WO2019187250A1 - Co anode, and co electroplating method using co anode - Google Patents
Co anode, and co electroplating method using co anode Download PDFInfo
- Publication number
- WO2019187250A1 WO2019187250A1 PCT/JP2018/037118 JP2018037118W WO2019187250A1 WO 2019187250 A1 WO2019187250 A1 WO 2019187250A1 JP 2018037118 W JP2018037118 W JP 2018037118W WO 2019187250 A1 WO2019187250 A1 WO 2019187250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- particles
- purity
- plating
- wiring
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
Definitions
- the present invention relates to a Co anode and an electric Co plating method using the Co anode.
- electric Cu plating is used for forming Cu wiring in PWB (printed wiring board) or the like, but recently, it is also used for forming Cu wiring for semiconductors.
- a pure Cu anode or a phosphorus-containing Cu anode is used as an anode of electric Cu plating for forming a Cu wiring.
- a pure Cu anode or a phosphorus-containing Cu anode used for electric Cu plating is described in, for example, Patent Document 1, and the purity is controlled within a predetermined range and the impurity content is controlled below a predetermined value. It is described that adhesion of particles to a semiconductor wafer manufactured using the pure Cu anode or phosphorus-containing Cu anode can be suppressed.
- Patent Document 2 discloses that the surface of the phosphorus-containing Cu anode is preliminarily applied when performing electro Cu plating on the semiconductor wafer. A technique for forming a fine crystal layer in which the crystal grain size is controlled within a predetermined range is described.
- Patent Document 1 and Patent Document 2 improve the plating defects by suppressing particles generated when Cu wiring or the like is formed by electric Cu plating, and are useful for fine wiring. Although it is going to obtain wiring etc., in the electroplating using such a conventional Cu anode, there exists room for improvement in the point of EM tolerance or the reduction of wiring resistance. Therefore, the development of a new electroplating anode to replace the Cu anode and capable of suppressing plating defects, which is a conventional problem, is awaited.
- anode for electroplating that replaces a Cu anode and that can suppress plating defects.
- the present inventors have found that, in the technical field of fine wiring formation, Cu to Co wiring is used in the cutting-edge local wiring having a narrow wiring and a relatively short wiring distance. Focused on the fact that the replacement is going to be done. It is known that the Co wiring has good EM resistance with respect to the Cu wiring, and the wiring resistance can be suppressed lower than that of the Cu wiring when the wiring distance is short because the barrier metal layer can be thinned.
- the embodiment of the present invention completed on the basis of the above knowledge is dissolved in dilute nitric acid having a nitric acid concentration of 20% by mass, and then measured with a particle counter in liquid based on JIS B9925.
- the embodiment of the present invention is an electric Co plating method using the Co anode according to the embodiment of the present invention.
- an anode for electroplating that is a new electroplating substitute for the Cu anode and that can suppress plating defects.
- Example 5 (purity: 3N, magnification: 300 times), (b) Example 3 (purity: 4N, magnification: 300 times), (c) Example 1 (purity: 5N, magnification: 300 times) It is a SEM image of.
- 10 is a graph of an EDX spectrum of Example 3.
- 2 is a graph of an EDX spectrum of Example 1.
- Co anode configuration In the Co anode according to the embodiment of the present invention, the number of particles having a particle diameter of 0.5 ⁇ m or more was measured based on JIS B 9925 using a liquid particle counter after being dissolved in dilute nitric acid having a nitric acid concentration of 20 mass%. 6000 pieces / g or less.
- the Co anode has good EM resistance with respect to the Cu anode, and the wiring resistance can be suppressed lower than that of the Cu wiring when the wiring distance is short because the barrier metal layer can be thinned.
- the number of particles having a particle size of 0.5 ⁇ m or more is controlled to 6000 particles / g or less, the occurrence of abnormal deposition of plating is suppressed when electroplating is performed using a Co anode. Defects can be suppressed satisfactorily.
- Particles are solid inclusions present in the structure of the Co anode, and mean particles that do not dissolve in dilute nitric acid in the implementation of the liquid particle counter described later.
- the impurities of the Co anode also include substances that dissolve in dilute nitric acid (for example, metals that have a strong ionization tendency). However, even if such a substance exists as a coarse structure in the Co anode, it is ionized in the process of electroplating, so that it is taken into the plating film in a very fine form at the ion level.
- inclusions (particles) that do not dissolve in dilute nitric acid are electrochemically stable, they are taken into the plating film while maintaining a form close to that in the Co anode. For this reason, even if the Co anodes have the same purity, the larger the proportion of particles in the impurities, the larger the size of the impurities taken into the plating film, and the more likely the plating failure occurs.
- the present invention pays attention to this point and provides a Co anode in which the number of particles that are solid inclusions that are not dissolved in dilute nitric acid is controlled to a predetermined number or more.
- Particles are mainly caused by impurities contained in the Co raw material, impurities or products mixed in the manufacturing process.
- the particles are, for example, one or more selected from the group consisting of metals, metal oxides, carbon, carbon compounds, and chlorine compounds.
- the particles may be one or more metals selected from the group consisting of Fe, Mg, Cr, Ni, Si, and Al, or oxides thereof (including cobalt oxides).
- the present inventors particularly note that particles having a particle size of 0.5 ⁇ m or more do not dissolve in the electrolyte solution and are easily taken into the plating film, so that abnormal precipitation of the plating easily occurs.
- the number density of particles having a diameter and controlling the number density to 6000 pieces / g or less generation of particles in a plating film produced by electroplating can be suppressed very well, As a result, it has been found that the occurrence of abnormal plating deposition can be suppressed.
- the detected particles have a negative effect on the plating process, and in particular, the Co wiring formed using the Co anode is a fine wiring.
- the number of particles having a particle diameter of 0.5 ⁇ m or more is controlled.
- the number of particles having a particle diameter of 0.5 ⁇ m or more is preferably 5000 / g or less, and more preferably 4000 / g or less.
- the particle size of the particles is obtained by measuring with a “light scattering automatic particle counter for liquid” (manufactured by Kyushu Lion Co., Ltd.). This measurement method selects the size of particles in a liquid and measures the particle concentration and the number of particles, and is based on JIS B 9925 (in the present invention, this measurement is referred to as “liquid particle counter”). Called). The procedure for carrying out the particle counter in the liquid will be described in detail. 1 g is sampled, slowly dissolved with 150 ml of dilute nitric acid (nitric acid concentration 20 mass% aqueous solution) so that the particles do not dissolve, and left for 24 hours.
- dilute nitric acid nitric acid concentration 20 mass% aqueous solution
- This is diluted with pure water to 500 ml, and 10 ml is taken and measured with the particle counter in liquid.
- 10 ml is taken and measured with the particle counter in liquid.
- the number of particles is 1000 / ml, 0.02 g of sample is measured in 10 ml, so the number of particles is 500,000 / g.
- the number of particles is not limited to the measurement using the liquid particle counter, and may be measured using other means as long as the same number of particles can be measured.
- the Co anode according to the embodiment of the present invention preferably has a purity of 3N or more. If the purity of the Co anode is 3N (purity 99.9% by mass) or more, the generation of particles in the plating film produced by electroplating using the Co anode can be more effectively suppressed, and as a result, plating is performed. The occurrence of abnormal precipitation can be further suppressed.
- the Co anode according to the embodiment of the present invention preferably has a purity of 4N (purity 99.99 mass%) or more, and more preferably 5N (purity 99.999 mass%) or more.
- purity in the present invention for example, purity 5N (99.999%) means that the Co ingot after dissolution is analyzed by glow discharge mass spectrometry (GDMS: Glow Discharge Mass Spectrometry) and is below the lower limit of detection.
- All metal elements other than element and Co such as Be, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Zr, Mo , Cd, Sn, Sb, Hg, Pb, Bi, Th, U means less than 10 ppm.
