WO2018066557A1 - Sensor chip, strain inducing body, and force sensor device - Google Patents
Sensor chip, strain inducing body, and force sensor device Download PDFInfo
- Publication number
- WO2018066557A1 WO2018066557A1 PCT/JP2017/035973 JP2017035973W WO2018066557A1 WO 2018066557 A1 WO2018066557 A1 WO 2018066557A1 JP 2017035973 W JP2017035973 W JP 2017035973W WO 2018066557 A1 WO2018066557 A1 WO 2018066557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- force
- detection beam
- sensor chip
- beams
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
- G01L5/161—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
- G01L5/162—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors
Definitions
- the present invention relates to a sensor chip, a strain generating body, and a force sensor device.
- a force sensor device that detects a multiaxial force by attaching a plurality of strain gauges to a metal strain generating body and converting strain when an external force is applied into an electrical signal is known.
- this force sensor device has a problem in accuracy and productivity because it is necessary to affix the strain gauges one by one by hand, and it is difficult to downsize the structure.
- the present invention has been made in view of the above points, and an object of the present invention is to provide a sensor chip that can detect and output multi-axis displacement by a simple method.
- This sensor chip (10) maximizes the displacement in a predetermined axial direction based on the change in the output of a plurality of strain detection elements arranged on a predetermined beam according to the direction of the force or displacement applied to the force point.
- the detection beams (13a, 13d, 13g, 13j), the second detection beams (13b, 13e, 13h, 13k), and the third detection beams (13f, 13l) are disposed
- MxR1 to Mx R4, MyR1 to MyR4, MzR1 to MzR4, FxR1 to FxR4, FyR1 to FyR4, FzR1 to FzR4), and the displacement in the Z-axis direction that is the thickness direction of the substrate is at least for the third detection Detection based on deformation of the beam (13f, 13l), displacement in the X-axis direction and the Y-axis direction orthogonal to the Z-axis direction is the first detection beam (13a, 13d, 13g, 13j) or It is necessary to detect based on deformation of at least one of the second detection beams (13b, 13e, 13h, 13k).
- 1 is a perspective view illustrating a force sensor device according to a first embodiment.
- 1 is a perspective view illustrating a sensor chip and a strain body of a force sensor device according to a first embodiment. It is the figure (the 1) which looked at the sensor chip 10 from the Z-axis direction upper side. It is the figure (the 2) which looked at the sensor chip 10 from the Z-axis direction upper side. It is the figure (the 1) which looked at the sensor chip 10 from the Z-axis direction lower side. It is the figure (the 2) which looked at the sensor chip 10 from the Z-axis direction lower side. It is a figure explaining the code
- shaft. 2 is a diagram illustrating an arrangement of piezoresistive elements of a sensor chip 10.
- FIG. 4 is a diagram illustrating electrode arrangement and wiring in the sensor chip 10.
- FIG. 3 is an enlarged plan view illustrating a temperature sensor of the sensor chip 10.
- FIG. 2 is a perspective view illustrating a strain generating body 20.
- FIG. FIG. 2 is a diagram (part 1) illustrating a strain generating body 20;
- FIG. 2 is a diagram (part 2) illustrating a strain generating body 20;
- FIG. 2 is a diagram (part 1) illustrating a manufacturing process of the force sensor device 1;
- FIG. 3 is a second diagram illustrating a manufacturing process of the force sensor device 1;
- FIG. 6 is a third diagram illustrating a manufacturing process of the force sensor device 1;
- FIG. 6 is a diagram (No. 4) illustrating a manufacturing process of the force sensor device 1;
- FIG. 10 is a diagram (No. 5) illustrating a manufacturing process of the force sensor device 1;
- FIG. 6 is a diagram (No. 6) illustrating a manufacturing process of the force sensor device 1;
- FIG. It is a perspective view which illustrates the force sensor device concerning the modification 1 of a 1st embodiment. It is a figure (the 1) which illustrates the force sensor device concerning the modification 1 of a 1st embodiment. It is FIG. (2) which illustrates the force sensor apparatus which concerns on the modification 1 of 1st Embodiment. It is the figure (the 1) which looked at the sensor chip 50 from the Z-axis direction upper side. It is the figure (the 2) which looked at the sensor chip 50 from the Z-axis direction upper side.
- FIG. 3 is a diagram illustrating an arrangement of piezoresistive elements of a sensor chip 50. It is a perspective view (the 1) which illustrates the force sensor device concerning modification 3 of a 1st embodiment.
- FIG. 14 is a perspective view (part 3) illustrating a force sensor device according to a third modification of the first embodiment; It is a perspective view (the 1) which illustrates a force sensor device concerning modification 4 of a 1st embodiment. It is a perspective view (the 2) which illustrates the force sensor device concerning the modification 4 of a 1st embodiment. It is the figure (the 1) which looked at the sensor chip 110 from the Z-axis direction upper side. It is the figure (the 2) which looked at the sensor chip 110 from the Z-axis direction upper side. It is the figure (the 1) which looked at the sensor chip 110 from the Z-axis direction lower side.
- FIG. 4 is a diagram illustrating an arrangement of piezoresistive elements of a sensor chip 110. It is FIG. (1) explaining the improvement of the load resistance in the sensor chip.
- FIG. 6 is a diagram (part 2) for explaining the improvement of load resistance in the sensor chip 110;
- FIG. 6 is a diagram (No. 3) for explaining the improvement of load resistance in the sensor chip 110;
- FIG. (4) explaining the improvement of the load resistance in the sensor chip.
- FIG. 10 is a diagram (No. 5) for explaining the improvement in load resistance of the sensor chip 110; It is FIG. (6) explaining the improvement of the load resistance in the sensor chip.
- FIG. 6 is a diagram (part 1) for explaining improvement of sensitivity in the sensor chip 110;
- FIG. 5 is a diagram (part 2) for explaining an improvement in sensitivity in the sensor chip 110;
- FIG. 6 is a diagram (part 3) for explaining an improvement in sensitivity in the sensor chip 110;
- FIG. 6 is a diagram (part 1) for explaining improvement of other-axis characteristics in the sensor chip 110;
- FIG. 6 is a diagram (part 2) for explaining the improvement of the other-axis characteristic in the sensor chip 110.
