WO2019171576A1 - 車両制御装置、車両制御方法、およびプログラム - Google Patents
車両制御装置、車両制御方法、およびプログラム Download PDFInfo
- Publication number
- WO2019171576A1 WO2019171576A1 PCT/JP2018/009213 JP2018009213W WO2019171576A1 WO 2019171576 A1 WO2019171576 A1 WO 2019171576A1 JP 2018009213 W JP2018009213 W JP 2018009213W WO 2019171576 A1 WO2019171576 A1 WO 2019171576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- moving body
- overtaking
- road
- overtaken
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 56
- 230000008569 process Effects 0.000 claims description 46
- 230000008859 change Effects 0.000 claims description 7
- 102100037377 DNA-(apurinic or apyrimidinic site) endonuclease 2 Human genes 0.000 description 29
- 101000806823 Homo sapiens DNA-(apurinic or apyrimidinic site) endonuclease 2 Proteins 0.000 description 29
- 101100541055 Phaseolus angularis XTHA gene Proteins 0.000 description 16
- 101150086051 XTH1 gene Proteins 0.000 description 16
- 238000004891 communication Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 230000015654 memory Effects 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18163—Lane change; Overtaking manoeuvres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/60—Traffic rules, e.g. speed limits or right of way
Definitions
- the present invention relates to a vehicle control device, a vehicle control method, and a program.
- the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a vehicle control device, a vehicle control method, and a program capable of performing an automatic driving that a passenger feels more comfortable. .
- a vehicle control device that does not cause the vehicle to overtake the moving body when predicted by the prediction unit to be overtaken.
- the prediction unit may stop the own vehicle at the future time point when the own vehicle reaches a future position a predetermined distance from the current position. Predicting, and predicting that the host vehicle will stop at the future time point, the host vehicle is predicted to be overtaken by the overtaking moving body.
- the driving control unit causes the vehicle to be overtaken by the overtaking moving body at the future time point.
- the prediction unit predicts that there is no such vehicle, the vehicle is caused to pass the moving body.
- the operation control unit further indicates that a light color of a traffic light in front of the host vehicle indicates vehicle prohibition. In the case of the first color, the vehicle does not pass the moving body.
- the vehicle control device In the vehicle control device according to (5), when the prediction unit further has a light color of a traffic light ahead of the host vehicle at the present time as the first color, the future from the present time Within a predetermined period until the point of time, the light color of the traffic light is predicted to change from the first color to a second color indicating permission of passage of the vehicle, and the operation control unit detects the traffic light of the traffic light within the predetermined period. In the case where the prediction unit predicts that the lamp color changes from the first color to the second color, the vehicle is allowed to pass the moving body at the current time.
- the prediction unit is configured so that, at the future time point, the moving body moves the own vehicle beside the own vehicle. When there is a space that can be overtaken, the vehicle is predicted to be overtaken by the mobile body that has been overtaken at the future time point.
- the driving control unit causes the host vehicle to pass the moving body, and then passes the moving body. When the host vehicle is overtaken, the moving body is not allowed to pass the moving body from the next time.
- the driving control unit causes the host vehicle to pass the moving body, and then passes the moving body. If the vehicle is overtaken more than a predetermined number of times, the vehicle will not be overtaken from the next time.
- the driving control unit causes the vehicle to be overtaken by the overtaking moving body at the future time point.
- the prediction unit predicts the vehicle, the vehicle is caused to travel while at least a distance between the vehicle and the vehicle is kept constant, without causing the vehicle to pass the vehicle.
- the recognition unit further recognizes a dedicated lane of a motorcycle from the road, and the operation control unit When the dedicated lane of the two-wheeled vehicle is recognized by the recognition unit, the own vehicle is caused to pass the moving body.
- An in-vehicle computer recognizes an object around the host vehicle, controls the speed and steering of the host vehicle, and recognizes the object as the object in a predetermined case.
- the own vehicle is overtaken by the overtaking moving body at a future time.
- a vehicle control method that predicts and, when the vehicle is predicted to be overtaken by the overtaking moving body at the future time point, does not allow the own vehicle to overtake the moving body.
- (13) A process of recognizing an object in the vicinity of the host vehicle on the in-vehicle computer and a speed and steering of the host vehicle, and the mobile unit recognized as the object in a predetermined case.
- FIG. 3 is a functional configuration diagram of a first control unit 120 and a second control unit 160.
- FIG. It is a figure for demonstrating the edge of a road. It is a flowchart which shows an example of the flow of a series of processes by the automatic operation control apparatus 100 of 1st Embodiment. It is a figure which shows an example of the scene which makes the own vehicle M track the road edge vehicle m #. It is a figure which shows an example of the scene which makes the own vehicle M pass the road edge vehicle m #. It is a figure which shows an example of the scene where the own vehicle M is overtaken by the road edge vehicle m # which passed.
- FIG. 1 is a configuration diagram of a vehicle system 1 using the vehicle control device according to the first embodiment.
- a vehicle (hereinafter referred to as a host vehicle M) on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, Or the combination of these is included.
- the electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.
- the vehicle system 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human20Machine Interface) 30, a vehicle sensor 40, a navigation device 50, An MPU (Map Positioning Unit) 60, a driving operator 80, an automatic driving control device 100, a traveling driving force output device 200, a brake device 210, and a steering device 220 are provided. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
- CAN Controller Area Network
- serial communication line a wireless communication network
- the camera 10 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
- the camera 10 is attached to an arbitrary location of the host vehicle M.
- the camera 10 is attached to the upper part of the front windshield, the rear surface of the rearview mirror, or the like.
- the camera 10 periodically and repeatedly images the periphery of the host vehicle M.
- the camera 10 may be a stereo camera.
- the radar device 12 radiates a radio wave such as a millimeter wave around the host vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and direction) of the object.
- the radar device 12 is attached to an arbitrary location of the host vehicle M.
- the radar apparatus 12 may detect the position and velocity of the object by FM-CW (Frequency Modulated Continuous Wave) method.
- the finder 14 is LIDAR (Light Detection and Ranging).
- the finder 14 irradiates light around the host vehicle M and measures scattered light.
- the finder 14 detects the distance to the object based on the time from light emission to light reception.
- the irradiated light is, for example, pulsed laser light.
- the finder 14 is attached to an arbitrary location of the host vehicle M.
- the object recognition device 16 performs sensor fusion processing on the detection results of some or all of the camera 10, the radar device 12, and the finder 14 to recognize the position, type, speed, and the like of the object.
- the object recognition device 16 outputs the recognition result to the automatic driving control device 100.
- the object recognition device 16 may output the detection results of the camera 10, the radar device 12, and the finder 14 to the automatic driving control device 100 as they are.
- the object recognition device 16 may be omitted from the vehicle system 1.
- the communication device 20 uses, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles around the host vehicle M or wirelessly. It communicates with various server apparatuses via a base station.
- a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like to communicate with other vehicles around the host vehicle M or wirelessly. It communicates with various server apparatuses via a base station.
- the HMI 30 presents various information to the passenger of the host vehicle M and accepts an input operation by the passenger.
- the HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, keys, and the like.
- the vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the host vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the host vehicle M, and the like.
- the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
- the navigation device 50 holds the first map information 54 in a storage device such as an HDD (Hard Disk Drive) or a flash memory.
- the GNSS receiver 51 specifies the position of the host vehicle M based on the signal received from the GNSS satellite.
- the position of the host vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 40.
- INS Inertial Navigation System
- the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like.
- the navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
- the route determination unit 53 is, for example, a route from the position of the host vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant using the navigation HMI 52 (hereinafter, referred to as “route”).
- the route on the map is determined with reference to the first map information 54.
- the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
- the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
- the on-map route is output to the MPU 60.
- Navigation device 50 may perform route guidance using navigation HMI 52 based on the route on the map.
- the navigation device 50 may be realized, for example, by a function of a terminal device such as a smartphone or a tablet terminal held by an occupant.
- the navigation device 50 may transmit the current position and the destination to the navigation server via the communication device 20 and obtain a route equivalent to the on-map route from the navigation server.
- the MPU 60 includes, for example, a recommended lane determination unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
- the recommended lane determining unit 61 divides the on-map route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 Determine the recommended lane for each block.
- the recommended lane determining unit 61 performs determination such as what number of lanes from the left to travel.
- the recommended lane determining unit 61 determines a recommended lane so that the host vehicle M can travel on a reasonable route for proceeding to the branch destination when a branch point exists on the map route.
- the second map information 62 is map information with higher accuracy than the first map information 54.
- the second map information 62 includes, for example, lane center information, lane boundary information, lane type information, and the like.
- the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
- the second map information 62 may be updated as needed by the communication device 20 communicating with other devices.
- the driving operator 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, a deformed steer, a joystick, and other operators.
- a sensor for detecting the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control device 100, or the traveling driving force output device 200, the brake device 210, and the steering device.
- a part or all of 220 is output.
- the automatic operation control device 100 includes, for example, a first control unit 120, a second control unit 160, and a storage unit 180.
- the first control unit 120 and the second control unit 160 are realized, for example, when a processor such as a CPU (Central Processing Unit) executes a program (software).
- a processor such as a CPU (Central Processing Unit) executes a program (software).
- Some or all of these components include hardware (circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Part (including circuit)), or may be realized by cooperation of software and hardware.
- the program may be stored in advance in the storage unit 180 of the automatic operation control apparatus 100, or stored in a removable storage medium such as a DVD or CD-ROM, and the storage medium is attached to the drive device. May be installed in the storage unit 180.
- the storage unit 180 is realized by, for example, an HDD, a flash memory, an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), a ROM (Read-Only Memory), or a RAM (Random Access Memory).
- the storage unit 180 stores, for example, a program that is read and executed by a processor.
- FIG. 2 is a functional configuration diagram of the first control unit 120 and the second control unit 160.
- the first control unit 120 includes, for example, a recognition unit 130 and an action plan generation unit 140.
- the first control unit 120 realizes a function based on AI (Artificial Intelligence) and a function based on a model given in advance.
- AI Artificial Intelligence
- the “recognize intersection” function executes recognition of an intersection by deep learning or the like and recognition based on a predetermined condition (such as a signal that can be matched with a pattern and road marking) in parallel. May be realized by scoring and comprehensively evaluating. This ensures the reliability of automatic driving.
- the recognition unit 130 recognizes an object existing around the host vehicle M based on information input from the camera 10, the radar device 12, and the finder 14 via the object recognition device 16.
- Objects recognized by the recognition unit 130 include, for example, bicycles, motorcycles, four-wheeled vehicles, pedestrians, road signs, road markings, lane markings, utility poles, guardrails, and falling objects.
- the recognizing unit 130 also recognizes the position, speed, acceleration, and other states of the object.
- the position of the object is recognized, for example, as a position in absolute coordinates (that is, a relative position with respect to the own vehicle M) with the representative point (the center of gravity, the center of the drive shaft, etc.) of the own vehicle M as the origin, and is used for control.
- the position of the object may be represented by a representative point such as the center of gravity or corner of the object, or may be represented by a represented area.
- the “state” of the object may include acceleration or jerk of the object, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
- the recognition unit 130 recognizes the own lane in which the own vehicle M is traveling, for example.
- the recognizing unit 130 has a road lane marking line around the host vehicle M recognized from the road lane marking pattern (for example, an array of solid lines and broken lines) obtained from the second map information 62 and an image captured by the camera 10. Recognize your lane by comparing with the pattern.
- the recognizing unit 130 may recognize the own lane by recognizing not only a road lane line but also a road boundary (road boundary) including a road lane line, a shoulder, a curb, a median strip, a guardrail, and the like. . In this recognition, the position of the host vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into account.
- the recognition unit 130 recognizes a stop line, an obstacle, a red light, a toll gate, and other road events.
- the recognizing unit 130 recognizes the relative position and posture of the own vehicle M with respect to the own lane. For example, the recognizing unit 130 determines the relative position of the host vehicle M with respect to the host lane, by making an angle between the deviation of the reference point of the host vehicle M from the center of the lane and a line connecting the center of the lane in the traveling direction of the host vehicle M. And may be recognized as a posture. Instead, the recognizing unit 130 recognizes the position of the reference point of the own vehicle M with respect to any side end portion (road lane line or road boundary) of the own lane as a relative position of the own vehicle M with respect to the own lane. May be.
- the action plan generation unit 140 includes, for example, an event determination unit 142, a target trajectory generation unit 144, and an overtaking prediction unit 146.
- the event determination unit 142 determines an automatic driving event on the route for which the recommended lane is determined.
- the event is information that defines the traveling mode of the host vehicle M.
- the event is, for example, a constant speed traveling event in which the host vehicle M travels on the same lane at a constant speed, and is within a predetermined distance in front of the host vehicle M (for example, within 100 [m]).
- a follow-up driving event that causes the host vehicle M to follow a nearby other vehicle (hereinafter referred to as a preceding vehicle), a lane change event that changes the host vehicle M from its own lane to an adjacent lane, and the host vehicle M at a branch point of the road
- a branch event for branching to the lane on the destination side, a merge event for joining the vehicle M to the main line at the junction, a takeover event for ending automatic driving and switching to manual driving are included.
- “Following” may be, for example, a travel mode in which the inter-vehicle distance (relative distance) between the host vehicle M and the preceding vehicle is maintained constant, or the inter-vehicle distance between the host vehicle M and the preceding vehicle is constant.
- a travel mode in which the host vehicle M travels in the center of the host lane may be used. In the event, for example, the own vehicle M is temporarily changed to the adjacent lane, the previous vehicle is overtaken in the adjacent lane, and then the original lane is changed again, or the own vehicle M is changed to the adjacent lane.
- An avoidance event that causes the host vehicle M to perform at least one of braking and steering in order to avoid an obstacle existing in the vehicle may be included.
- the event determination unit 142 may change an event that has already been determined for the current section to another event according to the surrounding situation recognized by the recognition unit 130 when the host vehicle M is traveling, A new event may be determined for this section.
- the event determination unit 142 may recognize that a two-wheeled vehicle such as a bicycle or a motorcycle is present in front of the host vehicle M (that is, the two-wheeled vehicle is a preceding vehicle) and the two-wheeled vehicle is present at the end of the road. If recognized, the event determined for the current section is changed to an overtaking event.
- a two-wheeled vehicle such as a bicycle or a motorcycle is present in front of the host vehicle M (that is, the two-wheeled vehicle is a preceding vehicle) and the two-wheeled vehicle is present at the end of the road. If recognized, the event determined for the current section is changed to an overtaking event.
