Nothing Special   »   [go: up one dir, main page]

WO2019148973A1 - 利用自清洁进行防凝露的方法及空调 - Google Patents

利用自清洁进行防凝露的方法及空调 Download PDF

Info

Publication number
WO2019148973A1
WO2019148973A1 PCT/CN2018/120476 CN2018120476W WO2019148973A1 WO 2019148973 A1 WO2019148973 A1 WO 2019148973A1 CN 2018120476 W CN2018120476 W CN 2018120476W WO 2019148973 A1 WO2019148973 A1 WO 2019148973A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
condensation
indoor
preset condition
Prior art date
Application number
PCT/CN2018/120476
Other languages
English (en)
French (fr)
Inventor
许文明
王飞
付裕
张心怡
李阳
李皖皖
丁爽
罗荣邦
袁俊军
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019148973A1 publication Critical patent/WO2019148973A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention relates to the technical field of air conditioning control, in particular to a method for preventing condensation by self-cleaning and an air conditioner.
  • the control can be optimized to solve the problem.
  • the anti-condensation effect is achieved by adding an electric heating device and turning on the electric heating device under certain conditions, or reducing the cooling temperature by reducing the operating frequency of the compressor.
  • the effect of condensation are all try to avoid condensation by raising the temperature above the dew point temperature. Although the above method can prevent the occurrence of condensation, it is necessary to raise the temperature, which affects the effect of air conditioning refrigeration.
  • Embodiments of the present invention are directed to providing a new method of anti-condensation, and in order to provide a basic understanding of some aspects of the disclosed embodiments, a brief summary is given below. This generalization is not a general comment, nor is it intended to identify key/critical constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the following detailed description.
  • a method for preventing condensation by self-cleaning comprising: obtaining a plurality of temperature data and determining whether an anti-condensation operation is required according to a first preset condition; if necessary In the anti-condensation operation, the air conditioner is controlled to perform a self-cleaning operation to prevent condensation.
  • the controlling the air conditioner performs a self-cleaning operation, including: raising or maintaining a running frequency of the compressor, reducing a rotation speed of the indoor fan or turning off the indoor fan, causing frost on the surface of the heat exchanger indoors; and, in the air conditioning room After the surface of the heat exchanger is frosted, the air conditioner is switched to the heating mode to defovi the surface of the heat exchanger inside the air conditioner.
  • the method further comprises: obtaining indoor humidity, and determining whether the anti-condensation operation is required according to the second preset condition; if necessary, improving the operation of the air conditioner compressor Frequency, or extend the time of frosting, or increase the operating frequency of the air conditioner compressor and extend the frosting time.
  • the method further includes: obtaining indoor humidity, and determining, according to the second preset condition, whether an anti-condensation operation is required; if necessary, reducing an operating frequency of the air conditioner compressor, or reducing The opening of the throttle member reduces the operating frequency of the air conditioner compressor and reduces the opening of the throttle member.
  • the second preset condition includes: if the indoor humidity RH is greater than the set threshold RHt, or the indoor humidity RH continues to be greater than the set threshold RHt for a set time period, an anti-condensation operation is required.
  • the set threshold RHt ranges from 60% to 90%.
  • the set threshold RHt is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • the operating frequency of the air conditioner compressor is reduced proportionally.
  • the ratio is a fixed ratio or a variable ratio.
  • the fixed ratio ranges from 60% to 90%.
  • the fixed ratio is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • variable ratio value is proportional to the difference ⁇ RH between the indoor humidity and the set threshold.
  • the value of b ranges from 0.1 to 0.4.
  • b 0.1, 0.2, 0.3 or 0.4.
  • the plurality of temperature data includes an indoor coil temperature T1 and an outdoor coil temperature T2.
  • the first preset condition includes: if the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2, an anti-condensation operation is required; wherein t1 is the first set value, and t2 is the first Two set values.
  • the plurality of data further includes a compressor vent temperature T3.
  • the first preset condition includes: if the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2 and the compressor exhaust temperature T3 ⁇ t3, an anti-condensation operation is required; wherein t1 For the first set value, t2 is the second set value, and t3 is the third set value.
  • an air conditioner including a compressor, a plurality of temperature sensors, and a microcontroller, the microcontroller including: a communication unit for receiving information data; the information data including each The temperature data detected by the temperature sensor; the first determining unit is configured to determine whether the anti-condensation operation is required according to the first preset condition; and the control unit is configured to control the air conditioner to perform the self-cleaning operation when the anti-condensation operation is required .
  • control unit when controlling the air conditioner to perform a self-cleaning operation, is configured to increase or maintain the operating frequency of the compressor, and reduce the rotation speed of the indoor fan or turn off the indoor fan to frost the surface of the heat exchanger indoors; and After frosting on the surface of the heat exchanger inside the air conditioner, the air conditioner is switched to the heating mode to defrost the surface of the heat exchanger inside the air conditioner.
  • the air conditioner further includes a humidity sensor for detecting humidity in the room, the humidity sensor transmitting the detected data to the communication unit; the microcontroller further includes a second determining unit, configured to The preset condition determines whether anti-condensation operation is required.
  • the second preset condition includes: if the indoor humidity RH is greater than the set threshold RHt, or the indoor humidity RH continues to be greater than the set threshold RHt for a set time period, an anti-condensation operation is required.
  • the set threshold RHt ranges from 60% to 90%.
  • the set threshold RHt is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • control unit is further configured to obtain indoor humidity during the frosting of the heat exchanger surface of the air conditioner and activate the second determining unit, and improve the operation of the air conditioner compressor when the anti-condensation operation is required Frequency, or extend the time of frosting, or increase the operating frequency of the air conditioner compressor and extend the frosting time.
  • control unit is further configured to obtain indoor humidity after starting the self-cleaning operation of the air conditioner and start the second determining unit, and reduce the operating frequency of the air conditioner compressor when the anti-condensation operation is required, or decrease
  • the opening of the small throttle member reduces the operating frequency of the air conditioner compressor and reduces the opening of the throttle member.
  • control unit proportionally reduces the operating frequency of the air conditioner compressor.
  • the ratio is a fixed ratio or a variable ratio.
  • the fixed ratio ranges from 60% to 90%.
  • the fixed ratio is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • variable ratio value is proportional to the difference ⁇ RH between the indoor humidity and the set threshold.
  • the value of b ranges from 0.1 to 0.4.
  • b 0.1, 0.2, 0.3 or 0.4.
  • the plurality of temperature sensors includes a first temperature sensor for detecting the indoor coil temperature T1 and a second temperature sensor for detecting the outdoor coil temperature T2.
  • the first preset condition includes: if the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2, an anti-condensation operation is required; wherein t1 is the first set value, and t2 is the first Two set values.
  • the plurality of temperature sensors further includes a third temperature sensor for detecting the compressor vent temperature T3.
  • the first preset condition includes: if the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2 and the compressor exhaust temperature T3 ⁇ t3, an anti-condensation operation is required; wherein t1 For the first set value, t2 is the second set value, and t3 is the third set value.
  • the embodiment of the invention provides a technical idea that is contrary to other existing anti-condensation technologies.
  • the self-cleaning mode of the air conditioner is turned on, and the surface temperature of the indoor heat exchanger is controlled to be lower than the dew point temperature by the self-cleaning mode.