- FIG. 10 is a third diagram illustrating the improvement of the other-axis characteristic in the sensor chip 110. It is the simulation result (the 1) about the stress which generate
- FIG. 1 is a perspective view illustrating the force sensor device according to the first embodiment.
- FIG. 2 is a perspective view illustrating a sensor chip and a strain body of the force sensor device according to the first embodiment. 1 and 2, the force sensor device 1 includes a sensor chip 10, a strain body 20, and an input / output substrate 30.
- the force sensor device 1 is a multi-axis force sensor device mounted on, for example, an arm or a finger of a robot used in a machine tool or the like.
- the sensor chip 10 is bonded to the upper surface side of the strain body 20 so as not to protrude from the strain body 20. Further, one end side of an input / output substrate 30 for inputting / outputting signals to / from the sensor chip 10 is bonded to the upper surface and the side surface of the strain generating body 20.
- the sensor chip 10 and each electrode 31 of the input / output substrate 30 are electrically connected by a bonding wire or the like (not shown).
- terminals (not shown) capable of electrical input / output with a control device connected to the force sensor device 1 are arranged.
- the side on which the input / output substrate 30 of the strain generating body 20 is provided is the upper side or one side, and the opposite side is the lower side or the other side.
- the surface of the strain generating body 20 on each side where the input / output substrate 30 is provided is defined as one surface or upper surface, and the opposite surface is defined as the other surface or lower surface.
- the force sensor device 1 can be used upside down, or can be arranged at an arbitrary angle.
- the planar view means that the object is viewed from the normal direction (Z-axis direction) of the upper surface of the sensor chip 10, and the planar shape is the normal direction of the upper surface of the sensor chip 10 (Z-axis direction). ) Refers to the shape viewed from.
- FIG. 3A is a perspective view of the sensor chip 10 viewed from the upper side in the Z-axis direction
- FIG. 3B is a plan view of the sensor chip 10 viewed from the upper side in the Z-axis direction
- 4A is a perspective view of the sensor chip 10 viewed from the lower side in the Z-axis direction
- FIG. 4B is a bottom view of the sensor chip 10 viewed from the lower side in the Z-axis direction.
- the surface of the same height is shown with the same satin pattern for convenience.
- the direction parallel to one side of the upper surface of the sensor chip 10 is the X-axis direction
- the perpendicular direction is the Y-axis direction
- the thickness direction of the sensor chip 10 (the normal direction of the upper surface of the sensor chip 10) is the Z-axis direction.
- the X axis direction, the Y axis direction, and the Z axis direction are orthogonal to each other.
- the sensor chip 10 shown in FIGS. 3A, 3B, 4A, and 4B is a MEMS (Micro Electro Mechanical Systems) sensor chip that can detect up to six axes with one chip, and is a semiconductor such as an SOI (Silicon On Insulator) substrate. It is formed from a substrate.
- the planar shape of the sensor chip 10 can be a square of about 3000 ⁇ m square, for example.
- the sensor chip 10 includes five columnar support portions 11a to 11e.
- the planar shape of the support portions 11a to 11e can be a square of about 500 ⁇ m square, for example.
- the support parts 11 a to 11 d as the first support parts are arranged at the four corners of the sensor chip 10.
- the support part 11e, which is the second support part, is arranged at the center of the support parts 11a to 11d.
- the support portions 11a to 11e can be formed of, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and the thickness of each can be set to about 500 ⁇ m, for example.
- a reinforcing beam 12a that is fixed at both ends to the support portion 11a and the support portion 11b (connects adjacent support portions) and reinforces the structure. It has been.
- both ends of the support part 11b and the support part 11c are fixed (to connect adjacent support parts), and a reinforcing beam 12b is provided to reinforce the structure. It has been.
- reinforcing beams 12c that are fixed at both ends to the support portion 11c and the support portion 11d (to connect adjacent support portions) and reinforce the structure. It has been.
- both ends of the support part 11d and the support part 11a are fixed (to connect adjacent support parts), and a reinforcing beam 12d is provided to reinforce the structure. It has been.
- the four reinforcing beams 12a, 12b, 12c, and 12d which are the first reinforcing beams, are formed in a frame shape, and the corners that form the intersections of the reinforcing beams are the support portions 11b, 11c, 11d. 11a.
- the inner corner of the support portion 11a and the opposite corner of the support portion 11e are connected by a reinforcing beam 12e for reinforcing the structure.
- the corner portion inside the support portion 11b and the corner portion of the support portion 11e opposite to the corner portion are connected by a reinforcing beam 12f for reinforcing the structure.
- the inner corner of the support portion 11c and the opposite corner of the support portion 11e are connected by a reinforcing beam 12g for reinforcing the structure.
- the corner part inside the support part 11d and the corner part of the support part 11e facing it are connected by a reinforcing beam 12h for reinforcing the structure.
- the reinforcing beams 12e to 12h which are the second reinforcing beams, are arranged obliquely with respect to the X-axis direction (Y-axis direction). That is, the reinforcing beams 12e to 12h are disposed non-parallel to the reinforcing beams 12a, 12b, 12c, and 12d.
- the reinforcing beams 12a to 12h can be formed from, for example, an active layer, a BOX layer, and a support layer of an SOI substrate.
- the thickness (width in the short direction) of the reinforcing beams 12a to 12h can be set to about 140 ⁇ m, for example.
- the upper surfaces of the reinforcing beams 12a to 12h are substantially flush with the upper surfaces of the support portions 11a to 11e.
- the lower surfaces of the reinforcing beams 12a to 12h are recessed to the upper surface side by about several tens of ⁇ m from the lower surfaces of the support portions 11a to 11e and the lower surfaces of the force points 14a to 14d. This is to prevent the lower surfaces of the reinforcing beams 12a to 12h from coming into contact with the opposing surface of the strain body 20 when the sensor chip 10 is bonded to the strain body 20.
