WO2019146696A1 - Sensor chip and force sensor device - Google Patents
Sensor chip and force sensor device Download PDFInfo
- Publication number
- WO2019146696A1 WO2019146696A1 PCT/JP2019/002263 JP2019002263W WO2019146696A1 WO 2019146696 A1 WO2019146696 A1 WO 2019146696A1 JP 2019002263 W JP2019002263 W JP 2019002263W WO 2019146696 A1 WO2019146696 A1 WO 2019146696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- detection beam
- sensor chip
- force
- width
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 447
- 230000003014 reinforcing effect Effects 0.000 claims description 52
- 239000000758 substrate Substances 0.000 claims description 42
- 230000002787 reinforcement Effects 0.000 claims description 19
- 238000004088 simulation Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 23
- 238000000926 separation method Methods 0.000 description 23
- 239000002131 composite material Substances 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 238000006073 displacement reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
- G01L5/161—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
- G01L5/162—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/22—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
- G01L5/226—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Definitions
- the present invention relates to a sensor chip and a force sensor device.
- the force sensor when the input is a single axis (one of the six axes [Fx, Fy, Fz, Mx, My, Mz] (In the case of the direction along (1)), the force sensor can obtain high accuracy.
- the input is a complex input (a complex input along any two or more of six axes [Fx, Fy, Fz, Mx, My, Mz])
- the axis separation is Because of the insufficient force, the error of the force sensor is increased, and the accuracy is reduced.
- complex inputs there are combinations of axes of complex inputs that do not meet the target value of accuracy.
- the present invention has been made in view of the above-described points, and an object thereof is to improve axial separation of a sensor chip with respect to complex inputs and improve sensor accuracy.
- the present sensor chip (110) has a substrate, a first support (111a, 111b, 111c, 111d), and the second support disposed at the center of the substrate with the first support disposed around the periphery.
- the first detection beam 113a, 113d, 113g, 113j
- the plurality of strain detection elements disposed at predetermined positions of the first detection beam, the plurality of strain detection elements including the force points (114a, 114b, 114c, 114d) to be applied.
- a first strain detection element (MzR1, MzR2, MzR3, MzR4, MzR1 ', MzR2', Mzr3 ', MzR4') formed on the first detection beam between the supporting portion 1 and the point of force;
- the requirement is that the second beam width, which is the width of the beam, is smaller.
- the substrate, the first supports (111a, 111b, 111c, 111d), and the first support disposed around the periphery, and the sensor chip (110) is disposed at the center of the substrate 2, and the first detection beams (113a, 113d, 113g, 113j) for connecting the first support portions adjacent to each other, and the first detection beams, A force detection point (114a, 114b, 114c, 114d) to which a force is applied, and a plurality of strain detection elements arranged at predetermined positions of the first detection beam; A linear portion (113n1) and inclined portions (113n2 and 113n3) connected to the linear portion by a connecting portion, and the plurality of strain detection elements are arranged closer to the inclined portion than the connecting portion First strain detection element (FzR1, The requirement to include a zR2).
- FzR1 The requirement to include a zR2
- the 2 which shows an example of the strain generating body which concerns on embodiment.
- the 3) which shows an example of the strain generating body which concerns on embodiment.
- It is a figure (the 1) showing an example of a manufacturing process of a force sensor device concerning an embodiment.
- the figure (the 2) showing an example of a manufacturing process of a force sensor device concerning an embodiment.
- the figure (the 3) which shows an example of the manufacturing process of the force sensor apparatus which concerns on embodiment.
- stress contour figure which shows the result of having computed the stress when applying force or moment to the sensor chip of a reference example by simulation. It is a figure (stress contour view) which shows the result of having computed the stress when applying force or moment to the sensor chip of an embodiment by simulation. It is a figure (stress contour view) which shows the result of having computed the stress when applying force or moment to the sensor chip of an embodiment by simulation. It is a figure (stress contour view) which shows the result of having computed the stress when applying force or moment to the sensor chip of an embodiment by simulation. It is a figure explaining simulation of other axis ingredient to a sensor chip of a reference example.
- FIG. 1 is a perspective view illustrating a force sensor device according to the first embodiment.
- FIG. 2 is a perspective view illustrating a sensor chip and a strain generating body of the force sensor device according to the first embodiment.
- the force sensor device 1 includes a sensor chip 110, a strain generating body 20, and an input / output substrate 30.
- the force sensor device 1 is, for example, a multi-axis force sensor device mounted on an arm, a finger or the like of a robot used for a machine tool or the like.
- the sensor chip 110 has a function of detecting a maximum of six axial displacements in a predetermined axial direction.
- the strain generating body 20 has a function of transmitting the applied force to the sensor chip 110.
- the sensor chip 110 is bonded to the upper surface side of the strain generating body 20 so as not to protrude from the strain generating body 20.
- one end side of an input / output substrate 30 for inputting / outputting a signal to / from the sensor chip 110 is bonded to the upper surface and each side surface of the strain generating body 20 in a properly bent state.
- the sensor chip 110 and each electrode 31 of the input / output substrate 30 are electrically connected by a bonding wire or the like (not shown).
- an active component 32 and a passive component 39 are mounted in a region disposed on the first side surface of the strain generating body 20.
- an active component 33 and a passive component 39 are mounted in a region disposed on the second side surface of the strain generating body 20.
- An active component 34 and a passive component 39 are mounted on a region of the input / output substrate 30 disposed on the third side surface of the strain generating body 20.
- an active component 35 and a passive component 39 are mounted in a region disposed on the fourth side surface of the strain generating body 20.
- the active component 33 detects, for example, an analog electrical signal from a bridge circuit that detects a force Fx in the X-axis direction output from the sensor chip 110 and a bridge that detects a force Fy in the Y-axis direction output from the sensor chip 110 It is an IC (AD converter) that converts an analog electrical signal from a circuit into a digital electrical signal.
- a bridge circuit that detects a force Fx in the X-axis direction output from the sensor chip 110 and a bridge that detects a force Fy in the Y-axis direction output from the sensor chip 110
- IC AD converter
- the active component 35 rotates, for example, an analog electrical signal from a bridge circuit that detects a moment My rotating about the Y axis output from the sensor chip 110 and a Z axis output from the sensor chip 110 as an axis It is an IC (AD converter) that converts an analog electrical signal from a bridge circuit that detects a moment Mz into a digital electrical signal.
- IC AD converter
- Active component 32 performs predetermined operations on digital electrical signals output from active components 33, 34 and 35, for example, and indicates forces Fx, Fy and Fz, and moments Mx, My and Mz. It is an IC that generates a signal and outputs it to the outside.
- the passive component 39 is, for example, a resistor or a capacitor connected to the active components 32 to 35.
- the number of ICs to realize the functions of the active components 32 to 35 can be arbitrarily determined.
- the active components 32 to 35 may be mounted on the external circuit side connected to the input / output substrate 30 without being mounted on the input / output substrate 30. In this case, an analog electrical signal is output from the input / output board 30.
- the input / output substrate 30 is bent outward below the first side surface of the strain generating body 20, and the other end side of the input / output substrate 30 is drawn out.
- terminals (not shown) capable of electrically inputting / outputting to / from an external circuit (control device etc.) connected to the force sensor device 1 are arranged.
- the side provided with the sensor chip 110 is referred to as the upper side or one side, and the opposite side is referred to as the lower side or the other side.
- the surface on the side where the sensor chip 110 is provided in each part is referred to as one surface or the upper surface, and the opposite surface is referred to as the other surface or the lower surface.
- the force sensor device 1 can be used in the upside-down state or can be disposed at an arbitrary angle.
- planar view refers to viewing the object from the normal direction (Z-axis direction) of the upper surface of the sensor chip 110
- planar shape refers to the normal direction of the upper surface of the sensor chip 110 (Z-axis direction It refers to the shape viewed from).
- FIG. 3 is a view of the sensor chip 110 viewed from the upper side in the Z-axis direction
- FIG. 3 (a) is a perspective view
- FIG. 3 (b) is a plan view
- FIG. 4 is a view of the sensor chip 110 viewed from the lower side in the Z-axis direction
- FIG. 4 (a) is a perspective view
- FIG. 4 (b) is a bottom view.
- surfaces of the same height are shown in the same textured pattern.
- the direction parallel to one side of the upper surface of the sensor chip 110 is the X-axis direction
- the vertical direction is the Y-axis direction
- the thickness direction of the sensor chip 110 (the normal direction of the upper surface of the sensor chip 110) is the Z-axis direction.
- the X axis direction, the Y axis direction, and the Z axis direction are orthogonal to one another.
- the sensor chip 110 shown in FIGS. 3 and 4 is a MEMS (Micro Electro Mechanical Systems) sensor chip that can detect up to six axes with one chip, and is formed of a semiconductor substrate such as an SOI (Silicon On Insulator) substrate.
- the planar shape of the sensor chip 110 can be, for example, a square of about 3000 ⁇ m square.
- the sensor chip 110 includes five columnar support portions 111a to 111e.
- the planar shape of the support portions 111a to 111e can be, for example, a square of about 500 ⁇ m square.
- the support portions 111a to 111d, which are the first support portions, are disposed at the four corners of the sensor chip 110.
- the second support portion 111e is disposed at the center of the support portions 111a to 111d.
- the support portions 111a to 111e can be formed of, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and the thickness thereof can be, for example, about 500 ⁇ m.
- a reinforcement beam 112a for reinforcing the structure is provided, the ends of which are fixed to the support portion 111a and the support portion 111b (the adjacent support portions are connected). It is done.
- reinforcement beams 112b for reinforcing the structure are provided, the ends of which are fixed to the support portion 111b and the support portion 111c (connect adjacent support portions). It is done.
- reinforcement beams 112c for reinforcing the structure, both ends of which are fixed to the support portion 111c and the support portion 111d (connect adjacent support portions). It is done.
- a reinforcement beam 112d for reinforcing the structure is provided, the ends of which are fixed to the support portion 111d and the support portion 111a (the adjacent support portions are connected). It is done.
- the four reinforcing beams 112a, 112b, 112c, and 112d which are the first reinforcing beams, are formed in a frame shape, and the corner portions forming the intersections of the respective reinforcing beams are the support portions 111b, 111c, and 111d. , 111a.
- the inner corner portion of the support portion 111a and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112e for reinforcing the structure.
- the inner corner portion of the support portion 111b and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112f for reinforcing the structure.
- the inner corner portion of the support portion 111c and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112g for reinforcing the structure.
- the inner corner portion of the support portion 111d and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112h for reinforcing the structure.
- the reinforcing beams 112e to 112h which are the second reinforcing beams, are disposed obliquely with respect to the X-axis direction (Y-axis direction). That is, the reinforcing beams 112e to 112h are disposed nonparallel to the reinforcing beams 112a, 112b, 112c, and 112d.
- the reinforcing beams 112a to 112h can be formed, for example, from the active layer, the BOX layer, and the support layer of the SOI substrate.
- the thickness (the width in the short direction) of the reinforcing beams 112a to 112h can be, for example, about 140 ⁇ m.
- the upper surfaces of the reinforcing beams 112a to 112h are substantially flush with the upper surfaces of the support portions 111a to 111e.
- each of the reinforcing beams 112a to 112h is recessed to the upper surface side by about several tens of micrometers than the lower surfaces of the support portions 111a to 111e and the lower surfaces of the power points 114a to 114d. This is to prevent the lower surfaces of the reinforcing beams 112a to 112h from coming into contact with the opposing surfaces of the straining body 20 when the sensor chip 110 is bonded to the straining body 20.
- the rigidity of the entire sensor chip 110 can be enhanced by arranging a reinforcing beam having a high rigidity and formed thicker than the detection beam separately from the detection beam for detecting the strain. As a result, it becomes difficult to deform other than the detection beam with respect to the input, so that good sensor characteristics can be obtained.
- Both ends of the reinforcing beam 112a between the supporting portion 111a and the supporting portion 111b are fixed to the supporting portion 111a and the supporting portion 111b in parallel with a predetermined distance therebetween (adjacent to each other) Support beams are connected to each other), and detection beams 113a for detecting distortion are provided.
- a detection beam 113b is provided between the detection beam 113a and the support portion 111e at a predetermined distance from the detection beam 113a and the support portion 111e and in parallel with the detection beam 113a.
- the detection beam 113b connects the end of the reinforcement beam 112e on the support portion 111e side and the end of the reinforcement beam 112f on the support portion 111e side.
- a substantially central portion in the longitudinal direction of the detection beam 113a and a substantially central portion in the longitudinal direction of the detection beam 113b opposed thereto are the detection beam arranged to be orthogonal to the detection beam 113a and the detection beam 113b. It is connected by 113c.
- Both ends of the reinforcing beam 112b between the supporting portion 111b and the supporting portion 111c are fixed to the supporting portion 111b and the supporting portion 111c in parallel with a predetermined distance therebetween (adjacent to each other) Support beams are connected to each other), and detection beams 113d for detecting distortion are provided.
- a detection beam 113e is provided in parallel with the detection beam 113d at a predetermined distance from the detection beam 113d and the support portion 111e.
- the detection beam 113e connects the end of the reinforcement beam 112f on the support portion 111e side and the end of the reinforcement beam 112g on the support portion 111e side.
- Both ends of the reinforcing beam 112c between the supporting portion 111c and the supporting portion 111d are fixed to the supporting portion 111c and the supporting portion 111d in parallel with a predetermined distance therebetween (adjacent to each other) Support portions are connected with each other, and a detection beam 113g for detecting strain is provided.
- a detection beam 113h is provided in parallel with the detection beam 113g with a predetermined interval between the detection beam 113g and the support portion 111e.
- the detection beam 113h connects the end of the reinforcement beam 112g on the support 111e side and the end of the reinforcement beam 112h on the support 111e.
- Both ends of the reinforcing beam 112d between the supporting portion 111d and the supporting portion 111a are fixed to the supporting portion 111d and the supporting portion 111a in parallel with a predetermined distance therebetween (adjacent to each other) Support beams are connected to each other), and detection beams 113 j for detecting distortion are provided.
- a detection beam 113k is provided in parallel with the detection beam 113j at a predetermined interval from the detection beam 113j and the support portion 111e.
- the detection beam 113k couples the end of the reinforcement beam 112h on the support portion 111e side and the end of the reinforcement beam 112e on the support portion 111e side.
- the detection beams 113a to 113l are provided on the upper end side in the thickness direction of the support portions 111a to 111e, and can be formed of, for example, an active layer of an SOI substrate.
- the thickness (width in the short direction) of the detection beams 113a to 113l can be, for example, about 75 ⁇ m.
- the thickness (the width in the short direction) of the detection beams 113a to 113l may be different depending on the position.
- the upper surfaces of the detection beams 113a to 113l are substantially flush with the upper surfaces of the support portions 111a to 111e.
- the thickness of each of the detection beams 113a to 113l can be, for example, about 50 ⁇ m.
- a force point 114a is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113a (the intersection of the detection beam 113a and the detection beam 113c).
- the detection beams 113a, 113b, and 113c and the force point 114a constitute a set of detection blocks.
- a force point 114b is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113d (the intersection point of the detection beam 113d and the detection beam 113f).
- the detection beams 113d, 113e, and 113f and the force point 114b constitute a set of detection blocks.
- a force point 114c is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113g (the intersection point of the detection beam 113g and the detection beam 113i).
- the detection beams 113g, 113h, and 113i and the force point 114c constitute a set of detection blocks.
- a force point 114d is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113j (the intersection of the detection beam 113j and the detection beam 113l).
- the detection beams 113j, 113k, and 113l and the force point 114d constitute a set of detection blocks.
- the force points 114a to 114d are places to which an external force is applied, and can be formed, for example, from the BOX layer and the support layer of the SOI substrate.
- the lower surfaces of the power points 114a to 114d are substantially flush with the lower surfaces of the support portions 111a to 111e.
- the portion forming the inner angle is preferably R-shaped.
- FIG. 5 is a diagram for explaining reference numerals indicating forces and moments applied to the respective axes.
- the force in the X-axis direction is Fx
- the force in the Y-axis direction is Fy
- the force in the Z-axis direction is Fz.
- Mx be a moment for rotating about the X axis
- My be a moment for rotating the Y axis
- Mz be a moment for rotating the Z axis.
- FIG. 6 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 110. As shown in FIG. Piezoresistive elements, which are a plurality of strain detection elements, are disposed at predetermined positions of the detection blocks corresponding to the four force points 114a to 114d.
- the piezoresistive elements MxR3 and MxR4 are on the line bisecting the detection beam 113a in the longitudinal direction, and In a region near the detection beam 113c of the detection beam 113a, the detection beam 113c is disposed at a symmetrical position with respect to a line bisecting in the longitudinal direction (Y direction).
- the piezoresistive elements FyR3 and FyR4 are located on the reinforcing beam 112a side of a line bisecting the detecting beam 113a in the longitudinal direction and in a region farther from the detection beam 113c of the detection beam 113a. They are disposed at symmetrical positions with respect to a line bisecting 113 c in the longitudinal direction.
- the piezoresistive elements MzR3 ′ and MzR4 ′ are on a line bisecting the detection beam 113a in the longitudinal direction and at a position where they are connected to the support portions 111a and 111b of the detection beam 113a and a force point 114a In the vicinity of the middle point of the connection position, the detection beam 113c is disposed at a symmetrical position with respect to a line bisecting the detection beam 113c in the longitudinal direction.
- the second beam width, which is the width of the detection beam 113a, is smaller.
- the piezoresistive elements MzR3 'and MzR4' are located from the position where the detection beam 113a is connected to the support portions 111a and 111b. It has a tapered shape in which the beam width gradually narrows on both sides in the lateral direction of the detection beam 113a to the formed position.
- the detection beam 113a extends from the position where the detection beam 113a is connected to the power point 114a to the position where the piezoresistive elements MzR3 ′ and MzR4 ′ are formed on both sides in the lateral direction of the detection beam 113a. It has a tapered shape in which the beam width gradually narrows.
- a portion where the beam width is narrowed is formed between the position where it is connected with the support portions 111a and 111b and the position where it is connected with the force point 114a.
- Piezoresistive elements MzR3 'and MzR4' are formed on the detection beam 113a.
- the piezoresistive elements MyR3 and MyR4 are detected on a line bisecting the detection beam 113d in the longitudinal direction and in a region near the detection beam 113f of the detection beam 113d.
- the beam 113 f is disposed at symmetrical positions with respect to a line bisecting the beam 113 f in the longitudinal direction (X direction).
- the piezoresistive elements FxR3 and FxR4 are located on the reinforcing beam 112b side of a line bisecting the detecting beam 113d in the longitudinal direction and in a region far from the detection beam 113f of the detection beam 113d. It is disposed at a symmetrical position with respect to a line bisecting 113 f in the longitudinal direction.
- the piezoresistive elements MzR3 and MzR4 are connected on the line bisecting the detection beam 113d in the longitudinal direction and at a position where they are connected to the support portions 111b and 111c of the detection beam 113d and the force point 114b. In the vicinity of the midpoint of the position, the detection beam 113f is disposed at a symmetrical position with respect to a line bisecting the detection beam 113f in the longitudinal direction.
- the detection beam 113d detects the position where the piezoresistive elements MzR3 and MzR4 are formed from the first beam width which is the width of the detection beam 113d at the position where it is connected to the support portions 111b and 111c or the force point 114b.
- the second beam width which is the width of the beam 113d, is smaller.
- piezoresistive elements MzR3 and MzR4 are formed from the position where the detection beam 113d is connected to the support portions 111b and 111c. In the lateral direction of the detection beam 113d, the width of the beam gradually narrows.
- the detection beam 113d extends from the position where the detection beam 113d is connected to the force point 114b to the position where the piezoresistive elements MzR3 and MzR4 are formed, at both sides in the lateral direction of the detection beam 113d.
- a portion where the beam width is narrowed is formed between the position where it is connected with the support portions 111b and 111c and the position where it is connected with the force point 114b.
- Piezoresistive elements MzR3 and MzR4 are formed on the detection beam 113d.
- the piezoresistive elements FzR2 and FzR3 are on the line bisecting the detection beam 113e in the longitudinal direction, and in the region near the detection beam 113f of the detection beam 113e, the detection beam 113f is formed in the longitudinal direction. It is placed at a symmetrical position with respect to the dividing line.
- the piezoresistive elements FzR1 ′ and FzR4 ′ are on the line bisecting the detection beam 113e in the longitudinal direction and in the region far from the detection beam 113f of the detection beam 113e in the longitudinal direction It is disposed at a symmetrical position with respect to the bisecting line.
- the detection beam 113e has a linear portion and an inclined portion connected to the linear portion by the connecting portion.
- the straight portion is a portion where the beam width of the detection beam 113e is substantially constant.
- the inclined portion is a portion provided at the end of the detection beam 113e or a portion connected to the detection beam 113f, and the beam width of the inclined portion gradually increases as the distance from the connecting portion increases.
- the piezoresistive elements FzR2, FzR3, FzR1 ', and FzR4' are disposed closer to the inclined portion than the connecting portion in the detection beam 113e having the above-described configuration.
- the piezoresistive elements FzR2, FzR3, FzR1 'and FzR4' are disposed not on the linear portion of the detection beam 113e but inside the inclined portion. Further, in the piezoresistive elements FzR1 'and FzR4', a part of the piezoresistive elements FzR1 'and FzR4' is formed to extend over the reinforcing beam 112g or the reinforcing beam 112f.
- the piezoresistive elements MxR1 and MxR2 are detected on a line bisecting the detection beam 113g in the longitudinal direction and in a region near the detection beam 113i of the detection beam 113g.
- the beam 113i is disposed at symmetrical positions with respect to a line bisecting in the longitudinal direction (Y direction).
- the piezoresistive elements FyR1 and FyR2 are located on the reinforcing beam 112c side of a line bisecting the detecting beam 113g in the longitudinal direction and in a region far from the detection beam 113i of the detection beam 113g. It is disposed at a symmetrical position with respect to a line bisecting 113 i in the longitudinal direction.
- the piezoresistive elements MzR1 ′ and MzR2 ′ are connected on a line bisecting the detection beam 113g in the longitudinal direction and at a position where it is connected to the support portions 111c and 111d of the detection beam 113g and a force point 114c. In the vicinity of the midpoint of the position, the detection beam 113i is disposed at a symmetrical position with respect to a line bisecting the detection beam 113i in the longitudinal direction.
- the second beam width, which is the width of the detection beam 113g, is smaller.
- the piezoresistive elements MzR1 ′ and MzR2 ′ are located from the position where the detection beam 113g is connected to the support portions 111c and 111d.
- the beam has a tapered shape in which the width of the beam gradually narrows on both sides in the lateral direction of the detection beam 113g to the formed position.
- the detection beam 113g extends from the position where the detection beam 113g is connected to the force point 114c to the position where the piezoresistive elements MzR1 ′ and MzR2 ′ are formed on both sides in the lateral direction of the detection beam 113g. It has a tapered shape in which the beam width gradually narrows.
- a portion where the beam width is narrowed is formed between the position where it is connected with the support portions 111c and 111d and the position where it is connected with the force point 114c.
- Piezoresistive elements MzR1 'and MzR2' are formed on the detection beam 113g.
- the piezoresistive elements MyR1 and MyR2 are detected on a line bisecting the detection beam 113j in the longitudinal direction and in a region close to the detection beam 113l of the detection beam 113j.
- the beam 113 l is disposed at a symmetrical position with respect to a line bisecting the longitudinal direction (X direction).
- the piezoresistive elements FxR1 and FxR2 are located on the reinforcing beam 112d side of a line bisecting the detecting beam 113j in the longitudinal direction and in a region far from the detection beam 113l of the detection beam 113j. It is disposed at a symmetrical position with respect to a line which bisects 113 l in the longitudinal direction.
- the piezoresistive elements MzR1 and MzR2 are on a line bisecting the detection beam 113j in the longitudinal direction and at positions where the detection beam 113j is connected to the support portions 111d and 111a and positions where it is connected to the force point 114d.
- the detection beam 113l is disposed at a symmetrical position with respect to a line bisecting the detection beam 113l in the longitudinal direction near the middle point of
- the detection beam 113j detects the position where the piezoresistive elements MzR1 and MzR2 are formed from the first beam width which is the width of the detection beam 113j at the position where it is connected to the support portions 111d and 111a or the power point 114d.
- the second beam width which is the width of the beam 113j, is smaller.
- piezoresistive elements MzR1 and MzR2 are formed from the position where the detection beam 113j is connected to the support portions 111d and 111a. In the lateral direction of the detection beam 113j, the width of the beam gradually narrows.
- the detection beam 113j extends from the position where the detection beam 113j is connected to the force point 114d to the position where the piezoresistive elements MzR1 and MzR2 are formed, at both sides in the lateral direction of the detection beam 113j.
- a portion where the beam width is narrowed is formed between the position where it is coupled with the support portions 111d and 111a and the position where it is coupled with the force point 114d.
- Piezoresistive elements MzR1 and MzR2 are formed on the detection beam 113j.
- the piezoresistive elements FzR1 and FzR4 are on the line bisecting the detection beam 113k in the longitudinal direction and in the region far from the detection beam 113l of the detection beam 113k in the longitudinal direction. It is placed at a symmetrical position with respect to the dividing line.
- the piezoresistive elements FzR2 'and FzR3' are on the line bisecting the detection beam 113k in the longitudinal direction, and in the region near the detection beam 113l of the detection beam 113k in the longitudinal direction It is disposed at a symmetrical position with respect to the bisecting line.
- the detection beam 113k has a linear portion and an inclined portion connected to the linear portion by the connecting portion.
- the straight portion is a portion where the beam width of the detection beam 113k is substantially constant.
- the sloped portion is a portion provided at the end of the detection beam 113k or a portion connected to the detection beam 113l, and the beam width of the sloped portion gradually increases as the distance from the connection portion increases.
- the piezoresistive elements FzR1, FzR4, FzR2 ', and FzR3' are disposed closer to the inclined portion side than the connection portion in the detection beam 113k having the above-described configuration.
- the piezoresistive elements FzR1, FzR4, FzR2 'and FzR3' are disposed not on the linear portion of the detection beam 113k but inside the inclined portion. Further, in the piezoresistive elements FzR1 and FzR4, a part of the piezoresistive elements FzR1 and FzR4 is formed to extend over the reinforcing beam 112h or the reinforcing beam 112e.
- a plurality of piezoresistive elements are separately disposed in each detection block.
- the predetermined axial direction Up to six axes of displacement can be detected.
- the detection beams 113c, 113f, 113i, and 113l are as short as possible to bring the detection beams 113b, 113e, 113h, and 113k closer to the detection beams 113a, 113d, 113g, and 113j.
- the length of the detection beams 113b, 113e, 113h and 113k is secured as much as possible.
- the detection beams 113b, 113e, 113h, and 113k can be easily bent in a bow shape, stress concentration can be relaxed, and load resistance can be improved.
- the sensor chip 110 no piezoresistive element is disposed on the detection beams 113c, 113f, 113i, and 113l. Instead, the stresses of the detection beams 113a, 113d, 113g and 113j, which are thinner and longer than the detection beams 113c, 113f, 113i and 113l and are easily bent in a bow, and the stresses of the detection beams 113b, 113e, 113h and 113k The piezoresistive elements are arranged in the vicinity of the position where is the largest. As a result, in the sensor chip 110, it is possible to take in stress efficiently, and sensitivity (change in resistance of the piezoresistive element to the same stress) can be improved.
- dummy piezoresistive elements are disposed in addition to the piezoresistive elements used to detect distortion.
- all the piezoresistive elements including the piezoresistive element used for detection of strain are arranged so as to be point-symmetrical with respect to the center of the support portion 111 e.
- the piezoresistive elements FxR1 to FxR4 detect the force Fx
- the piezoresistive elements FyR1 to FyR4 detect the force Fy
- the piezoresistive elements FzR1 to FzR4 and the FzR1 'to FzR4' detect the force Fz.
- the piezoresistive elements MxR1 to MxR4 detect the moment Mx
- the piezoresistive elements MyR1 to MyR4 detect the moment My
- the piezoresistive elements MzR1 to MzR4 and MzR1 'to MzR4' detect the moment Mz.
- the force Fz may be detected from the piezoresistive elements FzR1 to FzR4 using the piezoresistive elements FzR1 'to FzR4' as a dummy, or vice versa.
- the moment Mz may be detected from the piezoresistive elements MzR1 to MzR4 using the piezoresistive elements MzR1 'to MzR4' as a dummy, or the opposite relation may be made.
- a plurality of piezoresistive elements are separately disposed in each detection block.
- the predetermined axis It is possible to detect up to 6 axes of displacement in the direction.
- the displacement (Mx, My, Fz) in the Z-axis direction can be detected based on the deformation of a predetermined detection beam. That is, the moments (Mx, My) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 113a, 113d, 113g, and 113j, which are the first detection beams. Further, the force (Fz) in the Z-axis direction can be detected based on the deformation of the detection beams 113e and 113k, which are the second detection beams.
- displacements (Fx, Fy, Mz) in the X-axis direction and the Y-axis direction can be detected based on the deformation of a predetermined detection beam. That is, the forces (Fx, Fy) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 113a, 113d, 113g, and 113j, which are the first detection beams. Further, the moment (Mz) in the Z-axis direction can be detected based on the deformation of the detection beams 113a, 113d, 113g and 113j, which are the first detection beams.
