Nothing Special   »   [go: up one dir, main page]

WO2019167926A1 - 積層体、有機電界発光装置、液晶表示装置 - Google Patents

積層体、有機電界発光装置、液晶表示装置 Download PDF

Info

Publication number
WO2019167926A1
WO2019167926A1 PCT/JP2019/007232 JP2019007232W WO2019167926A1 WO 2019167926 A1 WO2019167926 A1 WO 2019167926A1 JP 2019007232 W JP2019007232 W JP 2019007232W WO 2019167926 A1 WO2019167926 A1 WO 2019167926A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polarizer
optically anisotropic
liquid crystal
anisotropic layer
Prior art date
Application number
PCT/JP2019/007232
Other languages
English (en)
French (fr)
Inventor
柴田 直也
暢之 芥川
慶介 吉政
佐多 博暁
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020207024031A priority Critical patent/KR20200111741A/ko
Priority to CN201980015948.5A priority patent/CN111819477A/zh
Priority to JP2020503514A priority patent/JPWO2019167926A1/ja
Publication of WO2019167926A1 publication Critical patent/WO2019167926A1/ja
Priority to US17/002,881 priority patent/US11667842B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • C09K19/3861Poly(meth)acrylate derivatives containing condensed ring systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/04Polyvinylalcohol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • C09K2323/061Inorganic, e.g. ceramic, metallic or glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a laminate, an organic electroluminescence device, and a liquid crystal display device.
  • Patent Documents 1 and 2 propose the use of a reverse wavelength dispersible polymerizable liquid crystal compound as the polymerizable compound used for forming the optically anisotropic layer.
  • a polarizing plate having an optically anisotropic layer formed using a reverse wavelength-dispersible polymerizable liquid crystal (polymerizable liquid crystal compound) described in Patent Documents 1 and 2 was prepared, and a practical embodiment (for example, this polarizing plate is sandwiched between substrates with low moisture permeability (for example, a glass substrate) from both sides in accordance with an organic electroluminescent smartphone for the purpose of preventing reflection of a smartphone, and the resulting laminate is heated to a high temperature. It was found that when exposed to the conditions below for a long time, redness unevenness occurred at the center in the plane of the laminate.
  • this invention makes it a subject to provide a laminated body which has a polarizer and an optically anisotropic layer and was excellent in thermal durability.
  • Another object of the present invention is to provide an organic electroluminescent device and a liquid crystal display device having the laminate.
  • the polarizing plate has a polarizer and an optically anisotropic layer,
  • the polarizer contains a polyvinyl alcohol resin
  • the optically anisotropic layer is a layer formed using a composition containing a polymerizable liquid crystal compound represented by the general formula (I) described later,
  • the moisture permeability of the substrate is 10 ⁇ 3 g / m 2 ⁇ day or less
  • the laminated body whose water content of a polarizing plate is 3.0 g / m ⁇ 2 > or less.
  • the organic electroluminescent apparatus and liquid crystal display device which have the said laminated body can be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “orthogonal” and “parallel” with respect to an angle mean an exact range of ⁇ 10 °, and “identical” and “different” with respect to an angle indicate whether or not the difference is less than 5 °. Can be judged on the basis of.
  • “visible light” means 380 to 780 nm.
  • a measurement wavelength is 550 nm.
  • the “slow axis” means a direction in which the refractive index becomes maximum in the plane.
  • the slow axis of the optically anisotropic layer the slow axis of the entire optically anisotropic layer is intended.
  • the A plate is defined as follows. There are two types of A plates, positive A plate (positive A plate) and negative A plate (negative A plate), and the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximum) ) Is nx, the refractive index in the direction orthogonal to the in-plane slow axis is ny, and the refractive index in the thickness direction is nz, the positive A plate satisfies the relationship of the formula (A1)
  • the negative A plate satisfies the relationship of the formula (A2).
  • the positive A plate shows a positive value for Rth
  • the negative A plate shows a negative value for Rth.
  • the positive C plate satisfies the relationship of the formula (C1), and the negative C plate is The relationship of Formula (C2) is satisfied.
  • the positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
  • Formula (C2) nz ⁇ nx ⁇ ny
  • includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means, for example, (nx ⁇ ny) ⁇ d (where d is the thickness of the film), but 0 to 10 nm, preferably 0 to 5 nm is also included in “nx ⁇ ny” It is.
  • a feature of the present invention is that the moisture content of the laminate is adjusted to a predetermined range.
  • the present inventors examined the cause of the occurrence of the above-mentioned redness unevenness, and when the laminate was exposed to a high temperature condition, the structure derived from the liquid crystal compound in the optically anisotropic layer was decomposed after a certain induction period. Has been found to occur rapidly and the fluctuation of the in-plane retardation value increases. It has been found that moisture is affecting the cause of the above decomposition.
  • the polymerizable liquid crystal compound represented by the general formula (I) may have an electron-withdrawing property from the viewpoint of reverse wavelength dispersibility, and as a result, any of the polymerizable liquid crystal compounds constituting the polymerizable liquid crystal compound may be provided. It is speculated that the positive polarization of the carbon atom increases, making it more susceptible to attack by nucleophiles.
  • FIG. 1 typical sectional drawing of one Embodiment of the laminated body of this invention is shown.
  • the stacked body 10A includes a first substrate 12A, a polarizing plate 14, and a second substrate 12B in this order. That is, the polarizing plate 14 is disposed between the first substrate 12A and the second substrate 12B.
  • the polarizing plate 14 includes a polarizer 16 and an optically anisotropic layer 18.
  • each member will be described in detail.
  • the laminate has two substrates.
  • the two substrates correspond to the first substrate 12A and the second substrate 12B.
  • the moisture permeability of the substrate is 10 ⁇ 3 g / m 2 ⁇ day or less. Among them, 10 ⁇ 4 g / m 2 ⁇ day or less is preferable, and 10 ⁇ 5 g / m 2 ⁇ day or less is more preferable in terms of durability of an organic electroluminescent device or a liquid crystal display device to which the laminate is applied. preferable.
  • the lower limit is not particularly limited, but is often 10 ⁇ 10 g / m 2 ⁇ day or more.
  • the method for measuring the moisture permeability of the substrate is as follows. It is measured using a water vapor transmission rate measuring device (AQUATRAN2 (registered trademark) manufactured by MOCON, INC.) Under conditions of a measurement temperature of 40 ° C. and a relative humidity of 90%.
  • the material constituting the substrate is not particularly limited, and may be an inorganic material or an organic material. Although it will not restrict
  • the substrate may have a single layer structure or a multilayer structure.
  • the substrate is preferably transparent, and is preferably a so-called transparent substrate.
  • transparent means that the visible light transmittance is 60% or more, preferably 80% or more, and more preferably 90% or more.
  • the upper limit is not particularly limited, but is often less than 100%.
  • the thickness of the substrate is not particularly limited, but is preferably 800 ⁇ m or less, more preferably 100 ⁇ m or less from the viewpoint of thinning. Although a minimum in particular is not restrict
  • the laminate has a polarizer.
  • the polarizer is a so-called linear polarizer having a function of converting light into specific linearly polarized light.
  • the polarizer includes a polyvinyl alcohol resin.
  • the polyvinyl alcohol-based resin is a resin containing a repeating unit of —CH 2 —CHOH—, and examples thereof include polyvinyl alcohol and an ethylene-vinyl alcohol copolymer.
  • the polyvinyl alcohol-based resin can be obtained, for example, by saponifying a polyvinyl acetate-based resin.
  • polyvinyl acetate-based resin examples include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol-based resin is not particularly limited, but is preferably 85 to 100 mol%, more preferably 95.0 to 99.95 mol%.
  • the degree of saponification can be determined according to JIS K 6726-1994.
  • the average degree of polymerization of the polyvinyl alcohol resin is not particularly limited, but is preferably 100 to 10,000, more preferably 1500 to 8000.
  • the average degree of polymerization can be determined according to JIS K 6726-1994, similarly to the degree of saponification.
  • the content of the polyvinyl alcohol resin in the polarizer is not particularly limited, but it is preferable that the polyvinyl alcohol resin is contained as a main component in the polarizer.
  • the main component means that the content of the polyvinyl alcohol-based resin is 50% by mass or more with respect to the total mass of the polarizer.
  • the content of the polyvinyl alcohol resin is preferably 90% by mass or more with respect to the total mass of the polarizer.
  • the upper limit is not particularly limited, but is often 99.9% by mass or less.
  • the polarizer preferably further contains a dichroic substance.
  • the dichroic substance include iodine or organic dye (dichroic organic dye). That is, the polarizer preferably contains polyvinyl alcohol as a main component and also contains a dichroic substance.
  • the method for producing the polarizer is not particularly limited, and may be a known method, such as a method in which a dichroic substance is adsorbed on a substrate containing polyvinyl alcohol and stretched.
  • the thickness of the polarizer is not particularly limited, but is often 20 ⁇ m or less, more often 15 ⁇ m or less, and 10 ⁇ m or less is more preferable, and less than 10 ⁇ m is more preferable, and 5 ⁇ m or less is more preferable in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but is often 2 ⁇ m or more, more often 3 ⁇ m or more.
  • the thickness of the polarizer is preferably 2 to 10 ⁇ m.
  • the laminate has an optically anisotropic layer.
  • the optically anisotropic layer is a layer formed using a composition containing a polymerizable liquid crystal compound represented by the general formula (I) described later.
  • the component in the composition used for formation of an optically anisotropic layer is explained in full detail first, and the manufacturing method and characteristic of an optically anisotropic layer are explained in full detail after that.
  • the composition contains a polymerizable liquid crystal compound represented by the general formula (I).
  • the polymerizable liquid crystal compound represented by the general formula (I) is a compound exhibiting liquid crystallinity.
  • D 1 and D 2 are each independently a single bond, —O—, —CO—O—, —C ( ⁇ S) O—, —CR 1 R 2 —, —CR 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2 —, —CR 1 R 2 —O—CR 3 R 4 —, —CO—O—CR 1 R 2 —, —O—CO—CR 1 R 2 —, —CR 1 R 2 —CR 3 R 4 —O—CO—, —CR 1 R 2 —O—CO—CR 3 R 4 —, —CR 1 R 2 —CO—O—CR 3 R 4 —, —NR 1 —CR 2 R 3 — or —CO—NR 1 — is represented.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
  • the plurality of R 1 , the plurality of R 2 , the plurality of R 3 and the plurality of R 4 may be the same as or different from each other.
  • G 1 and G 2 each independently represents a divalent alicyclic hydrocarbon group or aromatic hydrocarbon group having 5 to 8 carbon atoms, and the methylene group contained in the alicyclic hydrocarbon group is: It may be substituted with O—, —S—, or —NH—.
  • L 1 and L 2 each independently represent a monovalent organic group, and at least one selected from the group consisting of L 1 and L 2 represents a monovalent group having a polymerizable group.
  • Ar represents a divalent aromatic ring group represented by the following general formula (II-1), general formula (II-2), general formula (II-3) or general formula (II-4).
  • Q 1 represents —S—, —O—, or —NR 11 —
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y 1 represents an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms (in addition, the aromatic hydrocarbon group and the aromatic heterocyclic group are substituents) May have)
  • Z 1 , Z 2 and Z 3 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, or a monovalent carbon atom having 6 to 20 carbon atoms.
  • An aromatic hydrocarbon group, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or —SR 12 Z 1 and Z 2 may combine with each other to form an aromatic ring or an aromatic heterocyclic ring, and R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, A 1 and A 2 are each independently a group selected from the group consisting of —O—, —NR 21 —, —S—, and —CO—, and R 21 represents a hydrogen atom or a substituent, X represents a hydrogen atom or a non-metal atom of group 14 to group 16 to which a substituent may be bonded (preferably ⁇ O, ⁇ S, ⁇ NR ′, ⁇ C (R ′) R ′.
  • R ′ represents a substituent
  • Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle, preferably an aromatic hydrocarbon ring group;
  • a heterocyclic group an alkyl group having 3 to 20 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring; a group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring
  • An alkenyl group, Ay is a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or a carbon having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring
  • Each of the aromatic rings in Ax and Ay may have a substituent, and Ax and Ay may be bonded to form a ring
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • substituents examples include a halogen atom, alkyl group, halogenated alkyl group, alkenyl group, aryl group, cyano group, amino group, nitro group, nitroso group, carboxy group, alkylsulfinyl group having 1 to 6 carbon atoms, carbon An alkylsulfonyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylsulfanyl group having 1 to 6 carbon atoms, an N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 6 carbon atoms, N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms, or a combination thereof Is mentioned.
  • R 1 , R 2 , R 3 , R 4 , Q 1 , Y 1 , Z 1 , and Z 2 can be referred to, and the compound represented by the general formula (I) described in JP-A-2008-107767 a 1, a 2, and the description of X respectively a 1, a 2, and X can refer for, Ax of the compound represented by the general formula described in WO 2013/018526 (I), Ay of , the description with respect to Q 1 each a , Ay, it can be referred for Q 2.
  • Z 3 the description of Q 1 relating to the compound (A) described in JP2012-21068A can be referred to.
  • the organic group represented by L 1 and L 2 is particularly preferably a group represented by —D 3 —G 3 —Sp—P 3 , respectively.
  • D 3 has the same meaning as D 1.
  • G 3 represents a single bond, a divalent aromatic or heterocyclic group having 6 to 12 carbon atoms, or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and the above alicyclic hydrocarbon group
  • the methylene group contained in may be substituted with —O—, —S— or —NR 7 —, wherein R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • n represents an integer of 2 to 12
  • m represents an integer of 2 to 6
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the —CH 2 — hydrogen atom in each of the above groups may be substituted with a methyl group.
  • P 3 represents a polymerizable group.
  • the polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • the radical polymerizable group include known radical polymerizable groups, and an acryloyl group or a methacryloyl group is preferable. It is known that the acryloyl group is generally fast in the polymerization rate, and the acryloyl group is preferable from the viewpoint of improving the productivity, but the methacryloyl group can be similarly used as the polymerizable group of the highly birefringent liquid crystal.
  • Examples of the cationic polymerizable group include known cationic polymerizable groups, and examples thereof include an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group.
  • an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferable.
  • Examples of particularly preferred polymerizable groups include the following.
  • alkyl group may be any of linear, branched and cyclic, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group.
  • liquid crystal compound represented by the general formula (I) are shown below, but are not limited to these liquid crystal compounds.
  • the group adjacent to the acryloyloxy group represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and is a regioisomer having a different methyl group position. Represents a mixture of bodies.
  • the content of the polymerizable liquid crystal compound represented by the general formula (I) in the composition is not particularly limited, but is preferably 50 to 100% by mass, and preferably 70 to 99% by mass with respect to the total solid content in the composition. Is more preferable.
  • Solid content means the other component except the solvent in a composition, and even if the property is liquid, it calculates as solid content.
  • the composition may contain a liquid crystal compound other than the polymerizable liquid crystal compound represented by the general formula (I).
  • Other liquid crystal compounds include known liquid crystal compounds (rod-like liquid crystal compounds and discotic liquid crystal compounds).
  • Other liquid crystal compounds may have a polymerizable group.
  • the content of the other liquid crystal compound in the composition is preferably 0 to 50% by mass and more preferably 10 to 40% by mass with respect to the total mass of the polymerizable liquid crystal compound represented by formula (I).
  • a liquid crystal compound having in part a cyclohexane ring in which one hydrogen atom is substituted with a linear alkyl group is preferable.
  • the “cyclohexane ring in which one hydrogen atom is substituted with a linear alkyl group” means, for example, as shown in the following general formula (2), when it has two cyclohexane rings, A cyclohexane ring in which one hydrogen atom of the cyclohexane ring present on the side is substituted with a linear alkyl group.
  • the compound which has a structure represented by following General formula (2) is mentioned, for example, Especially the following which has a (meth) acryloyl group at the point from which the laminated body excellent in heat durability is obtained. It is preferable that it is a compound represented by General formula (3).
  • R 2 represents an alkyl group having 1 to 10 carbon atoms
  • n represents 1 or 2
  • W 1 and W 2 are each independently an alkyl group
  • It represents an alkoxy group or a halogen atom
  • W 1 and W 2 may be bonded to each other to form a ring structure which may have a substituent.
  • Z represents —COO—
  • L represents an alkylene group having 1 to 6 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group.
  • Examples of the compound include compounds represented by the following formulas A-1 to A-5.
  • R 4 represents an ethyl group or a butyl group.
  • liquid crystal compounds examples include compounds represented by the formulas (M1), (M2), or (M3) described in paragraphs [0030] to [0033] of JP2014-077068A. .
  • the composition may contain other polymerizable monomers other than the polymerizable liquid crystal compound represented by formula (I) and other liquid crystal compounds having a polymerizable group.
  • a polymerizable compound (polyfunctional polymerizable monomer) having two or more polymerizable groups is preferable in that the strength of the optically anisotropic layer is more excellent.
  • a polyfunctional radical polymerizable monomer is preferable. Examples of the polyfunctional radical polymerizable monomer include polymerizable monomers described in paragraphs [0018] to [0020] in JP-A No. 2002-296423.
  • the content of the polyfunctional polymerizable monomer is preferably 0.1 to 20% by mass with respect to the total solid content in the composition, Is more preferably from 10 to 10% by weight, still more preferably from 0.1 to 5% by weight.
  • the composition may contain a polymerization initiator.
  • a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation is preferable.
  • the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics, and the like.
  • Group acyloin compounds described in US Pat. No. 2,722,512
  • polynuclear quinone compounds described in US Pat. Nos.
  • an oxime type polymerization initiator is preferable, and a compound represented by the general formula (2) is more preferable.
  • X 2 represents a hydrogen atom or a halogen atom.
  • Ar 2 represents a divalent aromatic group
  • D 7 represents a divalent organic group having 1 to 12 carbon atoms.
  • R 11 represents an alkyl group having 1 to 12 carbon atoms
  • Y 2 represents a monovalent organic group.
  • examples of the halogen atom represented by X 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • examples of the divalent aromatic group represented by Ar 2 include aromatic hydrocarbon rings such as a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrolin ring; a furan ring , A pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, and a divalent group having an aromatic heterocyclic ring such as a benzothiazole ring.
  • examples of the divalent organic group having 1 to 12 carbon atoms represented by D 7 include a linear or branched alkylene group having 1 to 12 carbon atoms, Specific examples include a methylene group, an ethylene group, and a propylene group.
  • examples of the alkyl group having 1 to 12 carbon atoms represented by R 11 include a methyl group, an ethyl group, and a propyl group.
  • examples of the monovalent organic group represented by Y 2 include a functional group containing a benzophenone skeleton ((C 6 H 5 ) 2 CO).
  • a functional group containing a benzophenone skeleton in which the terminal benzene ring is unsubstituted or monosubstituted such as groups represented by the following general formula (2a) and the following general formula (2b), is preferable.
  • * represents a bonding position, that is, a bonding position with the carbon atom of the carbonyl group in the general formula (2).
  • Examples of the compound represented by the general formula (2) include a compound represented by the following formula S-1 and a compound represented by the following formula S-2.
  • the content of the polymerization initiator in the composition is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass with respect to the total solid content in the composition.
  • the composition may contain a solvent from the viewpoint of workability for forming the optically anisotropic layer.
  • the solvent include ketones (for example, acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, and cyclopentanone), ethers (for example, dioxane and tetrahydrofuran), and aliphatic hydrocarbons (for example, Hexane), alicyclic hydrocarbons (eg, cyclohexane), aromatic hydrocarbons (eg, toluene, xylene, and trimethylbenzene), halogenated carbons (eg, dichloromethane, dichloroethane, dichlorobenzene, and Chlorotoluene), esters (eg, methyl acetate, ethyl acetate, and butyl acetate), water, alcohols (eg, ethanol, isopropanol, butanol, and cycl