- the rigidity of the entire sensor chip 10 can be increased by disposing the reinforcing beam having a high rigidity formed thicker than the detection beam separately from the detection beam for detecting the strain. This makes it difficult to deform other than the detection beam with respect to the input, so that good sensor characteristics can be obtained.
- both ends are fixed to the support part 11a and the support part 11b in parallel with a predetermined interval (adjacent to the reinforcement beam 12a).
- Detection beams 13a for detecting strain are provided inside the reinforcement beam 12a between the support part 11a and the support part 11b.
- a detection beam 13b is provided in parallel with the detection beam 13a at a predetermined interval from the detection beam 13a and the support portion 11e.
- the detection beam 13b connects the end portion on the support portion 11e side of the reinforcement beam 12e and the end portion on the support portion 11e side of the reinforcement beam 12f.
- the substantially central portion in the longitudinal direction of the detection beam 13a and the substantially central portion in the longitudinal direction of the detection beam 13b facing the detection beam 13a are arranged so as to be orthogonal to the detection beam 13a and the detection beam 13b. It is connected by a detection beam 13c for detection.
- both ends are fixed to the support portion 11b and the support portion 11c (adjacent to each other) in parallel with the reinforcing beam 12b at a predetermined interval.
- 13 d of detection beams for detecting distortion are provided.
- a detection beam 13e is provided in parallel with the detection beam 13d at a predetermined interval from the detection beam 13d and the support portion 11e.
- the detection beam 13e connects the end portion on the support portion 11e side of the reinforcing beam 12f and the end portion on the support portion 11e side of the reinforcement beam 12g.
- a substantially central portion in the longitudinal direction of the detection beam 13d and a substantially central portion in the longitudinal direction of the detection beam 13e facing the detection beam 13d are arranged so as to be orthogonal to the detection beam 13d and the detection beam 13e. It is connected by a detection beam 13f for detection.
- both ends are fixed to the support part 11c and the support part 11d in parallel with a predetermined interval (adjacent to the reinforcing beam 12c).
- a supporting beam 13g for detecting strain is provided inside the reinforcing beam 12c between the support part 11c and the support part 11d.
- a detection beam 13h is provided in parallel with the detection beam 13g at a predetermined interval from the detection beam 13g and the support portion 11e.
- the detection beam 13h connects the end portion on the support portion 11e side of the reinforcement beam 12g and the end portion on the support portion 11e side of the reinforcement beam 12h.
- a substantially central portion in the longitudinal direction of the detection beam 13g and a substantially central portion in the longitudinal direction of the detection beam 13h opposed thereto are arranged so as to be orthogonal to the detection beam 13g and the detection beam 13h. It is connected by a detection beam 13i for detection.
- both ends are fixed to the supporting portion 11d and the supporting portion 11a in parallel with a predetermined distance from the reinforcing beam 12d (adjacent to each other).
- Detection beams 13j for detecting strain are provided inside the reinforcing beam 12d between the supporting portion 11d and the supporting portion 11a.
- a detection beam 13k is provided in parallel with the detection beam 13j at a predetermined interval from the detection beam 13j and the support portion 11e.
- the detection beam 13k connects the end portion on the support portion 11e side of the reinforcement beam 12h and the end portion on the support portion 11e side of the reinforcement beam 12e.
- the substantially central portion in the longitudinal direction of the detection beam 13j and the substantially central portion in the longitudinal direction of the detection beam 13k facing the detection beam 13j are arranged so as to be orthogonal to the detection beam 13j and the detection beam 13k. It is connected by a detection beam 13l for detection.
- the detection beams 13a to 13l are provided on the upper end side in the thickness direction of the support portions 11a to 11e, and can be formed from, for example, an active layer of an SOI substrate.
- the thickness (width in the short direction) of the detection beams 13a to 13l can be set to about 75 ⁇ m, for example.
- the upper surfaces of the detection beams 13a to 13l are substantially flush with the upper surfaces of the support portions 11a to 11e.
- the thickness of each of the detection beams 13a to 13l can be set to about 50 ⁇ m, for example.
- a force point 14a is provided on the lower surface side (intersection of the detection beam 13a and the detection beam 13c) of the central portion in the longitudinal direction of the detection beam 13a.
- the detection beams 13a, 13b, and 13c and the force point 14a constitute a set of detection blocks.
- a force point 14b is provided on the lower surface side (intersection of the detection beam 13d and the detection beam 13f) of the central portion in the longitudinal direction of the detection beam 13d.
- the detection beams 13d, 13e, and 13f and the force point 14b form a set of detection blocks.
- a force point 14c is provided on the lower surface side (intersection of the detection beam 13g and the detection beam 13i) of the central portion in the longitudinal direction of the detection beam 13g.
- the detection beams 13g, 13h, and 13i and the force point 14c form a set of detection blocks.
- a force point 14d is provided on the lower surface side (intersection of the detection beam 13j and the detection beam 13l) of the central portion in the longitudinal direction of the detection beam 13j.
- the detection beams 13j, 13k, and 13l and the force point 14d form a set of detection blocks.
- the force points 14a to 14d are portions to which an external force is applied, and can be formed from, for example, a BOX layer and a support layer of an SOI substrate.
- the lower surfaces of the force points 14a to 14d are substantially flush with the lower surfaces of the support portions 11a to 11e.
- the portion that forms the inner angle has an R shape.
- FIG. 5 is a diagram for explaining symbols indicating the force and moment applied to each axis.
- the force in the X-axis direction is Fx
- the force in the Y-axis direction is Fy
- the force in the Z-axis direction is Fz.
- a moment for rotating about the X axis as Mx a moment for rotating about the Y axis as My
- a moment for rotating about the Z axis as Mz are set as Mz.
- FIG. 6 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 10. Piezoresistive elements are arranged at predetermined positions of the respective detection blocks corresponding to the four force points 14a to 14d.