- each detection beam By varying the thickness and width of each detection beam, it is possible to make adjustments such as uniform detection sensitivity and improvement of detection sensitivity.
- the detection beam 113a is formed so that the beam width becomes narrow near the middle point between the position where it is connected with the support portions 111a and 111b and the position where it is connected with the force point 114a.
- Piezoresistive elements MzR3 'and MzR4' are formed on the detection beam 113a at the portion where the beam width is narrowed.
- deformation of the beam when a force is applied is changed by providing a portion where the beam width is narrowed due to the tapered shape or the concave shape in the middle portion of the beam. , Can create a new location where stress can be detected. Thereby, it is possible to control the stress generation point.
- axis separation with less interference can be realized, and high accuracy can be achieved for multiple inputs. It can be detected.
- a high effect can be obtained particularly for axial separation of Mz and My.
- the sensor chip can be miniaturized.
- the detection beam 113e has a linear portion and an inclined portion connected to the linear portion by the connecting portion, and the piezoresistive elements FzR2, FzR3, FzR1 ′, FzR4.
- ' is disposed closer to the inclined portion than the connection portion.
- the detection beam 113k has a linear portion and an inclined portion connected to the linear portion by the connecting portion, and the piezoresistive elements FzR1, FzR4, FzR2 ', and FzR3' have the above-described detection beam 113k.
- the deformation of the beam when a force is applied is changed, and it is possible to create a new place where stress can be detected. .
- axis separation with less interference can be realized, and high accuracy can be achieved for multiple inputs. It can be detected.
- high effects can be obtained particularly on axial separation of Fx and Fz, and axial separation of Fx and Mx, My.
- the sensor chip can be miniaturized.
- the sloped portion at the root of the beam the rigidity of the beam can be enhanced and the load resistance can be improved.
- FIG. 7 is a diagram (part 1) illustrating the strain generating body 20, FIG. 7 (a) is a perspective view, and FIG. 7 (b) is a side view.
- FIG. 8 is a diagram (part 2) illustrating the strain generating body 20, and FIG. 8 (a) is a plan view, and FIG. 8 (b) is a longitudinal sectional perspective view taken along line AA of FIG. 8 (a). It is. In FIG. 8A, for the sake of convenience, surfaces having the same height are shown in the same textured pattern.
- FIG. 9 is a diagram (part 3) illustrating the strain generating body 20, and FIG. 9 (a) is a longitudinal sectional view taken along the line BB of FIG. 8 (a), and FIG. 9 (b) is a diagram Fig. 9 is a cross-sectional view taken along the line C-C of 9 (a).
- the strain-generating body 20 is separated from the base 21 directly attached to the fixed portion, the pillar 28 serving as a sensor chip mounting portion for mounting the sensor chip 110, and the periphery of the pillar 28. And columns 22a-22d.
- the strain generating body 20 four columns 22a to 22d are arranged on the upper surface of the substantially circular base 21 so as to be uniform (point-symmetrical) with respect to the center of the base 21.
- the four beams 23a to 23d which are the first beams connecting the two, are provided in a frame shape.
- a pillar 28 is disposed above the center of the top surface of the base 21.
- the planar shape of the base 21 is not limited to a circle, and may be a polygon or the like (for example, a square or the like).
- the column 28 is formed thicker and shorter than the columns 22a to 22d.
- the sensor chip 110 is fixed on the column 28 so as not to protrude from the top surfaces of the columns 22a to 22d.
- the pillars 28 are not directly fixed to the upper surface of the base 21, but are fixed to the pillars 22a to 22d via connecting beams 28a to 28d. Therefore, there is a space between the upper surface of the base 21 and the lower surface of the column 28.
- the lower surface of the column 28 and the lower surface of each of the connecting beams 28a to 28d can be flush with each other.
- the cross-sectional shape of the portion to which the connection beams 28a to 28d of the column 28 are connected is, for example, a rectangle, and the four corners of the rectangle and the columns 22a to 22d opposed to the four corners of the rectangle are connected via the connection beams 28a to 28d. It is done.
- the positions 221 to 224 where the connecting beams 28a to 28d are connected to the columns 22a to 22d are preferably lower than the middle in the height direction of the columns 22a to 22d. The reason will be described later.
- the cross-sectional shape of the portion to which the connection beams 28a to 28d of the column 28 are connected is not limited to a rectangle, and may be a circle, a polygon or the like (for example, a hexagon or the like).
- connection beams 28a to 28d are disposed substantially parallel to the upper surface of the base 21 at a predetermined distance from the upper surface of the base 21 so as to be uniform (point-symmetrical) with respect to the center of the base 21.
- the thickness and thickness (rigidity) of the connecting beams 28a to 28d are preferably thinner than the columns 22a to 22d and the beams 23a to 23d so as not to prevent the deformation of the strain generating body 20.
- the upper surface of the base 21 and the lower surface of the column 28 are separated by a predetermined distance.
- the predetermined distance can be, for example, about several millimeters.
- the technical significance of separating the upper surface of the base 21 and the lower surface of the column 28 by a predetermined distance without directly fixing the column 28 on the upper surface of the base 21 will be described later with reference to FIGS. 17 to 22.
- the base 21 is provided with a through hole 21x for fastening the strain-generating body 20 to a portion to be fixed using a screw or the like.
- a through hole 21x for fastening the strain-generating body 20 to a portion to be fixed using a screw or the like.
- four through holes 21 x are provided in the base 21, but the number of through holes 21 x can be arbitrarily determined.
- the schematic shape of the strain generating body 20 excluding the base 21 can be, for example, a rectangular solid having a length of about 5000 ⁇ m, a width of about 5000 ⁇ m, and a height of about 7000 ⁇ m.
- the cross-sectional shape of the columns 22a to 22d can be, for example, a square of about 1000 ⁇ m square.
- the cross-sectional shape of the column 28 can be, for example, a square of about 2000 ⁇ m square.
- the portion forming the inner angle be R-shaped.
- the center side surface of the upper surface of the base 21 of the columns 22a to 22d be formed in an R-shape at the top and bottom.
- the surface of the beams 23a to 23d facing the upper surface of the base 21 is preferably formed in an R shape on the left and right.
- a projecting portion projecting upward from the central portion in the longitudinal direction of the beams 23a to 23d is provided.
- To 24 d are provided.
- the input portions 24a to 24d are portions to which a force is applied from the outside, and when a force is applied to the input portions 24a to 24d, the beams 23a to 23d and the columns 22a to 22d are deformed accordingly.
- pillars 25a to 25d are disposed at four corners of the top surface of the pillar 28, and a pillar 25e which is a fourth pillar is disposed at the center of the top surface of the pillar 28.
- the columns 25a to 25e are formed at the same height.
- the upper surfaces of the columns 25a to 25e are located on the same plane.
- the upper surface of each of the pillars 25a to 25e is a joint bonded to the lower surface of the sensor chip 110.
- beams 26a to 26d are provided which project inward in the horizontal direction from the inner surface of each of the beams 23a to 23d.
- the beams 26a to 26d are second beams for transmitting the deformation of the beams 23a to 23d and the columns 22a to 22d to the sensor chip 110.
- protrusions 27a to 27d are provided which project upward from the tip end side of the upper surface of each of the beams 26a to 26d.
- the protrusions 27a to 27d are formed at the same height. That is, the upper surfaces of the protrusions 27a to 27d are located on the same plane. The upper surface of each of the protrusions 27a to 27d is a bonding portion bonded to the lower surface of the sensor chip 110.
- the beams 26a to 26d and the protrusions 27a to 27d are connected to the beams 23a to 23d serving as movable parts, and therefore deform when the force is applied to the input units 24a to 24d.
- the upper surfaces of the columns 25a to 25e and the upper surfaces of the protrusions 27a to 27d are located on the same plane.
- each portion of the base 21, the columns 22a to 22d, the columns 28, the beams 23a to 23d, the input parts 24a to 24d, the columns 25a to 25e, the beams 26a to 26d, and the protrusions 27a to 27d have rigidity Preferably, they are integrally formed from the viewpoint of securing and manufacturing with high accuracy.
- a hard metal material such as SUS (stainless steel) can be used.
- SUS630 which is particularly hard and has high mechanical strength.
- the strain-generating body 20 when the strain-generating body 20 also has a column and a beam, the six-axis separability can be obtained because each of the six axes exhibits different deformation depending on the applied force. Good deformation can be transmitted to the sensor chip 110.
- the force applied to the input portions 24a to 24d of the strain generating body 20 is transmitted to the sensor chip 110 through the columns 22a to 22d, the beams 23a to 23d, and the beams 26a to 26d, and the displacement is detected by the sensor chip 110. Detect Then, in the sensor chip 110, the output of each axis can be obtained from a bridge circuit formed one for each axis.
- the strain generating body 20 can be integrally formed, for example, by molding, cutting, wire discharge, or the like.
- a material of the strain generating body 20 for example, a hard metal material such as SUS (stainless steel) can be used. Among them, it is preferable to use SUS630 which is particularly hard and has high mechanical strength.
- SUS630 which is particularly hard and has high mechanical strength.
- a metal particle and a resin to be a binder are put in a mold and formed, and thereafter, the strain is formed by sintering by evaporating the resin.
- the body 20 can be made.
- the adhesive 41 is applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d.
- an epoxy-based adhesive can be used as the adhesive 41.
- the adhesive 41 preferably has a Young's modulus of 1 GPa or more and a thickness of 20 ⁇ m or less from the viewpoint of resistance to a force applied from the outside.
- the sensor chip 110 is manufactured.
- the sensor chip 110 can be manufactured by, for example, a known method in which an SOI substrate is prepared and the prepared substrate is subjected to etching (for example, reactive ion etching).
- the electrodes and the wirings can be produced, for example, by forming a metal film such as aluminum on the surface of the substrate by sputtering or the like and then patterning the metal film by photolithography.
- the sensor chip 110 is in contact with the adhesive 41 applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d in the lower surface of the sensor chip 110.
- the pressure is placed in the strain generating body 20 while being arranged.
- the adhesive 41 is heated to a predetermined temperature to be cured.
- the sensor chip 110 is fixed in the strain generating body 20.
- the support portions 111a to 111d of the sensor chip 110 are fixed on the pillars 25a to 25e
- the support portion 111e is fixed on the pillar 25e
- the force points 114a to 114d are fixed on the protrusions 27a to 27d, respectively. Be done.
- the adhesive 42 is applied to the top surfaces of the columns 22a to 22d.
- an epoxy-based adhesive can be used as the adhesive 42.
- the adhesive 42 is for fixing the input / output substrate 30 on the strain-generating body 20, and a general-purpose adhesive can be used because a force is not applied from the outside.
- the input / output substrate 30 on which the active components 32 to 35 and the passive components 39 are mounted is prepared, and the lower surface of the input / output substrate 30 is applied to the upper surfaces of the columns 22a to 22d.
- the input / output substrate 30 is disposed on the strain generating body 20 so as to be in contact with the adhesive 42.
- the adhesive 42 is heated to a predetermined temperature and cured while pressing the input / output substrate 30 to the strain generating body 20 side. Thereby, the input / output substrate 30 is fixed to the strain generating body 20.
- the input / output board 30 is fixed to the strain generating body 20 so as to expose the sensor chip 110 and the input parts 24a to 24d.
- the electrodes 31 of the input / output substrate 30 are preferably disposed on the columns 22a to 22d of the strain generating body 20 with the least distortion when a force is applied to the input portions 24a to 24d.
- the portions (except the input terminal side) of the input / output substrate 30 protruding in the horizontal direction from the strain generating body 20 are bent to the side surfaces of the strain generating body 20. Then, corresponding portions of the input / output substrate 30 and the sensor chip 110 are electrically connected by bonding wires or the like (not shown). Thus, the force sensor device 1 is completed.
- the force sensor device 1 can be manufactured using only the three components of the sensor chip 110, the strain generating body 20, and the input / output substrate 30, assembly is easy and the position alignment position can be minimized. And deterioration in accuracy due to mounting can be suppressed.
- the strain generating body 20 since all the connection points with the sensor chip 110 (the upper surfaces of the columns 25a to 25e and the upper surfaces of the protrusions 27a to 27d) are on the same plane, the position of the sensor chip 110 with respect to the strain generating body 20. The alignment can be performed once, and it is easy to mount the sensor chip 110 on the strain generating body 20.
- FIG. 13A is an enlarged plan view of an essential part of an example of the sensor chip according to the present embodiment.
- the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m.
- the detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n.
- the detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o.
- piezoresistive elements MzR1, MzR2, MzR3, MzR4, MzR1 ', MzR2', MzR3 'and MzR4' are represented by MzR1 and MzR2 as a representative.
- the detection beam 113m extends from the position where the detection beam 113m is connected to the support to the position where the piezoresistive elements MzR1 and MzR2 are formed. At both sides, it has a tapered shape in which the beam width gradually narrows.
- the detection beam 113m has a beam width on both sides in the lateral direction of the detection beam 113m from the position where the detection beam 113m is connected to the force point to the position where the piezoresistive elements MzR1 and MzR2 are formed. It has a tapered shape that narrows gradually.
- the second width which is the width of the detection beam 113m at the position where the piezoresistive elements MzR1 and MzR2 are formed
- the beam width W1 ' is smaller.
- a portion where the beam width is narrowed is formed between the position where it is connected with the support portion and the position where it is connected with the power point.
- Piezoresistive elements MzR1 and MzR2 are formed on the detection beam 113m.
- the stress generated in the detection beam 113m is the location 113q of the detection beam 113m at which the beam width is narrowed and the stress It grows in the vicinity. Therefore, the piezoresistive elements MzR1 and MzR2 disposed at the portion 113q where the beam width is narrowed have high sensitivity to the moment (Mz) in the Z-axis direction.
- the position of the portion 113 q where the beam width is narrowed is, for example, a midpoint between or near the position where the detection beam 113 m is connected to the support portion and the position where the force point is connected.
- the stress at the time of input of the moment (Mz) in the Z-axis direction becomes large at the location 113q where the beam width of the detection beam 113m becomes narrow, so the position of the location 113q where the beam width becomes narrow is for detection
- the beam 113m is not limited to be at or near the middle point of the position where it is connected to the support portion and the position where it is connected to the power point, and may be closer to the support portion side or the power point side than the above middle point.
- the piezoresistive elements MzR1 and MzR2 may be formed on the detection beam 113m at the portion 113q where the beam width is narrowed.
- axial separation between the moment (Mz) in the Z-axis direction, the force (Fx) in the X-axis direction and the moment (My) in the Y-axis direction is enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
- the second beam width W1 '/ the first beam width W3' be 0.5 or less.
- the stress when the moment (Mz) in the Z-axis direction is input can be increased at the portions where the beam widths of the detection beams 113a, 113d, 113g, and 113j are narrowed.
- the first beam width W3 ' is about 100 ⁇ m to 115 ⁇ m
- the second beam width W1' is about 50 ⁇ m.
- both sides of the detection beam 113m in the lateral direction have a tapered shape in which the beam width gradually narrows, but one side of the detection beam 113m in the lateral direction
- the configuration may have a tapered shape in which the width gradually narrows.
- FIG. 13B is an enlarged plan view of the detection beam 113m.
- the formula of A: B 1: 8.5 to 1: 10.5
- the tapered shape has values of A and B that satisfy If the taper angle is insufficient, stress at the time of Mz input may occur in an area other than the portion where the beam width of the detection beam is narrowed. If the taper angle is excessive, the mechanical strength of the portion where the beam width of the detection beam is narrowed may be reduced.
- FIGS. 14A and 14B are enlarged plan views of the main part of another example of the sensor chip according to the present embodiment.
- Beams corresponding to the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by a detection beam 113m.
- Beams corresponding to the detection beams 113b, 113e, 113h, and 113k are collectively shown by the detection beam 113n.
- Beams corresponding to the detection beams 113c, 113f, 113i, and 113l are collectively shown by the detection beam 113o.
- the piezoresistive elements MzR1, MzR2, MzR3, MzR4, MzR1 ', MzR2', MzR3 'and MzR4' are represented by MzR1 and MzR2 as a representative.
- concave shapes 113p are provided on both sides in the short direction of the detection beam 113m.
- the beam width of the detection beam 113m is narrowed.
- Piezoresistive elements MzR1 and MzR2 for detecting a moment in the Z-axis direction are provided on the detection beam 113m in a portion where the concave shape 113p is provided and the beam width is narrowed. That is, from the first beam width W3 which is the width of the detection beam 113m at the position connected to the support portion or the power point, the second beam which is the width of the detection beam 113m at the position where the piezoresistive elements MzR1 and MzR2 are formed.
- the width W1 is smaller.
- a portion where the beam width is narrowed is formed between the position where it is connected with the support portion and the position where it is connected with the power point. Detection of the portion where the beam width becomes narrow Piezoresistive elements MzR1 and MzR2 are formed on the beam 113m.
- the position of the concave shape 113p is, for example, the middle point of the position where the detection beam 113m is connected with the support portion and the position where it is connected with the power point or nearby. It may be nearer to the support part side or the power point side than the above-mentioned middle point.
- the piezoresistive elements MzR1 and MzR2 may be formed on the detection beam 113m at a position where the beam width is narrowed due to the concave shape 113p.
- the first beam width W3 is about 100 ⁇ m to 115 ⁇ m, and the second beam width W1 is about 50 ⁇ m.
- the second beam width W1 / the first beam width W3 is preferably 0.5 or less.
- the third beam width W2, which is the beam width of the detection beam 113m at a position connected to the support portion or the force point and a portion excluding the concave shape 113p, is about 80 ⁇ m, for example.
- the second beam width W1 / the third beam width W2 is preferably 0.7 or less.
- the third beam width W2 / the first beam width W3 is preferably 0.3 or more and 0.6 or less.
- the length L2 in the longitudinal direction of the detection beam 113m from the end of the concave shape 113p to the portion where the beam width is constant at W2, and the beam width W2 at the position where the detection beam 113m is connected with the support portion L1 / L3 is preferably 0.5 or less, and L1 / L2 is 0.3 or less with respect to the length L3 in the longitudinal direction of the detection beam 113m until the width is expanded to the beam width W3.
- L2 / L3 is preferably 0.5 or more and 0.9 or less.
- L1 is about 100 ⁇ m
- L2 is about 187.5 ⁇ m
- L3 is about 125 ⁇ m.
- a concave shape may be formed on one side of the detection beam 113m in the short side direction to narrow the beam width.
- FIG. 15 is a diagram (stress contour diagram) showing the results of simulation calculation of stress when a moment (Mz) in the Z-axis direction is applied to the sensor chip of the reference example.
- the detection beam 113m unlike the case of FIGS. 13 and 14, in the detection beam 113m, a portion where the beam width is narrowed is formed between the position connected with the support portion and the position connected with the power point.
- the stress generated at the position where the detection beam 113m is connected with the support and the position where the detection beam 113m is connected at the time of Mz input are large.
- FIG. 16 is a diagram showing a result of simulation calculation of stress generated in the sensor chip when a moment (Mz) in the Z-axis direction is applied to the sensor chip according to another example of the present embodiment shown in FIG. (Stress contour view).
- a concave shape is formed on the detection beam 113m between the position connected to the support portion and the position connected to the power point, and the beam width is narrowed.
- Mz moment
- FIG. 16 Stress contour view
- FIG. 17 is a diagram showing the result of simulation calculation of stress generated in the sensor chip when a force (Fx) in the X-axis direction is applied to the sensor chip according to another example of the present embodiment shown in FIG. (Stress contour view).
- Fx force
- FIG. 17 Stress contour view
- a concave shape 113p is formed between the position connected to the support portion and the position connected to the power point, and the beam width is narrowed.
- the concave shape 113p was formed, and almost no stress was generated at the portion where the beam width became narrow.
- FIG. 18 is a diagram showing the results of simulation calculation of stress generated in the sensor chip when a force (Fx) in the X-axis direction is applied to the sensor chip according to the present embodiment shown in FIG. 13 (stress contour diagram ).
- a portion 113q in which the beam width is narrowed is formed between the position connected to the support portion and the position connected to the power point.
- almost no stress was generated at the portion 113 q where the beam width became narrow.
- a moment (My) in the Y-axis direction was applied instead of the force (Fx) in the X-axis direction, similarly, almost no stress was generated at the portion 113 q where the beam width became narrow.
- the sensor chip of the present embodiment it is confirmed that axial separation between the moment (Mz) in the Z-axis direction, the force (Fx) in the X-axis direction and the moment (My) in the Y-axis direction is enhanced.
- FIG. 19 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example.
- the sensor chip according to the reference example is the same as the sensor chip shown in FIG. 15, and in the detection beam 113m, the beam width is narrowed between the position connected with the support portion and the position connected with the power point No part has been formed. Furthermore, the piezoresistive element for detecting Mz is formed on the detection beam 113m in the vicinity of the position where the detection beam 113m and the support portion are connected.
- FIG. 20 is a diagram for explaining a simulation of another axis component with respect to the sensor chip according to another example of the present embodiment.
- the sensor chip according to another example of the present embodiment is the same as the sensor chip shown in FIG. 14, and concave shapes are formed on both sides in the short direction in the detection beam 113m, and the beam width is narrow. A portion where the beam is not formed is formed, and a piezoresistive element for detecting Mz is formed at a portion where the beam width is narrowed.
- FIG. 20 shows Fx input and Fx when a sensor chip according to another example of the present embodiment is subjected to combined input of four axes selected as shown in the column of the input axis at the bottom of the figure.
- FIG. 21 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example.
- required the error (N * m) of an input and My output, and the error (N * m) of Mz input and Mz output by simulation is shown.
- the sensor chip is required to have an error within 5% for each axis.
- FIG. 21 in the sensor chip according to the reference example, there was a combination of composite inputs in which the error of the outputs of Mx and Mz exceeded 5%.
- FIG. 22 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to another example of the present embodiment.
- FIG. 23 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example.
- the sensor chip according to the reference example is the same as the sensor chip shown in FIG. 15, and in the detection beam 113m, the beam width is narrowed between the position connected with the support portion and the position connected with the power point No part has been formed. Furthermore, the piezoresistive element for detecting Mz is formed on the detection beam 113m in the vicinity of the position where the detection beam 113m and the support portion are connected.
- the error (N) of Fx output, the error (N) of Fy output, and the error (N) of Fz output are F systems, and the average value (Avg.) And the maximum value (Max.) Are calculated.
- the error (N ⁇ m) of the Mx output, the error (N ⁇ m) of the My output, and the error (N ⁇ m) of the Mz output are M systems, and the average value (Avg.) And the maximum value (Max.) Calculated.
- the error of F-system average value (Avg.) From single-axis to 6-axis composite was 5% or less, but the maximum value of F-system (Max ) Is 3 to 6 axes composite and the error is over 5%.
- the mean value (Avg.) Of the M system was 5 to 6 axis composite, and the error exceeded 5%.
- the maximum value (Max.) Of the M system was 5% or more for the 5-axis to 6-axis composite.
- FIG. 24 is a diagram for explaining simulation of other-axis components with respect to the sensor chip according to another example of the present embodiment.
- the sensor chip according to another example of the present embodiment is similar to the sensor chip shown in FIG. As shown in FIG. 24, in the sensor chip according to another example of the present embodiment, the average value (Avg.) And the maximum value (Max.) Of the F system are 5% error from single-axis to six-axis composite. It was below. In addition, the average value (Avg.) Of the M system was less than 5% from single-axis to six-axis composite. On the other hand, the maximum value (Max.) Of the M system was more than 5% in a 2- to 5-axis composite. From the simulation of the other axis component for the sensor chip according to another example of the present embodiment shown in FIG. 24, it is confirmed that the axis separation can be greatly improved.
- FIG. 25 is a diagram for explaining a simulation of another axis component with respect to the sensor chip according to an example of the present embodiment.
- the sensor chip according to an example of the present embodiment is similar to the sensor chip shown in FIG. As shown in FIG. 25, in the sensor chip according to an example of the present embodiment, the average value (Avg.) And the maximum value (Max.) Of the F system are 5% or less in error from single axis to 6-axis compound. there were. In addition, the average value (Avg.) And the maximum value (Max.) Of the M system also showed an error of 5% or less from uniaxial to 6-axis composite. From the simulation of the other axis component for the sensor chip according to the example of the present embodiment shown in FIG. 25, it is confirmed that the axis separation can be greatly improved.
- FIG. 26 is an enlarged plan view of an essential part of an example of the sensor chip according to the present embodiment.
- the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m.
- the detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n.
- the detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o.
- the reinforcing beams 112e, 112f, 112g, and 112h are collectively shown as a reinforcing beam 112i.
- the piezoresistive elements FzR1, FzR2, FzR3, FzR4, FzR1 ', FzR2', FzR3 'and FzR4' are represented by FzR1 and FzR2.
- the detection beam 113n has a linear portion 113n1 and inclined portions 113n2 and 113n3 connected to the linear portion 113n1 by a connecting portion.
- the boundary between the linear portion 113n1 and the inclined portion 113n2 and the boundary between the linear portion 113n1 and the inclined portion 113n3 are connection portions.
- the linear portion 113n1 is a portion where the beam width of the detection beam 113n is substantially constant.
- the inclined portions 113n2 and 113n3 are portions provided at the end of the detection beam 113n or a portion connected to the detection beam 113o, and the beam widths of the inclined portions 113n2 and 113n3 gradually increase as the distance from the connection portion increases.
- the piezoresistive elements FzR1 and FzR2 are disposed closer to the inclined portions 113n2 and 113n3 than the connecting portion in the detection beam 113n having the above-described configuration. That is, it can be said that the piezoresistive elements FzR1 and FzR2 are disposed not on the linear portion 113n1 of the detection beam 113n but inside the inclined portions 113n2 and 113n3. Further, in the piezoresistive element FzR1, a part of the piezoresistive element FzR1 is formed so as to overlap the reinforcing beam 112i.
- the piezoresistive elements FzR1 and FzR2 disposed in the inclined portions 113n2 and 113n3 have high sensitivity to the force (Fz) in the Z-axis direction.
- a part of the piezoresistive element FzR1 is formed to extend over the reinforcing beam 112i.
- Fz is a force applied in the Z-axis direction which is the thickness direction of the sensor, and the stress at the time of Fz input becomes large near the reinforcing beam 112i. Therefore, as for the piezoresistive element FzR1, it is preferable to arrange the piezoresistive element FzR1 so that a part of the piezoresistive element FzR1 is placed on the reinforcing beam 112i.
- axial separation between the force in the Z-axis direction (Fz) and the force in the X-axis direction (Fx) can be enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
- FIG. 27 is a plan view enlarging an essential part of another example of the sensor chip according to the present embodiment.
- the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m.
- the detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n.
- the detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o.
- the piezoresistive elements MxR1, MxR2, MxR3, MxR4, MyR1, MyR2, MyR3, and MyR4 are represented by MxyR1.
- MxyR1 corresponds to MxR1, MxR2, MxR3, MxR4 when formed on the detection beams 113a and 113g whose longitudinal direction is the X-axis direction, and detection beam 113d whose longitudinal direction is the Y-axis direction , 113j corresponds to MyR1, MyR2, MyR3 and MyR4.
- the detection beam 113m has a linear portion 113m1 and inclined portions 113m2 and 113m3 connected to the linear portion 113m1 by a connecting portion.
- the boundary between the straight portion 113m1 and the inclined portion 113m2 and the boundary between the straight portion 113m1 and the inclined portion 113m3 are respectively connected portions.
- the linear portion 113m1 is a portion where the beam width of the detection beam 113m is substantially constant.
- the inclined portions 113m2 and 113m3 are portions provided at the end of the detection beam 113m or a portion connected to the detection beam 113o, and the beam widths of the inclined portions 113m2 and 113m3 gradually increase with distance from the connecting portion.
- the piezoresistive element MxyR1 is disposed closer to the inclined portion 113m2 than the connecting portion in the detection beam 113m having the above configuration. That is, it can be said that the piezoresistive element MxyR1 is disposed not on the straight portion 113m1 of the detection beam 113m but inside the inclined portion 113m2.
- the piezoresistive element MxyR1 disposed in the inclined portion 113m2 has high sensitivity to the moment (Mx) in the X-axis direction or the moment (My) in the Y-axis direction.
- axial separation between the force (Fz) in the Z-axis direction, the moment (Mx) in the X-axis direction, and the moment (My) in the Y-axis direction is enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
- the detection beam 113n shown in FIG. 26 has a linear portion 113n1 and inclined portions 113n2 and 113n3 connected to the linear portion 113n1 by a connecting portion, and the piezoresistive elements FzR1 and FzR2 are inclined from the connecting portion 113n2.
- the detection beam 113m shown in FIG. 27 has a linear portion 113m1 and inclined portions 113m2 and 113m3 connected to the linear portion 113m1 by a connecting portion, and the piezoresistance is provided.
- the configuration in which the element MxyR1 is disposed closer to the inclined portion 113m2 than the coupling portion may be either one or both of them.
- FIGS. 28A and 28B are enlarged plan views of the main parts of another example of the sensor chip according to the present embodiment.