  • a large amount of moisture in the air is condensed to form a frost or ice layer on the surface of the heat exchanger, and a large amount of moisture in the air is reduced to avoid condensation.
  • the self-cleaning of the air conditioner can be performed, which can be said to be multi-purpose, which greatly improves the user experience.
  • FIG. 1 is a schematic flow chart of a method for preventing condensation by self-cleaning according to an exemplary embodiment
  • FIG. 2 is a schematic flow chart of a method for preventing condensation by self-cleaning according to an exemplary embodiment
  • FIG. 3 is a schematic flow chart of a method for increasing the amount of frosting according to an exemplary embodiment
  • FIG. 4 is a schematic flow chart of an anti-condensation operation according to an exemplary embodiment
  • FIG. 5 is a schematic flow chart of a method for determining an anti-condensation operation according to an exemplary embodiment
  • FIG. 6 is a schematic flow chart of a method for determining an anti-condensation operation according to an exemplary embodiment
  • FIG. 7 is a block diagram of an air conditioner according to an exemplary embodiment
  • FIG. 8 is a block diagram of an air conditioner, according to an exemplary embodiment.
  • relational terms such as first and second are used merely to distinguish one entity or operation from another entity or operation, and do not require or imply any actual relationship between the entities or operations or order.
  • the terms “comprises” or “comprising” or “comprising” or any other variations are intended to encompass a non-exclusive inclusion, such that a process, method, or device that includes a plurality of elements includes not only those elements but also other items not specifically listed. Elements, or elements that are inherent to such a process, method, or device. An element defined by the phrase “comprising a " without further limitation does not exclude the existence of additional equivalent elements in the process, method, or device including the element.
  • the air in the indoor environment enters the interior of the indoor unit along the air inlet of the indoor unit, and is re-blowed into the indoor environment through the air outlet after the heat exchange piece is exchanged, During this process, impurities such as dust and large particles trapped in the indoor air will enter the indoor unit along with the airflow, although the dust filter installed at the air inlet of the indoor unit can filter most of the dust and particles. However, there will still be a small amount of tiny dust that cannot be completely blocked by filtration. With the long-term use of the air conditioner, the dust will gradually deposit on the surface of the heat exchange sheet, and the dust covering the outer surface of the heat exchanger is inferior in thermal conductivity.
  • the indoor unit of the air conditioner includes a self-cleaning mode to achieve timely cleaning of the air conditioner.
  • the self-cleaning mode mainly includes a frosting stage and a defrosting stage.
  • the air conditioner operates in a cooling mode, increases the operating frequency of the air conditioner compressor, and increases the refrigerant output of the indoor heat exchanger, thereby making the indoor
  • the moisture in the air can gradually condense into a frost or ice layer on the outer surface of the heat exchanger.
  • the condensed ice layer can be combined with the dust to peel the dust from the outer surface of the heat exchanger;
  • the air conditioner operates in the heating mode to increase the temperature of the outer surface of the heat exchanger, so that the frost layer condensed on the outer surface of the heat exchanger is melted, and the dust is collected into the water receiving tray along with the melted water flow, so that The self-cleaning purpose of the air conditioner can be achieved.
  • FIG. 1 is a schematic flow chart of a method for preventing condensation by self-cleaning, according to an exemplary embodiment. As shown in Figure 1, the method includes:
  • Step S101 Obtain a plurality of temperature data and determine whether an anti-condensation operation is required according to the first preset condition.
  • common temperature parameters include: indoor temperature, outdoor temperature, indoor coil temperature, outdoor coil Temperature, indoor unit inlet temperature, indoor unit outlet temperature, compressor suction port temperature, and compressor exhaust port temperature.
  • different temperature parameters of the above-mentioned common temperature parameters may be selected for different operations, and different judgment conditions are set for the specific values of the selected plurality of parameters to determine the node that starts the control process. For example, in some embodiments, determining whether to activate the air conditioning refrigeration or heating mode is based on the indoor temperature and the outdoor temperature, and in some embodiments determining whether to activate the dehumidification mode or the like based on the indoor temperature and the indoor unit air outlet temperature.
  • temperature data optionally, measured by a temperature sensor provided by the air conditioning system, or obtained by using a network to obtain temperature data detected by other devices, or calculated by other data.
  • Obtain a certain temperature data optionally, measured by a temperature sensor provided by the air conditioning system, or obtained by using a network to obtain temperature data detected by other devices, or calculated by other data.
  • the first preset condition is a determination condition for determining whether to start the anti-condensation operation.
  • Step 102 If an anti-condensation operation is required, the air conditioner is controlled to perform a self-cleaning operation to prevent condensation.
  • the air conditioner is controlled to perform a self-cleaning operation to prevent condensation, and the moisture in the air is condensed by the frosting stage of the self-cleaning mode.
  • Frost or ice layer and attached to the outer surface of the heat exchanger, reducing the humidity of the indoor air, avoiding condensation, melting the frost layer condensed on the outer surface of the heat exchanger into water through the defrosting stage, and collecting the water Discharge the water tray to avoid dripping onto other air-conditioning components and create safety hazards and reduce the life of air-conditioning components.
  • Self-cleaning is achieved by self-cleaning and self-cleaning of the air conditioner.
  • the invention proposes a technical idea which is completely opposite to other existing anti-condensation technologies.
  • the self-cleaning mode of the air conditioner is turned on, and the surface temperature of the indoor heat exchanger is controlled to be lower than the dew point temperature by the self-cleaning mode.
  • This embodiment not only can effectively prevent the occurrence of condensation, but also does not affect the effect of air conditioning refrigeration, and can also perform self-cleaning of the air conditioner, which can be said to be multi-purpose, greatly improving the user experience.
  • FIG. 2 is a schematic flow chart of a method for preventing condensation by self-cleaning according to an exemplary embodiment. As shown in Figure 2, the method includes:
  • step S201 a plurality of temperature data are obtained and it is determined according to the first preset condition whether an anti-condensation operation is required.
  • step S202 if the anti-condensation operation is required, the operating frequency of the compressor is raised or maintained, and the rotation speed of the indoor fan is reduced or the indoor fan is turned off.
  • step S202 realizes the frosting stage of the self-cleaning mode.
  • the air conditioning system is preset to the self-cleaning mode.
  • the limiting condition includes at least the operating frequency of the compressor being greater than or equal to a set value, ensuring that the compressor operates at a higher frequency, and the refrigerant output of the indoor heat exchanger is larger, the heat exchanger is The outer surface is at least below the dew point temperature.
  • the operating frequency of the compressor When the current operating frequency of the compressor meets the requirements of the self-cleaning mode for the operating frequency of the compressor, the operating frequency of the compressor is kept constant, and the current operating frequency of the compressor is lower than the operating frequency of the compressor preset for the self-cleaning mode. When the value is increased, the operating frequency of the compressor is increased. At the same time, the speed of the indoor fan is reduced or the indoor fan is turned off to accelerate the rate at which the moisture in the indoor air condenses into frost or ice on the outer surface of the heat exchanger to avoid condensation.
  • step S203 the air conditioner is switched to the heating mode.
  • step S203 realizes the defrosting stage of the self-cleaning mode, and after the operation of the frosting process in the self-cleaning mode and frosting on the surface of the heat exchanger in the air-conditioned room, the surface of the heat exchanger in the air-conditioning room is prevented from frosting. Thick, affecting heat exchange efficiency, need to perform the defrosting stage.