- the end of the road is, for example, a road area including a road shoulder or a roadside belt.
- the road shoulder or the roadside belt is a belt-like region between a road boundary (for example, curbstone) and an outermost lane marking (a lane marking closest to the road boundary) among a plurality of lane markings formed on the road.
- the “end of the road” may include a partial region of a lane closest to the road boundary (hereinafter referred to as a first traveling lane) among one or more lanes divided by the lane marking.
- FIG. 3 is a diagram for explaining an end of a road.
- BD represents a road boundary
- LM1 represents an outermost lane marking
- LM2 represents a lane marking that divides the same lane (first traveling lane) as the lane marking LM1.
- the end of the road may be a road area including only a roadside band (road shoulder) that is a band-like area RA between the road boundary BD and the lane marking LM1, or the area RA and the lane marking LM1 there may be a road region including the formed region R B.
- roadside band road shoulder
- the end of the road is divided into several equal parts with respect to the vehicle width direction of the first traveling lane divided by the lane markings LM1 and LM2, and the road including the area closest to the road boundary BD among the divided areas It may be a region.
- the first travel lane is divided into four equal regions R C to R F in the vehicle width direction.
- the end of the road may be a road area including the area RC closest to the road boundary BD.
- the region treated as the end of the road is not limited to the region RC closest to the road boundary BD, but at least from the center of the first lane to the road boundary BD, such as the region RD closest to the road boundary BD. It may be the entire area on the side.
- road end vehicle m # the two-wheeled vehicle existing at the end of the road.
- the target track generation unit 144 travels along the recommended lane determined by the recommended lane determination unit 61, and further responds to surrounding conditions when the host vehicle M travels along the recommended lane. Then, a future target trajectory for automatically driving the host vehicle M in a driving mode defined by the event (without depending on the operation of the driver) is generated.
- the target track includes, for example, a position element that determines the future position of the host vehicle M and a speed element that determines the future speed of the host vehicle M and the like.
- the target track generation unit 144 determines a plurality of points (track points) that the host vehicle M should reach in order as position elements of the target track.
- the track point is a point where the host vehicle M should reach every predetermined travel distance (for example, about several [m]).
- the predetermined travel distance may be calculated by, for example, a road distance when traveling along a route.
- the target trajectory generation unit 144 determines the target speed and target acceleration for each predetermined sampling time (for example, about 0 comma [sec]) as speed elements of the target trajectory. Further, the track point may be a position to which the host vehicle M should arrive at the sampling time for each predetermined sampling time. In this case, the target speed and target acceleration are determined by the sampling time and the orbit point interval. The target trajectory generation unit 144 outputs information indicating the generated target trajectory to the second control unit 160.
- predetermined sampling time for example, about 0 comma [sec]
- the overtaking prediction unit 146 When the road end vehicle m # is recognized by the recognizing unit 130, the overtaking prediction unit 146, when the own vehicle M overtakes the road end vehicle m # at this time, at a certain point in the future, the overtaking road end vehicle m #. It is predicted (determined) whether or not the host vehicle M is overtaken.
- the event determination unit 142 determines that the inter-vehicle distance between the host vehicle M and the road end vehicle m # is constant.
- the target speed or the like is determined so that the target trajectory including the target speed or the like as a speed element is generated as a target trajectory corresponding to the following traveling event.
- the target track generation unit 144 may generate a target track including a track point arranged at the center of the own lane as a position element as a target track corresponding to the following traveling event.
- the overtaking prediction unit 146 predicts that the own vehicle M is not overtaken by the road end vehicle m # at a certain time in the future even if the vehicle is overtaking the road end vehicle m #, for example, the event determination unit 142 The event determined for the current section is changed to an overtaking event as originally scheduled.
- the target track generation unit 144 generates a target track that changes the lane of the host vehicle M to an adjacent lane, or the host vehicle M within the lane. Or generate a target trajectory that moves the vehicle to one side of the lane.
- the second control unit 160 controls the driving force output device 200, the brake device 210, and the steering device 220 so that the host vehicle M passes the target track generated by the target track generation unit 144 at a scheduled time. Control.
- the second control unit 160 includes, for example, an acquisition unit 162, a speed control unit 164, and a steering control unit 166.
- a combination of the event determination unit 142, the target trajectory generation unit 144, and the second control unit 160 is an example of an “operation control unit”.
- the acquisition unit 162 acquires information on the target trajectory (orbit point) generated by the target trajectory generation unit 144 and stores it in the memory of the storage unit 180.
- the speed control unit 164 controls one or both of the travel driving force output device 200 and the brake device 210 based on speed elements (for example, target speed, target acceleration, etc.) included in the target trajectory stored in the memory.
- speed elements for example, target speed, target acceleration, etc.
- the steering control unit 166 controls the steering device 220 in accordance with a position element (for example, a curvature indicating the degree of bending of the target track) included in the target track stored in the memory.
- a position element for example, a curvature indicating the degree of bending of the target track
- the processing of the speed control unit 164 and the steering control unit 166 is realized by, for example, a combination of feedforward control and feedback control.
- the steering control unit 166 executes a combination of feed-forward control corresponding to the curvature of the road ahead of the host vehicle M and feedback control based on deviation from the target track.
- the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
- the travel driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and a power ECU (Electronic Control Unit) that controls these.
- the power ECU controls the above configuration in accordance with information input from the second control unit 160 or information input from the driving operator 80.
- the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
- the brake ECU controls the electric motor in accordance with the information input from the second control unit 160 or the information input from the driving operation element 80 so that the brake torque corresponding to the braking operation is output to each wheel.
- the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder.
- the brake device 210 is not limited to the configuration described above, and is an electronically controlled hydraulic brake device that controls the actuator according to information input from the second control unit 160 and transmits the hydraulic pressure of the master cylinder to the cylinder. Also good.
- the steering device 220 includes, for example, a steering ECU and an electric motor.
- the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
- the steering ECU drives the electric motor according to the information input from the second control unit 160 or the information input from the driving operator 80, and changes the direction of the steered wheels.
- FIG. 4 is a flowchart illustrating an example of a flow of a series of processes performed by the automatic operation control device 100 according to the first embodiment.
- the processing of this flowchart is repeatedly performed at a predetermined cycle when the recognition unit 130 recognizes the road edge vehicle m #.
- the event determination unit 142 determines whether the inter-vehicle distance D X1 between the road end vehicle m # recognized by the recognition unit 130 and the host vehicle M is equal to or greater than the first predetermined distance D XTH1 (step S100). ).
- the first predetermined distance D XTH1 is set to a distance longer than the inter-vehicle distance secured by the host vehicle M when the preceding vehicle is a four-wheel vehicle, for example.
- the event determination unit 142 determines the current event as a deceleration event.
- the target trajectory generation unit 144 determines the target speed or the like of the host vehicle M so that the inter-vehicle distance D X1 is equal to or greater than the first predetermined distance D XTH1, and the target trajectory including the target speed and the like as a speed element. Is generated. Based on the generated target track, the second controller 160 decelerates the host vehicle M until the inter-vehicle distance D X1 is equal to or greater than the first predetermined distance D XTH1 (step S102).
- the automatic driving control apparatus 100 determines that the inter-vehicle distance D X1 between the road edge vehicle m # and the host vehicle M is equal to or greater than the first predetermined distance D XTH1 , the process of S102 is omitted, and the process of S104 is performed. move on.
- the overtaking prediction unit 146 causes the host vehicle M to stop in the section from the current position of the host vehicle M to a future arrival position ahead of the second predetermined distance D XTH2 (hereinafter referred to as a stop factor). ) Exists (step S104). In other words, the overtaking prediction unit 146 determines whether or not the distance D X2 from the current position of the host vehicle M to the stop factor is equal to or smaller than the second predetermined distance D XTH2 .
- the stop factors include, for example, stop lines, pedestrian crossings, railroad crossings, traffic lights, intersections, vehicles that are stopped due to traffic jams, waiting for traffic lights, and the like.
- the host vehicle M decelerates to a speed that can be regarded as stopping or slowing down to about 0 [km / h] or several [km / h].
- the speed of vehicle m # tends to increase. Therefore, even when the host vehicle M has overtaken the road-end vehicle m #, if there is a stop factor ahead, there is a high probability that the host vehicle M will be overtaken by the road-end vehicle m # in the vicinity of the stop factor. Become.
- the second predetermined distance D XTH2 may be determined, for example, as a predetermined distance, or the absolute speed of the host vehicle M, the absolute speed of the road-end vehicle m #, and between the host vehicle M and the road-end vehicle m #.
- the relative speed, the relative distance between the own vehicle M and the road end vehicle m #, and the relative distance between the own vehicle M and the road end vehicle m # are divided by the relative speed between the own vehicle M and the road end vehicle m # ( Time To Collision) may be dynamically determined. For example, when the road edge vehicle m # is significantly slower than the host vehicle M and the relative speed of these vehicles is large, the distance traveled by the host vehicle M from the start of overtaking to the completion of the overtaking becomes relatively short.
- the second predetermined distance D XTH2 may be short.
- the overtaking is completed after the overtaking starts. Since the distance traveled by the host vehicle M is relatively long, the second predetermined distance D XTH2 is preferably long.
- the second predetermined distance D XTH2 is, for example, easy to feel uncomfortable if the host vehicle M is overtaken by the road end vehicle m # within seconds or minutes after the own vehicle M overtakes the road end vehicle m #. , May be determined based on the sense of the person. For example, an own vehicle on which a passenger who feels uncomfortable when the own vehicle M is overtaken by the road-end vehicle m # even though a relatively long time has passed since the own vehicle M has overtaken the road-end vehicle m #. For M, if the second predetermined distance D XTH2 is increased and a relatively long time has elapsed since the host vehicle M passed the road end vehicle m #, the host vehicle M was overtaken by the road end vehicle m #.
- the second predetermined distance D XTH2 may be shortened for the host vehicle M on which an occupant who does not feel uncomfortable is boarding.
- the overtaking of the host vehicle M by the road-end vehicle m # at a position exceeding the second predetermined distance D XTH2 may be regarded as a passenger not feeling uncomfortable.
- the overtaking prediction unit 146 has a future distance of the second predetermined distance D XTH2 from the current position of the host vehicle M specified by the navigation device 50 on the map indicated by the first map information 54 and the second map information 62.
- a traffic signal, a crossing, an intersection, a stop line, a pedestrian crossing, or the like in the section to the planned arrival position it is determined that a stop factor exists.
- the overtaking prediction unit 146 has traffic lights, railroad crossings, intersections, stop lines, and pedestrian crossings in a section from the current position of the host vehicle M to a future arrival position at the second predetermined distance D XTH2 ahead. Is recognized by the recognizing unit 130, or there is a stop factor when the recognizing unit 130 recognizes that a plurality of vehicles are congested and the trailing vehicle of the plurality of vehicles is stopped. You may judge.
- the overtaking prediction unit 146 determines that there is a stop factor in the section from the current position to the future arrival position ahead of the second predetermined distance D XTH2 , that is, the distance D X2 is equal to or less than the second predetermined distance D XTH2. In addition, it is further determined whether or not the own vehicle M starts before the own vehicle M stopped before the target as a stop factor is overtaken by the overtaking road edge vehicle m # ( Prediction) (step S106).
- the overtaking prediction unit 146 determines the absolute speed of the host vehicle M, the absolute speed of the road-end vehicle m #, the relative speed between the host vehicle M and the road-end vehicle m #, the host vehicle M and the road-end vehicle m #. Based on the relative distance, the host vehicle M, the road end vehicle m #, the TTC, and the like, a future time at which the rear road end vehicle m # catches up with the host vehicle M is derived. In the period from the current time to the derived future time, the overtaking prediction unit 146 starts the last vehicle of the traffic jam recognized as a stop factor by the recognition unit 130 and eliminates the traffic jam ahead of the host vehicle M. When this is predicted, it is determined that the host vehicle M starts before the host vehicle M catches up with the road-end vehicle m #.
- the overtaking prediction unit 146 prohibits the passage of the vehicle by the light color of the traffic light recognized as the stop factor by the recognition unit 130 during the period from the current time as the prediction time to the derived future time. Is predicted to change from red (an example of the first color) to blue (an example of the second color) indicating that the vehicle is allowed to pass, the host vehicle M can catch up with the road-end vehicle m #. You may determine before the own vehicle M starts.
- the overtaking prediction unit 146 automatically detects the traffic light color switching timing before catching up with the roadside vehicle m #. You may determine whether the vehicle M starts.
- the switching timing includes a timing for switching from red to blue and a timing for switching from blue to red.
- the traffic light will stop after a while after the color of the traffic light changes from blue to red.
- the stop period of the host vehicle M due to the stop factor becomes longer, and the host vehicle M is easily overtaken by the over-the-road vehicle m #. Therefore, the overtaking prediction unit 146 determines that the own vehicle M is caught before the own vehicle M catches up with the roadside vehicle m # when the elapsed time after the traffic light is switched from blue to red is less than the threshold.
- the overtaking prediction unit 146 May determine whether or not to start before own vehicle M catches up with road-end vehicle m # based on the information acquired by communication device 20.
- the overtaking prediction unit 146 has the stop period shorter than the other stop factors, so that the host vehicle M becomes the road-end vehicle m #. It may be determined that the host vehicle M starts before being caught up.
- the overtaking prediction unit 146 determines that there is no stop factor in the section from the current position to the future arrival position of the second predetermined distance D XTH2 ahead in the process of S104, or in the process of S106. If it is determined that the own vehicle M starts before the vehicle M catches up with the road edge vehicle m #, even if the own vehicle M has overtaken the road edge vehicle m # at the present time, the road edge that has been overtaken at a future time It is predicted that the host vehicle M will not be overtaken by the vehicle m # (step S108).
- step S106 determines in step S106 that the own vehicle M does not start before the own vehicle M catches up with the road end vehicle m #, the own vehicle M is currently at the road end vehicle m #. If the vehicle is overtaken, it is predicted that the own vehicle M will be overtaken by the overtaking roadside vehicle m # at a future time (step S110).
- the event determination section 142 passes the own vehicle M to the road edge vehicle m # that has been overtaken at a future time. If it is predicted that the road end vehicle m # is recognized by the recognition unit 130, the event that is originally determined for the current section is changed to the overtaking event. The event determined for the section is changed to a follow-up driving event.
- the target trajectory generation unit 144 In response to this, the target trajectory generation unit 144 generates a target trajectory corresponding to the following traveling event. At this time, the target trajectory generation unit 144 follows the target trajectory including the target speed or the like determined as the speed element so that the inter-vehicle distance D X1 with the road end vehicle m # is equal to or greater than the first predetermined distance D XTH1. Is generated as a target trajectory corresponding to.