- Beams corresponding to the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by a detection beam 113m.
- Beams corresponding to the detection beams 113b, 113e, 113h, and 113k are collectively shown by the detection beam 113n.
- Beams corresponding to the detection beams 113c, 113f, 113i, and 113l are collectively shown by the detection beam 113o.
- the beam width of the linear portion 113n1 of the detection beam 113n is the first beam width W1
- the beam width of the portion of the inclined portion 113n3 where the beam width is the widest is the second beam width W2.
- the first beam width W1 / the second beam width W2 be 0.5 or less.
- the first beam width W1 is about 30 ⁇ m to 50 ⁇ m
- the second beam width W2 is about 75 ⁇ m to 100 ⁇ m.
- L1 is 140 to 265 ⁇ m and L2 is about 100 to 150 ⁇ m.
- FIG. 28B is an enlarged plan view of the detection beam 113n.
- the formula of A: B 1: 8.5 to 1: 10.5
- the tapered shape has values of A and B that satisfy If the taper angle is insufficient, there is a possibility that the Fz piezoresistive element can not be sufficiently distanced from the stress generation point at the time of Fx input. If the taper angle is excessive, the mechanical strength of the portion where the beam width of the detection beam is narrowed may be reduced.
- the concave shape 113p is provided on both sides in the lateral direction of the detection beam 113m, and the beam width of the detection beam 113m is narrowed.
- the present invention is not limited to this, and as shown in FIGS. 6 and 28, the beam width of the detection beam 113m may have a tapered shape in which the beam width gradually narrows.
- FIG. 29 is an enlarged plan view of an essential part of an example of the sensor chip according to the embodiment, and is a plan view of the sensor chip for which stress simulation shown in FIGS. 30 and 31 is performed.
- the detection beams 113a, 113d, 113g, 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m.
- the detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n.
- the detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o.
- the piezoresistive elements FzR1, FzR2, FzR3, FzR4, FzR1 ', FzR2', FzR3 'and FzR4' are represented by FzR1 and FzR2.
- the detection beam 113n has a linear portion 113n1 and inclined portions 113n2 and 113n3 connected to the linear portion 113n1 by a connecting portion.
- the piezoresistive elements FzR1 and FzR2 are disposed closer to the inclined portions 113n2 and 113n3 than the connecting portion in the detection beam 113n having the above-described configuration. That is, the piezoresistive elements FzR1 and FzR2 are disposed not on the linear portion 113n1 of the detection beam 113n but inside the inclined portions 113n2 and 113n3.
- a part of the piezoresistive element FzR1 is formed to extend over the reinforcing beam 112i.
- the detection beam 113m does not have a portion where the beam width is narrowed between the position where it is connected to the support portion and the position where it is connected to the power point.
- FIG. 30 is a diagram (stress contour view) showing the results of simulation calculation of stress when a force (Fx) in the X-axis direction is applied to the sensor chip of the present embodiment shown in FIG. Mark the "+” and “-” signs where the tensile or compressive stress is locally maximal, so that the gradation density becomes higher towards “+”, or the gradation density towards "-” The thinner the, the greater the tensile or compressive stress.
- FIG. 31 is a diagram (stress contour view) showing the result of simulation calculation of stress when a force (Fz) in the Z-axis direction is applied to the sensor chip of the present embodiment shown in FIG.
- a force (Fz) in the Z-axis direction is input to the sensor chip, the stress generated in the detection beam 113n becomes larger at the inclined portions 113n2 and 113n3 of the detection beam 113n and in the vicinity thereof. Therefore, the piezoresistive elements FzR1 and FzR2 disposed in the inclined portions 113n2 and 113n3 have high sensitivity to the force (Fz) in the Z-axis direction.
- FIG. 32 is an enlarged plan view of an essential part of a sensor chip according to a reference example, and is a plan view of a sensor chip for which stress simulation shown in FIGS. 33 and 34 is performed.
- the piezoresistive elements FzR1 and FzR2 are adjacent to the connecting portion between the linear portion 113n1 and the inclined portions 113n2 and 113n3 from the linear portion 113n1 to the inclined portion 113n2. It is arranged to straddle 113n3.
- FIG. 33 is a diagram (stress contour view) showing the result of simulation calculation of stress when a force (Fx) in the X-axis direction is applied to the sensor chip of the present embodiment shown in FIG.
- a force (Fx) in the X-axis direction is input to the sensor chip, the stress becomes large in the vicinity of the connecting portion which is the boundary between the straight portion 113n1 and the inclined portions 113n2 and 113n3.
- the piezoresistive elements FzR1 and FzR2 arranged in the vicinity of the coupling portion have sensitivity to Fx input, and the axis separation becomes low.
- FIG. 34 is a diagram (stress contour view) showing the results of simulation calculation of stress when a force (Fz) in the Z-axis direction is applied to the sensor chip of the present embodiment shown in FIG.
- a force (Fz) in the Z-axis direction is input to the sensor chip, the stress generated in the detection beam 113n increases in the vicinity of the connection between the straight portion 113n1 and the inclined portions 113n2 and 113n3.
- the piezoresistive elements FzR1 and FzR2 arranged in the vicinity of the connecting portion have high sensitivity to the force (Fz) in the Z-axis direction.
- the axial separation between the force (Fz) in the Z-axis direction and the force (Fx) in the X-axis direction can be enhanced with respect to the reference example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Pressure Sensors (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
This sensor chip comprises: a base plate; first supporting portions; a second supporting portion around which the first supporting portions are disposed, and which is disposed at the center of the base plate; first detection beams linking the first supporting portions that are adjacent to one another; force application points to which a force is applied, disposed on the first detection beams; and a plurality of strain detecting elements disposed at prescribed positions on the first detection beams. The plurality of strain detecting elements include first strain detecting elements formed on the first detection beams, between the first supporting portions and the force application points, wherein a second beam width, which is the width of the first detection beams in positions in which the first strain detecting elements are formed, is smaller than a first beam width, which is the width of the first detection beams in positions in which the first detection beams are linked to the first supporting portions or to the force application points. Further, the first detection beams each includes a straight-line portion, and an inclined portion linked to the straight-line portion by means of a linking portion, and the plurality of strain detecting elements include first strain detecting elements disposed on the inclined portion side of the linking portion.
Description
本発明は、センサチップ及び力覚センサ装置に関する。
The present invention relates to a sensor chip and a force sensor device.
従来より、金属からなる起歪体に複数の歪ゲージを貼り付け、外力が印加された際の歪みを電気信号に変換することで多軸の力を検出する力覚センサ装置が知られている。しかし、この力覚センサ装置は、歪ゲージを1枚ずつ手作業によって貼り付ける必要から、精度や生産性に問題があり、構造上小型化することが困難であった。
Conventionally, there is known a force sensor device that detects a multiaxial force by attaching a plurality of strain gauges to a metal strain body and converting a strain when an external force is applied into an electric signal. . However, since it is necessary to manually attach the strain gauges one by one, this force sensor device has problems in accuracy and productivity, and it has been difficult to miniaturize it structurally.
一方、歪ゲージを歪み検出用のMEMSのセンサチップに置き換えることで、貼り合わせ精度の問題を解消し、かつ小型化を実現する力覚センサ装置が提案されている(例えば、特許文献1参照)。
On the other hand, a force sensor device has been proposed which solves the problem of bonding accuracy and realizes miniaturization by replacing the strain gauge with a sensor chip for detecting strain (for example, see Patent Document 1). .
ところで、上記の従来のMEMSのセンサチップを用いた力覚センサ装置では、入力が単軸の場合(6つの軸[Fx,Fy,Fz,Mx,My,Mz]の内のいずれか1つの軸に沿った方向の場合)であれば、力覚センサは高い精度を得ることができる。
By the way, in the above-mentioned force sensor device using the MEMS sensor chip, when the input is a single axis (one of the six axes [Fx, Fy, Fz, Mx, My, Mz] (In the case of the direction along (1)), the force sensor can obtain high accuracy.
しかしながら、入力が複合入力の場合(6つの軸[Fx,Fy,Fz,Mx,My,Mz]の内のいずれか2つ以上の軸に沿った複合した入力の場合)は、軸分離性が不十分であるために力覚センサの誤差は大きくなり、精度が低下してしまっていた。特に、複合入力の場合は、精度の目標値に満たない複合入力の軸の組み合せが存在する。
However, if the input is a complex input (a complex input along any two or more of six axes [Fx, Fy, Fz, Mx, My, Mz]), the axis separation is Because of the insufficient force, the error of the force sensor is increased, and the accuracy is reduced. In particular, in the case of complex inputs, there are combinations of axes of complex inputs that do not meet the target value of accuracy.
本発明は、上記の点に鑑みてなされたもので、センサチップの複合入力に対する軸分離性を向上させセンサ精度を改善することを目的とする。
The present invention has been made in view of the above-described points, and an object thereof is to improve axial separation of a sensor chip with respect to complex inputs and improve sensor accuracy.
本センサチップ(110)は、基板と、第1の支持部(111a、111b、111c、111d)と、周囲に前記第1の支持部が配置され、前記基板の中央に配置された第2の支持部(111e)と、隣接する前記第1の支持部同士を連結する第1の検知用梁(113a、113d、113g、113j)と、前記第1の検知用梁に配置された、力が印加される力点(114a、114b、114c、114d)と、前記第1の検知用梁の所定位置に配置された複数の歪検出素子と、を有し、前記複数の歪検出素子は、前記第1の支持部と前記力点の間における前記第1の検知用梁に形成された第1歪検出素子(MzR1、MzR2、MzR3、MzR4、MzR1’、MzR2’、Mzr3’、MzR4’)を含み、前記第1の検知用梁が前記第1の支持部または前記力点と連結される位置の前記第1の検知用梁の幅である第1梁幅より、前記第1歪検出素子が形成された位置の前記第1の検知用梁の幅である第2梁幅の方が小さいことを要件とする。
The present sensor chip (110) has a substrate, a first support (111a, 111b, 111c, 111d), and the second support disposed at the center of the substrate with the first support disposed around the periphery. In the first detection beam (113a, 113d, 113g, 113j) for connecting the support portion (111e), the adjacent first support portions, and the force disposed on the first detection beam, And a plurality of strain detection elements disposed at predetermined positions of the first detection beam, the plurality of strain detection elements including the force points (114a, 114b, 114c, 114d) to be applied. And a first strain detection element (MzR1, MzR2, MzR3, MzR4, MzR1 ', MzR2', Mzr3 ', MzR4') formed on the first detection beam between the supporting portion 1 and the point of force; For the first detection The first detection of the position where the first strain detection element is formed by the first beam width which is the width of the first detection beam at a position where the first support portion or the force point is connected The requirement is that the second beam width, which is the width of the beam, is smaller.
また、本センサチップ(110)は、基板と、第1の支持部(111a、111b、111c、111d)と、周囲に前記第1の支持部が配置され、前記基板の中央に配置された第2の支持部(111e)と、隣接する前記第1の支持部同士を連結する第1の検知用梁(113a、113d、113g、113j)と、前記第1の検知用梁に配置された、力が印加される力点(114a、114b、114c、114d)と、前記第1の検知用梁の所定位置に配置された複数の歪検出素子と、を有し、前記第1の検知用梁は、直線部(113n1)と、連結部により前記直線部に連結される傾斜部(113n2、113n3)とを有し、複数の前記歪検出素子は、前記連結部より前記傾斜部側に配置されている第1歪検出素子(FzR1、FzR2)を含むことを要件とする。
In the sensor chip (110), the substrate, the first supports (111a, 111b, 111c, 111d), and the first support disposed around the periphery, and the sensor chip (110) is disposed at the center of the substrate 2, and the first detection beams (113a, 113d, 113g, 113j) for connecting the first support portions adjacent to each other, and the first detection beams, A force detection point (114a, 114b, 114c, 114d) to which a force is applied, and a plurality of strain detection elements arranged at predetermined positions of the first detection beam; A linear portion (113n1) and inclined portions (113n2 and 113n3) connected to the linear portion by a connecting portion, and the plurality of strain detection elements are arranged closer to the inclined portion than the connecting portion First strain detection element (FzR1, The requirement to include a zR2).
なお、上記括弧内の参照符号は、理解を容易にするために付したものであり、一例にすぎず、図示の態様に限定されるものではない。
The reference numerals in the parentheses above are given for ease of understanding, and are merely examples, and the present invention is not limited to the illustrated embodiment.
開示の技術によれば、センサチップの複合入力に対する軸分離性を向上させセンサ精度を改善することができる。
According to the disclosed technology, it is possible to improve the shaft separation for the complex input of the sensor chip and to improve the sensor accuracy.
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
<第1の実施の形態>
(力覚センサ装置1の概略構成)
図1は、第1の実施の形態に係る力覚センサ装置を例示する斜視図である。図2は、第1の実施の形態に係る力覚センサ装置のセンサチップ及び起歪体を例示する斜視図である。図1及び図2を参照するに、力覚センサ装置1は、センサチップ110と、起歪体20と、入出力基板30とを有している。力覚センサ装置1は、例えば、工作機械等に使用されるロボットの腕や指等に搭載される多軸の力覚センサ装置である。 First Embodiment
(Schematic Configuration of Force Sensor Device 1)
FIG. 1 is a perspective view illustrating a force sensor device according to the first embodiment. FIG. 2 is a perspective view illustrating a sensor chip and a strain generating body of the force sensor device according to the first embodiment. Referring to FIGS. 1 and 2, theforce sensor device 1 includes a sensor chip 110, a strain generating body 20, and an input / output substrate 30. The force sensor device 1 is, for example, a multi-axis force sensor device mounted on an arm, a finger or the like of a robot used for a machine tool or the like.
(力覚センサ装置1の概略構成)
図1は、第1の実施の形態に係る力覚センサ装置を例示する斜視図である。図2は、第1の実施の形態に係る力覚センサ装置のセンサチップ及び起歪体を例示する斜視図である。図1及び図2を参照するに、力覚センサ装置1は、センサチップ110と、起歪体20と、入出力基板30とを有している。力覚センサ装置1は、例えば、工作機械等に使用されるロボットの腕や指等に搭載される多軸の力覚センサ装置である。 First Embodiment
(Schematic Configuration of Force Sensor Device 1)
FIG. 1 is a perspective view illustrating a force sensor device according to the first embodiment. FIG. 2 is a perspective view illustrating a sensor chip and a strain generating body of the force sensor device according to the first embodiment. Referring to FIGS. 1 and 2, the
センサチップ110は、所定の軸方向の変位を最大で6軸検知する機能を有している。起歪体20は、印加された力をセンサチップ110に伝達する機能を有している。
The sensor chip 110 has a function of detecting a maximum of six axial displacements in a predetermined axial direction. The strain generating body 20 has a function of transmitting the applied force to the sensor chip 110.
センサチップ110は、起歪体20の上面側に、起歪体20から突出しないように接着されている。また、起歪体20の上面及び各側面に、センサチップ110に対して信号の入出力を行う入出力基板30の一端側が適宜屈曲された状態で接着されている。センサチップ110と入出力基板30の各電極31とは、ボンディングワイヤ等(図示せず)により、電気的に接続されている。
The sensor chip 110 is bonded to the upper surface side of the strain generating body 20 so as not to protrude from the strain generating body 20. In addition, one end side of an input / output substrate 30 for inputting / outputting a signal to / from the sensor chip 110 is bonded to the upper surface and each side surface of the strain generating body 20 in a properly bent state. The sensor chip 110 and each electrode 31 of the input / output substrate 30 are electrically connected by a bonding wire or the like (not shown).
入出力基板30において、起歪体20の第1の側面に配置された領域には能動部品32及び受動部品39が実装されている。入出力基板30において、起歪体20の第2の側面に配置された領域には能動部品33及び受動部品39が実装されている。入出力基板30において、起歪体20の第3の側面に配置された領域には能動部品34及び受動部品39が実装されている。入出力基板30において、起歪体20の第4の側面に配置された領域には能動部品35及び受動部品39が実装されている。
In the input / output substrate 30, an active component 32 and a passive component 39 are mounted in a region disposed on the first side surface of the strain generating body 20. In the input / output substrate 30, an active component 33 and a passive component 39 are mounted in a region disposed on the second side surface of the strain generating body 20. An active component 34 and a passive component 39 are mounted on a region of the input / output substrate 30 disposed on the third side surface of the strain generating body 20. In the input / output substrate 30, an active component 35 and a passive component 39 are mounted in a region disposed on the fourth side surface of the strain generating body 20.
能動部品33は、例えば、センサチップ110から出力されるX軸方向の力Fxを検出するブリッジ回路からのアナログの電気信号、及びセンサチップ110から出力されるY軸方向の力Fyを検出するブリッジ回路からのアナログの電気信号をディジタルの電気信号に変換するIC(ADコンバータ)である。
The active component 33 detects, for example, an analog electrical signal from a bridge circuit that detects a force Fx in the X-axis direction output from the sensor chip 110 and a bridge that detects a force Fy in the Y-axis direction output from the sensor chip 110 It is an IC (AD converter) that converts an analog electrical signal from a circuit into a digital electrical signal.
能動部品35は、例えば、センサチップ110から出力されるY軸を軸として回転させるモーメントMyを検出するブリッジ回路からのアナログの電気信号、及びセンサチップ110から出力されるZ軸を軸として回転させるモーメントMzを検出するブリッジ回路からのアナログの電気信号をディジタルの電気信号に変換するIC(ADコンバータ)である。
The active component 35 rotates, for example, an analog electrical signal from a bridge circuit that detects a moment My rotating about the Y axis output from the sensor chip 110 and a Z axis output from the sensor chip 110 as an axis It is an IC (AD converter) that converts an analog electrical signal from a bridge circuit that detects a moment Mz into a digital electrical signal.
能動部品32は、例えば、能動部品33、34、及び35から出力されるディジタルの電気信号に対して所定の演算を行い、力Fx、Fy、及びFz、並びにモーメントMx、My、及びMzを示す信号を生成し、外部に出力するICである。受動部品39は、能動部品32~35に接続される抵抗やコンデンサ等である。
Active component 32 performs predetermined operations on digital electrical signals output from active components 33, 34 and 35, for example, and indicates forces Fx, Fy and Fz, and moments Mx, My and Mz. It is an IC that generates a signal and outputs it to the outside. The passive component 39 is, for example, a resistor or a capacitor connected to the active components 32 to 35.
なお、能動部品32~35の機能をいくつのICで実現するかは任意に決定することができる。また、能動部品32~35を入出力基板30に実装せずに、入出力基板30と接続される外部回路側に実装する構成とすることも可能である。この場合には、入出力基板30からアナログの電気信号が出力される。
The number of ICs to realize the functions of the active components 32 to 35 can be arbitrarily determined. Alternatively, the active components 32 to 35 may be mounted on the external circuit side connected to the input / output substrate 30 without being mounted on the input / output substrate 30. In this case, an analog electrical signal is output from the input / output board 30.
入出力基板30は、起歪体20の第1の側面の下方で外側に屈曲し、入出力基板30の他端側が外部に引き出されている。入出力基板30の他端側には、力覚センサ装置1と接続される外部回路(制御装置等)との電気的な入出力が可能な端子(図示せず)が配列されている。
The input / output substrate 30 is bent outward below the first side surface of the strain generating body 20, and the other end side of the input / output substrate 30 is drawn out. At the other end of the input / output board 30, terminals (not shown) capable of electrically inputting / outputting to / from an external circuit (control device etc.) connected to the force sensor device 1 are arranged.
なお、本実施の形態では、便宜上、力覚センサ装置1において、センサチップ110が設けられた側を上側または一方の側、その反対側を下側または他方の側とする。また、各部位のセンサチップ110が設けられた側の面を一方の面または上面、その反対側の面を他方の面または下面とする。但し、力覚センサ装置1は天地逆の状態で用いることができ、または任意の角度で配置することができる。また、平面視とは対象物をセンサチップ110の上面の法線方向(Z軸方向)から視ることを指し、平面形状とは対象物をセンサチップ110の上面の法線方向(Z軸方向)から視た形状を指すものとする。
In the present embodiment, for convenience, in the force sensor device 1, the side provided with the sensor chip 110 is referred to as the upper side or one side, and the opposite side is referred to as the lower side or the other side. Further, the surface on the side where the sensor chip 110 is provided in each part is referred to as one surface or the upper surface, and the opposite surface is referred to as the other surface or the lower surface. However, the force sensor device 1 can be used in the upside-down state or can be disposed at an arbitrary angle. Furthermore, planar view refers to viewing the object from the normal direction (Z-axis direction) of the upper surface of the sensor chip 110, and planar shape refers to the normal direction of the upper surface of the sensor chip 110 (Z-axis direction It refers to the shape viewed from).
(センサチップ110)
図3は、センサチップ110をZ軸方向上側から視た図であり、図3(a)は斜視図、図3(b)は平面図である。図4は、センサチップ110をZ軸方向下側から視た図であり、図4(a)は斜視図、図4(b)は底面図である。図4(b)において、便宜上、同一高さの面を同一の梨地模様で示している。なお、センサチップ110の上面の一辺に平行な方向をX軸方向、垂直な方向をY軸方向、センサチップ110の厚さ方向(センサチップ110の上面の法線方向)をZ軸方向としている。X軸方向、Y軸方向、及びZ軸方向は、互いに直交している。 (Sensor chip 110)
FIG. 3 is a view of thesensor chip 110 viewed from the upper side in the Z-axis direction, FIG. 3 (a) is a perspective view, and FIG. 3 (b) is a plan view. FIG. 4 is a view of the sensor chip 110 viewed from the lower side in the Z-axis direction, FIG. 4 (a) is a perspective view, and FIG. 4 (b) is a bottom view. In FIG. 4 (b), for convenience, surfaces of the same height are shown in the same textured pattern. The direction parallel to one side of the upper surface of the sensor chip 110 is the X-axis direction, the vertical direction is the Y-axis direction, and the thickness direction of the sensor chip 110 (the normal direction of the upper surface of the sensor chip 110) is the Z-axis direction. . The X axis direction, the Y axis direction, and the Z axis direction are orthogonal to one another.
図3は、センサチップ110をZ軸方向上側から視た図であり、図3(a)は斜視図、図3(b)は平面図である。図4は、センサチップ110をZ軸方向下側から視た図であり、図4(a)は斜視図、図4(b)は底面図である。図4(b)において、便宜上、同一高さの面を同一の梨地模様で示している。なお、センサチップ110の上面の一辺に平行な方向をX軸方向、垂直な方向をY軸方向、センサチップ110の厚さ方向(センサチップ110の上面の法線方向)をZ軸方向としている。X軸方向、Y軸方向、及びZ軸方向は、互いに直交している。 (Sensor chip 110)
FIG. 3 is a view of the
図3及び図4に示すセンサチップ110は、1チップで最大6軸を検知できるMEMS(Micro Electro Mechanical Systems)センサチップであり、SOI(Silicon On Insulator)基板等の半導体基板から形成されている。センサチップ110の平面形状は、例えば、3000μm角程度の正方形とすることができる。
The sensor chip 110 shown in FIGS. 3 and 4 is a MEMS (Micro Electro Mechanical Systems) sensor chip that can detect up to six axes with one chip, and is formed of a semiconductor substrate such as an SOI (Silicon On Insulator) substrate. The planar shape of the sensor chip 110 can be, for example, a square of about 3000 μm square.
センサチップ110は、柱状の5つの支持部111a~111eを備えている。支持部111a~111eの平面形状は、例えば、500μm角程度の正方形とすることができる。第1の支持部である支持部111a~111dは、センサチップ110の四隅に配置されている。第2の支持部である支持部111eは、支持部111a~111dの中央に配置されている。
The sensor chip 110 includes five columnar support portions 111a to 111e. The planar shape of the support portions 111a to 111e can be, for example, a square of about 500 μm square. The support portions 111a to 111d, which are the first support portions, are disposed at the four corners of the sensor chip 110. The second support portion 111e is disposed at the center of the support portions 111a to 111d.
支持部111a~111eは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができ、それぞれの厚さは、例えば、500μm程度とすることができる。
The support portions 111a to 111e can be formed of, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and the thickness thereof can be, for example, about 500 μm.
支持部111aと支持部111bとの間には、支持部111aと支持部111bとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁112aが設けられている。支持部111bと支持部111cとの間には、支持部111bと支持部111cとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁112bが設けられている。
Between the support portion 111a and the support portion 111b, a reinforcement beam 112a for reinforcing the structure is provided, the ends of which are fixed to the support portion 111a and the support portion 111b (the adjacent support portions are connected). It is done. Between the support portion 111b and the support portion 111c, there are provided reinforcement beams 112b for reinforcing the structure, the ends of which are fixed to the support portion 111b and the support portion 111c (connect adjacent support portions). It is done.
支持部111cと支持部111dとの間には、支持部111cと支持部111dとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁112cが設けられている。支持部111dと支持部111aとの間には、支持部111dと支持部111aとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁112dが設けられている。
Between the support portion 111c and the support portion 111d, there are provided reinforcement beams 112c for reinforcing the structure, both ends of which are fixed to the support portion 111c and the support portion 111d (connect adjacent support portions). It is done. Between the support portion 111d and the support portion 111a, a reinforcement beam 112d for reinforcing the structure is provided, the ends of which are fixed to the support portion 111d and the support portion 111a (the adjacent support portions are connected). It is done.
言い換えれば、第1の補強用梁である4つの補強用梁112a、112b、112c、及び112dが枠状に形成され、各補強用梁の交点をなす角部が、支持部111b、111c、111d、111aとなる。
In other words, the four reinforcing beams 112a, 112b, 112c, and 112d, which are the first reinforcing beams, are formed in a frame shape, and the corner portions forming the intersections of the respective reinforcing beams are the support portions 111b, 111c, and 111d. , 111a.
支持部111aの内側の角部と、それに対向する支持部111eの角部とは、構造を補強するための補強用梁112eにより連結されている。支持部111bの内側の角部と、それに対向する支持部111eの角部とは、構造を補強するための補強用梁112fにより連結されている。
The inner corner portion of the support portion 111a and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112e for reinforcing the structure. The inner corner portion of the support portion 111b and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112f for reinforcing the structure.
支持部111cの内側の角部と、それに対向する支持部111eの角部とは、構造を補強するための補強用梁112gにより連結されている。支持部111dの内側の角部と、それに対向する支持部111eの角部とは、構造を補強するための補強用梁112hにより連結されている。第2の補強用梁である補強用梁112e~112hは、X軸方向(Y軸方向)に対して斜めに配置されている。つまり、補強用梁112e~112hは、補強用梁112a、112b、112c、及び112dと非平行に配置されている。
The inner corner portion of the support portion 111c and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112g for reinforcing the structure. The inner corner portion of the support portion 111d and the corner portion of the support portion 111e opposed thereto are connected by a reinforcing beam 112h for reinforcing the structure. The reinforcing beams 112e to 112h, which are the second reinforcing beams, are disposed obliquely with respect to the X-axis direction (Y-axis direction). That is, the reinforcing beams 112e to 112h are disposed nonparallel to the reinforcing beams 112a, 112b, 112c, and 112d.
補強用梁112a~112hは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができる。補強用梁112a~112hの太さ(短手方向の幅)は、例えば、140μm程度とすることができる。補強用梁112a~112hのそれぞれの上面は、支持部111a~111eの上面と略面一である。
The reinforcing beams 112a to 112h can be formed, for example, from the active layer, the BOX layer, and the support layer of the SOI substrate. The thickness (the width in the short direction) of the reinforcing beams 112a to 112h can be, for example, about 140 μm. The upper surfaces of the reinforcing beams 112a to 112h are substantially flush with the upper surfaces of the support portions 111a to 111e.
これに対して、補強用梁112a~112hのそれぞれの下面は、支持部111a~111eの下面及び力点114a~114dの下面よりも数10μm程度上面側に窪んでいる。これは、センサチップ110を起歪体20に接着したときに、補強用梁112a~112hの下面が起歪体20の対向する面と接しないようにするためである。
On the other hand, the lower surface of each of the reinforcing beams 112a to 112h is recessed to the upper surface side by about several tens of micrometers than the lower surfaces of the support portions 111a to 111e and the lower surfaces of the power points 114a to 114d. This is to prevent the lower surfaces of the reinforcing beams 112a to 112h from coming into contact with the opposing surfaces of the straining body 20 when the sensor chip 110 is bonded to the straining body 20.
このように、歪を検知するための検知用梁とは別に、検知用梁よりも厚く形成した剛性の強い補強用梁を配置することで、センサチップ110全体の剛性を高めることができる。これにより、入力に対して検知用梁以外が変形しづらくなるため、良好なセンサ特性を得ることができる。
As described above, the rigidity of the entire sensor chip 110 can be enhanced by arranging a reinforcing beam having a high rigidity and formed thicker than the detection beam separately from the detection beam for detecting the strain. As a result, it becomes difficult to deform other than the detection beam with respect to the input, so that good sensor characteristics can be obtained.
支持部111aと支持部111bとの間の補強用梁112aの内側には、補強用梁112aと所定間隔を空けて平行に、支持部111aと支持部111bとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁113aが設けられている。
Both ends of the reinforcing beam 112a between the supporting portion 111a and the supporting portion 111b are fixed to the supporting portion 111a and the supporting portion 111b in parallel with a predetermined distance therebetween (adjacent to each other) Support beams are connected to each other), and detection beams 113a for detecting distortion are provided.