- the piezoresistive elements MxR3 and MxR4 are on a line that bisects the detection beam 13a in the longitudinal direction. And it arrange
- the piezoresistive elements MyR3 and MyR4 are on a line that bisects the detection beam 13d in the longitudinal direction and bisect the detection beam 13f in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. Further, the piezoresistive elements FxR3 and FxR4 are on the detection beam 13d side with respect to the line that bisects the detection beam 13e in the longitudinal direction, and are lines that bisect the detection beam 13f in the longitudinal direction. They are arranged at symmetrical positions.
- MzR3 and MzR4 are on the detection beam 13e side with respect to the line that bisects the detection beam 13f in the short direction, and with respect to the line that bisects the detection beam 13f in the longitudinal direction. It is arranged in a symmetrical position. Further, FzR3 and FzR4 are arranged on a line that bisects the detection beam 13f in the longitudinal direction and symmetrically with respect to a line that bisects the detection beam 13f in the short direction. Yes.
- the piezoresistive elements MxR1 and MxR2 are on a line that bisects the detection beam 13g in the longitudinal direction and bisects the detection beam 13i in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. Further, the piezoresistive elements FyR1 and FyR2 are on the side of the detection beam 13g with respect to the line that bisects the detection beam 13h in the longitudinal direction, and the line that bisects the detection beam 13i in the longitudinal direction. They are arranged at symmetrical positions.
- the piezoresistive elements MyR1 and MyR2 are on a line that bisects the detection beam 13j in the longitudinal direction and bisects the detection beam 13l in the longitudinal direction. It is arranged at a symmetrical position with respect to the line.
- the piezoresistive elements FxR1 and FxR2 are on the side of the detection beam 13j with respect to the line that bisects the detection beam 13k in the longitudinal direction, and are lines that bisect the detection beam 13l in the longitudinal direction. They are arranged at symmetrical positions.
- MzR1 and MzR2 are located on the detection beam 13k side with respect to the line that bisects the detection beam 13l in the short direction, and with respect to the line that bisects the detection beam 13l in the longitudinal direction. It is arranged in a symmetrical position. Further, FzR1 and FzR2 are arranged on a line that bisects the detection beam 13l in the longitudinal direction and symmetrically with respect to a line that bisects the detection beam 13l in the short direction. Yes.
- the piezoresistive elements FxR1 to FxR4 detect the force Fx
- the piezoresistive elements FyR1 to FyR4 detect the force Fy
- the piezoresistive elements FzR1 to FzR4 detect the force Fz.
- the piezoresistive elements MxR1 to MxR4 detect the moment Mx
- the piezoresistive elements MyR1 to MyR4 detect the moment My
- the piezoresistive elements MzR1 to MzR4 detect the moment Mz.
- the predetermined axis It is possible to detect the displacement in the direction up to 6 axes.
- the displacement (Mx, My, Fz) in the Z-axis direction can be detected based on a predetermined deformation of the detection beam. That is, the moments (Mx, My) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 13a, 13d, 13g, and 13j that are the first detection beams. Further, the force (Fz) in the Z-axis direction can be detected based on the deformation of the detection beams 13f and 13l which are the third detection beams.
- the displacements (Fx, Fy, Mz) in the X-axis direction and the Y-axis direction can be detected based on a predetermined deformation of the detection beam. That is, the forces (Fx, Fy) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 13b, 13e, 13h, and 13k, which are the second detection beams. The moment (Mz) in the Z-axis direction can be detected based on the deformation of the detection beams 13f and 13l that are the third detection beams.
- the number of piezoresistive elements can be reduced to provide a sensor chip that detects displacement in a predetermined axial direction of 5 axes or less.
- FIG. 7 is a diagram illustrating the electrode arrangement and wiring in the sensor chip 10, and is a plan view of the sensor chip 10 as viewed from the upper side in the Z-axis direction.
- the sensor chip 10 has a plurality of electrodes 15 for taking out an electrical signal.
- Each electrode 15 is disposed on the upper surface of the support portions 11a to 11d of the sensor chip 10 with the least distortion when a force is applied to the force points 14a to 14d.
- the wiring 16 from each piezoresistive element to the electrode 15 can be appropriately routed on each reinforcing beam and each detecting beam.
- each reinforcing beam can also be used as a detour when pulling out the wiring as needed, so by arranging the reinforcing beam separately from the detection beam, the degree of freedom in wiring design is improved. be able to. Thereby, each piezoresistive element can be arranged at a more ideal position.
- FIG. 8 is an enlarged plan view illustrating the temperature sensor of the sensor chip 10.
- the sensor chip 10 includes a temperature sensor 17 for performing temperature correction on a piezoresistive element used for strain detection.
- the temperature sensor 17 has a configuration in which four piezoresistive elements TR1, TR2, TR3, and TR4 are bridge-connected.
- piezoresistive elements TR1, TR2, TR3, and TR4 two opposing ones have the same characteristics as the piezoresistive element MxR1 used for strain detection.
- the other two opposing piezoresistive elements TR1, TR2, TR3, and TR4 have different characteristics from the piezoresistive element MxR1 and the like by changing the impurity concentration depending on the impurity semiconductor. Thereby, since the balance of the bridge is lost due to temperature change, temperature detection is possible.
- the piezoresistive elements TR1, TR2, TR3, and TR4 that constitute the temperature sensor 17 are arranged so as to be inclined by 45 degrees with respect to the crystal orientation of the semiconductor substrate (such as silicon) that constitutes the sensor chip 10. .
- the semiconductor substrate such as silicon
- the temperature sensor 17 is disposed on the upper surface of the support portion 11a of the sensor chip 10 with the least distortion when a force is applied to the force points 14a to 14d. Thereby, the resistance change with respect to stress can be reduced further.
- the piezoresistive element is a typical example of the strain detecting element according to the present invention.
- FIG. 9 is a perspective view illustrating the strain body 20.
- 10A is a plan view illustrating the strain body 20, and
- FIG. 10B is a cross-sectional perspective view taken along line AA of FIG. 10A.
- the surface of the same height is shown with the same satin pattern for convenience.
