where the second evaporator 3 is located to increase.
  • a control method of a constant temperature and humidity system is disclosed.
  • the constant temperature and humidity system is the above constant temperature and humidity system, and the second heat exchange circuit 11 is provided with a second electronic expansion valve 5, and a second The electronic expansion valve 5 is used for controlling the flow rate of the refrigerant in the second evaporator 3, and the control method includes:
  • Step S10 Acquire an ambient temperature T ID-Amb , obtain a set temperature T ID-Tar , obtain an ambient humidity RH ID-Amb , and obtain a set humidity RH ID-Tar ;
  • Step S20 Determine whether the constant temperature and humidity system enters the dehumidification enhancement mode according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , and the set humidity RH ID-Tar .
  • step S20 includes the following steps:
  • Step S21 determining whether the ambient temperature T ID-Amb and the ambient humidity RH ID-Amb are in a preset range
  • Step S22 When T ID-Amb ⁇ T ID-Tar +T deviation and RH ID-Amb >RH ID-Tar , controlling the constant temperature and humidity system to enter the dehumidification enhancement mode;
  • Step S23 When T ID-Amb ⁇ T ID-Tar + T deviation +1 or RH ID-Amb ⁇ RH ID-Tar , the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode;
  • T deviation is temperature accuracy.
  • the compressor 9 when the constant temperature and humidity system is in the dehumidification-enhanced mode, the compressor 9 is up-converted, the opening degree of the first electronic expansion valve 4 is controlled to be gradually closed, and the opening degree of the second electronic expansion valve 5 is unchanged.
  • the opening degree of the first electronic expansion valve 4 is controlled by the following formula:
  • EXV ID-Tar is the target opening of the electronic expansion valve
  • EXV ID-Pnt is the current opening of the electronic expansion valve
  • T ID-Amb is the indoor ambient temperature
  • T ID-Tar is the indoor set temperature.
  • the opening degree of the first electronic expansion valve 4 is gradually increased, and the opening degree of the second electronic expansion valve 5 is unchanged.
  • the evaporation temperature is lowered, which is more favorable for dehumidification, and at the same time, since the first electronic expansion valve 4 is closed, only the second evaporator 3 performs cooling and dehumidification, which is equivalent to reducing the heat exchange area and the air volume. Therefore, the increase in the refrigeration capacity due to the up-conversion of the compressor is avoided, and the situation in which the high-power electric auxiliary heat is turned on is not effectively avoided.
  • the first electronic expansion valve 4 Since the first electronic expansion valve 4 is closed in the dehumidification-enhanced mode, the amount of refrigerant circulation through the other second evaporator 3 is increased, and the refrigerant inlet temperature of the second evaporator 3 is lowered on the original basis, when the second evaporation
  • the evaporator When the temperature of the refrigerant inlet pipe is lower than -1 °C, the evaporator will not evaporate completely under the condition that the indoor heat load is constant, resulting in a large amount of liquid return to the compressor, and the general constant temperature and humidity system is provided with anti-freeze protection, not only This results in reduced cooling efficiency and unstable system operation.
  • the embodiment discloses a control method for a constant temperature and humidity system.
  • the constant temperature and humidity system is the above constant temperature and humidity system
  • the second heat exchange circuit 11 is provided with a second electronic expansion valve 5 for controlling the flow rate of the refrigerant in the second evaporator 3, a refrigerant sensor 12 disposed on the refrigerant inlet line of the second evaporator 3, and a temperature sensor 12 for acquiring The refrigerant inlet temperature of the second evaporator 3,
  • the control method includes:
  • Step S10 Acquire ambient temperature T ID-Amb , obtain set temperature T ID-Tar , acquire ambient humidity RH ID-Amb , acquire set humidity RH ID-Tar , and obtain refrigerant inlet temperature T ID of second evaporator 3. -In ;
  • Step S20 determining whether the constant temperature and humidity system enters according to the ambient temperature T ID-Amb , the set temperature T ID-Tar , the ambient humidity RH ID-Amb , the set humidity RH ID-Tar , and the refrigerant inlet temperature T ID-In Dehumidification enhancement mode.
  • step S20 includes the following steps:
  • Step S21 determining whether the ambient temperature T ID-Amb , the ambient humidity RH ID-Amb , and the refrigerant inlet temperature T ID-In are in a preset range;
  • Step S22 When the conditions of T ID-Amb ⁇ T ID-Tar +T deviation , RH ID-Amb >RH ID-Tar and T ID-In >A are simultaneously satisfied, the constant temperature and humidity system is controlled to enter the dehumidification strengthening mode;
  • Step S23 When T ID-Amb ⁇ T ID-Tar +T deviation +1 ⁇ T ID-Amb ⁇ T ID -Tar +T deviation +1, RH ID-Amb ⁇ RH ID-Tar or T ID-In ⁇ is satisfied In any of the conditions B, the constant temperature and humidity system is controlled to exit the dehumidification enhancement mode;
  • T deviation is temperature accuracy, generally 0.5 ° C
  • A is the preset safe temperature
  • B is the preset supercooling temperature
  • A has a value ranging from 3 ° C to 5 ° C.