  • the air conditioner is switched to the heating mode, and the surface temperature of the air conditioner indoor heat exchanger rises, so that the surface of the air conditioner heat exchanger is defrosted, and at the same time, the defrosting process proceeds, deposition The dust adhering to the surface of the heat exchange sheet drops into the water tray as the water droplets drip.
  • the air conditioning operation cooling mode is required, so the defrosting process is not easy to last for too long.
  • the air conditioner exits the self-cleaning mode and switches back to the cooling mode, and performs the cooling control process according to the target temperature set by the user.
  • the self-cleaning mode of the air conditioner is turned on, by increasing or maintaining the operating frequency of the compressor, and reducing the indoor temperature.
  • the speed of the fan or the closed indoor fan controls the surface temperature of the indoor heat exchanger to be lower than the dew point temperature, so that a large amount of moisture in the air is condensed, a frost or ice layer is formed on the surface of the heat exchanger, and then the air conditioner is switched to the heating mode.
  • the surface of the heater is frosted or ice layered, that is, the self-cleaning of the air conditioner is realized, and the embodiment can not only effectively prevent the occurrence of condensation, but also does not affect the effect of air conditioning refrigeration, and can also perform self-cleaning of the air conditioner. More, it greatly enhances the user experience.
  • FIG. 3 is one according to an embodiment.
  • a schematic flow chart of a method for increasing the amount of frosting comprising:
  • step S301 indoor humidity is obtained.
  • step S302 it is determined whether the anti-condensation operation needs to be performed according to the second preset condition. If the indoor humidity meets the second preset condition, the anti-condensation operation needs to be performed, and step S303 is performed; otherwise, the current working state is maintained. In some embodiments, if the indoor humidity does not satisfy the second preset condition, step S203 is performed to switch the air conditioner to the heating mode to enter the defrosting stage.
  • the second preset condition may be different in different embodiments.
  • the second preset condition is that the indoor humidity RH is greater than the set threshold RHt.
  • the set threshold RHt ranges from 60% to 90%.
  • the set threshold RHt is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • the value of the set threshold is related to the set target temperature of the air conditioner. The lower the set target temperature is, the smaller the value of the set threshold is, for example, when the target set temperature is 20 ° C.
  • the set threshold RHt is 65%, and when the target set temperature is 27 °C, the set threshold RHt is 80%.
  • the set target temperature is low, the outlet air temperature is low. Therefore, under the same humidity condition, when the target temperature is set lower, condensation is more likely to occur. If the anti-condensation operation needs to be performed in advance, the lower the target temperature is set. The smaller the value of the set threshold is.
  • the second preset condition is that the indoor humidity RH continues to be greater than the set threshold RHt for a set time period.
  • the value of the set duration is related to the set target temperature.
  • the indoor humidity RH is constant
  • the lower the set target temperature is, the lower the outlet temperature is, and the condensation is easy to occur. Therefore, it is necessary to prevent the condensation in advance.
  • the set value is smaller.
  • step S303 the operating frequency of the air conditioner compressor is increased, or the frosting time is extended, or the operating frequency of the air conditioner compressor is increased and the frosting time is prolonged.
  • the frosting rate should be accelerated, so the operating frequency of the air conditioner compressor is increased to increase the refrigerant output to the indoor heat exchanger, or to extend the knot.
  • the time of the frost is to condense more moisture in the air on the surface of the indoor heat exchanger, reduce the humidity of the air, or increase the operating frequency of the air conditioner compressor while prolonging the frosting time.
  • step S103 and step S203 are performed, in order to avoid that the indoor humidity is still large after a single self-cleaning operation is performed, there is a possibility that condensation may occur, and further development is required.
  • Anti-condensation there are many ways to further prevent condensation.
  • FIG. 4 is a schematic flow chart of an anti-condensation operation according to an embodiment, including:
  • step S401 indoor humidity is obtained.
  • Step S402 judging whether it is necessary to perform an anti-condensation operation according to the second preset condition, if necessary, executing step S403, reducing the operating frequency of the air conditioner compressor, or reducing the opening degree of the throttle member, or reducing the air conditioner compressor Run the frequency and reduce the opening of the throttling component.
  • the second preset condition is that the indoor humidity RH is greater than the set threshold RHt as described in the foregoing embodiment, or the second preset condition is that the indoor humidity RH continues to be greater than the set threshold RHt for a set time period.
  • the second preset condition is the same at different stages, and in some alternative embodiments, the second preset condition is different at different stages.
  • the self-cleaning mode is quickly started, and the second preset condition is that the indoor humidity RH is greater than the set threshold RHt.
  • the air humidity is lowered.
  • the second preset condition is that the indoor humidity RH continues to be longer than the set threshold RHt for the set time period.
  • the operating frequency of the air conditioner compressor is reduced, or the opening degree of the throttle member is reduced, or the operating frequency of the air conditioner compressor is lowered.
  • the opening of the throttling component is reduced to reduce the amount of refrigerant output to the indoor heat exchanger, and the outlet air temperature is raised above the dew point temperature to avoid condensation.
  • the operating frequency of the air conditioner compressor is proportionally reduced, and the value of the compressor operating frequency is prevented from being large, so that the temperature of the air conditioner is fluctuated greatly, causing discomfort to the human body.
  • the ratio is a fixed ratio.
  • the fixed ratio ranges from 60% to 90%.
  • the fixed ratio is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • the value of the ratio is related to the user-set temperature.
  • the user set temperature the lower the outlet temperature during the air-conditioning refrigeration process, the more likely the condensation will occur, and the operating frequency of the compressor should be reduced as soon as possible.
  • the lower the user set temperature the larger the value of the fixed ratio.
  • the ratio is a variable ratio.
  • variable ratio value is proportional to the difference ⁇ RH between the indoor humidity and the set threshold.
  • the value of c ranges from 1 to 4.
  • c 1, 2, 3 or 4.
  • the value of b ranges from 0.1 to 0.4.
  • b 0.1, 0.2, 0.3 or 0.4.
  • the ⁇ RH When the ⁇ RH is larger, the humidity in the room is larger, and condensation is likely to occur.
  • the air outlet temperature of the air conditioner should be increased as soon as possible to a temperature higher than the dew point. Therefore, the larger the ⁇ RH, the larger the value of the variable ratio, that is, the larger the value of c, or The larger the value of b is.
  • obtaining a plurality of temperature data and determining whether the anti-condensation operation is required according to the first preset condition includes various forms.
  • FIG. 5 is a schematic flow chart of a method for determining an anti-condensation operation according to an embodiment.
  • obtaining a plurality of temperature data and determining whether the anti-condensation operation is required according to the first preset condition specifically includes:
  • step S501 the indoor coil temperature T1 of the air conditioner and the outdoor coil temperature T2 are obtained.
  • step S502 it is determined whether the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2 are satisfied. If yes, step S503 is performed to determine that the anti-condensation operation needs to be performed. Otherwise, step S501 is performed. Where t1 is the first set value and t2 is the second set value.
  • FIG. 6 is a schematic flow chart of a method for determining an anti-condensation operation according to an embodiment.
  • obtaining a plurality of temperature data and determining whether the anti-condensation operation is required according to the first preset condition specifically includes:
  • step S601 the indoor coil temperature T1 of the air conditioner, the outdoor coil temperature T2, and the compressor exhaust port temperature T3 are obtained.