検知用梁113aと支持部111eとの間には、検知用梁113a及び支持部111eと所定間隔を空けて検知用梁113aと平行に、検知用梁113bが設けられている。検知用梁113bは、補強用梁112eの支持部111e側の端部と補強用梁112fの支持部111e側の端部とを連結している。
A detection beam 113b is provided between the detection beam 113a and the support portion 111e at a predetermined distance from the detection beam 113a and the support portion 111e and in parallel with the detection beam 113a. The detection beam 113b connects the end of the reinforcement beam 112e on the support portion 111e side and the end of the reinforcement beam 112f on the support portion 111e side.
検知用梁113aの長手方向の略中央部と、それに対向する検知用梁113bの長手方向の略中央部とは、検知用梁113a及び検知用梁113bと直交するように配置された検知用梁113cにより連結されている。
A substantially central portion in the longitudinal direction of the detection beam 113a and a substantially central portion in the longitudinal direction of the detection beam 113b opposed thereto are the detection beam arranged to be orthogonal to the detection beam 113a and the detection beam 113b. It is connected by 113c.
支持部111bと支持部111cとの間の補強用梁112bの内側には、補強用梁112bと所定間隔を空けて平行に、支持部111bと支持部111cとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁113dが設けられている。
Both ends of the reinforcing beam 112b between the supporting portion 111b and the supporting portion 111c are fixed to the supporting portion 111b and the supporting portion 111c in parallel with a predetermined distance therebetween (adjacent to each other) Support beams are connected to each other), and detection beams 113d for detecting distortion are provided.
検知用梁113dと支持部111eとの間には、検知用梁113d及び支持部111eと所定間隔を空けて検知用梁113dと平行に、検知用梁113eが設けられている。検知用梁113eは、補強用梁112fの支持部111e側の端部と補強用梁112gの支持部111e側の端部とを連結している。
Between the detection beam 113d and the support portion 111e, a detection beam 113e is provided in parallel with the detection beam 113d at a predetermined distance from the detection beam 113d and the support portion 111e. The detection beam 113e connects the end of the reinforcement beam 112f on the support portion 111e side and the end of the reinforcement beam 112g on the support portion 111e side.
検知用梁113dの長手方向の略中央部と、それに対向する検知用梁113eの長手方向の略中央部とは、検知用梁113d及び検知用梁113eと直交するように配置された検知用梁113fにより連結されている。
A substantially central portion in the longitudinal direction of the detection beam 113d and a substantially central portion in the longitudinal direction of the detection beam 113e opposed thereto, the detection beam disposed so as to be orthogonal to the detection beam 113d and the detection beam 113e It is connected by 113f.
支持部111cと支持部111dとの間の補強用梁112cの内側には、補強用梁112cと所定間隔を空けて平行に、支持部111cと支持部111dとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁113gが設けられている。
Both ends of the reinforcing beam 112c between the supporting portion 111c and the supporting portion 111d are fixed to the supporting portion 111c and the supporting portion 111d in parallel with a predetermined distance therebetween (adjacent to each other) Support portions are connected with each other, and a detection beam 113g for detecting strain is provided.
検知用梁113gと支持部111eとの間には、検知用梁113g及び支持部111eと所定間隔を空けて検知用梁113gと平行に、検知用梁113hが設けられている。検知用梁113hは、補強用梁112gの支持部111e側の端部と補強用梁112hの支持部111e側の端部とを連結している。
Between the detection beam 113g and the support portion 111e, a detection beam 113h is provided in parallel with the detection beam 113g with a predetermined interval between the detection beam 113g and the support portion 111e. The detection beam 113h connects the end of the reinforcement beam 112g on the support 111e side and the end of the reinforcement beam 112h on the support 111e.
検知用梁113gの長手方向の略中央部と、それに対向する検知用梁113hの長手方向の略中央部とは、検知用梁113g及び検知用梁113hと直交するように配置された検知用梁113iにより連結されている。
A substantially central portion in the longitudinal direction of the detection beam 113g and a substantially central portion in the longitudinal direction of the detection beam 113h opposed thereto, the detection beam disposed so as to be orthogonal to the detection beam 113g and the detection beam 113h It is connected by 113i.
支持部111dと支持部111aとの間の補強用梁112dの内側には、補強用梁112dと所定間隔を空けて平行に、支持部111dと支持部111aとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁113jが設けられている。
Both ends of the reinforcing beam 112d between the supporting portion 111d and the supporting portion 111a are fixed to the supporting portion 111d and the supporting portion 111a in parallel with a predetermined distance therebetween (adjacent to each other) Support beams are connected to each other), and detection beams 113 j for detecting distortion are provided.
検知用梁113jと支持部111eとの間には、検知用梁113j及び支持部111eと所定間隔を空けて検知用梁113jと平行に、検知用梁113kが設けられている。検知用梁113kは、補強用梁112hの支持部111e側の端部と補強用梁112eの支持部111e側の端部とを連結している。
Between the detection beam 113j and the support portion 111e, a detection beam 113k is provided in parallel with the detection beam 113j at a predetermined interval from the detection beam 113j and the support portion 111e. The detection beam 113k couples the end of the reinforcement beam 112h on the support portion 111e side and the end of the reinforcement beam 112e on the support portion 111e side.
検知用梁113jの長手方向の略中央部と、それに対向する検知用梁113kの長手方向の略中央部とは、検知用梁113j及び検知用梁113kと直交するように配置された検知用梁113lにより連結されている。
A substantially central portion in the longitudinal direction of the detection beam 113j and a substantially central portion in the longitudinal direction of the detection beam 113k opposed thereto, the detection beam disposed so as to be orthogonal to the detection beam 113j and the detection beam 113k It is linked by 113 l.
検知用梁113a~113lは、支持部111a~111eの厚さ方向の上端側に設けられ、例えば、SOI基板の活性層から形成することができる。検知用梁113a~113lの太さ(短手方向の幅)は、例えば、75μm程度とすることができる。検知用梁113a~113lの太さ(短手方向の幅)は、位置により異なっていてもよい。検知用梁113a~113lのそれぞれの上面は、支持部111a~111eの上面と略面一である。検知用梁113a~113lのそれぞれの厚さは、例えば、50μm程度とすることができる。
The detection beams 113a to 113l are provided on the upper end side in the thickness direction of the support portions 111a to 111e, and can be formed of, for example, an active layer of an SOI substrate. The thickness (width in the short direction) of the detection beams 113a to 113l can be, for example, about 75 μm. The thickness (the width in the short direction) of the detection beams 113a to 113l may be different depending on the position. The upper surfaces of the detection beams 113a to 113l are substantially flush with the upper surfaces of the support portions 111a to 111e. The thickness of each of the detection beams 113a to 113l can be, for example, about 50 μm.
検知用梁113aの長手方向の中央部の下面側(検知用梁113aと検知用梁113cとの交点)には、力点114aが設けられている。検知用梁113a、113b、及び113cと力点114aとにより、1組の検知ブロックをなしている。
A force point 114a is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113a (the intersection of the detection beam 113a and the detection beam 113c). The detection beams 113a, 113b, and 113c and the force point 114a constitute a set of detection blocks.
検知用梁113dの長手方向の中央部の下面側(検知用梁113dと検知用梁113fとの交点)には、力点114bが設けられている。検知用梁113d、113e、及び113fと力点114bとにより、1組の検知ブロックをなしている。
A force point 114b is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113d (the intersection point of the detection beam 113d and the detection beam 113f). The detection beams 113d, 113e, and 113f and the force point 114b constitute a set of detection blocks.
検知用梁113gの長手方向の中央部の下面側(検知用梁113gと検知用梁113iとの交点)には、力点114cが設けられている。検知用梁113g、113h、及び113iと力点114cとにより、1組の検知ブロックをなしている。
A force point 114c is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113g (the intersection point of the detection beam 113g and the detection beam 113i). The detection beams 113g, 113h, and 113i and the force point 114c constitute a set of detection blocks.
検知用梁113jの長手方向の中央部の下面側(検知用梁113jと検知用梁113lとの交点)には、力点114dが設けられている。検知用梁113j、113k、及び113lと力点114dとにより、1組の検知ブロックをなしている。
A force point 114d is provided on the lower surface side of the central portion in the longitudinal direction of the detection beam 113j (the intersection of the detection beam 113j and the detection beam 113l). The detection beams 113j, 113k, and 113l and the force point 114d constitute a set of detection blocks.
力点114a~114dは、外力が印加される箇所であり、例えば、SOI基板のBOX層及び支持層から形成することができる。力点114a~114dのそれぞれの下面は、支持部111a~111eの下面と略面一である。
The force points 114a to 114d are places to which an external force is applied, and can be formed, for example, from the BOX layer and the support layer of the SOI substrate. The lower surfaces of the power points 114a to 114d are substantially flush with the lower surfaces of the support portions 111a to 111e.
このように、力または変位を4つの力点114a~114dから取り入れることで、力の種類毎に異なる梁の変形が得られるため、6軸の分離性が良いセンサを実現することができる。
As described above, by incorporating forces or displacements from the four force points 114a to 114d, different beam deformations can be obtained for each type of force, so it is possible to realize a sensor with good six-axis separation.
なお、センサチップ110において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。
From the viewpoint of suppressing stress concentration in the sensor chip 110, the portion forming the inner angle is preferably R-shaped.
図5は、各軸にかかる力及びモーメントを示す符号を説明する図である。図5に示すように、X軸方向の力をFx、Y軸方向の力をFy、Z軸方向の力をFzとする。また、X軸を軸として回転させるモーメントをMx、Y軸を軸として回転させるモーメントをMy、Z軸を軸として回転させるモーメントをMzとする。
FIG. 5 is a diagram for explaining reference numerals indicating forces and moments applied to the respective axes. As shown in FIG. 5, the force in the X-axis direction is Fx, the force in the Y-axis direction is Fy, and the force in the Z-axis direction is Fz. Further, let Mx be a moment for rotating about the X axis, My be a moment for rotating the Y axis, and Mz be a moment for rotating the Z axis.
図6は、センサチップ110のピエゾ抵抗素子の配置を例示する図である。4つ力点114a~114dに対応する各検知ブロックの所定位置には、複数の歪検出素子であるピエゾ抵抗素子が配置されている。
FIG. 6 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 110. As shown in FIG. Piezoresistive elements, which are a plurality of strain detection elements, are disposed at predetermined positions of the detection blocks corresponding to the four force points 114a to 114d.
具体的には、図3及び図6を参照すると、力点114aに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR3及びMxR4は、検知用梁113aを長手方向に二等分する線上であって、かつ、検知用梁113aの検知用梁113cに近い領域において検知用梁113cを長手方向(Y方向)に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FyR3及びFyR4は、検知用梁113aを長手方向に二等分する線よりも補強用梁112a側であって、かつ、検知用梁113aの検知用梁113cから遠い領域において検知用梁113cを長手方向に二等分する線に対して対称な位置に配置されている。
Specifically, referring to FIG. 3 and FIG. 6, in the detection block corresponding to the power point 114a, the piezoresistive elements MxR3 and MxR4 are on the line bisecting the detection beam 113a in the longitudinal direction, and In a region near the detection beam 113c of the detection beam 113a, the detection beam 113c is disposed at a symmetrical position with respect to a line bisecting in the longitudinal direction (Y direction). The piezoresistive elements FyR3 and FyR4 are located on the reinforcing beam 112a side of a line bisecting the detecting beam 113a in the longitudinal direction and in a region farther from the detection beam 113c of the detection beam 113a. They are disposed at symmetrical positions with respect to a line bisecting 113 c in the longitudinal direction.
また、ピエゾ抵抗素子MzR3’及びMzR4’は、検知用梁113aを長手方向に二等分する線上であって、かつ、検知用梁113aの支持部111a、111bと連結される位置と力点114aと連結される位置の中点近傍において検知用梁113cを長手方向に二等分する線に対して対称な位置に配置されている。ここで、検知用梁113aは、支持部111a、111bまたは力点114aと連結される位置の検知用梁113aの幅である第1梁幅より、ピエゾ抵抗素子MzR3’及びMzR4’が形成された位置の検知用梁113aの幅である第2梁幅の方が小さい。
Further, the piezoresistive elements MzR3 ′ and MzR4 ′ are on a line bisecting the detection beam 113a in the longitudinal direction and at a position where they are connected to the support portions 111a and 111b of the detection beam 113a and a force point 114a In the vicinity of the middle point of the connection position, the detection beam 113c is disposed at a symmetrical position with respect to a line bisecting the detection beam 113c in the longitudinal direction. Here, the position at which the piezoresistive elements MzR3 ′ and MzR4 ′ are formed from the first beam width which is the width of the detection beam 113a at the position where the detection beam 113a is connected to the support portions 111a and 111b or the power point 114a. The second beam width, which is the width of the detection beam 113a, is smaller.
本実施の形態においては、図3及び図6に示されるように、検知用梁113aは、検知用梁113aが支持部111a、111bと連結される位置から、ピエゾ抵抗素子MzR3’及びMzR4’が形成された位置にかけて、検知用梁113aの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。また、検知用梁113aは、検知用梁113aが力点114aと連結される位置から、ピエゾ抵抗素子MzR3’及びMzR4’が形成された位置にかけて、検知用梁113aの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。
In the present embodiment, as shown in FIGS. 3 and 6, in the detection beam 113a, the piezoresistive elements MzR3 'and MzR4' are located from the position where the detection beam 113a is connected to the support portions 111a and 111b. It has a tapered shape in which the beam width gradually narrows on both sides in the lateral direction of the detection beam 113a to the formed position. The detection beam 113a extends from the position where the detection beam 113a is connected to the power point 114a to the position where the piezoresistive elements MzR3 ′ and MzR4 ′ are formed on both sides in the lateral direction of the detection beam 113a. It has a tapered shape in which the beam width gradually narrows.
即ち、検知用梁113aは、支持部111a、111bと連結される位置と力点114aと連結される位置の間に梁幅が狭くなった箇所が形成されており、この梁幅が狭くなった箇所の検知用梁113aの上にピエゾ抵抗素子MzR3’及びMzR4’が形成されている。
That is, in the detection beam 113a, a portion where the beam width is narrowed is formed between the position where it is connected with the support portions 111a and 111b and the position where it is connected with the force point 114a. Piezoresistive elements MzR3 'and MzR4' are formed on the detection beam 113a.
力点114bに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR3及びMyR4は、検知用梁113dを長手方向に二等分する線上であって、かつ、検知用梁113dの検知用梁113fに近い領域において検知用梁113fを長手方向(X方向)に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FxR3及びFxR4は、検知用梁113dを長手方向に二等分する線よりも補強用梁112b側であって、かつ、検知用梁113dの検知用梁113fから遠い領域において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 114b, the piezoresistive elements MyR3 and MyR4 are detected on a line bisecting the detection beam 113d in the longitudinal direction and in a region near the detection beam 113f of the detection beam 113d. The beam 113 f is disposed at symmetrical positions with respect to a line bisecting the beam 113 f in the longitudinal direction (X direction). The piezoresistive elements FxR3 and FxR4 are located on the reinforcing beam 112b side of a line bisecting the detecting beam 113d in the longitudinal direction and in a region far from the detection beam 113f of the detection beam 113d. It is disposed at a symmetrical position with respect to a line bisecting 113 f in the longitudinal direction.
また、ピエゾ抵抗素子MzR3及びMzR4は、検知用梁113dを長手方向に二等分する線上であって、かつ、検知用梁113dの支持部111b、111cと連結される位置と力点114bと連結される位置の中点近傍において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。ここで、検知用梁113dは、支持部111b、111cまたは力点114bと連結される位置の検知用梁113dの幅である第1梁幅より、ピエゾ抵抗素子MzR3及びMzR4が形成された位置の検知用梁113dの幅である第2梁幅の方が小さい。
Also, the piezoresistive elements MzR3 and MzR4 are connected on the line bisecting the detection beam 113d in the longitudinal direction and at a position where they are connected to the support portions 111b and 111c of the detection beam 113d and the force point 114b. In the vicinity of the midpoint of the position, the detection beam 113f is disposed at a symmetrical position with respect to a line bisecting the detection beam 113f in the longitudinal direction. Here, the detection beam 113d detects the position where the piezoresistive elements MzR3 and MzR4 are formed from the first beam width which is the width of the detection beam 113d at the position where it is connected to the support portions 111b and 111c or the force point 114b. The second beam width, which is the width of the beam 113d, is smaller.
本実施の形態においては、図3及び図6に示されるように、検知用梁113dは、検知用梁113dが支持部111b、111cと連結される位置から、ピエゾ抵抗素子MzR3及びMzR4が形成された位置にかけて、検知用梁113dの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。また、検知用梁113dは、検知用梁113dが力点114bと連結される位置から、ピエゾ抵抗素子MzR3及びMzR4が形成された位置にかけて、検知用梁113dの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。
In the present embodiment, as shown in FIGS. 3 and 6, in the detection beam 113d, piezoresistive elements MzR3 and MzR4 are formed from the position where the detection beam 113d is connected to the support portions 111b and 111c. In the lateral direction of the detection beam 113d, the width of the beam gradually narrows. The detection beam 113d extends from the position where the detection beam 113d is connected to the force point 114b to the position where the piezoresistive elements MzR3 and MzR4 are formed, at both sides in the lateral direction of the detection beam 113d. Has a tapered shape that gradually narrows.
即ち、検知用梁113dは、支持部111b、111cと連結される位置と力点114bと連結される位置の間に梁幅が狭くなった箇所が形成されており、この梁幅が狭くなった箇所の検知用梁113dの上にピエゾ抵抗素子MzR3及びMzR4が形成されている。
That is, in the detection beam 113d, a portion where the beam width is narrowed is formed between the position where it is connected with the support portions 111b and 111c and the position where it is connected with the force point 114b. Piezoresistive elements MzR3 and MzR4 are formed on the detection beam 113d.
ピエゾ抵抗素子FzR2及びFzR3は、検知用梁113eを長手方向に二等分する線上であって、かつ、検知用梁113eの検知用梁113fに近い領域において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FzR1’及びFzR4’は、検知用梁113eを長手方向に二等分する線上であって、かつ、検知用梁113eの検知用梁113fから遠い領域において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。
The piezoresistive elements FzR2 and FzR3 are on the line bisecting the detection beam 113e in the longitudinal direction, and in the region near the detection beam 113f of the detection beam 113e, the detection beam 113f is formed in the longitudinal direction. It is placed at a symmetrical position with respect to the dividing line. The piezoresistive elements FzR1 ′ and FzR4 ′ are on the line bisecting the detection beam 113e in the longitudinal direction and in the region far from the detection beam 113f of the detection beam 113e in the longitudinal direction It is disposed at a symmetrical position with respect to the bisecting line.
ここで、検知用梁113eは、直線部と、連結部により直線部に連結される傾斜部とを有する。直線部は検知用梁113eの梁幅が略一定の部分である。傾斜部は、検知用梁113eの端部もしくは検知用梁113fに接続する部分に設けられた部であり、傾斜部の梁幅は連結部から遠ざかるにつれて徐々に太くなる。ピエゾ抵抗素子FzR2、FzR3、FzR1’、FzR4’は、上記の構成の検知用梁113eにおいて、連結部より傾斜部側に配置されている。即ち、ピエゾ抵抗素子FzR2、FzR3、FzR1’、FzR4’は、検知用梁113eの直線部上ではなく、傾斜部の内部に配置されているといえる。また、ピエゾ抵抗素子FzR1’及びFzR4’については、ピエゾ抵抗素子FzR1’及びFzR4’の一部がそれぞれ補強用梁112gあるいは補強用梁112fにかかるように形成されている。
Here, the detection beam 113e has a linear portion and an inclined portion connected to the linear portion by the connecting portion. The straight portion is a portion where the beam width of the detection beam 113e is substantially constant. The inclined portion is a portion provided at the end of the detection beam 113e or a portion connected to the detection beam 113f, and the beam width of the inclined portion gradually increases as the distance from the connecting portion increases. The piezoresistive elements FzR2, FzR3, FzR1 ', and FzR4' are disposed closer to the inclined portion than the connecting portion in the detection beam 113e having the above-described configuration. That is, it can be said that the piezoresistive elements FzR2, FzR3, FzR1 'and FzR4' are disposed not on the linear portion of the detection beam 113e but inside the inclined portion. Further, in the piezoresistive elements FzR1 'and FzR4', a part of the piezoresistive elements FzR1 'and FzR4' is formed to extend over the reinforcing beam 112g or the reinforcing beam 112f.
力点114cに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR1及びMxR2は、検知用梁113gを長手方向に二等分する線上であって、かつ、検知用梁113gの検知用梁113iに近い領域において検知用梁113iを長手方向(Y方向)に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FyR1及びFyR2は、検知用梁113gを長手方向に二等分する線よりも補強用梁112c側であって、かつ、検知用梁113gの検知用梁113iから遠い領域において検知用梁113iを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 114c, the piezoresistive elements MxR1 and MxR2 are detected on a line bisecting the detection beam 113g in the longitudinal direction and in a region near the detection beam 113i of the detection beam 113g. The beam 113i is disposed at symmetrical positions with respect to a line bisecting in the longitudinal direction (Y direction). The piezoresistive elements FyR1 and FyR2 are located on the reinforcing beam 112c side of a line bisecting the detecting beam 113g in the longitudinal direction and in a region far from the detection beam 113i of the detection beam 113g. It is disposed at a symmetrical position with respect to a line bisecting 113 i in the longitudinal direction.
ピエゾ抵抗素子MzR1’及びMzR2’は、検知用梁113gを長手方向に二等分する線上であって、かつ、検知用梁113gの支持部111c、111dと連結される位置と力点114cと連結される位置の中点近傍において検知用梁113iを長手方向に二等分する線に対して対称な位置に配置されている。ここで、検知用梁113gは、支持部111c、111dまたは力点114cと連結される位置の検知用梁113gの幅である第1梁幅より、ピエゾ抵抗素子MzR1’及びMzR2’が形成された位置の検知用梁113gの幅である第2梁幅の方が小さい。
The piezoresistive elements MzR1 ′ and MzR2 ′ are connected on a line bisecting the detection beam 113g in the longitudinal direction and at a position where it is connected to the support portions 111c and 111d of the detection beam 113g and a force point 114c. In the vicinity of the midpoint of the position, the detection beam 113i is disposed at a symmetrical position with respect to a line bisecting the detection beam 113i in the longitudinal direction. Here, the position at which the piezoresistive elements MzR1 ′ and MzR2 ′ are formed from the first beam width which is the width of the detection beam 113g at the position where the detection beam 113g is connected to the support portions 111c and 111d or the force point 114c. The second beam width, which is the width of the detection beam 113g, is smaller.
本実施の形態においては、図3及び図6に示されるように、検知用梁113gは、検知用梁113gが支持部111c、111dと連結される位置から、ピエゾ抵抗素子MzR1’及びMzR2’が形成された位置にかけて、検知用梁113gの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。また、検知用梁113gは、検知用梁113gが力点114cと連結される位置から、ピエゾ抵抗素子MzR1’及びMzR2’が形成された位置にかけて、検知用梁113gの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。
In the present embodiment, as shown in FIGS. 3 and 6, in the detection beam 113g, the piezoresistive elements MzR1 ′ and MzR2 ′ are located from the position where the detection beam 113g is connected to the support portions 111c and 111d. The beam has a tapered shape in which the width of the beam gradually narrows on both sides in the lateral direction of the detection beam 113g to the formed position. The detection beam 113g extends from the position where the detection beam 113g is connected to the force point 114c to the position where the piezoresistive elements MzR1 ′ and MzR2 ′ are formed on both sides in the lateral direction of the detection beam 113g. It has a tapered shape in which the beam width gradually narrows.
即ち、検知用梁113gは、支持部111c、111dと連結される位置と力点114cと連結される位置の間に梁幅が狭くなった箇所が形成されており、この梁幅が狭くなった箇所の検知用梁113gの上にピエゾ抵抗素子MzR1’及びMzR2’が形成されている。
That is, in the detection beam 113g, a portion where the beam width is narrowed is formed between the position where it is connected with the support portions 111c and 111d and the position where it is connected with the force point 114c. Piezoresistive elements MzR1 'and MzR2' are formed on the detection beam 113g.
力点114dに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR1及びMyR2は、検知用梁113jを長手方向に二等分する線上であって、かつ、検知用梁113jの検知用梁113lに近い領域において検知用梁113lを長手方向(X方向)に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FxR1及びFxR2は、検知用梁113jを長手方向に二等分する線よりも補強用梁112d側であって、かつ、検知用梁113jの検知用梁113lから遠い領域において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 114d, the piezoresistive elements MyR1 and MyR2 are detected on a line bisecting the detection beam 113j in the longitudinal direction and in a region close to the detection beam 113l of the detection beam 113j. The beam 113 l is disposed at a symmetrical position with respect to a line bisecting the longitudinal direction (X direction). The piezoresistive elements FxR1 and FxR2 are located on the reinforcing beam 112d side of a line bisecting the detecting beam 113j in the longitudinal direction and in a region far from the detection beam 113l of the detection beam 113j. It is disposed at a symmetrical position with respect to a line which bisects 113 l in the longitudinal direction.
ピエゾ抵抗素子MzR1及びMzR2は、検知用梁113jを長手方向に二等分する線上であって、かつ、検知用梁113jの支持部111d、111aと連結される位置と力点114dと連結される位置の中点近傍において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。ここで、検知用梁113jは、支持部111d、111aまたは力点114dと連結される位置の検知用梁113jの幅である第1梁幅より、ピエゾ抵抗素子MzR1及びMzR2が形成された位置の検知用梁113jの幅である第2梁幅の方が小さい。
The piezoresistive elements MzR1 and MzR2 are on a line bisecting the detection beam 113j in the longitudinal direction and at positions where the detection beam 113j is connected to the support portions 111d and 111a and positions where it is connected to the force point 114d. The detection beam 113l is disposed at a symmetrical position with respect to a line bisecting the detection beam 113l in the longitudinal direction near the middle point of Here, the detection beam 113j detects the position where the piezoresistive elements MzR1 and MzR2 are formed from the first beam width which is the width of the detection beam 113j at the position where it is connected to the support portions 111d and 111a or the power point 114d. The second beam width, which is the width of the beam 113j, is smaller.
本実施の形態においては、図3及び図6に示されるように、検知用梁113jは、検知用梁113jが支持部111d、111aと連結される位置から、ピエゾ抵抗素子MzR1及びMzR2が形成された位置にかけて、検知用梁113jの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。また、検知用梁113jは、検知用梁113jが力点114dと連結される位置から、ピエゾ抵抗素子MzR1及びMzR2が形成された位置にかけて、検知用梁113jの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。
In the present embodiment, as shown in FIGS. 3 and 6, in the detection beam 113j, piezoresistive elements MzR1 and MzR2 are formed from the position where the detection beam 113j is connected to the support portions 111d and 111a. In the lateral direction of the detection beam 113j, the width of the beam gradually narrows. The detection beam 113j extends from the position where the detection beam 113j is connected to the force point 114d to the position where the piezoresistive elements MzR1 and MzR2 are formed, at both sides in the lateral direction of the detection beam 113j. Has a tapered shape that gradually narrows.
即ち、検知用梁113jは、支持部111d、111aと連結される位置と力点114dと連結される位置の間に梁幅が狭くなった箇所が形成されており、この梁幅が狭くなった箇所の検知用梁113jの上にピエゾ抵抗素子MzR1及びMzR2が形成されている。
That is, in the detection beam 113j, a portion where the beam width is narrowed is formed between the position where it is coupled with the support portions 111d and 111a and the position where it is coupled with the force point 114d. Piezoresistive elements MzR1 and MzR2 are formed on the detection beam 113j.
ピエゾ抵抗素子FzR1及びFzR4は、検知用梁113kを長手方向に二等分する線上であって、かつ、検知用梁113kの検知用梁113lから遠い領域において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FzR2’及びFzR3’は、検知用梁113kを長手方向に二等分する線上であって、かつ、検知用梁113kの検知用梁113lに近い領域において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。
The piezoresistive elements FzR1 and FzR4 are on the line bisecting the detection beam 113k in the longitudinal direction and in the region far from the detection beam 113l of the detection beam 113k in the longitudinal direction. It is placed at a symmetrical position with respect to the dividing line. The piezoresistive elements FzR2 'and FzR3' are on the line bisecting the detection beam 113k in the longitudinal direction, and in the region near the detection beam 113l of the detection beam 113k in the longitudinal direction It is disposed at a symmetrical position with respect to the bisecting line.