  • the composition may contain a leveling agent from the viewpoint of keeping the surface of the optically anisotropic layer smooth.
  • a leveling agent a fluorine-based leveling agent or a silicon-based leveling agent is preferable because the leveling effect with respect to the addition amount is high, and a fluorine-based leveling agent is more preferable because it hardly causes crying (bloom, bleed).
  • Examples of the leveling agent include compounds described in paragraphs [0079] to [0102] of JP-A-2007-069471, and a general formula (I) described in JP-A-2013-047204.
  • Polymerizable liquid crystal compounds (particularly the compounds described in paragraphs [0020] to [0032]), polymerizable liquid crystal compounds represented by the general formula (I) described in JP 2012-211306 A (particularly paragraphs [ Compounds described in [0022] to [0029]), liquid crystal alignment accelerators represented by general formula (I) described in JP-A No. 2002-129162 (particularly, paragraphs [0076] to [0078] and paragraphs [ And the compounds represented by the general formulas (I), (II) and (III) described in JP-A-2005-099248.
  • the compounds mentioned (in particular the compounds described in paragraphs [0092] - [0096]) and the like.
  • the composition may contain an orientation control agent as required.
  • the alignment control agent can form various alignment states such as homeotropic alignment (vertical alignment), tilt alignment, hybrid alignment, and cholesteric alignment, as well as homogeneous alignment, and a specific alignment state can be made more uniform and more precise. It can be realized by controlling to.
  • a low molecular alignment control agent and a high molecular alignment control agent can be used.
  • the low molecular orientation control agent include paragraphs [0009] to [0083] of JP-A No. 2002-20363, paragraphs [0111] to [0120] of JP-A No. 2006-106662, and JP-A 2012.
  • the description in paragraphs [0021] to [0029] of the publication No.-211306 can be referred to, the contents of which are incorporated herein.
  • the polymer orientation control agent for example, refer to paragraphs [0021] to [0057] of JP-A No. 2004-198511 and paragraphs [0121] to [0167] of JP-A No. 2006-106662. This content is incorporated herein by reference.
  • Examples of the alignment control agent that forms or promotes homeotropic alignment include, for example, boronic acid compounds and onium salt compounds, and specifically, paragraphs [0023] to [0032] of JP-A-2008-225281.
  • Paragraphs [0052] to [0058] of Japanese Patent Laid-Open No. 2012-208397, Paragraphs [0024] to [0055] of Japanese Patent Laid-Open No. 2008-026730, and Paragraph [0043] of Japanese Patent Laid-Open No. 2016-193869 [0055] and the like can be referred to, the contents of which are incorporated herein.
  • the content of the alignment control agent is not particularly limited, but is preferably 0.01 to 10% by mass, preferably 0.05 to 5% by mass with respect to the total solid content in the composition. Is more preferable.
  • the composition may contain components other than the components described above, and examples include surfactants, tilt angle control agents, alignment aids, plasticizers, and crosslinking agents.
  • the manufacturing method in particular of an optically anisotropic layer is not restrict
  • the composition is applied to a predetermined substrate (for example, a support layer described later) to form a coating film, and the resulting coating film is cured (active energy ray irradiation (light irradiation process)) and (Or heat treatment) can be used to produce a cured coating film (optically anisotropic layer).
  • the composition can be applied by a known method (for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method).
  • the alignment treatment can be performed by drying at room temperature (for example, 20 to 25 ° C.) or heating.
  • the liquid crystal phase formed by the alignment treatment can generally be transferred by a change in temperature or pressure.
  • it can be transferred also by a composition ratio such as the amount of solvent.
  • the heating time is preferably 10 seconds to 5 minutes, more preferably 10 seconds to 3 minutes, and even more preferably 10 seconds to 2 minutes.
  • the above-described curing treatment (active energy ray irradiation (light irradiation treatment) and / or heat treatment) on the coating film can also be referred to as an immobilization treatment for fixing the alignment of the liquid crystal compound.
  • the immobilization treatment is preferably performed by irradiation with active energy rays (preferably ultraviolet rays), and the liquid crystal is immobilized by polymerization of the liquid crystal compound.
  • the optically anisotropic layer is a film formed using the above-described composition.
  • the optical properties of the optically anisotropic layer are not particularly limited, but preferably function as a ⁇ / 4 plate.
  • the ⁇ / 4 plate is a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light), and has an in-plane retardation Re ( ⁇ ) at a specific wavelength ⁇ nm.
  • a plate (optically anisotropic layer) satisfying Re ( ⁇ ) ⁇ / 4.
  • the in-plane retardation Re (550) at a wavelength of 550 nm has a relationship of 110 nm ⁇ Re (550) ⁇ 160 nm. It is preferable to satisfy
  • Re (450) which is in-plane retardation measured at a wavelength of 450 nm of the optically anisotropic layer
  • Re (550) which is in-plane retardation measured at a wavelength of 550 nm of the optically anisotropic layer
  • optical anisotropy Re (650) which is the in-plane retardation measured at a wavelength of 650 nm of the layer
  • the range of Re (550) / Re (450) is not particularly limited, but is preferably 1.05 to 1.25, more preferably 1.13 to 1.23.
  • the range of Re (650) / Re (550) is not particularly limited, but is preferably 1.01 to 1.25, and more preferably 1.01 to 1.10.
  • the optically anisotropic layer may be an A plate or a C plate, and is preferably a positive A plate.
  • the positive A plate can be obtained, for example, by horizontally aligning the polymerizable liquid crystal compound represented by the general formula (I).
  • the optically anisotropic layer may have a single layer structure or a multilayer structure.
  • a laminate of an A plate (for example, a positive A plate) and a C plate (for example, a positive C plate) may be used.
  • each layer corresponds to the layer formed using the composition mentioned above.
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.5 to 10 ⁇ m, more preferably 1.0 to 5 ⁇ m from the viewpoint of thinning.
  • the relationship between the transmission axis of the polarizer and the slow axis of the optically anisotropic layer is not particularly limited.
  • the optically anisotropic layer is a ⁇ / 4 plate, and the angle between the transmission axis of the polarizer and the slow axis of the optically anisotropic layer is 45 ⁇ 10 °. A range (35-55 °) is preferred.
  • IPS In-Plane-Switching
  • the angle formed between the transmission axis of the polarizer and the slow axis of the optically anisotropic layer is in the range of 0 ⁇ 10 ° ( ⁇ 10 to 10 °) or in the range of 90 ⁇ 10 ° (80 to 100 °). ) Is preferred.
  • the laminated body of this invention may have other members other than the board
  • the laminate may further have a polarizer protective film.
  • a laminated body 10 ⁇ / b> B that is another embodiment of the laminated body of the present invention includes a first substrate 12 ⁇ / b> A, a first polarizer protective film 20 ⁇ / b> A, and a polarizer 16.
  • the second polarizer protective film 20B, the optically anisotropic layer 18, and the second substrate 12B are sequentially provided.
  • FIG. 2 a laminated body 10 ⁇ / b> B that is another embodiment of the laminated body of the present invention includes a first substrate 12 ⁇ / b> A, a first polarizer protective film 20 ⁇ / b> A, and a polarizer 16.
  • the second polarizer protective film 20B, the optically anisotropic layer 18, and the second substrate 12B are sequentially provided.
  • a laminated body has a polarizer protective film on the surface on the opposite side to the optically anisotropic layer of a polarizer. That is, the laminated body laminated
  • the laminate may have an adhesive layer or an adhesive layer between the layers.
  • the laminate is adhesive between the optically anisotropic layer and the polarizer. You may have an adhesion layer or an adhesion layer.
  • the configuration of the polarizer protective film is not particularly limited, and may be, for example, a transparent support or a hard coat layer, or a laminate of a transparent support and a hard coat layer.
  • a known layer can be used.
  • a layer obtained by polymerizing and curing a polyfunctional monomer may be used.
  • a transparent support body a well-known transparent support body (preferably transparent resin support body) can be used.
  • cellulose resin (hereinafter also referred to as cellulose acylate) represented by triacetyl cellulose, norbornene resin (ZEONEX, ZEONOR, JSR (manufactured by Nippon Zeon Co., Ltd.)) Arton Co., Ltd.), acrylic resins, polyester resins, and polystyrene resins.
  • a cellulose resin or a norbornene resin is preferable, and a norbornene resin is more preferable.
  • the norbornene-based resin refers to a resin having a norbornene skeleton. More specifically, a cycloolefin polymer (COP) and a cycloolefin copolymer (COC) can be mentioned.
  • the thickness of the polarizer protective film is not particularly limited, but is preferably 40 ⁇ m or less and more preferably 25 ⁇ m or less from the viewpoint that the thickness of the polarizing plate can be reduced.
  • the lower limit is not particularly limited, but is often 10 ⁇ m or more.
  • the stacked body may include an alignment film.
  • the alignment film is a layer having a function of defining the alignment direction of the liquid crystal compound disposed thereon.
  • the alignment film is usually a film (layer) provided on one surface of the optically anisotropic layer.
  • the alignment film examples include a rubbing treatment film of a layer containing an organic compound such as a polymer, an oblique deposition film of an inorganic compound, and a film having a microgroove.
  • the alignment film examples include a so-called photo-alignment film (photo-alignment film) in which a photo-alignment material is irradiated with polarized light or non-polarized light to form an alignment film.
  • a film formed by rubbing the surface of a layer (polymer layer) containing an organic compound such as a polymer is preferable. The rubbing treatment is carried out by rubbing the surface of the polymer layer several times with paper or cloth in a certain direction (preferably in the longitudinal direction of the support).
  • the polymer used for forming the alignment film examples include a polyimide resin and a polyvinyl alcohol resin.
  • the thickness of the alignment film is not particularly limited as long as it can exert an alignment function, but is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the laminated body may have an adhesive layer or an adhesive layer between the layers in order to ensure adhesion between the layers. Moreover, the laminated body may have a transparent support body between each layer.
  • the laminate may have an optically anisotropic layer other than the optically anisotropic layer formed using the composition containing the polymerizable liquid crystal compound represented by the general formula (I) described above. .
  • the other optically anisotropic layer may be an A plate or a C plate.
  • the laminate may include a touch sensor.
  • the configuration of the touch sensor is not particularly limited, and a capacitive ITO (Indium Tin Oxide) film, a silver mesh film, a copper mesh film, and a silver nanowire film may be used. Further, in order to make the ITO electrode invisible, the laminate may further include a refractive index matching layer.
  • ITO Indium Tin Oxide
  • the polarizing plate includes at least the above-described optically anisotropic layer and a polarizer.
  • the water content of the polarizing plate is at 3.0 g / m 2 or less, in that the laminate has excellent thermally durability can be obtained, preferably from 2.3 g / m 2 or less, and more is 1.5 g / m 2 or less Preferably, 0.8 g / m 2 or less is particularly preferable.
  • the lower limit is not particularly limited, but is often 0.1 g / m 2 or more.
  • the method for adjusting the water content of the polarizing plate is not particularly limited, and examples thereof include a method of adjusting the water content of the polarizing plate by allowing the polarizing plate to stand in a predetermined environment.
  • a predetermined laminate is obtained by sandwiching a polarizing plate having a predetermined water content between two glass plates.
  • the water content measurement target include a polarizing plate that includes an optically anisotropic layer and a polarizer, and includes a member positioned between the two.
  • the measurement target of the water content is the optically anisotropic layer, the adhesive layer , A polarizer protective film, and a polarizing plate containing a polarizer.
  • the polarizer protective film is arrange
  • the measurement target of the water content is the optically anisotropic layer.
  • An adhesive layer, a polarizer protective film, a polarizer, and a polarizing plate including a polarizer protective film are applicable.
  • the measurement target of the water content is the optically anisotropic layer, the adhesive layer, and the like.
  • a polarizing plate including an adhesion layer, a polarizer, and a polarizer protective film is applicable.
  • the other members and the polarizing plate are included if the other members do not substantially affect the water content.
  • the initial mass of the polarizing plate to be measured and the amount of change from the dry mass after drying for 2 hours at 120 ° C. (initial mass ⁇ dry mass) were converted per unit area. It means mass.
  • a polarizing plate is allowed to stand in a predetermined environment, and the moisture content of the polarizing plate is adjusted and sandwiched between two glass plates, a polarizing plate immediately before being sandwiched between the two glass plates
  • the water content of can be measured by the above method.
  • the temperature is 25 ° C. and the humidity is 60%.
  • the laminated body is decomposed within 30 minutes under the environment, the polarizing plate is taken out, and the water content of the polarizing plate can be calculated by the above method.
  • the manufacturing method in particular of the said laminated body is not restrict
  • an optically anisotropic layer may be formed directly on the polarizer.
  • the polarizing plate in the laminate of the present invention is useful as an antireflection plate. More specifically, when the optically anisotropic layer in the polarizing plate is a ⁇ / 4 plate, the laminate can be suitably applied as an antireflection plate.
  • the optically anisotropic layer in the laminate has a multilayer structure of a positive A plate and a positive C plate, the total Rth of the optically anisotropic layers can be adjusted to be close to zero. The visibility in the oblique direction is improved.
  • the optically anisotropic layer has a multilayer structure of a positive A plate (preferably a positive A plate functioning as a ⁇ / 4 plate) and a positive C plate
  • the positive A plate is disposed on the polarizer side.
  • the positive C plate may be arranged on the polarizer side.
  • the laminate can be applied to various image display devices such as liquid crystal display devices, plasma display panels, organic electroluminescent devices, and cathode ray tube display devices.
  • the optically anisotropic layer in the laminate of the present invention is useful as an optical compensation film.
  • the optical compensation film is suitably used for an optical compensation application of a liquid crystal display device, and can improve color change when viewed from an oblique direction and light leakage during black display.
  • an optical compensation film can be provided between the polarizer of the IPS liquid crystal display device and the liquid crystal cell.
  • the optical anisotropic layer in the laminate includes a positive A plate and a positive C plate, so that a great effect can be obtained.
  • the optically anisotropic layer has a multilayer structure of a positive A plate (preferably a positive A plate functioning as a ⁇ / 4 plate) and a positive C plate
  • the positive A plate may be disposed on the polarizer side.
  • a positive C plate may be disposed on the polarizer side.
  • the angle formed between the slow axis of the positive A plate and the absorption axis of the polarizer is preferably in the range of 90 ° ⁇ 10 °. .
  • the slow axis of the positive A plate and the absorption axis of the polarizer are parallel.
  • the positive A plate and positive C plate preferably exhibit reverse wavelength dispersion.
  • Organic electroluminescence device preferably, an organic EL (electroluminescence) display device
  • liquid crystal display device preferably, a liquid crystal display device
  • Organic electroluminescence display As an organic electroluminescence display which is an example of the organic electroluminescent apparatus of this invention, the aspect which has the laminated body of this invention and the organic electroluminescence display panel in this order from a visual recognition side is mentioned suitably, for example. It is preferable that the optically anisotropic layer included in the laminate is disposed closer to the organic EL display panel than the polarizer. In this case, the polarizing plate is used as a so-called antireflection plate. Moreover, the board
  • an organic EL display panel is a display panel configured by using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode).
  • the configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
  • an organic electroluminescence display containing a laminated body the aspect of the organic electroluminescence display for a smart phone and a tablet is mentioned.
  • a cover glass / (touch sensor) / (polarizer protection) Film) / polarizer / (polarizer protective film) / optically anisotropic layer / (touch sensor) / organic EL sealing glass, high barrier film or organic EL barrier film are assumed.
  • the liquid crystal display device of the present invention is an example of an image display device, and includes the above-described laminate of the present invention and a liquid crystal layer.
  • the polarizing plate in the laminate of the present invention is preferably used as the polarizing plate on the front side, and this polarizing plate is used as the polarizing plate on the front side and the rear side. It is more preferable to use the polarizing plate in the laminate of the invention.
  • the optically anisotropic layer contained in the polarizing plate is disposed closer to the liquid crystal layer than the polarizer.
  • the optically anisotropic layer can be suitably used as an optical compensation film.
  • the substrate disposed on the liquid crystal layer side may function as a substrate disposed on both sides of the liquid crystal layer.
  • the glass substrate disposed on the liquid crystal side is composed of a liquid crystal layer and two glass substrates sandwiching the liquid crystal layer. It may function as a glass substrate in the liquid crystal cell.
  • a liquid crystal display device containing a laminated body the aspect of the IPS liquid crystal display device for a smart phone and a tablet is mentioned,
  • a structure applicable to a laminated body a cover glass / (touch sensor) / (polarizer protective film) ) / Polarizer / (polarizer protective film) / optically anisotropic layer / liquid crystal cell glass.
  • the member shown by () in the said structure does not need.
  • the liquid crystal display device is preferably limited to a VA (Virtual Alignment) mode, an OCB (Optical Compensated Bend) mode, an IPS mode, an FFS (Fringed Field Switching) mode, or a TN (Twisted Nematic). It is not a thing. Similar to the IPS mode, the FFS mode is a mode in which the liquid crystal molecules are always switched with respect to the surface of the liquid crystal layer, and may be considered as one of the IPS modes in the present invention.
  • polarizer 1 with protective film The surface of the support of cellulose triacetate film TJ25 “Z-TAC” (Fuji Film: thickness 25 ⁇ m) was subjected to alkali saponification treatment. Specifically, after immersing the support in an aqueous 1.5 N sodium hydroxide solution at 55 ° C. for 2 minutes, the support was washed in a water bath at room temperature, and further 0.1 N sulfuric acid at 30 ° C. was added. Used to neutralize. After neutralization, the support was washed in a water bath at room temperature and further dried with hot air at 100 ° C. to obtain a polarizer protective film.
  • a roll-shaped polyvinyl alcohol film having a thickness of 75 ⁇ m was stretched in an MD (Machine Direction) direction in an aqueous iodine solution and dried to obtain a polarizer 1 having a thickness of 14 ⁇ m.
  • the polarizer protective film was bonded to both surfaces of the polarizer 1 to produce a polarizer 1 with a protective film.
  • polarizer 2 with protective film> One of the two polarizer protective films is changed to a non-stretched cycloolefin film (thickness 25 ⁇ m) whose surface is corona-treated, and the polarizer protective film is bonded to one surface of the polarizer 1, and the other surface
  • a polarizer 1 with a protective film was prepared according to the same procedure as in ⁇ Preparation of polarizer 1 with protective film> except that the unstretched cycloolefin film was bonded to the above.
  • polarizer 3 with protective film> A polarizer 3 with a protective film was prepared according to the same procedure as in ⁇ Preparation of polarizer 1 with protective film> except that the thickness of the polarizer was changed from 14 ⁇ m to 9 ⁇ m.
  • polarizer 4 with protective film> With reference to the description in Example 1 of JP-A-2017-194710, a laminated film (base film / primer layer / polarizer) containing a polyvinyl alcohol polarizer having a thickness of 4 ⁇ m was obtained. Next, the polarizer protective film prepared in ⁇ Preparation of Polarizer 1 with Protective Film> is bonded onto the polarizer, and the base film and the primer layer are peeled off from the obtained laminated film to expose the polarized light. The polarizer protective film produced in ⁇ Preparation of Polarizer 1 with Protective Film> was bonded to the surface of the child to produce Polarizer 4 with a protective film.
  • polarizer 5 with protective film> With reference to the description in Example 1 of JP-A-2017-194710, a laminated film (base film / primer layer / polarizer) containing a polyvinyl alcohol polarizer having a thickness of 4 ⁇ m was obtained. Next, the polarizer protective film prepared in ⁇ Preparation of Polarizer 1 with Protective Film> is bonded onto the polarizer, and the base film and the primer layer are peeled off from the obtained laminated film to expose the polarized light. An unstretched cycloolefin film (thickness 25 ⁇ m) was bonded to the surface of the child to produce a polarizer 5 with a protective film.