  • B has a value ranging from 1 ° C to 3 ° C.
  • step S22 when the constant temperature and humidity system is in the dehumidification-enhanced mode, the operating frequency of the compressor 9 is gradually increased, and the opening degree of the first electronic expansion valve 4 is gradually closed, and the second electronic expansion valve is gradually closed.
  • the opening of 5 is unchanged.
  • the opening degree of the first electronic expansion valve 4 is controlled by the following formula:
  • the EXV ID-Tar is the target opening of the first electronic expansion valve
  • the EXV ID-Pnt is the current opening degree of the first electronic expansion valve
  • the T ID-Amb is the indoor ambient temperature
  • the T ID-Tar is the indoor set temperature.
  • step S23 when the constant temperature and humidity control system exits the dehumidification enhancement mode, the opening degree of the first electronic expansion valve 4 gradually increases to normal, and the opening degree of the second electronic expansion valve 5 does not change.
  • the refrigeration capacity is increased by avoiding the frequency increase of the compressor, and the situation that the high-power electric auxiliary heat is turned on is not effectively avoided.
  • the temperature sensor is disposed on the inlet pipe of the second evaporator 3, by detecting the inlet temperature of the second evaporator and using it as a control condition, it is possible to prevent the anti-freeze protection from being entered due to entering the dehumidification strengthening mode, and the dehumidification is improved. The ability to ensure the reliability of the system at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种恒温恒湿内机、恒温恒湿系统及其控制方法,所述恒温恒湿内机,包括:风机(1);第一蒸发器(2);第二蒸发器(3),且所述第二蒸发器(3)与所述第一蒸发器(2)在所述恒温恒湿内机的冷媒压缩循环中并联设置;第一电子膨胀阀(4),设置在所述恒温恒湿内机的冷媒压缩循环中并且与所述第一蒸发器(2)串联设置,所述第一电子膨胀阀(4)用于控制所述第一蒸发器(2)内的冷媒流量。通过将两个蒸发器并联设置,其中,第一电子膨胀阀(4)全关,由第二蒸发器(3)除湿,避免了压缩机(9)升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。

Description

恒温恒湿内机、恒温恒湿系统及其控制方法
本申请要求于2018年4月4日提交中国专利局、申请号为201810297561.0、发明名称为“恒温恒湿内机、恒温恒湿系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及恒温恒湿设备技术领域,具体涉及一种恒温恒湿内机、恒温恒湿系统及其控制方法。
背景技术
恒温恒湿机是商用特种空调的一种,其产品开发过程中有国标限制,与具有恒温恒湿功能的空调或者空调的恒温恒湿控制完全不同。