ここで、検知用梁113kは、直線部と、連結部により直線部に連結される傾斜部とを有する。直線部は検知用梁113kの梁幅が略一定の部分である。傾斜部は、検知用梁113kの端部もしくは検知用梁113lに接続する部分に設けられた部であり、傾斜部の梁幅は連結部から遠ざかるにつれて徐々に太くなる。ピエゾ抵抗素子FzR1、FzR4、FzR2’、FzR3’は、上記の構成の検知用梁113kにおいて、連結部より傾斜部側に配置されている。即ち、ピエゾ抵抗素子FzR1、FzR4、FzR2’、FzR3’は、検知用梁113kの直線部上ではなく、傾斜部の内部に配置されているといえる。また、ピエゾ抵抗素子FzR1及びFzR4については、ピエゾ抵抗素子FzR1及びFzR4の一部がそれぞれ補強用梁112hあるいは補強用梁112eにかかるように形成されている。
Here, the detection beam 113k has a linear portion and an inclined portion connected to the linear portion by the connecting portion. The straight portion is a portion where the beam width of the detection beam 113k is substantially constant. The sloped portion is a portion provided at the end of the detection beam 113k or a portion connected to the detection beam 113l, and the beam width of the sloped portion gradually increases as the distance from the connection portion increases. The piezoresistive elements FzR1, FzR4, FzR2 ', and FzR3' are disposed closer to the inclined portion side than the connection portion in the detection beam 113k having the above-described configuration. That is, it can be said that the piezoresistive elements FzR1, FzR4, FzR2 'and FzR3' are disposed not on the linear portion of the detection beam 113k but inside the inclined portion. Further, in the piezoresistive elements FzR1 and FzR4, a part of the piezoresistive elements FzR1 and FzR4 is formed to extend over the reinforcing beam 112h or the reinforcing beam 112e.
このように、センサチップ110では、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、力点114a~114dに印加(伝達)された力の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。
As described above, in the sensor chip 110, a plurality of piezoresistive elements are separately disposed in each detection block. Thus, based on the change in the output of the plurality of piezoresistive elements arranged on the predetermined beam in accordance with the direction (axial direction) of the force applied (transmitted) to the force points 114a to 114d, the predetermined axial direction Up to six axes of displacement can be detected.
また、センサチップ110では、検知用梁113c、113f、113i、及び113lをできるだけ短くして、検知用梁113b、113e、113h、及び113kを検知用梁113a、113d、113g、及び113jに近づけ、検知用梁113b、113e、113h、及び113kの長さをできるだけ確保する構造としている。この構造により、検知用梁113b、113e、113h、及び113kが弓なりに撓みやすくなって応力集中を緩和でき、耐荷重を向上することができる。
In the sensor chip 110, the detection beams 113c, 113f, 113i, and 113l are as short as possible to bring the detection beams 113b, 113e, 113h, and 113k closer to the detection beams 113a, 113d, 113g, and 113j. The length of the detection beams 113b, 113e, 113h and 113k is secured as much as possible. By this structure, the detection beams 113b, 113e, 113h, and 113k can be easily bent in a bow shape, stress concentration can be relaxed, and load resistance can be improved.
また、センサチップ110では、検知用梁113c、113f、113i、及び113lにはピエゾ抵抗素子を配置していない。その代り、検知用梁113c、113f、113i、及び113lよりも細くて長く、弓なりに撓みやすい検知用梁113a、113d、113g、及び113j、並びに検知用梁113b、113e、113h、及び113kの応力が最大になる位置の近傍にピエゾ抵抗素子を配置している。その結果、センサチップ110では、効率よく応力を取り込むことが可能となり、感度(同じ応力に対するピエゾ抵抗素子の抵抗変化)を向上することができる。
Further, in the sensor chip 110, no piezoresistive element is disposed on the detection beams 113c, 113f, 113i, and 113l. Instead, the stresses of the detection beams 113a, 113d, 113g and 113j, which are thinner and longer than the detection beams 113c, 113f, 113i and 113l and are easily bent in a bow, and the stresses of the detection beams 113b, 113e, 113h and 113k The piezoresistive elements are arranged in the vicinity of the position where is the largest. As a result, in the sensor chip 110, it is possible to take in stress efficiently, and sensitivity (change in resistance of the piezoresistive element to the same stress) can be improved.
なお、センサチップ110では、歪の検出に用いるピエゾ抵抗素子以外にも、ダミーのピエゾ抵抗素子が配置されている。ダミーのピエゾ抵抗素子は、歪の検出に用いるピエゾ抵抗素子も含めた全てのピエゾ抵抗素子が、支持部111eの中心に対して点対称となるように配置されている。
In the sensor chip 110, dummy piezoresistive elements are disposed in addition to the piezoresistive elements used to detect distortion. In the dummy piezoresistive elements, all the piezoresistive elements including the piezoresistive element used for detection of strain are arranged so as to be point-symmetrical with respect to the center of the support portion 111 e.
ここで、ピエゾ抵抗素子FxR1~FxR4は力Fxを検出し、ピエゾ抵抗素子FyR1~FyR4は力Fyを検出し、ピエゾ抵抗素子FzR1~FzR4、FzR1’~FzR4’は力Fzを検出する。ピエゾ抵抗素子MxR1~MxR4はモーメントMxを検出し、ピエゾ抵抗素子MyR1~MyR4はモーメントMyを検出し、ピエゾ抵抗素子MzR1~MzR4、MzR1’~MzR4’はモーメントMzを検出する。本実施の形態においては、ピエゾ抵抗素子FzR1’~FzR4’をダミーとして、ピエゾ抵抗素子FzR1~FzR4から力Fzを検出してもよいし、その逆の関係でもよい。また、ピエゾ抵抗素子MzR1’~MzR4’をダミーとして、ピエゾ抵抗素子MzR1~MzR4からモーメントMzを検出してもよいし、その逆の関係でもよい。
Here, the piezoresistive elements FxR1 to FxR4 detect the force Fx, the piezoresistive elements FyR1 to FyR4 detect the force Fy, and the piezoresistive elements FzR1 to FzR4 and the FzR1 'to FzR4' detect the force Fz. The piezoresistive elements MxR1 to MxR4 detect the moment Mx, the piezoresistive elements MyR1 to MyR4 detect the moment My, and the piezoresistive elements MzR1 to MzR4 and MzR1 'to MzR4' detect the moment Mz. In the present embodiment, the force Fz may be detected from the piezoresistive elements FzR1 to FzR4 using the piezoresistive elements FzR1 'to FzR4' as a dummy, or vice versa. The moment Mz may be detected from the piezoresistive elements MzR1 to MzR4 using the piezoresistive elements MzR1 'to MzR4' as a dummy, or the opposite relation may be made.
このように、センサチップ110では、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、力点114a~114dに印加(伝達)された力または変位の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。
As described above, in the sensor chip 110, a plurality of piezoresistive elements are separately disposed in each detection block. Thereby, based on the change of the output of the plurality of piezoresistive elements arranged on the predetermined beam according to the direction (axial direction) of the force or displacement applied (transferred) to the force points 114a to 114d, the predetermined axis It is possible to detect up to 6 axes of displacement in the direction.
具体的には、センサチップ110において、Z軸方向の変位(Mx、My、Fz)は、所定の検知用梁の変形に基づいて検知することができる。すなわち、X軸方向及びY軸方向のモーメント(Mx、My)は、第1の検知用梁である検知用梁113a、113d、113g、及び113jの変形に基づいて検知することができる。また、Z軸方向の力(Fz)は、第2の検知用梁である検知用梁113e及び113kの変形に基づいて検知することができる。
Specifically, in the sensor chip 110, the displacement (Mx, My, Fz) in the Z-axis direction can be detected based on the deformation of a predetermined detection beam. That is, the moments (Mx, My) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 113a, 113d, 113g, and 113j, which are the first detection beams. Further, the force (Fz) in the Z-axis direction can be detected based on the deformation of the detection beams 113e and 113k, which are the second detection beams.
また、センサチップ110において、X軸方向及びY軸方向の変位(Fx、Fy、Mz)は、所定の検知用梁の変形に基づいて検知することができる。すなわち、X軸方向及びY軸方向の力(Fx、Fy)は、第1の検知用梁である検知用梁113a、113d、113g、及び113jの変形に基づいて検知することができる。また、Z軸方向のモーメント(Mz)は、第1の検知用梁である検知用梁113a、113d、113g、及び113jの変形に基づいて検知することができる。
Further, in the sensor chip 110, displacements (Fx, Fy, Mz) in the X-axis direction and the Y-axis direction can be detected based on the deformation of a predetermined detection beam. That is, the forces (Fx, Fy) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 113a, 113d, 113g, and 113j, which are the first detection beams. Further, the moment (Mz) in the Z-axis direction can be detected based on the deformation of the detection beams 113a, 113d, 113g and 113j, which are the first detection beams.
各検知用梁の厚みと幅を可変することで、検出感度の均一化や、検出感度の向上等の調整を図ることができる。
By varying the thickness and width of each detection beam, it is possible to make adjustments such as uniform detection sensitivity and improvement of detection sensitivity.
但し、ピエゾ抵抗素子の数を減らし、5軸以下の所定の軸方向の変位を検知するセンサチップとすることも可能である。
However, it is also possible to reduce the number of piezoresistive elements and to use a sensor chip that detects displacement in a predetermined axial direction of five or less axes.
上記の本実施の形態のセンサチップは、検知用梁113aは、支持部111a、111bと連結される位置と力点114aと連結される位置の中点近傍で梁幅が狭くなるように形成されており、この梁幅が狭くなった箇所の検知用梁113aの上にピエゾ抵抗素子MzR3’及びMzR4’が形成されている。検知用梁113d、113g、113jと、ピエゾ抵抗素子MzR1、MzR2、MzR3、MzR4、MzR1’、MzR2’についても同様である。この構成と、それによる効果については、第1の構成及び効果として後述する。
In the sensor chip of the present embodiment described above, the detection beam 113a is formed so that the beam width becomes narrow near the middle point between the position where it is connected with the support portions 111a and 111b and the position where it is connected with the force point 114a. Piezoresistive elements MzR3 'and MzR4' are formed on the detection beam 113a at the portion where the beam width is narrowed. The same applies to the detection beams 113d, 113g, and 113j and the piezoresistive elements MzR1, MzR2, MzR3, MzR4, MzR1 ', and MzR2'. This configuration and the effect thereof will be described later as a first configuration and an effect.
上記の本実施の形態に係るセンサチップによれば、梁の中間部にテーパー形状あるいは凹形状等により梁幅が狭められた部分を設けることにより、力が印加されたときの梁の変形が変わり、新たに応力を検出できる箇所を作り出すことができる。これにより、応力発生個所を制御することが可能である。また、入力の種類によって梁の異なる箇所(梁の離れた箇所)に発生する応力をピエゾ抵抗素子で検出することで、干渉の少ない軸分離が実現でき、複合的な入力に対して高精度に検出することができる。本実施の形態に係るセンサチップでは、特にMzとMyの軸分離について高い効果を得ることができる。また、梁や力点を増加させることなく1本の梁で複数種類の力及びトルクを精度よく検出することができるため、センサチップを小型化できる。
According to the above-described sensor chip according to the present embodiment, deformation of the beam when a force is applied is changed by providing a portion where the beam width is narrowed due to the tapered shape or the concave shape in the middle portion of the beam. , Can create a new location where stress can be detected. Thereby, it is possible to control the stress generation point. In addition, by detecting the stress generated at different locations of the beam (locations away from the beam) depending on the type of input, axis separation with less interference can be realized, and high accuracy can be achieved for multiple inputs. It can be detected. In the sensor chip according to the present embodiment, a high effect can be obtained particularly for axial separation of Mz and My. In addition, since a plurality of types of force and torque can be accurately detected with one beam without increasing the beam or the force point, the sensor chip can be miniaturized.
また、上記の本実施の形態のセンサチップは、検知用梁113eは、直線部と、連結部により直線部に連結される傾斜部とを有し、ピエゾ抵抗素子FzR2、FzR3、FzR1’、FzR4’は、上記の構成の検知用梁113eにおいて、連結部より傾斜部側に配置されている。また、検知用梁113kは、直線部と、連結部により直線部に連結される傾斜部とを有し、ピエゾ抵抗素子FzR1、FzR4、FzR2’、FzR3’は、上記の構成の検知用梁113kにおいて、連結部より傾斜部側に配置されている。この構成と、それによる効果については、第2の構成及び効果として後述する。
In the sensor chip of the present embodiment, the detection beam 113e has a linear portion and an inclined portion connected to the linear portion by the connecting portion, and the piezoresistive elements FzR2, FzR3, FzR1 ′, FzR4. In the detection beam 113e of the above configuration, 'is disposed closer to the inclined portion than the connection portion. The detection beam 113k has a linear portion and an inclined portion connected to the linear portion by the connecting portion, and the piezoresistive elements FzR1, FzR4, FzR2 ', and FzR3' have the above-described detection beam 113k. , Are arranged on the side of the inclined portion with respect to the connecting portion. This configuration and the effect thereof will be described later as a second configuration and effect.
上記の本実施の形態に係るセンサチップによれば、梁の根元に傾斜部を設けることにより、力が印加されたときの梁の変形が変わり、新たに応力を検出できる箇所を作り出すことができる。これにより、応力発生個所を制御することが可能である。また、入力の種類によって梁の異なる箇所(梁の離れた箇所)に発生する応力をピエゾ抵抗素子で検出することで、干渉の少ない軸分離が実現でき、複合的な入力に対して高精度に検出することができる。本実施の形態に係るセンサチップでは、特にFxとFzの軸分離、及び、FxとMx、Myとの軸分離について高い効果を得ることができる。また、梁や力点を増加させることなく1本の梁で複数種類の力及びトルクを精度よく検出することができるため、センサチップを小型化できる。また、梁の根元に傾斜部を設けることで梁の剛性が高められ、耐荷重を向上できる。
According to the above-described sensor chip according to the present embodiment, by providing the sloped portion at the root of the beam, the deformation of the beam when a force is applied is changed, and it is possible to create a new place where stress can be detected. . Thereby, it is possible to control the stress generation point. In addition, by detecting the stress generated at different locations of the beam (locations away from the beam) depending on the type of input, axis separation with less interference can be realized, and high accuracy can be achieved for multiple inputs. It can be detected. In the sensor chip according to the present embodiment, high effects can be obtained particularly on axial separation of Fx and Fz, and axial separation of Fx and Mx, My. In addition, since a plurality of types of force and torque can be accurately detected with one beam without increasing the beam or the force point, the sensor chip can be miniaturized. In addition, by providing the sloped portion at the root of the beam, the rigidity of the beam can be enhanced and the load resistance can be improved.
(起歪体20)
図7は、起歪体20を例示する図(その1)であり、図7(a)は斜視図、図7(b)は側面図である。図8は、起歪体20を例示する図(その2)であり、図8(a)は平面図、図8(b)は図8(a)のA-A線に沿う縦断面斜視図である。図8(a)において、便宜上、同一高さの面を同一の梨地模様で示している。図9は、起歪体20を例示する図(その3)であり、図9(a)は図8(a)のB-B線に沿う縦断面図であり、図9(b)は図9(a)のC-C線に沿う横断面図である。 (Eroded body 20)
FIG. 7 is a diagram (part 1) illustrating thestrain generating body 20, FIG. 7 (a) is a perspective view, and FIG. 7 (b) is a side view. FIG. 8 is a diagram (part 2) illustrating the strain generating body 20, and FIG. 8 (a) is a plan view, and FIG. 8 (b) is a longitudinal sectional perspective view taken along line AA of FIG. 8 (a). It is. In FIG. 8A, for the sake of convenience, surfaces having the same height are shown in the same textured pattern. FIG. 9 is a diagram (part 3) illustrating the strain generating body 20, and FIG. 9 (a) is a longitudinal sectional view taken along the line BB of FIG. 8 (a), and FIG. 9 (b) is a diagram Fig. 9 is a cross-sectional view taken along the line C-C of 9 (a).
図7は、起歪体20を例示する図(その1)であり、図7(a)は斜視図、図7(b)は側面図である。図8は、起歪体20を例示する図(その2)であり、図8(a)は平面図、図8(b)は図8(a)のA-A線に沿う縦断面斜視図である。図8(a)において、便宜上、同一高さの面を同一の梨地模様で示している。図9は、起歪体20を例示する図(その3)であり、図9(a)は図8(a)のB-B線に沿う縦断面図であり、図9(b)は図9(a)のC-C線に沿う横断面図である。 (Eroded body 20)
FIG. 7 is a diagram (part 1) illustrating the
図7~図9に示すように、起歪体20は、被固定部に直接取り付けられる土台21と、センサチップ110を搭載するセンサチップ搭載部となる柱28と、柱28の周囲に離間して配置された柱22a~22dとを備えている。
As shown in FIGS. 7 to 9, the strain-generating body 20 is separated from the base 21 directly attached to the fixed portion, the pillar 28 serving as a sensor chip mounting portion for mounting the sensor chip 110, and the periphery of the pillar 28. And columns 22a-22d.
より詳しくは、起歪体20において、略円形の土台21の上面に、土台21の中心に対して均等(点対称)となるように4本の柱22a~22dが配置され、隣接する柱同士を連結する第1の梁である4本の梁23a~23dが枠状に設けられている。そして、土台21の上面中央の上方に、柱28が配置されている。なお、土台21の平面形状は円形には限定されず、多角形等(例えば、正方形等)としてもよい。
More specifically, in the strain generating body 20, four columns 22a to 22d are arranged on the upper surface of the substantially circular base 21 so as to be uniform (point-symmetrical) with respect to the center of the base 21. The four beams 23a to 23d, which are the first beams connecting the two, are provided in a frame shape. A pillar 28 is disposed above the center of the top surface of the base 21. The planar shape of the base 21 is not limited to a circle, and may be a polygon or the like (for example, a square or the like).
柱28は、柱22a~22dよりも太くて短く形成されている。なお、センサチップ110は、柱22a~22dの上面から突出しないように、柱28上に固定される。
The column 28 is formed thicker and shorter than the columns 22a to 22d. The sensor chip 110 is fixed on the column 28 so as not to protrude from the top surfaces of the columns 22a to 22d.
柱28は、土台21の上面には直接固定されていなく、接続用梁28a~28dを介して柱22a~22dに固定されている。そのため、土台21の上面と柱28の下面との間には空間がある。柱28の下面と、接続用梁28a~28dの各々の下面とは、面一とすることができる。
The pillars 28 are not directly fixed to the upper surface of the base 21, but are fixed to the pillars 22a to 22d via connecting beams 28a to 28d. Therefore, there is a space between the upper surface of the base 21 and the lower surface of the column 28. The lower surface of the column 28 and the lower surface of each of the connecting beams 28a to 28d can be flush with each other.
柱28の接続用梁28a~28dが接続される部分の横断面形状は例えば矩形であり、矩形の四隅と矩形の四隅に対向する柱22a~22dとが接続用梁28a~28dを介して接続されている。接続用梁28a~28dが、柱22a~22dと接続される位置221~224は、柱22a~22dの高さ方向の中間よりも下側であることが好ましい。この理由については、後述する。なお、柱28の接続用梁28a~28dが接続される部分の横断面形状は矩形には限定されず、円形や多角形等(例えば、六角形等)としてもよい。
The cross-sectional shape of the portion to which the connection beams 28a to 28d of the column 28 are connected is, for example, a rectangle, and the four corners of the rectangle and the columns 22a to 22d opposed to the four corners of the rectangle are connected via the connection beams 28a to 28d. It is done. The positions 221 to 224 where the connecting beams 28a to 28d are connected to the columns 22a to 22d are preferably lower than the middle in the height direction of the columns 22a to 22d. The reason will be described later. The cross-sectional shape of the portion to which the connection beams 28a to 28d of the column 28 are connected is not limited to a rectangle, and may be a circle, a polygon or the like (for example, a hexagon or the like).
接続用梁28a~28dは、土台21の中心に対して均等(点対称)となるように、土台21の上面と所定間隔を空けて土台21の上面と略平行に配置されている。接続用梁28a~28dの太さや厚み(剛性)は、起歪体20の変形を妨げないようにするため、柱22a~22dや梁23a~23dよりも細く薄く形成することが好ましい。
The connection beams 28a to 28d are disposed substantially parallel to the upper surface of the base 21 at a predetermined distance from the upper surface of the base 21 so as to be uniform (point-symmetrical) with respect to the center of the base 21. The thickness and thickness (rigidity) of the connecting beams 28a to 28d are preferably thinner than the columns 22a to 22d and the beams 23a to 23d so as not to prevent the deformation of the strain generating body 20.
このように、土台21の上面と柱28の下面とは所定の距離だけ離れている。所定の距離は、例えば、数mm程度とすることができる。柱28を土台21の上面に直接固定せずに、土台21の上面と柱28の下面とを所定の距離だけ離すことの技術的意義については図17~図22を参照しながら後述する。
Thus, the upper surface of the base 21 and the lower surface of the column 28 are separated by a predetermined distance. The predetermined distance can be, for example, about several millimeters. The technical significance of separating the upper surface of the base 21 and the lower surface of the column 28 by a predetermined distance without directly fixing the column 28 on the upper surface of the base 21 will be described later with reference to FIGS. 17 to 22.
土台21には、起歪体20を被固定部にねじ等を用いて締結するための貫通孔21xが設けられている。本実施の形態では、土台21には4つの貫通孔21xが設けられているが、貫通孔21xの個数は任意に決定することができる。
The base 21 is provided with a through hole 21x for fastening the strain-generating body 20 to a portion to be fixed using a screw or the like. In the present embodiment, four through holes 21 x are provided in the base 21, but the number of through holes 21 x can be arbitrarily determined.
土台21を除く起歪体20の概略形状は、例えば、縦5000μm程度、横5000μm程度、高さ7000μm程度の直方体状とすることができる。柱22a~22dの横断面形状は、例えば、1000μm角程度の正方形とすることができる。柱28の横断面形状は、例えば、2000μm角程度の正方形とすることができる。
The schematic shape of the strain generating body 20 excluding the base 21 can be, for example, a rectangular solid having a length of about 5000 μm, a width of about 5000 μm, and a height of about 7000 μm. The cross-sectional shape of the columns 22a to 22d can be, for example, a square of about 1000 μm square. The cross-sectional shape of the column 28 can be, for example, a square of about 2000 μm square.
但し、起歪体20において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。例えば、柱22a~22dの土台21の上面の中心側の面は、上下がR状に形成されていることが好ましい。同様に、梁23a~23dの土台21の上面と対向する面は、左右がR状に形成されていることが好ましい。
However, from the viewpoint of suppressing stress concentration in the strain generating body 20, it is preferable that the portion forming the inner angle be R-shaped. For example, it is preferable that the center side surface of the upper surface of the base 21 of the columns 22a to 22d be formed in an R-shape at the top and bottom. Similarly, the surface of the beams 23a to 23d facing the upper surface of the base 21 is preferably formed in an R shape on the left and right.
梁23a~23dのそれぞれの上面の長手方向の中央部には、梁23a~23dの長手方向の中央部から上方に突起する突起部が設けられ、突起部上に、例えば四角柱状の入力部24a~24dが設けられている。入力部24a~24dは外部から力が印加される部分であり、入力部24a~24dに力が印加されると、それに応じて梁23a~23d及び柱22a~22dが変形する。
At the central portion in the longitudinal direction of the upper surface of each of the beams 23a to 23d, a projecting portion projecting upward from the central portion in the longitudinal direction of the beams 23a to 23d is provided. To 24 d are provided. The input portions 24a to 24d are portions to which a force is applied from the outside, and when a force is applied to the input portions 24a to 24d, the beams 23a to 23d and the columns 22a to 22d are deformed accordingly.
このように、4つの入力部24a~24dを設けることで、例えば1つの入力部の構造と比較して、梁23a~23dの耐荷重を向上することができる。
Thus, by providing the four input parts 24a to 24d, it is possible to improve the load resistance of the beams 23a to 23d, for example, as compared with the structure of one input part.
柱28の上面の四隅には4本の柱25a~25dが配置され、柱28の上面の中央部には第4の柱である柱25eが配置されている。柱25a~25eは、同一の高さに形成されている。
Four pillars 25a to 25d are disposed at four corners of the top surface of the pillar 28, and a pillar 25e which is a fourth pillar is disposed at the center of the top surface of the pillar 28. The columns 25a to 25e are formed at the same height.
すなわち、柱25a~25eのそれぞれの上面は、同一平面上に位置している。柱25a~25eのそれぞれの上面は、センサチップ110の下面と接着される接合部となる。
That is, the upper surfaces of the columns 25a to 25e are located on the same plane. The upper surface of each of the pillars 25a to 25e is a joint bonded to the lower surface of the sensor chip 110.
梁23a~23dのそれぞれの内側面の長手方向の中央部には、梁23a~23dのそれぞれの内側面から水平方向内側に突出する梁26a~26dが設けられている。梁26a~26dは、梁23a~23dや柱22a~22dの変形をセンサチップ110に伝達する第2の梁である。また、梁26a~26dのそれぞれの上面の先端側には、梁26a~26dのそれぞれの上面の先端側から上方に突起する突起部27a~27dが設けられている。
At the central portion in the longitudinal direction of the inner side surface of each of the beams 23a to 23d, beams 26a to 26d are provided which project inward in the horizontal direction from the inner surface of each of the beams 23a to 23d. The beams 26a to 26d are second beams for transmitting the deformation of the beams 23a to 23d and the columns 22a to 22d to the sensor chip 110. Further, on the tip end side of the upper surface of each of the beams 26a to 26d, there are provided protrusions 27a to 27d which project upward from the tip end side of the upper surface of each of the beams 26a to 26d.
突起部27a~27dは、同一の高さに形成されている。すなわち、突起部27a~27dのそれぞれの上面は、同一平面上に位置している。突起部27a~27dのそれぞれの上面は、センサチップ110の下面と接着される接合部となる。梁26a~26d及び突起部27a~27dは、可動部となる梁23a~23dと連結されているため、入力部24a~24dに力が印加されると、それに応じて変形する。
The protrusions 27a to 27d are formed at the same height. That is, the upper surfaces of the protrusions 27a to 27d are located on the same plane. The upper surface of each of the protrusions 27a to 27d is a bonding portion bonded to the lower surface of the sensor chip 110. The beams 26a to 26d and the protrusions 27a to 27d are connected to the beams 23a to 23d serving as movable parts, and therefore deform when the force is applied to the input units 24a to 24d.
なお、入力部24a~24dに力が印加されていない状態では、柱25a~25eのそれぞれの上面と、突起部27a~27dのそれぞれの上面とは、同一平面上に位置している。
When no force is applied to the input portions 24a to 24d, the upper surfaces of the columns 25a to 25e and the upper surfaces of the protrusions 27a to 27d are located on the same plane.
起歪体20において、土台21、柱22a~22d、柱28、梁23a~23d、入力部24a~24d、柱25a~25e、梁26a~26d、及び突起部27a~27dの各部位は、剛性を確保しかつ精度良く作製する観点から、一体に形成されていることが好ましい。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。
In the strain generating body 20, each portion of the base 21, the columns 22a to 22d, the columns 28, the beams 23a to 23d, the input parts 24a to 24d, the columns 25a to 25e, the beams 26a to 26d, and the protrusions 27a to 27d have rigidity Preferably, they are integrally formed from the viewpoint of securing and manufacturing with high accuracy. As a material of the strain generating body 20, for example, a hard metal material such as SUS (stainless steel) can be used. Among them, it is preferable to use SUS630 which is particularly hard and has high mechanical strength.
このように、センサチップ110と同様に、起歪体20も柱と梁とを備えた構造とすることで、印加される力によって6軸それぞれで異なる変形を示すため、6軸の分離性が良い変形をセンサチップ110に伝えることができる。
As described above, similarly to the sensor chip 110, when the strain-generating body 20 also has a column and a beam, the six-axis separability can be obtained because each of the six axes exhibits different deformation depending on the applied force. Good deformation can be transmitted to the sensor chip 110.
すなわち、起歪体20の入力部24a~24dに印加された力を、柱22a~22d、梁23a~23d、及び梁26a~26dを介してセンサチップ110に伝達し、センサチップ110で変位を検知する。そして、センサチップ110において、1つの軸につき1個ずつ形成されたブリッジ回路から各軸の出力を得ることができる。
That is, the force applied to the input portions 24a to 24d of the strain generating body 20 is transmitted to the sensor chip 110 through the columns 22a to 22d, the beams 23a to 23d, and the beams 26a to 26d, and the displacement is detected by the sensor chip 110. Detect Then, in the sensor chip 110, the output of each axis can be obtained from a bridge circuit formed one for each axis.
(力覚センサ装置1の製造工程)
図10~図12は、力覚センサ装置1の製造工程を例示する図である。まず、図10(a)に示すように、起歪体20を作製する。起歪体20は、例えば、成形や切削、ワイヤ放電等により一体に形成することができる。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。起歪体20を成形により作製する場合には、例えば、金属粒子とバインダーとなる樹脂とを金型に入れて成形し、その後、焼結して樹脂を蒸発させることで、金属からなる起歪体20を作製できる。 (Manufacturing process of force sensor device 1)
10 to 12 illustrate the manufacturing process of theforce sensor device 1. First, as shown in FIG. 10A, the strain generating body 20 is manufactured. The strain generating body 20 can be integrally formed, for example, by molding, cutting, wire discharge, or the like. As a material of the strain generating body 20, for example, a hard metal material such as SUS (stainless steel) can be used. Among them, it is preferable to use SUS630 which is particularly hard and has high mechanical strength. In the case of producing the strain generating body 20 by molding, for example, a metal particle and a resin to be a binder are put in a mold and formed, and thereafter, the strain is formed by sintering by evaporating the resin. The body 20 can be made.
