Nothing Special   »   [go: up one dir, main page]

WO2019167197A1 - スピン素子の安定化方法及びスピン素子の製造方法 - Google Patents

スピン素子の安定化方法及びスピン素子の製造方法 Download PDF

Info

Publication number
WO2019167197A1
WO2019167197A1 PCT/JP2018/007645 JP2018007645W WO2019167197A1 WO 2019167197 A1 WO2019167197 A1 WO 2019167197A1 JP 2018007645 W JP2018007645 W JP 2018007645W WO 2019167197 A1 WO2019167197 A1 WO 2019167197A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
current
predetermined
layer
current value
Prior art date
Application number
PCT/JP2018/007645
Other languages
English (en)
French (fr)
Inventor
陽平 塩川
智生 佐々木
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201880001275.3A priority Critical patent/CN110419116B/zh
Priority to US16/082,456 priority patent/US10622048B2/en
Priority to JP2018546059A priority patent/JP6424999B1/ja
Priority to PCT/JP2018/007645 priority patent/WO2019167197A1/ja
Publication of WO2019167197A1 publication Critical patent/WO2019167197A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a spin element stabilization method and a spin element manufacturing method.
  • a giant magnetoresistive (GMR) element composed of a multilayer film of a ferromagnetic layer and a nonmagnetic layer as an element utilizing a resistance value change (magnetoresistive change) based on a change in relative angle of magnetization of two ferromagnetic layers
  • a tunnel magnetoresistive (TMR) element using an insulating layer (tunnel barrier layer, barrier layer) as a nonmagnetic layer is known.
  • Non-Patent Document 1 describes a spin orbit torque type magnetoresistive effect element.
  • SOT is induced by a pure spin current generated by spin orbit interaction or a Rashba effect at the interface between different materials.
  • a current for inducing SOT in the magnetoresistive effect element flows in a direction crossing the stacking direction of the magnetoresistive effect element. There is no need to pass a current in the stacking direction of the magnetoresistive effect element, and the lifetime of the magnetoresistive effect element is expected to be extended.
  • Patent Document 1 discloses a domain wall motion type magnetic recording element.
  • the resistance value changes stepwise by moving the domain wall in the magnetic recording layer.
  • Multi-value data recording is possible by changing the resistance value stepwise.
  • analog data recording is possible instead of digital data recording of “0” and “1”.
  • These spin elements record data on the basis of a low resistance state with a low resistance value and a high resistance state with a high resistance value.
  • the resistance value of the spin element in the low resistance state and the high resistance state is required to be constant.
  • the present invention has been made in view of the above circumstances, and provides a method of stabilizing a spin element that can stabilize resistance values in a low resistance state and a high resistance state, and a method of manufacturing a spin element using the method.
  • the present inventors have noticed that the resistance values in the low resistance state and the high resistance state are different between when the first write operation is performed on the spin element and after a plurality of write operations. .
  • This difference can be a problem in terms of actual product shipment.
  • the data recording threshold values “0” and “1” at the time of shipment fluctuate during use by the user.
  • guarantee of writing about 10 15 times is required. If the threshold value serving as a reference fluctuates during use, the reliability of recorded data decreases.
  • a spin element stabilization method includes a spin unit including a current-carrying part extending in a first direction and a device part laminated on one surface of the current-carrying part and including a ferromagnetic material.
  • a current pulse having a predetermined current value or more at a predetermined temperature is applied in the first direction of the energization unit according to the following relational expression (1) so that the total pulse application time is not less than a predetermined time.
  • t is the predetermined time
  • A is a coefficient of 1 or more
  • Q is an activation energy of the energization unit
  • k B is a Boltzmann constant
  • T ′ is the energization.
  • the predetermined temperature is room temperature
  • the predetermined current value is 1.1 times or more the inversion critical current value
  • the predetermined time is 0.1 second. It may be the above.
  • the predetermined temperature is room temperature
  • the predetermined current value is 1.2 times or more of the inversion critical current value
  • the predetermined time is 0.01 seconds. It may be the above.
  • the predetermined temperature is higher than room temperature
  • the predetermined current value is 1.1 times or more of the inversion critical current value
  • the predetermined temperature and the room temperature When the difference is ⁇ T, the predetermined time may be 0.1 ⁇ (1 / ⁇ T) 2 seconds or more.
  • the pulse width of the current pulse may be 10 nsec or less.
  • the activation energy of the element constituting the energization part may be 200 kJ / mol or more.
  • the energization part is a spin orbit torque wiring
  • the element part is a first ferromagnetic layer, a second ferromagnetic layer, and a nonmagnetic layer sandwiched between them. And may be provided.
  • the energization part is a magnetic recording layer including a domain wall
  • the element part includes a nonmagnetic layer and a third ferromagnetic layer from the magnetic recording layer side. May be.
  • a method of manufacturing a spin element according to the second aspect includes a step of forming an element part including a ferromagnetic material on one surface of the energization part extending in the first direction, and the spin element according to the above aspect. And applying a pulse current to the energization unit according to a stabilization method.
  • the resistance value in the low resistance state and the high resistance state can be stabilized.
  • the method for stabilizing a spin element according to this embodiment is a method in which a current pulse is applied to a predetermined spin element so as to satisfy a predetermined relationship.
  • a current pulse is applied to a predetermined spin element so as to satisfy a predetermined relationship.
  • FIG. 1 is a schematic cross-sectional view of a spin orbit torque type magnetoresistance effect element 10 which is an example of a spin element according to the present embodiment.
  • a spin orbit torque type magnetoresistive effect element 10 shown in FIG. 1 includes an element portion 1 and a spin orbit torque wiring (energization portion) 2.
  • a conductive first electrode 3 and a second electrode 4 are provided at positions sandwiching the element portion 1 of the spin orbit torque wiring 2.
  • the first direction in which the energizing portion extends is defined as the x direction
  • the stacking direction (second direction) of the element portion 1 is defined as the z direction
  • the direction orthogonal to both the x direction and the z direction is defined as the y direction. I will explain.
  • the spin orbit torque wiring 2 extends in the x direction.
  • the spin orbit torque wiring 2 is connected to one surface of the element unit 1 in the z direction.
  • the spin orbit torque wiring 2 may be directly connected to the element unit 1 or may be connected via another layer.
  • the spin orbit torque wiring 2 is made of a material that generates a spin current by the spin Hall effect when the current I flows. As such a material, any material that can generate a spin current in the spin orbit torque wiring 2 is sufficient. Therefore, the material is not limited to a material composed of a single element, and may be composed of a portion composed of a material that easily generates a spin current and a portion composed of a material that hardly generates a spin current.
  • the spin Hall effect is a phenomenon in which a spin current is induced in a direction orthogonal to the direction of the current I based on the spin-orbit interaction when the current I is passed through the material.
  • the mechanism by which spin current is generated by the spin Hall effect will be described.
  • a current I flows along the spin orbit torque wiring 2.
  • the first spin S1 oriented in one direction and the second spin S2 oriented in the opposite direction to the first spin S1 are bent in directions orthogonal to the current, respectively.
  • the first spin S1 is bent in the z direction with respect to the traveling direction
  • the second spin S2 is bent in the ⁇ z direction with respect to the traveling direction.
  • the normal Hall effect and the spin Hall effect are common in that the moving (moving) charge (electrons) can bend in the moving (moving) direction.
  • the normal Hall effect charged particles moving in a magnetic field receive the Lorentz force and bend the direction of movement, whereas in the Spin Hall effect, electrons move only even when no magnetic field exists (currents). The only difference is that the spin movement direction is bent.
  • the number of electrons of the first spin S1 is equal to the number of electrons of the second spin S2 in a non-magnetic material (a material that is not a ferromagnetic material), the number of electrons of the first spin S1 directed in the + z direction and the ⁇ z direction in the figure.
  • the number of electrons of the second spin S2 going to is equal. In this case, the charge flows cancel each other, and the amount of current becomes zero.
  • a spin current without an electric current is particularly called a pure spin current.
  • the electron flow of the first spin S1 is J ⁇
  • the electron flow of the second spin S2 is J ⁇
  • the spin current J S flows in the z direction in the figure.
  • a first ferromagnetic layer 1 ⁇ / b> A described later is present on the upper surface of the spin orbit torque wiring 2. Therefore, spin is injected into the first ferromagnetic layer 1A.
  • the spin orbit torque wiring 2 is made of any one of a metal, an alloy, an intermetallic compound, a metal boride, a metal carbide, a metal silicide, and a metal phosphide having a function of generating a spin current by a spin Hall effect when a current flows. Composed.
  • the main configuration of the spin orbit torque wiring 2 is preferably a nonmagnetic heavy metal.
  • the heavy metal means a metal having a specific gravity equal to or higher than yttrium.
  • the nonmagnetic heavy metal is preferably a nonmagnetic metal having an atomic number of 39 or more having d electrons or f electrons in the outermost shell. These nonmagnetic metals have a large spin-orbit interaction that causes a spin Hall effect.
  • Electrons generally move in the opposite direction of current, regardless of their spin direction.
  • a nonmagnetic metal having d electrons or f electrons in the outermost shell and having a large atomic number has a large spin orbit interaction and a strong spin Hall effect. For this reason, the direction in which electrons move depends on the direction of spin of electrons. Therefore, spin current JS is likely to occur in these nonmagnetic heavy metals.