- the second controller 160 causes the host vehicle M to follow the road end vehicle m # based on the generated target track (step S112).
- FIG. 5 is a diagram illustrating an example of a scene in which the host vehicle M follows the road-end vehicle m #.
- X represents the traveling direction of the vehicle
- Y represents the vehicle width direction.
- (@ t1) represents the state (position, etc.) of each vehicle at time t1
- (@ t2) represents the state of each vehicle at time t2
- (@ t3) represents the state at time t3. It represents the state of each vehicle.
- the inter-vehicle distance D X1 from # exceeds the first predetermined distance D XTH1 , and these vehicles are sufficiently separated from each other.
- the other vehicle m1 that is closest to the host vehicle M among the plurality of other vehicles that are stopped serves as a stop factor.
- the distance D X2 from the current position of the host vehicle M to the other vehicle m1 that is a stop factor is equal to or less than the second predetermined distance D XTH2 .
- the overtaking predicting unit 146 predicts that the host vehicle M is overtaken by the road-end vehicle m # at a future time point when the vehicle reaches the other vehicle m1 that is a stop factor.
- the host vehicle M as shown in the scene (B) at the time t2 where the time further advances from the time t1, and the scene (C) at the time t3 where the time further advances from the time t2, Without overtaking m #, the vehicle travels following road-end vehicle m # while setting the inter-vehicle distance D X1 to road-end vehicle m # to be equal to or greater than first predetermined distance D XTH1 .
- the event determination unit 142 causes the overtaking prediction unit 146 to pass the road edge vehicle m that has been overtaken at a future time even if the host vehicle M has overtaken the road edge vehicle m #.
- the event determined for the current section is changed to an overtaking event.
- the target trajectory generation unit 144 In response to this, the target trajectory generation unit 144 generates a target trajectory corresponding to the overtaking event.
- the second control unit 160 causes the host vehicle M to pass the road edge vehicle m # based on the generated target track (step S114).
- FIG. 6 is a diagram illustrating an example of a scene in which the host vehicle M passes the road edge vehicle m #.
- the scene (D) at time t1 there are other vehicles m1 and m2 stopped by waiting for traffic lights and a roadside vehicle m # in front of the host vehicle M. ing.
- the inter-vehicle distance D X1 between the host vehicle M and the roadside vehicle m # exceeds the first predetermined distance D XTH1 , and these vehicles are sufficiently separated from each other.
- the distance D X2 from the current position of the host vehicle M to the other vehicle m1 that is a stop factor is equal to or less than the second predetermined distance D XTH2 , but the host vehicle M stops behind the other vehicle m1. Then, before the road edge vehicle m # catches up with the host vehicle M, it is predicted that the light color of the traffic light will change from red to blue. Therefore, in the scene (D), the overtaking prediction unit 146 predicts that the own vehicle M is not overtaken by the road-end vehicle m # at a future time when the own vehicle M reaches the rear of the other vehicle m1. In this case, the second control unit 160 causes the host vehicle M to pass the road-end vehicle m # in the scene (E) at time t2, which is further advanced than time t1.
- the host vehicle M reaches the rear of the other vehicle m1 and stops, so that the rear road end vehicle m # To approach.
- the light color of the traffic light switches from red to blue before the rear roadside vehicle m # catches up with the host vehicle M. It represents that.
- the other vehicles m1 and m2 in front of the host vehicle M start and enter the intersection, and the host vehicle M also starts. In this way, even if there is a stop factor ahead, if there is sufficient time for the road-end vehicle m # to catch up with the host vehicle M, the host vehicle M is allowed to pass the road end vehicle m # ahead.
- the event determination unit 142 determines whether or not the host vehicle M has been overtaken by the overtaking road edge vehicle m # based on the recognition result of the recognition unit 130. (Step S116). For example, when the road edge vehicle m # that has been recognized behind the own vehicle M due to overtaking is recognized again in front of the own vehicle M, the event determining unit 142 has overtaken. It is determined that the host vehicle M has been overtaken by the roadside vehicle m #.
- the action plan generation unit 140 suppresses overtaking of the road edge vehicle m # from the next time (step S118).
- FIG. 7 is a diagram showing an example of a scene in which the own vehicle M is overtaken by the overtaking road edge vehicle m #.
- M1 and m2 in the figure represent other vehicles that have stopped due to traffic lights or traffic congestion.
- the overtaking prediction unit 146 predicts that the own vehicle M is not overtaken by the road edge vehicle m #, and the second control unit 160 controls the speed and steering of the own vehicle M.
- the vehicle M is overtaking the road edge vehicle m #.
- the host vehicle M is overtaken by the overtaking road edge vehicle m #.
- the event determination unit 142 of the action plan generation unit 140 suppresses overtaking of the road end vehicle m # by not changing the current event to the overtaking event.
- the target trajectory generation unit 144 of the action plan generation unit 140 does not generate a target trajectory corresponding to the overtaking event, or does not output the generated target trajectory to the second control unit 160, so that the road The overtaking of the end vehicle m # may be suppressed.
- the action plan generation unit 140 may suppress overtaking of the road edge vehicle m # when the own vehicle M is overtaken by the overtaking road edge vehicle m # over a predetermined number of times. Moreover, the action plan production
- generation part 140 may suppress overtaking of the road edge vehicle m #, when the same road edge vehicle m # has overtaken the own vehicle M repeatedly. Thereby, the process of this flowchart is complete
- the process for determining whether the inter-vehicle distance D X1 with the host vehicle M is equal to or greater than the first predetermined distance D XTH1 (the process of S100), and the inter-vehicle distance D X1 is the first.
- the process (S102) of decelerating the host vehicle M until the distance becomes equal to or greater than the predetermined distance D XTH1 may be omitted.
- the overtaking prediction unit 146 may omit the process of S106 and change the length (size) of the second predetermined distance D XTH2 before the process of S104.
- the overtaking prediction unit 146 starts the end vehicle of the traffic jam recognized as a stop factor by the recognition unit 130 and eliminates the traffic jam ahead of the host vehicle M. Is predicted, the second predetermined distance D XTH2 may be shortened as compared with a case where it is not predicted that the congestion will be eliminated.
- the overtaking prediction unit 146 determines that the second predetermined distance D when the elapsed time after the traffic light has been switched from blue to red is less than the threshold value (when soon after the signal changes to a red signal).
- the second predetermined distance D XTH2 may be shortened.
- the overtaking prediction unit 146 shortens the second predetermined distance D XTH2 when the recognition unit 130 recognizes the temporary stop line as a stop factor, compared to when other stop factors are recognized. It's okay.
- the automatic operation control apparatus 100 may perform various determinations with reference to the first predetermined time or the second predetermined time instead of the first predetermined distance D XTH1 and the second predetermined distance D XTH2 .
- the first predetermined time is a time that is assumed to elapse until the host vehicle M reaches the roadside vehicle m #
- the second predetermined time is, for example, the host vehicle M reaching a stop factor. This is the time that is expected to elapse.
- the same processing as when the predetermined distance is used can be performed according to the road end vehicle m # or the time remaining until the vehicle reaches the stop factor.
- the first predetermined time and the second predetermined time can be calculated more accurately in consideration of the acceleration / deceleration of the host vehicle M. For example, for the second predetermined time, the deceleration of the host vehicle M with respect to the stop factor is also considered. Can be calculated.
- FIG. 8 is a flowchart illustrating another example of a flow of a series of processes performed by the automatic operation control device 100 according to the first embodiment. The processing of this flowchart may be repeatedly performed at a predetermined cycle.
- the event determination unit 142 determines whether the inter-vehicle distance D X1 between the road end vehicle m # recognized by the recognition unit 130 and the host vehicle M is equal to or greater than the first predetermined distance D XTH1 (step S200). ).
- the event determining unit 142 determines that the inter-vehicle distance DX1 between the road-end vehicle m # and the host vehicle M is less than the first predetermined distance DXTH1, the event determining unit 142 determines the current event as a deceleration event.
- the target trajectory generation unit 144 generates a target trajectory, and the second control unit 160 decelerates the host vehicle M based on the target trajectory until the inter-vehicle distance DX1 becomes equal to or greater than the first predetermined distance DXTH1 ( Step S202).
- the automatic driving control apparatus 100 determines that the inter-vehicle distance D X1 between the road edge vehicle m # and the host vehicle M is equal to or greater than the first predetermined distance D XTH1 , the process of S202 is omitted, and the process of S204 is performed. move on.
- the event determination unit 142 determines whether or not the number of times the host vehicle M has been overtaken by the roadside vehicle m # (hereinafter referred to as overtaken number) is a predetermined number or more (step S204).
- the predetermined number of times may be, for example, once or more.
- the automatic operation control device 100 determines that the number of overtakes is equal to or greater than the predetermined number, the automatic operation control device 100 performs the processing of S212 to S222 and ends the processing of this flowchart.
- the process of S212 is the same as the process of S104 described above
- the process of S214 is the same as the process of S106 described above
- the process of S216 is the same as the process of S110 described above
- the process of S218 is: Since it is the same as the process of S112 mentioned above, the process of S220 is the same as the process of S108 mentioned above, and the process of S222 is the same as the process of S114 mentioned above, description is abbreviate
- a stop factor is generated in a section from the current position of the host vehicle M to a future arrival position ahead of the second predetermined distance D XTH2. Is determined (step S206).
- the event determination unit 142 determines that there is no stop factor in the section from the current position of the host vehicle M to the future arrival position ahead of the second predetermined distance D XTH2, In order to pass #, the current event is changed to an overtaking event, and the process returns to S204. As a result, the host vehicle M passes the roadside vehicle m #.
- the event determination unit 142 determines that there is a stop factor in the section from the current position of the host vehicle M to the future arrival position ahead of the second predetermined distance D XTH2 .
- the recognition result of the recognition unit 130 is displayed. Based on this, it is determined whether or not the own vehicle M has been overtaken by the overtaking road edge vehicle m # (step S208).
- the process returns to S204.
- the overtaking prediction unit 146 determines that the own vehicle M has been overtaken by the overtaking road edge vehicle m #, the overtaking number is incremented (step S210), and the process returns to S204.
- FIG. 9 is a flowchart illustrating another example of a flow of a series of processes performed by the automatic operation control device 100 according to the first embodiment. The processing of this flowchart may be repeatedly performed at a predetermined cycle.
- the overtaking prediction unit 146 determines whether there is a stop factor in a section from the current position of the host vehicle M to a future arrival position ahead of the second predetermined distance D XTH2 . It is determined whether or not (step S312).
- the overtaking prediction unit 146 determines that the own vehicle M is currently on the road if there is a stop factor in the section to the future arrival position ahead of the second predetermined distance D XTH2 when the number of overtaking is a predetermined number or more. If the end vehicle m # is overtaken, it is predicted that the host vehicle M will be overtaken by the overtaken road end vehicle m # at a future time (step S314).
- the event determination section 142 passes the own vehicle M to the road edge vehicle m # that has been overtaken at a future time. If it is predicted, the event determined for the current section is changed to a follow-up driving event.
- the target trajectory generation unit 144 In response to this, the target trajectory generation unit 144 generates a target trajectory corresponding to the following traveling event.
- the second control unit 160 causes the host vehicle M to follow the road end vehicle m # based on the generated target track (step S316).
- the automatic driving control apparatus 100 determines that there is no stop factor in the section to the future arrival position ahead of the second predetermined distance D XTH2. The process of this flowchart is terminated without overtaking the end vehicle m # or causing the host vehicle M to follow the road end vehicle m #. As a result, the host vehicle M continues to travel in a travel mode corresponding to the current event.
- the automatic driving control device 100 recognizes the road-end vehicle m # and the stop factor in front of the own vehicle M, so For example, the process of causing the host vehicle M to follow the road-end vehicle m # may be performed without overtaking m #.
- both the road edge vehicle m # and the stop factor are recognized in front of the host vehicle M, other than “when it is predicted that the host vehicle will be overtaken by a moving body that has been overtaken at a future time point”. It is an example.
- the stop factor exists within a predetermined distance, or exists within a predetermined time (time to reach).
- the automatic driving control device 100 may prevent the own vehicle M from overtaking the road-end vehicle m # when a stop factor is detected by an in-vehicle sensor such as the camera 10, the radar device 12, or the finder 14. That is, the automatic driving control device 100 determines whether the host vehicle M should or will not pass the roadside vehicle m # based on the detection distance limit of the in-vehicle sensor without using map information or the like. Good.
- the recognition unit 130 that recognizes an object around the host vehicle M and the speed and steering of the host vehicle M are controlled so that the host vehicle M recognizes the object as an object.
- the second control unit 160 that overtakes the road-end vehicle m # that is ahead of the host vehicle M at the end of the road on which the host vehicle M exists, and the vehicle at the future time.
- An overtaking prediction unit 146 that predicts that the own vehicle M is overtaken by the road end vehicle m #, and the second control unit 160 sets the own vehicle M as the overtaking road end vehicle m # at a future time.
- the overtaking prediction unit 146 predicts that the vehicle will be overtaken, since the vehicle M is not overtaken by the own vehicle M at the present time, it is possible to perform an automatic driving that makes the passenger feel more comfortable.
- a second embodiment when the host vehicle M passes the road-end vehicle m #, a space in which the road-end vehicle m # can pass between the host vehicle M and the end of the road (hereinafter referred to as a slip-through space).
- a slip-through space a space in which the road-end vehicle m # can pass between the host vehicle M and the end of the road.
- the first embodiment described above in that it is predicted whether or not the own vehicle M is overtaken by the overtaking road edge vehicle m # according to the prediction result. Different. The following description will focus on differences from the first embodiment, and descriptions of functions and the like common to the first embodiment will be omitted.
- the overtaking prediction unit 146 in the second embodiment for example, based on the relative speed between the host vehicle M and the road end vehicle m # and the relative distance between the host vehicle M and the road end vehicle m #. # derives the location of the future that overtaking is completed, in the derived future position, the distance [Delta] D Y between the partition lines is a part region of the vehicle M and the road edge is roadside vehicle m # of longer than the vehicle width D Ym #, predicts that slipped space exists, the distance [Delta] D Y between the partition lines is a part region of the vehicle M and the road edge is roadside vehicle m # of vehicle width If it is shorter than DYm # , it is predicted that there is no slip-through space.
- FIG. 10 is a diagram for explaining a method of deriving a future position where the overtaking of the road edge vehicle m # is completed.