図10~図12は、力覚センサ装置1の製造工程を例示する図である。まず、図10(a)に示すように、起歪体20を作製する。起歪体20は、例えば、成形や切削、ワイヤ放電等により一体に形成することができる。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。起歪体20を成形により作製する場合には、例えば、金属粒子とバインダーとなる樹脂とを金型に入れて成形し、その後、焼結して樹脂を蒸発させることで、金属からなる起歪体20を作製できる。 (Manufacturing process of force sensor device 1)
10 to 12 illustrate the manufacturing process of the
次に、図10(b)に示す工程では、柱25a~25eの上面、及び突起部27a~27dの上面に接着剤41を塗布する。接着剤41としては、例えば、エポキシ系の接着剤等を用いることができる。外部から印加される力に対する耐力の点から、接着剤41はヤング率1GPa以上で厚さ20μm以下であることが好ましい。
Next, in a step shown in FIG. 10B, the adhesive 41 is applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d. For example, an epoxy-based adhesive can be used as the adhesive 41. The adhesive 41 preferably has a Young's modulus of 1 GPa or more and a thickness of 20 μm or less from the viewpoint of resistance to a force applied from the outside.
次に、図11(a)に示す工程では、センサチップ110を作製する。センサチップ110は、例えば、SOI基板を準備し、準備した基板にエッチング加工(例えば、反応性イオンエッチング等)等を施す周知の方法により作製できる。また、電極や配線は、例えば、基板の表面にスパッタ法等によりアルミニウム等の金属膜を成膜後、金属膜をフォトリソグラフィによってパターニングすることにより作製できる。
Next, in a process shown in FIG. 11A, the sensor chip 110 is manufactured. The sensor chip 110 can be manufactured by, for example, a known method in which an SOI substrate is prepared and the prepared substrate is subjected to etching (for example, reactive ion etching). The electrodes and the wirings can be produced, for example, by forming a metal film such as aluminum on the surface of the substrate by sputtering or the like and then patterning the metal film by photolithography.
次に、図11(b)に示す工程では、センサチップ110の下面が柱25a~25eの上面、及び突起部27a~27dの上面に塗布された接着剤41と接するように、センサチップ110を起歪体20内に加圧しながら配置する。そして、接着剤41を所定温度に加熱して硬化させる。これにより、センサチップ110が起歪体20内に固定される。具体的には、センサチップ110の支持部111a~111dが各々柱25a~25e上に固定され、支持部111eが柱25e上に固定され、力点114a~114dが各々突起部27a~27d上に固定される。
Next, in the process shown in FIG. 11B, the sensor chip 110 is in contact with the adhesive 41 applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d in the lower surface of the sensor chip 110. The pressure is placed in the strain generating body 20 while being arranged. Then, the adhesive 41 is heated to a predetermined temperature to be cured. Thereby, the sensor chip 110 is fixed in the strain generating body 20. Specifically, the support portions 111a to 111d of the sensor chip 110 are fixed on the pillars 25a to 25e, the support portion 111e is fixed on the pillar 25e, and the force points 114a to 114d are fixed on the protrusions 27a to 27d, respectively. Be done.
次に、図12(a)に示す工程では、柱22a~22dの上面に、接着剤42を塗布する。接着剤42としては、例えば、エポキシ系の接着剤等を用いることができる。なお、接着剤42は、入出力基板30を起歪体20上に固定するためのものであり、外部から力が印加されないため、汎用の接着剤を用いることができる。
Next, in the step shown in FIG. 12A, the adhesive 42 is applied to the top surfaces of the columns 22a to 22d. For example, an epoxy-based adhesive can be used as the adhesive 42. The adhesive 42 is for fixing the input / output substrate 30 on the strain-generating body 20, and a general-purpose adhesive can be used because a force is not applied from the outside.
次に、図12(b)に示す工程では、能動部品32~35及び受動部品39が実装された入出力基板30を準備し、入出力基板30の下面が柱22a~22dの上面に塗布された接着剤42と接するように、入出力基板30を起歪体20上に配置する。そして、入出力基板30を起歪体20側に加圧しながら接着剤42を所定温度に加熱して硬化させる。これにより、入出力基板30が起歪体20に固定される。
Next, in the process shown in FIG. 12B, the input / output substrate 30 on which the active components 32 to 35 and the passive components 39 are mounted is prepared, and the lower surface of the input / output substrate 30 is applied to the upper surfaces of the columns 22a to 22d. The input / output substrate 30 is disposed on the strain generating body 20 so as to be in contact with the adhesive 42. Then, the adhesive 42 is heated to a predetermined temperature and cured while pressing the input / output substrate 30 to the strain generating body 20 side. Thereby, the input / output substrate 30 is fixed to the strain generating body 20.
なお、入出力基板30は、センサチップ110及び入力部24a~24dを露出するように起歪体20に固定される。入出力基板30の各電極31は、入力部24a~24dに力が印加された際の歪みが最も少ない、起歪体20の柱22a~22d上に配置することが好ましい。
The input / output board 30 is fixed to the strain generating body 20 so as to expose the sensor chip 110 and the input parts 24a to 24d. The electrodes 31 of the input / output substrate 30 are preferably disposed on the columns 22a to 22d of the strain generating body 20 with the least distortion when a force is applied to the input portions 24a to 24d.
その後、入出力基板30の起歪体20から水平方向にはみ出した部分(入力端子側を除く)を、起歪体20の各側面側に折り曲げる。そして、入出力基板30とセンサチップ110の対応する部分をボンディングワイヤ等(図示せず)により電気的に接続する。これにより、力覚センサ装置1が完成する。
Thereafter, the portions (except the input terminal side) of the input / output substrate 30 protruding in the horizontal direction from the strain generating body 20 are bent to the side surfaces of the strain generating body 20. Then, corresponding portions of the input / output substrate 30 and the sensor chip 110 are electrically connected by bonding wires or the like (not shown). Thus, the force sensor device 1 is completed.
このように、力覚センサ装置1は、センサチップ110、起歪体20、及び入出力基板30の3部品のみで作製できるため、組み立てが容易であり、かつ位置合わせ箇所も最低限で済むため、実装起因による精度の劣化を抑制できる。
As described above, since the force sensor device 1 can be manufactured using only the three components of the sensor chip 110, the strain generating body 20, and the input / output substrate 30, assembly is easy and the position alignment position can be minimized. And deterioration in accuracy due to mounting can be suppressed.
また、起歪体20において、センサチップ110との接続箇所(柱25a~25eの上面、及び突起部27a~27dの上面)は全て同一平面にあるため、起歪体20に対するセンサチップ110の位置合わせが1回で済み、起歪体20にセンサチップ110を実装することが容易である。
Further, in the strain generating body 20, since all the connection points with the sensor chip 110 (the upper surfaces of the columns 25a to 25e and the upper surfaces of the protrusions 27a to 27d) are on the same plane, the position of the sensor chip 110 with respect to the strain generating body 20. The alignment can be performed once, and it is easy to mount the sensor chip 110 on the strain generating body 20.
以下に、第1及び第2の構成及び効果について説明する。
The first and second configurations and effects will be described below.
[第1の構成及び効果]
(検知用梁の形状の詳細)
図13(a)は、本実施の形態に係るセンサチップの一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。また、ピエゾ抵抗素子MzR1、MzR2、MzR3、MzR4、MzR1’、MzR2’、MzR3’、MzR4’を代表してMzR1、MzR2で示している。 [First configuration and effect]
(Details of shape of detection beam)
FIG. 13A is an enlarged plan view of an essential part of an example of the sensor chip according to the present embodiment. The detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m. The detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n. The detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o. Further, the piezoresistive elements MzR1, MzR2, MzR3, MzR4, MzR1 ', MzR2', MzR3 'and MzR4' are represented by MzR1 and MzR2 as a representative.
(検知用梁の形状の詳細)
図13(a)は、本実施の形態に係るセンサチップの一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。また、ピエゾ抵抗素子MzR1、MzR2、MzR3、MzR4、MzR1’、MzR2’、MzR3’、MzR4’を代表してMzR1、MzR2で示している。 [First configuration and effect]
(Details of shape of detection beam)
FIG. 13A is an enlarged plan view of an essential part of an example of the sensor chip according to the present embodiment. The
図13に示されるセンサチップの検知用梁113mにおいて、検知用梁113mが支持部と連結される位置から、ピエゾ抵抗素子MzR1及びMzR2が形成された位置にかけて、検知用梁113mの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。また、検知用梁113mは、検知用梁113mが力点と連結される位置から、ピエゾ抵抗素子MzR1及びMzR2が形成された位置にかけて、検知用梁113mの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する。即ち、支持部または力点と連結される位置の検知用梁113mの幅である第1梁幅W3’より、ピエゾ抵抗素子MzR1及びMzR2が形成された位置の検知用梁113mの幅である第2梁幅W1’の方が小さい。このように、検知用梁113mは、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されており、この梁幅が狭くなった箇所113qの検知用梁113mの上にピエゾ抵抗素子MzR1及びMzR2が形成されている。
In the detection beam 113m of the sensor chip shown in FIG. 13, the detection beam 113m extends from the position where the detection beam 113m is connected to the support to the position where the piezoresistive elements MzR1 and MzR2 are formed. At both sides, it has a tapered shape in which the beam width gradually narrows. The detection beam 113m has a beam width on both sides in the lateral direction of the detection beam 113m from the position where the detection beam 113m is connected to the force point to the position where the piezoresistive elements MzR1 and MzR2 are formed. It has a tapered shape that narrows gradually. That is, from the first beam width W3 'which is the width of the detection beam 113m at the position connected to the support portion or the power point, the second width which is the width of the detection beam 113m at the position where the piezoresistive elements MzR1 and MzR2 are formed The beam width W1 'is smaller. Thus, in the detection beam 113m, a portion where the beam width is narrowed is formed between the position where it is connected with the support portion and the position where it is connected with the power point. Piezoresistive elements MzR1 and MzR2 are formed on the detection beam 113m.
上記の本実施の形態のセンサチップにおいて、Z軸方向のモーメント(Mz)が入力されたとき、検知用梁113mにおいて発生する応力は、検知用梁113mの梁幅が狭くなった箇所113qとその近傍で大きくなる。従って、この梁幅が狭くなった箇所113qに配置されたピエゾ抵抗素子MzR1及びMzR2は、Z軸方向のモーメント(Mz)に対して高感度となる。梁幅が狭くなった箇所113qの位置は、例えば、検知用梁113mが支持部と連結される位置と力点と連結される位置の中点あるいはその近傍である。Z軸方向のモーメント(Mz)の入力時の応力が、検知用梁113mの梁幅が狭くなった箇所113qで大きくなるものであるから、梁幅が狭くなった箇所113qの位置は、検知用梁113mが支持部と連結される位置と力点と連結される位置の中点あるいはその近傍であることに限定されず、上記の中点よりも支持部側あるいは力点側に寄っていてもよい。この場合、梁幅が狭くなった箇所113qの検知用梁113mの上にピエゾ抵抗素子MzR1及びMzR2が形成されていればよい。
In the sensor chip of the present embodiment described above, when a moment (Mz) in the Z-axis direction is input, the stress generated in the detection beam 113m is the location 113q of the detection beam 113m at which the beam width is narrowed and the stress It grows in the vicinity. Therefore, the piezoresistive elements MzR1 and MzR2 disposed at the portion 113q where the beam width is narrowed have high sensitivity to the moment (Mz) in the Z-axis direction. The position of the portion 113 q where the beam width is narrowed is, for example, a midpoint between or near the position where the detection beam 113 m is connected to the support portion and the position where the force point is connected. The stress at the time of input of the moment (Mz) in the Z-axis direction becomes large at the location 113q where the beam width of the detection beam 113m becomes narrow, so the position of the location 113q where the beam width becomes narrow is for detection The beam 113m is not limited to be at or near the middle point of the position where it is connected to the support portion and the position where it is connected to the power point, and may be closer to the support portion side or the power point side than the above middle point. In this case, the piezoresistive elements MzR1 and MzR2 may be formed on the detection beam 113m at the portion 113q where the beam width is narrowed.
一方、センサチップにX軸方向の力(Fx)が入力されたときに、ピエゾ抵抗素子MzR1及びMzR2が形成されている、検知用梁113mの梁幅が狭くなった箇所113qには、応力はほとんど発生しない。また、センサチップにY軸方向のモーメント(My)が入力されたときに、ピエゾ抵抗素子MzR1及びMzR2が形成されている、検知用梁113mの梁幅が狭くなった箇所113qには、応力はほとんど発生しない。
On the other hand, when force (Fx) in the X-axis direction is input to the sensor chip, stress is generated at the location 113q where the beam width of the detection beam 113m is reduced, where the piezoresistive elements MzR1 and MzR2 are formed. It hardly happens. In addition, when moment (My) in the Y-axis direction is input to the sensor chip, stress is generated at the location 113q where the beam width of the detection beam 113m is narrowed, where the piezoresistive elements MzR1 and MzR2 are formed. It hardly happens.
本実施の形態のセンサチップによれば、Z軸方向のモーメント(Mz)と、X軸方向の力(Fx)及びY軸方向のモーメント(My)との軸分離性が高められる。センサチップの複合入力に対する軸分離性を向上させて、センサ精度を改善することができる。
According to the sensor chip of the present embodiment, axial separation between the moment (Mz) in the Z-axis direction, the force (Fx) in the X-axis direction and the moment (My) in the Y-axis direction is enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
本実施の形態のセンサチップにおいて、第2梁幅W1’/第1梁幅W3’は0.5以下であることが好ましい。これにより、Z軸方向のモーメント(Mz)が入力されたときの応力が検知用梁113a、113d、113g、113jの梁幅が狭くなった箇所で高めることができる。例えば、第1梁幅W3’は100μm~115μm程度であり、第2梁幅W1’は50μm程度である。
In the sensor chip of the present embodiment, it is preferable that the second beam width W1 '/ the first beam width W3' be 0.5 or less. As a result, the stress when the moment (Mz) in the Z-axis direction is input can be increased at the portions where the beam widths of the detection beams 113a, 113d, 113g, and 113j are narrowed. For example, the first beam width W3 'is about 100 μm to 115 μm, and the second beam width W1' is about 50 μm.
上記においては、検知用梁113mの短手方向の両側部において、梁幅が徐々に狭まるテーパー形状を有する場合を説明しているが、検知用梁113mの短手方向の一方の側部で梁幅が徐々に狭まるテーパー形状を有する構成であってもよい。
In the above, the case is described in which both sides of the detection beam 113m in the lateral direction have a tapered shape in which the beam width gradually narrows, but one side of the detection beam 113m in the lateral direction The configuration may have a tapered shape in which the width gradually narrows.
図13(b)は検知用梁113m部分を拡大した平面図である。検知用梁113mの短手方向のテーパー部分の長さAと、検知用梁113mの長手方向のテーパー部分の長さBについて、A:B=1:8.5~1:10.5の式を満たすA及びBの値を有するテーパー形状であることが好ましい。テーパー角度が足らないとMz入力時の応力が、検知用梁の梁幅が狭められた箇所以外の領域に発生する可能性がある。テーパー角度が過度であると、検知用梁の梁幅が狭められた箇所の機械的強度が低下する可能性がある。
FIG. 13B is an enlarged plan view of the detection beam 113m. For the length A of the tapered portion of the detection beam 113m and the length B of the tapered portion of the detection beam 113m, the formula of A: B = 1: 8.5 to 1: 10.5 It is preferable that the tapered shape has values of A and B that satisfy If the taper angle is insufficient, stress at the time of Mz input may occur in an area other than the portion where the beam width of the detection beam is narrowed. If the taper angle is excessive, the mechanical strength of the portion where the beam width of the detection beam is narrowed may be reduced.
図14(a)及び(b)は、本実施の形態に係るセンサチップの他の一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jに対応する梁をまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kに対応する梁をまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lに対応する梁をまとめて検知用梁113oで示している。また、ピエゾ抵抗素子MzR1、MzR2、MzR3、MzR4、MzR1’、MzR2’、MzR3’、MzR4’を代表してMzR1、MzR2で示している。
FIGS. 14A and 14B are enlarged plan views of the main part of another example of the sensor chip according to the present embodiment. Beams corresponding to the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by a detection beam 113m. Beams corresponding to the detection beams 113b, 113e, 113h, and 113k are collectively shown by the detection beam 113n. Beams corresponding to the detection beams 113c, 113f, 113i, and 113l are collectively shown by the detection beam 113o. The piezoresistive elements MzR1, MzR2, MzR3, MzR4, MzR1 ', MzR2', MzR3 'and MzR4' are represented by MzR1 and MzR2 as a representative.
図14に示されるセンサチップは、検知用梁113mの短手方向の両側部において凹形状113pが設けられている。これにより、検知用梁113mの梁幅が狭められた箇所を有する。凹形状113pが設けられて梁幅が狭められた箇所の検知用梁113mの上に、Z軸方向のモーメント検出用のピエゾ抵抗素子MzR1、MzR2が設けられている。即ち、支持部または力点と連結される位置の検知用梁113mの幅である第1梁幅W3より、ピエゾ抵抗素子MzR1及びMzR2が形成された位置の検知用梁113mの幅である第2梁幅W1の方が小さい。このように、検知用梁113mは、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されており、この梁幅が狭くなった箇所の検知用梁113mの上にピエゾ抵抗素子MzR1及びMzR2が形成されている。
In the sensor chip shown in FIG. 14, concave shapes 113p are provided on both sides in the short direction of the detection beam 113m. Thus, the beam width of the detection beam 113m is narrowed. Piezoresistive elements MzR1 and MzR2 for detecting a moment in the Z-axis direction are provided on the detection beam 113m in a portion where the concave shape 113p is provided and the beam width is narrowed. That is, from the first beam width W3 which is the width of the detection beam 113m at the position connected to the support portion or the power point, the second beam which is the width of the detection beam 113m at the position where the piezoresistive elements MzR1 and MzR2 are formed. The width W1 is smaller. As described above, in the detection beam 113m, a portion where the beam width is narrowed is formed between the position where it is connected with the support portion and the position where it is connected with the power point. Detection of the portion where the beam width becomes narrow Piezoresistive elements MzR1 and MzR2 are formed on the beam 113m.
図14に示されるセンサチップにおいて、Z軸方向のモーメント(Mz)が入力されたとき、検知用梁113mにおいて発生する応力は、検知用梁113mの梁幅が狭くなった凹形状113pとその近傍で大きくなる。一方、センサチップにX軸方向の力(Fx)が入力されたときに、ピエゾ抵抗素子MzR1及びMzR2が形成されている、検知用梁113mの梁幅が狭くなった凹形状113pには、応力はほとんど発生しない。また、センサチップにY軸方向のモーメント(My)が入力されたときに、ピエゾ抵抗素子MzR1及びMzR2が形成されている、検知用梁113mの梁幅が狭くなった凹形状113pには、応力はほとんど発生しない。このように、Z軸方向のモーメント(Mz)と、X軸方向の力(Fx)及びY軸方向のモーメント(My)との軸分離性が高められる。センサチップの複合入力に対する軸分離性を向上させて、センサ精度を改善することができる。
In the sensor chip shown in FIG. 14, when a moment (Mz) in the Z-axis direction is input, the stress generated in the detection beam 113m is the concave shape 113p where the beam width of the detection beam 113m is narrowed and its vicinity It becomes large. On the other hand, when force (Fx) in the X-axis direction is input to the sensor chip, stress is applied to the concave shape 113p where the beam width of the detection beam 113m is narrowed, where the piezoresistive elements MzR1 and MzR2 are formed. Rarely occurs. In addition, when a moment (My) in the Y-axis direction is input to the sensor chip, stress is applied to the concave shape 113p where the beam width of the detection beam 113m is narrowed, in which the piezoresistive elements MzR1 and MzR2 are formed. Rarely occurs. Thus, axial separation between the moment (Mz) in the Z-axis direction and the force (Fx) in the X-axis direction and the moment (My) in the Y-axis direction is enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
図14に示されるセンサチップにおいて、凹形状113pの位置は、例えば、検知用梁113mが支持部と連結される位置と力点と連結される位置の中点あるいはその近傍であるが、これに限定されず、上記の中点よりも支持部側あるいは力点側に寄っていてもよい。この場合、凹形状113pにより梁幅が狭くなった箇所の検知用梁113mの上にピエゾ抵抗素子MzR1及びMzR2が形成されていればよい。
In the sensor chip shown in FIG. 14, the position of the concave shape 113p is, for example, the middle point of the position where the detection beam 113m is connected with the support portion and the position where it is connected with the power point or nearby. It may be nearer to the support part side or the power point side than the above-mentioned middle point. In this case, the piezoresistive elements MzR1 and MzR2 may be formed on the detection beam 113m at a position where the beam width is narrowed due to the concave shape 113p.
例えば、第1梁幅W3は100μm~115μm程度であり、第2梁幅W1は50μm程度である。第2梁幅W1/第1梁幅W3は0.5以下であることが好ましい。支持部または力点と連結される位置と凹形状113pを除く部分の検知用梁113mの梁幅である第3梁幅W2は例えば80μm程度である。第2梁幅W1/第3梁幅W2は0.7以下であることが好ましい。また、第3梁幅W2/第1梁幅W3は0.3以上、0.6以下であることが好ましい。
For example, the first beam width W3 is about 100 μm to 115 μm, and the second beam width W1 is about 50 μm. The second beam width W1 / the first beam width W3 is preferably 0.5 or less. The third beam width W2, which is the beam width of the detection beam 113m at a position connected to the support portion or the force point and a portion excluding the concave shape 113p, is about 80 μm, for example. The second beam width W1 / the third beam width W2 is preferably 0.7 or less. The third beam width W2 / the first beam width W3 is preferably 0.3 or more and 0.6 or less.
また、図14(b)に示されるように、検知用梁113mの短手方向の両側部において形成された凹形状113pの幅(凹形状113pの検知用梁113mの長手方向の長さ)L1、凹形状113pの端部から梁幅がW2で一定となっている部分の検知用梁113mの長手方向の長さL2、検知用梁113mが支持部と連結される位置において梁幅がW2より幅が拡げられて梁幅W3となるまでの検知用梁113mの長手方向の長さL3に関して、L1/L3は0.5以下であることが好ましく、L1/L2が0.3以下であることが好ましく、L2/L3は0.5以上0.9以下であることが好ましい。例えばL1が100μm程度、L2が187.5μm程度、L3が125μm程度である。
Further, as shown in FIG. 14B, the width (the length in the longitudinal direction of the detection beam 113m of the concave shape 113p) L1 of the concave shape 113p formed on both sides in the lateral direction of the detection beam 113m. The length L2 in the longitudinal direction of the detection beam 113m from the end of the concave shape 113p to the portion where the beam width is constant at W2, and the beam width W2 at the position where the detection beam 113m is connected with the support portion L1 / L3 is preferably 0.5 or less, and L1 / L2 is 0.3 or less with respect to the length L3 in the longitudinal direction of the detection beam 113m until the width is expanded to the beam width W3. L2 / L3 is preferably 0.5 or more and 0.9 or less. For example, L1 is about 100 μm, L2 is about 187.5 μm, and L3 is about 125 μm.
また、検知用梁113mの短手方向の一方の側部に凹形状が形成されて梁幅が狭められている構成であってもよい。
In addition, a concave shape may be formed on one side of the detection beam 113m in the short side direction to narrow the beam width.
(第1実施例)
図15は参考例のセンサチップにZ軸方向のモーメント(Mz)を印加したときの応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。引っ張りまたは圧縮の応力が局所的に極大となっている箇所に『+』及び『-』に記号を付し、『+』に向けてグラデーション濃度が濃くなるほど、あるいは『-』に向けてグラデーション濃度が薄くなるほど、引っ張りまたは圧縮の応力が大きくなることを示している。図15の参考例では、図13及び図14とは異なり、検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されていない。参考例に係るセンサチップでは、Mz入力時に、検知用梁113mが支持部と連結される位置と、検知用梁113mが力点と連結される位置において、発生する応力が大きくなっていた。 (First embodiment)
FIG. 15 is a diagram (stress contour diagram) showing the results of simulation calculation of stress when a moment (Mz) in the Z-axis direction is applied to the sensor chip of the reference example. Mark the "+" and "-" signs where the tensile or compressive stress is locally maximal, so that the gradation density becomes higher towards "+", or the gradation density towards "-" The thinner the, the greater the tensile or compressive stress. In the reference example of FIG. 15, unlike the case of FIGS. 13 and 14, in thedetection beam 113m, a portion where the beam width is narrowed is formed between the position connected with the support portion and the position connected with the power point. Not. In the sensor chip according to the reference example, the stress generated at the position where the detection beam 113m is connected with the support and the position where the detection beam 113m is connected at the time of Mz input are large.
図15は参考例のセンサチップにZ軸方向のモーメント(Mz)を印加したときの応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。引っ張りまたは圧縮の応力が局所的に極大となっている箇所に『+』及び『-』に記号を付し、『+』に向けてグラデーション濃度が濃くなるほど、あるいは『-』に向けてグラデーション濃度が薄くなるほど、引っ張りまたは圧縮の応力が大きくなることを示している。図15の参考例では、図13及び図14とは異なり、検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されていない。参考例に係るセンサチップでは、Mz入力時に、検知用梁113mが支持部と連結される位置と、検知用梁113mが力点と連結される位置において、発生する応力が大きくなっていた。 (First embodiment)
FIG. 15 is a diagram (stress contour diagram) showing the results of simulation calculation of stress when a moment (Mz) in the Z-axis direction is applied to the sensor chip of the reference example. Mark the "+" and "-" signs where the tensile or compressive stress is locally maximal, so that the gradation density becomes higher towards "+", or the gradation density towards "-" The thinner the, the greater the tensile or compressive stress. In the reference example of FIG. 15, unlike the case of FIGS. 13 and 14, in the
図16は、図14に示される本実施の形態の他の一例に係るセンサチップにZ軸方向のモーメント(Mz)を印加したときにセンサチップに発生した応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に凹形状が形成され、梁幅が狭くなった箇所となっている。Mz入力時に、凹形状が形成され、梁幅が狭くなった箇所で発生する応力が大きくなっていた。
FIG. 16 is a diagram showing a result of simulation calculation of stress generated in the sensor chip when a moment (Mz) in the Z-axis direction is applied to the sensor chip according to another example of the present embodiment shown in FIG. (Stress contour view). A concave shape is formed on the detection beam 113m between the position connected to the support portion and the position connected to the power point, and the beam width is narrowed. At the time of Mz input, a concave shape was formed, and the stress generated at the portion where the beam width became narrow was large.
図17は、図14に示される本実施の形態の他の一例に係るセンサチップにX軸方向の力(Fx)を印加したときにセンサチップに発生した応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に凹形状113pが形成され、梁幅が狭くなった箇所となっている。Fx入力時に、凹形状113pが形成され、梁幅が狭くなった箇所には、ほとんど応力は発生していなかった。また、X軸方向の力(Fx)の代わりにY軸方向のモーメント(My)を印加したときも、同様に、凹形状113pが形成され、梁幅が狭くなった箇所には、ほとんど応力は発生していなかった。
FIG. 17 is a diagram showing the result of simulation calculation of stress generated in the sensor chip when a force (Fx) in the X-axis direction is applied to the sensor chip according to another example of the present embodiment shown in FIG. (Stress contour view). In the detection beam 113m, a concave shape 113p is formed between the position connected to the support portion and the position connected to the power point, and the beam width is narrowed. At the time of Fx input, the concave shape 113p was formed, and almost no stress was generated at the portion where the beam width became narrow. Also, when a moment (My) in the Y-axis direction is applied instead of the force (Fx) in the X-axis direction, the stress is almost equal to the location where the concave shape 113p is formed and the beam width is narrowed. It did not occur.
図18は、図13に示される本実施の形態に係るセンサチップにX軸方向の力(Fx)を印加したときにセンサチップに発生した応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所113qが形成されている。Fx入力時に、梁幅が狭くなった箇所113qには、ほとんど応力は発生していなかった。また、X軸方向の力(Fx)の代わりにY軸方向のモーメント(My)を印加したときも、同様に、梁幅が狭くなった箇所113qには、ほとんど応力は発生していなかった。
FIG. 18 is a diagram showing the results of simulation calculation of stress generated in the sensor chip when a force (Fx) in the X-axis direction is applied to the sensor chip according to the present embodiment shown in FIG. 13 (stress contour diagram ). In the detection beam 113m, a portion 113q in which the beam width is narrowed is formed between the position connected to the support portion and the position connected to the power point. At the time of Fx input, almost no stress was generated at the portion 113 q where the beam width became narrow. Also, when a moment (My) in the Y-axis direction was applied instead of the force (Fx) in the X-axis direction, similarly, almost no stress was generated at the portion 113 q where the beam width became narrow.