  • the spin orbit torque wiring 2 may include a magnetic metal.
  • the magnetic metal refers to a ferromagnetic metal or an antiferromagnetic metal. If a non-magnetic metal contains a trace amount of magnetic metal, it becomes a spin scattering factor. When the spin is scattered, the spin-orbit interaction is enhanced, and the generation efficiency of the spin current with respect to the current is increased.
  • the main configuration of the spin orbit torque wiring 2 may be composed only of an antiferromagnetic metal.
  • the molar ratio of the magnetic metal added is preferably sufficiently smaller than the total molar ratio of the elements constituting the spin orbit torque wiring.
  • the molar ratio of the magnetic metal to be added is preferably 3% or less.
  • the spin orbit torque wiring 2 may include a topological insulator.
  • a topological insulator is a substance in which the inside of the substance is an insulator or a high-resistance substance, but a spin-polarized metal state is generated on the surface thereof. This material generates an internal magnetic field due to spin-orbit interaction. Therefore, even without an external magnetic field, a new topological phase appears due to the effect of spin-orbit interaction. This is a topological insulator, and a pure spin current can be generated with high efficiency by strong spin-orbit interaction and breaking inversion symmetry at the edge.
  • topological insulator examples include SnTe, Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 , TlBiSe 2 , Bi 2 Te 3 , Bi 1-x Sb x , (Bi 1-x Sb x ) 2 Te 3 and the like are preferable. These topological insulators can generate a spin current with high efficiency.
  • the element unit 1 includes a first ferromagnetic layer 1A, a second ferromagnetic layer 1B, and a nonmagnetic layer 1C sandwiched between them.
  • the element unit 1 is stacked in a second direction (z direction) intersecting with the spin orbit torque wiring 2.
  • the resistance value is changed by the relative angle of the magnetization M 1B of the magnetization M 1A and the second ferromagnetic layer 1B of the first ferromagnetic layer 1A is changed.
  • Magnetization M 1B of the second ferromagnetic layer 1B is fixed in one direction (z-direction), the direction of the first ferromagnetic layer first magnetization M 1A is varied relative to the magnetization M 1B.
  • the second ferromagnetic layer 1B may be referred to as a fixed layer, a reference layer, or the like, and the first ferromagnetic layer 1A may be referred to as a free layer, a recording layer, or the like.
  • the coercivity of the second ferromagnetic layer 1B is made larger than the coercivity of the first ferromagnetic layer 1A.
  • an exchange bias type spin valve type MRAM
  • the magnetization M 1B of the second ferromagnetic layer 1B is fixed by exchange coupling with the antiferromagnetic layer.
  • the element portion 1 When the nonmagnetic layer 1C is made of an insulator, the element portion 1 has the same configuration as a tunnel magnetoresistive (TMR) element.
  • TMR tunnel magnetoresistive
  • GMR GiantianMagnetoresistance
  • the laminated structure of the element part 1 can employ a known laminated structure of magnetoresistive elements.
  • each layer may be composed of a plurality of layers, or may be provided with other layers such as an antiferromagnetic layer for fixing the magnetization direction of the second ferromagnetic layer 1B.
  • the second ferromagnetic layer 1B is called a fixed layer or a reference layer
  • the first ferromagnetic layer 1A is called a free layer or a storage layer.
  • the in-plane magnetization in which the easy magnetization axis is oriented in the xy in-plane direction may be a membrane.
  • the magnetizations M 1A and M 1B may be tilted with respect to any or all of the X direction, the Y direction, and the Z direction.
  • a ferromagnetic material can be applied to the first ferromagnetic layer 1A and the second ferromagnetic layer 1B.
  • a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, these metals and at least one element of B, C, and N are included. Alloys that can be used can be used. Specifically, Co—Fe, Co—Fe—B, and Ni—Fe can be exemplified.
  • the first ferromagnetic layer 1 is an in-plane magnetization film, for example, it is preferable to use a Co—Ho alloy (CoHo 2 ), an Sm—Fe alloy (SmFe 12 ), or the like.
  • the Heusler alloy includes an intermetallic compound having a chemical composition of XYZ or X 2 YZ, where X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table, and Y is Mn , V, Cr or Ti group transition metal or X element species, and Z is a group III to group V typical element.
  • X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table
  • Y is Mn , V, Cr or Ti group transition metal or X element species
  • Z is a group III to group V typical element.
  • Co 2 FeSi, Co 2 FeGe , Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b, Co 2 FeGe 1-c Ga c and the like.
  • a layer made of an antiferromagnetic material such as IrMn or PtMn may be laminated on the second ferromagnetic layer 1B.
  • a known material can be used for the nonmagnetic layer 1C.
  • the nonmagnetic layer 1C is made of an insulator (when it is a tunnel barrier layer), as the material, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4, or the like can be used.
  • a material in which a part of Al, Si, Mg is substituted with Zn, Be, or the like can also be used.
  • MgO and MgAl 2 O 4 are materials that can realize a coherent tunnel, spin can be injected efficiently.
  • the nonmagnetic layer 1C is made of a metal, Cu, Au, Ag, or the like can be used as the material thereof.
  • the nonmagnetic layer 1C is made of a semiconductor, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 or the like can be used as the material.
  • the element unit 1 may have other layers.
  • An underlayer may be provided on the surface of the first ferromagnetic layer 1A opposite to the nonmagnetic layer 1C. It is preferable that the layer disposed between the spin orbit torque wiring 2 and the first ferromagnetic layer 1 ⁇ / b> A does not dissipate the spin propagating from the spin orbit torque wiring 2.
  • the layer disposed between the spin orbit torque wiring 2 and the first ferromagnetic layer 1 ⁇ / b> A does not dissipate the spin propagating from the spin orbit torque wiring 2.
  • silver, copper, magnesium, aluminum, and the like have a long spin diffusion length of 100 nm or more and are difficult to dissipate spin.
  • the thickness of this layer is preferably less than or equal to the spin diffusion length of the material constituting the layer. If the thickness of the layer is less than or equal to the spin diffusion length, the spin propagating from the spin orbit torque wiring 2 can be sufficiently transmitted to the first ferromagnetic layer 1A.
  • FIG. 2 is a schematic cross-sectional view of a domain wall motion type magnetic recording element 20 that is an example of the spin element according to the present embodiment.
  • a domain wall motion type magnetic recording element 20 shown in FIG. 2 includes an element part 11 and a magnetic recording layer (electric conduction part) 12.
  • a conductive first electrode 3 and second electrode 4 are provided at positions sandwiching the element portion 11 of the magnetic recording layer 12.
  • the element unit 11 includes a first ferromagnetic layer 11A and a nonmagnetic layer 11B.
  • the first ferromagnetic layer 11A and the nonmagnetic layer 11B can be the same as the spin orbit torque type magnetoresistive element 10 shown in FIG.
  • the magnetic recording layer 12 extends in the x direction.
  • the magnetic recording layer 12 has a domain wall 12A inside.
  • the domain wall 12A is a boundary between the first magnetic domain 12B and the second magnetic domain 12C having magnetizations in opposite directions.
  • the first magnetic domain 12B has a magnetization oriented in the + x direction
  • the second magnetic domain 12C has a magnetization oriented in the ⁇ x direction.
  • the domain wall motion type magnetic recording element 20 records data in multiple values according to the position of the domain wall 12A of the magnetic recording layer 12. Data recorded on the magnetic recording layer 12 is read as a change in resistance value in the stacking direction of the first ferromagnetic layer 11A and the magnetic recording layer 12. When the domain wall 12A moves, the ratio of the first magnetic domain 12B and the second magnetic domain 12C in the magnetic recording layer 12 changes. The magnetization of the first ferromagnetic layer 11A is in the same direction (parallel) as the magnetization of the first magnetic domain 12B, and is opposite (antiparallel) to the magnetization of the second magnetic domain 12C.
  • the resistance value of the domain wall motion type magnetic recording element 20 decreases.
  • the resistance value of the domain wall motion type magnetic recording element 20 increases. Becomes higher.
  • the resistance value of the domain wall motion type magnetic recording element 20 is measured between the upper electrode electrically connected to the first ferromagnetic layer 11 ⁇ / b> A and the first electrode 3 or the second electrode 4.
  • the domain wall 12 ⁇ / b> A moves by passing a current in the extending direction of the magnetic recording layer 12 or applying an external magnetic field.
  • a current pulse is applied from the first electrode 3 to the second electrode 4
  • the first magnetic domain 12B expands in the direction of the second magnetic domain 12C
  • the domain wall 12A moves in the direction of the second magnetic domain 12C. That is, by setting the direction and intensity of the current flowing through the first electrode 3 and the second electrode 4, the position of the domain wall 12A is controlled and data is written to the domain wall motion type magnetic recording element 20.
  • the magnetic recording layer 12 is made of a magnetic material.
  • the magnetic material constituting the magnetic recording layer 12 the same material as the first ferromagnetic layer 11A can be used.
  • the magnetic recording layer 12 preferably has at least one element selected from the group consisting of Co, Ni, Pt, Pd, Gd, Tb, Mn, Ge, and Ga. Examples thereof include a Co and Ni laminated film, a Co and Pt laminated film, a Co and Pd laminated film, a MnGa-based material, a GdCo-based material, and a TbCo-based material.
  • Ferrimagnetic materials such as an MnGa-based material, a GdCo-based material, and a TbCo-based material have a small saturation magnetization, and can reduce a threshold current necessary for moving the domain wall. Further, the Co and Ni laminated film, the Co and Pt laminated film, and the Co and Pd laminated film have a large coercive force and can suppress the moving speed of the domain wall.
  • the spin orbit torque type magnetoresistive effect element 10 and the domain wall motion type magnetic recording element 20 are characterized in that a write current is supplied to the energization parts 2 and 12 extending in a direction intersecting the element parts 1 and 11 when data is written.
  • the spin element is limited to the spin orbit torque type magnetoresistive effect element 10 and the domain wall motion type magnetic recording element 20 as long as a write current is supplied to the energization part extending in the direction intersecting the element part when data is written. Is not something