空调除湿原理是将使风吹过温度较低的蒸发器,使得换热后的风的温度低于露点温度,这种情况下风中的水蒸气部分会凝露成液态的水滴。对于使用常规冷媒的空调,在制冷的时候一般都会除湿,想要增大除湿效果,可以增大内机风量或降低蒸发温度。对于变频恒温恒湿空调机,当室内环境有除湿需求的时候,空调机组一般会通过升高压缩机频率(加大压缩机高低压差从而降低系统低压和蒸发温度)和开大电子膨胀阀步数(增大冷媒循环量从而降低蒸发温度)的方法来除湿。
但是,恒温恒湿机内风机一般都会使用交流电机,转速不可调。风量不变的情况下除湿会导致一个结果:压缩机升频会导致制冷能力提高,室内负荷不变的情况下,为了维持恒温恒湿需要打开电辅热抵消多余的冷量,这就导致了无效耗能。
发明内容
本发明公开了一种恒温恒湿内机、恒温恒湿系统及其控制方法,解决了现有恒温恒湿系统除湿时因风量不变会产生多余冷量的问题。
根据本发明的一个方面,公开了一种恒温恒湿内机,包括:风机;第一蒸发器;第二蒸发器,且所述第二蒸发器与所述第一蒸发器在所述恒温恒湿内机的冷媒压缩循环中并联设置;第一电子膨胀阀,设置 在所述恒温恒湿内机的冷媒压缩循环中并且与所述第一蒸发器串联设置,所述第一电子膨胀阀用于控制所述第一蒸发器内的冷媒流量。
进一步地,所述恒温恒湿内机还包括回风口,所述第一蒸发器位于所述第二蒸发器与所述回风口之间。
进一步地,所述第一蒸发器与所述第二蒸发器倾斜设置并形成V型结构。
根据本发明的另一个方面,公开了一种恒温恒湿系统,包括冷媒压缩循环和上述的恒温恒湿内机,所述冷媒压缩循环,包括:压缩机;第一热交换回路,第一端与冷凝器连接,所述第一热交换回路的第二端与所述压缩机的进气口连通;第二热交换回路,与所述第一热交换回路并联;所述恒温恒湿内机的所述第一蒸发器和所述第一电子膨胀阀设置在所述第一热交换回路上,且所述第一电子膨胀阀位于所述第一蒸发器的上游;所述恒温恒湿内机的所述第二蒸发器设置在所述第二热交换回路上。
根据本发明的另一个方面,公开了一种恒温恒湿系统的控制方法,所述恒温恒湿系统为上述的恒温恒湿系统,所述控制方法包括:步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar;步骤S20:根据所述环境温度T ID-Amb、所述设定温度T ID-Tar、所述环境湿度RH ID-Amb、所述设定湿度RH ID-Tar,判断所述恒温恒湿系统是否进入除湿加强模式。
进一步地,所述步骤S20包括以下步骤:步骤S21:判断所述环境温度T ID-Amb和所述环境湿度RH ID-Amb是否处于预设范围;步骤S22:当T ID-Amb<T ID-Tar+T deviation,且RH ID-Amb>RH ID-Tar时,控制所述恒温恒湿系统进入除湿加强模式;步骤S23:当T ID-Amb≥T ID-Tar+T deviation+1或RH ID-Amb<RH ID-Tar时,控制所述恒温恒湿系统退出除湿加强模式;其中,T deviation为温度精度。
进一步地,当所述恒温恒湿系统在除湿加强模式下,压缩机(9)升频,控制所述第一电子膨胀阀(4)的开度逐渐关小。
进一步地,所述第一电子膨胀阀(4)的开度按下列公式控制:
Figure PCTCN2018121530-appb-000001
其中,EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨 胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。
进一步地,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀的开度逐渐增大。
根据本发明的另一个方面,公开了一种恒温恒湿系统的控制方法,所述恒温恒湿系统为上述的恒温恒湿系统,所述控制方法包括:步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar,获取所述第二蒸发器的冷媒进管温度T ID-In;步骤S20:根据所述环境温度T ID-Amb、所述设定温度T ID-Tar、所述环境湿度RH ID-Amb、所述设定湿度RH ID-Tar、所述第二蒸发器的冷媒进管温度T ID-In,判断所述恒温恒湿系统是否进入除湿加强模式。
进一步地,步骤S20包括以下步骤:步骤S21:判断所述环境温度T ID-Amb、所述环境湿度RH ID-Amb、所述冷媒进管温度T ID-In是否处于预设范围;步骤S22:当同时满足T ID-Amb<T ID-Tar+T deviation、RH ID-Amb>RH ID-Tar、T ID-In>A条件时,控制所述恒温恒湿系统进入除湿加强模式;步骤S23:当满足T ID-Amb≥T ID-Tar+T deviation+1、RH ID-Amb<RH ID-Tar或T ID-In≤B中的任一条件时,控制恒温恒湿系统退出除湿加强模式;其中,T deviation为温度精度,A为预设安全温度,B为预设过冷温度。
进一步地,当所述恒温恒湿系统在除湿加强模式下,压缩机升频,控制所述第一电子膨胀阀的开度逐渐关小。
进一步地,所述第一电子膨胀阀(4)的开度按下列公式控制:
Figure PCTCN2018121530-appb-000002
其中,
EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。
进一步地,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀的开度逐渐增大。
本发明通过将两个蒸发器并联设置,并利用电子膨胀阀控制其中一个的冷媒流量大小,当室内除湿需求较大但室内负荷不高的时候,机组进入除湿加强模式,其中,第一电子膨胀阀全关,由第二蒸发器除湿,本来经过两个蒸发器的冷媒,现在只从第二蒸发器经过,这导致经过第二蒸发器的冷媒循环量增加,热负荷一定的情况下会导致蒸 发温度下降,更有利于除湿,同时第一电子膨胀阀关闭,只由第二蒸发器去完成制冷和除湿,这种情况相当于减小了蒸发面积和风量,不回因为压缩机升频而使制冷能力增加,从而避免了由于恒温恒湿机因风量不变产生多余冷量,导致大功率电辅热开启不节能的情况。
附图说明
图1是本发明实施例的恒温恒湿内机的结构示意图;
图2是本发明实施例的恒温恒湿系统的工作原理图;
图3是本发明实施例的恒温恒湿系统的控制方法工作流程图;
图4是本发明另一实施例的恒温恒湿系统的控制方法工作流程图;
图例:1、风机;2、第一蒸发器;3、第二蒸发器;4、第一电子膨胀阀;5、第二电子膨胀阀;6、回风口;7、第一电辅热装置;8、第二电辅热装置;9、压缩机;10、第一热交换回路;11、第二热交换回路;12、温度传感器。
具体实施方式
下面结合实施例对本发明做进一步说明,但不局限于说明书上的内容。
本发明公开了一种恒温恒湿内机,包括:风机1、第一蒸发器2、第二蒸发器3和第一电子膨胀阀4,风机1设置在恒温恒湿内机的风道内的出风口处;第一蒸发器2设置在风机1与风道的回风口6之间;第二蒸发器3设置在风机1与回风口6之间,且第二蒸发器3与第一蒸发器2在恒温恒湿内机的冷媒压缩循环中并联设置;第一电子膨胀阀4设置在恒温恒湿内机的冷媒压缩循环中并且与第一蒸发器2串联设置,第一电子膨胀阀4用于控制第一蒸发器2内的冷媒流量。
通过将两个蒸发器并联设置,并利用电子膨胀阀控制其中一个的冷媒流量大小,当室内除湿需求较大但室内负荷不高的时候,机组进入除湿加强模式,其中,第一电子膨胀阀4全关,由第二蒸发器3除湿,本来经过两个蒸发器的冷媒,现在只从第二蒸发器3经过,这导致经过第二蒸发器3的冷媒循环量增加,热负荷一定的情况下会导致蒸发温度下降,更有利于除湿,同时第一电子膨胀阀4关闭,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了蒸发面积和换热风量,不 回因为压缩机升频而使制冷能力增加,从而避免了由于恒温恒湿机风量不变会产生多余冷量,导致大功率电辅热开启不节能的情况。
而且,在热负荷不高,室内电辅热功率不高的情况下,为保证除湿效果,可能会导致冷量过大,电辅热产生的热量不足以抵消导致室内环境温度失控。通过将两个蒸发器并联设置,并利用电子膨胀阀控制其中一个的冷媒流量大小,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了蒸发面积和风量,从而避免出现温度失控的现象。
在上述实施例中,恒温恒湿内机还包括:第二电子膨胀阀5,第二电子膨胀阀5设置在恒温恒湿内机的冷媒压缩循环中并且与第二蒸发器3串联设置,用于控制第二蒸发器3内的冷媒流量,第一蒸发器2位于第二蒸发器3与回风口6之间,第一蒸发器2与第二蒸发器3倾斜设置并形成V型结构。通过由电子膨胀阀单独控制,当室内环境对除湿需求较大但是热负荷不高时,机组可以通过电子膨胀阀控制蒸发器内的冷媒流量,只利用第二蒸发器3除湿,而不会导致制冷量增加,从而有效避免室内温度失控或者能耗增加。而且,由于第一蒸发器2位于第二蒸发器3与回风口6之间,且将第一蒸发器2与第二蒸发器3形成V型夹角结构,从而调整了风场分布,从回风口6进入的回风经过靠近回风口6的第一蒸发器2后,风量和风速都相对减小,从而使经过第二蒸发器3的风量和风度也相对减小,风量的减小会防止换热量过大,风速减低会更有利于除去回风中水蒸气凝结,从而使恒温恒湿机在提高除湿效果的同时,还不会产生多余冷量。
在上述实施例中,恒温恒内湿机还包括:第一电辅热装置7和第二电辅热装置8,第一电辅热装置7设置在第一蒸发器2与风机1之间;第二电辅热装置8设置在第二蒸发器3与风机1之间。通过电辅热装置可以进一步保证温度失控。
根据本发明的另一方面,公开了一种恒温恒湿系统,包括冷媒压缩循环和上述的恒温恒湿内机,冷媒压缩循环包括:压缩机9、第一热交换回路10和第二热交换回路11,第一热交换回路10的第一端与冷凝器连接,第一热交换回路10的第二端与压缩机9的进气口连通;第二热交换回路11与第一热交换回路10并联;恒温恒湿内机的第一蒸发器2和第一电子膨胀阀4设置在第一热交换回路10上,且第一电子 膨胀阀4位于第一蒸发器2的上游;恒温恒湿内机的第二蒸发器3设置在第二热交换回路11上。通过设置两个并联的热交换回路,并将两个蒸发器分别设置在两个热交换回路上,并利用电子膨胀阀控制其中一个蒸发器内的冷媒流量大小,当室内除湿需求强烈但室内负荷不高的时候,机组进入除湿加强模式,其中,第一蒸发器2上游的第一电子膨胀阀4全关,由第二蒸发器3除湿,本来经过两个蒸发器的冷媒,现在只从第二蒸发器3经过,这导致经过第二蒸发器3所在的第二热交换回路11的冷媒循环量增加,热负荷一定的情况下会导致蒸发温度下降,更有利于除湿,同时第一电子膨胀阀4关闭,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了蒸发面积和风量,因此,避免了压缩机升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。