- pillars 22a to 22d which are the first pillars, are arranged at the four corners on the base 21, and adjacent pillars are connected to each other.
- Four beams 23a to 23d which are first beams to be connected, are provided in a frame shape.
- a pillar 22e which is a second pillar, is disposed at the center on the base 21.
- the pillar 22e is a pillar for fixing the sensor chip 10, and is thicker and shorter than the pillars 22a to 22d.
- the sensor chip 10 is fixed on the pillar 22e so as not to protrude from the upper surfaces of the pillars 22a to 22d.
- the schematic shape of the strain body 20 can be, for example, a rectangular parallelepiped having a length of about 5000 ⁇ m, a width of about 5000 ⁇ m, and a height of about 7000 ⁇ m.
- the cross-sectional shape of the pillars 22a to 22d can be a square of about 1000 ⁇ m square, for example.
- the cross-sectional shape of the pillar 22e can be, for example, a square of about 2000 ⁇ m square.
- a protrusion that protrudes upward from the center in the longitudinal direction of the beams 23a to 23d is provided at the center of the upper surface of each of the beams 23a to 23d.
- a cylindrical input portion 24a To 24d are provided on the protrusion.
- the input portions 24a to 24d are portions to which a force is applied from the outside. When a force is applied to the input portions 24a to 24d, the beams 23a to 23d and the columns 22a to 22d are deformed accordingly.
- the column 22e is separated from the beams 23a to 23d that are deformed by the applied force and the columns 22a to 22d that are deformed by the applied force. Therefore, even if a force is applied to the input units 24a to 24d. Does not move (does not deform due to applied force).
- the load resistance of the beams 23a to 23d can be improved as compared with, for example, the structure of one input portion.
- pillars 25a to 25d which are third pillars, are arranged at the four corners of the upper surface of the pillar 22e, and a pillar 25e, which is the fourth pillar, is arranged at the center of the upper surface of the pillar 22e.
- the columns 25a to 25e are formed at the same height.
- the upper surfaces of the pillars 25a to 25e are located on the same plane.
- the upper surface of each of the columns 25a to 25e serves as a bonding portion bonded to the lower surface of the sensor chip 10. Since the columns 25a to 25e are separated from the beams 23a to 23d deformed by the applied force and the columns 22a to 22d deformed by the applied force, the columns 25a to 25e are movable even if a force is applied to the input units 24a to 24d. (It will not be deformed by the applied force).
- Beams 26a to 26d projecting inward in the horizontal direction from the inner side surfaces of the beams 23a to 23d are provided at the longitudinal center portions of the inner side surfaces of the beams 23a to 23d.
- the beams 26a to 26d are second beams that transmit the deformation of the beams 23a to 23d and the columns 22a to 22d to the sensor chip 10. Further, projections 27a to 27d projecting upward from the distal end sides of the upper surfaces of the beams 26a to 26d are provided on the distal ends of the upper surfaces of the beams 26a to 26d.
- the protrusions 27a to 27d are formed at the same height. That is, the upper surfaces of the protrusions 27a to 27d are located on the same plane. The upper surfaces of the projecting portions 27a to 27d serve as joint portions that are bonded to the lower surface of the sensor chip 10. Since the beams 26a to 26d and the projecting portions 27a to 27d are connected to the beams 23a to 23d serving as movable portions, when a force is applied to the input portions 24a to 24d, the beams are deformed accordingly.
- the base 21, columns 22a to 22e, beams 23a to 23d, input portions 24a to 24d, columns 25a to 25e, beams 26a to 26d, and projections 27a to 27d are secured with rigidity. Moreover, it is preferable that they are integrally formed from the viewpoint of manufacturing with high accuracy.
- a hard metal material such as SUS (stainless steel) can be used. Among them, it is particularly preferable to use SUS630 that is particularly hard and has high mechanical strength.
- the strain-generating body 20 also has a structure including a column and a beam, so that the six-axis separability is exhibited because the six-axis changes due to the applied force. Good deformation can be transmitted to the sensor chip 10.
- the force applied to the input portions 24a to 24d of the strain body 20 is transmitted to the sensor chip 10 via the columns 22a to 22d, the beams 23a to 23d, and the beams 26a to 26d, and the displacement is caused by the sensor chip 10.
- the output of each axis can be obtained from a bridge circuit formed one for each axis.
- the part which forms an internal angle is made into R shape from a viewpoint of suppressing stress concentration.
- the strain body 20 can be integrally formed, for example, by molding, cutting, wire discharge, or the like.
- a material of the strain body 20 for example, a hard metal material such as SUS (stainless steel) can be used. Among them, it is particularly preferable to use SUS630 that is particularly hard and has high mechanical strength.
- an adhesive 41 is applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d.
- the adhesive 41 for example, an epoxy adhesive or the like can be used. From the viewpoint of proof strength against externally applied force, the adhesive 41 preferably has a Young's modulus of 1 GPa or more and a thickness of 20 ⁇ m or less.
- the sensor chip 10 is manufactured.
- the sensor chip 10 can be manufactured by, for example, a well-known method of preparing an SOI substrate and etching the prepared substrate (for example, reactive ion etching).
- the electrodes and wirings can be produced, for example, by forming a metal film such as copper on the surface of the substrate by sputtering or the like and then patterning the metal film by photolithography.
- the sensor chip 10 is distorted so that the lower surface of the sensor chip 10 is in contact with the adhesive 41 applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d. 20 while being pressurized. Then, the adhesive 41 is heated to a predetermined temperature and cured. Thereby, the sensor chip 10 is fixed in the strain body 20. Specifically, the support parts 11a to 11d of the sensor chip 10 are fixed on the pillars 25a to 25e, the support part 11e is fixed on the pillar 25e, and the force points 14a to 14d are fixed on the protrusions 27a to 27d, respectively. Is done.
- an adhesive 42 is applied to the upper surfaces of the columns 22a to 22d.
- the adhesive 42 for example, an epoxy adhesive or the like can be used. Note that the adhesive 42 is for fixing the input / output substrate 30 on the strain body 20, and since a force is not applied from the outside, a general-purpose adhesive can be used.