  • polarizer 7 with protective film a polyvinyl alcohol polarizer having a thickness of 4 ⁇ m and an acrylic resin film HX-40UC (manufactured by Toyo Kohan Co., Ltd.) on one side of the polarizer: A linearly polarizing plate 7 having a thickness of 40 ⁇ m) as a protective film was prepared.
  • Example 1 Production of laminate 1> The following composition was put into a mixing tank and stirred to prepare a cellulose acetate solution used as a core layer cellulose acylate dope.
  • Core layer cellulose acylate dope Cellulose acetate having a degree of acetyl substitution of 2.88 100 parts by mass Polyester compound B described in Examples of JP-A-2015-227955 12 parts by mass Compound G 2 parts by mass of the following Methylene chloride (first solvent) 430 parts by mass of methanol (Second solvent) 64 parts by mass ⁇
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m, and then the core layer cellulose acylate dope and the outer layer cellulose acylate dope on both sides thereof.
  • 3 layers were simultaneously cast on a drum at 20 ° C. from a casting port (band casting machine).
  • the film was peeled off from the drum with a solvent content of about 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and dried while being stretched in the transverse direction at a draw ratio of 1.1.
  • the obtained film was further dried by conveying between rolls of a heat treatment apparatus, and an optical film having a thickness of 40 ⁇ m was produced.
  • the core layer of the optical film had a thickness of 36 ⁇ m, and the outer layers disposed on both sides of the core layer had a thickness of 2 ⁇ m.
  • Re (550) of the obtained optical film was 0 nm.
  • Example 3 of JP 2012-155308 A a coating solution for the photo-alignment film 1 was prepared and applied on the optical film with a wire bar. Then, the obtained optical film was dried with 60 degreeC warm air for 60 second, and the coating film 1 with a thickness of 300 nm was produced.
  • composition of coating liquid A-1 for forming positive A plate ⁇ Composition of coating liquid A-1 for forming positive A plate ⁇
  • the following polymerizable liquid crystal compound X-1 20.00 parts by mass
  • the following liquid crystal compound L-1 40.00 parts by mass
  • the following liquid crystal compound L-2 40.00 parts by mass
  • the following polymerization initiator S-1 0.60 parts by mass leveling agent ( Compound T-1) 0.10 parts by mass Methyl ethyl ketone (solvent) 200.00 parts by mass Cyclopentanone (solvent) 200.00 parts by mass ⁇ ⁇
  • the produced coating film 1 was irradiated with ultraviolet rays using an ultrahigh pressure mercury lamp in the atmosphere.
  • a wire grid polarizer manufactured by Moxtek, ProFlux PPL02
  • the illuminance of the ultraviolet ray was set to 10 mJ / cm 2 in the UV-A region (ultraviolet ray A wave, wavelength 320 to 380 nm integrated).
  • the coating liquid A-1 for forming a positive A plate was applied onto the photo-alignment film 1 using a bar coater.
  • the obtained coating film was heated and aged at a film surface temperature of 100 ° C. for 20 seconds, cooled to 90 ° C., and then UV-irradiated at 300 mJ / cm 2 using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) under air.
  • the optically anisotropic layer 1 (positive A plate A1) was formed by fixing the nematic alignment state to obtain an optical film with an optically anisotropic layer.
  • the formed optically anisotropic layer 1 had a thickness of 2.5 ⁇ m.
  • Re (550) of optically anisotropic layer 1 is 145 nm, Rth (550) is 73 nm, Re (550) / Re (450) is 1.15, Re (650) / Re (550) is 1.01, light
  • the tilt angle of the axis was 0 °, and the liquid crystal compound was homogeneously aligned.
  • a film with an adhesive was produced according to the procedure of Example 1 of JP-A-2017-134414.
  • the optically anisotropic layer 1 side in the optical film with an optically anisotropic layer was bonded to one surface of the polarizer 1 with a protective film using a film with an adhesive.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the optically anisotropic layer 1 was 45 °.
  • the adhesive of the film with the adhesive is bonded to one surface of the polarizer 1 with the protective film, the film in the film with the adhesive is peeled off, and further, with respect to the adhesive, The optical anisotropic layer 1 in the optical film with an optical anisotropic layer was bonded.
  • the optical film with the photo-alignment film 1 was removed, and the polarizing plate was produced.
  • a polarizing plate sample having a size of 14 cm ⁇ 7 cm was cut out from the obtained polarizing plate, and the moisture content in the polarizing plate sample was adjusted to 2.4 g / m 2 by appropriately adjusting the humidity control conditions.
  • a film with an adhesive was used from both sides of the polarizing plate sample and sandwiched between glass plates to obtain a laminate 1 including a glass plate, a polarizing plate, and a glass plate in this order.
  • the moisture permeability of the glass plate was measured in an atmosphere of 40 ° C. and 90% RH, and found to be 1.0 ⁇ 10 ⁇ 3 g / It was less than m 2 ⁇ day.
  • Example 1 is the same as Example 1 except that the positive A plate forming coating solution A-2 described later is used instead of the positive A plate forming coating solution A-1, and the water content of the polarizing plate is changed as shown in Table 1.
  • the laminated body 2 was obtained according to the same procedure.
  • the water content of the polarizing plate in the laminate 2 is shown in Table 1.
  • the formed optically anisotropic layer 2 (positive A plate A2) had a film thickness of 2.7 ⁇ m.
  • Re (550) of optically anisotropic layer 2 was 145 nm, Rth (550) was 73 nm, Re (550) / Re (450) was 1.15, and Re (650) / Re (550) was 1.01. It was.
  • composition of coating liquid A-2 for forming positive A plate ⁇ 20.00 parts by mass of the polymerizable liquid crystal compound X-1 40.00 parts by mass of the liquid crystal compound L-1 40.00 parts by mass of the liquid crystal compound L-2 0.60 parts by mass of the polymerization initiator S-1
  • Compound B-1 7.00 parts by mass Leveling agent (Compound T-1) 0.10 parts by mass Methyl ethyl ketone (solvent) 200.00 parts by mass Cyclopentanone (solvent) 200.00 parts by mass ⁇
  • Laminates 3 and 4 were obtained according to the same procedure as in Example 2, except that the water content of the polarizing plate was changed as shown in Table 1.
  • Examples 5 to 8 Using polarizers 2 to 5 with protective film instead of polarizer 1 with protective film, an optically anisotropic layer is bonded to the side of the polarizer protective film composed of Z-TAC of the polarizer with protective film, and polarized Laminates 5 to 8 were obtained according to the same procedure as in Example 2 except that the moisture content of the plate was changed as shown in Table 1.
  • Example 1 is the same as Example 1 except that the positive A plate forming coating solution A-3 described later was used instead of the positive A plate forming coating solution A-1, and the water content of the polarizing plate was changed as shown in Table 1.
  • the laminated body 9 was obtained according to the same procedure.
  • Re (550) of the formed optically anisotropic layer 3 (positive A plate A3) is 130 nm
  • Rth (550) is 65 nm
  • Re (550) / Re (450) is 1.19
  • Re (650). / Re (550) was 1.02.
  • Liquid crystal compound L-6 100.00 parts by mass Polymerization initiator S-1 0.60 parts by mass Polymerizable compound B-1 7.00 parts by mass Leveling agent (compound T-1) 0.10 parts by mass Methyl ethyl ketone (Solvent) 200.00 parts by mass Cyclopentanone (solvent) 200.00 parts by mass ⁇ ⁇
  • Example 1 is the same as Example 1 except that the positive A plate forming coating solution A-4 described later is used instead of the positive A plate forming coating solution A-1, and the water content of the polarizing plate is changed as shown in Table 1.
  • the laminated body 10 was obtained according to the same procedure.
  • Re (550) of the formed optically anisotropic layer 4 (positive A plate A4) is 130 nm
  • Rth (550) is 65 nm
  • Re (550) / Re (450) is 1.2
  • Re (650). / Re (550) was 1.02.
  • Liquid crystal compound L-9 100.00 parts by mass Polymerization initiator S-1 0.60 parts by mass Polymerizable compound B-1 7.00 parts by mass Leveling agent (compound T-1) 0.10 parts by mass Methyl ethyl ketone (Solvent) 200.00 parts by mass Cyclopentanone (solvent) 200.00 parts by mass ⁇ ⁇
  • Liquid crystal compound L-9 (hereinafter structure)
  • Example 11 A laminate 11 was obtained according to the same procedure as in Example 1 except that the coating liquid A-5 for forming a positive A plate described later was used instead of the coating liquid A-1 for forming a positive A plate.
  • Liquid crystal compound L-5 100.00 parts by mass polymerization initiator Irgacure 369 (BASF Japan) 3.00 parts by mass polymerization initiator OXE-03 (BASF Japan) 3.00 parts by mass Adeka Cruise NCI-831 (Adeka) 00 parts by weight leveling agent BYK361N (Bicchemy Japan) 0.10 parts by weight antioxidant BHT (Tokyo Chemical Industry) 0.90 parts by weight methyl ethyl ketone (solvent) 60.00 parts by weight cyclopentanone (solvent) 200.00 parts by weight ⁇
  • Example 12 A laminate 12 was obtained according to the same procedure as in Example 1 except that the coating liquid A-6 for forming a positive A plate described later was used instead of the coating liquid A-1 for forming a positive A plate.
  • a positive A plate forming coating solution A-6 having the same composition as the positive A plate forming coating solution A-5 was prepared except that the liquid crystal compound L-10 was used instead of the liquid crystal compound L-5. .
  • Example 13 A laminate 13 was obtained according to the same procedure as in Example 1 except that the positive A plate forming coating solution A-7 described later was used instead of the positive A plate forming coating solution A-1.
  • a positive A plate forming coating solution A-7 having the same composition as the positive A plate forming coating solution A-5 was prepared except that the liquid crystal compound L-7 was used instead of the liquid crystal compound L-5. .
  • Example 14 A laminate 14 was obtained according to the same procedure as in Example 1 except that the positive A plate forming coating solution A-8 described later was used instead of the positive A plate forming coating solution A-1.
  • a positive A plate forming coating solution A-8 having the same composition as the positive A plate forming coating solution A-5 was prepared except that the liquid crystal compound L-8 was used instead of the liquid crystal compound L-5. .
  • Example 1 is the same as Example 1 except that the coating liquid A-9 for forming a positive A plate described later is used instead of the coating liquid A-1 for forming a positive A plate, and the water content of the polarizing plate is changed as shown in Table 1.
  • the laminated body 15 was obtained according to the same procedure.
  • a positive A plate forming coating solution A-9 having the same composition as the positive A plate forming coating solution A-5 was prepared except that the liquid crystal compound L-13 was used instead of the liquid crystal compound L-5. .
  • Example 1 is the same as Example 1 except that the positive A plate forming coating solution A-10 described later was used instead of the positive A plate forming coating solution A-1, and the water content of the polarizing plate was changed as shown in Table 1.
  • the laminated body 16 was obtained according to the same procedure.
  • a positive A plate forming coating solution A-10 having the same composition as the positive A plate forming coating solution A-5 was prepared except that the liquid crystal compound L-14 was used instead of the liquid crystal compound L-5. .
  • Example 1 is the same as Example 1 except that the positive A plate forming coating solution A-11 described later is used instead of the positive A plate forming coating solution A-1, and the water content of the polarizing plate is changed as shown in Table 1.
  • the laminated body 17 was obtained according to the same procedure.
  • a positive A plate forming coating solution A-11 having the same composition as the positive A plate forming coating solution A-5 was prepared except that the liquid crystal compound L-15 was used instead of the liquid crystal compound L-5. .
  • Laminates 18 and 19 were obtained according to the same procedure as in Example 2 except that the water content of the polarizing plate was changed as shown in Table 1.
  • Example 5 A polarizing plate 22 was obtained according to the same procedure as in Example 10 except that the water content of the polarizing plate was changed as shown in Table 1.
  • Example 10 A polarizing plate 27 was obtained according to the same procedure as in Example 15 except that the water content of the polarizing plate was changed as shown in Table 1.
  • Example 11 A polarizing plate 28 was obtained according to the same procedure as in Example 16 except that the water content of the polarizing plate was changed as shown in Table 1.
  • AAA The amount of change in the Re value after the test with respect to the initial Re value is 1% or more and 3% of the initial Re value. Less than A: The amount of change in the Re value after the test with respect to the initial Re value is 3% or more and less than 7% of the initial Re value. B: The amount of change in the Re value after the test with respect to the initial Re value is 7 of the initial Re value. %: Less than 15% C: Change in Re value after test with respect to initial Re value is 15% or more of initial Re value
  • An alignment film forming coating solution 2 having the following composition was continuously applied onto the alkali saponified cellulose acylate film 2 using a # 8 wire bar.
  • the obtained film was dried with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds to form an alignment film.
  • ⁇ (Coating liquid 2 for forming alignment film) ⁇ Polyvinyl alcohol (manufactured by Kuraray, PVA103) 2.4 parts by mass Isopropyl alcohol 1.6 parts by mass Methanol 36 parts by mass Water 60 parts by mass ⁇ ⁇
  • a coating solution C-1 for forming a positive C plate which will be described later, was applied onto the alignment film, and the obtained coating film was aged at 60 ° C. for 60 seconds, and then air-cooled metal halide lamp (eye-cooled at 70 mW / cm 2 under air.
  • the positive C plate 1 was produced by vertically aligning the liquid crystal compound by irradiating 1000 mJ / cm 2 ultraviolet rays and fixing the alignment state.
  • Rth (550) of the obtained positive C plate was ⁇ 60 nm.
  • a laminate including a sealing glass (corresponding to a glass plate), a polarizing plate (any one of polarizing plates 30 to 46), and a cover glass (corresponding to a glass plate) is provided. It was included.
  • the water content of the polarizing plates 30 to 46 when the polarizing plate was incorporated into the organic EL display device was the same as that of the polarizing plates 1 to 17, respectively.
  • the water content of the polarizing plate 30 was the same as the content of the polarizing plate 1.
  • the polarizing plate functions as an antireflection plate.
  • the mixture was allowed to cool to room temperature, and 2-butanone (30 parts by mass) was added to the flask and diluted to obtain a polymer solution of about 20% by mass.
  • the obtained polymer solution was poured into a large excess of methanol to precipitate the polymer, and the collected precipitate was filtered and washed with a large amount of methanol. Thereafter, the obtained solid content was blown and dried at 50 ° C. for 12 hours to obtain a polymer PA-1 having a photoalignable group.
  • a coating solution for forming a photo-alignment film 2 having a composition described later was continuously applied onto the optical film produced above with a wire bar of # 2.4.
  • the support on which the coating film is formed is dried with warm air of 140 ° C. for 120 seconds, and then the coating film is irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultra-high pressure mercury lamp), whereby a photo-alignment film 2 was formed.
  • ⁇ (Coating liquid for forming photo-alignment film 2) ⁇ Polymer PA-1 100.00 parts by mass Isopropyl alcohol 16.50 parts by mass Butyl acetate 1072.00 parts by mass Methyl ethyl ketone 268.00 parts by mass ⁇ ⁇
  • a coating liquid A-12 for forming a positive A plate which will be described later, was applied onto the photo-alignment film using a bar coater to form a coating film.
  • the formed coating film was once heated to 110 ° C. on a hot plate and then cooled to 60 ° C. to stabilize the alignment of the liquid crystal compound. Thereafter, the coating film was kept at 80 ° C., and the orientation was fixed by irradiation with ultraviolet rays (500 mJ / cm 2 , using an ultrahigh pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm), and an optically anisotropic layer 12 (positive) having a thickness of 2 ⁇ m.
  • a plate A12) was prepared. Re (550) of the obtained optically anisotropic layer 12 was 130 nm, Re (550) / Re (450) was 1.18, and Re (650) / Re (550) was 1.02.
  • composition of coating liquid A-12 for forming positive A plate ⁇ 42.00 parts by mass of the liquid crystal compound L-1 42.00 parts by mass of the liquid crystal compound L-2 12.00 parts by mass of the polymerizable liquid crystal compound X-1 4.00 parts by mass of the following polymerizable compound A-2
  • Start of the polymerization Agent S-1 oxime type 0.50 parts by mass
  • the following leveling agent T-2 0.23 parts by mass Hisolv MTEM (manufactured by Toho Chemical Co., Ltd.) 2.00 parts by mass NK Ester A-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.) ) 1.00 parts by mass Methyl ethyl ketone 424.8 parts by mass ⁇
  • the surface of the optically anisotropic layer A12 was subjected to corona treatment with a discharge amount of 150 W ⁇ min / m 2 , and a coating solution for forming a positive C plate 2 described later was applied to the surface subjected to the corona treatment with a wire bar. Subsequently, the coating film was heated for 90 seconds with a 70 degreeC warm air. Thereafter, the coating film was irradiated with ultraviolet rays (300 mJ / cm 2 ) at 40 ° C. under a nitrogen purge (oxygen concentration 0.1%) to fix the orientation of the liquid crystal compound, and on the optically anisotropic layer 12.
  • a positive C plate 2 was produced, and a retardation film having an optically anisotropic layer 12 and a positive C plate 2 was obtained.
  • Rth (550) of the obtained positive C plate 2 was ⁇ 100 nm, and Rth (550) / Rth (450) was 1.05.
  • composition of coating solution for forming positive C plate 2 ⁇ 10.0 parts by weight of the liquid crystal compound L-1 54.0 parts by weight of the liquid crystal compound L-2 28.0 parts by weight of the following liquid crystal compound L-16 8.0 parts by weight of the polymerizable compound A-2
  • the following compound B-1 4.5 parts by mass NK ester A-600 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 12.0 parts by mass
  • the above polymerization initiator S-1 1.5 parts by mass
  • the following surfactant P-2 0.4 parts by mass
  • the following interface Activator P-3 0.5 parts by mass Acetone 175.0 parts by mass Propylene glycol monomethyl ether acetate 75.0 parts by mass ⁇ ⁇
  • Liquid crystal compound L-16 83 15: 2 (mass ratio) mixture of the following liquid crystal compounds (RA) (RB) (RC)
  • Aronix M-220 manufactured by Toagosei Co., Ltd.: 20 parts by mass 4-hydroxybutyl acrylate (manufactured by Nippon Kasei Co., Ltd.): 40 parts by mass 2-ethylhexyl acrylate (manufactured by Mitsubishi Chemical Corporation): 40 parts by mass Irgacure 907 ( BASF): 1.5 parts by mass KAYACURE DETX-S (manufactured by Nippon Kayaku Co., Ltd.): 0.5 parts by mass
  • the surface of the produced positive C plate 2 was subjected to corona treatment with a discharge amount of 150 W ⁇ min / m 2 , and then the adhesive was applied to a thickness of 0.5 ⁇ m. Thereafter, the adhesive-coated surface was bonded to the polarizer side of the polarizer 6 with a protective film (the surface of the polarizer), and 300 mJ / cm 2 of ultraviolet rays were irradiated from the optical film side of the retardation film at 40 ° C. in an air atmosphere. . The obtained film was dried at 60 ° C.
  • the optical film with the photo-alignment film 2 was removed, and the polarizer and positive C plate 2 and a polarizing plate 47 having the optically anisotropic layer 12 in this order were produced.
  • the slow axis direction of the optically anisotropic layer 12 was parallel to the absorption axis of the polarizer.
  • a polarizing plate sample having a size of 14 cm ⁇ 7 cm was cut out from the obtained polarizing plate, and the moisture content was adjusted, so that the water content in the polarizing plate sample was 2.8 g / m 2 .
  • a film with an adhesive was used from both sides of the polarizing plate sample and sandwiched between glass plates to obtain a laminate 47 including a glass plate, a polarizing plate, and a glass plate in this order.
  • AQUATRAN2 registered trademark manufactured by MOCON, INC.
  • the moisture permeability of the glass plate was measured in an atmosphere of 40 ° C. and 90% RH, and found to be 1.0 ⁇ 10 ⁇ 3 g / It was less than m 2 ⁇ day.
  • Example 36 and Comparative Example 13> As shown in Table 2, laminates 48 and 49 were obtained according to the same procedure as the laminate 47 of Example 35, except that the water content of the polarizing plate and the type of the polarizer with the protective film were changed. In addition, the polarizing plate manufactured with the laminated body 48 is called the polarizing plate 48, respectively.
  • liquid crystal display device A commercially available liquid crystal display device (iPad (registered trademark), manufactured by Apple) (a liquid crystal display device including an FFS mode liquid crystal cell) was disassembled, and a polarizer on the viewing side was isolated from the cover glass, the touch panel, and the liquid crystal cell. . Next, the optically anisotropic layer in the produced polarizing plates 47 to 48 was bonded to the liquid crystal cell using the adhesive film so that the optical anisotropic layer was on the liquid crystal cell side with respect to the polarizer.
  • iPad registered trademark
  • FFS mode liquid crystal cell liquid crystal display device including an FFS mode liquid crystal cell
  • the absorption axis of the polarizer on the backlight side of the liquid crystal display device and the absorption axis of the polarizer in the polarizing plates 47 to 48 were made to be orthogonal to each other.
  • the isolated touch panel was again bonded onto the polarizer protective films of the polarizing plates 47 to 48, and a cover glass was further bonded to produce a liquid crystal display device.
  • the laminated body containing liquid crystal cell glass (corresponding to a glass plate), a polarizing plate, and a cover glass (corresponding to a glass plate) was contained.
  • the water content of the polarizing plates 47 to 48 when incorporating the polarizing plate into the liquid crystal display device was the same as the water content of the polarizing plates in the laminates 47 to 48 in Table 2 above.
  • the oblique black display performance was good and the polarizing plate had an optical compensation function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、偏光子および光学異方性層を有し、熱耐久性に優れた積層体、積層体を有する有機電界発光装置および液晶表示装置を提供する。本発明の積層体は、2枚の基板と、2枚の基板の間に配置された偏光板とを有する積層体であって、偏光板が、偏光子および光学異方性層を有し、偏光子が、ポリビニルアルコール系樹脂を含み、光学異方性層が、一般式(I)で表される重合性液晶化合物を含む組成物を用いて形成された層であり、基板の透湿度が10-3g/m・day以下であり、偏光板の含水量が3.0g/m以下である。 L-G-D-Ar-D-G-L ・・・(I)