本実施の形態のセンサチップによれば、Z軸方向のモーメント(Mz)と、X軸方向の力(Fx)及びY軸方向のモーメント(My)との軸分離性が高められることが確認された。
According to the sensor chip of the present embodiment, it is confirmed that axial separation between the moment (Mz) in the Z-axis direction, the force (Fx) in the X-axis direction and the moment (My) in the Y-axis direction is enhanced. The
(第2実施例)
図19は参考例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。参考例に係るセンサチップは、図15に示されるセンサチップと同様であり、検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されていない。さらに、Mzを検出するためのピエゾ抵抗素子は、検知用梁113mと支持部が連結される位置の近傍における検知用梁113mの上に形成されている。図19は、参考例に係るセンサチップに、図面下方の入力軸の欄に示されるように選択された4つの軸を複合した入力を行ったときの、Fx入力とFx出力の誤差(N)、Fy入力とFy出力の誤差(N)、Fz入力とFz出力の誤差(N)をシミュレーションにより求めた結果を示す図である。センサチップとしては、各軸に対して誤差が5%以内であることが求められている。図19に示されるように、参考例に係るセンサチップでは、Fzの出力の誤差が5%を超える複合入力の組み合わせが存在していた。 Second Embodiment
FIG. 19 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example. The sensor chip according to the reference example is the same as the sensor chip shown in FIG. 15, and in thedetection beam 113m, the beam width is narrowed between the position connected with the support portion and the position connected with the power point No part has been formed. Furthermore, the piezoresistive element for detecting Mz is formed on the detection beam 113m in the vicinity of the position where the detection beam 113m and the support portion are connected. FIG. 19 shows an error (N) between Fx input and Fx output when the sensor chip according to the reference example is subjected to input in which four axes selected as shown in the column of the input axis at the bottom of the drawing are combined. It is a figure which shows the result of having calculated | required the error (N) of Fy input and Fy output, and the error (N) of Fz input and Fz output by simulation. The sensor chip is required to have an error within 5% for each axis. As shown in FIG. 19, in the sensor chip according to the reference example, there were combinations of composite inputs in which the error of the output of Fz exceeded 5%.
図19は参考例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。参考例に係るセンサチップは、図15に示されるセンサチップと同様であり、検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されていない。さらに、Mzを検出するためのピエゾ抵抗素子は、検知用梁113mと支持部が連結される位置の近傍における検知用梁113mの上に形成されている。図19は、参考例に係るセンサチップに、図面下方の入力軸の欄に示されるように選択された4つの軸を複合した入力を行ったときの、Fx入力とFx出力の誤差(N)、Fy入力とFy出力の誤差(N)、Fz入力とFz出力の誤差(N)をシミュレーションにより求めた結果を示す図である。センサチップとしては、各軸に対して誤差が5%以内であることが求められている。図19に示されるように、参考例に係るセンサチップでは、Fzの出力の誤差が5%を超える複合入力の組み合わせが存在していた。 Second Embodiment
FIG. 19 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example. The sensor chip according to the reference example is the same as the sensor chip shown in FIG. 15, and in the
図20は本実施の形態の他の一例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。本実施の形態の他の一例に係るセンサチップは、図14に示されるセンサチップと同様であり、検知用梁113mには、短手方向の両側部に凹形状が形成されて梁幅が狭くなった箇所が形成され、この梁幅が狭くなった箇所にMzを検出するためのピエゾ抵抗素子が形成されている。図20は、本実施の形態の他の一例に係るセンサチップに、図面下方の入力軸の欄に示されるように選択された4つの軸を複合した入力を行ったときの、Fx入力とFx出力の誤差(N)、Fy入力とFy出力の誤差(N)、Fz入力とFz出力の誤差(N)をシミュレーションにより求めた結果を示す図である。図20に示されるように、本実施の形態の他の一例に係るセンサチップでは、Fx、Fy、Fzの出力はいずれも誤差が5%以下となっていた。図19の参考例よりFx、Fy、Fzの出力の誤差が大きく改善されていた。
FIG. 20 is a diagram for explaining a simulation of another axis component with respect to the sensor chip according to another example of the present embodiment. The sensor chip according to another example of the present embodiment is the same as the sensor chip shown in FIG. 14, and concave shapes are formed on both sides in the short direction in the detection beam 113m, and the beam width is narrow. A portion where the beam is not formed is formed, and a piezoresistive element for detecting Mz is formed at a portion where the beam width is narrowed. FIG. 20 shows Fx input and Fx when a sensor chip according to another example of the present embodiment is subjected to combined input of four axes selected as shown in the column of the input axis at the bottom of the figure. It is a figure which shows the result of having calculated | required the difference | error (N) of an output, the difference (N) of Fy input and Fy output, and the difference (N) of Fz input and Fz output by simulation. As shown in FIG. 20, in the sensor chip according to another example of the present embodiment, the outputs of Fx, Fy, and Fz all have an error of 5% or less. The error of the outputs of Fx, Fy, and Fz was greatly improved from the reference example of FIG.
図21は参考例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。参考例に係るセンサチップに、図面下方の入力軸の欄に示されるように選択された4つの軸を複合した入力を行ったときの、Mx入力とMx出力の誤差(N・m)、My入力とMy出力の誤差(N・m)、Mz入力とMz出力の誤差(N・m)をシミュレーションにより求めた結果を示す。センサチップとしては、各軸に対して誤差が5%以内であることが求められている。図21に示されるように、参考例に係るセンサチップでは、Mx、Mzの出力の誤差が5%を超える複合入力の組み合わせが存在していた。
FIG. 21 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example. Error (N · m) between Mx input and Mx output when a combination of four axes selected as shown in the column of the input axis at the bottom of the figure is input to the sensor chip according to the reference example, My The result of having calculated | required the error (N * m) of an input and My output, and the error (N * m) of Mz input and Mz output by simulation is shown. The sensor chip is required to have an error within 5% for each axis. As shown in FIG. 21, in the sensor chip according to the reference example, there was a combination of composite inputs in which the error of the outputs of Mx and Mz exceeded 5%.
図22は本実施の形態の他の一例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。本実施の形態の他の一例に係るセンサチップに、図面下方の入力軸の欄に示されるように選択された4つの軸を複合した入力を行ったときの、Mx入力とMx出力の誤差(N・m)、My入力とMy出力の誤差(N・m)、Mz入力とMz出力の誤差(N・m)をシミュレーションにより求めた結果を示す。図22に示されるように、本実施の形態の他の一例に係るセンサチップでは、Mxの一部で5%を超えたが、それ以外のMxの出力と、My、Mzの出力はいずれも誤差が5%以下となっていた。図21の参考例よりMx、My、Mzの出力の誤差が大きく改善されていた。
FIG. 22 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to another example of the present embodiment. When a sensor chip according to another example of the present embodiment performs an input in which four axes selected as shown in the column of the input axis at the bottom of the drawing are combined, an error between Mx input and Mx output ( The result of having calculated | required the simulation (Nm), the error (Nm) of My input and My output, and the error (Nm) of Mz input and Mz output is shown. As shown in FIG. 22, in the sensor chip according to another example of the present embodiment, a part of Mx exceeded 5%, but the other outputs of Mx and the outputs of My and Mz are all The error was less than 5%. The errors in the outputs of Mx, My, and Mz were greatly improved from the reference example of FIG.
(第3実施例)
図23は参考例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。参考例に係るセンサチップは、図15に示されるセンサチップと同様であり、検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されていない。さらに、Mzを検出するためのピエゾ抵抗素子は、検知用梁113mと支持部が連結される位置の近傍における検知用梁113mの上に形成されている。図23は、参考例に係るセンサチップに、単軸方向、2軸の複合入力、3軸の複合入力、4軸の複合入力、5軸の複合入力、6軸の複合入力を行ったときの、Fx入力とFx出力の誤差(N)、Fy入力とFy出力の誤差(N)、Fz入力とFz出力の誤差(N)、Mx入力とMx出力の誤差(N・m)、My入力とMy出力の誤差(N・m)、Mz入力とMz出力の誤差(N・m)をシミュレーションにより求めた結果を示す図である。ここでは、Fx出力の誤差(N)、Fy出力の誤差(N)、Fz出力の誤差(N)をF系として、平均値(Avg.)と最大値(Max.)を算出した。また、Mx出力の誤差(N・m)、My出力の誤差(N・m)、Mz出力の誤差(N・m)をM系として、平均値(Avg.)と最大値(Max.)を算出した。 Third Embodiment
FIG. 23 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example. The sensor chip according to the reference example is the same as the sensor chip shown in FIG. 15, and in thedetection beam 113m, the beam width is narrowed between the position connected with the support portion and the position connected with the power point No part has been formed. Furthermore, the piezoresistive element for detecting Mz is formed on the detection beam 113m in the vicinity of the position where the detection beam 113m and the support portion are connected. FIG. 23 shows the sensor chip according to the reference example when single-axis direction, two-axis composite input, three-axis composite input, four-axis composite input, five-axis composite input, and six-axis composite input , Fx input and Fx output error (N), Fy input and Fy output error (N), Fz input and Fz output error (N), Mx input and Mx output error (N · m), My input It is a figure which shows the result of having calculated | required the error (N * m) of My output, and the error (N * m) of Mz input and Mz output by simulation. Here, the error (N) of Fx output, the error (N) of Fy output, and the error (N) of Fz output are F systems, and the average value (Avg.) And the maximum value (Max.) Are calculated. Also, the error (N · m) of the Mx output, the error (N · m) of the My output, and the error (N · m) of the Mz output are M systems, and the average value (Avg.) And the maximum value (Max.) Calculated.
図23は参考例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。参考例に係るセンサチップは、図15に示されるセンサチップと同様であり、検知用梁113mには、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所が形成されていない。さらに、Mzを検出するためのピエゾ抵抗素子は、検知用梁113mと支持部が連結される位置の近傍における検知用梁113mの上に形成されている。図23は、参考例に係るセンサチップに、単軸方向、2軸の複合入力、3軸の複合入力、4軸の複合入力、5軸の複合入力、6軸の複合入力を行ったときの、Fx入力とFx出力の誤差(N)、Fy入力とFy出力の誤差(N)、Fz入力とFz出力の誤差(N)、Mx入力とMx出力の誤差(N・m)、My入力とMy出力の誤差(N・m)、Mz入力とMz出力の誤差(N・m)をシミュレーションにより求めた結果を示す図である。ここでは、Fx出力の誤差(N)、Fy出力の誤差(N)、Fz出力の誤差(N)をF系として、平均値(Avg.)と最大値(Max.)を算出した。また、Mx出力の誤差(N・m)、My出力の誤差(N・m)、Mz出力の誤差(N・m)をM系として、平均値(Avg.)と最大値(Max.)を算出した。 Third Embodiment
FIG. 23 is a diagram for explaining the simulation of the other axis component with respect to the sensor chip according to the reference example. The sensor chip according to the reference example is the same as the sensor chip shown in FIG. 15, and in the
図23に示されるように、参考例に係るセンサチップでは、F系の平均値(Avg.)は単軸から6軸複合まで誤差は5%以下であったが、F系の最大値(Max.)は3~6軸複合で誤差は5%を超えていた。M系の平均値(Avg.)は5~6軸複合で誤差は5%を超えていた。M系の最大値(Max.)は5~6軸複合で誤差は5%を超えていた。
As shown in FIG. 23, in the sensor chip according to the reference example, the error of F-system average value (Avg.) From single-axis to 6-axis composite was 5% or less, but the maximum value of F-system (Max ) Is 3 to 6 axes composite and the error is over 5%. The mean value (Avg.) Of the M system was 5 to 6 axis composite, and the error exceeded 5%. The maximum value (Max.) Of the M system was 5% or more for the 5-axis to 6-axis composite.
図24は本実施の形態の他の一例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。本実施の形態の他の一例に係るセンサチップは、図14に示されるセンサチップと同様である。図24に示されるように、本実施の形態の他の一例に係るセンサチップでは、F系の平均値(Avg.)及び最大値(Max.)は単軸から6軸複合まで誤差は5%以下であった。また、M系の平均値(Avg.)は単軸から6軸複合まで誤差は5%以下であった。一方で、M系の最大値(Max.)は2~5軸複合で誤差は5%を超えていた。図24に示される本実施の形態の他の一例に係るセンサチップに対する他軸成分のシミュレーションから、軸分離性が大きく改善できていることが確認された。
FIG. 24 is a diagram for explaining simulation of other-axis components with respect to the sensor chip according to another example of the present embodiment. The sensor chip according to another example of the present embodiment is similar to the sensor chip shown in FIG. As shown in FIG. 24, in the sensor chip according to another example of the present embodiment, the average value (Avg.) And the maximum value (Max.) Of the F system are 5% error from single-axis to six-axis composite. It was below. In addition, the average value (Avg.) Of the M system was less than 5% from single-axis to six-axis composite. On the other hand, the maximum value (Max.) Of the M system was more than 5% in a 2- to 5-axis composite. From the simulation of the other axis component for the sensor chip according to another example of the present embodiment shown in FIG. 24, it is confirmed that the axis separation can be greatly improved.
図25は本実施の形態の一例に係るセンサチップに対する他軸成分のシミュレーションについて説明する図である。本実施の形態の一例に係るセンサチップは、図6に示されるセンサチップと同様である。図25に示されるように、本実施の形態の一例に係るセンサチップでは、F系の平均値(Avg.)及び最大値(Max.)は単軸から6軸複合まで誤差は5%以下であった。また、M系の平均値(Avg.)及び最大値(Max.)も単軸から6軸複合まで誤差は5%以下であった。図25に示される本実施の形態の一例に係るセンサチップに対する他軸成分のシミュレーションから、軸分離性が大きく改善できていることが確認された。
FIG. 25 is a diagram for explaining a simulation of another axis component with respect to the sensor chip according to an example of the present embodiment. The sensor chip according to an example of the present embodiment is similar to the sensor chip shown in FIG. As shown in FIG. 25, in the sensor chip according to an example of the present embodiment, the average value (Avg.) And the maximum value (Max.) Of the F system are 5% or less in error from single axis to 6-axis compound. there were. In addition, the average value (Avg.) And the maximum value (Max.) Of the M system also showed an error of 5% or less from uniaxial to 6-axis composite. From the simulation of the other axis component for the sensor chip according to the example of the present embodiment shown in FIG. 25, it is confirmed that the axis separation can be greatly improved.
[第2の構成及び効果]
(検知用梁の形状の詳細)
図26は、本実施の形態に係るセンサチップの一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。補強用梁112e、112f、112g、112hをまとめて補強用梁112iで示している。また、ピエゾ抵抗素子FzR1、FzR2、FzR3、FzR4、FzR1’、FzR2’、FzR3’、FzR4’を代表してFzR1、FzR2で示している。 [Second configuration and effect]
(Details of shape of detection beam)
FIG. 26 is an enlarged plan view of an essential part of an example of the sensor chip according to the present embodiment. The detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m. The detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n. The detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o. The reinforcing beams 112e, 112f, 112g, and 112h are collectively shown as a reinforcing beam 112i. The piezoresistive elements FzR1, FzR2, FzR3, FzR4, FzR1 ', FzR2', FzR3 'and FzR4' are represented by FzR1 and FzR2.
(検知用梁の形状の詳細)
図26は、本実施の形態に係るセンサチップの一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。補強用梁112e、112f、112g、112hをまとめて補強用梁112iで示している。また、ピエゾ抵抗素子FzR1、FzR2、FzR3、FzR4、FzR1’、FzR2’、FzR3’、FzR4’を代表してFzR1、FzR2で示している。 [Second configuration and effect]
(Details of shape of detection beam)
FIG. 26 is an enlarged plan view of an essential part of an example of the sensor chip according to the present embodiment. The
図26に示されるセンサチップにおいて、検知用梁113nは、直線部113n1と、連結部により直線部113n1に連結される傾斜部113n2、113n3とを有する。直線部113n1と傾斜部113n2の境界、及び直線部113n1と傾斜部113n3の境界が、それぞれ連結部である。直線部113n1は検知用梁113nの梁幅が略一定の部分である。傾斜部113n2、113n3は、検知用梁113nの端部もしくは検知用梁113oに接続する部分に設けられた部であり、傾斜部113n2、113n3の梁幅は連結部から遠ざかるにつれて徐々に太くなる。ピエゾ抵抗素子FzR1、FzR2は、上記の構成の検知用梁113nにおいて、連結部より傾斜部113n2、113n3側に配置されている。即ち、ピエゾ抵抗素子FzR1、FzR2は、検知用梁113nの直線部113n1上ではなく、傾斜部113n2、113n3の内部に配置されているといえる。また、ピエゾ抵抗素子FzR1については、ピエゾ抵抗素子FzR1の一部が補強用梁112iにかかるように形成されている。
In the sensor chip shown in FIG. 26, the detection beam 113n has a linear portion 113n1 and inclined portions 113n2 and 113n3 connected to the linear portion 113n1 by a connecting portion. The boundary between the linear portion 113n1 and the inclined portion 113n2 and the boundary between the linear portion 113n1 and the inclined portion 113n3 are connection portions. The linear portion 113n1 is a portion where the beam width of the detection beam 113n is substantially constant. The inclined portions 113n2 and 113n3 are portions provided at the end of the detection beam 113n or a portion connected to the detection beam 113o, and the beam widths of the inclined portions 113n2 and 113n3 gradually increase as the distance from the connection portion increases. The piezoresistive elements FzR1 and FzR2 are disposed closer to the inclined portions 113n2 and 113n3 than the connecting portion in the detection beam 113n having the above-described configuration. That is, it can be said that the piezoresistive elements FzR1 and FzR2 are disposed not on the linear portion 113n1 of the detection beam 113n but inside the inclined portions 113n2 and 113n3. Further, in the piezoresistive element FzR1, a part of the piezoresistive element FzR1 is formed so as to overlap the reinforcing beam 112i.
上記の本実施の形態のセンサチップにおいて、Z軸方向の力(Fz)が入力されたとき、検知用梁113nにおいて発生する応力は、検知用梁113nの傾斜部113n2、113n3とその近傍で大きくなる。従って、この傾斜部113n2、113n3に配置されたピエゾ抵抗素子FzR1及びFzR2は、Z軸方向の力(Fz)に対して高感度となる。ここで、ピエゾ抵抗素子FzR1については、ピエゾ抵抗素子FzR1の一部が補強用梁112iにかかるように形成されている。Fzはセンサの厚さ方向であるZ軸方向に印加される力であり、補強用梁112iの近傍ではFz入力時の応力が大きくなる。従って、ピエゾ抵抗素子FzR1については、ピエゾ抵抗素子FzR1の一部が補強用梁112iにかかるように配置することが好ましい。
In the sensor chip of the present embodiment described above, when a force (Fz) in the Z-axis direction is input, the stress generated in the detection beam 113n is large at the inclined portions 113n2 and 113n3 of the detection beam 113n and in the vicinity thereof. Become. Therefore, the piezoresistive elements FzR1 and FzR2 disposed in the inclined portions 113n2 and 113n3 have high sensitivity to the force (Fz) in the Z-axis direction. Here, with regard to the piezoresistive element FzR1, a part of the piezoresistive element FzR1 is formed to extend over the reinforcing beam 112i. Fz is a force applied in the Z-axis direction which is the thickness direction of the sensor, and the stress at the time of Fz input becomes large near the reinforcing beam 112i. Therefore, as for the piezoresistive element FzR1, it is preferable to arrange the piezoresistive element FzR1 so that a part of the piezoresistive element FzR1 is placed on the reinforcing beam 112i.
一方、センサチップにX軸方向の力(Fx)が入力されたときに、応力は、直線部113n1と傾斜部113n2、113n3の境界である連結部の近傍で大きくなるが、ピエゾ抵抗素子FzR1及びFzR2が形成されている、検知用梁113nの傾斜部113n2、113n3の内部には、応力はほとんど発生しない。
On the other hand, when a force (Fx) in the X-axis direction is input to the sensor chip, the stress increases near the connecting portion which is the boundary between the straight portion 113n1 and the inclined portions 113n2 and 113n3, but the piezoresistive element FzR1 and Almost no stress is generated inside the inclined portions 113n2 and 113n3 of the detection beam 113n in which the FzR2 is formed.
本実施の形態のセンサチップによれば、Z軸方向の力(Fz)と、X軸方向の力(Fx)の軸分離性が高められる。センサチップの複合入力に対する軸分離性を向上させて、センサ精度を改善することができる。
According to the sensor chip of the present embodiment, axial separation between the force in the Z-axis direction (Fz) and the force in the X-axis direction (Fx) can be enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
図27は、本実施の形態に係るセンサチップの他の一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。また、ピエゾ抵抗素子MxR1、MxR2、MxR3、MxR4、MyR1、MyR2、MyR3、MyR4を代表してMxyR1で示している。ここで、MxyR1は、長手方向がX軸方向である検知用梁113a、113gに形成されているときはMxR1、MxR2、MxR3、MxR4に対応し、長手方向がY軸方向である検知用梁113d、113jに形成されているときはMyR1、MyR2、MyR3、MyR4に対応する。
FIG. 27 is a plan view enlarging an essential part of another example of the sensor chip according to the present embodiment. The detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m. The detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n. The detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o. Further, the piezoresistive elements MxR1, MxR2, MxR3, MxR4, MyR1, MyR2, MyR3, and MyR4 are represented by MxyR1. Here, MxyR1 corresponds to MxR1, MxR2, MxR3, MxR4 when formed on the detection beams 113a and 113g whose longitudinal direction is the X-axis direction, and detection beam 113d whose longitudinal direction is the Y-axis direction , 113j corresponds to MyR1, MyR2, MyR3 and MyR4.
図27に示されるセンサチップにおいて、検知用梁113mは、直線部113m1と、連結部により直線部113m1に連結される傾斜部113m2、113m3とを有する。直線部113m1と傾斜部113m2の境界、及び直線部113m1と傾斜部113m3の境界が、それぞれ連結部である。直線部113m1は検知用梁113mの梁幅が略一定の部分である。傾斜部113m2、113m3は、検知用梁113mの端部もしくは検知用梁113oに接続する部分に設けられた部であり、傾斜部113m2、113m3の梁幅は連結部から遠ざかるにつれて徐々に太くなる。ピエゾ抵抗素子MxyR1は、上記の構成の検知用梁113mにおいて、連結部より傾斜部113m2側に配置されている。即ち、ピエゾ抵抗素子MxyR1は、検知用梁113mの直線部113m1上ではなく、傾斜部113m2の内部に配置されているといえる。
In the sensor chip shown in FIG. 27, the detection beam 113m has a linear portion 113m1 and inclined portions 113m2 and 113m3 connected to the linear portion 113m1 by a connecting portion. The boundary between the straight portion 113m1 and the inclined portion 113m2 and the boundary between the straight portion 113m1 and the inclined portion 113m3 are respectively connected portions. The linear portion 113m1 is a portion where the beam width of the detection beam 113m is substantially constant. The inclined portions 113m2 and 113m3 are portions provided at the end of the detection beam 113m or a portion connected to the detection beam 113o, and the beam widths of the inclined portions 113m2 and 113m3 gradually increase with distance from the connecting portion. The piezoresistive element MxyR1 is disposed closer to the inclined portion 113m2 than the connecting portion in the detection beam 113m having the above configuration. That is, it can be said that the piezoresistive element MxyR1 is disposed not on the straight portion 113m1 of the detection beam 113m but inside the inclined portion 113m2.
上記の本実施の形態のセンサチップにおいて、X軸方向のモーメント(Mx)あるいはY軸方向のモーメント(My)が入力されたとき、検知用梁113mにおいて発生する応力は、検知用梁113mの傾斜部113m2とその近傍で大きくなる。従って、この傾斜部113m2に配置されたピエゾ抵抗素子MxyR1は、X軸方向のモーメント(Mx)あるいはY軸方向のモーメント(My)に対して高感度となる。
In the sensor chip of the present embodiment described above, when a moment (Mx) in the X-axis direction or a moment (My) in the Y-axis direction is input, the stress generated in the detection beam 113m is the inclination of the detection beam 113m. It becomes large in the part 113 m 2 and its vicinity. Therefore, the piezoresistive element MxyR1 disposed in the inclined portion 113m2 has high sensitivity to the moment (Mx) in the X-axis direction or the moment (My) in the Y-axis direction.
一方、センサチップにX軸方向の力(Fx)が入力されたときに、応力は、直線部113m1と傾斜部113m2、113m3の境界である連結部の近傍で大きくなるが、ピエゾ抵抗素子MxyR1が形成されている、検知用梁113mの傾斜部113m2の内部には、応力はほとんど発生しない。
On the other hand, when a force (Fx) in the X-axis direction is input to the sensor chip, the stress increases near the connecting portion which is the boundary between the straight portion 113m1 and the inclined portions 113m2 and 113m3, but the piezoresistive element MxyR1 Almost no stress is generated inside the inclined portion 113m2 of the detection beam 113m which is formed.
本実施の形態のセンサチップによれば、Z軸方向の力(Fz)と、X軸方向のモーメント(Mx)とY軸方向のモーメント(My)の軸分離性が高められる。センサチップの複合入力に対する軸分離性を向上させて、センサ精度を改善することができる。
According to the sensor chip of the present embodiment, axial separation between the force (Fz) in the Z-axis direction, the moment (Mx) in the X-axis direction, and the moment (My) in the Y-axis direction is enhanced. It is possible to improve the axis separation for the complex input of the sensor chip and to improve the sensor accuracy.
図26に示される、検知用梁113nが、直線部113n1と、連結部により直線部113n1に連結される傾斜部113n2、113n3とを有し、ピエゾ抵抗素子FzR1、FzR2が連結部より傾斜部113n2、113n3側に配置されている構成と、図27に示される、検知用梁113mが、直線部113m1と、連結部により直線部113m1に連結される傾斜部113m2、113m3とを有し、ピエゾ抵抗素子MxyR1が連結部より傾斜部113m2側に配置されている構成は、いずれか一方でもよいが、両方同時に実現することも可能である。
The detection beam 113n shown in FIG. 26 has a linear portion 113n1 and inclined portions 113n2 and 113n3 connected to the linear portion 113n1 by a connecting portion, and the piezoresistive elements FzR1 and FzR2 are inclined from the connecting portion 113n2. , The detection beam 113m shown in FIG. 27 has a linear portion 113m1 and inclined portions 113m2 and 113m3 connected to the linear portion 113m1 by a connecting portion, and the piezoresistance is provided. The configuration in which the element MxyR1 is disposed closer to the inclined portion 113m2 than the coupling portion may be either one or both of them.
図28(a)及び(b)は、本実施の形態に係るセンサチップの他の一例の要部を拡大した平面図である。図3及び図6に示される検知用梁113a、113d、113g、113jに対応する梁をまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kに対応する梁をまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lに対応する梁をまとめて検知用梁113oで示している。
FIGS. 28A and 28B are enlarged plan views of the main parts of another example of the sensor chip according to the present embodiment. Beams corresponding to the detection beams 113a, 113d, 113g, and 113j shown in FIGS. 3 and 6 are collectively shown by a detection beam 113m. Beams corresponding to the detection beams 113b, 113e, 113h, and 113k are collectively shown by the detection beam 113n. Beams corresponding to the detection beams 113c, 113f, 113i, and 113l are collectively shown by the detection beam 113o.
本実施の形態のセンサチップにおいて、検知用梁113nの直線部113n1の梁幅を第1梁幅W1、傾斜部113n3の最も梁幅が広くなった部分の梁幅を第2梁幅W2としたとき、第1梁幅W1/第2梁幅W2は0.5以下であることが好ましい。これにより、傾斜部の内部にFzのピエゾ抵抗素子を設けることで、Fx入力時の応力の発生個所からFzのピエゾ抵抗素子を十分に遠ざけ、FxとFzの軸分離性を高めることができる。例えば、第1梁幅W1は30μm~50μm程度であり、第2梁幅W2は75μm~100μm程度である。
In the sensor chip of this embodiment, the beam width of the linear portion 113n1 of the detection beam 113n is the first beam width W1, and the beam width of the portion of the inclined portion 113n3 where the beam width is the widest is the second beam width W2. At this time, it is preferable that the first beam width W1 / the second beam width W2 be 0.5 or less. Thus, by providing the Fz piezoresistive element inside the inclined portion, it is possible to sufficiently keep the piezoresistive element of Fz away from the stress generation point at the time of Fx input and to improve the axial separation of Fx and Fz. For example, the first beam width W1 is about 30 μm to 50 μm, and the second beam width W2 is about 75 μm to 100 μm.
また、検知用梁113nの長手方向における、直線部113n1の長さL1、傾斜部113n3長さL2について、例えば、L1は140~265μmであり、L2は100~150μm程度である。
Further, for the length L1 of the straight portion 113n1 and the length L2 of the inclined portion 113n3 in the longitudinal direction of the detection beam 113n, for example, L1 is 140 to 265 μm and L2 is about 100 to 150 μm.
図28(b)は検知用梁113n部分を拡大した平面図である。検知用梁113nの短手方向のテーパー部分の長さAと、検知用梁113nの長手方向のテーパー部分の長さBについて、A:B=1:8.5~1:10.5の式を満たすA及びBの値を有するテーパー形状であることが好ましい。テーパー角度が足らないとFx入力時の応力の発生個所からFzのピエゾ抵抗素子を十分に遠ざけることができない可能性がある。テーパー角度が過度であると、検知用梁の梁幅が狭められた箇所の機械的強度が低下する可能性がある。
FIG. 28B is an enlarged plan view of the detection beam 113n. For the length A of the tapered portion of the detection beam 113n and the length B of the tapered portion of the detection beam 113n, the formula of A: B = 1: 8.5 to 1: 10.5 It is preferable that the tapered shape has values of A and B that satisfy If the taper angle is insufficient, there is a possibility that the Fz piezoresistive element can not be sufficiently distanced from the stress generation point at the time of Fx input. If the taper angle is excessive, the mechanical strength of the portion where the beam width of the detection beam is narrowed may be reduced.