- the number of particles is not necessarily small if it is “high purity”, and the higher purity Co anode is less than the lower purity Co anode.
- the number of particles shown in the invention may be large.
- the Fe concentration is preferably controlled to 10 ppm or less. Since Fe is difficult to dissolve in an acidic solution, particles are easily formed when Fe is mixed in the Co anode.
- the Co anode in which the Fe concentration is controlled to 10 ppm or less has fewer particles generated in the plating film than the Co anode in which the Fe concentration exceeds 10 ppm, As a result, the occurrence of abnormal plating deposition can be further suppressed.
- the Fe concentration is more preferably controlled to 8 ppm or less, even more preferably 5 ppm or less, even more preferably 3 ppm or less, even more preferably 1 ppm or less, and even more preferably 0 ppm. ing.
- Co as a raw material is dissolved in a predetermined container.
- Co raw material to be used for example, Co having a purity of 3N (purity 99.9% by mass) or more can be used.
- particles that are problematic during electroplating are particles of a compound such as Fe, Mg, Cr, Ni, Si, and Al, and these particles cause particles generated in the plating film.
- the surface roughness of the portion in contact with the Co raw material in the container, piping, and mold may be controlled.
- Electro-Co plating method By performing electro-Co plating using the Co anode according to the embodiment of the present invention, the generation of particles in the produced plating film can be suppressed extremely well, and as a result, the occurrence of abnormal deposition of plating is suppressed. can do.
- an appropriate amount of cobalt sulfate: 10 to 30 g / L (Co) or cobalt chloride 5 to 15 g / L may be used as a plating solution. it can.
- the pH is 2.5 to 3.5.
- the plating bath temperature can be 25 to 60 ° C.
- the cathode current density is 0.5 to 10 A / dm 2
- the anode current density is 0.5 to 10 A / dm 2 , but it is not necessarily limited to these conditions. Absent.
- the plating bath may contain a brightener, a complexing agent, a pH buffer, a surfactant and the like.
- FIG. 1A shows Example 5 (purity: 3N, magnification: 300 times)
- FIG. 1B shows Example 3 (purity: 4N, magnification: 300 times)
- FIG. 1C shows Example 1 (purity: 5N, (Magnification: 300 times) SEM image.
- FIG. 2A shows Example 5 (purity: 3N, magnification: 15000 times)
- FIG. 2B shows Example 3 (purity: 4N, magnification: 30000 times)
- FIG. 2C shows Example 1 (purity: 5N, magnification: 15000 times).
- particles (inclusions) having a particle size of 0.5 ⁇ m or more are shown surrounded by a frame line.
- FIG. 3A shows a graph of the EDX spectrum of Example 5
- FIG. 3B shows Example 3
- Example 1 a Co anode having a particle diameter of 0.5 ⁇ m or more and 6000 particles / g or less could be produced.
- Comparative Example 1 a Co anode in which the number of particles having a particle size of 0.5 ⁇ m or more exceeded 6000 / g was obtained.
- Example 1 and Example 2, Example 3 and Example 4, Example 5 and Comparative Example 1 use Co anodes of the same purity, but the Fe concentration is different, so the particle size is different. There is a difference in the number of particles of 0.5 ⁇ m or more.
- Example 4 having a purity of 4N
- the number of particles having a particle diameter of 0.5 ⁇ m or more was larger than that in Example 5 having a purity of 3N.
- the relationship is not necessarily that the number of particles is small if it is “high purity”, and a higher purity Co anode may have more particles shown in the present invention than a lower purity Co anode. is there.
- the Co plating films formed using the Co anodes of Examples 1 to 5 had 0 abnormal electrodepositions, and the plating defects were well suppressed. In the Co plating film formed using the Co anode of Comparative Example 1, abnormal electrodeposition was confirmed, and plating failure occurred.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Provided is a novel electroplating anode that replaces a Cu anode and is capable of suppressing plating defects. In this Co anode, the number of particles having a particle diameter of 0.5 μm or more is 6000 particles/g or less, as measured by a counter for particles in liquid according to JIS B 9925, after the Co anode is dissolved in a dilute nitric acid (nitric acid concentration of 20 mass%).
Description
本発明は、Coアノード及びCoアノードを用いた電気Coめっき方法に関する。
The present invention relates to a Co anode and an electric Co plating method using the Co anode.
一般に、電気Cuめっきは、PWB(プリント配線板)等においてCu配線形成に使用されているが、最近では半導体のCu配線形成にも使用されている。Cu配線を形成するための電気Cuめっきのアノードとしては純Cuアノード又は含リンCuアノードが使用されている。
Generally, electric Cu plating is used for forming Cu wiring in PWB (printed wiring board) or the like, but recently, it is also used for forming Cu wiring for semiconductors. A pure Cu anode or a phosphorus-containing Cu anode is used as an anode of electric Cu plating for forming a Cu wiring.
電気Cuめっきに使用する純Cuアノード又は含リンCuアノードについては、例えば特許文献1に記載されており、純度を所定範囲に制御し、且つ、不純物の含有量を所定値以下に制御することで、当該純Cuアノード又は含リンCuアノードを用いて製造した半導体ウェハへのパーティクルの付着を抑制することができると記載されている。
A pure Cu anode or a phosphorus-containing Cu anode used for electric Cu plating is described in, for example, Patent Document 1, and the purity is controlled within a predetermined range and the impurity content is controlled below a predetermined value. It is described that adhesion of particles to a semiconductor wafer manufactured using the pure Cu anode or phosphorus-containing Cu anode can be suppressed.
また、同様に含リンCuアノードを用いて製造した半導体ウェハへのパーティクルの付着を抑制する技術として、特許文献2には半導体ウェハへの電気Cuめっきを行うに際し、予め含リンCuアノードの表面に結晶粒径が所定の範囲に制御された微細結晶層を形成する技術が記載されている。
Similarly, as a technique for suppressing the adhesion of particles to a semiconductor wafer manufactured using a phosphorus-containing Cu anode, Patent Document 2 discloses that the surface of the phosphorus-containing Cu anode is preliminarily applied when performing electro Cu plating on the semiconductor wafer. A technique for forming a fine crystal layer in which the crystal grain size is controlled within a predetermined range is described.
近年、半導体デバイスの高性能化、低消費電力化が求められ、配線の微細化が進むにつれ、配線の信頼性に影響を与えるエレクトロマイグレーション(EM)の劣化対策や信号遅延の原因となる配線抵抗の低抵抗化が課題となっている。特許文献1や特許文献2に記載されている技術は、前述の通り電気CuめっきでCu配線等を形成する際に生じるパーティクルを抑制することで、めっき不良を改善し、微細配線に有用なCu配線等を得ようとするものであるが、このような従来のCuアノードを使用した電気めっきでは、EM耐性や配線抵抗の低抵抗化の点で改善の余地がある。そのため、Cuアノードに代わる新たな電気めっきのアノードであって、さらに従来の課題であるめっき不良を抑制することが可能なアノードの開発が待ち望まれている。
In recent years, high performance and low power consumption of semiconductor devices have been demanded, and as wiring miniaturization progressed, wiring resistance that causes deterioration of electromigration (EM) and causes signal delay, which affects wiring reliability. Lowering the resistance is a challenge. As described above, the techniques described in Patent Document 1 and Patent Document 2 improve the plating defects by suppressing particles generated when Cu wiring or the like is formed by electric Cu plating, and are useful for fine wiring. Although it is going to obtain wiring etc., in the electroplating using such a conventional Cu anode, there exists room for improvement in the point of EM tolerance or the reduction of wiring resistance. Therefore, the development of a new electroplating anode to replace the Cu anode and capable of suppressing plating defects, which is a conventional problem, is awaited.
そこで本発明の実施形態は、Cuアノードに代わる新たな電気めっきのアノードであって、且つ、めっき不良を抑制することが可能なアノードを提供することを課題とする。
Therefore, it is an object of an embodiment of the present invention to provide an anode for electroplating that replaces a Cu anode and that can suppress plating defects.