根据本发明的另一方面,公开了一种恒温恒湿系统的控制方法,恒温恒湿系统为上述的恒温恒湿系统,第二热交换回路11上设置有第二电子膨胀阀5,第二电子膨胀阀5用于控制第二蒸发器3内的冷媒流量大小,控制方法包括:
步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar
步骤S20:根据环境温度T ID-Amb、设定温度T ID-Tar、环境湿度RH ID-Amb、设定湿度RH ID-Tar,判断恒温恒湿系统是否进入除湿加强模式。
在上述实施例中,步骤S20包括以下步骤:
步骤S21:判断环境温度T ID-Amb和环境湿度RH ID-Amb是否处于预设范围;
步骤S22:当T ID-Amb<T ID-Tar+T deviation,且RH ID-Amb>RH ID-Tar时,控制恒温恒湿系统进入除湿加强模式;
步骤S23:当T ID-Amb≥T ID-Tar+T deviation+1或RH ID-Amb<RH ID-Tar时,控制恒温恒湿系统退出除湿加强模式;
其中,T deviation为温度精度。
在上述实施例中,当恒温恒湿系统在除湿加强模式下,压缩机9升频,控制第一电子膨胀阀4的开度逐渐关小,第二电子膨胀阀5的开度不变。
在上述实施例中,第一电子膨胀阀4的开度按下列公式控制:
Figure PCTCN2018121530-appb-000003
其中,
EXV ID-Tar为电子膨胀阀目标开度,EXV ID-Pnt为电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。
在上述实施例中,当恒温恒湿控制系统退出除湿加强模式时,控制第一电子膨胀阀4的开度逐渐增大,第二电子膨胀阀5的开度不变。
通过上述方法,由于除湿加强模式的条件是T ID-Amb<T ID-Tar+T deviation,所以T ID-Amb-T ID-Tar+T deviation是个负数,所以EXV ID-Tar=EXV ID-Pnt+负数,第一电子膨胀阀4会一直关小直到0,第一热交换回路10关闭,这导致经过第二蒸发器3所在的第二热交换回路11的冷媒循环量增加,热负荷一定的情况下会导致蒸发温度下降,更有利于除湿,同时由于第一电子膨胀阀4关闭,只由第二蒸发器3去完成制冷和除湿,这种情况相当于减小了换热面积和风量,因此,避免了压缩机升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。
由于除湿加强模式下会关闭第一电子膨胀阀4,导致经过另第二蒸发器3的冷媒循环量增加,第二蒸发器3的冷媒进管温度会在原来的基础上降低,当第二蒸发器的冷媒进管温度低于-1℃时,在室内热负荷不变的情况下蒸发器会蒸发不完全,导致压缩机大量回液,而一般恒温恒湿系统都设置有防冻结保护,不仅导致制冷效率降低,而且系统运行不稳定。
为了解决上述问题,本发明公开了另一个实施例,该实施例公开了一种恒温恒湿系统的控制方法,恒温恒湿系统为上述的恒温恒湿系统,第二热交换回路11上设置有第二电子膨胀阀5,第二电子膨胀阀5用于控制第二蒸发器3内的冷媒流量大小,第二蒸发器3的冷媒入口管路上设置有温度传感器12,温度传感器12用于获取第二蒸发器3的冷媒进管温度,控制方法包括:
步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar,获取第二蒸发器3的冷媒进管温度T ID-In
步骤S20:根据环境温度T ID-Amb、设定温度T ID-Tar、环境湿度RH ID-Amb、 设定湿度RH ID-Tar,冷媒进管温度T ID-In,判断恒温恒湿系统是否进入除湿加强模式。
在上述实施例中,步骤S20包括以下步骤:
步骤S21:判断环境温度T ID-Amb、环境湿度RH ID-Amb、冷媒进管温度T ID-In是否处于预设范围;
步骤S22:当同时满足T ID-Amb<T ID-Tar+T deviation、RH ID-Amb>RH ID-Tar、T ID-In>A条件时,控制恒温恒湿系统进入除湿加强模式;
步骤S23:当满足T ID-Amb≥T ID-Tar+T deviation+1≥T ID-Amb≥T ID-Tar+T deviation+1、RH ID-Amb<RH ID-Tar或T ID-In≤B中的任一条件时,控制恒温恒湿系统退出除湿加强模式;
其中,T deviation为温度精度,一般为0.5℃,A为预设安全温度,B为预设过冷温度。
在上述实施例中,A的取值范围为3℃~5℃。
在上述实施例中,B的取值范围为1℃~3℃。
在上述实施例中,在步骤S22中,当恒温恒湿系统在除湿加强模式下,压缩机9工作频率逐渐增大,且第一电子膨胀阀4的开度逐渐关小,第二电子膨胀阀5的开度不变。
在上述实施例中,第一电子膨胀阀4的开度按下列公式控制:
Figure PCTCN2018121530-appb-000004