Description

積層体、有機電界発光装置、液晶表示装置
 本発明は、積層体、有機電界発光装置、および、液晶表示装置に関する。
 従来から、光学異方性層と偏光子とを有する偏光板が、光学補償および反射防止などを目的として、有機電界発光装置および液晶表示装置などに用いられている。
 近年、可視光域の光線が混在している合成波である白色光に対して、全ての波長の光線に対応して同様の効果を与えることができる偏光板(いわゆる広帯域偏光板)の開発が進められており、特に、偏光板が適用される装置の薄型化の要求から、偏光板に含まれる光学異方性層についても薄型化が求められている。
 上記の要求に対して、特許文献1および2においては、光学異方性層の形成に使用する重合性化合物として、逆波長分散性の重合性液晶化合物の利用が提案されている。
国際公開第2014/010325号 特開2011-207765号公報
 しかしながら、特許文献1および2に記載されている逆波長分散性の重合性液晶(重合性液晶化合物)を用いて形成された光学異方性層を有する偏光板を作製し、実用上の態様(例えば、有機電界発光方式のスマホの反射防止を目的とした円偏光板)に合わせてこの偏光板を両側から透湿度の低い基板(例えば、ガラス基板)で挟みこみ、得られた積層体を高温下の条件に長時間曝した場合、積層体の面内の中央部に赤みムラが生じることが分かった。解析の結果、赤み領域において、面内レターデーション(Re)が大きく変動しており、色味変化を生じていることが明らかとなった。そのため、高温下に長時間曝した場合でも、面内レターデーションの変化が抑制された、偏光子および光学異方性層を有する積層体の開発が望まれていた。以後、積層体を高温下に曝した際に面内レターデーションの変化が抑制されることを、熱耐久性に優れると表現する。
 そこで、本発明は、偏光子および光学異方性層を有し、熱耐久性に優れた積層体を提供することを課題とする。
 また、本発明は、上記積層体を有する有機電界発光装置および液晶表示装置を提供することも課題とする。
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題が解決できることを見出した。
(1) 2枚の基板と、2枚の基板の間に配置された偏光板とを有する積層体であって、
 偏光板が、偏光子および光学異方性層を有し、
 偏光子が、ポリビニルアルコール系樹脂を含み、
 光学異方性層が、後述する一般式(I)で表される重合性液晶化合物を含む組成物を用いて形成された層であり、
 基板の透湿度が10-3g/m・day以下であり、
 偏光板の含水量が3.0g/m以下である、積層体。
(2) 偏光板の含水量が2.3g/m以下である、(1)に記載の積層体。
(3) 偏光子の厚みが10μm未満である、(1)または(2)に記載の積層体。
(4) 光学異方性層の波長450nmにおける面内レターデーションであるRe(450)と、光学異方性層の波長550nmにおける面内レターデーションであるRe(550)と、光学異方性層の波長650nmにおける面内レターデーションであるRe(650)とが、Re(450)≦Re(550)≦Re(650)の関係を満たす、(1)~(3)のいずれかに記載の積層体。
(5) 光学異方性層がポジティブAプレートである、(1)~(4)のいずれかに記載の積層体。
(6) 光学異方性層がλ/4板である、(1)~(5)のいずれかに記載の積層体。
(7) 偏光子の少なくとも一方の表面上に偏光子保護フィルムを有し、
 偏光子保護フィルムの少なくとも1つがノルボルネン系樹脂を含む、(1)~(6)のいずれかに記載の積層体。
(8) (1)~(7)のいずれかに記載の積層体を有する、有機電界発光装置。
(9) (1)~(7)のいずれかに記載の積層体を有する、液晶表示装置。
 本発明によれば、偏光子および光学異方性層を有し、熱耐久性に優れた積層体を提供できる。
 また、本発明によれば、上記積層体を有する有機電界発光装置および液晶表示装置を提供できる。
本発明の積層体の実施形態の一例を示す模式的な断面図である。 本発明の積層体の実施形態の他の例を示す模式的な断面図である。
 以下に、本発明の偏光板、有機電界発光装置、および、液晶表示装置について説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、角度について「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとし、角度について「同一」および「異なる」は、その差が5°未満であるか否かを基準に判断できる。
 また、本明細書では、「可視光」とは、380~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 次に、本明細書で用いられる用語について説明する。
<遅相軸>
 本明細書において、「遅相軸」とは、面内において屈折率が最大となる方向を意味する。なお、光学異方性層の遅相軸という場合は、光学異方性層全体の遅相軸を意図する。
<Re(λ)、Rth(λ)>
 面内レターデーション(Re(λ))および厚み方向のレターデーション(Rth(λ))は、AxoScan OPMF-1(オプトサイエンス社製)を用い、測定波長の光を用いて測定した値をいう。
 具体的には、AxoScan OPMF-1にて、平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
 なお、本明細書において、Aプレートは以下のように定義される。
 Aプレートは、ポジティブAプレート(正のAプレート)とネガティブAプレート(負のAプレート)との2種があり、フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ネガティブAプレートは式(A2)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ネガティブAプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(A2)  ny<nx≒nz
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。
 Cプレートは、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
 本発明の特徴点としては、積層体の含水量などを所定の範囲に調整している点が挙げられる。
 本発明者らは、上述した赤みムラが生じる原因について検討したところ、積層体を高温条件下に曝した場合、一定の誘導期間を経て、光学異方性層中の液晶化合物由来の構造の分解が急激に起こり、面内レターデーションの値の変動が大きくなることを知見している。
 上記のような分解が生じる原因としては、水分が影響していることを知見している。つまり、2枚の透湿度の低い基板で挟まれた積層体に加熱処理を施すと、基板の透湿度が低いために、ポリビニルアルコール系樹脂を含む偏光子に含まれていた水分が基板の外側に抜け出しにくく、光学異方性層に拡散する状況となり、その水分によって上記分解が誘発していると考えられる。特に、一般式(I)で表される重合性液晶化合物においては、逆波長分散性の特性の点から電子吸引性の性質を持たせる場合があり、その結果、重合性液晶化合物を構成するいずれかの炭素原子のプラスへの分極が大きくなり、求核種の攻撃を受けやすくなるものと推測される。
 なお、光学異方性層の端面においては基板が存在しないため、水分が積層体外に拡散できるが、光学異方性層の中央部においては2枚の基板に挟まれているため、分解が生じやすく、より大きな面内レターデーションの値の変動を起こしていると考えられる。
 それに対して、本発明では光学異方性層および偏光子を含む積層体自体の水分量を所定の範囲に調整することにより、積層体を高温条件下に曝した場合でも、液晶化合物の分解などを抑制して、結果として積層体の熱耐久性が優れることを知見している。
 図1に、本発明の積層体の一実施形態の模式的な断面図を示す。積層体10Aは、第1基板12Aと、偏光板14と、第2基板12Bとをこの順に有する。つまり、偏光板14は、第1基板12Aと第2基板12Bとの間に配置される。偏光板14は、偏光子16と光学異方性層18とを有する。
 以下、各部材について詳述する。
<基板(第1基板12Aおよび第2基板12B)>
 積層体は、2枚の基板を有する。図1においては、2枚の基板は、第1基板12Aおよび第2基板12Bに該当する。
 基板の透湿度は、10-3g/m・day以下である。なかでも、積層体が適用される有機電界発光装置および液晶表示装置などの耐久性の点で、10-4g/m・day以下が好ましく、10-5g/m・day以下がより好ましい。下限は特に制限されないが、10-10g/m・day以上の場合が多い。
 基板の透湿度の測定方法は、以下の通りである。測定温度40℃、相対湿度90%の条件下で、水蒸気透過率測定装置(MOCON,INC.製のAQUATRAN2(商標登録))を用いて測定する。
 基板を構成する材料は特に制限されず、無機物であっても、有機物であってもよい。
 基板としては、透湿度が規定より低ければ特に制限されないが、ガラス基板、および、ガスバリアフィルムが挙げられる。より具体的には、有機電界発光装置に用いられる封止ガラス、液晶セル用中のガラスおよび表面カバーガラスなどのガラス基板、並びに、ハイバリアフィルムおよび有機電界発光装置に用いられるバリアフィルムなどのガスバリアフィルムが挙げられる。
 基板は、単層構造であってもよいし、複層構造であってもよい。
 基板は、透明であることが好ましく、いわゆる透明基板であることが好ましい。
 なお、本明細書において、「透明」とは、可視光の透過率が60%以上であることを示し、80%以上が好ましく、90%以上がより好ましい。上限は特に制限されないが、100%未満の場合が多い。
 基板の厚みは特に制限されないが、薄型化の点から、800μm以下が好ましく、100μm以下がより好ましい。下限は特に制限されないが、10μm以上が好ましい。
<偏光子>
 積層体は、偏光子を有する。偏光子は、光を特定の直線偏光に変換する機能を有するいわゆる直線偏光子である。
 偏光子は、ポリビニルアルコール系樹脂を含む。
 ポリビニルアルコール系樹脂は、-CH-CHOH-という繰り返し単位を含む樹脂であり、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。
 ポリビニルアルコール系樹脂は、例えば、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと共重合可能な他の単量体との共重合体などが挙げられる。
 酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、および、アンモニウム基を有するアクリルアミド類などが挙げられる。
 ポリビニルアルコール系樹脂のケン化度は特に制限されないが、85~100モル%が好ましく、95.0~99.95モル%がより好ましい。ケン化度は、JIS K 6726-1994に準じて求めることができる。
 ポリビニルアルコール系樹脂の平均重合度は特に制限されないが、100~10000が好ましく、1500~8000がより好ましい。平均重合度は、ケン化度と同様に、JIS K 6726-1994に準じて求めることができる。
 偏光子中におけるポリビニルアルコール系樹脂の含有量は特に制限されないが、偏光子中においてポリビニルアルコール系樹脂が主成分として含まれることが好ましい。主成分とは、ポリビニルアルコール系樹脂の含有量が、偏光子全質量に対して、50質量%以上であることを意味する。ポリビニルアルコール系樹脂の含有量は、偏光子全質量に対して、90質量%以上が好ましい。上限は特に制限されないが、99.9質量%以下の場合が多い。
 偏光子は、二色性物質をさらに含むことが好ましい。二色性物質としては、ヨウ素または有機染料(二色性有機染料)が挙げられる。つまり、偏光子は、主成分としてポリビニルアルコールを含み、かつ、二色性物質を含むことが好ましい。
 上記偏光子の製造方法は特に制限されず、公知の方法が挙げられ、ポリビニルアルコールを含む基板に二色性物質を吸着させ、延伸する方法が挙げられる。
 偏光子の厚みは特に制限されないが、20μm以下の場合が多く、15μm以下の場合がより多く、本発明の効果がより優れる点で、10μm以下が好ましく、10μm未満がより好ましく、5μm以下がさらに好ましい。下限は特に制限されないが、2μm以上の場合が多く、3μm以上の場合がより多い。例えば、偏光子の厚みは2~10μmが好ましい。
<光学異方性層>
 積層体は、光学異方性層を有する。光学異方性層は、後述する一般式(I)で表される重合性液晶化合物を含む組成物を用いて形成された層である。
 以下では、まず、光学異方性層の形成に用いられる組成物中の成分について詳述し、その後、光学異方性層の製造方法および特性について詳述する。
(一般式(I)で表される重合性液晶化合物)
 組成物には、一般式(I)で表される重合性液晶化合物が含まれる。一般式(I)で表される重合性液晶化合物は、液晶性を示す化合物である。
  L-G-D-Ar-D-G-L   ・・・(I)
 一般式(I)中、DおよびDは、それぞれ独立に、単結合、-O-、-CO-O-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-CR-O-CO-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-または-CO-NR-を表す。
 R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子または炭素数1~4のアルキル基を表す。R、R、RおよびRのそれぞれが複数存在する場合には、複数のR、複数のR、複数のRおよび複数のRはそれぞれ、互いに同一でも異なっていてもよい。
 GおよびGは、それぞれ独立に、炭素数5~8の2価の脂環式炭化水素基または芳香族炭化水素基を表し、上記脂環式炭化水素基に含まれるメチレン基は、-O-、-S-、または、-NH-で置換されていてもよい。
 LおよびLはそれぞれ独立に、1価の有機基を表し、LおよびLからなる群から選ばれる少なくとも1種が、重合性基を有する1価の基を表す。
 Arは、下記一般式(II-1)、一般式(II-2)、一般式(II-3)または一般式(II-4)で表される2価の芳香環基を表す。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(II-1)~(II-4)中、Qは、-S-、-O-、または、-NR11-を表し、
 R11は、水素原子または炭素数1~6のアルキル基を表し、
 Yは、炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表し(なお、上記芳香族炭化水素基および上記芳香族複素環基は置換基を有していてもよい)、
 Z、ZおよびZは、それぞれ独立に、水素原子または炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213または-SR12を表し、
 ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13はそれぞれ独立に、水素原子または炭素数1~6のアルキル基を表し、
 AおよびAは、それぞれ独立に、-O-、-NR21-、-S-および-CO-からなる群から選ばれる基であって、R21は、水素原子または置換基を表し、Xは、水素原子または置換基が結合していてもよい第14族~第16族の非金属原子(好ましくは、=O、=S、=NR’、=C(R’)R’が挙げられる(ここでR’は置換基を表す))を表し、
 Axは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表し、好ましくは、芳香族炭化水素環基;芳香族複素環基;芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~20のアルキル基;芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~20のアルケニル基;芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~20のアルケニル基が挙げられ、
 Ayは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する炭素数2~30の有機基を表し、この有機基の好適態様は、上記Axの有機基の好適態様と同じであり、
 AxおよびAyにおける芳香環はそれぞれ、置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
 Qは、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 なお、置換基としては、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、シアノ基、アミノ基、ニトロ基、ニトロソ基、カルボキシ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルスルファニル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基、またはこれらを組み合わせた基が挙げられる。
 一般式(I)で表される液晶化合物の各置換基の定義および好ましい範囲については、特開2012-21068号公報に記載の化合物(A)に関するD、D、G、G、L、L、R、R、R、R、X、Y、Q、Qに関する記載をそれぞれD、D、G、G、L、L、R、R、R、R、Q、Y、Z、およびZについて参照でき、特開2008-107767号公報に記載の一般式(I)で表される化合物についてのA、A、およびXに関する記載をそれぞれA、A、およびXについて参照でき、国際公開第2013/018526号に記載の一般式(I)で表される化合物についてのAx、Ay、Qに関する記載をそれぞれAx、Ay、Qについて参照できる。Zについては特開2012-21068号公報に記載の化合物(A)に関するQの記載を参照できる。
 特に、LおよびLで示される有機基としては、それぞれ、特に、-D-G-Sp-Pで表される基であることが好ましい。
 Dは、Dと同義である。
 Gは、単結合、炭素数6~12の2価の芳香環基もしくは複素環基、または炭素数5~8の2価の脂環式炭化水素基を表し、上記脂環式炭化水素基に含まれるメチレン基は、-O-、-S-または-NR-で置換されていてもよく、ここでRは水素原子または炭素数1~6のアルキル基を表す。
 Spは、単結合、-(CH-、-(CH-O-、-(CH-O-)-、-(CHCH-O-)、-O-(CH-、-O-(CH-O-、-O-(CH-O-)-、-O-(CHCH-O-)、-C(=O)-O-(CH-、-C(=O)-O-(CH-O-、-C(=O)-O-(CH-O-)-、-C(=O)-O-(CHCH-O-)、-C(=O)-N(R)-(CH-、-C(=O)-N(R)-(CH-O-、-C(=O)-N(R)-(CH-O-)-、-C(=O)-N(R)-(CHCH-O-)、または、-(CH-O-(C=O)-(CH-C(=O)-O-(CH-で表されるスペーサー基を表す。ここで、nは2~12の整数を表し、mは2~6の整数を表し、Rは水素原子または炭素数1~6のアルキル基を表す。また、上記各基における-CH-の水素原子は、メチル基で置換されていてもよい。
 Pは重合性基を示す。
 重合性基は特に制限されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、公知のラジカル重合性基が挙げられ、アクリロイル基またはメタクリロイル基が好ましい。重合速度はアクリロイル基が一般的に速いことが知られており、生産性向上の観点からアクリロイル基が好ましいが、メタクリロイル基も高複屈折性液晶の重合性基として同様に使用できる。
 カチオン重合性基としては、公知のカチオン重合性が挙げられ、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基が挙げられる。中でも、脂環式エーテル基、または、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
 特に好ましい重合性基の例としては下記が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 なお、本明細書において、「アルキル基」は、直鎖状、分枝鎖状および環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、および、シクロヘキシル基が挙げられる。
 一般式(I)で表される液晶化合物の好ましい例を以下に示すが、これらの液晶化合物に制限されるものではない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 なお、上記式中、「*」は結合位置を表す。
 II-2-8
Figure JPOXMLDOC01-appb-C000007
 II-2-9
Figure JPOXMLDOC01-appb-C000008
 なお、上記式II-2-8およびII-2-9中のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、メチル基の位置が異なる位置異性体の混合物を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 組成物中における一般式(I)で表される重合性液晶化合物の含有量は特に制限されないが、組成物中の全固形分に対して、50~100質量%が好ましく、70~99質量%がより好ましい。
 固形分とは、組成物中の溶媒を除いた他の成分を意味し、その性状が液状であっても固形分として計算する。