- the vertical axis X represents the position of each vehicle in the traveling direction of the vehicle
- the horizontal axis T represents time.
- the position of the host vehicle M with respect to the traveling direction X of the vehicle M is XM_t0
- the position of the roadside vehicle m # with respect to the traveling direction X of the vehicle is Xm # _t0 .
- the overtaking prediction unit 146 assumes that the host vehicle M and the road end vehicle m # travel at a constant speed at the current time t0, and the overtaking of the road end vehicle m # by the host vehicle M is completed. Deriving future positions. For example, after the own vehicle M has overtaken the road end vehicle m #, the vehicle distance to the road end vehicle m # is the same as the distance before the overtaking (that is, the distance D X1 equal to or greater than the first predetermined distance D XTH1 ). When the vehicle M arrives and the own vehicle M exists in the center of the lane, it may be determined that the overtaking of the road-end vehicle m # by the own vehicle M is completed.
- the overtaking prediction unit 146 derives the position X M_t2 of the host vehicle M at the time t2 as a future position at which overtaking is completed.
- FIG. 11 is a diagram illustrating an example of a scene where a slip-through space exists and a scene where no slip-through space exists.
- a scene (J) the position of the vehicle M in a future time t2 that overtaking is completed, than the distance [Delta] D Y is the vehicle width D Ym # roadside vehicle m # between the division line between the vehicle M Too long. Therefore, the overtaking prediction unit 146 predicts that the own vehicle M will be overtaken by the overtaking road edge vehicle m # at a future time point because there is a bypass space in the scene (J).
- the second control unit 160 causes the host vehicle M to follow the road end vehicle m # without causing the host vehicle M to pass the road end vehicle m # at this time.
- the scene (K), at the position of the vehicle M in a future time t2 that overtaking is completed, than the distance [Delta] D Y is the vehicle width D Ym # roadside vehicle m # between the division line between the vehicle M Also short. Therefore, the overtaking prediction unit 146 predicts that the own vehicle M will not be overtaken by the overtaking road edge vehicle m # at a future time point because there is no through space in the scene (K). In response to this, the second control unit 160 causes the host vehicle M to pass the road edge vehicle m # at this time.
- the overtaking prediction unit 146 determines whether the overtaking road is in the future. It may be predicted that the host vehicle M will not be overtaken by the end vehicle m #.
- FIG. 12 is a diagram illustrating another example of a scene where a slip-through space exists.
- D Y is the vehicle width D Ym # roadside vehicle m # between the division line between the vehicle M .
- an obstacle OB exists between the host vehicle M and the lane marking.
- the overtaking predicting unit 146 predicts that the own vehicle M will not be overtaken by the overtaking road edge vehicle m # at a future time point even if there is a bypass space.
- the own vehicle M passes the road end vehicle m #, it is predicted whether or not there is a slip-through space between the own vehicle M and the end of the road.
- the overtaking road edge vehicle m # it is possible to perform an automatic driving that the passenger feels comfortable. It is possible to pass the road edge vehicle m # more flexibly.
- the third embodiment when a road-end vehicle m # exists in a lane that is dedicated to a two-wheeled vehicle such as a bicycle such as a bicycle-only traffic zone or a bicycle driving instruction zone (hereinafter referred to as a motorcycle-only lane), It is different from the first and second embodiments described above in that the own vehicle M passes the road edge vehicle m # without depending on the prediction result by the passing prediction unit 146.
- the two-wheeled vehicle lane is a lane that is partitioned from the roadway by a lane line drawn on the road surface, for example, where the boundary with the roadway is not physically partitioned by a work such as a fence or a pole at the boundary with the roadway .
- the following description will focus on differences from the first and second embodiments, and descriptions of functions and the like common to the first and second embodiments will be omitted.
- the event determination unit 142 in the third embodiment changes the current event to an overtaking event without depending on the prediction result by the overtaking prediction unit 146 when the recognition unit 130 recognizes the two-wheeled vehicle lane. Accordingly, the target track generation unit 144 generates a target track corresponding to the overtaking event, so that the host vehicle M passes the road end vehicle m #.
- FIG. 13 is a diagram illustrating an example of a scene in which the host vehicle M is overtaken by the road end vehicle m # when the host vehicle M is predicted to be overtaken by the overtaken road end vehicle m #.
- the motorcycle lane is adjacent to the own lane, and the road-end vehicle m # is traveling on the motorcycle lane.
- the distance D X2 from the current position of the host vehicle M to the rear of the other vehicle m1 (stop factor) stopped by waiting for a signal is equal to or less than the second predetermined distance D XTH2 , so
- the prediction unit 146 predicts that the host vehicle M will be overtaken by the road edge vehicle m # at a future time point until the vehicle reaches the other vehicle m1.
- the event determining unit 142 passes the host vehicle M over the road-end vehicle m # at a future time point until reaching the other vehicle m1. Regardless of the prediction result, the current event is changed to an overtaking event.
- the second control unit 160 causes the host vehicle M to pass the road end vehicle m # on the two-wheeled vehicle lane on the host lane as shown in the scene (N) at time t2.
- the host vehicle M when the road-end vehicle m # exists in the two-wheeled vehicle lane, the host vehicle M is caused to pass the road-end vehicle m # without depending on the prediction result by the overtaking prediction unit 146. Therefore, it is possible to perform automatic driving that the occupant feels comfortable and to perform more natural automatic driving. For example, when a motorcycle lane is provided on the road, the occupant of the own vehicle M assumes that the road-end vehicle m # passes through the motorcycle-only lane. Even when overtaking, it tends not to feel uncomfortable.
- FIG. 14 is a diagram illustrating an example of a hardware configuration of the automatic driving control apparatus 100 according to the embodiment.
- an automatic operation control device 100 includes a communication controller 100-1, a CPU 100-2, a RAM 100-3 used as a working memory, a ROM 100-4 for storing a boot program, a storage device such as a flash memory and an HDD.
- 100-5, drive device 100-6, and the like are connected to each other via an internal bus or a dedicated communication line.
- the communication controller 100-1 performs communication with components other than the automatic operation control device 100.
- the storage device 100-5 stores a program 100-5a executed by the CPU 100-2. This program is expanded in the RAM 100-3 by a DMA (Direct Memory Access) controller (not shown) or the like and executed by the CPU 100-2. Thereby, a part or all of the first control unit 120 and the second control unit 160 is realized.
- DMA Direct Memory Access
- the embodiment described above can be expressed as follows. Storage for storing the program; And a processor, The processor executes the program, Recognize objects around your vehicle, A moving body that is recognized as the object in a predetermined case by controlling the speed and steering of the own vehicle and that is located near the end of the road on which the own vehicle exists is Overtake, When recognizing the moving body, predicting that the vehicle will be overtaken by the overtaking moving body at a future time point; If the vehicle is predicted to be overtaken by the overtaking moving body at the future time point, the own vehicle is not allowed to overtake the moving body.
- a vehicle control device configured as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
車両制御装置は、自車両の周辺の物体を認識する認識部と、前記自車両の速度および操舵を制御する運転制御部であって、所定の場合に、前記認識部により前記物体として認識された移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させる運転制御部と、前記認識部により前記移動体が認識された場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測する予測部と、を備え、前記運転制御部が、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると前記予測部により予測された場合、前記自車両に前記移動体を追い越させない。
Description
本発明は、車両制御装置、車両制御方法、およびプログラムに関する。
近年、車両の運転を自動的に制御すること(以下、自動運転と称する)について研究が進められている。一方で、運転者の乗った自転車の進行方向を予測することにより、速度の速い自転車に対して早期に衝突の回避制御を行う技術が知られている(例えば、特許文献1参照)。
しかしながら、従来の技術では、自車両が自転車などの二輪車を回避しながら追い越した直後に信号機の手前などで停止し、追い越した二輪車に再び追い越されてしまう場合があった。このような場合、乗員が自動運転を快く感じない場合があった。
本発明は、このような事情を考慮してなされたものであり、より乗員が快く感じる自動運転を行うことができる車両制御装置、車両制御方法、およびプログラムを提供することを目的の一つとする。
(1):自車両の周辺の物体を認識する認識部と、前記自車両の速度および操舵を制御する運転制御部であって、所定の場合に、前記認識部により前記物体として認識された移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させる運転制御部と、前記認識部により前記移動体が認識された場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測する予測部と、を備え、前記運転制御部が、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると前記予測部により予測された場合、前記自車両に前記移動体を追い越させない、車両制御装置。