  • step S602 it is determined whether the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2 and the compressor exhaust temperature T3 ⁇ t3 are satisfied. If yes, step S603 is performed to determine that the anti-condensation operation is required. Otherwise, step S601 is performed. Where t1 is the first set value, t2 is the second set value, and t3 is the third set value.
  • a plurality of parameters are comprehensively determined whether it is necessary to perform an anti-condensation operation, and other operating conditions other than the anti-condensation operation of the air conditioner are taken into consideration, so that the control process is more accurate, and the operating state of the air conditioner is more in line with the user's needs. It avoids the temperature fluctuation during operation and brings discomfort to the human body.
  • FIG. 7 is a schematic structural diagram of an air conditioner according to an embodiment.
  • the air conditioner 100 includes: a plurality of temperature sensors, a microcontroller 701 and a compressor 702, wherein the microcontroller 701 includes a communication unit. 7011, a first judging unit 7012 and a control unit 7013.
  • the communication unit 7011 is configured to receive information data, where the information data includes temperature sensors, as shown, temperature sensors 1, temperature sensors 2, ..., temperature data detected by the temperature sensor n.
  • the first determining unit 7012 is configured to determine, according to the first preset condition, whether an anti-condensation operation is required.
  • the control unit 7013 is configured to control the air conditioner to perform a self-cleaning operation when the anti-condensation operation is required. Specifically, the control unit 7013 controls the operating frequency of the compressor 702 when the anti-condensation operation is required, the rotation speed of the indoor fan or the expansion valve. Opening.
  • the air conditioner provided by the invention can realize the self-cleaning mode of the air conditioner when the anti-condensation condition is met, and the surface temperature of the indoor heat exchanger is controlled to be lower than the dew point temperature by the self-cleaning mode, so that a large amount of moisture in the air is condensed on the surface of the heat exchanger. Form a frost or ice layer to achieve the effect of anti-condensation.
  • This embodiment not only can effectively prevent the occurrence of condensation, but also does not affect the effect of air conditioning refrigeration, and can also perform self-cleaning of the air conditioner, which can be said to be multi-purpose, greatly improving the user experience.
  • control unit 7013 when the air conditioner is controlled to perform a self-cleaning operation, is specifically configured to increase or maintain the operating frequency of the compressor, and reduce the rotation speed of the indoor fan or turn off the indoor fan to frost the surface of the heat exchanger indoors; And, after frosting on the surface of the heat exchanger of the air conditioner, the air conditioner is switched to the heating mode to defrost the surface of the heat exchanger in the air conditioner.
  • the air conditioner 100 further includes a humidity sensor 703 for detecting humidity in the room, the humidity sensor 703 transmits the detected data to the communication unit 7011, and the microcontroller 701 further includes a second determining unit 7014 for The preset condition determines whether anti-condensation operation is required.
  • the second preset condition may be different in different embodiments.
  • the second preset condition includes that the indoor humidity RH is greater than the set threshold RHt.
  • the setting threshold RHt ranges from 60% to 90%. Alternatively, the threshold RHt is set to be 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • the value of the set threshold is related to the set target temperature of the air conditioner. The lower the set target temperature is, the smaller the set threshold value is. For example, when the target set temperature is 20 ° C, the set threshold RHt is 65%. When the target set temperature is 27 ° C, the set threshold RHt is set to 80%. When the set target temperature is low, the outlet air temperature is low. Therefore, under the same humidity condition, when the target temperature is set lower, condensation is more likely to occur. If the anti-condensation operation needs to be performed in advance, the lower the target temperature is set. The smaller the value of the set threshold is.
  • the second preset condition indoor humidity RH continues to be greater than the set threshold RHt for a set time period.
  • the value of the set duration is related to the set target temperature.
  • the indoor humidity RH is constant
  • the lower the set target temperature is, the lower the outlet temperature is, and the condensation is easy to occur. Therefore, the anti-condensation operation needs to be performed in advance. , the smaller the set length is.
  • the control unit 7013 in order to improve the anti-condensation effect, it is required to increase the amount of frosting in the frosting stage of the self-cleaning mode, and the control unit 7013 is also used to obtain the indoor humidity during the frosting of the heat exchanger surface of the air-conditioned room.
  • the second judging unit 7014 is activated, and the operating frequency of the air conditioner compressor 702 is raised when the anti-condensation operation is required, or the frosting time is extended, or the operating frequency of the air conditioner compressor 702 is raised and the frosting time is prolonged.
  • the control unit 7013 is also used to control the air conditioner for self-cleaning.
  • the indoor humidity is obtained after the operation and the second judging unit 7014 is started, and the operating frequency of the air conditioner compressor 702 is lowered, or the opening degree of the throttle member is reduced, or the operating frequency of the air conditioner compressor 702 is lowered when the anti-condensation operation is required.
  • the opening of the throttling component is reduced to reduce the amount of refrigerant output to the indoor heat exchanger, and the outlet air temperature is raised above the dew point temperature to avoid condensation.
  • control unit 7013 scales down the operating frequency of air conditioner compressor 702.
  • the ratio is a fixed ratio or a variable ratio.
  • the fixed ratio ranges from 60% to 90%.
  • the fixed ratio is 60%, 65%, 70%, 75%, 80%, 85% or 90%.
  • variable ratio value is proportional to the difference ⁇ RH between the indoor humidity and the set threshold.
  • the value of b ranges from 0.1 to 0.4.
  • b 0.1, 0.2, 0.3 or 0.4.
  • obtaining a plurality of temperature data and determining whether the anti-condensation operation is required according to the first preset condition includes various forms.
  • the plurality of temperature sensors in the air conditioner 100 include a first temperature sensor for detecting the indoor coil temperature T1 and a second temperature sensor for detecting the outdoor coil temperature T2.
  • the communication unit 7011 is configured to receive temperature data detected by the first temperature sensor and the second temperature sensor.
  • the first preset condition includes: if the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2, an anti-condensation operation is required; wherein t1 is the first setting The value, t2 is the second set value.
  • the plurality of temperature sensors in the air conditioner 100 include: a first temperature sensor for detecting the indoor coil temperature T1, a second temperature sensor for detecting the outdoor coil temperature T2, and for detecting the compressor exhaust
  • the communication unit 7011 is configured to receive temperature data detected by the first temperature sensor, the second temperature sensor, and the third temperature sensor.
  • the first preset condition includes: if the indoor coil temperature T1 ⁇ t1 and the outdoor coil temperature T2 ⁇ t2 and the compressor exhaust temperature T3 ⁇ t3, then anti-coagulation is required Exposure operation; wherein t1 is the first set value, t2 is the second set value, and t3 is the third set value.
  • a plurality of parameters are comprehensively determined whether it is necessary to perform an anti-condensation operation, and other operating conditions other than the anti-condensation operation of the air conditioner are taken into consideration, so that the control process is more accurate, and the operating state of the air conditioner is more in line with the user's needs. It avoids the temperature fluctuation during operation and brings discomfort to the human body.
  • non-transitory computer readable storage medium comprising instructions, such as a memory comprising instructions executable by a processor to perform the methods described above.
  • the above non-transitory computer readable storage medium may be a read only memory (ROM), a random access memory (RAM), a magnetic tape, an optical storage device, or the like.
  • the disclosed methods, products may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种利用自清洁进行防凝露的方法和空调。该方法包括:获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作(S101);如果需要进行防凝露操作,则控制空调进行自清洁操作以防止凝露(S102)。本申请不仅能有效防止凝露的发生,而且不会影响空调制冷的效果,还能进行空调的自清洁。