 組成物は、一般式(I)で表される重合性液晶化合物以外の他の液晶化合物を含んでいてもよい。他の液晶化合物としては、公知の液晶化合物(棒状液晶化合物および円盤状液晶化合物)が挙げられる。他の液晶化合物は、重合性基を有していてもよい。
 組成物中における他の液晶化合物の含有量は、一般式(I)で表される重合性液晶化合物全質量に対して、0~50質量%が好ましく、10~40質量%がより好ましい。
 他の液晶化合物としては、直鎖状のアルキル基で水素原子が1個置換されたシクロヘキサン環を一部に有する液晶化合物が好ましい。
 ここで、「直鎖状のアルキル基で水素原子が1個置換されたシクロヘキサン環」とは、例えば、下記一般式(2)に示すように、シクロヘキサン環を2つ有する場合には、分子末端側に存在するシクロヘキサン環の水素原子が直鎖状のアルキル基で1個置換されたシクロヘキサン環をいう。
 上記化合物としては、例えば、下記一般式(2)で表される構造を有する化合物が挙げられ、なかでも、熱耐久性に優れた積層体が得られる点で、(メタ)アクリロイル基を有する下記一般式(3)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記一般式(2)中、*は結合位置を表す。
 また、上記一般式(2)および(3)中、Rは炭素数1~10のアルキル基を表し、nは1または2を表し、WおよびWは、それぞれ独立に、アルキル基、アルコキシ基またはハロゲン原子を表し、また、WおよびWはこれらが互いに結合し、置換基を有していてもよい環構造を形成していてもよい。
 また、上記一般式(3)中、Zは-COO-を表し、Lは炭素数1~6のアルキレン基を表し、Rは水素原子またはメチル基を表す。
 上記化合物としては、例えば、下記式A-1~A-5で表される化合物が挙げられる。なお、下記式A-3中、Rは、エチル基またはブチル基を表す。
Figure JPOXMLDOC01-appb-C000025
 他の液晶化合物としては、例えば、特開2014-077068号公報の段落[0030]~[0033]に記載された式(M1)、(M2)、または(M3)で表される化合物が挙げられる。
(重合性モノマー)
 組成物は、一般式(I)で表される重合性液晶化合物および重合性基を有する他の液晶化合物以外の他の重合性モノマーを含んでいてもよい。なかでも、光学異方性層の強度がより優れる点で、重合性基を2個以上有する重合性化合物(多官能重合性モノマー)が好ましい。
 多官能重合性モノマーとしては、多官能性ラジカル重合性モノマーが好ましい。多官能性ラジカル重合性モノマーとしては、例えば、特開2002-296423号公報中の段落[0018]~[0020]に記載の重合性モノマーが挙げられる。
 また、組成物中に多官能重合性モノマーが含まれる場合、多官能重合性モノマーの含有量は、組成物中の全固形分に対して、0.1~20質量%が好ましく、0.1~10質量%がより好ましく、0.1~5質量%がさらに好ましい。
(重合開始剤)
 組成物は、重合開始剤を含んでいてもよい。
 重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。
 光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)、並びに、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)などが挙げられる。
 重合開始剤としてはオキシム型の重合開始剤が好ましく、一般式(2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記一般式(2)中、Xは、水素原子またはハロゲン原子を表す。
 また、上記一般式(2)中、Arは、2価の芳香族基を表し、Dは、炭素数1~12の2価の有機基を表す。
 また、上記一般式(2)中、R11は、炭素数1~12のアルキル基を表し、Yは、1価の有機基を表す。
 上記一般式(2)中、Xが示すハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子が挙げられ、塩素原子が好ましい。
 また、上記一般式(2)中、Arが示す2価の芳香族基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、および、フェナンスロリン環などの芳香族炭化水素環;フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、および、ベンゾチアゾール環などの芳香族複素環;を有する2価の基などが挙げられる。
 また、上記一般式(2)中、Dが示す炭素数1~12の2価の有機基としては、例えば、炭素数1~12の直鎖状または分岐鎖状のアルキレン基が挙げられ、具体的には、メチレン基、エチレン基、および、プロピレン基が挙げられる。
 また、上記一般式(2)中、R11が示す炭素数1~12のアルキル基としては、例えば、メチル基、エチル基、および、プロピル基が挙げられる。
 また、上記一般式(2)中、Yが示す1価の有機基としては、例えば、ベンゾフェノン骨格((CCO)を含む官能基が挙げられる。具体的には、下記一般式(2a)および下記一般式(2b)で表される基のように、末端のベンゼン環が無置換または1置換であるベンゾフェノン骨格を含む官能基が好ましい。なお、下記一般式(2a)および下記一般式(2b)中、*は結合位置、すなわち、上記一般式(2)におけるカルボニル基の炭素原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000027
 上記一般式(2)で表される化合物としては、例えば、下記式S-1で表される化合物、および、下記式S-2で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 組成物中における重合開始剤の含有量は特に制限されないが、組成物中の全固形分に対して、0.01~20質量%が好ましく、0.5~5質量%がより好ましい。
(溶媒)
 組成物は、光学異方性層を形成する作業性の点から、溶媒を含んでいてもよい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノン、および、シクロペンタノン)、エーテル類(例えば、ジオキサン、および、テトラヒドロフラン)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサン)、芳香族炭化水素類(例えば、トルエン、キシレン、および、トリメチルベンゼン)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、および、クロロトルエン)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチル)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノール)、セロソルブ類(例えば、メチルセロソルブ、および、エチルセロソルブ)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシド)、および、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド)が挙げられる。
 これらを1種単独で用いてもよく、2種以上を併用してもよい。
(レベリング剤)
 組成物は、光学異方性層の表面を平滑に保つ点から、レベリング剤を含んでいてもよい。
 レベリング剤としては、添加量に対するレベリング効果が高い理由から、フッ素系レベリング剤またはケイ素系レベリング剤が好ましく、泣き出し(ブルーム、ブリード)を起こしにくい点から、フッ素系レベリング剤がより好ましい。
 レベリング剤としては、例えば、特開2007-069471号公報の段落[0079]~[0102]の記載に記載された化合物、特開2013-047204号公報に記載された一般式(I)で表される重合性液晶化合物(特に段落[0020]~[0032]に記載された化合物)、特開2012-211306号公報に記載された一般式(I)で表される重合性液晶化合物(特に段落[0022]~[0029]に記載された化合物)、特開2002-129162号公報に記載された一般式(I)で表される液晶配向促進剤(特に段落[0076]~[0078]および段落[0082]~[0084]に記載された化合物)、並びに、特開2005-099248号公報に記載された一般式(I)、(II)および(III)で表される化合物(特に段落[0092]~[0096]に記載された化合物)などが挙げられる。なお、後述する配向制御剤としての機能を兼ね備えてもよい。
(配向制御剤)
 組成物は、必要に応じて、配向制御剤を含んでいてもよい。
 配向制御剤により、ホモジニアス配向の他、ホメオトロピック配向(垂直配向)、傾斜配向、ハイブリッド配向、および、コレステリック配向などの種々の配向状態を形成でき、また、特定の配向状態をより均一かつより精密に制御して実現できる。
 ホモジニアス配向を促進する配向制御剤としては、例えば、低分子の配向制御剤、および、高分子の配向制御剤を用いることができる。
 低分子の配向制御剤としては、例えば、特開2002-20363号公報の段落[0009]~[0083]、特開2006-106662号公報の段落[0111]~[0120]、および、特開2012-211306公報の段落[0021]~[0029]の記載を参酌でき、この内容は本願明細書に組み込まれる。
 また、高分子の配向制御剤としては、例えば、特開2004-198511号公報の段落[0021]~[0057]、および、特開2006-106662号公報の段落[0121]~[0167]を参酌でき、この内容は本願明細書に組み込まれる。
 また、ホメオトロピック配向を形成または促進する配向制御剤としては、例えば、ボロン酸化合物、オニウム塩化合物が挙げられ、具体的には、特開2008-225281号公報の段落[0023]~[0032]、特開2012-208397号公報の段落[0052]~[0058]、特開2008-026730号公報の段落[0024]~[0055]、および、特開2016-193869号公報の段落[0043]~[0055]などに記載された化合物を参酌でき、この内容は本願明細書に組み込まれる。
 組成物が配向制御剤を含む場合、配向制御剤の含有量は特に制限されないが、組成物中の全固形分に対して、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
(その他の成分)
 組成物は、上述した成分以外の成分を含んでいてもよく、例えば、界面活性剤、チルト角制御剤、配向助剤、可塑剤、および、架橋剤などが挙げられる。
(光学異方性層の製造方法)
 光学異方性層の製造方法は特に制限されず、公知の方法が挙げられる。
 例えば、所定の基板(例えば後述する支持体層)に、上記組成物を塗布して塗膜を形成し、得られた塗膜に対して硬化処理(活性エネルギー線の照射(光照射処理)および/または加熱処理)を施すことにより、硬化させた塗膜(光学異方性層)を製造できる。なお、必要に応じて、後述する配向膜を用いてもよい。
 組成物の塗布は、公知の方法(例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法)により実施できる。
 上記光学異方性層の製造方法において、上記塗膜に対する硬化処理を行う前に、上記塗膜に含まれる液晶化合物の配向処理を行うことが好ましい。
 配向処理は、室温(例えば、20~25℃)で乾燥させる、または、加熱することにより行うことができる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度または圧力の変化により転移させることができる。リオトロピック性をもつ液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 配向処理が加熱処理である場合、加熱時間(加熱熟成時間)は、10秒間~5分間が好ましく、10秒間~3分間がより好ましく、10秒間~2分間がさらに好ましい。
 上述した、塗膜に対して硬化処理(活性エネルギー線の照射(光照射処理)および/または加熱処理)は、液晶化合物の配向を固定するための固定化処理ということもできる。
 固定化処理は、活性エネルギー線(好ましくは紫外線)の照射により行われることが好ましく、液晶化合物の重合により液晶が固定化される。
(光学異方性層の特性)
 光学異方性層は、上述した組成物を用いて形成されるフィルムである。
 光学異方性層の光学特性は特に制限されないが、λ/4板として機能することが好ましい。
 λ/4板は、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板であり、特定の波長λnmにおける面内レターデーションRe(λ)がRe(λ)=λ/4を満たす板(光学異方性層)のことをいう。
 この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよいが、波長550nmにおける面内レターデーションRe(550)が、110nm≦Re(550)≦160nmの関係を満たすことが好ましく、110nm≦Re(550)≦150nmを満たすことがより好ましい。
 光学異方性層の波長450nmで測定した面内レターデーションであるRe(450)と、光学異方性層の波長550nmで測定した面内レターデーションであるRe(550)と、光学異方性層の波長650nmで測定した面内レターデーションのであるRe(650)とは、Re(450)≦Re(550)≦Re(650)の関係にあることが好ましい。すなわち、この関係は、逆波長分散性を表す関係といえる。
 なお、Re(550)/Re(450)の範囲は特に制限されないが、1.05~1.25が好ましく、1.13~1.23がより好ましい。また、Re(650)/Re(550)の範囲は特に制限されないが、1.01~1.25が好ましく、1.01~1.10がより好ましい。
 光学異方性層は、Aプレートであっても、Cプレートであってもよく、ポジティブAプレートであることが好ましい。
 ポジティブAプレートは、例えば、一般式(I)で表される重合性液晶化合物を水平配向させることにより得ることができる。
 光学異方性層は、単層構造であっても、複層構造であってもよい。複層構造である場合、Aプレート(例えば、ポジティブAプレート)とCプレート(例えば、ポジティブCプレート)との積層であってもよい。
 なお、光学異方性層が複層構造である場合、それぞれの層が上述した組成物を用いて形成される層に該当する。
 光学異方性層の厚みは特に制限されないが、薄型化の点から、0.5~10μmが好ましく、1.0~5μmがより好ましい。
 なお、積層体中において偏光子の透過軸と光学異方性層の遅相軸との関係は特に制限されない。
 積層体を反射防止用途に適用する場合、光学異方性層がλ/4板で、かつ、偏光子の透過軸と光学異方性層の遅相軸とのなす角度は45±10°の範囲(35~55°)が好ましい。
 また、積層体をIPS(In-Plane-Switching)液晶の斜め視野角の光学補償用途に適用する場合、光学異方性層がλ/4板のポジティブAプレートとポジティブCプレートとの複層構造であり、かつ、偏光子の透過軸と光学異方性層の遅相軸とのなす角度は0±10°の範囲(-10~10°)または90±10°の範囲(80~100°)が好ましい。
<その他の層>
 本発明の積層体は、上述した基板、偏光子および光学異方性層以外の他の部材を有していていもよい。
 積層体は、偏光子保護フィルムをさらに有していてもよい。より、具体的には、図2に示すように、本発明の積層体の他の実施形態である積層体10Bは、第1基板12Aと、第1偏光子保護フィルム20Aと、偏光子16と、第2偏光子保護フィルム20Bと、光学異方性層18と、第2基板12Bとを順に有する。なお、図2においては、2枚の偏光子保護フィルム(第1偏光子保護フィルム20Aおよび第2偏光子保護フィルム20B)を有する態様について述べたが、この態様に制限されず、第1偏光子保護フィルム20Aおよび第2偏光子保護フィルム20Bの一方のみを有する態様であってもよい。
 なかでも、積層体は、偏光子の光学異方性層とは逆側の表面上に偏光子保護フィルムを有することが好ましい。つまり、光学異方性層、偏光子、および、偏光子保護フィルムの順に積層された積層体が好ましい。なお、後述するように、積層体は、各層に間に粘接着層または接着層を有していてもよく、上記態様においては、光学異方性層と、偏光子との間に粘接着層または接着層を有していてもよい。
 偏光子保護フィルムの構成は特に制限されず、例えば、透明支持体またはハードコート層であっても、透明支持体とハードコート層との積層体であってもよい。
 ハードコート層としては、公知の層を使用でき、例えば、多官能モノマーを重合硬化して得られる層であってもよい。
 また、透明支持体としては、公知の透明支持体(好ましくは、透明樹脂支持体)を使用できる。透明支持体を形成する材料としては、例えば、トリアセチルセルロースに代表される、セルロース系樹脂(以下、セルロースアシレートともいう)、ノルボルネン系樹脂(日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートンなど)、アクリル系樹脂、ポリエステル系樹脂、および、ポリスチレン系樹脂が挙げられる。なかでも、セルロース系樹脂、または、ノルボルネン系樹脂が好ましく、ノルボルネン系樹脂がより好ましい。
 なお、ノルボルネン系樹脂とは、ノルボルネン骨格を有する樹脂をいう。より具体的には、シクロオレフィンポリマー(COP)およびシクロオレフィンコポリマー(COC)が挙げられる。
 偏光子保護フィルムの厚みは特に制限されないが、偏光板の厚みを薄くできる点から、40μm以下が好ましく、25μm以下がより好ましい。下限は特に制限されないが、10μm以上の場合が多い。
 積層体は、配向膜を含んでいてもよい。配向膜は、その上に配置される液晶化合物の配向方向を規定する機能を有する層である。
 配向膜は、通常、上記光学異方性層の一方の面に設けられる膜(層)である。
 配向膜としては、ポリマーなどの有機化合物を含む層のラビング処理膜、無機化合物の斜方蒸着膜、および、マイクログルーブを有する膜が挙げられる。
 配向膜としては、光配向性の素材に偏光または非偏光を照射して配向膜とした、いわゆる光配向膜(光配向膜)も挙げられる。
 配向膜としては、ポリマーなどの有機化合物を含む層(ポリマー層)の表面をラビング処理して形成されたものを好ましい。ラビング処理は、ポリマー層の表面を紙または布で一定方向(好ましくは支持体の長手方向)に数回こすることにより実施される。配向膜の形成に使用するポリマーとしては、ポリイミド系樹脂、および、ポリビニルアルコール系樹脂が挙げられる。
 配向膜の厚みは、配向機能を発揮することができれば特に制限されないが、0.01~5μmが好ましく、0.05~2μmがより好ましい。
 積層体は、各層の間の密着性担保のために、各層の間に粘接着層または接着層を有していていもよい。
 また、積層体は、各層の間に透明支持体を有していてもよい。
 積層体は、上述した一般式(I)で表される重合性液晶化合物を含む組成物を用いて形成される光学異方性層以外の他の光学異方性層を有していてもよい。
 他の光学異方性層は、Aプレートであっても、Cプレートであってもよい。
 積層体は、タッチセンサーを含んでいてもよい。タッチセンサーの構成は特に制限されないが、静電容量方式のITO(Indium Tin Oxide)フィルム、銀メッシュフィルム、銅メッシュフィルム、および、銀ナノワイヤフィルムを用いてもよい。また、ITOの電極を不可視とするため、積層体は屈折率マッチング層をさらに含んでいてもよい。
<偏光板>
 偏光板は、上述した光学異方性層および偏光子を少なくとも含む。
 偏光板の含水量は、3.0g/m以下であり、熱耐久性により優れた積層体が得られる点で、2.3g/m以下が好ましく、1.5g/m以下がより好ましく、0.8g/m以下が特に好ましい。下限は特に制限されないが、0.1g/m以上の場合が多い。
 偏光板の含水量の調整方法は特に制限されず、例えば、偏光板を所定の環境下に静置して、偏光板の含水量を調整する方法が挙げられる。後述するように、所定の含水量になった偏光板を2枚のガラス板で挟むことにより、所定の積層体が得られる。
 上記含水量の測定対象としては、光学異方性層と偏光子とを含み、両者の間に位置する部材を含む偏光板が挙げられる。例えば、光学異方性層、粘接着層、偏光子保護フィルム、および、偏光子がこの順で配置されている場合、上記含水量の測定対象は、光学異方性層、粘接着層、偏光子保護フィルム、および、偏光子を含む偏光板が該当する。
 なお、偏光子の光学異方性層側とは反対側の表面上に偏光子保護フィルムが配置されている場合は、この偏光子保護フィルムを含む偏光板が上記含水量の測定対象となる。例えば、光学異方性層、粘接着層、偏光子保護フィルム、偏光子、および、偏光子保護フィルムがこの順で配置されている場合、上記含水量の測定対象は、光学異方性層、粘接着層、偏光子保護フィルム、偏光子、および、偏光子保護フィルムを含む偏光板が該当する。また、例えば、光学異方性層、粘接着層、偏光子、および、偏光子保護フィルムがこの順で配置されている場合、上記含水量の測定対象は、光学異方性層、粘接着層、偏光子、および、偏光子保護フィルムを含む偏光板が該当する。
 なお、積層体中の2枚の基板の間にタッチセンサーなどの他の部材が配置されている際、他の部材が含水量に略影響しない場合には、他の部材と偏光板とを含む測定対象物を用いて上記含水量の測定を実施してもよい。