本発明者らは、このような問題を解決するため種々の検討を行った結果、微細配線形成の技術分野において、狭配線かつ比較的配線距離が短い最先端ローカル配線等においてはCuからCo配線への置き換えが行われようとしていることに着目した。Co配線はCu配線に対してEM耐性が良好で、バリアメタル層が薄くできる分、配線距離が短い場合は配線抵抗もCu配線より低く抑えることができることがわかっている。
As a result of various studies to solve such problems, the present inventors have found that, in the technical field of fine wiring formation, Cu to Co wiring is used in the cutting-edge local wiring having a narrow wiring and a relatively short wiring distance. Focused on the fact that the replacement is going to be done. It is known that the Co wiring has good EM resistance with respect to the Cu wiring, and the wiring resistance can be suppressed lower than that of the Cu wiring when the wiring distance is short because the barrier metal layer can be thinned.
そこで、従来のCuアノードに代えて、Coアノードを作製し、且つ、当該Coアノードにおける所定の粒径以上のパーティクルの数を制御することで、めっき不良を抑制することが可能な電気めっきのアノードが得られることを見出した。
Therefore, in place of the conventional Cu anode, a Co anode is manufactured, and the number of particles having a predetermined particle diameter or more in the Co anode is controlled to suppress plating defects. It was found that can be obtained.
上記知見を基礎にして完成した本発明の実施形態は一側面において、硝酸濃度20質量%の希硝酸で溶解した後、液中パーティクルカウンターによってJIS B 9925に基づいて測定した、粒径が0.5μm以上のパーティクルの数が、6000個/g以下であるCoアノードである。
In one aspect, the embodiment of the present invention completed on the basis of the above knowledge is dissolved in dilute nitric acid having a nitric acid concentration of 20% by mass, and then measured with a particle counter in liquid based on JIS B9925. A Co anode in which the number of particles of 5 μm or more is 6000 particles / g or less.
また、本発明の実施形態は他の一側面において、本発明の実施形態に係るCoアノードを用いた電気Coめっき方法である。
In another aspect, the embodiment of the present invention is an electric Co plating method using the Co anode according to the embodiment of the present invention.
本発明の実施形態によれば、Cuアノードに代わる新たな電気めっきのアノードであって、且つ、めっき不良を抑制することが可能なアノードを提供することができる。
According to the embodiment of the present invention, it is possible to provide an anode for electroplating that is a new electroplating substitute for the Cu anode and that can suppress plating defects.
〔Coアノードの構成〕
本発明の実施形態に係るCoアノードは、硝酸濃度20質量%の希硝酸で溶解した後、液中パーティクルカウンターによってJIS B 9925に基づいて測定した、粒径が0.5μm以上のパーティクルの数が、6000個/g以下である。CoアノードはCuアノードに対してEM耐性が良好で、バリアメタル層が薄くできる分、配線距離が短い場合は配線抵抗もCu配線より低く抑えることができる。また、粒径が0.5μm以上のパーティクルの数が6000個/g以下に制御されているため、Coアノードを用いて電気めっきを行うとき、めっきの異常析出の発生が抑制され、その結果めっき不良を良好に抑制することができる。 [Co anode configuration]
In the Co anode according to the embodiment of the present invention, the number of particles having a particle diameter of 0.5 μm or more was measured based on JIS B 9925 using a liquid particle counter after being dissolved in dilute nitric acid having a nitric acid concentration of 20 mass%. 6000 pieces / g or less. The Co anode has good EM resistance with respect to the Cu anode, and the wiring resistance can be suppressed lower than that of the Cu wiring when the wiring distance is short because the barrier metal layer can be thinned. In addition, since the number of particles having a particle size of 0.5 μm or more is controlled to 6000 particles / g or less, the occurrence of abnormal deposition of plating is suppressed when electroplating is performed using a Co anode. Defects can be suppressed satisfactorily.
本発明の実施形態に係るCoアノードは、硝酸濃度20質量%の希硝酸で溶解した後、液中パーティクルカウンターによってJIS B 9925に基づいて測定した、粒径が0.5μm以上のパーティクルの数が、6000個/g以下である。CoアノードはCuアノードに対してEM耐性が良好で、バリアメタル層が薄くできる分、配線距離が短い場合は配線抵抗もCu配線より低く抑えることができる。また、粒径が0.5μm以上のパーティクルの数が6000個/g以下に制御されているため、Coアノードを用いて電気めっきを行うとき、めっきの異常析出の発生が抑制され、その結果めっき不良を良好に抑制することができる。 [Co anode configuration]
In the Co anode according to the embodiment of the present invention, the number of particles having a particle diameter of 0.5 μm or more was measured based on JIS B 9925 using a liquid particle counter after being dissolved in dilute nitric acid having a nitric acid concentration of 20 mass%. 6000 pieces / g or less. The Co anode has good EM resistance with respect to the Cu anode, and the wiring resistance can be suppressed lower than that of the Cu wiring when the wiring distance is short because the barrier metal layer can be thinned. In addition, since the number of particles having a particle size of 0.5 μm or more is controlled to 6000 particles / g or less, the occurrence of abnormal deposition of plating is suppressed when electroplating is performed using a Co anode. Defects can be suppressed satisfactorily.
パーティクルは、Coアノードの組織の中に存在する固形の介在物であり、後述する液中パーティクルカウンターの実施において希硝酸に溶解しないものを意味する。Coアノードの不純物としては、希硝酸に溶解する物質(例えば、イオン化傾向が強い金属)も含まれる。ただし、このような物質は、たとえCoアノードの中に粗大な組織として存在していても、電気めっきの過程でイオン化されるため、めっき膜にはイオンレベルの非常に微細な形態で取り込まれる。一方、希硝酸に溶解しない介在物(パーティクル)は、電気化学的に安定であるため、Coアノードの中に存在していたときと近い形態を維持したまま、めっき膜の中に取り込まれる。このため、たとえ同じ純度のCoアノードであったとしても、不純物の中でパーティクルが占める割合が大きい方が、めっき膜に取り込まれる不純物の大きさが大きくなり、めっき不良が生じやすくなる。本発明ではこの点に着目し、希硝酸に溶解しない固形の介在物であるパーティクルについて、所定粒径以上のものの数が制御されたCoアノードを提供している。
Particles are solid inclusions present in the structure of the Co anode, and mean particles that do not dissolve in dilute nitric acid in the implementation of the liquid particle counter described later. The impurities of the Co anode also include substances that dissolve in dilute nitric acid (for example, metals that have a strong ionization tendency). However, even if such a substance exists as a coarse structure in the Co anode, it is ionized in the process of electroplating, so that it is taken into the plating film in a very fine form at the ion level. On the other hand, since inclusions (particles) that do not dissolve in dilute nitric acid are electrochemically stable, they are taken into the plating film while maintaining a form close to that in the Co anode. For this reason, even if the Co anodes have the same purity, the larger the proportion of particles in the impurities, the larger the size of the impurities taken into the plating film, and the more likely the plating failure occurs. The present invention pays attention to this point and provides a Co anode in which the number of particles that are solid inclusions that are not dissolved in dilute nitric acid is controlled to a predetermined number or more.
パーティクルは、主にCo原料に含まれていた不純物や、製造工程で混入した不純物又は生成物に起因する。パーティクルは、例えば、金属、金属酸化物、炭素、炭素化合物、塩素化合物からなる群から選択された1種以上である。また、パーティクルは、Fe、Mg、Cr、Ni、Si、Alからなる群から選択された1種以上の金属又はその酸化物(コバルト酸化物も含む)であってもよい。
Particles are mainly caused by impurities contained in the Co raw material, impurities or products mixed in the manufacturing process. The particles are, for example, one or more selected from the group consisting of metals, metal oxides, carbon, carbon compounds, and chlorine compounds. The particles may be one or more metals selected from the group consisting of Fe, Mg, Cr, Ni, Si, and Al, or oxides thereof (including cobalt oxides).