Description

利用自清洁进行防凝露的方法及空调
本申请基于申请号为201810095915.3、申请日为2018年01月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调控制技术领域,特别涉及一种利用自清洁进行防凝露的方法及空调。
背景技术
现有的家用空调器在制冷运行过程中,当室内环境湿度较大的时候,即当室内盘管温度低于当前露点温度的条件下,会有凝露产生,一定的凝露是正常现象,但是当凝露量过大或者结构或换热器分流设计不合理的时候,过量的冷凝水会吹出或者沿着空调外面板往下流,造成用户的使用不便。一般情况下,改善凝露问题是通过优化空调的硬件,优化分流或者在空调面板内侧贴隔热棉来解决问题,但是这种方式不能解决空调在出厂后所遇到的所有的工况情况,当空调出厂后如果发现类似问题,结构上不可能再做更改,但是控制上可以做优化解决问题。一些现有的防凝露控制方法中,通过增加电加热装置并在一定条件下开启电加热装置升温来实现防凝露的效果,或者通过降低压缩机的运行频率减小制冷提升温度来实现防凝露的效果。这些方法都是通过将温度提升到露点温度以上从而尽量避免产生凝露。上述方法虽然能够预防凝露的发生,但由于需要提升温度因此会影响空调制冷的效果。
发明内容
本发明实施例旨在提供一种新的防凝露的方法,为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种利用自清洁进行防凝露的方法,包括:获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作;如果需要进行防凝露操作,则控制空调进行自清洁操作以防止凝露。
可选地,所述控制空调进行自清洁操作,包括:提升或保持压缩机的运行频率,并降低室内风机的转速或关闭室内风机,使空调室内换热器表面结霜;以及,在空调室内换热器表面结霜后,将空调切换至制热模式,使空调室内换热器表面化霜。
可选地,在空调室内换热器表面结霜的过程中,还包括:获得室内湿度,并根据第二预设条件判断是否需要进行防凝露操作;如果需要,则提升空调压缩机的运行频率,或延长结霜的时间,或提升空调压缩机的运行频率并延长结霜的时间。
可选地,控制空调进行自清洁操作后,还包括:获得室内湿度,并根据第二预设条件判断是否需要进行防凝露操作;如果需要,则降低空调压缩机的运行频率,或减小节流部件的开度,或降低空调压缩机的运行频率并减小节流部件的开度。
可选地,所述第二预设条件包括:如果室内湿度RH大于设定阈值RHt,或者室内湿度RH持续大于设定阈值RHt的时间达到设定时长,则需要进行防凝露操作。其中,所述设定阈值RHt的取值范围在60%~90%之间。可选地,所述设定阈值RHt为60%、65%、70%、75%、80%、85%或90%。
可选地,按比例降低空调压缩机的运行频率。
可选地,所述比例为固定比例或可变比例。其中,所述固定比例的取值范围在60%~90%之间。可选地,所述固定比例为60%、65%、70%、75%、 80%、85%或90%。其中,所述可变比例的取值取决于室内湿度和设定阈值RHt的差值ΔRH。其中,ΔRH=RH-RHt,RH为室内湿度。
可选地,室内湿度和设定阈值的差值ΔRH越大则可变比例的取值越大。可选地,可变比例的取值与室内湿度和设定阈值的差值ΔRH成正比。可选地,所述可变比例R=c*ΔRH,c为加权值。其中,c的取值范围在1~4之间。可选地,c=1、2、3或4。
可选地,所述可变比例R=ΔRH+b,b为修正值。其中,b的取值范围在0.1~0.4之间。可选地,b=0.1、0.2、0.3或0.4。
可选地,所述多个温度数据包括室内盘管温度T1和室外盘管温度T2。
可选地,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2<t2,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值。
可选地,所述多个数据还包括压缩机排气口温度T3。
可选地,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2≥t2且压缩机排气口温度T3<t3,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值,t3为第三设定值。
根据本发明实施例的第二方面,提供一种空调,包括压缩机、多个温度传感器和微控制器,所述微控制器包括:通信单元,用于接收信息数据;所述信息数据包括各温度传感器检测的温度数据;第一判断单元,用于根据第一预设条件判断是否需要进行防凝露操作;和,控制单元,用于在需要进行防凝露操作时控制空调进行自清洁操作。
可选地,控制空调进行自清洁操作时,所述控制单元用于提升或保持压缩机的运行频率,并降低室内风机的转速或关闭室内风机,使空调室内换热器表面结霜;以及,在空调室内换热器表面结霜后,将空调切换至制热模式,使空调室内换热器表面化霜。
可选地,所述空调还包括用于检测室内湿度的湿度传感器,所述湿度传 感器将检测的数据发送给所述通信单元;所述微控制器还包括第二判断单元,用于根据第二预设条件判断是否需要进行防凝露操作。
可选地,所述第二预设条件包括:如果室内湿度RH大于设定阈值RHt,或者室内湿度RH持续大于设定阈值RHt的时间达到设定时长,则需要进行防凝露操作。其中,所述设定阈值RHt的取值范围在60%~90%之间。可选地,所述设定阈值RHt为60%、65%、70%、75%、80%、85%或90%。
可选地,所述控制单元还用于在空调室内换热器表面结霜的过程中获得室内湿度并启动所述第二判断单元,并在需要进行防凝露操作时提升空调压缩机的运行频率,或延长结霜的时间,或提升空调压缩机的运行频率并延长结霜的时间。
可选地,所述控制单元还用于在控制空调进行自清洁操作后获得室内湿度并启动所述第二判断单元,并在需要进行防凝露操作时降低空调压缩机的运行频率,或减小节流部件的开度,或降低空调压缩机的运行频率并减小节流部件的开度。
可选地,所述控制单元按比例降低空调压缩机的运行频率。
可选地,所述比例为固定比例或可变比例。其中,所述固定比例的取值范围在60%~90%之间。可选地,所述固定比例为60%、65%、70%、75%、80%、85%或90%。其中,所述可变比例的取值取决于室内湿度和设定阈值RHt的差值ΔRH。其中,ΔRH=RH-RHt,RH为室内湿度。
可选地,室内湿度和设定阈值的差值ΔRH越大则可变比例的取值越大。可选地,可变比例的取值与室内湿度和设定阈值的差值ΔRH成正比。可选地,所述可变比例R=c*ΔRH,c为加权值。其中,c的取值范围在1~4之间。可选地,c=1、2、3或4。
可选地,所述可变比例R=ΔRH+b,b为修正值。其中,b的取值范围在0.1~0.4之间。可选地,b=0.1、0.2、0.3或0.4。
可选地,所述多个温度传感器包括用于检测室内盘管温度T1的第一温度 传感器和用于检测室外盘管温度T2的第二温度传感器。
可选地,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2<t2,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值。
可选地,所述多个温度传感器还包括用于检测压缩机排气口温度T3的第三温度传感器。
可选地,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2≥t2且压缩机排气口温度T3<t3,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值,t3为第三设定值。
本发明实施例提供的技术方案可以包括以下有益效果:
本发明实施例提出一种与现有其它防凝露技术截然相反的技术思路,当满足防凝露条件时,开启空调自清洁模式,通过自清洁模式控制室内换热器表面温度低于露点温度,使空气中的大量水分凝结,在换热器表面形成霜或冰层,通过大量减少空气中的水分以尽量避免产生凝露。本发明实施例中不仅能有效防止凝露的发生,而且不会影响空调制冷的效果,还能进行空调的自清洁,可谓一举多得,极大地提升了用户的使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种利用自清洁进行防凝露的方法的流程示意图;
图2是根据一示例性实施例示出的一种利用自清洁进行防凝露的方法的流程示意图;
图3是根据一示例性实施例示出的一种用于提高凝霜量的方法的流程示意图;
图4是根据一示例性实施例示出的一种防凝露操作的流程示意图;
图5是根据一示例性实施例示出的一种进行防凝露操作的判断方法的流程示意图;
图6是根据一示例性实施例示出的一种进行防凝露操作的判断方法的流程示意图;
图7是根据一示例性实施例示出的一种空调的框图;
图8是根据一示例性实施例示出的一种空调的框图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并 不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
空调器的室内机以制冷或制热模式运行时,室内环境中的空气沿室内机的进风口进入室内机的内部,并在换热片换热后经由出风口重新吹入室内环境中,在这一过程中,室内空气中所夹杂的灰尘、大颗粒物等杂质也会随着进风气流进入室内机内部,虽然室内机进风口处所装设的防尘滤网可以过滤大部分的灰尘及颗粒物,但是仍会有少量的微小灰尘无法被完全阻挡过滤,随着空调器的长期使用,这些灰尘会逐渐沉积附着在换热片的表面,由于覆盖着换热器外表面的灰尘导热性较差,其会直接影响到换热片与室内空气的热交换,因此,为了保证室内机的换热效率,需要定期对室内机作清洁处理。避免人工清洁的不及时性,现有技术公开了空调器室内机包括自清洁模式,以实现空调器的及时清洁。
自清洁模式主要包括凝霜阶段和化霜阶段,其中,在凝霜阶段,空调器以制冷模式运行,提升空调压缩机的运行频率,加大对室内换热器的冷媒输出量,从而使室内空气中的水分可以逐渐在换热器的外表面凝结成霜或冰层,这一过程中,凝结的冰霜层可以与灰尘向结合,从而将灰尘从换热器外表面剥离;之后,在化霜阶段,空调器以制热模式运行,提高换热器外表面的温度,使换热器外表面所凝结的冰霜层融化,灰尘也会随着融化的水流汇集至接水盘中,这样,就可以实现对空调器的自清洁目的。