其中,
EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。
在上述实施例中,在步骤S23中,当恒温恒湿控制系统退出除湿加强模式时,第一电子膨胀阀4的开度逐渐增大至正常,第二电子膨胀阀5的开度不变。
通过上述方法,在避免了压缩机升频导致制冷能力增加,有效避免大功率电辅热开启不节能的情况。同时,由于在第二蒸发器3进管上的设置温度传感器,通过检测第二蒸发器进管温度并将其作为控制条件,从而能防止因为进入除湿加强模式而导致防冻结保护,提高除湿降能力的同时保证系统运行可靠性。
显然,本发明的上述实施方式仅仅是为清楚地说明本发明所作的 举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (14)

  1. 一种恒温恒湿内机,其特征在于,包括:
    风机(1);
    第一蒸发器(2);
    第二蒸发器(3),且所述第二蒸发器(3)与所述第一蒸发器(2)在所述恒温恒湿内机的冷媒压缩循环中并联设置;
    第一电子膨胀阀(4),设置在所述恒温恒湿内机的冷媒压缩循环中并且与所述第一蒸发器(2)串联设置,所述第一电子膨胀阀(4)用于控制所述第一蒸发器(2)内的冷媒流量。
  2. 根据权利要求1所述的恒温恒湿内机,其特征在于,所述恒温恒湿内机还包括回风口(6),所述第一蒸发器(2)位于所述第二蒸发器(3)与所述回风口(6)之间。
  3. 根据权利要求2所述的恒温恒湿内机,其特征在于,所述第一蒸发器(2)与所述第二蒸发器(3)倾斜设置并形成V型结构。
  4. 一种恒温恒湿系统,其特征在于,包括冷媒压缩循环和权利要求1-3任一项所述的恒温恒湿内机,所述冷媒压缩循环,包括:
    压缩机(9);
    第一热交换回路(10),第一端与冷凝器连接,所述第一热交换回路(10)的第二端与所述压缩机(9)的进气口连通;
    第二热交换回路(11),与所述第一热交换回路(10)并联;
    所述恒温恒湿内机的所述第一蒸发器(2)和所述第一电子膨胀阀(4)设置在所述第一热交换回路(10)上,且所述第一电子膨胀阀(4)位于所述第一蒸发器(2)的上游;
    所述恒温恒湿内机的所述第二蒸发器(3)设置在所述第二热交换回路(11)上。
  5. 一种恒温恒湿系统的控制方法,所述恒温恒湿系统为权利要求4所述的恒温恒湿系统,其特征在于,所述控制方法包括:
    步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar
    步骤S20:根据所述环境温度T ID-Amb、所述设定温度T ID-Tar、所述环境湿度RH ID-Amb、所述设定湿度RH ID-Tar,判断所述恒温恒湿系统是否进入除湿加强模式。
  6. 根据权利要求5所述的控制方法,其特征在于,所述步骤S20包括以下步骤:
    步骤S21:判断所述环境温度T ID-Amb和所述环境湿度RH ID-Amb是否处于预设范围;
    步骤S22:当T ID-Amb<T ID-Tar+T deviation,且RH ID-Amb>RH ID-Tar时,控制所述恒温恒湿系统进入除湿加强模式;
    步骤S23:当T ID-Amb≥T ID-Tar+T deviation+1或RH ID-Amb<RH ID-Tar时,控制所述恒温恒湿系统退出除湿加强模式;
    其中,T deviation为温度精度。
  7. 根据权利要求6所述的控制方法,其特征在于,当所述恒温恒湿系统在除湿加强模式下,压缩机(9)升频,控制所述第一电子膨胀阀(4)的开度逐渐关小。
  8. 根据权利要求7所述的控制方法,其特征在于,所述第一电子膨胀阀(4)的开度按下列公式控制:
    Figure PCTCN2018121530-appb-100001
    其中,
    EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。
  9. 根据权利要求6所述的控制方法,其特征在于,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀(4)的开度逐渐增大。
  10. 一种恒温恒湿系统的控制方法,所述恒温恒湿系统为权利要求4所述的恒温恒湿系统,其特征在于,所述控制方法包括:
    步骤S10:获取环境温度T ID-Amb,获取设定温度T ID-Tar,获取环境湿度RH ID-Amb,获取设定湿度RH ID-Tar,获取所述第二蒸发器(3)的冷媒进管温度T ID-In
    步骤S20:根据所述环境温度T ID-Amb、所述设定温度T ID-Tar、所述环境湿度RH ID-Amb、所述设定湿度RH ID-Tar、所述第二蒸发器(3)的冷媒进管温度T ID-In,判断所述恒温恒湿系统是否进入除湿加强模式。
  11. 根据权利要求10所述的控制方法,其特征在于,步骤S20包括以下步骤:
    步骤S21:判断所述环境温度T ID-Amb、所述环境湿度RH ID-Amb、所述冷媒进管温度T ID-In是否处于预设范围;
    步骤S22:当同时满足T ID-Amb<T ID-Tar+T deviation、RH ID-Amb>RH ID-Tar、T ID-In>A条件时,控制所述恒温恒湿系统进入除湿加强模式;