 また、含水量の測定方法としては、測定対象である偏光板の初期質量、および、120℃で2時間乾燥後の乾燥質量との変化量(初期質量-乾燥質量)を単位面積当たりに換算した質量を意味する。例えば、偏光板を所定の環境下に静置して、偏光板の含水量を調整して2枚のガラス板で挟んで積層体を作製する場合、2枚のガラス板で挟む直前の偏光板の含水量を上記方法により測定できる。なお、2枚の基板と、2枚の基板の間に配置された偏光板とを有する積層体を分解して、偏光板の含水量を測定する場合には、温度25℃、湿度60%の環境下において30分以内に積層体を分解して偏光板を取り出して、上記方法により偏光板の含水量を算出できる。
<積層体の製造方法>
 上記積層体の製造方法は特に制限されず、公知の方法が挙げられる。
 まず、所定の支持体上に形成された光学異方性層を偏光子に貼り合せた後、支持体を剥離して、光学異方性層と偏光子とを含む偏光板を製造して、偏光板の含水量を調整して、2枚の基板で挟み、積層体を製造する方法が挙げられる。
 なお、偏光板を製造する際には、偏光子上に直接光学異方性層を形成してもよい。
<用途>
 本発明の積層体中の偏光板は、反射防止板として有用である。
 より具体的には、偏光板中の光学異方性層がλ/4板である場合、積層体は反射防止板として好適に適用できる。特に、上述したように、積層体中の光学異方性層がポジティブAプレートとポジティブCプレートとの複層構造である場合、光学異方性層の合計Rthをゼロに近くなるように調整でき、斜め方向における視認性が改善される。
 なお、光学異方性層がポジティブAプレート(好ましくは、λ/4板として機能するポジティブAプレート)とポジティブCプレートとの複層構造である場合、ポジティブAプレートが偏光子側に配置されていてもよいし、ポジティブCプレートが偏光子側に配置されていてもよい。
 積層体を反射防止板として用いる場合、液晶表示装置、プラズマディスプレイパネル、有機電界発光装置、および、陰極管表示装置のような各種画像表示装置に適用できる。
 また、本発明の積層体中の光学異方性層は、光学補償フィルムとして有用である。
 光学補償フィルムは、液晶表示装置の光学補償用途に好適に用いられ、斜め方向から視認した時の色味変化および黒表示時の光漏れを改善できる。例えば、IPS液晶表示装置の偏光子と液晶セルとの間に光学補償フィルムを設けることができる。特に、IPS液晶の光学補償においては、積層体中の光学異方性層がポジティブAプレートとポジティブCプレートとを含むことにより、大きな効果が得られる。
 光学異方性層がポジティブAプレート(好ましくは、λ/4板として機能するポジティブAプレート)とポジティブCプレートとの複層構造である場合、ポジティブAプレートが偏光子側に配置されていてもよいし、ポジティブCプレートが偏光子側に配置されていてもよい。なお、偏光子、ポジティブAプレートおよびポジティブCプレートがこの順に配置される場合、ポジティブAプレートの遅相軸と偏光子の吸収軸とのなす角は90°±10°の範囲であることが好ましい。また、偏光子、ポジティブCプレートおよびポジティブAプレートがこの順に配置される場合、ポジティブAプレートの遅相軸と偏光子の吸収軸とが平行であることが好ましい。
 ポジティブAプレートおよびポジティブCプレートは、逆波長分散性を示すことが好ましい。
<有機電界発光装置、液晶表示装置>
 上記積層体は、有機電界発光装置(好ましくは、有機EL(エレクトロルミネッセンス)表示装置)、および、液晶表示装置に好ましく用いることができる。
(有機EL表示装置)
 本発明の有機電界発光装置の一例である有機EL表示装置としては、例えば、視認側から、本発明の積層体と、有機EL表示パネルとをこの順で有する態様が好適に挙げられる。積層体に含まれる光学異方性層は、偏光子よりも有機EL表示パネル側に配置されることが好ましい。この場合、偏光板は、いわゆる反射防止板として使用される。
 また、本発明の積層体中の2枚の基板のうち、有機EL表示パネル側に配置される基板は、有機EL表示パネルの封止層として機能してもよい。例えば、基板がガラス基板である場合、本発明の積層体中の2枚のガラス基板のうち、有機EL表示パネル側に配置されるガラス基板は、いわゆる封止ガラスとして機能してもよい。
 有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
 なかでも、積層体を含む有機EL表示装置としては、スマートフォンおよびタブレット用途の有機EL表示装置の態様が挙げられ、積層体に該当する構成としては、カバーガラス/(タッチセンサー)/(偏光子保護フィルム)/偏光子/(偏光子保護フィルム)/光学異方性層/(タッチセンサー)/有機EL封止用ガラス、ハイバリアフィルムまたは有機ELバリアフィルムが想定される。なお、上記構成中の( )で示された部材は、なくてもよいことを示す。
(液晶表示装置)
 本発明の液晶表示装置は、画像表示装置の一例であり、上述した本発明の積層体と、液晶層とを有する。
 なお、本発明においては、液晶層の両側に設けられる偏光板のうち、フロント側の偏光板として本発明の積層体中の偏光板を用いることが好ましく、フロント側およびリア側の偏光板として本発明の積層体中の偏光板を用いることがより好ましい。また、偏光板に含まれる光学異方性層は、偏光子よりも液晶層側に配置されることが好ましい。この場合、光学異方性層は、光学補償フィルムとして好適に使用できる。
 また、本発明の積層体中の2枚の基板のうち、液晶層側に配置される基板は、液晶層の両側に配置される基板として機能してもよい。例えば、基板がガラス基板である場合、本発明の積層体中の2枚の基板のうち、液晶側に配置されるガラス基板は、液晶層と液晶層を挟む2枚のガラス基板とで構成される液晶セル中のガラス基板として機能してもよい。
 なかでも、積層体を含む液晶表示装置としては、スマートフォンおよびタブレット用途のIPS液晶表示装置の態様が挙げられ、積層体に該当する構成としては、カバーガラス/(タッチセンサー)/(偏光子保護フィルム)/偏光子/(偏光子保護フィルム)/光学異方性層/液晶セル用ガラスが想定される。なお、上記構成中の( )で示された部材は、なくてもよいことを示す。
 液晶表示装置は、VA(Virtical Alignment)モード、OCB(Optical Compensated Bend)モード、IPSモード、FFS(Fringe Field Switching)モード、または、TN(Twisted Nematic)であることが好ましいが、これらに制限されるものではない。
 FFSモードは、IPSモードと同様に液晶層表面に対して液晶分子が常に水平であるようにスイッチングするモードであり、本発明においては、IPSモードの一つと考えてよい。
 以下、実施例を用いて、本発明についてより詳細に説明する。ただし、本発明はこれに制限されるものではない。
<保護フィルム付き偏光子1の作製>
 セルローストリアセテートフィルムTJ25「Z-TAC」(富士フイルム製:厚み25μm)の支持体表面をアルカリ鹸化処理した。具体的には、55℃の1.5規定の水酸化ナトリウム水溶液に支持体を2分間浸漬した後、支持体を室温の水洗浴槽中で洗浄し、さらに30℃の0.1規定の硫酸を用いて中和した。中和した後、支持体を室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥して、偏光子保護フィルムを得た。
 厚み75μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中でMD(Machine Direction)方向に延伸し、乾燥して、厚み14μmの偏光子1を得た。
 上記偏光子1の両方の面に、上記偏光子保護フィルムを貼り合わせて、保護フィルム付き偏光子1を作製した。
<保護フィルム付き偏光子2の作製>
 2つの偏光子保護フィルムの一方を、表面がコロナ処理された無延伸シクロオレフィンフィルム(厚み25μm)に変更して、偏光子1の一方の面に偏光子保護フィルムを貼り合せて、他方の面に上記無延伸シクロオレフィンフィルムを貼り合せた以外は、<保護フィルム付き偏光子1の作製>と同様の手順に従って、保護フィルム付き偏光子1を作製した。
<保護フィルム付き偏光子3の作製>
 偏光子の厚みを14μmから9μmに変更した以外は、<保護フィルム付き偏光子1の作製>と同様の手順に従って、保護フィルム付き偏光子3を作製した。
<保護フィルム付き偏光子4の作製>
 特開2017-194710号公報の実施例1の記載を参考にして、厚み4μmのポリビニルアルコール系偏光子を含む積層フィルム(基材フィルム/プライマー層/偏光子)を得た。次に、偏光子上に<保護フィルム付き偏光子1の作製>で作製した偏光子保護フィルムを貼り合せて、得られた積層フィルム中から基材フィルムおよびプライマー層を剥離して、露出した偏光子の表面に<保護フィルム付き偏光子1の作製>で作製した偏光子保護フィルムを貼り合せて、保護フィルム付き偏光子4を作製した。
<保護フィルム付き偏光子5の作製>
 特開2017-194710号公報の実施例1の記載を参考にして、厚み4μmのポリビニルアルコール系偏光子を含む積層フィルム(基材フィルム/プライマー層/偏光子)を得た。次に、偏光子上に<保護フィルム付き偏光子1の作製>で作製した偏光子保護フィルムを貼り合せて、得られた積層フィルム中から基材フィルムおよびプライマー層を剥離して、露出した偏光子の表面に無延伸シクロオレフィンフィルム(厚み25μm)を貼り合せて、保護フィルム付き偏光子5を作製した。
<保護フィルム付き偏光子6の作製>
 偏光子の厚みを14μmから15μmに変更し、偏光子の片面のみに保護フィルムを張り付けるように変更した以外は、<保護フィルム付き偏光子1の作製>と同様の手順に従って、保護フィルム付き偏光子6を作製した。
<保護フィルム付き偏光子7の作製>
 特開2015-129826号公報の実施例1の記載を参考にして、厚み4μmのポリビニルアルコール系偏光子と、上記偏光子の片面にアクリル系樹脂フィルムHX-40UC(東洋鋼鈑(株)製:厚み40μm)を保護フィルムとして有する直線偏光板7を作製した。
<実施例1:積層体1の作製>
 下記の組成物をミキシングタンクに投入し、攪拌して、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
コア層セルロースアシレートドープ
─────────────────────────────────
アセチル置換度2.88のセルロースアセテート     100質量部
特開2015-227955号公報の実施例に
 記載されたポリエステル化合物B            12質量部
下記の化合物G                      2質量部
メチレンクロライド(第1溶媒)            430質量部
メタノール(第2溶媒)                 64質量部
─────────────────────────────────
 化合物G
Figure JPOXMLDOC01-appb-C000029
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
マット剤溶液
─────────────────────────────────
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)    2質量部
メチレンクロライド(第1溶媒)             76質量部
メタノール(第2溶剤)                 11質量部
上記のコア層セルロースアシレートドープ          1質量部
─────────────────────────────────
 上記コア層セルロースアシレートドープおよび上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。溶剤含有率略20質量%の状態でフィルムをドラム上から剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。その後、得られたフィルムを熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み40μmの光学フィルムを作製した。光学フィルムのコア層は厚み36μm、コア層の両側に配置された外層はそれぞれ厚み2μmであった。得られた光学フィルムのRe(550)は0nmであった。
 次に、特開2012-155308号公報の実施例3の記載を参考に、光配向膜1用塗布液を調製し、上記光学フィルム上にワイヤーバーで塗布した。その後、得られた光学フィルムを60℃の温風で60秒間乾燥し、厚み300nmの塗膜1を作製した。
 続いて、下記のポジティブAプレート形成用塗布液A-1を調製した。
――――――――――――――――――――――――――――――――――
ポジティブAプレート形成用塗布液A-1の組成
――――――――――――――――――――――――――――――――――
下記重合性液晶化合物X-1             20.00質量部
下記液晶化合物L-1                40.00質量部
下記液晶化合物L-2                40.00質量部
下記重合開始剤S-1                 0.60質量部
レベリング剤(下記化合物T-1)           0.10質量部
メチルエチルケトン(溶媒)            200.00質量部
シクロペンタノン(溶媒)             200.00質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-I000031
 作製した塗膜1に、大気下にて超高圧水銀ランプを用いて紫外線を照射した。このとき、ワイヤーグリッド偏光子(Moxtek社製, ProFlux PPL02)を塗膜1の面と平行になるようにセットして露光し、光配向処理を行い、光配向膜1を得た。
 この際、紫外線の照度はUV-A領域(紫外線A波、波長320~380nmの積算)において10mJ/cmとした。
 次いで、光配向膜1上にポジティブAプレート形成用塗布液A-1を、バーコーターを用いて塗布した。得られた塗膜を膜面温度100℃で20秒間加熱熟成し、90℃まで冷却した後に、空気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて300mJ/cmの紫外線を照射して、ネマチック配向状態を固定化することにより光学異方性層1(ポジティブAプレートA1)を形成し、光学異方性層付き光学フィルムを得た。
 形成された光学異方性層1は、膜厚が2.5μmであった。光学異方性層1のRe(550)は145nm、Rth(550)は73nm、Re(550)/Re(450)は1.15、Re(650)/Re(550)は1.01、光軸のチルト角は0°であり、液晶化合物はホモジニアス配向であった。
 特開2017-134414号公報の実施例1の手順に従って、粘着剤付きフィルムを作製した。
 次に、粘着剤付きフィルムを用いて保護フィルム付き偏光子1の一方の面に対して、光学異方性層付き光学フィルム中の光学異方性層1側を貼り合せた。その際、偏光子の吸収軸と光学異方性層1の遅相軸とのなす角度は45°であった。具体的には、保護フィルム付き偏光子1の一方の面に対して、粘着剤付きフィルムの粘着剤を貼り合せて、粘着剤付きフィルム中のフィルムを剥離して、さらに粘着剤に対して、光学異方性層付き光学フィルム中の光学異方性層1を貼り合せた。
 次に、得られた積層体から、光配向膜1と光学異方性層1との界面で剥離して、光配向膜1付き光学フィルムを取り除き、偏光板を作製した。
 得られた偏光板から14cm×7cmのサイズの偏光板サンプルを切り出して、適当に調湿条件を調整することにより、偏光板サンプル中の含水量を2.4g/mとした。その含水量を保ったまま、偏光板サンプルの両側から粘着剤付きフィルムを用いて、ガラス板で挟み込み、ガラス板、偏光板、および、ガラス板をこの順で含む積層体1を得た。
 水蒸気透過率測定装置(MOCON,INC.製のAQUATRAN2(商標登録))を用い、40℃、90%RHの雰囲気で、ガラス板の透湿度を測定したところ、1.0×10-3g/m・day未満であった。
<実施例2>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-2を用いて、偏光板の含水量を表1に示すように変更した以外は、実施例1と同様の手順に従って、積層体2を得た。
 なお、積層体2中の偏光板の含水量を表1に示す。
 なお、形成された光学異方性層2(ポジティブAプレートA2)は、膜厚が2.7μmであった。光学異方性層2のRe(550)は145nm、Rth(550)は73nm、Re(550)/Re(450)は1.15、Re(650)/Re(550)は1.01であった。
――――――――――――――――――――――――――――――――――
ポジティブAプレート形成用塗布液A-2の組成
――――――――――――――――――――――――――――――――――
上記重合性液晶化合物X-1             20.00質量部
上記液晶化合物L-1                40.00質量部
上記液晶化合物L-2                40.00質量部
上記重合開始剤S-1                 0.60質量部
下記重合性化合物B-1                7.00質量部
レベリング剤(上記化合物T-1)           0.10質量部
メチルエチルケトン(溶媒)            200.00質量部
シクロペンタノン(溶媒)             200.00質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000032
<実施例3および4>
 偏光板の含水量を表1のように変更した以外は、実施例2と同様の手順に従って、積層体3および4を得た。
<実施例5~8>
 保護フィルム付き偏光子1の代わりに保護フィルム付き偏光子2~5を用いて、保護フィルム付き偏光子のZ-TACで構成された偏光子保護フィルム側に光学異方性層を貼り合わせ、偏光板の含水量を表1に示すように変更した以外は、実施例2と同様の手順に従って、積層体5~8を得た。
<実施例9>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-3を用いて、偏光板の含水量を表1に示すように変更した以外は、実施例1と同様の手順に従って、積層体9を得た。
 なお、形成された光学異方性層3(ポジティブAプレートA3)のRe(550)は130nm、Rth(550)は65nm、Re(550)/Re(450)は1.19、Re(650)/Re(550)は1.02であった。
――――――――――――――――――――――――――――――――――
ポジティブAプレート形成用塗布液A-3の組成
――――――――――――――――――――――――――――――――――
下記液晶化合物L-6               100.00質量部
上記重合開始剤S-1                 0.60質量部
上記重合性化合物B-1                7.00質量部
レベリング剤(上記化合物T-1)           0.10質量部
メチルエチルケトン(溶媒)            200.00質量部
シクロペンタノン(溶媒)             200.00質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000033
<実施例10>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-4を用いて、偏光板の含水量を表1に示すように変更した以外は、実施例1と同様の手順に従って、積層体10を得た。
 なお、形成された光学異方性層4(ポジティブAプレートA4)のRe(550)は130nm、Rth(550)は65nm、Re(550)/Re(450)は1.2、Re(650)/Re(550)は1.02であった。
――――――――――――――――――――――――――――――――――
ポジティブAプレート形成用塗布液A-4の組成
――――――――――――――――――――――――――――――――――
下記液晶化合物L-9               100.00質量部
上記重合開始剤S-1                 0.60質量部
上記重合性化合物B-1                7.00質量部
レベリング剤(上記化合物T-1)           0.10質量部
メチルエチルケトン(溶媒)            200.00質量部
シクロペンタノン(溶媒)             200.00質量部
――――――――――――――――――――――――――――――――――
 液晶化合物L-9(以下構造)
Figure JPOXMLDOC01-appb-C000034
<実施例11>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-5を用いた以外は、実施例1と同様の手順に従って、積層体11を得た。
――――――――――――――――――――――――――――――――――
ポジティブAプレート形成用塗布液A-5の組成
――――――――――――――――――――――――――――――――――
下記液晶化合物L-5               100.00質量部
重合開始剤イルガキュア369(BASFジャパン)   3.00質量部
重合開始剤OXE-03(BASFジャパン)      3.00質量部
アデカクルーズNCI-831(アデカ)        3.00質量部
レベリング剤BYK361N(ビックケミージャパン)  0.10質量部
酸化防止剤BHT(東京化成工業)           0.90質量部
メチルエチルケトン(溶媒)             60.00質量部
シクロペンタノン(溶媒)             200.00質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000035