- the input / output substrate 30 is prepared, and the input / output substrate 30 is strained so that the lower surface of the input / output substrate 30 is in contact with the adhesive 42 applied to the upper surfaces of the columns 22a to 22d. Place on the body 20. Then, the adhesive 42 is heated to a predetermined temperature and cured while pressing the input / output substrate 30 toward the strain body 20 side. As a result, the input / output substrate 30 is fixed to the strain body 20.
- the input / output board 30 is fixed to the strain body 20 so that the sensor chip 10 and the input parts 24a to 24d are exposed.
- the electrodes 31 of the input / output substrate 30 are preferably disposed on the pillars 22a to 22d of the strain generating body 20 with the least distortion when a force is applied to the input portions 24a to 24d.
- the portion of the input / output board 30 that protrudes in the horizontal direction from the strain body 20 (except the input terminal side) is bent to the side surface side of the strain body 20.
- corresponding portions of the input / output substrate 30 and the sensor chip 10 are electrically connected by bonding wires or the like (not shown). Thereby, the force sensor device 1 shown in FIG. 1 is completed.
- the force sensor device 1 can be manufactured with only the three components of the sensor chip 10, the strain body 20, and the input / output substrate 30. Therefore, the assembly can be easily performed and the number of alignment positions can be minimized. , Deterioration of accuracy due to mounting can be suppressed.
- connection points to the sensor chip 10 are all on the same plane, the position of the sensor chip 10 with respect to the strain body 20. The alignment is only required once, and it is easy to mount the sensor chip 10 on the strain body 20.
- FIGS. 16A to 18B show simulation results for the stress generated in the sensor chip 10 when the forces and moments shown in FIGS. 14 and 15 are applied.
- the tensile normal stress is indicated by “+”
- the compressive normal stress is indicated by “ ⁇ ”.
- the strain generating body 20 When the force Fx is applied in the direction from X1 to X2 along the X axis, the strain generating body 20 is deformed as shown in FIG. 14, and stress as shown in FIG. Specifically, the detection beams 13k and 13e are distorted in the direction of the force Fx by application of the force Fx.
- the piezoresistive elements FxR1 and FxR2 are located on the X1 side from the longitudinal center of the detection beam 13k, a tensile vertical stress is generated and the resistance value is increased.
- the piezoresistive elements FxR3 and FxR4 are located on the X2 side from the longitudinal center of the detection beam 13e, compressive vertical stress is generated and the resistance value is reduced. As a result, the balance of the piezoresistive elements FxR1 to FxR4 is lost, so that a voltage is output from the bridge circuit shown in FIG. 16A and the force Fx can be detected.
- the detection beams 13d and 13j are also distorted in the direction of the force Fx, little or no stress is generated at the positions of the piezoresistive elements MyR1 and MyR2 and the piezoresistive elements MyR3 and MyR4. Therefore, the balance of the bridge is maintained, and no voltage is output from the bridge circuit of the moment My shown in FIG. 18A.
- the piezoresistive elements FyR3 and FyR4 are located on the Y1 side from the longitudinal center of the detection beam 13b, a tensile vertical stress is generated and the resistance value is increased.
- the piezoresistive elements FyR1 and FyR2 are located on the Y2 side from the longitudinal center of the detection beam 13h, compressive vertical stress is generated and the resistance value is reduced. As a result, the balance of the piezoresistive elements FyR1 to FyR4 is lost, so that a voltage is output from the bridge circuit shown in FIG. 16B and the force Fy can be detected.
- the strain generating body 20 When the force Fz is applied in the direction from Z2 to Z1 along the Z axis, the strain generating body 20 is deformed as shown in FIG. 14, and a stress as shown in FIG. Specifically, the detection beams 13a, 13b, 13g, 13h, 13d, 13e, 13j, 13k, 13c, 13f, 13l, and 13i are distorted in the direction of the force Fz by applying the force Fz.
- the strain body 20 When the moment My is applied in the direction of X1-Z2-X2 with the Y axis as the rotation axis, the strain body 20 is deformed as shown in FIG. 15, and stress as shown in FIG. To do. Specifically, the detection beams 13j and 13d are distorted in the direction of the moment My by the application of the moment My.
- the strain body 20 When the moment Mz is applied in the direction of X2-Y2-X1 with the Z axis as the rotation axis, the strain body 20 is deformed as shown in FIG. 15, and stress as shown in FIG. To do. Specifically, the detection beams 13a, 13b, 13g, 13h, 13d, 13e, 13j, 13k, 13c, 13f, 13l, and 13i are distorted in the direction of the moment Mz by applying the moment Mz.
- the sensor chip 10 when displacement (force or moment) is input to the power point, bending and torsional stress corresponding to the input is generated in the predetermined detection beam.
- the resistance value of the piezoresistive element arranged at a predetermined position of the detection beam is changed by the generated stress, and the output voltage from each bridge circuit formed in the sensor chip 10 can be obtained from the electrode 15. Further, the output voltage of the electrode 15 can be obtained outside via the input / output substrate 30.
- the output of each axis can be obtained without combining the outputs.
- multi-axis displacement can be detected and output by a simple method that does not require complicated calculations and signal processing.
- the piezoresistive elements are divided into different detection beams depending on the type of input.
- shaft can be adjusted independently by changing the rigidity (thickness and width
- ⁇ Variation 1 of the first embodiment In the first modification of the first embodiment, an example of a force sensor device including a force receiving plate is shown. In the first modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
- FIG. 19 is a perspective view illustrating a force sensor device according to Modification 1 of the first embodiment.
- 20A is a plan view illustrating a force sensor device according to Modification 1 of the first embodiment
- FIG. 20B is a cross-sectional view taken along line BB in FIG. 20A.
- the force sensor device 1A is different from the force sensor device 1 in that a force receiving plate 40 is provided on the input portions 24a to 24d of the strain body 20. .