    步骤S23:当满足T ID-Amb≥T ID-Tar+T deviation+1、RH ID-Amb<RH ID-Tar或T ID-In≤B中的任一条件时,控制恒温恒湿系统退出除湿加强模式;
    其中,T deviation为温度精度,A为预设安全温度,B为预设过冷温度。
  12. 根据权利要求11所述的控制方法,其特征在于,当所述恒温恒湿系统在除湿加强模式下,压缩机(9)升频,控制所述第一电子膨胀阀(4)的开度逐渐关小。
  13. 根据权利要求12所述的控制方法,其特征在于,所述第一电子膨胀阀(4)的开度按下列公式控制:
    Figure PCTCN2018121530-appb-100002
    其中,
    EXV ID-Tar为第一电子膨胀阀目标开度,EXV ID-Pnt为第一电子膨胀阀当前开度,T ID-Amb为室内环境温度,T ID-Tar为室内设定温度。
  14. 根据权利要求11所述的控制方法,其特征在于,当所述恒温恒湿控制系统退出除湿加强模式时,控制所述第一电子膨胀阀(4)的开度逐渐增大。
PCT/CN2018/121530 2018-04-04 2018-12-17 恒温恒湿内机、恒温恒湿系统及其控制方法 WO2019192210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810297561.0 2018-04-04
CN201810297561.0A CN108518736A (zh) 2018-04-04 2018-04-04 恒温恒湿内机、恒温恒湿系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2019192210A1 true WO2019192210A1 (zh) 2019-10-10

Family

ID=63431861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121530 WO2019192210A1 (zh) 2018-04-04 2018-12-17 恒温恒湿内机、恒温恒湿系统及其控制方法

Country Status (2)

Country Link
CN (1) CN108518736A (zh)
WO (1) WO2019192210A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108518736A (zh) * 2018-04-04 2018-09-11 珠海格力电器股份有限公司 恒温恒湿内机、恒温恒湿系统及其控制方法
CN109114795A (zh) * 2018-10-30 2019-01-01 广东欧科空调制冷有限公司 一种换热器及空调
CN109489198A (zh) * 2018-10-31 2019-03-19 珠海格力电器股份有限公司 空调系统的除湿控制方法、装置和空调机
CN109595740A (zh) * 2018-12-18 2019-04-09 珠海格力电器股份有限公司 空调控制方法、空调控制装置及空调
CN110017541A (zh) * 2019-04-17 2019-07-16 广东美的制冷设备有限公司 空调器、运行控制方法和计算机可读存储介质
CN111059729B (zh) * 2019-12-25 2021-03-30 珠海格力电器股份有限公司 一种自适应人体舒适度空调的控制方法及空调
CN111609592B (zh) * 2020-04-24 2021-07-13 珠海格力电器股份有限公司 双温空调系统、控制方法和空调器
CN112432330B (zh) * 2020-11-26 2021-11-16 珠海格力电器股份有限公司 恒温除湿控制方法、装置、电子设备和空调器
CN113757936B (zh) * 2021-09-13 2023-01-03 海信空调有限公司 空调控制系统、空调器及空调器的控制方法
CN114060961B (zh) * 2021-10-28 2022-12-20 青岛海尔空调器有限总公司 用于空调器除湿的方法、装置、存储介质和空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272669A1 (en) * 2011-02-11 2012-11-01 Johnson Controls Technology Company Hvac unit with hot gas reheat
CN103562657A (zh) * 2011-04-12 2014-02-05 清华大学 温湿度独立控制空调系统的冷热源
EP2787293A1 (en) * 2013-03-04 2014-10-08 Carrier Corporation Integrated membrane dehumidification system
CN107024041A (zh) * 2017-05-31 2017-08-08 郑州云海信息技术有限公司 一种数据中心防凝露制冷系统