<実施例12>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-6を用いた以外は、実施例1と同様の手順に従って、積層体12を得た。
 液晶化合物L-5の代わりに、液晶化合物L-10を用いた以外は、ポジティブAプレート形成用塗布液A-5の組成と同様の組成のポジティブAプレート形成用塗布液A-6を調製した。
Figure JPOXMLDOC01-appb-C000036
<実施例13>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-7を用いた以外は、実施例1と同様の手順に従って、積層体13を得た。
 液晶化合物L-5の代わりに、液晶化合物L-7を用いた以外は、ポジティブAプレート形成用塗布液A-5の組成と同様の組成のポジティブAプレート形成用塗布液A-7を調製した。
Figure JPOXMLDOC01-appb-C000037
<実施例14>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-8を用いた以外は、実施例1と同様の手順に従って、積層体14を得た。
 液晶化合物L-5の代わりに、液晶化合物L-8を用いた以外は、ポジティブAプレート形成用塗布液A-5の組成と同様の組成のポジティブAプレート形成用塗布液A-8を調製した。
Figure JPOXMLDOC01-appb-C000038
<実施例15>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-9を用いて、偏光板の含水量を表1に示すように変更した以外は、実施例1と同様の手順に従って、積層体15を得た。
 液晶化合物L-5の代わりに、液晶化合物L-13を用いた以外は、ポジティブAプレート形成用塗布液A-5の組成と同様の組成のポジティブAプレート形成用塗布液A-9を調製した。
Figure JPOXMLDOC01-appb-C000039
<実施例16>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-10を用いて、偏光板の含水量を表1に示すように変更した以外は、実施例1と同様の手順に従って、積層体16を得た。
 液晶化合物L-5の代わりに、液晶化合物L-14を用いた以外は、ポジティブAプレート形成用塗布液A-5の組成と同様の組成のポジティブAプレート形成用塗布液A-10を調製した。
Figure JPOXMLDOC01-appb-C000040
<実施例17>
 ポジティブAプレート形成用塗布液A-1の代わりに後述するポジティブAプレート形成用塗布液A-11を用いて、偏光板の含水量を表1に示すように変更した以外は、実施例1と同様の手順に従って、積層体17を得た。
 液晶化合物L-5の代わりに、液晶化合物L-15を用いた以外は、ポジティブAプレート形成用塗布液A-5の組成と同様の組成のポジティブAプレート形成用塗布液A-11を調製した。
Figure JPOXMLDOC01-appb-C000041
<比較例1~2>
 偏光板の含水量を表1のように変更した以外は、実施例2と同様の手順に従って、積層体18および19を得た。
<比較例3>
 偏光板の含水量を表1のように変更した以外は、実施例5と同様の手順に従って、偏光板20を得た。
<比較例4>
 偏光板の含水量を表1のように変更した以外は、実施例9と同様の手順に従って、偏光板21を得た。
<比較例5>
 偏光板の含水量を表1のように変更した以外は、実施例10と同様の手順に従って、偏光板22を得た。
<比較例6>
 偏光板の含水量を表1のように変更した以外は、実施例11と同様の手順に従って、偏光板23を得た。
<比較例7>
 偏光板の含水量を表1のように変更した以外は、実施例12と同様の手順に従って、偏光板24を得た。
<比較例8>
 偏光板の含水量を表1のように変更した以外は、実施例13と同様の手順に従って、偏光板25を得た。
<比較例9>
 偏光板の含水量を表1のように変更した以外は、実施例14と同様の手順に従って、偏光板26を得た。
<比較例10>
 偏光板の含水量を表1のように変更した以外は、実施例15と同様の手順に従って、偏光板27を得た。
<比較例11>
 偏光板の含水量を表1のように変更した以外は、実施例16と同様の手順に従って、偏光板28を得た。
<比較例12>
 偏光板の含水量を表1のように変更した以外は、実施例17と同様の手順に従って、偏光板29を得た。
 なお、実施例および比較例における偏光板の含水量は、偏光子を2枚のガラス板で挟む前に偏光子を所定の環境下にて静置して調整した。
<評価:熱耐久性試験>
 実施例および比較例において得られた積層体について、Axo Scan(OPMF-1、Axometrics社製)を用いて、波長550nmにおける面内レターデーション(Re)の熱耐久性を下記の指標で評価した。結果を、表3に示す。
 なお、熱耐久性試験条件は、積層体を85℃の環境下に400時間放置する試験を行った。「A」以上と評価されれば、耐久性は良好であると判断することができる。
 AAA:初期のRe値に対する試験後のRe値の変化量が初期のRe値の1%未満
 AA:初期のRe値に対する試験後のRe値の変化量が初期のRe値の1%以上3%未満
 A:初期のRe値に対する試験後のRe値の変化量が初期のRe値の3%以上7%未満
 B:初期のRe値に対する試験後のRe値の変化量が初期のRe値の7%以上15%未満
 C:初期のRe値に対する試験後のRe値の変化量が初期のRe値の15%以上
 以上の評価試験の結果を第1表に示す
 なお、表1中の「光学異方性層」欄の「Re(550)/Re(450)」は、光学異方性層のRe(450)に対する、光学異方性層のRe(550)の比を表す。
 また、表1中の「光学異方性層」欄の「Re(650)/Re(550)」は、光学異方性層のRe(550)に対する、光学異方性層のRe(650)の比を表す。
Figure JPOXMLDOC01-appb-T000042
 表1に示すように、本発明の積層体であれば、所望の効果が得られることが確認された。
 なかでも、実施例1~3の比較より、偏光板含水量が2.3g/m以下の場合、より効果が優れることが確認された。
 また、実施例5~7の比較より、偏光子の厚みが10μm未満の場合、より効果が優れることが確認された。
<実施例18~34>
(ポジティブCプレート1の作製)
 仮支持体として、トリアセチルセルロースフィルム「Z-TAC」(富士フイルム社製)を用いた(これをセルロースアシレートフィルム2とする)。
 セルロースアシレートフィルム2を温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。
 次いで、同じくバーコーターを用いて、フィルム上に純水を3ml/m塗布した。
 次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、フィルムを70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルム2を作製した。
─────────────────────────────────
(アルカリ溶液)
─────────────────────────────────
水酸化カリウム                    4.7質量部
水                         15.8質量部
イソプロパノール                  63.7質量部
含フッ素界面活性剤SF-1
(C1429O(CHCHO)20H)          1.0質量部
プロピレングリコール                14.8質量部
─────────────────────────────────
 下記の組成の配向膜形成用塗布液2を、#8のワイヤーバーを用いて上記アルカリ鹸化処理されたセルロースアシレートフィルム2上に連続的に塗布した。得られたフィルムを60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、配向膜を形成した。
─────────────────────────────────
(配向膜形成用塗布液2)
─────────────────────────────────
ポリビニルアルコール(クラレ製、PVA103)    2.4質量部
イソプロピルアルコール                1.6質量部
メタノール                       36質量部
水                           60質量部
─────────────────────────────────
 後述するポジティブCプレート形成用塗布液C-1を配向膜上に塗布し、得られた塗膜を60℃で60秒間熟成させた後に、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより、液晶化合物を垂直配向させ、ポジティブCプレート1を作製した。
 得られたポジティブCプレートのRth(550)は、-60nmであった。
─────────────────────────────────
(ポジティブCプレート形成用塗布液C-1)
─────────────────────────────────
下記液晶化合物L-11                 80質量部
下記液晶化合物L-12                 20質量部
下記垂直配液晶化合物向剤(S01)            1質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製)           8質量部
イルガキュア907(BASF製)             3質量部
カヤキュアーDETX(日本化薬(株)製)         1質量部
下記化合物B03                   0.4質量部
メチルエチルケトン                  170質量部
シクロヘキサノン                    30質量部
─────────────────────────────────
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(偏光板の作製)
 実施例1~17の偏光板のポジティブAプレート側に、粘着剤付フィルムを用いて、上記で作製したポジティブCプレート1を張り合わせ、配向膜とセルロースアシレートフィルム2を除去して、偏光板30~46を得た。
 有機EL表示パネル搭載のSAMSUNG社製GALAXY S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、さらにタッチパネルから円偏光板を剥がし、有機EL表示パネル(封止ガラス付き)、タッチパネルおよび円偏光板をそれぞれ単離した。次いで、単離したタッチパネルを有機EL表示パネルと再度貼り合せて、さらに上記作製した偏光板30~46をポジティブCプレート1側がパネル側になるようにタッチパネル上に貼り合せて、さらにカバーガラスを貼り合せて、有機EL表示装置を作製した。
 得られた有機EL表示装置中においては、封止ガラス(ガラス板に該当)と、偏光板(偏光板30~46のいずれか)と、カバーガラス(ガラス板に該当)とを含む積層体が含まれていた。
 なお、有機EL表示装置に偏光板を組み込む際の偏光板30~46の含水量は、それぞれ偏光板1~17と同じであった。例えば、偏光板30の含水量は、偏光板1の含有量と同じであった。
 作製した有機EL表示装置においては、偏光板が反射防止板として機能することを確認した。
<実施例35>
 Langmuir,32(36),9245-9253(2016年)に記載された方法に従い、2-ヒドロキシエチルメタクリレート(HEMA)(東京化成試薬)と下記桂皮酸クロリド誘導体を用いて、以下に示すモノマーm-1を合成した。
 桂皮酸クロリド誘導体
Figure JPOXMLDOC01-appb-C000046
 モノマーm-1
Figure JPOXMLDOC01-appb-C000047
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン(5質量部)を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。フラスコ内に、モノマーm-1(5質量部)、サイクロマーM100(ダイセル社製)(5質量部)、2,2’-アゾビス(イソブチロニトリル)(1質量部)、および、2-ブタノン(5質量部)を混合した溶液を3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。
 反応終了後、室温まで放冷し、フラスコ内に2-ブタノン(30質量部)を加えて希釈することで約20質量%の重合体溶液を得た。得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した。その後、得られた固形分を50℃において12時間送風乾燥することにより、光配向性基を有する重合体PA-1を得た。
 重合体PA-1
Figure JPOXMLDOC01-appb-C000048
 後述する組成の光配向膜2形成用塗布液を、上記にて作製した光学フィルム上に#2.4のワイヤーバーで連続的に塗布した。塗膜が形成された支持体を140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向膜2を形成した。
─────────────────────────────────
(光配向膜2形成用塗布液)
─────────────────────────────────
上記重合体PA-1               100.00質量部
イソプロピルアルコール              16.50質量部
酢酸ブチル                  1072.00質量部
メチルエチルケトン               268.00質量部
─────────────────────────────────
 次いで、後述するポジティブAプレート形成用塗布液A-12を、バーコーターを用いて光配向膜上に塗布し、塗膜を形成した。形成した塗膜をホットプレート上でいったん110℃まで加熱した後、60℃に冷却させて液晶化合物の配向を安定化させた。その後、塗膜を80℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚み2μmの光学異方性層12(ポジティブAプレートA12)を作製した。得られた光学異方性層12のRe(550)は130nmであり、Re(550)/Re(450)は1.18、Re(650)/Re(550)は1.02であった。
―――――――――――――――――――――――――――――――――
ポジティブAプレート形成用塗布液A-12の組成
―――――――――――――――――――――――――――――――――
上記液晶化合物L-1              42.00質量部
上記液晶化合物L-2              42.00質量部
上記重合性液晶化合物X-1           12.00質量部
下記重合性化合物A-2              4.00質量部
上記重合開始剤S-1(オキシム型)        0.50質量部
下記レベリング剤T-2              0.23質量部
ハイソルブMTEM(東邦化学工業社製)      2.00質量部
NKエステルA-200(新中村化学工業社製)   1.00質量部
メチルエチルケトン               424.8質量部
―――――――――――――――――――――――――――――――――
 重合性化合物A-2
Figure JPOXMLDOC01-appb-C000049
 レベリング剤T-2(a/b/c=66/26/8)
Figure JPOXMLDOC01-appb-C000050
 光学異方性層A12表面を放電量150W・min/mでコロナ処理を行い、コロナ処理を行った面に後述するポジティブCプレート2形成用塗布液をワイヤーバーで塗布した。
 次いで、塗膜を70℃の温風で90秒間加熱した。その後、窒素パージ下(酸素濃度0.1%)で40℃にて塗膜に対して紫外線照射(300mJ/cm)を行い、液晶化合物の配向を固定化し、光学異方性層12上にポジティブCプレート2を作製し、光学異方性層12とポジティブCプレート2とを有する位相差フィルムを得た。得られたポジティブCプレート2のRth(550)は-100nmであり、Rth(550)/Rth(450)は1.05であった。
―――――――――――――――――――――――――――――――――
ポジティブCプレート2形成用塗布液の組成
―――――――――――――――――――――――――――――――――
上記液晶化合物L-1                10.0質量部
上記液晶化合物L-2                54.0質量部
下記液晶化合物L-16               28.0質量部
上記重合性化合物A-2                8.0質量部
下記化合物B-1                   4.5質量部
NKエステルA-600((新中村化学工業社製)   12.0質量部
上記重合開始剤S-1                 1.5質量部
下記界面活性剤P-2                 0.4質量部
下記界面活性剤P-3                 0.5質量部
アセトン                     175.0質量部
プロピレングリコールモノメチルエーテルアセテート  75.0質量部
―――――――――――――――――――――――――――――――――
液晶化合物L-16
 下記液晶化合物(RA)(RB)(RC)の83:15:2(質量比)の混合物
Figure JPOXMLDOC01-appb-C000051
化合物B-1
Figure JPOXMLDOC01-appb-C000052
界面活性剤P-2
Figure JPOXMLDOC01-appb-C000053
・界面活性剤P-3(重量平均分子量:11,200)
Figure JPOXMLDOC01-appb-C000054
 下記化合物を記載の比率で混合し、接着剤液Aを作製した。
アロニックスM-220(東亞合成株式会社製):20質量部
4-ヒドロキシブチルアクリレート(日本化成株式会社製):40質量部
アクリル酸-2-エチルヘキシル(三菱化学株式会社製):40質量部
Irgacure907(BASF製):1.5質量部
KAYACURE DETX-S(日本化薬株式会社製):0.5質量部
 作製したポジティブCプレート2の表面を放電量150W・min/mでコロナ処理してから、上記接着剤を、厚み0.5μmになるように塗設した。その後、接着剤塗布面を保護フィルム付き偏光子6の偏光子側(偏光子の表面)と貼り合わせ、大気雰囲気下40℃にて位相差フィルムの光学フィルム側から紫外線を300mJ/cm照射した。得られたフィルムを60℃で3分間乾燥した後、光配向膜2と光学異方性層12の界面で剥離して、光配向膜2付きの光学フィルムを取り除き、偏光子と、ポジティブCプレート2、および、光学異方性層12をこの順で有する偏光板47を作製した。このとき、偏光子の吸収軸に対して光学異方性層12の遅相軸方向が平行であった。
 得られた偏光板から14cm×7cmのサイズの偏光板サンプルを切り出して、調湿条件を調整することにより、偏光板サンプル中の含水量を2.8g/mとした。その含水量を保ったまま、偏光板サンプルの両側から粘着剤付きフィルムを用いて、ガラス板で挟み込み、ガラス板、偏光板、および、ガラス板をこの順で含む積層体47を得た。
 水蒸気透過率測定装置(MOCON,INC.製のAQUATRAN2(商標登録))を用い、40℃、90%RHの雰囲気で、ガラス板の透湿度を測定したところ、1.0×10-3g/m・day未満であった。
<実施例36および比較例13>
 表2に示すように、偏光板の含水量および保護フィルム付き偏光子の種類を変更した以外は、実施例35の積層体47と同様の手順に従って、積層体48および49を得た。なお、積層体48で作製した偏光板を、それぞれ偏光板48という。
 得られた積層体47~49を用いて、実施例1~17と同様の評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000055
 表2に示すように、本発明の積層体であれば、所望の効果が得られることが確認された。
(液晶表示装置の作製)
 市販の液晶表示装置(iPad(商標登録)、Apple社製)(FFSモードの液晶セルを含む液晶表示装置)を分解し、カバーガラス、タッチパネル、液晶セルより視認側の偏光子をそれぞれ単離した。次に、上記作製した偏光板47~48中の光学異方性層が偏光子よりも液晶セル側になるようにして、上記粘着フィルムを用いて液晶セルに貼り合わせた。このとき、液晶表示装置のバックライト側の偏光子の吸収軸と偏光板47~48中の偏光子の吸収軸とが互いに直交するようにした。次いで、偏光板47~48の偏光子保護フィルム上に単離したタッチパネルを再度貼り合せ、さらにカバーガラスを貼り合せて、液晶表示装置を作製した。
 得られた液晶表示装置中においては、液晶セルガラス(ガラス板に該当)と、偏光板と、カバーガラス(ガラス板に該当)とを含む積層体が含まれていた。
 なお、液晶表示装置に偏光板を組み込む際の偏光板47~48の含水量は、上記表2の積層体47~48中の偏光板の含水量と同じであった。
 作製した液晶表示装置においては、斜めの黒表示性能が良好であり、偏光板が光学補償機能を有していることを確認した。
 10A,10B  積層体
 12A  第1基板
 12B  第2基板
 14  偏光板
 16  偏光子
 18  光学異方性層
 20A  第1偏光子保護フィルム
 20B  第2偏光子保護フィルム