(2):(1)に記載の車両制御装置において、前記予測部が、現在位置から所定距離先の将来位置に前記自車両が到達する前記将来の時点において、前記自車両が停止することを予測し、前記将来の時点において、前記自車両が停止することを予測した場合、前記追い越した前記移動体に前記自車両が追い越されると予測するものである。
(3):(2)に記載の車両制御装置において、前記予測部が、更に、前記将来の時点において、前記自車両が停止することを予測した場合、前記移動体が前記自車両に追いつく前に前記自車両が発進することを予測し、前記移動体が前記自車両に追いつく前に前記自車両が発進することを予測した場合、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されないと予測するものである。
(4):(1)から(3)のうちいずれか1つに記載の車両制御装置において、前記運転制御部が、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されないと前記予測部により予測された場合、前記自車両に前記移動体を追い越させるものである。
(5):(1)から(4)のうちいずれか1つに記載の車両制御装置において、前記運転制御部が、更に、前記自車両の前方の信号機の灯色が車両の通行禁止を示す第1色である場合、前記自車両に前記移動体を追い越させないものである。
(6):(5)に記載の車両制御装置において、前記予測部が、更に、現時点において、前記自車両の前方の信号機の灯色が前記第1色である場合に、前記現時点から前記将来の時点までの所定期間内に、前記信号機の灯色が前記第1色から車両の通行許可を示す第2色に変わることを予測し、前記運転制御部が、前記所定期間内に前記信号機の灯色が前記第1色から前記第2色に変わると前記予測部により予測された場合、前記現時点において、前記自車両に前記移動体を追い越させるものである。
(7):(1)から(6)のうちいずれか1つに記載の車両制御装置において、前記予測部が、前記将来の時点において、前記自車両の脇に前記移動体が前記自車両を追い越せるスペースが存在する場合、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測するものである。
(8):(1)から(7)のうちいずれか1つに記載の車両制御装置において、前記運転制御部が、前記自車両に前記移動体を追い越させた後、前記追い越した前記移動体に前記自車両が追い越された場合、次回から、前記自車両に前記移動体を追い越させないものである。
(9):(1)から(8)のうちいずれか1つに記載の車両制御装置において、前記運転制御部が、前記自車両に前記移動体を追い越させた後、前記追い越した前記移動体に前記自車両が追い越されたことが所定回数以上繰り返された場合、次回から、前記自車両に前記移動体を追い越させないものである。
(10):(1)から(9)のうちいずれか1つに記載の車両制御装置において、前記運転制御部が、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると前記予測部により予測された場合、前記自車両に前記移動体を追い越させずに、少なくとも前記移動体との車間距離を一定にしながら前記自車両を走行させるものである。
(11):(1)から(10)のうちいずれか1つに記載の車両制御装置において、前記認識部が、更に、前記道路から二輪車の専用車線を認識し、前記運転制御部が、前記認識部により前記二輪車の専用車線が認識された場合、前記自車両に前記移動体を追い越させるものである。
(12):車載コンピュータが、自車両の周辺の物体を認識し、前記自車両の速度および操舵を制御して、所定の場合に、前記物体として認識した移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させ、前記移動体を認識した場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測し、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測した場合、前記自車両に前記移動体を追い越させない、車両制御方法。
(13):車載コンピュータに、自車両の周辺の物体を認識する処理と、前記自車両の速度および操舵を制御して、所定の場合に、前記物体として認識した移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させる処理と、前記移動体を認識した場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測する処理と、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測した場合、前記自車両に前記移動体を追い越させない処理と、を実行させるためのプログラム。
(1)~(13)によれば、より乗員が快く感じる自動運転を行うことができる。
以下、図面を参照し、本発明の車両制御装置、車両制御方法、およびプログラムの実施形態について説明する。なお、以下では、左側通行の法規が適用される場合について説明するが、右側通行の法規が適用される場合、左右を逆に読み替えればよい。
<第1実施形態>
[全体構成]
図1は、第1実施形態に係る車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両(以下、自車両Mと称する)は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせを含む。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
[全体構成]
図1は、第1実施形態に係る車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両(以下、自車両Mと称する)は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせを含む。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
車両システム1は、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、運転操作子80と、自動運転制御装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、自車両Mの任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
ファインダ14は、LIDAR(Light Detection and Ranging)である。ファインダ14は、自車両Mの周辺に光を照射し、散乱光を測定する。ファインダ14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。ファインダ14は、自車両Mの任意の箇所に取り付けられる。
物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14の検出結果をそのまま自動運転制御装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。
通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。
車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備える。ナビゲーション装置50は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。
GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。
ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。
経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。地図上経路は、MPU60に出力される。
ナビゲーション装置50は、地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。
MPU60は、例えば、推奨車線決定部61を含み、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、地図上経路に分岐箇所が存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報、車線の種別の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。第2地図情報62は、通信装置20が他装置と通信することにより、随時、アップデートされてよい。
運転操作子80は、例えば、アクセルペダル、ブレーキペダル、シフトレバー、ステアリングホイール、異形ステア、ジョイスティックその他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御装置100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。
自動運転制御装置100は、例えば、第1制御部120と、第2制御部160と、記憶部180とを備える。第1制御部120および第2制御部160は、例えば、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100の記憶部180に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで記憶部180にインストールされてもよい。
記憶部180は、例えば、HDD、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、またはRAM(Random Access Memory)などにより実現される。記憶部180は、例えば、プロセッサによって読み出されて実行されるプログラムを格納する。
図2は、第1制御部120および第2制御部160の機能構成図である。第1制御部120は、例えば、認識部130と、行動計画生成部140とを備える。第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてよい。これによって、自動運転の信頼性が担保される。
認識部130は、カメラ10、レーダ装置12、およびファインダ14から物体認識装置16を介して入力された情報に基づいて、自車両Mの周辺に存在する物体を認識する。認識部130により認識される物体は、例えば、自転車、オートバイク、四輪自動車、歩行者、道路標識、道路標示、区画線、電柱、ガードレール、落下物などを含む。また、認識部130は、物体の位置や、速度、加速度等の状態を認識する。物体の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置(すなわち自車両Mに対する相対位置)として認識され、制御に使用される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、表現された領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。
また、認識部130は、例えば、自車両Mが走行している自車線を認識する。例えば、認識部130は、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、自車線を認識する。なお、認識部130は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、自車線を認識してもよい。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。また、認識部130は、一時停止線、障害物、赤信号、料金所、その他の道路事象を認識する。
認識部130は、自車線を認識する際に、自車線に対する自車両Mの相対位置や姿勢を認識する。認識部130は、例えば、自車両Mの基準点の車線中央からの乖離、および自車両Mの進行方向の車線中央を連ねた線に対してなす角度を、自車線に対する自車両Mの相対位置および姿勢として認識してもよい。これに代えて、認識部130は、自車線のいずれかの側端部(道路区画線または道路境界)に対する自車両Mの基準点の位置などを、自車線に対する自車両Mの相対位置として認識してもよい。
行動計画生成部140は、例えば、イベント決定部142と、目標軌道生成部144と、追越予測部146とを備える。イベント決定部142は、推奨車線が決定された経路において自動運転のイベントを決定する。イベントは、自車両Mの走行態様を規定した情報である。
イベントには、例えば、自車両Mを一定の速度で同じ車線を走行させる定速走行イベント、自車両Mの前方の所定距離以内(例えば100[m]以内)に存在し、自車両Mに最も近い他車両(以下、前走車両と称する)に自車両Mを追従させる追従走行イベント、自車両Mを自車線から隣接車線へと車線変更させる車線変更イベント、道路の分岐地点で自車両Mを目的側の車線に分岐させる分岐イベント、合流地点で自車両Mを本線に合流させる合流イベント、自動運転を終了して手動運転に切り替えるためのテイクオーバーイベントなどが含まれる。「追従」とは、例えば、自車両Mと前走車両との車間距離(相対距離)を一定に維持させる走行態様であってもよいし、自車両Mと前走車両との車間距離を一定に維持させることに加えて、自車両Mを自車線の中央で走行させる走行態様であってもよい。また、イベントには、例えば、自車両Mを一旦隣接車線に車線変更させて前走車両を隣接車線において追い越してから再び元の車線へと車線変更させたり、自車両Mを隣接車線に車線変更させずに、自車線を区画する区画線に自車両Mを近づけて同じ車線内で前走車両を追い越してから元の位置(例えば車線中央)に復帰させたりする追い越しイベント、自車両Mの前方に存在する障害物を回避するために自車両Mに制動および操舵の少なくとも一方を行わせる回避イベントなどが含まれてよい。
また、イベント決定部142は、例えば、自車両Mの走行時に認識部130により認識された周辺の状況に応じて、現在の区間に対して既に決定したイベントを他のイベントに変更したり、現在の区間に対して新たなイベントを決定したりしてよい。
例えば、イベント決定部142は、認識部130によって、自転車またはオートバイクといった二輪車が自車両Mの前方に存在し(すなわち二輪車が前走車両であり)、その二輪車が道路の端に存在することが認識された場合、現在の区間に対して決められたイベントを、追い越しイベントに変更する。
「道路の端」とは、例えば、道路の路肩または路側帯を含む道路の領域である。路肩または路側帯は、道路境界(例えば縁石)と、道路に形成された複数の区画線のうち最も外側の区画線(道路境界に最も近い区画線)との間の帯状の領域である。また、「道路の端」は、区画線によって区画された一以上の車線のうち、最も道路境界に近い車線(以下、第1走行車線と称する)の一部領域を含んでもよい。
図3は、道路の端を説明するための図である。図中BDは、道路境界を表し、LM1は、最も外側の区画線を表し、LM2は、区画線LM1と同じ車線(第1走行車線)を区画する区画線を表している。例えば、道路の端は、道路境界BDと区画線LM1との間の帯状の領域RAである路側帯(路肩)のみを含む道路領域であってもよいし、領域RAと、区画線LM1が形成された領域RBとを含む道路領域であってもよい。また、道路の端は、区画線LM1およびLM2によって区画された第1走行車線を車幅方向に関して数等分に区分し、区分した複数の領域のうち、最も道路境界BDに近い領域を含む道路領域であってもよい。図示の例では、第1走行車線が車幅方向に関して、領域RCからRFの4等分に区分されている。このような場合、道路の端は、最も道路境界BDに近い領域RCを含む道路領域であってよい。また、道路の端として扱われる領域は、最も道路境界BDに近い領域RCに限られず、二番目に道路境界BDに近い領域RDといったように、少なくとも第1走行車線の中央から道路境界BD側の全ての領域であってもよい。このように、道路の端は、路側帯(路肩)RAと、区画線LM1の形成領域RBと、第1走行車線の中央から道路境界BD側の領域RCおよびRDとのうち一部または全部を含む道路領域として扱われる。以下、道路の端に存在する二輪車を、「道路端車両m#」と称して説明する。
目標軌道生成部144は、原則的には推奨車線決定部61により決定された推奨車線を自車両Mが走行し、更に、自車両Mが推奨車線を走行する際に周辺の状況に対応するため、イベントにより規定された走行態様で自車両Mを自動的に(運転者の操作に依らずに)走行させる将来の目標軌道を生成する。目標軌道には、例えば、将来の自車両Mの位置を定めた位置要素と、将来の自車両Mの速度等を定めた速度要素とが含まれる。
例えば、目標軌道生成部144は、自車両Mが順に到達すべき複数の地点(軌道点)を、目標軌道の位置要素として決定する。軌道点は、所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点である。所定の走行距離は、例えば、経路に沿って進んだときの道なり距離によって計算されてよい。
また、目標軌道生成部144は、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度を、目標軌道の速度要素として決定する。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度は、サンプリング時間および軌道点の間隔によって決定される。目標軌道生成部144は、生成した目標軌道を示す情報を、第2制御部160に出力する。
追越予測部146は、認識部130によって道路端車両m#が認識された場合、現時点で道路端車両m#を自車両Mが追い越すと、将来のある時点において、追い越した道路端車両m#に自車両Mが追い越されるか否かを予測(判定)する。
道路端車両m#を追い越しても、将来のある時点において、道路端車両m#に自車両Mが追い越されると追越予測部146により予測された場合、例えば、イベント決定部142は、現在の区間に対して決められたイベントを、追い越しイベントに変更せず、道路端車両m#を前走車両とした追従走行イベントに変更する。現在の区間に対して決められたイベントが追い越しイベントに変更されず、追従走行イベントに変更された場合、目標軌道生成部144は、自車両Mと道路端車両m#との車間距離が一定となるように目標速度等を決定し、この目標速度等を速度要素として含む目標軌道を、追従走行イベントに対応した目標軌道として生成する。この際、目標軌道生成部144は、自車線の中央に配置された軌道点を位置要素として含む目標軌道を、追従走行イベントに対応した目標軌道として生成してよい。
また、道路端車両m#を追い越しても、将来のある時点において、道路端車両m#に自車両Mが追い越されないと追越予測部146により予測された場合、例えば、イベント決定部142は、現在の区間に対して決められたイベントを、当初の予定通りに、追い越しイベントに変更する。現在の区間に対して決められたイベントが追い越しイベントに変更された場合、目標軌道生成部144は、自車両Mを隣接車線に車線変更させる目標軌道を生成したり、自車線内で自車両Mを車線片側に移動させる目標軌道を生成したりする。
第2制御部160は、目標軌道生成部144によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
第2制御部160は、例えば、取得部162と、速度制御部164と、操舵制御部166とを備える。イベント決定部142と、目標軌道生成部144と、第2制御部160とを合わせたものは、「運転制御部」の一例である。
取得部162は、目標軌道生成部144により生成された目標軌道(軌道点)の情報を取得し、記憶部180のメモリに記憶させる。
速度制御部164は、メモリに記憶された目標軌道に含まれる速度要素(例えば目標速度や目標加速度等)に基づいて、走行駆動力出力装置200およびブレーキ装置210の一方または双方を制御する。
操舵制御部166は、メモリに記憶された目標軌道に含まれる位置要素(例えば目標軌道の曲り具合を表す曲率等)に応じて、ステアリング装置220を制御する。
速度制御部164および操舵制御部166の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部166は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。
走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するパワーECU(Electronic Control Unit)とを備える。パワーECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、第2制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
[処理フロー]