- Four recesses 40x are provided on the lower surface side of the force receiving plate 40. Further, four concave portions 40y are provided on the upper surface side of the force receiving plate 40 at positions substantially overlapping with the respective concave portions 40x in plan view. The four concave portions 40x are arranged so as to cover the input portions 24a to 24d of the strain body 20, and the bottom surfaces of the concave portions 40x are in contact with the upper surfaces of the input portions 24a to 24d.
- the force receiving plate 40 and the strain body 20 can be positioned.
- the recess 40y can be used for positioning when the force sensor device 1A is attached to a robot or the like.
- the material of the force receiving plate 40 for example, SUS (stainless steel) 630 or the like can be used.
- the force receiving plate 40 can be fixed to the strain body 20 by welding, bonding, screwing, or the like, for example.
- FIG. 21A is a plan view of the sensor chip 50 viewed from the upper side in the Z-axis direction
- FIG. 21B is a bottom view of the sensor chip 50 viewed from the lower side in the Z-axis direction.
- the surface of the same height is shown with the same satin pattern for convenience.
- the sensor chip 50 shown in FIG. 21A and FIG. 21B is a MEMS sensor chip that can detect a maximum of six axes with one chip, like the sensor chip 10, and can be manufactured from an SOI substrate or the like.
- the planar shape of the sensor chip 50 can be a square of about 3000 ⁇ m square, for example.
- a sensor chip 50 can be used instead of the sensor chip 10.
- the sensor chip 50 includes five columnar support portions 51a to 51e.
- the planar shape of the support parts 51a to 51e can be a square of about 500 ⁇ m square, for example.
- Support portions 51 a to 51 d as first support portions are arranged at the four corners of the sensor chip 50.
- the support part 51e, which is the second support part, is arranged at the center of the support parts 51a to 51d.
- the support portions 51a to 51e can be formed from, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and the thickness of each can be about 500 ⁇ m, for example.
- reinforcing beams 52a for reinforcing the structure, both ends of which are fixed to the support portions 51a and 51b (to connect adjacent support portions). It has been.
- both ends of the support part 51b and the support part 51c are fixed (to connect adjacent support parts), and a reinforcing beam 52b for reinforcing the structure is provided. It has been.
- a reinforcing beam 52c that is fixed at both ends to the support portion 51c and the support portion 51d (connects adjacent support portions) and reinforces the structure. It has been. Between the support part 51d and the support part 51a, both ends are fixed to the support part 51d and the support part 51a (adjacent support parts are connected), and a reinforcing beam 52d for reinforcing the structure is provided. It has been.
- the four reinforcing beams 52a, 52b, 52c, and 52d which are the first reinforcing beams, are formed in a frame shape, and the corners forming the intersections of the reinforcing beams are the support portions 51b, 51c, 51d. 51a.
- the reinforcing beams 52a to 52d can be formed of, for example, an active layer, a BOX layer, and a support layer of an SOI substrate.
- the thickness (width in the short direction) of the reinforcing beams 52a to 52d can be set to about 30 ⁇ m, for example.
- the upper surfaces of the reinforcing beams 52a to 52d are substantially flush with the upper surfaces of the support portions 51a to 51e.
- the lower surfaces of the reinforcing beams 52a to 52d are recessed to the upper surface side by about several tens of ⁇ m from the lower surfaces of the support portions 51a to 51e and the lower surfaces of the force points 54a to 54d. This is to prevent the lower surfaces of the reinforcing beams 52a to 52d from coming into contact with the opposing surface of the strain body 20 when the sensor chip 50 is bonded to the strain body 20.
- the rigidity of the sensor chip 50 as a whole can be increased by disposing the reinforcing beam having a high rigidity formed thicker than the detection beam separately from the detection beam for detecting the strain. This makes it difficult to deform other than the detection beam with respect to the input, so that good sensor characteristics can be obtained.
- both ends are fixed to the support portion 51a and the support portion 51b (adjacent to each other) in parallel with the reinforcing beam 52a with a predetermined interval.
- Detection beams 53a for detecting strain are provided inside the reinforcing beam 52a between the support portion 51a and the support portion 51b.
- a frame-shaped detection beam 53b having a predetermined distance from the detection beam 53a and the support portion 51e and having a longitudinal direction parallel to the detection beam 53a is provided. Yes.
- the detection beam 53b is connected to a substantially central portion in the longitudinal direction of the detection beam 53a and a substantially central portion of one side of the support portion 51e facing the detection beam 53a, and is approximately in the longitudinal direction of the detection beam 53a.
- the detection beam 53c extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
- both ends are fixed to the support part 51b and the support part 51c (adjacent to each other) in parallel with the reinforcing beam 52b with a predetermined distance therebetween.
- a detecting beam 53d for detecting strain is provided inside the reinforcing beam 52b between the support part 51b and the support part 51c.
- a frame-shaped detection beam 53e that is spaced apart from the detection beam 53d and the support portion 51e and whose longitudinal direction is parallel to the detection beam 53d.
- the detection beam 53e is substantially in the longitudinal direction of the detection beam 53d, which connects between a substantially central portion in the longitudinal direction of the detection beam 53d and a substantially central portion of one side of the support portion 51e facing the detection beam 53d.
- the detection beam 53f extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
- both ends are fixed to (adjacent to) the support portion 51c and the support portion 51d in parallel with the reinforcing beam 52c at a predetermined interval.
- a detecting beam 53g for detecting strain is provided inside the reinforcing beam 52c between the support portion 51c and the support portion 51d.
- a frame-shaped detection beam 53h having a predetermined distance from the detection beam 53g and the support portion 51e and having a longitudinal direction parallel to the detection beam 53g is provided. Yes.
- the detection beam 53h is approximately in the longitudinal direction of the detection beam 53g that connects between the substantially central portion in the longitudinal direction of the detection beam 53g and the substantially central portion of one side of the support portion 51e facing the detection beam 53g.
- the detection beam 53i extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
- both ends thereof are fixed to the support portion 51d and the support portion 51a in parallel with a predetermined distance (adjacent to each other).