また、本発明者らは、特に、粒径が0.5μm以上のパーティクルは電解液に溶け出さず、めっき膜に取り込まれることでめっきの異常析出が発生しやすくなることから、このような粒径のパーティクルの個数密度に着目し、且つ、当該個数密度を6000個/g以下に制御することで、電気めっきで作製されるめっき膜中のパーティクルの発生を極めて良好に抑制することができ、その結果めっきの異常析出の発生を抑制することができることを見出した。また、不純物がパーティクルとして検出されない場合と、検出される場合とを比較すると、検出されるパーティクルの方がめっき工程に悪影響を及ぼすこと、特にCoアノードを用いて形成されるCo配線は微細配線として利用されることが多くこのような悪影響が顕著となってしまうことを見出し、そのような観点からも粒径が0.5μm以上のパーティクルの数を制御している。本発明の実施形態に係るCoアノードは、粒径が0.5μm以上のパーティクルの数が5000個/g以下であるのが好ましく、4000個/g以下であるのがより好ましい。
In addition, the present inventors particularly note that particles having a particle size of 0.5 μm or more do not dissolve in the electrolyte solution and are easily taken into the plating film, so that abnormal precipitation of the plating easily occurs. By paying attention to the number density of particles having a diameter and controlling the number density to 6000 pieces / g or less, generation of particles in a plating film produced by electroplating can be suppressed very well, As a result, it has been found that the occurrence of abnormal plating deposition can be suppressed. Further, comparing the case where impurities are not detected as particles with the case where they are detected, the detected particles have a negative effect on the plating process, and in particular, the Co wiring formed using the Co anode is a fine wiring. In many cases, it is found that such an adverse effect becomes remarkable, and from such a viewpoint, the number of particles having a particle diameter of 0.5 μm or more is controlled. In the Co anode according to the embodiment of the present invention, the number of particles having a particle diameter of 0.5 μm or more is preferably 5000 / g or less, and more preferably 4000 / g or less.
パーティクルの粒径は、「液体用光散乱式自動粒子計数器」(九州リオン株式会社製)で測定されて得られる。この測定法は、液中で粒子のサイズを選別し、その粒子濃度や粒子数を測定するもので、JIS B 9925に基づくものである(本発明において、この測定を「液中パーティクルカウンター」と称する)。
液中パーティクルカウンターの実施手順を具体的に説明すると、1gをサンプリングし、パーティクルが溶解しないように、ゆっくりと150mlの希硝酸(硝酸濃度20質量%水溶液)で溶解し、24時間放置後、さらにこれを500mlになるように、純水で希釈し、この10mlを取り、前記液中パーティクルカウンターで測定するものである。例えば、パーティクルの個数が1000個/mlの場合では、10mlの中には0.02gのサンプルが測定されることになるので、パーティクルは500000個/gとなる。
なお、パーティクルの個数は、液中パーティクルカウンターによる測定に限られず、同様の個数の測定が可能であれば、他の手段を用いて測定しても良い。 The particle size of the particles is obtained by measuring with a “light scattering automatic particle counter for liquid” (manufactured by Kyushu Lion Co., Ltd.). This measurement method selects the size of particles in a liquid and measures the particle concentration and the number of particles, and is based on JIS B 9925 (in the present invention, this measurement is referred to as “liquid particle counter”). Called).
The procedure for carrying out the particle counter in the liquid will be described in detail. 1 g is sampled, slowly dissolved with 150 ml of dilute nitric acid (nitric acid concentration 20 mass% aqueous solution) so that the particles do not dissolve, and left for 24 hours. This is diluted with pure water to 500 ml, and 10 ml is taken and measured with the particle counter in liquid. For example, when the number of particles is 1000 / ml, 0.02 g of sample is measured in 10 ml, so the number of particles is 500,000 / g.
Note that the number of particles is not limited to the measurement using the liquid particle counter, and may be measured using other means as long as the same number of particles can be measured.
液中パーティクルカウンターの実施手順を具体的に説明すると、1gをサンプリングし、パーティクルが溶解しないように、ゆっくりと150mlの希硝酸(硝酸濃度20質量%水溶液)で溶解し、24時間放置後、さらにこれを500mlになるように、純水で希釈し、この10mlを取り、前記液中パーティクルカウンターで測定するものである。例えば、パーティクルの個数が1000個/mlの場合では、10mlの中には0.02gのサンプルが測定されることになるので、パーティクルは500000個/gとなる。
なお、パーティクルの個数は、液中パーティクルカウンターによる測定に限られず、同様の個数の測定が可能であれば、他の手段を用いて測定しても良い。 The particle size of the particles is obtained by measuring with a “light scattering automatic particle counter for liquid” (manufactured by Kyushu Lion Co., Ltd.). This measurement method selects the size of particles in a liquid and measures the particle concentration and the number of particles, and is based on JIS B 9925 (in the present invention, this measurement is referred to as “liquid particle counter”). Called).
The procedure for carrying out the particle counter in the liquid will be described in detail. 1 g is sampled, slowly dissolved with 150 ml of dilute nitric acid (nitric acid concentration 20 mass% aqueous solution) so that the particles do not dissolve, and left for 24 hours. This is diluted with pure water to 500 ml, and 10 ml is taken and measured with the particle counter in liquid. For example, when the number of particles is 1000 / ml, 0.02 g of sample is measured in 10 ml, so the number of particles is 500,000 / g.
Note that the number of particles is not limited to the measurement using the liquid particle counter, and may be measured using other means as long as the same number of particles can be measured.
本発明の実施形態に係るCoアノードは、純度が3N以上であるのが好ましい。Coアノードの純度が3N(純度99.9質量%)以上であれば、Coアノードを用いた電気めっきで作製されるめっき膜中のパーティクルの発生をより良好に抑制することができ、その結果めっきの異常析出の発生をより抑制することができる。本発明の実施形態に係るCoアノードは、純度が4N(純度99.99質量%)以上であるのがより好ましく、5N(純度99.999質量%)以上であるのが更により好ましい。なお、本発明における「純度」について、例えば純度5N(99.999%)とは、溶解後のCoインゴットをグロー放電質量分析法(GDMS:Glow Discharge Mass Spectrometry)にて分析し、検出下限以下の元素及びCo以外の全ての金属元素、例えばBe、Na、Mg、Al、Si、P、S、K、Ca、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、As、Zr、Mo、Cd、Sn、Sb、Hg、Pb、Bi、Th、Uの合計が、10ppm未満であることを意味する。
The Co anode according to the embodiment of the present invention preferably has a purity of 3N or more. If the purity of the Co anode is 3N (purity 99.9% by mass) or more, the generation of particles in the plating film produced by electroplating using the Co anode can be more effectively suppressed, and as a result, plating is performed. The occurrence of abnormal precipitation can be further suppressed. The Co anode according to the embodiment of the present invention preferably has a purity of 4N (purity 99.99 mass%) or more, and more preferably 5N (purity 99.999 mass%) or more. As for “purity” in the present invention, for example, purity 5N (99.999%) means that the Co ingot after dissolution is analyzed by glow discharge mass spectrometry (GDMS: Glow Discharge Mass Spectrometry) and is below the lower limit of detection. All metal elements other than element and Co, such as Be, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Zr, Mo , Cd, Sn, Sb, Hg, Pb, Bi, Th, U means less than 10 ppm.
なお、後述の実施例及び比較例で示すように、必ずしも「高純度」であればパーティクルの数が少ないという関係にはならず、純度が高いCoアノードの方が、純度が低いCoアノードより本発明で示すパーティクルの数が多い場合もある。
As shown in the examples and comparative examples described later, the number of particles is not necessarily small if it is “high purity”, and the higher purity Co anode is less than the lower purity Co anode. The number of particles shown in the invention may be large.