CN206410268U (zh) * 2016-12-29 2017-08-15 广东申菱环境系统股份有限公司 分流式风冷型恒温恒湿空调机
CN108518736A (zh) * 2018-04-04 2018-09-11 珠海格力电器股份有限公司 恒温恒湿内机、恒温恒湿系统及其控制方法
CN208075149U (zh) * 2018-04-04 2018-11-09 珠海格力电器股份有限公司 恒温恒湿内机及恒温恒湿系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611201A (ja) * 1992-06-26 1994-01-21 Daikin Ind Ltd 空気調和装置
CN102809192A (zh) * 2011-05-31 2012-12-05 青岛海信日立空调系统有限公司 室内机换热结构及设置该换热结构的室内机
CN105276679A (zh) * 2014-07-23 2016-01-27 韶关市曲江天瑞德化工有限公司 双变频恒湿除湿机及除湿方法
CN106288178A (zh) * 2016-08-12 2017-01-04 青岛海尔空调器有限总公司 一种利用双回气压缩机控制室内温度和湿度的方法和空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272669A1 (en) * 2011-02-11 2012-11-01 Johnson Controls Technology Company Hvac unit with hot gas reheat
CN103562657A (zh) * 2011-04-12 2014-02-05 清华大学 温湿度独立控制空调系统的冷热源
EP2787293A1 (en) * 2013-03-04 2014-10-08 Carrier Corporation Integrated membrane dehumidification system
CN206410268U (zh) * 2016-12-29 2017-08-15 广东申菱环境系统股份有限公司 分流式风冷型恒温恒湿空调机
CN107024041A (zh) * 2017-05-31 2017-08-08 郑州云海信息技术有限公司 一种数据中心防凝露制冷系统
CN108518736A (zh) * 2018-04-04 2018-09-11 珠海格力电器股份有限公司 恒温恒湿内机、恒温恒湿系统及其控制方法
CN208075149U (zh) * 2018-04-04 2018-11-09 珠海格力电器股份有限公司 恒温恒湿内机及恒温恒湿系统

Also Published As

Publication number Publication date
CN108518736A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2019192210A1 (zh) 恒温恒湿内机、恒温恒湿系统及其控制方法
CN108105919B (zh) 一种干工况制冷的变频空调系统及其控制方法
CN102878615A (zh) 变频空调机组
US11480353B2 (en) Peak demand response operation of HVAC system with face-split evaporator
CN107143973A (zh) 一种多联机低负荷制冷运行的控制方法
WO2021135277A1 (zh) 热泵系统及空调
CN106052031A (zh) 恒温恒湿设备的室外机组的变频控制系统及其方法
CN107166582B (zh) 空调冷却水系统、空调系统及空调冷却水系统控制方法
JPWO2003029728A1 (ja) 空気調和装置
WO2023029653A1 (zh) 空调器室外机的除霜控制方法及空调器
CN109405366B (zh) 空调循环系统、空调循环系统的控制方法及空调
CN112555997B (zh) 新风机组及其出风温湿度控制方法
CN111928432B (zh) 空调器的控制方法
CN112880122A (zh) 一种风管式空调制冷湿度下限的控制方法
CN208075149U (zh) 恒温恒湿内机及恒温恒湿系统
CN207674639U (zh) 一种温控节流的空调热泵系统
CN207350996U (zh) 具有除湿蒸发器的空调装置
JP3996321B2 (ja) 空調機とその制御方法
JP4074422B2 (ja) 空調機とその制御方法
CN109595841A (zh) 空调系统及其控制方法
CN209147486U (zh) 一种制冷系统
CN207797292U (zh) 一种干工况制冷的变频空调系统
JPH0252955A (ja) 冷却装置とその制御方法
CN116772471B (zh) 一种冷水机组冷却水系统优化控制方法及冷却水系统
TWI824828B (zh) 變頻器冷媒冷卻控制方法與變頻器冷媒冷卻迴路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913555

Country of ref document: EP

Kind code of ref document: A1