以下、第1実施形態の自動運転制御装置100による一連の処理の流れを、フローチャートを用いて説明する。図4は、第1実施形態の自動運転制御装置100による一連の処理の流れの一例を示すフローチャートである。例えば、本フローチャートの処理は、認識部130により道路端車両m#が認識されているときに、所定の周期で繰り返し行われる。
以下、第1実施形態の自動運転制御装置100による一連の処理の流れを、フローチャートを用いて説明する。図4は、第1実施形態の自動運転制御装置100による一連の処理の流れの一例を示すフローチャートである。例えば、本フローチャートの処理は、認識部130により道路端車両m#が認識されているときに、所定の周期で繰り返し行われる。
まず、イベント決定部142は、認識部130により認識された道路端車両m#と、自車両Mとの車間距離DX1が第1所定距離DXTH1以上であるか否かを判定する(ステップS100)。第1所定距離DXTH1は、例えば、前走車両が四輪車であるときに自車両Mによって確保される車間距離よりも長い距離に設定される。
イベント決定部142は、道路端車両m#と自車両Mとの車間距離DX1が第1所定距離DXTH1未満であると判定した場合、現在のイベントを減速イベントに決定する。これを受けて、目標軌道生成部144は、車間距離DX1が第1所定距離DXTH1以上となるように自車両Mの目標速度等を決定し、この目標速度等を速度要素として含む目標軌道を生成する。第2制御部160は、生成された目標軌道に基づいて、車間距離DX1が第1所定距離DXTH1以上となるまで自車両Mを減速させる(ステップS102)。
一方、自動運転制御装置100は、道路端車両m#と自車両Mとの車間距離DX1が第1所定距離DXTH1以上であると判定した場合、S102の処理を省略し、S104の処理に進む。
次に、追越予測部146は、自車両Mの現在位置から、第2所定距離DXTH2先の将来の到達予定位置までの区間に、自車両Mが停止する要因(以下、停止要因と称する)が存在するか否かを判定する(ステップS104)。言い換えれば、追越予測部146は、自車両Mの現在位置から停止要因までの距離DX2が第2所定距離DXTH2以下であるか否かを判定する。停止要因は、例えば、停止線、横断歩道、踏切、信号機、交差点、渋滞や信号待ちなどによって停止している車両などを含む。このような停止要因により、自車両Mが0[km/h]または数[km/h]程度の停止または徐行と見做せる程度の速度に減速するため、自車両Mに比して道路端車両m#の速度が大きくなりやすい。そのため、自車両Mが道路端車両m#を追い越した場合であっても、前方に停止要因が存在する場合、その停止要因の周辺で自車両Mが道路端車両m#に追い越される蓋然性が高くなる。
第2所定距離DXTH2は、例えば、予め決められた距離に決定されてもよいし、自車両Mの絶対速度や道路端車両m#の絶対速度、自車両Mと道路端車両m#との相対速度、自車両Mと道路端車両m#との相対距離、自車両Mと道路端車両m#との相対距離を、自車両Mと道路端車両m#との相対速度で除算したTTC(Time To Collision)などによって動的に決定されてよい。例えば、自車両Mに比して道路端車両m#が著しく遅く、これらの車両の相対速度が大きい場合、追い越し始めてから追い越しが完了するまでに自車両Mによって走行される距離が比較的短くなるため、第2所定距離DXTH2は短くてよく、反対に、自車両Mが道路端車両m#よりも僅かに速く、これらの車両の相対速度が小さい場合、追い越し始めてから追い越しが完了するまでに自車両Mによって走行される距離が比較的長くなるため、第2所定距離DXTH2は長い方が好ましい。
また、第2所定距離DXTH2は、例えば、自車両Mが道路端車両m#に追い越してから何秒或いは何分以内に道路端車両m#に自車両Mが追い越されると不快に感じやすいのか、という人の感覚に基づいて決定されてもよい。例えば、自車両Mが道路端車両m#を追い越してから比較的長い時間が経過したにもかかわらず、道路端車両m#に自車両Mが追い越されると不快に感じるという乗員が搭乗する自車両Mについては、第2所定距離DXTH2を長くし、自車両Mが道路端車両m#を追い越してから比較的長い時間が経過すれば、道路端車両m#に自車両Mが追い越された場合であっても不快に感じないという乗員が搭乗する自車両Mについては、第2所定距離DXTH2を短くしてよい。この場合、第2所定距離DXTH2を超えた位置での道路端車両m#による自車両Mの追い越しは、乗員が不快に感じないものと見做してよい。
例えば、追越予測部146は、第1地図情報54や第2地図情報62が示す地図上において、ナビゲーション装置50により特定された自車両Mの現在位置から第2所定距離DXTH2先の将来の到達予定位置までの区間に、信号機や踏切、交差点、停止線、横断歩道などが存在する場合に、停止要因が存在すると判定する。また、例えば、追越予測部146は、自車両Mの現在位置から第2所定距離DXTH2先の将来の到達予定位置までの区間において、信号機や踏切、交差点、停止線、横断歩道が存在していることが認識部130によって認識されたり、複数の車両が渋滞しており、その複数の車両の末尾車両が停止していることが認識部130によって認識されたりした場合、停止要因が存在すると判定してよい。
追越予測部146は、現在位置から第2所定距離DXTH2先の将来の到達予定位置までの区間に、停止要因が存在すると判定した場合、すなわち、距離DX2が第2所定距離DXTH2以下であると判定した場合、更に、停止要因となる物標の手前で停止した自車両Mが、追い越した道路端車両m#に追いつかれる前に、自車両Mが発進するか否かを判定(予測)する(ステップS106)。
例えば、追越予測部146は、自車両Mの絶対速度や道路端車両m#の絶対速度、自車両Mと道路端車両m#との相対速度、自車両Mと道路端車両m#との相対距離、自車両Mと道路端車両m#とTTCなどに基づいて、後方の道路端車両m#が自車両Mに追いつく将来の時刻を導出する。追越予測部146は、現時刻から、導出した将来の時刻までの期間に、認識部130により停止要因として認識された渋滞の末尾車両が発進して自車両Mの前方の渋滞が解消されることを予測した場合、自車両Mが道路端車両m#に追いつかれる前に、自車両Mが発進すると判定する。
また、追越予測部146は、予測時点である現時刻から、導出した将来の時刻までの期間に、認識部130により停止要因として認識された信号機の灯色が、車両の通行を禁止することを表す赤色(第1色の一例)から、車両の通行を許可することを表す青色(第2色の一例)に変化することを予測した場合、自車両Mが道路端車両m#に追いつかれる前に、自車両Mが発進すると判定してもよい。
また、追越予測部146は、認識部130によって信号機の灯色の切替タイミングが認識された場合、その信号機の灯色の切替タイミングに基づいて、道路端車両m#に追いつかれる前に、自車両Mが発進するか否かを判定してもよい。例えば、切替タイミングは、赤色から青色に切り替わるタイミングと、青色から赤色に切り替わるタイミングとを含む。
例えば、信号機の灯色が青色から赤色に変わった直後に、その信号機が停止要因として認識された場合、信号機の灯色が青色から赤色に変わってからしばらく時間が経過した後に、その信号機が停止要因として認識された場合に比して、停止要因による自車両Mの停止期間は長くなり、追い越した道路端車両m#に自車両Mが追い越され易くなる。そのため、追越予測部146は、信号機の灯色が青色から赤色に切り替わってからの経過時間が閾値未満である場合、自車両Mが道路端車両m#に追いつかれる前に、自車両Mが発進しないと判定し、信号機の灯色が青色から赤色に切り替わってからの経過時間が閾値以上である場合、自車両Mが道路端車両m#に追いつかれる前に、自車両Mが発進すると判定してよい。
また、例えば、通信装置20が、信号機の灯色の切り替わるタイミングを監視する外部装置と通信を行って、外部装置から信号機の灯色の切り替わるタイミングを含む情報を取得した場合、追越予測部146は、通信装置20によって取得された情報に基づいて、自車両Mが道路端車両m#に追いつかれる前に、発進するか否かを判定してもよい。
また、追越予測部146は、認識部130により一時停止線が停止要因として認識された場合、他の停止要因に比して停止期間が短いことから、自車両Mが道路端車両m#に追いつかれる前に、自車両Mが発進すると判定してもよい。
追越予測部146は、S104の処理で、現在位置から第2所定距離DXTH2先の将来の到達予定位置までの区間に停止要因が存在しないと判定した場合、または、S106の処理で、自車両Mが道路端車両m#に追いつかれる前に、自車両Mが発進すると判定した場合、現時点で自車両Mが道路端車両m#を追い越したとしても、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されないと予測する(ステップS108)。
一方、追越予測部146は、S106の処理で、自車両Mが道路端車両m#に追いつかれる前に自車両Mが発進しないと判定した場合、現時点で自車両Mが道路端車両m#を追い越すと、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されると予測する(ステップS110)。
次に、イベント決定部142は、追越予測部146により、現時点で自車両Mが道路端車両m#を追い越した場合、将来の時点で追い越した道路端車両m#に自車両Mが追い越されることが予測された場合、認識部130によって道路端車両m#が認識されていることから、本来であれば、現在の区間に対して決められたイベントを追い越しイベントに変更するところを、現在の区間に対して決められたイベントを追従走行イベントに変更する。
これを受けて、目標軌道生成部144は、追従走行イベントに対応した目標軌道を生成する。この際、目標軌道生成部144は、道路端車両m#との車間距離DX1が第1所定距離DXTH1以上となるように決定した目標速度等を速度要素として含む目標軌道を、追従走行イベントに対応した目標軌道として生成する。第2制御部160は、生成された目標軌道に基づいて、自車両Mを道路端車両m#に追従させる(ステップS112)。
図5は、自車両Mを道路端車両m#に追従させる場面の一例を示す図である。図中Xは車両の進行方向を表し、Yは、車幅方向を表している。また、(@t1)は、時刻t1での各車両の状態(位置等)を表し、(@t2)は、時刻t2での各車両の状態を表し、(@t3)は、時刻t3での各車両の状態を表している。
例えば、時刻t1の場面(A)では、自車両Mの前方に、信号待ちによって停止した他車両m1およびm2と、道路端車両m#とが存在しており、自車両Mと道路端車両m#との車間距離DX1が第1所定距離DXTH1を超えており、これらの車両が互いに十分離れている。この場合、停止している複数の他車両のうち最も自車両Mに近い他車両m1が、停止要因となる。また、場面(A)では、自車両Mの現在位置から停止要因となる他車両m1までの距離DX2が第2所定距離DXTH2以下であることを表している。従って、場面(A)では、追越予測部146は、停止要因となる他車両m1に到達する将来の時点おいて道路端車両m#に自車両Mが追い越されると予測する。これによって、自車両Mは、時刻t1よりも更に時間が進んだ時刻t2の場面(B)や、時刻t2よりも更に時間が進んだ時刻t3の場面(C)に示すように、道路端車両m#を追い越さずに、道路端車両m#との車間距離DX1を第1所定距離DXTH1以上としながら、道路端車両m#に追従して走行する。
図4に戻り、一方、イベント決定部142は、追越予測部146により、現時点で自車両Mが道路端車両m#を追い越した場合であっても、将来の時点で追い越した道路端車両m#に自車両Mが追い越されないことが予測された場合、現在の区間に対して決められたイベントを追い越しイベントに変更する。
これを受けて、目標軌道生成部144は、追い越しイベントに対応した目標軌道を生成する。第2制御部160は、生成された目標軌道に基づいて、自車両Mに道路端車両m#を追い越させる(ステップS114)。
図6は、自車両Mに道路端車両m#を追い越させる場面の一例を示す図である。例えば、時刻t1の場面(D)では、図5の場面(A)と同様に、自車両Mの前方に、信号待ちによって停止した他車両m1およびm2と、道路端車両m#とが存在している。自車両Mと道路端車両m#との車間距離DX1は、第1所定距離DXTH1を超えており、これらの車両が互いに十分離れている。また、場面(D)では、自車両Mの現在位置から停止要因となる他車両m1までの距離DX2が第2所定距離DXTH2以下であるが、他車両m1の後方で自車両Mが停止してから道路端車両m#が自車両Mに追いつくよりも前に、信号機の灯色が赤色から青色に変わることが予測されている。従って、場面(D)では、追越予測部146は、自車両Mが他車両m1の後方に到達する将来の時点おいて、道路端車両m#に自車両Mが追い越されないと予測する。この場合、第2制御部160は、時刻t1よりも更に時間が進んだ時刻t2の場面(E)において、自車両Mに道路端車両m#を追い越させる。
例えば、道路端車両m#の追い越しが完了した時刻t3の場面(F)では、自車両Mが他車両m1の後方に到達して停止することから、後方の道路端車両m#が自車両Mに接近する。時刻t3よりも更に時間が進んだ時刻t4の場面(G)では、予測通りに、後方の道路端車両m#が自車両Mに追いつくよりも前に、信号機の灯色が赤色から青色に切り替わっていることを表している。この場合、信号機の灯色に従って、自車両Mの前方の他車両m1およびm2は、発進して交差点内に進入することになり、自車両Mも発進する。このように、前方に停止要因が存在していても、道路端車両m#が自車両Mに追いつくまでに十分な猶予があれば、自車両Mに前方の道路端車両m#を追い越させる。
図4に戻り、次に、イベント決定部142は、S114の処理の後、認識部130の認識結果に基づいて、追い越した道路端車両m#に自車両Mが追い越されたか否かを判定する(ステップS116)。例えば、追い越したことで自車両Mの後方で認識されるようになった道路端車両m#が、再び自車両Mの前方で認識されるようになった場合、イベント決定部142は、追い越した道路端車両m#に自車両Mが追い越されたと判定する。
行動計画生成部140は、追い越した道路端車両m#に自車両Mが追い越されたと判定した場合、次回以降の道路端車両m#の追い越しを抑制する(ステップS118)。
図7は、追い越した道路端車両m#に自車両Mが追い越される場面の一例を示す図である。図中m1およびm2は、信号待ちや交通渋滞によって停止した他車両を表している。例えば、時刻t1の場面(H)では、追越予測部146によって道路端車両m#に自車両Mが追い越されないと予測され、第2制御部160が、自車両Mの速度および操舵を制御して、自車両Mに道路端車両m#を追い越させている。時刻t1よりも更に時間が進んだ時刻t2の場面(I)では、追越予測部146の予測結果とは異なり、追い越した道路端車両m#に自車両Mが追い越されている。このような場合、例えば、行動計画生成部140のイベント決定部142は、現在のイベントを追い越しイベントに変更しないことで、道路端車両m#の追い越しを抑制する。また、これに代えて、行動計画生成部140の目標軌道生成部144が、追い越しイベントに対応した目標軌道を生成しない、或いは、生成した目標軌道を第2制御部160に出力しないことで、道路端車両m#の追い越しを抑制してもよい。
また、行動計画生成部140は、追い越した道路端車両m#に自車両Mが追い越されることが所定回数以上繰り返された場合に、道路端車両m#の追い越しを抑制してもよい。また、行動計画生成部140は、同一の道路端車両m#が繰り返し自車両Mを追い越した場合に、道路端車両m#の追い越しを抑制してもよい。これによって、本フローチャートの処理が終了する。
なお、上述した図4のフローチャートにおいて、自車両Mとの車間距離DX1が第1所定距離DXTH1以上であるか否かを判定する処理(S100の処理)と、車間距離DX1が第1所定距離DXTH1以上となるまで自車両Mを減速させる処理(S102)は、省略されてもよい。
また、追越予測部146は、S106の処理を省略し、S104の処理の前に第2所定距離DXTH2の長さ(大きさ)を変更してもよい。
例えば、追越予測部146は、現時刻から将来の時刻までの期間に、認識部130により停止要因として認識された渋滞の末尾車両が発進して自車両Mの前方の渋滞が解消されることを予測した場合、渋滞が解消されることを予測しない場合に比して、第2所定距離DXTH2を短くしてよい。
また、例えば、追越予測部146は、信号機の灯色が青色から赤色に切り替わってからの経過時間が閾値未満である場合(赤信号に変わってから間もない場合)、第2所定距離DXTH2を長くし、信号機の灯色が青色から赤色に切り替わってからの経過時間が閾値以上である場合(赤信号に変わってからしばらく経つ場合)、第2所定距離DXTH2を短くしてよい。
また、例えば、追越予測部146は、認識部130により一時停止線が停止要因として認識された場合、他の停止要因が認識された場合に比して、第2所定距離DXTH2を短くしてよい。
また、自動運転制御装置100は、第1所定距離DXTH1や第2所定距離DXTH2の代わりに、第1所定時間や、第2所定時間を参照して、各種判定を行ってもよい。第1所定時間は、例えば、自車両Mが道路端車両m#に到達するまでに経過することが想定される時間であり、第2所定時間は、例えば、自車両Mが停止要因に到達するまでに経過することが想定される時間である。これによって、道路端車両m#あるいは停止要因に到達するまでに残された時間に応じて、所定距離を用いた場合と同様の処理を行うことができる。なお、第1所定時間および第2所定時間は、更に自車両Mの加減速度も考慮してより正確な算出することができ、例えば第2所定時間については停止要因に対する自車両Mの減速も考慮して算出することができる。
また、第1実施形態の自動運転制御装置100は、図4に例示したフローチャートに代えて、図8に示すフローチャートに従って処理を行ってもよい。図8は、第1実施形態の自動運転制御装置100による一連の処理の流れの他の例を示すフローチャートである。本フローチャートの処理は、所定の周期で繰り返し行われてよい。
まず、イベント決定部142は、認識部130により認識された道路端車両m#と、自車両Mとの車間距離DX1が第1所定距離DXTH1以上であるか否かを判定する(ステップS200)。
イベント決定部142は、道路端車両m#と自車両Mとの車間距離DX1が第1所定距離DXTH1未満であると判定した場合、現在のイベントを減速イベントに決定する。これを受けて、目標軌道生成部144が目標軌道を生成し、第2制御部160が、目標軌道に基づいて、車間距離DX1が第1所定距離DXTH1以上となるまで自車両Mを減速させる(ステップS202)。
一方、自動運転制御装置100は、道路端車両m#と自車両Mとの車間距離DX1が第1所定距離DXTH1以上であると判定した場合、S202の処理を省略し、S204の処理に進む。
次に、イベント決定部142は、自車両Mが道路端車両m#に追い越された回数(以下、被追い越し回数)が、所定回数以上であるか否かを判定する(ステップS204)。所定回数は、例えば、1回であってもよいし、それ以上であってもよい。
自動運転制御装置100は、被追い越し回数が所定回数以上であると判定した場合、S212~S222の処理を行い、本フローチャートの処理を終了する。S212の処理は、上述したS104の処理と同じであり、S214の処理は、上述したS106の処理と同じであり、S216の処理は、上述したS110の処理と同じであり、S218の処理は、上述したS112の処理と同じであり、S220の処理は、上述したS108の処理と同じであり、S222の処理は、上述したS114の処理と同じであるため、ここでは説明を省略する。
一方、イベント決定部142は、被追い越し回数が所定回数未満であると判定した場合、自車両Mの現在位置から、第2所定距離DXTH2先の将来の到達予定位置までの区間に、停止要因が存在するか否かを判定する(ステップS206)。
イベント決定部142は、自車両Mの現在位置から、第2所定距離DXTH2先の将来の到達予定位置までの区間に、停止要因が存在しないと判定した場合、自車両Mに道路端車両m#を追い越させるために、現在のイベントを追い越しイベントに変更して、S204に処理を戻す。これによって、自車両Mが道路端車両m#を追い越す。
一方、イベント決定部142は、自車両Mの現在位置から、第2所定距離DXTH2先の将来の到達予定位置までの区間に、停止要因が存在すると判定した場合、認識部130の認識結果に基づいて、追い越した道路端車両m#に自車両Mが追い越されたか否かを判定する(ステップS208)。
イベント決定部142は、追い越した道路端車両m#に自車両Mが追い越されないと判定した場合、S204に処理を戻す。
一方、追越予測部146は、追い越した道路端車両m#に自車両Mが追い越されたと判定した場合、被追い越し回数をインクリメントし(ステップS210)、S204に処理を戻す。
このように、図8に例示したフローチャートの処理では、道路端車両m#を自車両Mが追い越し、その後に、追い越した道路端車両m#に自車両Mが追い越されるという一連の事象が所定回数以上繰り返された場合に、追越予測部146による予測結果を基に、道路端車両m#を追い越さずに追従させるべきか、それとも一連の事象が所定回数未満である場合と同様に、自車両Mに道路端車両m#を追い越させるべきなのかを決定する。