图1是根据一示例性实施例示出的一种利用自清洁进行防凝露的方法的流程示意图。如图1所示,该方法包括:
步骤S101:获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作。
为保证空调控制过程的精准性,往往依据多个参数的数据进行综合控制,其中,在对空调进行控制过程中,常用的温度参数包括:室内温度,室外温度,室内盘管温度,室外盘管温度,室内机进风口温度,室内机出风口温度,压缩机吸气口温度和压缩机排气口温度等。
在空调系统中针对不同的操作可选用上述常用的温度参数中不同的温度参数,针对选用的多个参数的具体数值设定不同判断条件以确定启动控制进程的节点。例如:在一些实施例中,根据室内温度和室外温度确定是否启动空调制冷或制热模式,在一些实施例中根据室内温度和室内机出风口温度确定是否启动除湿模式等。
在本实施例中,获取温度数据的方式有多种,可选地,通过空调系统自带的温度传感器测得,或者是通过联网方式获得由其他设备检测得到的温度数据,或者通过其他数据计算获得某一温度数据。
在本实施例中,第一预设条件为确定是否启动防凝露操作的判断条件。
步骤102:如果需要进行防凝露操作,则控制空调进行自清洁操作以防止凝露。
当判断获取的多个温度数据满足第一预设条件时,则确定需要进行防凝露操作,控制空调进行自清洁操作以防止凝露,通过自清洁模式的凝霜阶段将空气中的水分凝结成霜或冰层,并附着在换热器的外表面,降低室内空气的湿度,避免产生凝露,通过化霜阶段将换热器外表面所凝结的冰霜层融化成水,水汇集至接水盘排出,避免滴落到其他空调元器件上产生安全隐患和降低空调元器件寿命。通过自清洁操作即实现了防凝露同时实现了对空调的自清洁。
本发明提出一种与现有其它防凝露技术截然相反的技术思路,当满足防凝露条件时,开启空调自清洁模式,通过自清洁模式控制室内换热器表面温度低于露点温度,使空气中的大量水分凝结,在换热器表面形成霜或冰层,取得防凝露的效果。本实施例不仅能有效防止凝露的发生,而且不会影响空 调制冷的效果,还能进行空调的自清洁,可谓一举多得,极大地提升了用户的使用体验。
图2是根据一示例性实施例示出的一种利用自清洁进行防凝露的方法的流程示意图。如图2所示,该方法包括:
步骤S201,获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作。
步骤S202,如果需要进行防凝露操作,则提升或保持压缩机的运行频率,并降低室内风机的转速或关闭室内风机。
在本实施例中,步骤S202实现自清洁模式的凝霜阶段,为保证凝霜阶段室内空气中的水分可以在换热器的外表面凝结成霜或冰层,空调系统对应自清洁模式预设有压缩机的运行频率范围,其限定条件至少包括压缩机的运行频率大于或等于一设定值,保证压缩机以较高频率运行,室内换热器的冷媒输出量较大,换热器的外表面至少低于露点温度。
当压缩机当前的运行频率满足自清洁模式对压缩机运行频率的要求,保持压缩机的运行频率不变,当压缩机当前的运行频率低于对应自清洁模式预设的压缩机的运行频率最小值时,提升压缩机的运行频率,同时,降低室内风机的转速或关闭室内风机,以加快室内空气中的水分在换热器的外表面凝结成霜或冰层的速率,避免发生凝露。
步骤S203,将空调切换至制热模式。
在本实施例中,步骤S203实现自清洁模式的化霜阶段,随着自清洁模式下凝霜过程的运行并在空调室内换热器表面结霜后,避免空调室内换热器表面结霜过厚,影响换热效率,需要执行化霜阶段,此时将空调切换至制热模式,空调室内换热器表面温度上升,使空调室内换热器表面化霜,同时随化霜过程的进行,沉积附着在换热片表面的灰尘随着水滴滴入积水盘。
根据实际的应用场景,需要空调运行制冷模式,因此化霜过程不易持续太久,在化霜结束后,空调退出自清洁模式切换回制冷模式,并根据用户设 定的目标温度进行制冷控制过程。
在本实施例中,提出一种与现有其它防凝露技术截然相反的技术思路,当满足防凝露条件时,开启空调自清洁模式,通过提升或保持压缩机的运行频率,并降低室内风机的转速或关闭室内风机控制室内换热器表面温度低于露点温度,使空气中的大量水分凝结,在换热器表面形成霜或冰层,再通过将空调切换至制热模式,将换热器表面形成霜或冰层化掉,即实现了空调的自清洁,本实施例不仅能有效防止凝露的发生,而且不会影响空调制冷的效果,还能进行空调的自清洁,可谓一举多得,极大地提升了用户的使用体验。
在前述实施例基础上,为提高防凝露的效果,需要在上述步骤S202自清洁模式的凝霜阶段中提高凝霜量,如图3所示,是根据一实施例示出的一种用于提高凝霜量的方法的流程示意图,包括:
步骤S301,获得室内湿度。
步骤S302,根据第二预设条件判断是否需要进行防凝露操作,如果室内湿度满足第二预设条件,则需要进行防凝露操作,执行步骤S303,否则,维持当前的工作状态不变,在一些实施例中,如果室内湿度不满足第二预设条件,则执行步骤S203,将空调切换至制热模式进入化霜阶段。
其中,在不同的实施例中,第二预设条件可以不同,在一些可选实施例中,第二预设条件为室内湿度RH大于设定阈值RHt。
当获得的室内温度满足第二预设条件时,即室内湿度较大,存在产生凝露的风险,因此确定需要进行防凝露操作。其中,所述设定阈值RHt的取值范围在60%~90%之间。可选地,所述设定阈值RHt为60%、65%、70%、75%、80%、85%或90%。所述设定阈值的取值大小与空调的设定目标温度有关,所述设定目标温度越低则所述设定阈值的取值越小,例如:当所述目标设定温度20℃时,设定阈值RHt为65%,当所述目标设定温度27℃时,设定阈值RHt为80%。当设定目标温度较低时,出风温度较低,因此在相同湿度条件下,设定目标温度较低时更易产生凝露,需要提前进行防凝露操作, 则设定目标温度越低,所述设定阈值的取值越小。
在一些可选实施例中,第二预设条件为室内湿度RH持续大于设定阈值RHt的时间达到设定时长。
此时,当获得的室内温度满足第二预设条件时,即较差时间内室内湿度较大,存在产生凝露的风险,因此确定需要进行防凝露操作。其中,设定时长的取值大小与设定目标温度大小相关,当所述室内湿度RH一定时,设定目标温度越低,出风温度越低,易产生凝露,因此需要提前进行防凝露操作,则设定时长取值越小。
步骤S303,提升空调压缩机的运行频率,或延长结霜的时间,或提升空调压缩机的运行频率并延长结霜的时间。
在空调室内换热器表面结霜的过程中,室内湿度仍较大,则应该加快结霜速率,因此提升空调压缩机的运行频率以加大对室内换热器的冷媒输出量,或延长结霜的时间,以将空气中更多的水分凝结在室内换热器的表面,降低空气湿度,或者提升空调压缩机的运行频率同时延长结霜的时间。
在前述实施例基础上,在自清洁操作完成后,即执行完步骤S103和步骤S203之后,为避免单次执行自清洁操作之后室内湿度仍较大,存在产生凝露的可能,需要进一步地进行防凝露,进一步进行防凝露的方式有很多种。
如图4所示是根据一实施例示出的一种防凝露操作的流程示意图,包括:
步骤S401,获得室内湿度。
步骤S402,根据第二预设条件判断是否需要进行防凝露操作,如果需要,则执行步骤S403,降低空调压缩机的运行频率,或减小节流部件的开度,或降低空调压缩机的运行频率并减小节流部件的开度。
在本实施例中,第二预设条件如前述实施例所述为室内湿度RH大于设定阈值RHt,或第二预设条件为室内湿度RH持续大于设定阈值RHt的时间达到设定时长。
在一些可选实施例中,在不同阶段第二预设条件相同,在一些可选实施 例中,在不同阶段第二预设条件不同。例如:在开启自清洁模式进行防凝露操作之前,为保证防凝露的及时性,快速启动自清洁模式,第二预设条件为室内湿度RH大于设定阈值RHt。经过自清洁模式进行部分除湿之后,空气湿度降低,此时,第二预设条件为室内湿度RH持续大于设定阈值RHt的时间达到设定时长。
在本实施例中,在执行自清洁操作后,判断仍需要进行防凝露操作,此时降低空调压缩机的运行频率,或减小节流部件的开度,或降低空调压缩机的运行频率并减小节流部件的开度,以减小对室内换热器的冷媒输出量,将出风温度提升到露点温度以上从而尽量避免产生凝露。
在一些可选实施例中,按比例降低空调压缩机的运行频率,避免压缩机运行频率变化值大使得空调温度波动大,造成人体不适。
可选地,所述比例为固定比例。所述固定比例的取值范围在60%~90%之间。可选地,所述固定比例为60%、65%、70%、75%、80%、85%或90%。
所述比例的取值大小与用户设定温度有关,当用户设定温度越低,空调制冷过程中,出风温度越低,越易产生凝露,应尽快降低压缩机的工作频率,因此,用户设定温度越低,固定比例的取值越大。
可选地,所述比例为可变比例。可选地,所述可变比例的取值取决于室内湿度和设定阈值RHt的差值ΔRH。其中,ΔRH=RH-RHt,RH为室内湿度。
可选地,室内湿度和设定阈值的差值ΔRH越大则可变比例的取值越大。可选地,可变比例的取值与室内湿度和设定阈值的差值ΔRH成正比。
可选地,所述可变比例R=c*ΔRH,c为加权值。其中,c的取值范围在1~4之间。可选地,c=1、2、3或4。可选地,所述可变比例R=ΔRH+b,b为修正值。其中,b的取值范围在0.1~0.4之间。可选地,b=0.1、0.2、0.3或0.4。
当ΔRH越大说明室内湿度越大,易产生凝露,应尽快提高空调出风温度至高于露点温度,因此,ΔRH越大可变比例的取值越大,即c的取值越大, 或者b的取值越大。
在前述实施例中,获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作包括多种形式。
如图5所示是根据一实施例示出的一种进行防凝露操作的判断方法的流程示意图。
在一些可选实施例中,获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作具体包括:
步骤S501,获得空调的室内盘管温度T1和室外盘管温度T2。
步骤S502,判断是否满足室内盘管温度T1<t1且室外盘管温度T2<t2,如果满足,则执行步骤S503,确定需要进行防凝露操作,否则,执行步骤S501。其中t1为第一设定值,t2为第二设定值。
如图6所示是根据一实施例示出的一种进行防凝露操作的判断方法的流程示意图。
在一些可选实施例中,获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作具体包括:
步骤S601,获得空调的室内盘管温度T1,室外盘管温度T2和压缩机排气口温度T3。
步骤S602,判断是否满足室内盘管温度T1<t1且室外盘管温度T2≥t2且压缩机排气口温度T3<t3,如果满足,则执行步骤S603,确定需要进行防凝露操作。否则,执行步骤S601。其中t1为第一设定值,t2为第二设定值,t3为第三设定值。
在本实施例中,综合多种参数判断是否需要进行防凝露操作,兼顾到空调的防凝露操作之外的其他运行情况,使得控制过程更精确,空调的运行状态更符合用户的需求,避免了在运行过程中温度波动大,给人体带来不适。
以下为本公开的空调,用于执行上述方法实施例中的步骤。
如图7所示是根据一实施例提供的空调的结构示意图,如图7所示,空 调100包括:多个温度传感器,微控制器701和压缩机702,其中,微控制器701包括通信单元7011,第一判断单元7012和控制单元7013。
通信单元7011,用于接收信息数据,所述信息数据包括各温度传感器,如图所示,温度传感器1,温度传感器2,…,温度传感器n检测的温度数据。
第一判断单元7012,用于根据第一预设条件判断是否需要进行防凝露操作。
控制单元7013,用于在需要进行防凝露操作时控制空调进行自清洁操作,具体的,控制单元7013在需要进行防凝露操作时控制压缩机702的工作频率,室内风机的转速或者膨胀阀的开度。
本发明提供的空调可以实现当满足防凝露条件时,开启空调自清洁模式,通过自清洁模式控制室内换热器表面温度低于露点温度,使空气中的大量水分凝结,在换热器表面形成霜或冰层,取得防凝露的效果。本实施例不仅能有效防止凝露的发生,而且不会影响空调制冷的效果,还能进行空调的自清洁,可谓一举多得,极大地提升了用户的使用体验。
在一些实施例中,控制空调进行自清洁操作时,控制单元7013具体用于提升或保持压缩机的运行频率,并降低室内风机的转速或关闭室内风机,使空调室内换热器表面结霜;以及,在空调室内换热器表面结霜后,将空调切换至制热模式,使空调室内换热器表面化霜。
在一些实施例中,空调100还包括用于检测室内湿度的湿度传感器703,湿度传感器703将检测的数据发送给通信单元7011,微控制器701还包括第二判断单元7014,用于根据第二预设条件判断是否需要进行防凝露操作。
其中,在不同的实施例中,第二预设条件可以不同,在一些实施例中,第二预设条件包括为室内湿度RH大于设定阈值RHt。
当获得的室内温度满足第二预设条件时,即室内湿度较大,存在产生凝露的风险,因此确定需要进行防凝露操作。其中,设定阈值RHt的取值范围在60%~90%之间。可选地,设定阈值RHt为60%、65%、70%、75%、80%、 85%或90%。设定阈值的取值大小与空调的设定目标温度有关,设定目标温度越低则设定阈值的取值越小,例如:当目标设定温度20℃时,设定阈值RHt为65%,当目标设定温度27℃时,设定阈值RHt为80%。当设定目标温度较低时,出风温度较低,因此在相同湿度条件下,设定目标温度较低时更易产生凝露,需要提前进行防凝露操作,则设定目标温度越低,设定阈值的取值越小。
在一些实施例中,第二预设条件室内湿度RH持续大于设定阈值RHt的时间达到设定时长。
此时,当获得的室内温度满足第二预设条件时,即较差时间内室内湿度较大,存在产生凝露的风险,因此确定需要进行防凝露操作。其中,设定时长的取值大小与设定目标温度大小相关,当室内湿度RH一定时,设定目标温度越低,出风温度越低,易产生凝露,因此需要提前进行防凝露操作,则设定时长取值越小。
在一些实施例中,为提高防凝露的效果,需要在自清洁模式的凝霜阶段中提高凝霜量,控制单元7013还用于在空调室内换热器表面结霜的过程中获得室内湿度并启动第二判断单元7014,并在需要进行防凝露操作时提升空调压缩机702的运行频率,或延长结霜的时间,或提升空调压缩机702的运行频率并延长结霜的时间。
在一些可选实施例中,为避免单次执行自清洁操作之后室内湿度仍较大,存在产生凝露的可能,需要进一步地进行防凝露,控制单元7013还用于在控制空调进行自清洁操作后获得室内湿度并启动第二判断单元7014,并在需要进行防凝露操作时降低空调压缩机702的运行频率,或减小节流部件的开度,或降低空调压缩机702的运行频率并减小节流部件的开度,以减小对室内换热器的冷媒输出量,将出风温度提升到露点温度以上从而尽量避免产生凝露。
在一些可选实施例中,控制单元7013按比例降低空调压缩机702的运行频率。
可选地,所述比例为固定比例或可变比例。其中,所述固定比例的取值范围在60%~90%之间。可选地,所述固定比例为60%、65%、70%、75%、80%、85%或90%。其中,所述可变比例的取值取决于室内湿度和设定阈值RHt的差值ΔRH。其中,ΔRH=RH-RHt,RH为室内湿度。
可选地,室内湿度和设定阈值的差值ΔRH越大则可变比例的取值越大。可选地,可变比例的取值与室内湿度和设定阈值的差值ΔRH成正比。可选地,所述可变比例R=c*ΔRH,c为加权值。其中,c的取值范围在1~4之间。可选地,c=1、2、3或4。
可选地,所述可变比例R=ΔRH+b,b为修正值。其中,b的取值范围在0.1~0.4之间。可选地,b=0.1、0.2、0.3或0.4。
在前述实施例中,获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作包括多种形式。
在一些实施例中,空调100中多个温度传感器包括:用于检测室内盘管温度T1的第一温度传感器和用于检测室外盘管温度T2的第二温度传感器。通信单元7011,用于接收第一温度传感器和第二温度传感器检测的温度数据。
在一些可选地实施例中,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2<t2,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值。
在一些实施例中,空调100中多个温度传感器包括:用于检测室内盘管温度T1的第一温度传感器,用于检测室外盘管温度T2的第二温度传感器和用于检测压缩机排气口温度T3的第三温度传感器。通信单元7011,用于接收第一温度传感器,第二温度传感器和第三温度传感器检测的温度数据。
在一些可选地实施例中,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2≥t2且压缩机排气口温度T3<t3,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值,t3为第三设定值。
在本实施例中,综合多种参数判断是否需要进行防凝露操作,兼顾到空 调的防凝露操作之外的其他运行情况,使得控制过程更精确,空调的运行状态更符合用户的需求,避免了在运行过程中温度波动大,给人体带来不适。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由处理器执行以完成前文所述的方法。上述非临时性计算机可读存储介质可以是只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁带和光存储设备等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,应该理解到,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成 在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种利用自清洁进行防凝露的方法,其特征在于,包括:
    获得多个温度数据并根据第一预设条件判断是否需要进行防凝露操作;
    如果需要进行防凝露操作,则控制空调进行自清洁操作以防止凝露。
  2. 如权利要求1所述的方法,其特征在于,所述多个温度数据包括室内盘管温度T1和室外盘管温度T2。
  3. 如权利要2所述的方法,其特征在于,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2<t2,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值。
  4. 如权利要2所述的方法,其特征在于,所述多个数据还包括压缩机排气口温度T3。
  5. 如权利4所述的方法,其特征在于,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2≥t2且压缩机排气口温度T3<t3,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值,t3为第三设定值。
  6. 一种空调,包括压缩机、多个温度传感器和微控制器,其特征在于,所述微控制器包括:
    通信单元,用于接收信息数据;所述信息数据包括各温度传感器检测的温度数据;
    第一判断单元,用于根据第一预设条件判断是否需要进行防凝露操作;和,
    控制单元,用于在需要进行防凝露操作时控制空调进行自清洁操作。
  7. 如权利要求6所述的空调,其特征在于,所述多个温度传感器包括用于检测室内盘管温度T1的第一温度传感器和用于检测室外盘管温度T2的第二温度传感器。
  8. 如权利要7所述的空调,其特征在于,所述第一预设条件包括:如果 室内盘管温度T1<t1且室外盘管温度T2<t2,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值。
  9. 如权利7所述的空调,其特征在于,所述多个温度传感器还包括用于检测压缩机排气口温度T3的第三温度传感器。
  10. 如权利9所述的空调,其特征在于,所述第一预设条件包括:如果室内盘管温度T1<t1且室外盘管温度T2≥t2且压缩机排气口温度T3<t3,则需要进行防凝露操作;其中t1为第一设定值,t2为第二设定值,t3为第三设定值。
PCT/CN2018/120476 2018-01-31 2018-12-12 利用自清洁进行防凝露的方法及空调 WO2019148973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810095915.3 2018-01-31
CN201810095915.3A CN108361955B (zh) 2018-01-31 2018-01-31 利用自清洁进行防凝露的方法及空调