本発明の実施形態に係るCoアノードは、Fe濃度が10ppm以下に制御されているのが好ましい。Feは酸性溶液に溶解し難いため、FeがCoアノード中に混入しているとパーティクルを形成しやすくなる。同程度の純度のCoアノード間で比較すると、Fe濃度が10ppm以下に制御されているCoアノードの方が、Fe濃度が10ppmを超えるCoアノードよりめっき膜中に発生するパーティクルの数が少なくなり、その結果めっきの異常析出の発生をより抑制することができる。本発明の実施形態に係るCoアノードは、Fe濃度が、より好ましくは8ppm以下、更により好ましくは5ppm以下、更により好ましくは3ppm以下、更により好ましくは1ppm以下、更により好ましくは0ppmに制御されている。
In the Co anode according to the embodiment of the present invention, the Fe concentration is preferably controlled to 10 ppm or less. Since Fe is difficult to dissolve in an acidic solution, particles are easily formed when Fe is mixed in the Co anode. When compared between Co anodes of similar purity, the Co anode in which the Fe concentration is controlled to 10 ppm or less has fewer particles generated in the plating film than the Co anode in which the Fe concentration exceeds 10 ppm, As a result, the occurrence of abnormal plating deposition can be further suppressed. In the Co anode according to an embodiment of the present invention, the Fe concentration is more preferably controlled to 8 ppm or less, even more preferably 5 ppm or less, even more preferably 3 ppm or less, even more preferably 1 ppm or less, and even more preferably 0 ppm. ing.
〔Coアノードの製造方法〕
本発明の実施形態に係るCoアノードの製造方法について詳述する。まず、原料であるCoを所定の容器内で溶解する。使用するCo原料は、例えば、純度3N(純度99.9質量%)以上のCoを使用することができる。
前述のように、電気めっき時に問題となるパーティクルは、Fe、Mg、Cr、Ni、Si、Al等の化合物の粒子であり、これら粒子がめっき膜中に発生するパーティクルの原因となる。これらの粒子がCoアノードに混入しないように制御するためには、容器、配管及び鋳型において、Co原料と接する部分の表面粗さを制御してもよい。また、これら粒子はスラグ側に浮きやすいという知見から、溶湯の撹拌時間を多くすることで、Fe、Mg、Cr、Ni、Si、Alの化合物の粒径0.5μmを超える粒子をスラグ側へ分配させてもよい。 [Method for producing Co anode]
A method for producing a Co anode according to an embodiment of the present invention will be described in detail. First, Co as a raw material is dissolved in a predetermined container. As the Co raw material to be used, for example, Co having a purity of 3N (purity 99.9% by mass) or more can be used.
As described above, particles that are problematic during electroplating are particles of a compound such as Fe, Mg, Cr, Ni, Si, and Al, and these particles cause particles generated in the plating film. In order to control so that these particles do not enter the Co anode, the surface roughness of the portion in contact with the Co raw material in the container, piping, and mold may be controlled. Further, from the knowledge that these particles are likely to float on the slag side, by increasing the stirring time of the molten metal, particles exceeding the particle size of 0.5 μm of the compound of Fe, Mg, Cr, Ni, Si, Al are moved to the slag side. It may be distributed.
本発明の実施形態に係るCoアノードの製造方法について詳述する。まず、原料であるCoを所定の容器内で溶解する。使用するCo原料は、例えば、純度3N(純度99.9質量%)以上のCoを使用することができる。
前述のように、電気めっき時に問題となるパーティクルは、Fe、Mg、Cr、Ni、Si、Al等の化合物の粒子であり、これら粒子がめっき膜中に発生するパーティクルの原因となる。これらの粒子がCoアノードに混入しないように制御するためには、容器、配管及び鋳型において、Co原料と接する部分の表面粗さを制御してもよい。また、これら粒子はスラグ側に浮きやすいという知見から、溶湯の撹拌時間を多くすることで、Fe、Mg、Cr、Ni、Si、Alの化合物の粒径0.5μmを超える粒子をスラグ側へ分配させてもよい。 [Method for producing Co anode]
A method for producing a Co anode according to an embodiment of the present invention will be described in detail. First, Co as a raw material is dissolved in a predetermined container. As the Co raw material to be used, for example, Co having a purity of 3N (purity 99.9% by mass) or more can be used.
As described above, particles that are problematic during electroplating are particles of a compound such as Fe, Mg, Cr, Ni, Si, and Al, and these particles cause particles generated in the plating film. In order to control so that these particles do not enter the Co anode, the surface roughness of the portion in contact with the Co raw material in the container, piping, and mold may be controlled. Further, from the knowledge that these particles are likely to float on the slag side, by increasing the stirring time of the molten metal, particles exceeding the particle size of 0.5 μm of the compound of Fe, Mg, Cr, Ni, Si, Al are moved to the slag side. It may be distributed.
次に、溶解したCo原料を鋳型に供給して鍛造した後、圧延、熱処理を行い、さらに表面の切削加工を行うことにより、Coアノードを作製する。
Next, after supplying the molten Co raw material to the mold and forging, rolling and heat treatment are performed, and further, the surface is cut to produce a Co anode.
〔電気Coめっき方法〕
本発明の実施形態に係るCoアノードを用いて電気Coめっきを行うことで、作製されるめっき膜中のパーティクルの発生を極めて良好に抑制することができ、その結果めっきの異常析出の発生を抑制することができる。
本発明の実施形態に係る電気Coめっき方法では、特に限定されないが、例えばめっき液として、硫酸コバルト:10~30g/L(Co)、又は、塩化コバルト5~15g/Lを適量使用することができる。pHは2.5~3.5とする。
その他、めっき浴温25~60℃、陰極電流密度0.5~10A/dm2、陽極電流密度0.5~10A/dm2とすることができるが、必ずしもこれらの条件に制限される必要はない。めっき浴には、光沢剤・錯化剤・pH緩衝剤、界面活性剤等を含んでもよい。 [Electrical Co plating method]
By performing electro-Co plating using the Co anode according to the embodiment of the present invention, the generation of particles in the produced plating film can be suppressed extremely well, and as a result, the occurrence of abnormal deposition of plating is suppressed. can do.
In the electro-Co plating method according to the embodiment of the present invention, although not particularly limited, for example, an appropriate amount of cobalt sulfate: 10 to 30 g / L (Co) or cobalt chloride 5 to 15 g / L may be used as a plating solution. it can. The pH is 2.5 to 3.5.
In addition, the plating bath temperature can be 25 to 60 ° C., the cathode current density is 0.5 to 10 A / dm 2 , and the anode current density is 0.5 to 10 A / dm 2 , but it is not necessarily limited to these conditions. Absent. The plating bath may contain a brightener, a complexing agent, a pH buffer, a surfactant and the like.
本発明の実施形態に係るCoアノードを用いて電気Coめっきを行うことで、作製されるめっき膜中のパーティクルの発生を極めて良好に抑制することができ、その結果めっきの異常析出の発生を抑制することができる。
本発明の実施形態に係る電気Coめっき方法では、特に限定されないが、例えばめっき液として、硫酸コバルト:10~30g/L(Co)、又は、塩化コバルト5~15g/Lを適量使用することができる。pHは2.5~3.5とする。
その他、めっき浴温25~60℃、陰極電流密度0.5~10A/dm2、陽極電流密度0.5~10A/dm2とすることができるが、必ずしもこれらの条件に制限される必要はない。めっき浴には、光沢剤・錯化剤・pH緩衝剤、界面活性剤等を含んでもよい。 [Electrical Co plating method]
By performing electro-Co plating using the Co anode according to the embodiment of the present invention, the generation of particles in the produced plating film can be suppressed extremely well, and as a result, the occurrence of abnormal deposition of plating is suppressed. can do.