  • the stabilization method of the spin element according to the present embodiment includes the following relational expression (in the x direction of the energization part, so that the total pulse application time is equal to or longer than a predetermined time at a predetermined temperature at a predetermined temperature: Apply according to 1).
  • t is a predetermined time.
  • the predetermined time corresponds to the total time during which the current flows through the energization unit, and is obtained by multiplying the pulse width of the current pulse by the number of times the current pulse is applied.
  • A is a coefficient of 1 or more
  • Q is the activation energy of the energization part
  • k B is the Boltzmann constant
  • T ′ is the melting point of the material constituting the energization part.
  • ⁇ T is the difference between the predetermined temperature and the room temperature.
  • the predetermined temperature corresponds to the ambient temperature around the spin element, and the room temperature corresponds to 25 ° C. However, when the environmental temperature is 25 ° C., (1 / ⁇ T) 2 is regarded as 1.
  • I C is a reversal critical current value necessary for magnetization reversal.
  • the inversion critical current value means that, in the case of the spin-orbit torque type magnetoresistive effect element 10, the first ferromagnetic layer 1 ⁇ / b> A of the element unit 1 undergoes magnetization reversal by the spin current generated from the current flowing through the spin-orbit torque wiring 2.
  • the domain wall motion type magnetic recording element 20 it means a current value in which the magnetization of the magnetic recording layer 12 is reversed by the spin transfer torque generated by the current flowing through the ferromagnetic material and the domain wall 12A starts to move.
  • I is a predetermined current value, which is a current value of a current pulse to be applied.
  • the above relational expression (1) is derived based on the Eyring model obtained by developing the Arrhenius model.
  • the Arrhenius model is a theoretical calculation of the process from a normal state to an active state and then another state.
  • the Eyring model is a response when an extrinsic stress term is applied in the Arrhenius model. The process is theoretically obtained.
  • the current applied to the energization part and the environmental temperature become stress terms, and the above relational expression (1) is obtained.
  • the applied current value is 1.1 times the reversal critical current value.
  • the total time during which the current flows through the energization part is preferably 0.1 seconds or more, and preferably 1.0 seconds or more. More preferred.
  • the reversal critical current value means a current value necessary for reversing the magnetization of the ferromagnetic body (the first ferromagnetic layer 1A) constituting the element portion.
  • the predetermined current value to be applied is 1.1 times or more of the reversal critical current value, and the total time (predetermined time) during which current flows through the energization unit
  • the pulse width of the current pulse ⁇ the number of application times of the current pulse is preferably 0.1 seconds ⁇ (1 / ⁇ T) 2 or more.
  • ⁇ T is the difference between ambient temperature and room temperature.
  • the pulse width of the current pulse applied to the energizing portion is preferably 10 nsec or less. If the pulse width of the current pulse is long, the energization part tends to generate heat. When the energized part generates a large amount of heat, the energized part is damaged. This is probably because excessive migration occurs in the current-carrying part.
  • the activation energy Q of the element which comprises an electricity supply part is 200 kJ / mol or more.
  • the greater the activation energy the less likely electromigration occurs. It can be avoided that excessive electromigration occurs in the current-carrying part and the overall resistance of the current-carrying part increases.
  • the spin element manufacturing method includes a step of forming an element part including a ferromagnetic material on one surface of the energization part extending in the first direction and the spin element stabilization method described above. And applying a pulse current to the part.
  • the spin element can be manufactured using a technique such as photolithography in both the case of the spin orbit torque type magnetoresistive effect element 10 (FIG. 1) and the case of the domain wall motion type magnetic recording element (FIG. 2).
  • a spin orbit torque type magnetoresistive effect element it is manufactured by the following procedure. First, the first electrode 3 and the second electrode 4 are manufactured by opening a through hole in the substrate and filling the through hole with a conductor. Next, a layer serving as a base of the spin orbit torque wiring 2 serving as a current-carrying portion is laminated and processed on the wiring using a photolithography technique. Finally, a layer that is the basis of the first ferromagnetic layer 1A, a layer that is the basis of the nonmagnetic layer 1C, and a layer that is the basis of the second ferromagnetic layer 1B are stacked one on top of the other using a photolithographic technique. Part 1 is processed.
  • the domain wall motion type magnetic recording element 20 In the case of the domain wall motion type magnetic recording element 20, only the configuration of the layers stacked when the element unit 11 is manufactured is different. Therefore, the domain wall motion type magnetic recording element 20 can be manufactured by the same procedure as that described above.
  • the spin elements may be manufactured individually, or a large number of elements may be manufactured at once on the wafer. From the viewpoint of manufacturing efficiency, it is preferable to manufacture a large number of elements on the wafer at once.
  • a pulse current is applied to the energization part in accordance with the above-described spin element stabilization method.
  • the pulse current may be applied in the state of a wafer in which a plurality of elements exist, or may be performed after each element manufactured on the wafer is made into chips.
  • the resistance value of the spin element in the low resistance state and the high resistance state can be stabilized. Further, by providing the spin device stabilization method according to the present embodiment in the manufacturing process, it is possible to supply a spin device having a stabilized resistance value in a low resistance state and a high resistance state from the shipment stage to the market. Reliability can be increased.
  • Example 1 A spin orbit torque type magnetoresistive element 10 shown in FIG. 1 was produced. Specifically, a layer serving as a spin orbit torque wiring 2 was laminated on a substrate provided with a first electrode 3 and a second electrode 4 made of Au. As a layer to be the spin orbit torque wiring 2, 5 nm of Ta was laminated. And the layer used as the spin orbit torque wiring 2 was processed into wiring shape by photolithography, and the spin orbit torque wiring 2 was produced.
  • the spin orbit torque wiring 2 had a width in the y direction of 0.2 ⁇ m and a length in the x direction of 0.7 ⁇ m.
  • the activation energy of Ta constituting the spin orbit torque wiring 2 was 414 kJ / mol.
  • the periphery of the spin orbit torque wiring 2 is filled with an interlayer insulating film made of SiO 2, and a layer serving as the base of the first ferromagnetic layer 1A, a layer serving as the base of the nonmagnetic layer 1C, and the second ferromagnetic A layer serving as a base of the layer 1B was laminated. Then, processing was performed by photolithography, and the element portion 1 having a predetermined shape was produced at the center position in the x direction of the spin orbit torque wiring 2.
  • the specific configuration of the element unit 1 was as follows. First ferromagnetic layer 1A: CoFeB, 1.0 nm Nonmagnetic layer 1C: MgO, 2.5 nm Second ferromagnetic layer 1B: CoFeB, 1.0 nm In order to further improve the thermal stability, Ru (0.42 nm) and [Co (0.4 nm) / Pt (0.8 nm)] n are stacked on the second ferromagnetic layer 1B to form a synthetic structure. It was.
  • the side surface of the element portion 1 was filled with an interlayer insulating film made of SiO 2, and Au was laminated on the second ferromagnetic layer 1B of the element portion 1 as an upper electrode.
  • a pulse current was applied between the first electrode 3 and the second electrode 4 of the spin orbit torque type magnetoresistive effect element 10 produced by the above procedure.
  • the ambient temperature when applying the pulse current was room temperature.
  • the applied pulse current had a current density of 5.26 ⁇ 10 7 A / cm 2 and a pulse width of 10 nsec.
  • the reversal critical current density necessary for reversing the magnetization of the first ferromagnetic layer 1A of the spin orbit torque type magnetoresistive effect element 10 was 4.70 ⁇ 10 7 A / cm 2 . That is, the applied pulse current was 1.12 times the reversal critical current.
  • the resistance value change between 1 A of 1st ferromagnetic layers and the 1st electrode 3 was measured.
  • the measurement was performed for the first 100 times when the number of digits in the number of times of writing was changed. Further, after exceeding 1 ⁇ 10 11 times, the first 100 times were measured every 10 11 times.
  • FIGS. 3 shows the result of writing 1 ⁇ 10 6 times to 1 ⁇ 10 10 times
  • FIG. 4 shows the result of writing 1 ⁇ 10 10 times to 1 ⁇ 10 11 times.
  • the resistance value in the low resistance state and the high resistance state of the spin orbit torque type magnetoresistive effect element 10 was stabilized at the time of writing 1 ⁇ 10 8 times.
  • the upper limit value and lower limit value of these resistance values did not vary greatly even when writing was performed 1 ⁇ 10 12 times.
  • Example 2 is different from Example 1 in that the current density of the applied pulse current is 5.68 ⁇ 10 7 A / cm 2 and the pulse width is 10 nsec. That is, the applied pulse current was 1.21 times the reversal critical current.
  • FIG. 5 shows the result of writing from 1 ⁇ 10 6 times to 1 ⁇ 10 10 times.
  • the resistance value in the low resistance state and the high resistance state of the spin orbit torque type magnetoresistive effect element 10 was stabilized at the time of writing 1 ⁇ 10 7 times.
  • Example 3 The third embodiment is different from the first embodiment in that the ambient temperature around the spin orbit torque type magnetoresistive element 10 is set to 80 ° C.
  • the current density and pulse width of the applied pulse current were the same as in Example 1. That is, the applied pulse current was 1.12 times the reversal critical current.
  • FIG. 6 shows the result of writing from 1 ⁇ 10 4 times to 1 ⁇ 10 8 times.
  • the resistance value in the low resistance state and the high resistance state of the spin orbit torque type magnetoresistance effect element 10 was stabilized at the time of writing 1 ⁇ 10 5 times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