Claims (9)

  1.  2枚の基板と、前記2枚の基板の間に配置された偏光板とを有する積層体であって、
     前記偏光板が、偏光子および光学異方性層を有し、
     前記偏光子が、ポリビニルアルコール系樹脂を含み、
     前記光学異方性層が、一般式(I)で表される重合性液晶化合物を含む組成物を用いて形成された層であり、
     前記基板の透湿度が10-3g/m・day以下であり、
     前記偏光板の含水量が3.0g/m以下である、積層体。
      L-G-D-Ar-D-G-L   ・・・(I)
     一般式(I)中、DおよびDは、それぞれ独立に、単結合、-O-、-CO-O-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-CR-O-CO-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-または-CO-NR-を表す。
     R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子または炭素数1~4のアルキル基を表す。
     GおよびGは、それぞれ独立に、炭素数5~8の2価の脂環式炭化水素基または芳香族炭化水素基を表し、前記脂環式炭化水素基に含まれるメチレン基は、-O-、-S-、または、-NH-で置換されていてもよい。
     LおよびLは、それぞれ独立に、1価の有機基を表し、LおよびLからなる群から選ばれる少なくとも1種が、重合性基を有する1価の基を表す。
     Arは、下記一般式(II-1)、一般式(II-2)、一般式(II-3)または一般式(II-4)で表される2価の芳香環基を表す。
    Figure JPOXMLDOC01-appb-C000001
     一般式(II-1)~(II-4)中、Qは、-S-、-O-、または、-NR11-を表し、R11は、水素原子または炭素数1~6のアルキル基を表し、Yは、炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表し、Z、ZおよびZは、それぞれ独立に、水素原子または炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213または-SR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に、水素原子または炭素数1~6のアルキル基を表し、AおよびAは、それぞれ独立に、-O-、-NR21-、-S-および-CO-からなる群から選ばれる基であって、R21は、水素原子または置換基を表し、Xは、水素原子または置換基が結合していてもよい第14族~第16族の非金属原子を表し、Axは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表し、Ayは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する炭素数2~30の有機基を表し、AxおよびAyにおける芳香環はそれぞれ、置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、Qは、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
  2.  前記偏光板の含水量が2.3g/m以下である、請求項1に記載の積層体。
  3.  前記偏光子の厚みが10μm未満である、請求項1または2に記載の積層体。
  4.  前記光学異方性層の波長450nmにおける面内レターデーションであるRe(450)と、前記光学異方性層の波長550nmにおける面内レターデーションであるRe(550)と、前記光学異方性層の波長650nmにおける面内レターデーションであるRe(650)とが、Re(450)≦Re(550)≦Re(650)の関係を満たす、請求項1~3のいずれか1項に記載の積層体。
  5.  前記光学異方性層がポジティブAプレートである、請求項1~4のいずれか1項に記載の積層体。
  6.  前記光学異方性層がλ/4板である、請求項1~5のいずれか1項に記載の積層体。
  7.  前記偏光子の少なくとも一方の表面上に偏光子保護フィルムを有し、
     前記偏光子保護フィルムの少なくとも1つがノルボルネン系樹脂を含む、請求項1~6のいずれか1項に記載の積層体。
  8.  請求項1~7のいずれか1項に記載の積層体を有する、有機電界発光装置。
  9.  請求項1~7のいずれか1項に記載の積層体を有する、液晶表示装置。
PCT/JP2019/007232 2018-02-28 2019-02-26 積層体、有機電界発光装置、液晶表示装置 WO2019167926A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207024031A KR20200111741A (ko) 2018-02-28 2019-02-26 적층체, 유기 전계 발광 장치, 액정 표시 장치
CN201980015948.5A CN111819477A (zh) 2018-02-28 2019-02-26 层叠体、有机电致发光装置、液晶显示装置
JP2020503514A JPWO2019167926A1 (ja) 2018-02-28 2019-02-26 積層体、有機電界発光装置、液晶表示装置
US17/002,881 US11667842B2 (en) 2018-02-28 2020-08-26 Laminate, organic electroluminescent device, and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018034733 2018-02-28
JP2018-034733 2018-02-28
JP2018180174 2018-09-26
JP2018-180174 2018-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/002,881 Continuation US11667842B2 (en) 2018-02-28 2020-08-26 Laminate, organic electroluminescent device, and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2019167926A1 true WO2019167926A1 (ja) 2019-09-06

Family

ID=67804898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007232 WO2019167926A1 (ja) 2018-02-28 2019-02-26 積層体、有機電界発光装置、液晶表示装置

Country Status (5)

Country Link
US (1) US11667842B2 (ja)
JP (1) JPWO2019167926A1 (ja)
KR (1) KR20200111741A (ja)
CN (1) CN111819477A (ja)
WO (1) WO2019167926A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050305A1 (ja) * 2018-09-04 2020-03-12 富士フイルム株式会社 積層体、有機電界発光装置、液晶表示装置
WO2021060437A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板および画像表示装置
JPWO2021060448A1 (ja) * 2019-09-27 2021-04-01
JPWO2021060423A1 (ja) * 2019-09-27 2021-04-01
JP2021076759A (ja) * 2019-11-12 2021-05-20 日東電工株式会社 位相差層付偏光板および画像表示装置
WO2022102166A1 (ja) * 2020-11-11 2022-05-19 日東電工株式会社 位相差層付偏光板の製造方法
US20220220381A1 (en) * 2019-09-27 2022-07-14 Fujifilm Corporation Optically anisotropic layer, optical film, polarizing plate, and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064378A (ja) * 2010-09-15 2012-03-29 Konica Minolta Holdings Inc 有機電子パネルの製造方法
JP2013228574A (ja) * 2012-04-26 2013-11-07 Seiko Epson Corp 位相差板、及び電子機器
JP2014102353A (ja) * 2012-11-19 2014-06-05 Nitto Denko Corp 偏光板および画像表示装置、ならびにそれらの製造方法
JP2016053709A (ja) * 2014-03-31 2016-04-14 富士フイルム株式会社 光学フィルム、偏光板、および光学フィルムの製造方法
US20170210709A1 (en) * 2016-01-27 2017-07-27 Samsung Electronics Co., Ltd. Monomer and polymer and compensation film and optical film and display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117537A (ja) * 2008-11-13 2010-05-27 Sumitomo Chemical Co Ltd 偏光板及びそれを用いた投射型液晶表示装置
JP5899607B2 (ja) 2009-03-16 2016-04-06 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP2010243858A (ja) 2009-04-07 2010-10-28 Nitto Denko Corp 偏光板、液晶パネルおよび液晶表示装置
JP2013092707A (ja) * 2011-10-27 2013-05-16 Fujifilm Corp 調光用偏光板、及びシャッター用偏光板
KR101972064B1 (ko) 2012-07-09 2019-04-24 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 광학 이방체, 및 중합성 화합물의 제조 방법
JP6944759B2 (ja) * 2015-10-13 2021-10-06 日東電工株式会社 粘着剤層付き偏光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064378A (ja) * 2010-09-15 2012-03-29 Konica Minolta Holdings Inc 有機電子パネルの製造方法
JP2013228574A (ja) * 2012-04-26 2013-11-07 Seiko Epson Corp 位相差板、及び電子機器
JP2014102353A (ja) * 2012-11-19 2014-06-05 Nitto Denko Corp 偏光板および画像表示装置、ならびにそれらの製造方法
JP2016053709A (ja) * 2014-03-31 2016-04-14 富士フイルム株式会社 光学フィルム、偏光板、および光学フィルムの製造方法
US20170210709A1 (en) * 2016-01-27 2017-07-27 Samsung Electronics Co., Ltd. Monomer and polymer and compensation film and optical film and display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11630253B2 (en) 2018-09-04 2023-04-18 Fujifilm Corporation Laminate, organic electroluminescent device, and liquid crystal display device
WO2020050305A1 (ja) * 2018-09-04 2020-03-12 富士フイルム株式会社 積層体、有機電界発光装置、液晶表示装置
JP7282190B2 (ja) 2019-09-27 2023-05-26 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板および画像表示装置
JPWO2021060437A1 (ja) * 2019-09-27 2021-04-01
JPWO2021060423A1 (ja) * 2019-09-27 2021-04-01
US20220220381A1 (en) * 2019-09-27 2022-07-14 Fujifilm Corporation Optically anisotropic layer, optical film, polarizing plate, and image display device
JPWO2021060448A1 (ja) * 2019-09-27 2021-04-01
WO2021060437A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板および画像表示装置
JP7382414B2 (ja) 2019-09-27 2023-11-16 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板、画像表示装置
JP7385669B2 (ja) 2019-09-27 2023-11-22 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板、画像表示装置
JP2021076759A (ja) * 2019-11-12 2021-05-20 日東電工株式会社 位相差層付偏光板および画像表示装置
JP7382801B2 (ja) 2019-11-12 2023-11-17 日東電工株式会社 位相差層付偏光板および画像表示装置
WO2022102166A1 (ja) * 2020-11-11 2022-05-19 日東電工株式会社 位相差層付偏光板の製造方法

Also Published As

Publication number Publication date
KR20200111741A (ko) 2020-09-29
JPWO2019167926A1 (ja) 2021-03-18
US20200392408A1 (en) 2020-12-17
CN111819477A (zh) 2020-10-23
US11667842B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP7265024B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
WO2019167926A1 (ja) 積層体、有機電界発光装置、液晶表示装置
JP7182533B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
JP7145955B2 (ja) 積層体、有機電界発光装置、液晶表示装置
JP7386256B2 (ja) 重合性液晶組成物、硬化物、光学フィルム、偏光板および画像表示装置
JP7068436B2 (ja) 光学フィルム、偏光板および画像表示装置
WO2019131976A1 (ja) 光吸収異方性膜、光学積層体および画像表示装置
JPWO2020045216A1 (ja) 積層体および画像表示装置
JP7282189B2 (ja) 光学異方性層、光学フィルム、偏光板および画像表示装置
US20200292861A1 (en) Liquid crystal display device
JP7335900B2 (ja) 偏光板、液晶表示装置、有機電界発光装置
JP7530964B2 (ja) 光学異方性層、光学フィルム、偏光板および画像表示装置
JP7033043B2 (ja) 光学積層体、液晶表示装置および有機電界発光装置
WO2019151312A1 (ja) 積層体
WO2021045192A1 (ja) 組成物、偏光子層、積層体、および画像表示装置
WO2020149343A1 (ja) 積層体および画像表示装置
WO2020031784A1 (ja) 積層体、液晶表示装置、有機電界発光装置
JP7158486B2 (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
WO2020054459A1 (ja) 重合性液晶組成物、光学異方性層、偏光板、液晶表示装置および有機電界発光装置
WO2022071040A1 (ja) 積層体、偏光板および画像表示装置
JP2024103258A (ja) 液晶組成物、液晶硬化層、光学フィルムおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503514

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024031

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760450

Country of ref document: EP

Kind code of ref document: A1