In the electro-Co plating method according to the embodiment of the present invention, although not particularly limited, for example, an appropriate amount of cobalt sulfate: 10 to 30 g / L (Co) or cobalt chloride 5 to 15 g / L may be used as a plating solution. it can. The pH is 2.5 to 3.5.
In addition, the plating bath temperature can be 25 to 60 ° C., the cathode current density is 0.5 to 10 A / dm 2 , and the anode current density is 0.5 to 10 A / dm 2 , but it is not necessarily limited to these conditions. Absent. The plating bath may contain a brightener, a complexing agent, a pH buffer, a surfactant and the like.
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.
〔Coアノードの作製〕
実施例1~5、比較例1として、所定の純度のCo原料を真空溶解してインゴットを作成し溶解させた。なお、純度が3NのCo原料は市販コバルト材を使用し、純度が4N及び5NのCo原料は電解精製により得た。
次に、溶解したCo原料を鋳型に供給して鍛造した後、30~50%の圧下率で圧延を行い、続いて300℃~600℃の熱処理を行い、さらに表面の切削加工を行うことにより、Coアノードを作製した。 [Production of Co anode]
As Examples 1 to 5 and Comparative Example 1, a Co raw material having a predetermined purity was melted in a vacuum to prepare and melt an ingot. The Co raw material having a purity of 3N used a commercially available cobalt material, and the Co raw materials having a purity of 4N and 5N were obtained by electrolytic purification.
Next, the molten Co raw material is supplied to the mold and forged, and then rolled at a reduction rate of 30 to 50%, followed by heat treatment at 300 ° C. to 600 ° C., and further cutting the surface. A Co anode was prepared.
実施例1~5、比較例1として、所定の純度のCo原料を真空溶解してインゴットを作成し溶解させた。なお、純度が3NのCo原料は市販コバルト材を使用し、純度が4N及び5NのCo原料は電解精製により得た。
次に、溶解したCo原料を鋳型に供給して鍛造した後、30~50%の圧下率で圧延を行い、続いて300℃~600℃の熱処理を行い、さらに表面の切削加工を行うことにより、Coアノードを作製した。 [Production of Co anode]
As Examples 1 to 5 and Comparative Example 1, a Co raw material having a predetermined purity was melted in a vacuum to prepare and melt an ingot. The Co raw material having a purity of 3N used a commercially available cobalt material, and the Co raw materials having a purity of 4N and 5N were obtained by electrolytic purification.
Next, the molten Co raw material is supplied to the mold and forged, and then rolled at a reduction rate of 30 to 50%, followed by heat treatment at 300 ° C. to 600 ° C., and further cutting the surface. A Co anode was prepared.
〔評価〕
(パーティクルの評価)
パーティクルの粒径及び個数は、「液体用光散乱式自動粒子計数器」(九州リオン株式会社製)で測定した。具体的には、Coアノード1gをサンプリングし、パーティクルが溶解しないように、ゆっくりと150mlの希硝酸(硝酸濃度20質量%水溶液)で溶解し、24時間放置後、さらにこれを500mlになるように純水で希釈し、この10mlを取り、前記液中パーティクルカウンターで測定した。これを3回繰り返した平均値をパーティクルの数とした。また、パーティクルの粒径はSEM像で評価した。図1(a)に実施例5(純度:3N、倍率:300倍)、(b)に実施例3(純度:4N、倍率:300倍)、(c)に実施例1(純度:5N、倍率:300倍)のSEM像を示す。また、図2(a)に実施例5(純度:3N、倍率:15000倍)、(b)に実施例3(純度:4N、倍率:30000倍)、(c)に実施例1(純度:5N、倍率:15000倍)のSEM像を示す。また、図1において、粒径が0.5μm以上のパーティクル(介在物)が枠線で囲まれて示されている。 [Evaluation]
(Evaluation of particles)
The particle diameter and the number of particles were measured with a “light scattering automatic particle counter for liquid” (manufactured by Kyushu Lion Co., Ltd.). Specifically, 1 g of Co anode was sampled and dissolved slowly with 150 ml of diluted nitric acid (nitric acid concentration 20% by weight aqueous solution) so that the particles would not dissolve, and after standing for 24 hours, this was further adjusted to 500 ml. The solution was diluted with pure water, 10 ml of this was taken, and measured with the particle counter in liquid. The average value obtained by repeating this three times was defined as the number of particles. The particle size of the particles was evaluated with an SEM image. FIG. 1A shows Example 5 (purity: 3N, magnification: 300 times), FIG. 1B shows Example 3 (purity: 4N, magnification: 300 times), FIG. 1C shows Example 1 (purity: 5N, (Magnification: 300 times) SEM image. FIG. 2A shows Example 5 (purity: 3N, magnification: 15000 times), FIG. 2B shows Example 3 (purity: 4N, magnification: 30000 times), and FIG. 2C shows Example 1 (purity: 5N, magnification: 15000 times). In FIG. 1, particles (inclusions) having a particle size of 0.5 μm or more are shown surrounded by a frame line.
(パーティクルの評価)
パーティクルの粒径及び個数は、「液体用光散乱式自動粒子計数器」(九州リオン株式会社製)で測定した。具体的には、Coアノード1gをサンプリングし、パーティクルが溶解しないように、ゆっくりと150mlの希硝酸(硝酸濃度20質量%水溶液)で溶解し、24時間放置後、さらにこれを500mlになるように純水で希釈し、この10mlを取り、前記液中パーティクルカウンターで測定した。これを3回繰り返した平均値をパーティクルの数とした。また、パーティクルの粒径はSEM像で評価した。図1(a)に実施例5(純度:3N、倍率:300倍)、(b)に実施例3(純度:4N、倍率:300倍)、(c)に実施例1(純度:5N、倍率:300倍)のSEM像を示す。また、図2(a)に実施例5(純度:3N、倍率:15000倍)、(b)に実施例3(純度:4N、倍率:30000倍)、(c)に実施例1(純度:5N、倍率:15000倍)のSEM像を示す。また、図1において、粒径が0.5μm以上のパーティクル(介在物)が枠線で囲まれて示されている。 [Evaluation]
(Evaluation of particles)
The particle diameter and the number of particles were measured with a “light scattering automatic particle counter for liquid” (manufactured by Kyushu Lion Co., Ltd.). Specifically, 1 g of Co anode was sampled and dissolved slowly with 150 ml of diluted nitric acid (nitric acid concentration 20% by weight aqueous solution) so that the particles would not dissolve, and after standing for 24 hours, this was further adjusted to 500 ml. The solution was diluted with pure water, 10 ml of this was taken, and measured with the particle counter in liquid. The average value obtained by repeating this three times was defined as the number of particles. The particle size of the particles was evaluated with an SEM image. FIG. 1A shows Example 5 (purity: 3N, magnification: 300 times), FIG. 1B shows Example 3 (purity: 4N, magnification: 300 times), FIG. 1C shows Example 1 (purity: 5N, (Magnification: 300 times) SEM image. FIG. 2A shows Example 5 (purity: 3N, magnification: 15000 times), FIG. 2B shows Example 3 (purity: 4N, magnification: 30000 times), and FIG. 2C shows Example 1 (purity: 5N, magnification: 15000 times). In FIG. 1, particles (inclusions) having a particle size of 0.5 μm or more are shown surrounded by a frame line.
(Fe濃度の評価)
Coアノードに含まれるFe濃度は、GDMSにより評価した。また、パーティクルの粒径及び個数を測定した際にフィルタ上に残存したパーティクル成分については、エネルギー分散型X線分析(EDX:Energy Dispersive X-ray Spectrometry)を用いて評価した。図3(a)に実施例5、(b)に実施例3、(c)に実施例1のEDXスペクトルのグラフをそれぞれ示す。 (Evaluation of Fe concentration)
The Fe concentration contained in the Co anode was evaluated by GDMS. Further, the particle components remaining on the filter when the particle diameter and the number of particles were measured were evaluated by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray Spectrometry). FIG. 3A shows a graph of the EDX spectrum of Example 5, FIG. 3B shows Example 3 and FIG.