本発明の一態様にかかるスピン素子の安定化方法は、第1の方向に延在する通電部と、前記通電部の一面に積層され、強磁性体を含む素子部と、を備えるスピン素子において、前記通電部の前記第1の方向に、所定温度中で所定電流値以上の電流パルスをパルス印加総時間が所定時間以上となるように印加する。

Description

スピン素子の安定化方法及びスピン素子の製造方法
本発明は、スピン素子の安定化方法及びスピン素子の製造方法に関する。
二つの強磁性層の磁化の相対角の変化に基づく抵抗値変化(磁気抵抗変化)を利用した素子として、強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子、及び、非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子等が知られている。
近年、磁気抵抗変化を利用したスピン素子の中でも、スピン軌道トルク(SOT)を利用したスピン軌道トルク型磁気抵抗効果素子や、磁壁の移動を利用した磁壁移動型磁気記録素子に注目が集まっている。
例えば、非特許文献1にはスピン軌道トルク型磁気抵抗効果素子が記載されている。SOTは、スピン軌道相互作用によって生じた純スピン流又は異種材料の界面におけるラシュバ効果により誘起される。磁気抵抗効果素子内にSOTを誘起するための電流は、磁気抵抗効果素子の積層方向と交差する方向に流す。磁気抵抗効果素子の積層方向に電流を流す必要がなく、磁気抵抗効果素子の長寿命化が期待されている。
また例えば、特許文献1には磁壁移動型磁気記録素子が記載されている。磁壁移動型磁気記録素子は、磁気記録層内における磁壁を移動させることで、抵抗値変化が段階的になる。抵抗値が段階的に変化することで、多値のデータ記録が可能である。また「0」、「1」のデジタル的なデータ記録でなく、アナログ的なデータ記録が可能とされている。
特許第5441005号公報
S.Fukami, T.Anekawa, C.Zhang and H.Ohno, Nature Nano Tec (2016). DOI:10.1038/NNANO.2016.29.
 これらのスピン素子は、抵抗値が低い低抵抗状態と抵抗値が高い高抵抗状態とを基準に、データを記録する。データの安定性を高めるためには、スピン素子の低抵抗状態及び高抵抗状態における抵抗値は一定であることが求められる。
 本発明は上記事情に鑑みてなされたものであり、低抵抗状態及び高抵抗状態における抵抗値を安定化できるスピン素子の安定化方法及びその方法を用いたスピン素子の製造方法を提供する。
本発明者らは、鋭意検討の結果、低抵抗状態及び高抵抗状態における抵抗値がスピン素子に初回の書込み動作を行った時と、複数回の書込み動作後とで異なっていることに気付いた。この差は実際の製品の出荷と言う観点では、問題となりうる。例えば、出荷時に「0」、「1」のデータ記録の閾値としていたものが、ユーザの使用途中に変動する等の問題が生じうる。例えば、半永久的に書き込み可能な素子を実現する為には、1015回程度の書込みの保証が求められる。使用途中で、基準となる閾値が変動すると、記録されたデータの信頼性が低下する。
そこで、鋭意検討の結果、本発明者らは書込み回数が所定の条件を超えると、低抵抗状態及び高抵抗状態における抵抗値が安定化することを見出した。一般に、配線に電流を複数回加えるとマイグレーション等により抵抗値が高くなる(配線が劣化する)と考えられていた。しかしながら、今回の結果は通電部に所定量の電流を所定の条件に従って印加することで、抵抗値が安定化するというものであり、驚くべきものである。
すなわち本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかるスピン素子の安定化方法は、第1の方向に延在する通電部と、前記通電部の一面に積層され、強磁性体を含む素子部と、を備えるスピン素子において、前記通電部の前記第1の方向に、所定温度中で所定電流値以上の電流パルスをパルス印加総時間が所定時間以上となるように、以下の関係式(1)に従い印加する。
Figure JPOXMLDOC01-appb-M000002
前記一般式(1)において、tは前記所定時間であり、Aは1以上の係数であり、Qは前記通電部の活性化エネルギーであり、kはボルツマン定数であり、T’は前記通電部を構成する材料の融点であり、ΔTは前記所定温度と室温との差(ただし前記所定温度と前記室温との差がない場合はΔT=1)であり、Iは磁化反転に必要な反転臨界電流値であり、Iは前記所定電流値である。
(2)上記態様にかかるスピン素子の安定化方法において、前記所定温度が室温であり、前記所定電流値が前記反転臨界電流値の1.1倍以上であり、前記所定時間が0.1秒以上であってもよい。
(3)上記態様にかかるスピン素子の安定化方法において、前記所定温度が室温であり、前記所定電流値が前記反転臨界電流値の1.2倍以上であり、前記所定時間が0.01秒以上であってもよい。
(4)上記態様にかかるスピン素子の安定化方法において、前記所定温度が室温より高く、前記所定電流値が前記反転臨界電流値の1.1倍以上であり、前記所定温度と前記室温との差をΔTとした際に、前記所定時間が0.1×(1/ΔT)秒以上であってもよい。
(5)上記態様にかかるスピン素子の安定化方法において、前記電流パルスのパルス幅が10nsec以下であってもよい。
(6)上記態様にかかるスピン素子の安定化方法において、前記通電部を構成する元素の活性化エネルギーが200kJ/mol以上であってもよい。
(7)上記態様にかかるスピン素子の安定化方法において、前記通電部がスピン軌道トルク配線であり、前記素子部が第1強磁性層と第2強磁性層とこれらに挟まれた非磁性層とを備えてもよい。
(8)上記態様にかかるスピン素子の安定化方法において、前記通電部が磁壁を備える磁気記録層であり、前記素子部が前記磁気記録層側から非磁性層と第3強磁性層とを備えてもよい。
(9)第2の態様にかかるスピン素子の製造方法は、第1の方向に延在する通電部の一面に、強磁性体を含む素子部を形成する工程と、上記態様にかかるスピン素子の安定化方法に従い、前記通電部にパルス電流を通電する工程と、を有する。
 本実施形態にかかるスピン素子の安定化方法及び製造方法によれば、低抵抗状態及び高抵抗状態における抵抗値を安定化できる。
本実施形態にかかるスピン素子の一例であるスピン軌道トルク型磁気抵抗効果素子の断面模式図である。 本実施形態にかかるスピン素子の一例である磁壁移動型磁気記録素子の断面模式図である。 実施例1のスピン軌道トルク型磁気抵抗効果素子に書き込み電流を複数回印加した結果である。 実施例1のスピン軌道トルク型磁気抵抗効果素子に書き込み電流を複数回印加した結果である。 実施例2のスピン軌道トルク型磁気抵抗効果素子に書き込み電流を複数回印加した結果である。 実施例3のスピン軌道トルク型磁気抵抗効果素子に書き込み電流を複数回印加した結果である。
以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
 本実施形態にかかるスピン素子の安定化方法は、所定のスピン素子に、所定の関係を満たすように電流パルスを印加する方法である。まず、所定のスピン素子の例について説明する。
(スピン軌道トルク型磁気抵抗効果素子)
 図1は、本実施形態にかかるスピン素子の一例であるスピン軌道トルク型磁気抵抗効果素子10の断面模式図である。図1に示すスピン軌道トルク型磁気抵抗効果素子10は、素子部1とスピン軌道トルク配線(通電部)2とを備える。スピン軌道トルク配線2の素子部1を挟む位置には、導電性を有する第1電極3及び第2電極4を備える。
以下、通電部が延在する第1の方向をx方向、素子部1の積層方向(第2の方向)をz方向、x方向及びz方向のいずれにも直交する方向をy方向と規定して説明する。 