また、第1実施形態の自動運転制御装置100は、図4や図8に例示したフローチャートに代えて、図9に示すフローチャートに従って処理を行ってもよい。図9は、第1実施形態の自動運転制御装置100による一連の処理の流れの他の例を示すフローチャートである。本フローチャートの処理は、所定の周期で繰り返し行われてよい。
S300~S310の処理は、上述したS200~210の処理と同じであるため、説明を省略する。
追越予測部146は、被追い越し回数が所定回数以上である場合、自車両Mの現在位置から、第2所定距離DXTH2先の将来の到達予定位置までの区間に、停止要因が存在するか否かを判定する(ステップS312)。
追越予測部146は、被追い越し回数が所定回数以上である場合に、第2所定距離DXTH2先の将来の到達予定位置までの区間に停止要因が存在する場合、現時点で自車両Mが道路端車両m#を追い越すと、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されると予測する(ステップS314)。
次に、イベント決定部142は、追越予測部146により、現時点で自車両Mが道路端車両m#を追い越した場合、将来の時点で追い越した道路端車両m#に自車両Mが追い越されることが予測された場合、現在の区間に対して決められたイベントを追従走行イベントに変更する。
これを受けて、目標軌道生成部144は、追従走行イベントに対応した目標軌道を生成する。第2制御部160は、生成された目標軌道に基づいて、自車両Mを道路端車両m#に追従させる(ステップS316)。
一方、自動運転制御装置100は、被追い越し回数が所定回数以上である場合に、第2所定距離DXTH2先の将来の到達予定位置までの区間に停止要因が存在しない場合、自車両Mに道路端車両m#を追い越させたり、自車両Mを道路端車両m#に追従させたりせずに、本フローチャートの処理を終了する。これによって、自車両Mは、現在のイベントに対応した走行態様で走行し続けることになる。
また、自動運転制御装置100は、上述したフローチャートの処理に代えて、あるいは加えて、自車両Mの前方において、道路端車両m#と停止要因とを認識した場合、自車両Mに道路端車両m#を追い越させずに、例えば、自車両Mを道路端車両m#に追従させる処理を行ってもよい。自車両Mの前方において、道路端車両m#と停止要因との双方が認識された場合は、「将来の時点において、追い越した移動体に自車両が追い越されることが予測される場合」の他の例である。
また、上述した説明では、自車両Mに道路端車両m#を追い越させない条件の一例として、停止要因が所定距離以内に存在すること、或いは所定時間(到達までの時間)以内に存在することを含むものとしたがこれに限られない。例えば、自動運転制御装置100は、カメラ10、レーダ装置12、またはファインダ14といった車載センサによって停止要因が検知された場合に、自車両Mに道路端車両m#を追い越させないものとしてよい。すなわち、自動運転制御装置100は、地図情報などを用いずに、車載センサの検知距離の限界に基づいて、自車両Mに道路端車両m#を追い越させるのか、追い越させないのかを決定してよい。
以上説明した第1実施形態によれば、自車両Mの周辺の物体を認識する認識部130と、自車両Mの速度および操舵を制御して、自車両Mに、認識部130により物体として認識された道路端車両m#であって、自車両Mが存在する道路の端において自車両Mの前方に存在する道路端車両m#を追い越させる第2制御部160と、将来の時点において、追い越した道路端車両m#に自車両Mが追い越されることを予測する追越予測部146と、を備え、第2制御部160は、将来の時点において、追い越した道路端車両m#に自車両Mが追い越されると追越予測部146により予測された場合、現時点において、自車両Mに道路端車両m#を追い越させないため、より乗員が快く感じる自動運転を行うことができる。
<第2実施形態>
以下、第2実施形態について説明する。第2実施形態では、自車両Mに道路端車両m#を追い越させるときに、自車両Mと道路の端との間に、道路端車両m#がすり抜けることが可能なスペース(以下、すり抜けスペースと称する)が存在するか否かを予測し、その予測結果に応じて、追い越した道路端車両m#に自車両Mが追い越されるか否かを予測する点で、上述した第1実施形態と異なる。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する機能等についての説明は省略する。
以下、第2実施形態について説明する。第2実施形態では、自車両Mに道路端車両m#を追い越させるときに、自車両Mと道路の端との間に、道路端車両m#がすり抜けることが可能なスペース(以下、すり抜けスペースと称する)が存在するか否かを予測し、その予測結果に応じて、追い越した道路端車両m#に自車両Mが追い越されるか否かを予測する点で、上述した第1実施形態と異なる。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する機能等についての説明は省略する。
第2実施形態における追越予測部146は、例えば、自車両Mと道路端車両m#との相対速度、および自車両Mと道路端車両m#との相対距離に基づいて、道路端車両m#の追い越しが完了する将来の位置を導出し、導出した将来の位置における、自車両Mと道路の端の一部領域である区画線との間の距離ΔDYが、道路端車両m#の車幅DYm#よりも長い場合、すり抜けスペースが存在すると予測し、自車両Mと道路の端の一部領域である区画線との間の距離ΔDYが、道路端車両m#の車幅DYm#よりも短い場合、すり抜けスペースが存在しないと予測する。
図10は、道路端車両m#の追い越しが完了する将来の位置を導出する方法を説明するための図である。図中縦軸Xは、車両の進行方向に関する各車両の位置を表し、横軸Tは、時間を表している。現在時刻t0では、自車両Mの車両の進行方向Xに関する位置がXM_t0であり、道路端車両m#の車両の進行方向Xに関する位置がXm#_t0である。この場合、追越予測部146は、自車両Mと道路端車両m#とが現在時刻t0における速度で一定に走行するものと仮定し、自車両Mによる道路端車両m#の追い越しが完了する将来の位置を導出する。例えば、自車両Mが道路端車両m#を追い越してから、道路端車両m#との車間距離が追い越し前と同じ距離(すなわち第1所定距離DXTH1以上の距離DX1)となる位置に自車両Mが到達し、且つ自車両Mが車線中央に存在する時点で、自車両Mによる道路端車両m#の追い越しが完了したと判断されてよい。将来の時刻t1では、自車両Mと道路端車両m#との互いの位置(X方向の位置)が一致するため、自車両Mと道路端車両m#とが並走している状態となる。また、将来の時刻t2では、自車両Mが道路端車両m#を追い越してから、道路端車両m#との車間距離が追い越し前と同じ距離となっている。従って、追越予測部146は、時刻t2における自車両Mの位置XM_t2を、追い越しが完了する将来の位置として導出する。
図11は、すり抜けスペースが存在する場面およびすり抜けスペースが存在しない場面の一例を示す図である。例えば、場面(J)では、追い越しが完了する将来の時刻t2の自車両Mの位置において、自車両Mと区画線との間の距離ΔDYが道路端車両m#の車幅DYm#よりも長い。そのため、追越予測部146は、場面(J)では、すり抜けスペースが存在することから、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されると予測する。これを受けて、第2制御部160は、現時点で、自車両Mに道路端車両m#を追い越させず、自車両Mを道路端車両m#に追従させる。
また、場面(K)では、追い越しが完了する将来の時刻t2の自車両Mの位置において、自車両Mと区画線との間の距離ΔDYが道路端車両m#の車幅DYm#よりも短い。そのため、追越予測部146は、場面(K)では、すり抜けスペースが存在しないことから、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されないと予測する。これを受けて、第2制御部160は、現時点で、自車両Mに道路端車両m#を追い越させる。
上述した例では、自車両Mと区画線との間の距離ΔDYが道路端車両m#の車幅DYm#よりも長い場合、すり抜けスペースが存在すると予測したがこれに限られず、自車両Mと区画線との間の距離ΔDYと、区画線の外側の路肩または路側帯の車幅方向に関する距離との和が道路端車両m#の車幅DYm#よりも長い場合、すり抜けスペースが存在すると予測してもよい。
また、すり抜けスペースが存在する場合に、そのすり抜けスペース内に、道路端車両m#にとって走行の障害となる障害物OBが存在する場合、追越予測部146は、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されないと予測してもよい。
図12は、すり抜けスペースが存在する場面の他の例を示す図である。場面(L)では、追い越しが完了する将来の時刻t2の自車両Mの位置において、自車両Mと区画線との間の距離ΔDYが道路端車両m#の車幅DYm#よりも長い。また、場面(L)では、自車両Mと区画線との間に障害物OBが存在する。このような場合、追越予測部146は、すり抜けスペースが存在しても、将来の時点で、追い越した道路端車両m#に自車両Mが追い越されないと予測する。
以上説明した第2実施形態によれば、自車両Mに道路端車両m#を追い越させるときに、自車両Mと道路の端との間にすり抜けスペースが存在するか否かを予測し、その予測結果に応じて、追い越した道路端車両m#に自車両Mが追い越されるか否かを予測するため、上述した第1実施形態と同様に、乗員が快く感じる自動運転を行うことができると共に、より柔軟に道路端車両m#を追い越すことができる。
<第3実施形態>
以下、第3実施形態について説明する。第3実施形態では、自転車専用通行帯や自転車走行指導帯といったような自転車などの二輪車の専用に区画された車線(以下、二輪車専用車線と称する)に道路端車両m#が存在する場合、追越予測部146による予測結果に依らずに、自車両Mに道路端車両m#を追い越させる点で上述した第1および第2実施形態と異なる。二輪車専用車線は、例えば、車道との境界に柵やポールといった工作物によって車道との境界が物理的に区画されておらず、道路面に引かれた区画線によって車道から区画された車線である。以下、第1および第2実施形態との相違点を中心に説明し、第1および第2実施形態と共通する機能等についての説明は省略する。
以下、第3実施形態について説明する。第3実施形態では、自転車専用通行帯や自転車走行指導帯といったような自転車などの二輪車の専用に区画された車線(以下、二輪車専用車線と称する)に道路端車両m#が存在する場合、追越予測部146による予測結果に依らずに、自車両Mに道路端車両m#を追い越させる点で上述した第1および第2実施形態と異なる。二輪車専用車線は、例えば、車道との境界に柵やポールといった工作物によって車道との境界が物理的に区画されておらず、道路面に引かれた区画線によって車道から区画された車線である。以下、第1および第2実施形態との相違点を中心に説明し、第1および第2実施形態と共通する機能等についての説明は省略する。
第3実施形態におけるイベント決定部142は、認識部130によって、二輪車専用車線が認識された場合、追越予測部146による予測結果に依らずに、現在のイベントを追い越しイベントに変更する。これによって、目標軌道生成部144により追い越しイベントに対応した目標軌道が生成されるため、自車両Mが道路端車両m#を追い越すことになる。
図13は、追い越した道路端車両m#に自車両Mが追い越されると予測される場合に、自車両Mに道路端車両m#を追い越させる場面の一例を示す図である。図示の例では、自車線に二輪車専用車線が隣接しており、道路端車両m#が二輪車専用車線上を走行していることを表している。時刻t1の場面(M)では、自車両Mの現在位置から、信号待ちによって停止した他車両m1(停止要因)の後方までの距離DX2が第2所定距離DXTH2以下であるため、追越予測部146は、他車両m1に到達するまでの将来の時点おいて道路端車両m#に自車両Mが追い越されると予測する。一方、道路端車両m#が二輪車専用車線上を走行しているため、イベント決定部142は、他車両m1に到達するまでの将来の時点おいて道路端車両m#に自車両Mが追い越されるという予測結果に依らずに、現在のイベントを追い越しイベントに変更する。これを受けて、第2制御部160は、時刻t2の場面(N)に示すように、自車両Mに、二輪車専用車線上の道路端車両m#を自車線上で追い越させる。
以上説明した第3実施形態によれば、二輪車専用車線に道路端車両m#が存在する場合、追越予測部146による予測結果に依らずに、自車両Mに道路端車両m#を追い越させるため、乗員が快く感じる自動運転を行うことができると共に、より自然な自動運転を行うことができる。例えば、道路に二輪車専用車線が設けられている場合、自車両Mの乗員が、道路端車両m#が二輪車専用車線を通行することを想定しているため、道路端車両m#が自車両Mを追い越した場合であっても、不快に感じにくい傾向にある。従って、道路端車両m#が二輪車専用車線を走行している状況下では、追い越した道路端車両m#に自車両Mが追い越されることを許容することで、より自然な自動運転を行うことができる。
[ハードウェア構成]
図14は、実施形態の自動運転制御装置100のハードウェア構成の一例を示す図である。図示するように、自動運転制御装置100は、通信コントローラ100-1、CPU100-2、ワーキングメモリとして使用されるRAM100-3、ブートプログラムなどを格納するROM100-4、フラッシュメモリやHDDなどの記憶装置100-5、ドライブ装置100-6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ100-1は、自動運転制御装置100以外の構成要素との通信を行う。記憶装置100-5には、CPU100-2が実行するプログラム100-5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM100-3に展開されて、CPU100-2によって実行される。これによって、第1制御部120および第2制御部160のうち一部または全部が実現される。
図14は、実施形態の自動運転制御装置100のハードウェア構成の一例を示す図である。図示するように、自動運転制御装置100は、通信コントローラ100-1、CPU100-2、ワーキングメモリとして使用されるRAM100-3、ブートプログラムなどを格納するROM100-4、フラッシュメモリやHDDなどの記憶装置100-5、ドライブ装置100-6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ100-1は、自動運転制御装置100以外の構成要素との通信を行う。記憶装置100-5には、CPU100-2が実行するプログラム100-5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM100-3に展開されて、CPU100-2によって実行される。これによって、第1制御部120および第2制御部160のうち一部または全部が実現される。
上記説明した実施形態は、以下のように表現することができる。
プログラムを記憶するストレージと、
プロセッサと、を備え、
前記プロセッサは、前記プログラムを実行することにより、
自車両の周辺の物体を認識し、
前記自車両の速度および操舵を制御して、所定の場合に、前記物体として認識した移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させ、
前記移動体を認識した場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測し、
前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測した場合、前記自車両に前記移動体を追い越させない、
ように構成されている、車両制御装置。
プログラムを記憶するストレージと、
プロセッサと、を備え、
前記プロセッサは、前記プログラムを実行することにより、
自車両の周辺の物体を認識し、
前記自車両の速度および操舵を制御して、所定の場合に、前記物体として認識した移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させ、
前記移動体を認識した場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測し、
前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測した場合、前記自車両に前記移動体を追い越させない、
ように構成されている、車両制御装置。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1…車両システム、10…カメラ、12…レーダ装置、14…ファインダ、16…物体認識装置、20…通信装置、30…HMI、40…車両センサ、50…ナビゲーション装置、60…MPU、80…運転操作子、100…自動運転制御装置、120…第1制御部、130…認識部、140…行動計画生成部、142…イベント決定部、144…目標軌道生成部、146…追越予測部、160…第2制御部、162…取得部、164…速度制御部、166…操舵制御部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置
Claims (13)
- 自車両の周辺の物体を認識する認識部と、
前記自車両の速度および操舵を制御する運転制御部であって、所定の場合に、前記認識部により前記物体として認識された移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させる運転制御部と、
前記認識部により前記移動体が認識された場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測する予測部と、を備え、
前記運転制御部は、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると前記予測部により予測された場合、前記自車両に前記移動体を追い越させない、
車両制御装置。 - 前記予測部は、
現在位置から所定距離先の将来位置に前記自車両が到達する前記将来の時点において、前記自車両が停止することを予測し、
前記将来の時点において、前記自車両が停止することを予測した場合、前記追い越した前記移動体に前記自車両が追い越されると予測する、
請求項1に記載の車両制御装置。 - 前記予測部は、更に、
前記将来の時点において、前記自車両が停止することを予測した場合、前記移動体が前記自車両に追いつく前に前記自車両が発進することを予測し、
前記移動体が前記自車両に追いつく前に前記自車両が発進することを予測した場合、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されないと予測する、
請求項2に記載の車両制御装置。 - 前記運転制御部は、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されないと前記予測部により予測された場合、前記自車両に前記移動体を追い越させる、
請求項1から3のうちいずれか1項に記載の車両制御装置。 - 前記運転制御部は、更に、前記自車両の前方の信号機の灯色が車両の通行禁止を示す第1色である場合、前記自車両に前記移動体を追い越させない、
請求項1から4のうちいずれか1項に記載の車両制御装置。 - 前記予測部は、更に、現時点において、前記自車両の前方の信号機の灯色が前記第1色である場合に、前記現時点から前記将来の時点までの所定期間内に、前記信号機の灯色が前記第1色から車両の通行許可を示す第2色に変わることを予測し、
前記運転制御部は、前記所定期間内に前記信号機の灯色が前記第1色から前記第2色に変わると前記予測部により予測された場合、前記自車両に前記移動体を追い越させる、
請求項5に記載の車両制御装置。 - 前記予測部は、前記将来の時点において、前記自車両の脇に前記移動体が前記自車両を追い越せるスペースが存在する場合、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測する、
請求項1から6のうちいずれか1項に記載の車両制御装置。 - 前記運転制御部は、前記自車両に前記移動体を追い越させた後、前記追い越した前記移動体に前記自車両が追い越された場合、次回から、前記自車両に前記移動体を追い越させない、
請求項1から7のうちいずれか1項に記載の車両制御装置。 - 前記運転制御部は、前記自車両に前記移動体を追い越させた後、前記追い越した前記移動体に前記自車両が追い越されたことが所定回数以上繰り返された場合、次回から、前記自車両に前記移動体を追い越させない、
請求項1から8のうちいずれか1項に記載の車両制御装置。 - 前記運転制御部は、前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると前記予測部により予測された場合、前記自車両に前記移動体を追い越させずに、少なくとも前記移動体との車間距離を一定にしながら前記自車両を走行させる、
請求項1から9のうちいずれか1項に記載の車両制御装置。 - 前記認識部は、更に、前記道路から二輪車の専用車線を認識し、
前記運転制御部は、前記認識部により前記二輪車の専用車線が認識された場合、前記自車両に前記移動体を追い越させる、