Coアノードに含まれるFe濃度は、GDMSにより評価した。また、パーティクルの粒径及び個数を測定した際にフィルタ上に残存したパーティクル成分については、エネルギー分散型X線分析(EDX:Energy Dispersive X-ray Spectrometry)を用いて評価した。図3(a)に実施例5、(b)に実施例3、(c)に実施例1のEDXスペクトルのグラフをそれぞれ示す。 (Evaluation of Fe concentration)
The Fe concentration contained in the Co anode was evaluated by GDMS. Further, the particle components remaining on the filter when the particle diameter and the number of particles were measured were evaluated by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray Spectrometry). FIG. 3A shows a graph of the EDX spectrum of Example 5, FIG. 3B shows Example 3 and FIG.
(異常電着の個数の評価)
直径300mmのウェハ(Wafer)上に、実施例1~5及び比較例1のCoアノードを用いて、それぞれ同条件で電気Coめっきを行い、厚さ10nmのCoめっき膜を形成し、Coめっき膜中に生じた欠陥の数(異常電着の個数)を評価した。
以上の各実施例及び比較例の結果を表1に示す。 (Evaluation of the number of abnormal electrodeposition)
Using a Co anode of Examples 1 to 5 and Comparative Example 1 on a 300 mm diameter wafer, electro-Co plating was performed under the same conditions to form a Co-plated film having a thickness of 10 nm. The number of defects (the number of abnormal electrodepositions) that occurred inside was evaluated.
The results of the above examples and comparative examples are shown in Table 1.
直径300mmのウェハ(Wafer)上に、実施例1~5及び比較例1のCoアノードを用いて、それぞれ同条件で電気Coめっきを行い、厚さ10nmのCoめっき膜を形成し、Coめっき膜中に生じた欠陥の数(異常電着の個数)を評価した。
以上の各実施例及び比較例の結果を表1に示す。 (Evaluation of the number of abnormal electrodeposition)
Using a Co anode of Examples 1 to 5 and Comparative Example 1 on a 300 mm diameter wafer, electro-Co plating was performed under the same conditions to form a Co-plated film having a thickness of 10 nm. The number of defects (the number of abnormal electrodepositions) that occurred inside was evaluated.
The results of the above examples and comparative examples are shown in Table 1.
(評価結果)
実施例1~5では、粒径が0.5μm以上のパーティクル数が6000個/g以下であるCoアノードを作製することができた。一方、比較例1では粒径が0.5μm以上のパーティクル数が6000個/gを超えたCoアノードとなった。
また、実施例1と実施例2、実施例3と実施例4、実施例5と比較例1とは、それぞれ同じ純度のCoアノードを使用しているが、Fe濃度が異なるため、粒径が0.5μm以上のパーティクル数に違いが生じている。この結果から、純度が同じであればFe濃度が小さい方が、粒径が0.5μm以上のパーティクル数をより低減できることがわかる。
なお、純度4Nである実施例4は、純度3Nである実施例5に対し、粒径が0.5μm以上のパーティクル数が多かった。このように、必ずしも「高純度」であればパーティクルの数が少ないという関係にはならず、純度が高いCoアノードの方が、純度が低いCoアノードより本発明で示すパーティクルの数が多い場合もある。
また、実施例1~5のCoアノードを用いて形成したCoめっき膜は、異常電着の個数が0であり、めっき不良が良好に抑制されていた。比較例1のCoアノードを用いて形成したCoめっき膜は、異常電着が確認され、めっき不良が生じた。 (Evaluation results)
In Examples 1 to 5, a Co anode having a particle diameter of 0.5 μm or more and 6000 particles / g or less could be produced. On the other hand, in Comparative Example 1, a Co anode in which the number of particles having a particle size of 0.5 μm or more exceeded 6000 / g was obtained.
In addition, Example 1 and Example 2, Example 3 and Example 4, Example 5 and Comparative Example 1 use Co anodes of the same purity, but the Fe concentration is different, so the particle size is different. There is a difference in the number of particles of 0.5 μm or more. From this result, it can be seen that if the purity is the same, the smaller the Fe concentration, the more the number of particles having a particle size of 0.5 μm or more can be reduced.
In Example 4 having a purity of 4N, the number of particles having a particle diameter of 0.5 μm or more was larger than that in Example 5 having a purity of 3N. In this way, the relationship is not necessarily that the number of particles is small if it is “high purity”, and a higher purity Co anode may have more particles shown in the present invention than a lower purity Co anode. is there.
Further, the Co plating films formed using the Co anodes of Examples 1 to 5 had 0 abnormal electrodepositions, and the plating defects were well suppressed. In the Co plating film formed using the Co anode of Comparative Example 1, abnormal electrodeposition was confirmed, and plating failure occurred.
実施例1~5では、粒径が0.5μm以上のパーティクル数が6000個/g以下であるCoアノードを作製することができた。一方、比較例1では粒径が0.5μm以上のパーティクル数が6000個/gを超えたCoアノードとなった。
また、実施例1と実施例2、実施例3と実施例4、実施例5と比較例1とは、それぞれ同じ純度のCoアノードを使用しているが、Fe濃度が異なるため、粒径が0.5μm以上のパーティクル数に違いが生じている。この結果から、純度が同じであればFe濃度が小さい方が、粒径が0.5μm以上のパーティクル数をより低減できることがわかる。
なお、純度4Nである実施例4は、純度3Nである実施例5に対し、粒径が0.5μm以上のパーティクル数が多かった。このように、必ずしも「高純度」であればパーティクルの数が少ないという関係にはならず、純度が高いCoアノードの方が、純度が低いCoアノードより本発明で示すパーティクルの数が多い場合もある。
また、実施例1~5のCoアノードを用いて形成したCoめっき膜は、異常電着の個数が0であり、めっき不良が良好に抑制されていた。比較例1のCoアノードを用いて形成したCoめっき膜は、異常電着が確認され、めっき不良が生じた。 (Evaluation results)
In Examples 1 to 5, a Co anode having a particle diameter of 0.5 μm or more and 6000 particles / g or less could be produced. On the other hand, in Comparative Example 1, a Co anode in which the number of particles having a particle size of 0.5 μm or more exceeded 6000 / g was obtained.
In addition, Example 1 and Example 2, Example 3 and Example 4, Example 5 and Comparative Example 1 use Co anodes of the same purity, but the Fe concentration is different, so the particle size is different. There is a difference in the number of particles of 0.5 μm or more. From this result, it can be seen that if the purity is the same, the smaller the Fe concentration, the more the number of particles having a particle size of 0.5 μm or more can be reduced.
In Example 4 having a purity of 4N, the number of particles having a particle diameter of 0.5 μm or more was larger than that in Example 5 having a purity of 3N. In this way, the relationship is not necessarily that the number of particles is small if it is “high purity”, and a higher purity Co anode may have more particles shown in the present invention than a lower purity Co anode. is there.
Further, the Co plating films formed using the Co anodes of Examples 1 to 5 had 0 abnormal electrodepositions, and the plating defects were well suppressed. In the Co plating film formed using the Co anode of Comparative Example 1, abnormal electrodeposition was confirmed, and plating failure occurred.
Claims (7)
- 硝酸濃度20質量%の希硝酸で溶解した後、液中パーティクルカウンターによってJIS B 9925に基づいて測定した、粒径が0.5μm以上のパーティクルの数が、6000個/g以下であるCoアノード。 A Co anode in which the number of particles having a particle size of 0.5 μm or more is 6000 particles / g or less, measured with a submerged particle counter according to JIS B9925 after being dissolved in dilute nitric acid with a nitric acid concentration of 20 mass%.
- 前記粒径が0.5μm以上のパーティクルの数が5000個/g以下である請求項1に記載のCoアノード。 The Co anode according to claim 1, wherein the number of particles having a particle diameter of 0.5 µm or more is 5000 particles / g or less.