<スピン軌道トルク配線>
 スピン軌道トルク配線2は、x方向に延在する。スピン軌道トルク配線2は、素子部1のz方向の一面に接続されている。スピン軌道トルク配線2は、素子部1に直接接続されていてもよいし、他の層を介し接続されていてもよい。
 スピン軌道トルク配線2は、電流Iが流れるとスピンホール効果によってスピン流が生成される材料からなる。かかる材料としては、スピン軌道トルク配線2中にスピン流が生成される構成のものであれば足りる。従って、単体の元素からなる材料に限らないし、スピン流を生成しやすい材料で構成される部分とスピン流を生成しにくい材料で構成される部分とからなるもの等であってもよい。
 スピンホール効果とは、材料に電流Iを流した場合にスピン軌道相互作用に基づき、電流Iの向きと直交する方向にスピン流が誘起される現象である。スピンホール効果によりスピン流が生み出されるメカニズムについて説明する。
 スピン軌道トルク配線2の両端に電位差を与えると、スピン軌道トルク配線2に沿って電流Iが流れる。電流Iが流れると、一方向に配向した第1スピンS1と、第1スピンS1と反対方向に配向した第2スピンS2とが、それぞれ電流と直交する方向に曲げられる。例えば、第1スピンS1は進行方向に対しz方向に曲げられ、第2スピンS2は進行方向に対して-z方向に曲げられる。
通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通する。一方で、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しなくても、電子が移動するだけ(電流が流れるだけ)でスピンの移動方向が曲げられる点が大きく異なる。
 非磁性体(強磁性体ではない材料)では第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、図中で+z方向に向かう第1スピンS1の電子数と-z方向に向かう第2スピンS2の電子数が等しい。この場合、電荷の流れは互いに相殺され、電流量はゼロとなる。電流を伴わないスピン流は特に純スピン流と呼ばれる。
第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。スピン流Jは、図中のz方向に流れる。図1において、スピン軌道トルク配線2の上面には後述する第1強磁性層1Aが存在する。そのため、第1強磁性層1Aにスピンが注入される。
スピン軌道トルク配線2は、電流が流れる際のスピンホール効果によってスピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物のいずれかによって構成される。
スピン軌道トルク配線2の主構成は、非磁性の重金属であることが好ましい。ここで、重金属とは、イットリウム以上の比重を有する金属を意味する。非磁性の重金属は最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属であることが好ましい。これらの非磁性金属は、スピンホール効果を生じさせるスピン軌道相互作用が大きい。
電子は、一般にそのスピンの向きに関わりなく、電流とは逆向きに動く。これに対し、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属はスピン軌道相互作用が大きく、スピンホール効果が強く作用する。そのため、電子の動く方向は、電子のスピンの向きに依存する。従って、これらの非磁性の重金属中ではスピン流Jが発生しやすい。
またスピン軌道トルク配線2は、磁性金属を含んでもよい。磁性金属とは、強磁性金属、あるいは、反強磁性金属を指す。非磁性金属に微量な磁性金属が含まれるとスピンの散乱因子となる。スピンが散乱するとスピン軌道相互作用が増強され、電流に対するスピン流の生成効率が高くなる。スピン軌道トルク配線2の主構成は、反強磁性金属だけからなってもよい。
一方で、磁性金属の添加量が増大し過ぎると、発生したスピン流が添加された磁性金属によって散乱され、結果としてスピン流が減少する作用が強くなる場合がある。そのため、添加される磁性金属のモル比はスピン軌道トルク配線を構成する元素の総モル比よりも十分小さい方が好ましい。添加される磁性金属のモル比は、全体の3%以下であることが好ましい。
スピン軌道トルク配線2は、トポロジカル絶縁体を含んでもよい。トポロジカル絶縁体とは、物質内部が絶縁体、あるいは、高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。この物質にはスピン軌道相互作用により内部磁場が生じる。そこで外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。これがトポロジカル絶縁体であり、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率に生成できる。
トポロジカル絶縁体としては例えば、SnTe、Bi1.5Sb0.5Te1.7Se1.3、TlBiSe、BiTe、Bi1-xSb、(Bi1-xSbTeなどが好ましい。これらのトポロジカル絶縁体は、高効率にスピン流を生成することが可能である。
<素子部>
 素子部1は、第1強磁性層1Aと第2強磁性層1Bとこれらに挟まれた非磁性層1Cとを備える。素子部1は、スピン軌道トルク配線2と交差する第2の方向(z方向)に積層されている。
 素子部1は、第1強磁性層1Aの磁化M1Aと第2強磁性層1Bの磁化M1Bの相対角が変化することにより抵抗値が変化する。第2強磁性層1Bの磁化M1Bは一方向(z方向)に固定され、第1強磁性層1の磁化M1Aの向きが、磁化M1Bに対して相対的に変化する。第2強磁性層1Bは固定層、参照層などと表記され、第1強磁性層1Aは自由層、記録層などと表記されることがある。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、第2強磁性層1Bの保磁力を第1強磁性層1Aの保磁力よりも大きくする。交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、第2強磁性層1Bの磁化M1Bを反強磁性層との交換結合によって固定する。
素子部1は、非磁性層1Cが絶縁体からなる場合は、トンネル磁気抵抗効果(TMR:Tunneling Magnetoresistance)素子と同様の構成であり、金属からなる場合は巨大磁気抵抗効果(GMR:Giant Magnetoresistance)素子と同様の構成である。
 素子部1の積層構成は、公知の磁気抵抗効果素子の積層構成を採用できる。例えば、各層は複数の層からなるものでもよいし、第2強磁性層1Bの磁化方向を固定するための反強磁性層等の他の層を備えてもよい。第2強磁性層1Bは固定層や参照層、第1強磁性層1Aは自由層や記憶層などと呼ばれる。
第1強磁性層1A及び第2強磁性層1Bは、磁化M1A,M1Bの磁化容易軸がz方向に配向した垂直磁化膜でも、磁化容易軸がxy面内方向に配向した面内磁化膜でもよい。また磁化M1A,M1Bは、X方向、Y方向、Z方向のいずれかまたは全てに対して傾いていてもよい。
第1強磁性層1A及び第2強磁性層1Bは、強磁性材料を適用できる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Feを例示できる。また第1強磁性層1が面内磁化膜の場合は、例えば、Co-Ho合金(CoHo)、Sm-Fe合金(SmFe12)等を用いることが好ましい。
第1強磁性層1A及び第2強磁性層1BにCoFeSi等のホイスラー合金を用いると、磁気抵抗効果をより強く発現することができる。ホイスラー合金は、XYZ又はXYZの化学組成をもつ金属間化合物を含み、Xは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、Yは、Mn、V、CrあるいはTi族の遷移金属又はXの元素種であり、Zは、III族からV族の典型元素である。例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等が挙げられる。
 第2強磁性層1Bには、IrMn,PtMnなどの反強磁性材料からなる層を積層してもよい。シンセティック強磁性結合の構造とすることで、第2強磁性層1Bの漏れ磁場が、第1強磁性層1に与える影響を軽減できる。
 非磁性層1Cには、公知の材料を用いることができる。例えば、非磁性層1Cが絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al、SiO、MgO、及び、MgAl等を用いることができる。これらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。非磁性層1Cが金属からなる場合、その材料としては、Cu、Au、Ag等を用いることができる。さらに、非磁性層1Cが半導体からなる場合、その材料としては、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等を用いることができる。
 素子部1は、その他の層を有していてもよい。第1強磁性層1Aの非磁性層1Cと反対側の面に下地層を有していてもよい。スピン軌道トルク配線2と第1強磁性層1Aとの間に配設される層は、スピン軌道トルク配線2から伝播するスピンを散逸しないことが好ましい。例えば、銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。この層の厚みは、層を構成する物質のスピン拡散長以下であることが好ましい。層の厚みがスピン拡散長以下であれば、スピン軌道トルク配線2から伝播するスピンを第1強磁性層1Aに十分伝えることができる。
(磁壁移動型磁気記録素子)