請求項1から10のうちいずれか1項に記載の車両制御装置。 - 車載コンピュータが、
自車両の周辺の物体を認識し、
前記自車両の速度および操舵を制御して、所定の場合に、前記物体として認識した移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させ、
前記移動体を認識した場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測し、
前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測した場合、前記自車両に前記移動体を追い越させない、
車両制御方法。 - 車載コンピュータに、
自車両の周辺の物体を認識する処理と、
前記自車両の速度および操舵を制御して、所定の場合に、前記物体として認識した移動体であって、前記自車両が存在する道路の端側に寄って存在する移動体を、前記自車両に追い越させる処理と、
前記移動体を認識した場合、将来の時点において、前記追い越した前記移動体に前記自車両が追い越されることを予測する処理と、
前記将来の時点において、前記追い越した前記移動体に前記自車両が追い越されると予測した場合、前記自車両に前記移動体を追い越させない処理と、
を実行させるためのプログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880090832.3A CN111819124B (zh) | 2018-03-09 | 2018-03-09 | 车辆控制装置、车辆控制方法及存储介质 |
DE112018007253.3T DE112018007253T5 (de) | 2018-03-09 | 2018-03-09 | Fahrzeugsteuervorrichtung, Fahrzeugsteuerverfahren und Programm |
PCT/JP2018/009213 WO2019171576A1 (ja) | 2018-03-09 | 2018-03-09 | 車両制御装置、車両制御方法、およびプログラム |
JP2020504621A JP6916953B2 (ja) | 2018-03-09 | 2018-03-09 | 車両制御装置、車両制御方法、およびプログラム |
US16/978,213 US11932251B2 (en) | 2018-03-09 | 2018-03-09 | Vehicle control device, vehicle control method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/009213 WO2019171576A1 (ja) | 2018-03-09 | 2018-03-09 | 車両制御装置、車両制御方法、およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019171576A1 true WO2019171576A1 (ja) | 2019-09-12 |
Family
ID=67845700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009213 WO2019171576A1 (ja) | 2018-03-09 | 2018-03-09 | 車両制御装置、車両制御方法、およびプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11932251B2 (ja) |
JP (1) | JP6916953B2 (ja) |
CN (1) | CN111819124B (ja) |
DE (1) | DE112018007253T5 (ja) |
WO (1) | WO2019171576A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021059601A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
JP2021096617A (ja) * | 2019-12-17 | 2021-06-24 | 株式会社デンソー | 運転支援装置および運転支援プログラム |
JP2022028408A (ja) * | 2020-08-03 | 2022-02-16 | トヨタ自動車株式会社 | 車両の運転支援制御装置 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111712416B (zh) * | 2018-02-20 | 2023-08-22 | 日产自动车株式会社 | 汽车车道变更控制方法及汽车车道变更控制装置 |
JP7056459B2 (ja) * | 2018-08-10 | 2022-04-19 | トヨタ自動車株式会社 | 車両の運転支援装置 |
EP3971861B1 (en) * | 2019-05-15 | 2022-12-14 | Nissan Motor Co., Ltd. | Traveling control method and traveling control device for vehicle |
JP6913716B2 (ja) * | 2019-07-17 | 2021-08-04 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、及びプログラム |
JP7161458B2 (ja) * | 2019-09-09 | 2022-10-26 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
US11816988B2 (en) | 2019-12-30 | 2023-11-14 | Subaru Corporation | Mobility information provision system, server, and vehicle |
US11816982B2 (en) | 2019-12-30 | 2023-11-14 | Subaru Corporation | Mobility information provision system, server, and vehicle |
US12046140B2 (en) * | 2019-12-30 | 2024-07-23 | Subaru Corporation | Mobility information provision system, server, and vehicle |
US11674819B2 (en) | 2019-12-30 | 2023-06-13 | Subaru Corporation | Mobility information provision system, server, and vehicle |
DE102020134965A1 (de) | 2019-12-30 | 2021-07-01 | Subaru Corporation | System zur lieferung von mobilitätsinformation, server und fahrzeug |
US11900796B2 (en) | 2019-12-30 | 2024-02-13 | Subaru Corporation | Map generation system |
US20210200241A1 (en) * | 2019-12-30 | 2021-07-01 | Subaru Corporation | Mobility information provision system, server, and vehicle |
US12027039B2 (en) | 2019-12-30 | 2024-07-02 | Subaru Corporation | Mobility information provision system, server, and vehicle |
KR20220002789A (ko) * | 2020-06-30 | 2022-01-07 | 현대모비스 주식회사 | 차로 변경 보조 시스템 및 이를 이용한 차로 변경 방법 |
JP7264142B2 (ja) * | 2020-11-02 | 2023-04-25 | トヨタ自動車株式会社 | 路面種類推定装置および車両制御システム |
CN115257798A (zh) * | 2021-04-29 | 2022-11-01 | 沃尔沃汽车公司 | 自动驾驶控制方法及用于自动驾驶车辆的控制单元和系统 |
US20230009173A1 (en) * | 2021-07-12 | 2023-01-12 | GM Global Technology Operations LLC | Lane change negotiation methods and systems |
KR102652486B1 (ko) * | 2021-09-24 | 2024-03-29 | (주)오토노머스에이투지 | 라이다를 이용한 신호등 정보 예측 방법 및 이를 이용한 서버 |
US11840257B2 (en) * | 2022-03-25 | 2023-12-12 | Embark Trucks Inc. | Lane change determination for vehicle on shoulder |
JP7441258B2 (ja) * | 2022-03-25 | 2024-02-29 | 本田技研工業株式会社 | 制御装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009166691A (ja) * | 2008-01-16 | 2009-07-30 | Mazda Motor Corp | 車両の走行制御装置 |
JP2014043156A (ja) * | 2012-08-27 | 2014-03-13 | Nissan Motor Co Ltd | 車両用走行制御装置及び方法 |
JP2016203942A (ja) * | 2015-04-28 | 2016-12-08 | トヨタ自動車株式会社 | 走行制御装置 |
JP2017149254A (ja) * | 2016-02-24 | 2017-08-31 | トヨタ自動車株式会社 | 車両制御装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009248892A (ja) * | 2008-04-10 | 2009-10-29 | Toyota Motor Corp | 走行制御システム |
JP5614055B2 (ja) | 2010-02-22 | 2014-10-29 | トヨタ自動車株式会社 | 運転支援装置 |
JP2015014948A (ja) | 2013-07-05 | 2015-01-22 | スズキ株式会社 | 車両用運転支援装置 |
DE102013223428A1 (de) | 2013-11-18 | 2015-05-21 | Robert Bosch Gmbh | Verfahren und Fahrerassistenzeinrichtung zur Unterstützung von Spurwechseln bzw. Überholmanövern eines Kraftfahrzeugs |
JP6648411B2 (ja) * | 2014-05-19 | 2020-02-14 | 株式会社リコー | 処理装置、処理システム、処理プログラム及び処理方法 |
JP6031066B2 (ja) * | 2014-06-17 | 2016-11-24 | 富士重工業株式会社 | 車両の走行制御装置 |
WO2017120336A2 (en) * | 2016-01-05 | 2017-07-13 | Mobileye Vision Technologies Ltd. | Trained navigational system with imposed constraints |
US10402670B2 (en) * | 2016-04-19 | 2019-09-03 | GM Global Technology Operations LLC | Parallel scene primitive detection using a surround camera system |
DE102016208000A1 (de) * | 2016-05-10 | 2017-11-16 | Volkswagen Aktiengesellschaft | Kraftfahrzeug-Steuervorrichtung und Verfahren zum Betreiben der Steuervorrichtung zum autonomen Führen eines Kraftfahrzeugs |
CN117740023A (zh) * | 2017-03-01 | 2024-03-22 | 御眼视觉技术有限公司 | 用于利用感测不确定性导航的系统和方法 |
US11615628B2 (en) * | 2018-02-02 | 2023-03-28 | Sony Corporation | Information processing apparatus, information processing method, and mobile object |
-
2018
- 2018-03-09 WO PCT/JP2018/009213 patent/WO2019171576A1/ja active Application Filing
- 2018-03-09 DE DE112018007253.3T patent/DE112018007253T5/de not_active Withdrawn
- 2018-03-09 JP JP2020504621A patent/JP6916953B2/ja active Active
- 2018-03-09 CN CN201880090832.3A patent/CN111819124B/zh active Active
- 2018-03-09 US US16/978,213 patent/US11932251B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009166691A (ja) * | 2008-01-16 | 2009-07-30 | Mazda Motor Corp | 車両の走行制御装置 |
JP2014043156A (ja) * | 2012-08-27 | 2014-03-13 | Nissan Motor Co Ltd | 車両用走行制御装置及び方法 |
JP2016203942A (ja) * | 2015-04-28 | 2016-12-08 | トヨタ自動車株式会社 | 走行制御装置 |
JP2017149254A (ja) * | 2016-02-24 | 2017-08-31 | トヨタ自動車株式会社 | 車両制御装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021059601A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
JP7347522B2 (ja) | 2019-09-27 | 2023-09-20 | 株式会社アイシン | 運転支援装置及びコンピュータプログラム |
JP2021096617A (ja) * | 2019-12-17 | 2021-06-24 | 株式会社デンソー | 運転支援装置および運転支援プログラム |
JP7380171B2 (ja) | 2019-12-17 | 2023-11-15 | 株式会社デンソー | 運転支援装置および運転支援プログラム |
JP2022028408A (ja) * | 2020-08-03 | 2022-02-16 | トヨタ自動車株式会社 | 車両の運転支援制御装置 |
CN114084131A (zh) * | 2020-08-03 | 2022-02-25 | 丰田自动车株式会社 | 车辆的驾驶支援控制装置 |
JP7251531B2 (ja) | 2020-08-03 | 2023-04-04 | トヨタ自動車株式会社 | 車両の運転支援制御装置 |
US11634135B2 (en) | 2020-08-03 | 2023-04-25 | Toyota Jidosha Kabushiki Kaisha | Driving support control device for vehicle |
CN114084131B (zh) * | 2020-08-03 | 2024-01-30 | 丰田自动车株式会社 | 车辆的驾驶支援控制装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019171576A1 (ja) | 2021-01-07 |
DE112018007253T5 (de) | 2020-12-17 |
CN111819124B (zh) | 2023-09-26 |
US20210046936A1 (en) | 2021-02-18 |
JP6916953B2 (ja) | 2021-08-11 |
CN111819124A (zh) | 2020-10-23 |
US11932251B2 (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019171576A1 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP6704890B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7021983B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7030573B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7071173B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7043295B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7098366B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP6641583B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7085371B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7117881B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP6586685B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
US20190276029A1 (en) | Vehicle control device, vehicle control method, and storage medium | |
US20190278285A1 (en) | Vehicle control device, vehicle control method, and storage medium | |
JP7198176B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP2019137189A (ja) | 車両制御システム、車両制御方法、およびプログラム | |
JP2019156270A (ja) | 車両制御装置、車両制御方法、及びプログラム | |
JP2019159611A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP2019147486A (ja) | 車両制御システム、車両制御方法、およびプログラム | |
JP6583697B2 (ja) | 周辺監視装置、制御装置、周辺監視方法、およびプログラム | |
JP7166988B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP6648384B2 (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP2019056952A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP2022036418A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP7503941B2 (ja) | 制御装置、制御方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909115 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020504621 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18909115 Country of ref document: EP Kind code of ref document: A1 |