- 純度が3N以上である請求項1又は2に記載のCoアノード。 The Co anode according to claim 1 or 2, wherein the purity is 3N or more.
- 純度が4N以上である請求項3に記載のCoアノード。 The Co anode according to claim 3, wherein the purity is 4N or more.
- Fe濃度が10ppm以下である請求項3又は4に記載のCoアノード。 The Co anode according to claim 3 or 4, wherein the Fe concentration is 10 ppm or less.
- Fe濃度が5ppm以下である請求項5に記載のCoアノード。 The Co anode according to claim 5, wherein the Fe concentration is 5 ppm or less.
- 請求項1~6のいずれか一項に記載のCoアノードを用いた電気Coめっき方法。 An electric Co plating method using the Co anode according to any one of claims 1 to 6.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880091917.3A CN111971423A (en) | 2018-03-28 | 2018-10-03 | Co anode and Co electroplating method using the same |
US17/041,229 US20210010149A1 (en) | 2018-03-28 | 2018-10-03 | Co Anode, And Co Electroplating Method Using Co Anode |
SG11202009378RA SG11202009378RA (en) | 2018-03-28 | 2018-10-03 | Co anode, and co electroplating method using co anode |
KR1020207027944A KR102435667B1 (en) | 2018-03-28 | 2018-10-03 | Electroco plating method using Co anode and Co anode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-063008 | 2018-03-28 | ||
JP2018063008A JP6960363B2 (en) | 2018-03-28 | 2018-03-28 | Co-anode, electric Co-plating method using Co-anode and evaluation method of Co-anode |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019187250A1 true WO2019187250A1 (en) | 2019-10-03 |
Family
ID=68060989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037118 WO2019187250A1 (en) | 2018-03-28 | 2018-10-03 | Co anode, and co electroplating method using co anode |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210010149A1 (en) |
JP (1) | JP6960363B2 (en) |
KR (1) | KR102435667B1 (en) |
CN (1) | CN111971423A (en) |
SG (1) | SG11202009378RA (en) |
TW (1) | TWI683040B (en) |
WO (1) | WO2019187250A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278293A (en) * | 1986-05-26 | 1987-12-03 | C Uyemura & Co Ltd | Production of electronic parts |
JP2003183892A (en) * | 2001-12-20 | 2003-07-03 | Ebara Corp | Plating apparatus |
JP2010202918A (en) * | 2009-03-02 | 2010-09-16 | Shinshu Univ | Composite plated coating film and method of forming the same, and electroplating liquid |
JP2010270402A (en) * | 2006-01-26 | 2010-12-02 | Hamilton Sundstrand Corp | Coating for improving wear performance of article and coating method of article |
WO2015083406A1 (en) * | 2013-12-02 | 2015-06-11 | Jx日鉱日石金属株式会社 | High purity cobalt chloride and manufacturing method therefor |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3416993A1 (en) * | 1984-05-09 | 1985-11-21 | Gerhard Collardin GmbH, 5000 Köln | ELECTROLYTE CONTAINING AQUEOUS, ACID, NICKEL AND COBALT ION FOR THE GALVANIC DEPOSITION OF HARD, TEMPERATURE-RESISTANT, WHITE GLOSSY ALLOY |
DE19609439A1 (en) * | 1995-03-14 | 1996-09-19 | Japan Energy Corp | Prodn. of pure cobalt@ for sputtering targets for electronics use |
JP3151194B2 (en) * | 1999-03-19 | 2001-04-03 | 株式会社ジャパンエナジー | Cobalt purification method |
EP1288339B1 (en) * | 2000-05-22 | 2010-08-18 | Nippon Mining & Metals Co., Ltd. | Method of producing a higher-purity metal |
JP4076751B2 (en) | 2001-10-22 | 2008-04-16 | 日鉱金属株式会社 | Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion |
US20050000821A1 (en) * | 2001-11-16 | 2005-01-06 | White Tamara L | Anodes for electroplating operations, and methods of forming materials over semiconductor substrates |
CN1297364C (en) * | 2005-05-18 | 2007-01-31 | 北京科技大学 | Precipitation reduction method of preparing nano-cobalt powder |
EP2213772B1 (en) | 2007-11-01 | 2016-08-17 | JX Nippon Mining & Metals Corporation | Phosphorus-containing copper anode |
JP4884561B1 (en) * | 2011-04-19 | 2012-02-29 | Jx日鉱日石金属株式会社 | Indium target and manufacturing method thereof |
JP5281186B1 (en) * | 2012-10-25 | 2013-09-04 | Jx日鉱日石金属株式会社 | Indium target and manufacturing method thereof |
CN103966627B (en) * | 2014-04-30 | 2017-01-11 | 兰州金川新材料科技股份有限公司 | Method for reducing content of impurity Fe in high-purity cobalt |
JP6457093B2 (en) * | 2016-03-09 | 2019-01-23 | Jx金属株式会社 | High purity tin and method for producing the same |
-
2018
- 2018-03-28 JP JP2018063008A patent/JP6960363B2/en active Active
- 2018-10-03 US US17/041,229 patent/US20210010149A1/en not_active Abandoned
- 2018-10-03 WO PCT/JP2018/037118 patent/WO2019187250A1/en active Application Filing
- 2018-10-03 KR KR1020207027944A patent/KR102435667B1/en active IP Right Grant
- 2018-10-03 SG SG11202009378RA patent/SG11202009378RA/en unknown
- 2018-10-03 CN CN201880091917.3A patent/CN111971423A/en active Pending
- 2018-10-04 TW TW107135059A patent/TWI683040B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278293A (en) * | 1986-05-26 | 1987-12-03 | C Uyemura & Co Ltd | Production of electronic parts |
JP2003183892A (en) * | 2001-12-20 | 2003-07-03 | Ebara Corp | Plating apparatus |
JP2010270402A (en) * | 2006-01-26 | 2010-12-02 | Hamilton Sundstrand Corp | Coating for improving wear performance of article and coating method of article |
JP2010202918A (en) * | 2009-03-02 | 2010-09-16 | Shinshu Univ | Composite plated coating film and method of forming the same, and electroplating liquid |
WO2015083406A1 (en) * | 2013-12-02 | 2015-06-11 | Jx日鉱日石金属株式会社 | High purity cobalt chloride and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
US20210010149A1 (en) | 2021-01-14 |
TW201942423A (en) | 2019-11-01 |
JP2019173104A (en) | 2019-10-10 |
TWI683040B (en) | 2020-01-21 |
KR20200128097A (en) | 2020-11-11 |
JP6960363B2 (en) | 2021-11-05 |
SG11202009378RA (en) | 2020-10-29 |
CN111971423A (en) | 2020-11-20 |
KR102435667B1 (en) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9441289B2 (en) | High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film | |
US7943033B2 (en) | Electrolytic copper plating method, pure copper anode for electrolytic copper plating, and semiconductor wafer having low particle adhesion plated with said method and anode | |
EP2330224B1 (en) | High-purity copper and process for electrolytically producing high-purity copper | |
JP2003268595A (en) | Copper electroplating method, phosphorus-containing copper anode for copper electroplating, and semiconductor wafer with minimal particle adhesion plated by using them | |
JP2018204103A (en) | High-purity electrolytic copper | |
WO2019187250A1 (en) | Co anode, and co electroplating method using co anode | |
JP4064121B2 (en) | Electro-copper plating method using phosphorous copper anode | |
JP4607165B2 (en) | Electro copper plating method | |
JP4554662B2 (en) | Phosphorus copper anode for electrolytic copper plating and method for producing the same | |
JP3916134B2 (en) | Anode for electrolytic copper plating, method for producing the anode, and electrolytic copper plating method using the anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18913069 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207027944 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18913069 Country of ref document: EP Kind code of ref document: A1 |