 図2は、本実施形態にかかるスピン素子の一例である磁壁移動型磁気記録素子20の断面模式図である。図2に示す磁壁移動型磁気記録素子20は、素子部11と磁気記録層(通電部)12とを備える。磁気記録層12の素子部11を挟む位置には、導電性を有する第1電極3及び第2電極4を備える。
<素子部>
 素子部11は、第1強磁性層11Aと非磁性層11Bとを備える。第1強磁性層11A及び非磁性層11Bは、図1に示すスピン軌道トルク型磁気抵抗効果素子10と同様のものを用いることができる。
<磁気記録層>
 磁気記録層12は、x方向に延在している。磁気記録層12は、内部に磁壁12Aを有する。磁壁12Aは、互いに反対方向の磁化を有する第1の磁区12Bと第2の磁区12Cとの境界である。図2に示す磁壁移動型磁気記録素子20は、第1の磁区12Bが+x方向に配向した磁化を有し、第2の磁区12Cが-x方向に配向した磁化を有する。
磁壁移動型磁気記録素子20は、磁気記録層12の磁壁12Aの位置によって、データを多値で記録する。磁気記録層12に記録されたデータは、第1強磁性層11A及び磁気記録層12の積層方向の抵抗値変化として読み出される。磁壁12Aが移動すると、磁気記録層12における第1の磁区12Bと第2の磁区12Cとの比率が変化する。第1強磁性層11Aの磁化は、第1の磁区12Bの磁化と同方向(平行)であり、第2の磁区12Cの磁化と反対方向(反平行)である。磁壁12Aがx方向に移動し、z方向から見て第1強磁性層11Aと重畳する部分における第1の磁区12Bの面積が広くなると、磁壁移動型磁気記録素子20の抵抗値は低くなる。反対に、磁壁12Aが-x方向に移動し、z方向から見て第1強磁性層11Aと重畳する部分における第2の磁区12Cの面積が広くなると、磁壁移動型磁気記録素子20の抵抗値は高くなる。磁壁移動型磁気記録素子20の抵抗値は、第1強磁性層11Aに電気的に接続された上部電極と、第1電極3又は第2電極4との間で測定される。
磁壁12Aは、磁気記録層12の延在方向に電流を流す、又は、外部磁場を印加することによって移動する。例えば、第1電極3から第2電極4に電流パルスを印加すると、第1の磁区12Bは第2の磁区12Cの方向へ広がり、磁壁12Aが第2の磁区12Cの方向へ移動する。つまり、第1電極3及び第2電極4に流す電流の方向、強度を設定することで、磁壁12Aの位置が制御され、磁壁移動型磁気記録素子20にデータが書き込まれる。
磁気記録層12は、磁性体により構成される。磁気記録層12を構成する磁性体は、第1強磁性層11Aと同様のものを用いることができる。また磁気記録層12は、Co、Ni、Pt、Pd、Gd、Tb、Mn、Ge、Gaからなる群から選択される少なくとも一つの元素を有することが好ましい。例えば、CoとNiの積層膜、CoとPtの積層膜、CoとPdの積層膜、MnGa系材料、GdCo系材料、TbCo系材料が挙げられる。MnGa系材料、GdCo系材料、TbCo系材料等のフェリ磁性体は飽和磁化が小さく、磁壁を移動するために必要な閾値電流を下げることができる。またCoとNiの積層膜、CoとPtの積層膜、CoとPdの積層膜は、保磁力が大きく、磁壁の移動速度を抑えることができる。
 ここまで、所定のスピン素子の具体例について説明した。スピン軌道トルク型磁気抵抗効果素子10と磁壁移動型磁気記録素子20は、データの書込み時に素子部1,11と交差する方向に延在する通電部2,12に、書き込み電流を流すという点で共通する。スピン素子は、データの書込み時に素子部と交差する方向に延在する通電部に、書き込み電流を流すものであれば、スピン軌道トルク型磁気抵抗効果素子10及び磁壁移動型磁気記録素子20に限られるものではない。
<スピン素子の安定化方法>
本実施形態にかかるスピン素子の安定化方法は、通電部のx方向に、所定温度中で所定電流値以上の電流パルスをパルス印加総時間が所定時間以上となるように、以下の関係式(1)に基づき印加する。
Figure JPOXMLDOC01-appb-M000003
一般式(1)において、tは所定時間である。所定時間は、通電部に電流を流す総時間に対応し、電流パルスのパルス幅と電流パルスの印加回数とを乗じて求められる。Aは1以上の係数であり、Qは通電部の活性化エネルギーであり、kはボルツマン定数であり、T’は通電部を構成する材料の融点である。ΔTは所定温度と室温との差であり、所定温度はスピン素子の周囲の環境温度に対応し、室温は25℃に対応する。ただし、環境温度が25℃の場合は、(1/ΔT)は1とみなす。Iは磁化反転に必要な反転臨界電流値である。ここで反転臨界電流値とは、スピン軌道トルク型磁気抵抗効果素子10の場合は、素子部1の第1強磁性層1Aがスピン軌道トルク配線2に流れる電流から発生するスピン流により磁化反転する電流値を意味し、磁壁移動型磁気記録素子20の場合は、強磁性体に流れる電流により発生するスピントランスファートルクにより、磁気記録層12の磁化が反転し磁壁12Aが移動し始める電流値を意味する。Iは所定電流値であり、印加する電流パルスの電流値である。
上記の関係式(1)を満たすようにパルス電流を印加すると、スピン素子の低抵抗状態及び高抵抗状態における抵抗値が安定化する。通電部に電流を印加すると、通電部に存在するボイド、欠損等の加工ダメージや酸素吸着等が除去され、通電部の配線抵抗が安定化することに起因すると考えられる。
上記の関係式(1)は、アレーニウスモデルを発展させたアイリングモデルに基づいて導出される。アレーニウスモデルは、正常状態から活性状態を経て別の状態に至る際の過程を理論的に求めたものであり、アイリングモデルはアレーニウスモデルで外因性のストレス項が印加された場合の反応過程を理論的に求めたものである。スピン素子の場合、通電部に印加する電流、環境温度がストレス項となり、上記の関係式(1)が得られる。
上記の関係式(1)を具体的な事例に落とし込むと、スピン素子が曝されている環境温度(所定温度)が室温の場合において、印加する所定電流値を反転臨界電流値の1.1倍以上とした場合、通電部に電流を流す総時間(所定時間、電流パルスのパルス幅×電流パルスの印加回数)は0.1秒以上であることが好ましく、1.0秒以上であることがより好ましい。また印加する所定電流値を反転臨界電流値の1.2倍以上とした場合、通電部に電流を流す総時間(所定時間、電流パルスのパルス幅×電流パルスの印加回数)は0.01秒以上であることが好ましく、0.1秒以上であることがより好ましい。ここで反転臨界電流値とは、素子部を構成する強磁性体(第1強磁性層1A)を磁化反転させるのに必要な電流値を意味する。
またスピン素子が曝されている環境温度(所定温度)が室温より高い場合は、印加する所定電流値を反転臨界電流値の1.1倍以上とし、通電部に電流を流す総時間(所定時間、電流パルスのパルス幅×電流パルスの印加回数)を0.1秒×(1/ΔT)以上とすることが好ましい。ΔTは環境温度と室温との差である。スピン素子が曝される環境温度を高くすることで、加速試験を行うことが可能であり、通電部に電流を流す総時間を短くすることができる。
スピン素子を安定化させる際に、通電部に印加する電流パルスのパルス幅は10nsec以下であることが好ましい。電流パルスのパルス幅が長いと、通電部が発熱しやすくなる。通電部が大きく発熱すると、通電部がダメージを受ける。通電部で過度のマイグレーションが生じるためと考えられる。
また通電部を構成する元素の活性化エネルギーQは、200kJ/mol以上であることが好ましい。関係式(1)に示すように、活性化エネルギーが大きいほど、エレクトロマイグレーションが生じにくくなる。通電部で過度なエレクトロマイグレーションが生じ、通電部の全体抵抗が高くなることを避けることができる。
<スピン素子の製造方法>
本実施形態にかかるスピン素子の製造方法は、第1の方向に延在する通電部の一面に、強磁性体を含む素子部を形成する工程と、上述のスピン素子の安定化方法に従い、通電部にパルス電流を通電する工程と、を有する。
スピン素子は、スピン軌道トルク型磁気抵抗効果素子10(図1)の場合でも、磁壁移動型磁気記録素子(図2)の場合でも、フォトリソグラフィー等の技術を用いて作製することができる。
例えば、スピン軌道トルク型磁気抵抗効果素子の場合、以下の手順で作製する。まず基板に貫通孔を開け、貫通孔を導電体で充填することで、第1電極3及び第2電極4を作製する。次いで、通電部となるスピン軌道トルク配線2の基となる層を積層し、フォトリソグラフィーの技術を用い、配線上に加工する。最後に、第1強磁性層1Aの基となる層、非磁性層1Cの基となる層、第2強磁性層1Bの基となる層を重に積層し、フォトリソグラフィーの技術を用い、素子部1を加工する。
磁壁移動型磁気記録素子20の場合は、素子部11を作製する際に積層する層の構成が異なるだけである。そのため、上述の工程と同様の手順で、磁壁移動型磁気記録素子20を作製できる。
スピン素子は、個別に作製してもよいし、ウェハ上に多数の素子を一括で作製してもよい。製造効率の観点からは、ウェハ上に多数の素子を一括で作製することが好ましい。
次いで、上述のスピン素子の安定化方法に従い、通電部にパルス電流を通電する。パルス電流を通電するのは、複数の素子が存在するウェハの状態で行ってもよいし、ウェハ上に作製された各素子をチップ化した後に行ってもよい。製造効率を高めるためには、ウェハの状態でパルス電流を各素子に印加することが好ましく、発熱を抑制するためにはウェハ上に存在する各素子に順番にパルス電流を印加することが好ましい。
上述のように、本実施形態にかかるスピン素子の安定化方法によれば、スピン素子の低抵抗状態及び高抵抗状態における抵抗値を安定化することができる。また本実施形態にかかるスピン素子の安定化方法を製造過程に設けることで、出荷段階から低抵抗状態及び高抵抗状態における抵抗値が安定化したスピン素子を市場に供給することができ、製品の信頼性を高めることができる。
以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
(実施例1)
 図1に示すスピン軌道トルク型磁気抵抗効果素子10を作製した。具体的には、Auからなる第1電極3及び第2電極4を設けた基板状にスピン軌道トルク配線2となる層を積層した。スピン軌道トルク配線2となる層としては、Taを5nm積層した。そして、フォトリソグラフィーによりスピン軌道トルク配線2となる層を配線状に加工し、スピン軌道トルク配線2を作製した。スピン軌道トルク配線2は、y方向の幅が0.2μm、x方向の長さが0.7μmであった。スピン軌道トルク配線2を構成するTaの活性化エネルギーは414kJ/molであった。
次いで、スピン軌道トルク配線2の周囲をSiOからなる層間絶縁膜で埋め、その上に、第1強磁性層1Aの基となる層、非磁性層1Cの基となる層、第2強磁性層1Bの基となる層を積層した。そして、フォトリソグラフィーにより加工し、所定の形状の素子部1をスピン軌道トルク配線2のx方向の中央の位置に作製した。
素子部1の具体的構成は、以下とした。
 第1強磁性層1A:CoFeB、1.0nm
非磁性層1C:MgO、2.5nm
第2強磁性層1B:CoFeB、1.0nm
更に熱安定性を向上させるために、第2強磁性層1Bの上に、Ru(0.42nm)と[Co(0.4nm)/Pt(0.8nm)]とを積層し、シンセティック構造とした。
最後に、素子部1の側面をSiOからなる層間絶縁膜で埋め、素子部1の第2強磁性層1B上に上部電極としてAuを積層した。
上記の手順で作製したスピン軌道トルク型磁気抵抗効果素子10の第1電極3と第2電極4の間にパルス電流を印加した。パルス電流を印加時の環境温度は室温とした。印加したパルス電流は、電流密度を5.26×10A/cm、パルス幅を10nsecとした。スピン軌道トルク型磁気抵抗効果素子10の第1強磁性層1Aの磁化を反転させるために必要な反転臨界電流密度は4.70×10A/cmであった。すなわち、印加したパルス電流は、反転臨界電流の1.12倍とした。
そして、第1強磁性層1Aと第1電極3との間の抵抗値変化を測定した。測定は、書き込み回数の桁数が変化した際の最初の100回を測定した。また1×1011回を超えた後は、1011回ごとに、最初の100回を測定した。その結果を図3及び図4に示す。図3は、1×10回から1×1010回書込みを行った結果であり、図4は、1×1010回から1×1011回書込みを行った結果である。図3に示すように、1×10回書き込みを行った時点で、スピン軌道トルク型磁気抵抗効果素子10の低抵抗状態及び高抵抗状態における抵抗値は安定化した。1×10回書き込みを行った時点で、通電部にパルス電流を印加した総時間は、「1×10回」×「10nsec」=1秒であった。これらの抵抗値の上限値及び下限値は、1×1012回書込みを行った時点でも大きく変動しなかった。
(実施例2)
 実施例2は、印加するパルス電流の電流密度を5.68×10A/cmとし、パルス幅を10nsecとした点が実施例1と異なる。すなわち、印加したパルス電流は、反転臨界電流の1.21倍とした。
そして、第1強磁性層1Aと第1電極3との間の抵抗値変化を測定した。測定は、書き込み回数の桁数が変化した際の最初の100回を測定した。その結果を図5に示す。図5は、1×10回から1×1010回書込みを行った結果である。図5に示すように、1×10回書き込みを行った時点で、スピン軌道トルク型磁気抵抗効果素子10の低抵抗状態及び高抵抗状態における抵抗値は安定化した。1×10回書き込みを行った時点で、通電部にパルス電流を印加した総時間は、「1×10」×「10nsec」=0.1秒であった。
(実施例3)
 実施例3は、スピン軌道トルク型磁気抵抗効果素子10の周囲の環境温度を80℃にした点が実施例1と異なる。印加するパルス電流の電流密度及びパルス幅は実施例1と同じとした。すなわち、印加したパルス電流は、反転臨界電流の1.12倍とした。
そして、第1強磁性層1Aと第1電極3との間の抵抗値変化を、書き込みごとに測定した。測定は、書き込み回数の桁数が変化した際の最初の100回を測定した。その結果を図6に示す。図6は、1×10回から1×10回書込みを行った結果である。図6に示すように、1×10回書き込みを行った時点で、スピン軌道トルク型磁気抵抗効果素子10の低抵抗状態及び高抵抗状態における抵抗値は安定化した。1×10回書き込みを行った時点で、通電部にパルス電流を印加した総時間は、「1×10」×「10nsec」=0.001秒であった。
1、11 素子部
1A、11A 第1強磁性層
1B 第2強磁性層
1C、11B 非磁性層
2 スピン軌道トルク配線
3 第1電極
4 第2電極
10 スピン軌道トルク型磁気抵抗効果素子
12 磁気記録層
12A 磁壁
12B 第1の磁区
12C 第2の磁区
20 磁壁移動型磁気記録素子