図26及び図27に示されるセンサチップでは、検知用梁113mの短手方向の両側部において凹形状113pが設けられて、検知用梁113mの梁幅が狭められた箇所を有しているが、これに限らず、図6及び図28に示されるように、検知用梁113mの梁幅が徐々に狭まるテーパー形状を有していてもよい。
In the sensor chip shown in FIGS. 26 and 27, the concave shape 113p is provided on both sides in the lateral direction of the detection beam 113m, and the beam width of the detection beam 113m is narrowed. However, the present invention is not limited to this, and as shown in FIGS. 6 and 28, the beam width of the detection beam 113m may have a tapered shape in which the beam width gradually narrows.
(第1実施例)
図29は、実施の形態に係るセンサチップの一例の要部を拡大した平面図であり、図30及び図31に示す応力シミュレーションを行うセンサチップの平面図である。図26に示される本実施の形態に係るセンサチップと同様に、図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。また、ピエゾ抵抗素子FzR1、FzR2、FzR3、FzR4、FzR1’、FzR2’、FzR3’、FzR4’を代表してFzR1、FzR2で示している。 (First embodiment)
FIG. 29 is an enlarged plan view of an essential part of an example of the sensor chip according to the embodiment, and is a plan view of the sensor chip for which stress simulation shown in FIGS. 30 and 31 is performed. Similar to the sensor chip according to the present embodiment shown in FIG. 26, the detection beams 113a, 113d, 113g, 113j shown in FIGS. 3 and 6 are collectively shown by the detection beam 113m. The detection beams 113b, 113e, 113h and 113k are collectively shown by the detection beam 113n. The detection beams 113c, 113f, 113i and 113l are collectively shown by the detection beam 113o. The piezoresistive elements FzR1, FzR2, FzR3, FzR4, FzR1 ', FzR2', FzR3 'and FzR4' are represented by FzR1 and FzR2.
図29は、実施の形態に係るセンサチップの一例の要部を拡大した平面図であり、図30及び図31に示す応力シミュレーションを行うセンサチップの平面図である。図26に示される本実施の形態に係るセンサチップと同様に、図3及び図6に示される検知用梁113a、113d、113g、113jをまとめて検知用梁113mで示している。検知用梁113b、113e、113h、113kをまとめて検知用梁113nで示している。検知用梁113c、113f、113i、113lをまとめて検知用梁113oで示している。また、ピエゾ抵抗素子FzR1、FzR2、FzR3、FzR4、FzR1’、FzR2’、FzR3’、FzR4’を代表してFzR1、FzR2で示している。 (First embodiment)
FIG. 29 is an enlarged plan view of an essential part of an example of the sensor chip according to the embodiment, and is a plan view of the sensor chip for which stress simulation shown in FIGS. 30 and 31 is performed. Similar to the sensor chip according to the present embodiment shown in FIG. 26, the
検知用梁113nは、直線部113n1と、連結部により直線部113n1に連結される傾斜部113n2、113n3とを有する。ピエゾ抵抗素子FzR1、FzR2は、上記の構成の検知用梁113nにおいて、連結部より傾斜部113n2、113n3側に配置されている。即ち、ピエゾ抵抗素子FzR1、FzR2は、検知用梁113nの直線部113n1上ではなく、傾斜部113n2、113n3の内部に配置されている。ピエゾ抵抗素子FzR1については、ピエゾ抵抗素子FzR1の一部が補強用梁112iにかかるように形成されている。図29のセンサチップでは、検知用梁113mは、支持部と連結される位置と力点と連結される位置の間に梁幅が狭くなった箇所は形成されていない。
The detection beam 113n has a linear portion 113n1 and inclined portions 113n2 and 113n3 connected to the linear portion 113n1 by a connecting portion. The piezoresistive elements FzR1 and FzR2 are disposed closer to the inclined portions 113n2 and 113n3 than the connecting portion in the detection beam 113n having the above-described configuration. That is, the piezoresistive elements FzR1 and FzR2 are disposed not on the linear portion 113n1 of the detection beam 113n but inside the inclined portions 113n2 and 113n3. In the piezoresistive element FzR1, a part of the piezoresistive element FzR1 is formed to extend over the reinforcing beam 112i. In the sensor chip of FIG. 29, the detection beam 113m does not have a portion where the beam width is narrowed between the position where it is connected to the support portion and the position where it is connected to the power point.
図30は図29に示される本実施の形態のセンサチップにX軸方向の力(Fx)を印加したときの応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。引っ張りまたは圧縮の応力が局所的に極大となっている箇所に『+』及び『-』に記号を付し、『+』に向けてグラデーション濃度が濃くなるほど、あるいは『-』に向けてグラデーション濃度が薄くなるほど、引っ張りまたは圧縮の応力が大きくなることを示している。センサチップにX軸方向の力(Fx)が入力されたときに、応力は、直線部113n1と傾斜部113n2、113n3の境界である連結部の近傍で大きくなるが、ピエゾ抵抗素子FzR1及びFzR2が形成されている、検知用梁113nの傾斜部113n2、113n3の内部には、応力はほとんど発生しない。
FIG. 30 is a diagram (stress contour view) showing the results of simulation calculation of stress when a force (Fx) in the X-axis direction is applied to the sensor chip of the present embodiment shown in FIG. Mark the "+" and "-" signs where the tensile or compressive stress is locally maximal, so that the gradation density becomes higher towards "+", or the gradation density towards "-" The thinner the, the greater the tensile or compressive stress. When a force (Fx) in the X-axis direction is input to the sensor chip, the stress increases in the vicinity of the connecting portion which is the boundary between the straight portion 113n1 and the inclined portions 113n2 and 113n3, but the piezoresistive elements FzR1 and FzR2 Almost no stress is generated inside the inclined portions 113n2 and 113n3 of the detection beam 113n.
図31は図29に示される本実施の形態のセンサチップにZ軸方向の力(Fz)を印加したときの応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。センサチップにZ軸方向の力(Fz)が入力されたとき、検知用梁113nにおいて発生する応力は、検知用梁113nの傾斜部113n2、113n3とその近傍で大きくなる。従って、この傾斜部113n2、113n3に配置されたピエゾ抵抗素子FzR1及びFzR2は、Z軸方向の力(Fz)に対して高感度となる。
FIG. 31 is a diagram (stress contour view) showing the result of simulation calculation of stress when a force (Fz) in the Z-axis direction is applied to the sensor chip of the present embodiment shown in FIG. When a force (Fz) in the Z-axis direction is input to the sensor chip, the stress generated in the detection beam 113n becomes larger at the inclined portions 113n2 and 113n3 of the detection beam 113n and in the vicinity thereof. Therefore, the piezoresistive elements FzR1 and FzR2 disposed in the inclined portions 113n2 and 113n3 have high sensitivity to the force (Fz) in the Z-axis direction.
図32は、参考例に係るセンサチップの要部を拡大した平面図であり、図33及び図34に示す応力シミュレーションを行うセンサチップの平面図である。図29に示される本実施の形態に係るセンサチップと異なり、ピエゾ抵抗素子FzR1、FzR2は、直線部113n1と傾斜部113n2、113n3との連結部の近傍に、直線部113n1上から傾斜部113n2、113n3に跨るように配置されている。
FIG. 32 is an enlarged plan view of an essential part of a sensor chip according to a reference example, and is a plan view of a sensor chip for which stress simulation shown in FIGS. 33 and 34 is performed. Unlike the sensor chip according to the present embodiment shown in FIG. 29, the piezoresistive elements FzR1 and FzR2 are adjacent to the connecting portion between the linear portion 113n1 and the inclined portions 113n2 and 113n3 from the linear portion 113n1 to the inclined portion 113n2. It is arranged to straddle 113n3.
図33は図32に示される本実施の形態のセンサチップにX軸方向の力(Fx)を印加したときの応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。センサチップにX軸方向の力(Fx)が入力されたときに、応力は、直線部113n1と傾斜部113n2、113n3の境界である連結部の近傍で大きくなる。連結部の近傍に配置されたピエゾ抵抗素子FzR1、FzR2は、Fx入力に対して感度を有しており、軸分離性が低くなる。
FIG. 33 is a diagram (stress contour view) showing the result of simulation calculation of stress when a force (Fx) in the X-axis direction is applied to the sensor chip of the present embodiment shown in FIG. When a force (Fx) in the X-axis direction is input to the sensor chip, the stress becomes large in the vicinity of the connecting portion which is the boundary between the straight portion 113n1 and the inclined portions 113n2 and 113n3. The piezoresistive elements FzR1 and FzR2 arranged in the vicinity of the coupling portion have sensitivity to Fx input, and the axis separation becomes low.
図34は図32に示される本実施の形態のセンサチップにZ軸方向の力(Fz)を印加したときの応力をシミュレーションにより算出した結果を示す図(応力コンター図)である。センサチップにZ軸方向の力(Fz)が入力されたとき、検知用梁113nにおいて発生する応力は、直線部113n1と傾斜部113n2、113n3との連結部の近傍で大きくなる。連結部の近傍に配置されたピエゾ抵抗素子FzR1及びFzR2は、Z軸方向の力(Fz)に対して高感度となる。
FIG. 34 is a diagram (stress contour view) showing the results of simulation calculation of stress when a force (Fz) in the Z-axis direction is applied to the sensor chip of the present embodiment shown in FIG. When a force (Fz) in the Z-axis direction is input to the sensor chip, the stress generated in the detection beam 113n increases in the vicinity of the connection between the straight portion 113n1 and the inclined portions 113n2 and 113n3. The piezoresistive elements FzR1 and FzR2 arranged in the vicinity of the connecting portion have high sensitivity to the force (Fz) in the Z-axis direction.
本実施の形態のセンサチップによれば、参考例に対して、Z軸方向の力(Fz)とX軸方向の力(Fx)との軸分離性が高められることが確認された。
According to the sensor chip of the present embodiment, it is confirmed that the axial separation between the force (Fz) in the Z-axis direction and the force (Fx) in the X-axis direction can be enhanced with respect to the reference example.
以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
Although the preferred embodiments have been described above in detail, the present invention is not limited to the above-described embodiments, and various modifications and substitutions may be made to the above-described embodiments without departing from the scope described in the claims. Can be added.
本願は、日本特許庁に2018年1月29日に出願された基礎出願2018-012924号、及び日本特許庁に2018年1月29日に出願された基礎出願2018-012925号の優先権を主張するものであり、その全内容を参照によりここに援用する。
This application claims the priority of Basic Application No. 2018-012924 filed on Jan. 29, 2018 at the Japan Patent Office and Basic Application No. 2018-012925 filed on Jan. 29, 2018 at the Japanese Patent Office. The entire contents of which are incorporated herein by reference.
1 力覚センサ装置
20 起歪体
21 土台
22a~22d、25a~25d、28 柱
23a~23d、26a~26d 梁
24a~24d 入力部
27a~27d 突起部
30 入出力基板
31 電極
32~35 能動部品
39 受動部品
40 受力板
40x、40z 凹部
40y 貫通孔
41、42 接着剤
110 センサチップ
111a~111e 支持部
112a~112h 補強用梁
113a~113o 検知用梁
113n1 直線部
113n2、113n3 傾斜部
113p 凹形状
113q 梁幅が狭くなった箇所
114a~114d 力点
FzR1~FzR4、FzR1’~FzR4、MzR1~MzR4、MzR1’~MzR4’、FxR1~FxR4、FyR1~FyR4、MxR1~MxR4、MyR1~MyR4 ピエゾ抵抗素子 DESCRIPTION OFSYMBOLS 1 Force sensor apparatus 20 Strain generating body 21 Bases 22a to 22d, 25a to 25d, 28 pillars 23a to 23d, 26a to 26d Beams 24a to 24d Input parts 27a to 27d Protrusions 30 Input / output substrate 31 Electrodes 32 to 35 Active parts 39 Passive component 40 Force receiving plate 40x, 40z Recess 40y Through hole 41, 42 Adhesive 110 Sensor chip 111a-111e Support part 112a-112h Reinforcement beam 113a-113o Detection beam 113n1 Straight part 113n2, 113n3 Inclined part 113p Concave shape 113q Beam width narrows 114a to 114d Force points FzR1 to FzR4, FzR1 'to FzR4, MzR1 to MzR4, MzR1' to MzR4 ', FxR1 to FxR4, FyR1 to FyR4, MxR1 to MxR4, MyR4 surface resistance
20 起歪体
21 土台
22a~22d、25a~25d、28 柱
23a~23d、26a~26d 梁
24a~24d 入力部
27a~27d 突起部
30 入出力基板
31 電極
32~35 能動部品
39 受動部品
40 受力板
40x、40z 凹部
40y 貫通孔
41、42 接着剤
110 センサチップ
111a~111e 支持部
112a~112h 補強用梁
113a~113o 検知用梁
113n1 直線部
113n2、113n3 傾斜部
113p 凹形状
113q 梁幅が狭くなった箇所
114a~114d 力点
FzR1~FzR4、FzR1’~FzR4、MzR1~MzR4、MzR1’~MzR4’、FxR1~FxR4、FyR1~FyR4、MxR1~MxR4、MyR1~MyR4 ピエゾ抵抗素子 DESCRIPTION OF
Claims (20)
- 基板と、
第1の支持部と、
周囲に前記第1の支持部が配置され、前記基板の中央に配置された第2の支持部と、
隣接する前記第1の支持部同士を連結する第1の検知用梁と、
前記第1の検知用梁に配置された、力が印加される力点と、
前記第1の検知用梁の所定位置に配置された複数の歪検出素子と、を有し、
前記複数の歪検出素子は、前記第1の支持部と前記力点の間における前記第1の検知用梁に形成された第1歪検出素子を含み、
前記第1の検知用梁が前記第1の支持部または前記力点と連結される位置の前記第1の検知用梁の幅である第1梁幅より、前記第1歪検出素子が形成された位置の前記第1の検知用梁の幅である第2梁幅の方が小さい
センサチップ。 A substrate,
A first support,
A second support disposed at the periphery of the substrate, the first support being disposed around the periphery;
A first detection beam connecting the adjacent first supports;
A point of force on the first sensing beam, to which a force is applied;
And a plurality of strain detection elements disposed at predetermined positions of the first detection beam,
The plurality of strain detection elements include a first strain detection element formed on the first detection beam between the first support portion and the force point,
The first strain detection element is formed by a first beam width which is a width of the first detection beam at a position where the first detection beam is connected to the first support portion or the power point. A sensor chip having a smaller second beam width which is the width of the first detection beam at a position. - 前記第1の検知用梁と前記第2の支持部との間に、前記第1の検知用梁に平行に設けられた第2の検知用梁と、
平行に設けられた前記第1の検知用梁及び前記第2の検知用梁の組において、前記第1の検知用梁と前記第2の検知用梁とを連結する第3の検知用梁と、を備え、
前記力点は、前記第1の検知用梁と前記第3の検知用梁との交点に配置されている請求項1に記載のセンサチップ。 A second detection beam provided parallel to the first detection beam, between the first detection beam and the second support;
And a third detection beam connecting the first detection beam and the second detection beam in a set of the first detection beam and the second detection beam provided in parallel. , And
The sensor chip according to claim 1, wherein the force point is disposed at an intersection of the first detection beam and the third detection beam. - 前記第2梁幅/前記第1梁幅は0.5以下である
請求項1に記載のセンサチップ。 The sensor chip according to claim 1, wherein the second beam width / the first beam width is 0.5 or less. - 前記第1歪検出素子が形成された位置の前記第1の検知用梁に、前記第1の検知用梁の梁幅を狭める凹形状が形成されている
請求項1に記載のセンサチップ。 The sensor chip according to claim 1, wherein the first detection beam at a position where the first strain detection element is formed has a concave shape for narrowing the beam width of the first detection beam. - 前記第1歪検出素子が形成された位置の前記第1の検知用梁の短手方向の両側に前記凹形状が形成されている
請求項4に記載のセンサチップ。 The sensor chip according to claim 4, wherein the concave shape is formed on both sides of the first detection beam at a position where the first strain detection element is formed. - 前記第1の検知用梁は、前記第1の検知用梁が前記第1の支持部または前記力点と連結される位置から、前記第1歪検出素子が形成された位置まで、梁幅が徐々に狭まるテーパー形状を有する
請求項1に記載のセンサチップ。 The width of the first detection beam gradually increases from the position where the first detection beam is connected to the first support portion or the force point to the position where the first strain detection element is formed. The sensor chip according to claim 1, wherein the sensor chip has a tapered shape that narrows down. - 前記第1の検知用梁の短手方向の両側において梁幅が徐々に狭められるテーパー形状を有する
請求項6に記載のセンサチップ。 The sensor chip according to claim 6, wherein the sensor chip has a tapered shape in which the beam width is gradually narrowed on both sides in the lateral direction of the first detection beam. - 前記基板の厚さ方向をZ軸方向としたとき、
前記第1歪検出素子は、Z軸を回転する方向の力を検出可能である
請求項1に記載のセンサチップ。 When the thickness direction of the substrate is the Z-axis direction,
The sensor chip according to claim 1, wherein the first strain detection element is capable of detecting a force in a direction of rotating the Z-axis. - 前記第1の検知用梁の外側に前記第1の検知用梁と平行に設けられた、隣接する前記第1の支持部同士を連結する第1の補強用梁と、
前記第1の支持部と前記第2の支持部とを連結する第2の補強用梁と、を有し、
前記第2の補強用梁は、前記第1の補強用梁と非平行に配置され、
前記第1の補強用梁及び前記第2の補強用梁は、前記第1の検知用梁、前記第2の検知用梁、及び前記第3の検知用梁よりも厚く形成され、
前記第2の検知用梁は、隣接する前記第2の補強用梁の前記第2の支持部側の端部同士を連結している
請求項2に記載のセンサチップ。 A first reinforcing beam provided on an outer side of the first detection beam in parallel with the first detection beam, the first reinforcement beam connecting the adjacent first support portions;
And a second reinforcing beam connecting the first support portion and the second support portion,
The second reinforcing beam is disposed nonparallel to the first reinforcing beam,
The first reinforcement beam and the second reinforcement beam are formed to be thicker than the first detection beam, the second detection beam, and the third detection beam.
The sensor chip according to claim 2, wherein the second detection beam connects end portions of the adjacent second support beam on the second support portion side. - 請求項1に記載のセンサチップと、
印加された力を前記センサチップに伝達する起歪体と、を有する
力覚センサ装置。 A sensor chip according to claim 1;
And a strain sensor for transmitting an applied force to the sensor chip. - 基板と、
第1の支持部と、
周囲に前記第1の支持部が配置され、前記基板の中央に配置された第2の支持部と、
隣接する前記第1の支持部同士を連結する第1の検知用梁と、
前記第1の検知用梁に配置された、力が印加される力点と、
前記第1の検知用梁の所定位置に配置された複数の歪検出素子と、を有し、
前記第1の検知用梁は、直線部と、連結部により前記直線部に連結される傾斜部とを有し、
複数の前記歪検出素子は、前記連結部より前記傾斜部側に配置されている第1歪検出素子を含む
センサチップ。 A substrate,
A first support,
A second support disposed at the periphery of the substrate, the first support being disposed around the periphery;
A first detection beam connecting the adjacent first supports;
A point of force on the first sensing beam, to which a force is applied;
And a plurality of strain detection elements disposed at predetermined positions of the first detection beam,
The first detection beam has a linear portion and an inclined portion connected to the linear portion by a connecting portion,
The plurality of strain detection elements include a first strain detection element disposed closer to the inclined portion than the connection portion. Sensor chip. - 前記第1の検知用梁と前記第2の支持部との間に、前記第1の検知用梁に平行に設けられた第2の検知用梁と、を備え、
前記第2の検知用梁は、所定位置に配置された複数の歪検出素子と、直線部と、連結部により前記直線部に連結される傾斜部とを有し、
複数の前記歪検出素子は、前記連結部より前記傾斜部側に配置されている第2歪検出素子を含む
請求項11に記載のセンサチップ。 A second detection beam provided parallel to the first detection beam, between the first detection beam and the second support;
The second detection beam has a plurality of strain detection elements arranged at a predetermined position, a linear portion, and an inclined portion connected to the linear portion by a connecting portion,
The sensor chip according to claim 11, wherein the plurality of strain detection elements include a second strain detection element disposed closer to the inclined portion than the connection portion. - 平行に設けられた前記第1の検知用梁及び前記第2の検知用梁の組において、前記第1の検知用梁と前記第2の検知用梁とを連結する第3の検知用梁と、備え、
前記力点は、第1の検知用梁と第3の検知用梁と交点に配置されている
請求項12に記載のセンサチップ。 And a third detection beam connecting the first detection beam and the second detection beam in a set of the first detection beam and the second detection beam provided in parallel. , Equipped,
The sensor chip according to claim 12, wherein the force point is disposed at an intersection of the first detection beam and the third detection beam. - 前記傾斜部は、前記第1の検知用梁の端部に設けられた部であり、前記傾斜部の梁幅は前記連結部から遠ざかるにつれて徐々に太くなる
請求項11に記載のセンサチップ。 The sensor chip according to claim 11, wherein the sloped portion is a portion provided at an end portion of the first detection beam, and a beam width of the sloped portion gradually increases as the distance from the connecting portion increases. - 前記傾斜部は、前記第1の検知用梁または前記第2の検知用梁の端部もしくは前記第3の検知用梁に接続する部分に設けられた部であり、前記傾斜部の梁幅は前記連結部から遠ざかるにつれて徐々に太くなる
請求項13に記載のセンサチップ。 The inclined portion is a portion provided at an end of the first detection beam or the second detection beam or a portion connected to the third detection beam, and the beam width of the inclined portion is The sensor chip according to claim 13, wherein the thickness gradually increases as the distance from the connection portion increases. - 前記基板の厚さ方向をZ軸方向としたとき、
前記第1歪検出素子は、Z軸方向の力を検出可能であり、前記第2の検知用梁に形成されている
請求項12に記載のセンサチップ。 When the thickness direction of the substrate is the Z-axis direction,
The sensor chip according to claim 12, wherein the first strain detection element is capable of detecting a force in the Z-axis direction, and is formed on the second detection beam. - 前記基板の厚さ方向をZ軸方向としたとき、
前記第1歪検出素子は、Z軸と垂直な軸を回転する方向の力を検出可能であり、前記第1の検知用梁に形成されている
請求項11に記載のセンサチップ。 When the thickness direction of the substrate is the Z-axis direction,
The sensor chip according to claim 11, wherein the first strain detection element is capable of detecting a force in a direction of rotating an axis perpendicular to the Z axis, and is formed on the first detection beam. - 前記直線部の梁幅を第1梁幅、前記傾斜部の最も梁幅が広くなった部分の梁幅を第2梁幅としたとき、前記第1梁幅/前記第2梁幅は0.5以下である
請求項11に記載のセンサチップ。 Assuming that the beam width of the straight portion is a first beam width, and the beam width of a portion of the inclined portion where the beam width is wide is a second beam width, the first beam width / the second beam width is 0. The sensor chip according to claim 11, which is 5 or less. - 前記第1の検知用梁の外側に前記第1の検知用梁と平行に設けられた、隣接する前記第1の支持部同士を連結する第1の補強用梁と、
前記第1の支持部と前記第2の支持部とを連結する第2の補強用梁と、を有し、
前記第2の補強用梁は、前記第1の補強用梁と非平行に配置され、
前記第1の補強用梁及び前記第2の補強用梁は、前記第1の検知用梁、前記第2の検知用梁、及び前記第3の検知用梁よりも厚く形成され、
前記第2の検知用梁は、隣接する前記第2の補強用梁の前記第2の支持部側の端部同士を連結している
請求項13に記載のセンサチップ。 A first reinforcing beam provided on an outer side of the first detection beam in parallel with the first detection beam, the first reinforcement beam connecting the adjacent first support portions;
And a second reinforcing beam connecting the first support portion and the second support portion,
The second reinforcing beam is disposed nonparallel to the first reinforcing beam,
The first reinforcement beam and the second reinforcement beam are formed to be thicker than the first detection beam, the second detection beam, and the third detection beam.
The sensor chip according to claim 13, wherein the second detection beam connects ends of the adjacent second support beam on the second support portion side. - 請求項11に記載のセンサチップと、
印加された力を前記センサチップに伝達する起歪体と、を有する
力覚センサ装置。 A sensor chip according to claim 11;
And a strain sensor for transmitting an applied force to the sensor chip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980009485.1A CN111670349B (en) | 2018-01-29 | 2019-01-24 | Sensor chip and force sensor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-012925 | 2018-01-29 | ||
JP2018-012924 | 2018-01-29 | ||
JP2018012925A JP6957823B2 (en) | 2018-01-29 | 2018-01-29 | Sensor chip and force sensor device |
JP2018012924A JP6919965B2 (en) | 2018-01-29 | 2018-01-29 | Sensor chip and force sensor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146696A1 true WO2019146696A1 (en) | 2019-08-01 |
Family
ID=67396011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002263 WO2019146696A1 (en) | 2018-01-29 | 2019-01-24 | Sensor chip and force sensor device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111670349B (en) |
WO (1) | WO2019146696A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3816597A1 (en) * | 2019-10-29 | 2021-05-05 | Minebea Mitsumi Inc. | Force torque sensor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6394690A (en) * | 1986-10-09 | 1988-04-25 | Ricoh Co Ltd | Device for detecting force |
US5526700A (en) * | 1995-09-29 | 1996-06-18 | Akeel; Hadi A. | Six component force gage |
JP2008058106A (en) * | 2006-08-30 | 2008-03-13 | Honda Motor Co Ltd | Chip for force sensor |
JP2013002942A (en) * | 2011-06-16 | 2013-01-07 | Honda Motor Co Ltd | Force sensor chip |
WO2018066557A1 (en) * | 2016-10-07 | 2018-04-12 | ミツミ電機株式会社 | Sensor chip, strain inducing body, and force sensor device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1220037C (en) * | 2003-09-19 | 2005-09-21 | 哈尔滨工业大学 | Miniature all-plane 6D force and moment sensor |
CN101672705B (en) * | 2009-09-29 | 2010-12-29 | 西北工业大学 | Six-dimensional force sensor |
CN103076131B (en) * | 2012-12-31 | 2014-12-17 | 东南大学 | Six-dimensional force and torque sensor for measuring large force and small torque of large mechanical arm |
CN105881497A (en) * | 2014-11-07 | 2016-08-24 | 江南大学 | Decoupling hybrid mechanism with five freedom degrees of (1T2R)&(2T) |
-
2019
- 2019-01-24 WO PCT/JP2019/002263 patent/WO2019146696A1/en active Application Filing
- 2019-01-24 CN CN201980009485.1A patent/CN111670349B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6394690A (en) * | 1986-10-09 | 1988-04-25 | Ricoh Co Ltd | Device for detecting force |
US5526700A (en) * | 1995-09-29 | 1996-06-18 | Akeel; Hadi A. | Six component force gage |
JP2008058106A (en) * | 2006-08-30 | 2008-03-13 | Honda Motor Co Ltd | Chip for force sensor |
JP2013002942A (en) * | 2011-06-16 | 2013-01-07 | Honda Motor Co Ltd | Force sensor chip |
WO2018066557A1 (en) * | 2016-10-07 | 2018-04-12 | ミツミ電機株式会社 | Sensor chip, strain inducing body, and force sensor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3816597A1 (en) * | 2019-10-29 | 2021-05-05 | Minebea Mitsumi Inc. | Force torque sensor device |
US11879796B2 (en) | 2019-10-29 | 2024-01-23 | Minebea Mitsumi Inc. | Force torque sensor device including sensor chip bonded to strain body by adhesive |
Also Published As
Publication number | Publication date |
---|---|
CN111670349A (en) | 2020-09-15 |
CN111670349B (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108827521B (en) | Force sensor device | |
JP6760575B2 (en) | Sensor chip, strain generator, force sensor device | |
JP6919964B2 (en) | Sensor chip and force sensor device | |
JP6940037B2 (en) | Force sensor device | |
WO2018066557A1 (en) | Sensor chip, strain inducing body, and force sensor device | |
CN112747855A (en) | Force sensor device | |
EP3457103B1 (en) | Force sensor device | |
WO2019146696A1 (en) | Sensor chip and force sensor device | |
JP6957823B2 (en) | Sensor chip and force sensor device | |
JP6919965B2 (en) | Sensor chip and force sensor device | |
JP7302780B2 (en) | Force sensor device | |
JP3136188U (en) | Force detection device | |
JP7074407B2 (en) | Force sensor device | |
JP2023023688A (en) | Force sensor device | |
JP2023023689A (en) | Force sensor device | |
JP2022047296A (en) | Damping mechanism and force detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19744340 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19744340 Country of ref document: EP Kind code of ref document: A1 |