Publications (1)

Publication Number Publication Date
WO2019148973A1 true WO2019148973A1 (zh) 2019-08-08

Family

ID=63007499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120476 WO2019148973A1 (zh) 2018-01-31 2018-12-12 利用自清洁进行防凝露的方法及空调

Country Status (2)

Country Link
CN (1) CN108361955B (zh)
WO (1) WO2019148973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932410A (zh) * 2021-09-26 2022-01-14 青岛海尔空调器有限总公司 一种空调控制方法、控制装置及空调器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361955B (zh) * 2018-01-31 2020-08-25 青岛海尔空调器有限总公司 利用自清洁进行防凝露的方法及空调
CN110873415B (zh) * 2018-08-31 2021-07-23 重庆海尔空调器有限公司 一种空调及其自清洁的控制方法
CN109405182A (zh) * 2018-11-19 2019-03-01 奥克斯空调股份有限公司 一种防凝露模式控制方法与装置
CN109945387B (zh) * 2019-03-28 2021-07-16 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN111811105B (zh) * 2020-07-13 2021-11-16 南京天加环境科技有限公司 一种防止空调器内机制冷或除湿运行时吹水的控制方法
CN112594886B (zh) * 2020-12-15 2022-10-28 青岛海尔空调器有限总公司 空调自清洁控制方法和空调自清洁控制系统
CN114992784A (zh) * 2022-07-15 2022-09-02 珠海格力电器股份有限公司 空调器自清洁控制方法、空调器及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848738A (zh) * 2015-04-22 2015-08-19 珠海格力电器股份有限公司 空调室内换热器的清洁方法及装置
CN106322663A (zh) * 2016-08-24 2017-01-11 青岛海尔空调器有限总公司 一种空调自清洁控制方法
CN106556106A (zh) * 2016-11-09 2017-04-05 青岛海尔空调器有限总公司 一种空调室内机自清洁的控制方法及装置
CN107166670A (zh) * 2017-06-14 2017-09-15 青岛海尔空调器有限总公司 一种空调器自清洁的控制方法及装置
CN107166685A (zh) * 2017-06-28 2017-09-15 广东美的暖通设备有限公司 空调系统及其的除湿控制方法和装置
CN107525221A (zh) * 2017-07-31 2017-12-29 青岛海尔空调器有限总公司 一种空调自清洁的控制方法及装置
CN107525222A (zh) * 2017-08-01 2017-12-29 青岛海尔空调器有限总公司 一种空调防凝露的控制方法及装置
CN108361955A (zh) * 2018-01-31 2018-08-03 青岛海尔空调器有限总公司 利用自清洁进行防凝露的方法及空调

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534618A (zh) * 2014-12-12 2015-04-22 珠海格力电器股份有限公司 空调控制方法
CN105042773A (zh) * 2015-07-13 2015-11-11 浪潮电子信息产业股份有限公司 一种风冷型列间空调防凝露的控制方法
KR20170058694A (ko) * 2015-11-19 2017-05-29 주식회사 에어컨이엔지 에어컨 배관 단열용 조인트박스 및 이의 제조방법
CN106679111B (zh) * 2017-01-23 2020-04-14 深圳创维空调科技有限公司 一种空调器换热器的自动清洁处理方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848738A (zh) * 2015-04-22 2015-08-19 珠海格力电器股份有限公司 空调室内换热器的清洁方法及装置
CN106322663A (zh) * 2016-08-24 2017-01-11 青岛海尔空调器有限总公司 一种空调自清洁控制方法
CN106556106A (zh) * 2016-11-09 2017-04-05 青岛海尔空调器有限总公司 一种空调室内机自清洁的控制方法及装置
CN107166670A (zh) * 2017-06-14 2017-09-15 青岛海尔空调器有限总公司 一种空调器自清洁的控制方法及装置
CN107166685A (zh) * 2017-06-28 2017-09-15 广东美的暖通设备有限公司 空调系统及其的除湿控制方法和装置
CN107525221A (zh) * 2017-07-31 2017-12-29 青岛海尔空调器有限总公司 一种空调自清洁的控制方法及装置
CN107525222A (zh) * 2017-08-01 2017-12-29 青岛海尔空调器有限总公司 一种空调防凝露的控制方法及装置
CN108361955A (zh) * 2018-01-31 2018-08-03 青岛海尔空调器有限总公司 利用自清洁进行防凝露的方法及空调

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932410A (zh) * 2021-09-26 2022-01-14 青岛海尔空调器有限总公司 一种空调控制方法、控制装置及空调器

Also Published As

Publication number Publication date
CN108361955A (zh) 2018-08-03
CN108361955B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2019148973A1 (zh) 利用自清洁进行防凝露的方法及空调
WO2019024681A1 (zh) 一种空调自清洁的控制方法及装置
WO2018086176A1 (zh) 空调换热器自清洁方法
CN108361950B (zh) 利用自清洁进行防凝露的方法及空调
CN108361952B (zh) 利用自清洁进行防凝露的方法及空调
CN111174372B (zh) 一种空调控制方法、装置、存储介质及空调
WO2019148697A1 (zh) 一种空调自清洁的控制方法及装置
WO2020070892A1 (ja) 空気調和機、空気調和機の制御方法およびプログラム
WO2020038114A1 (zh) 制热控制方法及空调器
CN110848882B (zh) 空调器及其自清洁控制方法和控制装置
CN110006133A (zh) 一种空调除霜控制方法、装置及空调器
CN110873426B (zh) 一种空调及其自清洁的控制方法
CN108361951B (zh) 利用自清洁进行防凝露的方法及空调
WO2022242144A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN109084442A (zh) 一种母婴空调控制方法和具有母婴模式的空调器
CN110873407B (zh) 一种空调及其自清洁的控制方法
CN110873417A (zh) 一种空调及其自清洁的控制方法
CN110873415A (zh) 一种空调及其自清洁的控制方法
CN110873402A (zh) 一种空调及其自清洁的控制方法
CN110873394A (zh) 一种空调及其自清洁的控制方法
JP2009287811A (ja) 空気調和機
JP7191110B2 (ja) 空調装置、制御装置、空調方法及びプログラム
CN110873419B (zh) 一种空调及其自清洁的控制方法
CN110873422B (zh) 一种空调及其自清洁的控制方法
CN110848879A (zh) 空调器及其自清洁控制方法和控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904378

Country of ref document: EP

Kind code of ref document: A1