Claims (9)

  1.  第1の方向に延在する通電部と、前記通電部の一面に積層され、強磁性体を含む素子部と、を備えるスピン素子において、
    前記通電部の前記第1の方向に、所定温度中で所定電流値以上の電流パルスをパルス印加総時間が所定時間以上となるように、以下の関係式(1)に従い印加する、スピン素子の安定化方法;
    Figure JPOXMLDOC01-appb-M000001
    前記一般式(1)において、tは前記所定時間であり、Aは1以上の係数であり、Qは前記通電部の活性化エネルギーであり、kはボルツマン定数であり、T’は前記通電部を構成する材料の融点であり、ΔTは前記所定温度と室温との差(ただし前記所定温度と前記室温との差がない場合はΔT=1)であり、Iは磁化反転に必要な反転臨界電流値であり、Iは印加した前記所定電流値である。
  2. 前記所定温度が室温であり、
    前記所定電流値が前記反転臨界電流値の1.1倍以上であり、
    前記所定時間が0.1秒以上である、請求項1に記載のスピン素子の安定化方法。
  3. 前記所定温度が室温であり、
    前記所定電流値が前記反転臨界電流値の1.2倍以上であり、
    前記所定時間が0.01秒以上である、請求項1に記載のスピン素子の安定化方法。
  4.  前記所定温度が室温より高く、
     前記所定電流値が前記反転臨界電流値の1.1倍以上であり、
    前記所定温度と前記室温との差をΔTとした際に、前記所定時間が0.1×(1/ΔT)秒以上である、請求項1に記載のスピン素子の安定化方法。
  5. 前記電流パルスのパルス幅が10nsec以下である、請求項1~4のいずれか一項に記載のスピン素子の安定化方法。
  6. 前記通電部を構成する元素の活性化エネルギーが200kJ/mol以上である、請求項1~5のいずれか一項に記載のスピン素子の安定化方法。
  7. 前記通電部がスピン軌道トルク配線であり、前記素子部が第1強磁性層と第2強磁性層とこれらに挟まれた非磁性層とを備える、請求項1~6のいずれか一項に記載のスピン素子の安定化方法。
  8. 前記通電部が磁壁を備える磁気記録層であり、前記素子部が前記磁気記録層側から非磁性層と第3強磁性層とを備える、請求項1~6のいずれか一項に記載のスピン素子の安定化方法。
  9. 第1の方向に延在する通電部の一面に、強磁性体を含む素子部を形成する工程と、
    請求項1~8のいずれか一項に記載のスピン素子の安定化方法に従い、前記通電部にパルス電流を通電する工程と、を有するスピン素子の製造方法。
PCT/JP2018/007645 2018-02-28 2018-02-28 スピン素子の安定化方法及びスピン素子の製造方法 WO2019167197A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880001275.3A CN110419116B (zh) 2018-02-28 2018-02-28 自旋元件的稳定化方法及自旋元件的制造方法
US16/082,456 US10622048B2 (en) 2018-02-28 2018-02-28 Method for stabilizing spin element and method for manufacturing spin element
JP2018546059A JP6424999B1 (ja) 2018-02-28 2018-02-28 スピン素子の安定化方法及びスピン素子の製造方法
PCT/JP2018/007645 WO2019167197A1 (ja) 2018-02-28 2018-02-28 スピン素子の安定化方法及びスピン素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007645 WO2019167197A1 (ja) 2018-02-28 2018-02-28 スピン素子の安定化方法及びスピン素子の製造方法

Publications (1)

Publication Number Publication Date
WO2019167197A1 true WO2019167197A1 (ja) 2019-09-06

Family

ID=64379144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007645 WO2019167197A1 (ja) 2018-02-28 2018-02-28 スピン素子の安定化方法及びスピン素子の製造方法

Country Status (4)

Country Link
US (1) US10622048B2 (ja)
JP (1) JP6424999B1 (ja)
CN (1) CN110419116B (ja)
WO (1) WO2019167197A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134754A (ja) * 2019-02-21 2020-08-31 日本放送協会 磁気光学型光変調素子および空間光変調器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803575B2 (ja) * 2016-06-24 2020-12-23 国立研究開発法人物質・材料研究機構 I−iii−vi2化合物半導体を用いた磁気抵抗素子及びその製造方法、これを用いた磁気記憶装置並びにスピントランジスタ
JP6539008B1 (ja) * 2018-02-19 2019-07-03 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
WO2019159428A1 (ja) * 2018-02-19 2019-08-22 Tdk株式会社 スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
CN110419117B (zh) * 2018-02-28 2023-04-18 Tdk株式会社 自旋元件的稳定化方法及自旋元件的制造方法
US11280854B2 (en) * 2018-03-08 2022-03-22 Tdk Corporation Spin element and magnetic memory
US11522009B2 (en) * 2019-07-30 2022-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM device having self-aligned shunting layer
US12020736B2 (en) 2021-08-13 2024-06-25 International Business Machines Corporation Spin-orbit-torque magnetoresistive random-access memory array
US11793001B2 (en) 2021-08-13 2023-10-17 International Business Machines Corporation Spin-orbit-torque magnetoresistive random-access memory
US11915734B2 (en) 2021-08-13 2024-02-27 International Business Machines Corporation Spin-orbit-torque magnetoresistive random-access memory with integrated diode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080006A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 磁気メモリの試験方法および試験装置
JP2016021272A (ja) * 2014-06-16 2016-02-04 パナソニックIpマネジメント株式会社 抵抗変化型不揮発性記憶装置
JP2017138136A (ja) * 2016-02-02 2017-08-10 ルネサスエレクトロニクス株式会社 寿命判定装置及び寿命判定方法
JP2017168658A (ja) * 2016-03-16 2017-09-21 株式会社東芝 メモリセルおよび磁気メモリ
WO2017183573A1 (ja) * 2016-04-21 2017-10-26 Tdk株式会社 磁壁利用型アナログメモリ素子および磁壁利用型アナログメモリ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958502B2 (en) * 2003-10-22 2005-10-25 International Business Machines Corporation Magnetic random access memory cell
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US7532505B1 (en) * 2006-07-17 2009-05-12 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7502249B1 (en) * 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US8427863B2 (en) * 2007-02-12 2013-04-23 Avalanche Technology, Inc. Low current switching magnetic tunnel junction design for magnetic memory using domain wall motion
FR2914482B1 (fr) * 2007-03-29 2009-05-29 Commissariat Energie Atomique Memoire magnetique a jonction tunnel magnetique
JP2009081215A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP5441005B2 (ja) 2008-02-13 2014-03-12 日本電気株式会社 磁壁移動素子及び磁気ランダムアクセスメモリ
JP5318191B2 (ja) * 2009-03-04 2013-10-16 株式会社日立製作所 磁気メモリ
US8837209B2 (en) * 2010-03-05 2014-09-16 Hitachi, Ltd. Magnetic memory cell and magnetic random access memory
FR2963153B1 (fr) 2010-07-26 2013-04-26 Centre Nat Rech Scient Element magnetique inscriptible
JP5786341B2 (ja) * 2010-09-06 2015-09-30 ソニー株式会社 記憶素子、メモリ装置
KR101195041B1 (ko) * 2011-05-12 2012-10-31 고려대학교 산학협력단 자기 공명 세차 현상을 이용한 스핀전달토크 자기 메모리 소자
JP5728311B2 (ja) * 2011-07-04 2015-06-03 株式会社東芝 磁気抵抗素子及び磁気メモリ
WO2013025994A2 (en) 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications
US8767446B2 (en) * 2011-10-12 2014-07-01 International Business Machines Corporation Multi-bit spin-momentum-transfer magnetoresistence random access memory with single magnetic-tunnel-junction stack
US9064589B2 (en) * 2011-11-09 2015-06-23 Qualcomm Incorporated Three port MTJ structure and integration
US9208845B2 (en) * 2011-11-15 2015-12-08 Massachusetts Instiute Of Technology Low energy magnetic domain wall logic device
US9030780B2 (en) * 2012-08-08 2015-05-12 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for reading a non-volatile memory using a spin torque oscillator
EP3073532B1 (en) * 2013-11-20 2020-02-26 TDK Corporation Magnetoresistive element, spin mosfet, magnetic sensor, and magnetic head
KR102080631B1 (ko) 2014-08-08 2020-02-24 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 자기 저항 효과 소자 및 자기 메모리 장치
JP2017139399A (ja) * 2016-02-05 2017-08-10 Tdk株式会社 磁気メモリ
WO2018020730A1 (ja) * 2016-07-29 2018-02-01 国立大学法人東北大学 磁気トンネル接合素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080006A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 磁気メモリの試験方法および試験装置
JP2016021272A (ja) * 2014-06-16 2016-02-04 パナソニックIpマネジメント株式会社 抵抗変化型不揮発性記憶装置
JP2017138136A (ja) * 2016-02-02 2017-08-10 ルネサスエレクトロニクス株式会社 寿命判定装置及び寿命判定方法
JP2017168658A (ja) * 2016-03-16 2017-09-21 株式会社東芝 メモリセルおよび磁気メモリ
WO2017183573A1 (ja) * 2016-04-21 2017-10-26 Tdk株式会社 磁壁利用型アナログメモリ素子および磁壁利用型アナログメモリ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134754A (ja) * 2019-02-21 2020-08-31 日本放送協会 磁気光学型光変調素子および空間光変調器
JP7228404B2 (ja) 2019-02-21 2023-02-24 日本放送協会 磁気光学型光変調素子および空間光変調器

Also Published As

Publication number Publication date
CN110419116B (zh) 2022-11-15
US10622048B2 (en) 2020-04-14
US20190267064A1 (en) 2019-08-29
JP6424999B1 (ja) 2018-11-21
CN110419116A (zh) 2019-11-05
JPWO2019167197A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7495463B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子、磁気メモリ及び磁化反転方法
JP6424999B1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
JP6428988B1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
JP6462191B1 (ja) データの書き込み方法、検査方法、スピン素子の製造方法及び磁気抵抗効果素子
WO2019159885A1 (ja) スピン素子及び磁気メモリ
JP6462960B1 (ja) データの書き込み方法及び磁気メモリ
US11276447B2 (en) Spin current magnetoresistance effect element and magnetic memory
JP2019047120A (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び高周波磁気素子
JP6642773B2 (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、及びスピン流磁化反転素子の製造方法
US10374151B2 (en) Spin current magnetoresistance effect element and magnetic memory
JP2019057626A (ja) スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP2019165244A (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
WO2018101028A1 (ja) スピン流磁化反転素子とその製造方法、磁気抵抗効果素子、磁気メモリ
JP7124788B2 (ja) スピン流磁化回転型磁気抵抗効果素子、及び磁気メモリ
US20220006006A1 (en) Spin current magnetization reversal-type magnetoresistive effect element and method for producing spin current magnetization reversal-type magnetoresistive effect element
JP6485588B1 (ja) データの書き込み方法
CN117174759A (zh) 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546059

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907640

Country of ref document: EP

Kind code of ref document: A1