- a support beam 53j for detecting strain is provided inside the reinforcing beam 52d between the support portion 51d and the support portion 51a.
- a frame-shaped detection beam 53k whose longitudinal direction is parallel to the detection beam 53j is provided with a predetermined distance from the detection beam 53j and the support portion 51e. Yes.
- the detection beam 53k is approximately in the longitudinal direction of the detection beam 53j that connects between the substantially central portion of the detection beam 53j in the longitudinal direction and the substantially central portion of one side of the support portion 51e facing the detection beam 53j.
- the detection beam 53l extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
- the detection beams 53a to 53l are provided on the upper end side in the thickness direction of the support portions 51a to 51e, and can be formed from, for example, an active layer of an SOI substrate.
- the thickness (width in the short direction) of the detection beams 53a to 53l can be set to, for example, about 150 ⁇ m.
- the upper surfaces of the detection beams 53a to 53l are substantially flush with the upper surfaces of the support portions 51a to 51e.
- the thickness of each of the detection beams 53a to 53l can be set to about 50 ⁇ m, for example.
- a force point 54a is provided on the lower surface side (intersection of the detection beam 53a and the detection beam 53c) of the central portion in the longitudinal direction of the detection beam 53a.
- the detection beams 53a, 53b and 53c and the force point 54a form a set of detection blocks.
- a force point 54b is provided on the lower surface side (intersection of the detection beam 53d and the detection beam 53f) of the central portion in the longitudinal direction of the detection beam 53d.
- the detection beams 53d, 53e, and 53f and the force point 54b constitute a set of detection blocks.
- a force point 54c is provided on the lower surface side (intersection of the detection beam 53g and the detection beam 53i) of the central portion in the longitudinal direction of the detection beam 53g.
- the detection beams 53g, 53h, and 53i and the force point 54c form a set of detection blocks.
- a force point 54d is provided on the lower surface side (intersection of the detection beam 53j and the detection beam 53l) of the central portion in the longitudinal direction of the detection beam 53j.
- the detection beams 53j, 53k, and 53l and the force point 54d form a set of detection blocks.
- the force points 54a to 54d are places where an external force is applied, and can be formed from, for example, a BOX layer and a support layer of an SOI substrate.
- the lower surfaces of the force points 54a to 54d are substantially flush with the lower surfaces of the support portions 51a to 51e.
- FIG. 22 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 50. Piezoresistive elements are arranged at predetermined positions of the respective detection blocks corresponding to the four force points 54a to 54d.
- the piezoresistive elements MxR3 and MxR4 are on a line that bisects the detection beam 53a in the longitudinal direction.
- the detection beam 53c is arranged at a symmetrical position with respect to a line that bisects the beam in the longitudinal direction.
- the piezoresistive elements FyR3 and FyR4 are located on the detection beam 53a side of the opening of the frame-shaped detection beam 53b and are symmetric with respect to a line that bisects the detection beam 53c in the longitudinal direction. It is arranged in the position.
- the piezoresistive elements MyR3 and MyR4 are on a line that bisects the detection beam 53d in the longitudinal direction and bisects the detection beam 53f in the longitudinal direction. It is arranged at a symmetrical position with respect to the line.
- the piezoresistive elements FxR3 and FxR4 are on the detection beam 53d side of the opening of the frame-shaped detection beam 53e, and are symmetric with respect to a line that bisects the detection beam 53f in the longitudinal direction. It is arranged in the position.
- MzR3 and MzR4 are arranged on the support portion 51e side with respect to the detection beam 53e and symmetrically with respect to a line that bisects the detection beam 53f in the longitudinal direction.
- FzR3 and FzR4 are on a line that bisects the detection beam 53f in the longitudinal direction, and are symmetrical with respect to a line that bisects the opening of the frame-shaped detection beam 53e in the longitudinal direction. Placed in position.
- the piezoresistive elements MxR1 and MxR2 are on a line that bisects the detection beam 53g in the longitudinal direction and bisect the detection beam 53i in the longitudinal direction. It is arranged at a symmetrical position with respect to the line.
- the piezoresistive elements FyR1 and FyR2 are on the detection beam 53g side with respect to the opening of the frame-shaped detection beam 53h, and are symmetrical with respect to a line that bisects the detection beam 53i in the longitudinal direction. It is arranged in the position.
- the piezoresistive elements MyR1 and MyR2 are on a line that bisects the detection beam 53j in the longitudinal direction and bisects the detection beam 53l in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. Further, the piezoresistive elements FxR1 and FxR2 are on the detection beam 53j side with respect to the opening of the frame-shaped detection beam 13k and are symmetric with respect to a line that bisects the detection beam 53l in the longitudinal direction. It is arranged in the position.
- MzR1 and MzR2 are arranged on the support portion 51e side with respect to the detection beam 53k and symmetrically with respect to a line that bisects the detection beam 53l in the longitudinal direction.
- FzR1 and FzR2 are on a line that bisects the detection beam 53l in the longitudinal direction and are symmetrical with respect to a line that bisects the opening of the frame-shaped detection beam 53k in the longitudinal direction. Placed in position.
- the sensor chip 50 similarly to the sensor chip 10, a plurality of piezoresistive elements are separately arranged in each detection block. As a result, similar to the sensor chip 10, based on changes in the outputs of a plurality of piezoresistive elements arranged on a predetermined beam according to the direction (axial direction) of the force applied (transmitted) to the force points 54a to 54d. Thus, it is possible to detect up to six axes of displacement in a predetermined axial direction.
- Modification 3 of the first embodiment shows an example of a force sensor device that does not use a strain generating body. Note that in the third modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
- the force sensor device 1B includes a sensor chip 10, a force receiving plate 60, and a package.
- a force receiving plate 60 is bonded onto the sensor chip 10, and the sensor chip 10 is held in the package 70.
- the force receiving plate 60 can be formed of glass, for example.
- the package 70 can be formed of ceramics, for example.
- the force receiving plate 60 has a substantially circular main body 61 and four protrusions 61 a, 61 b, 61 c and 61 d provided on the lower surface side of the main body 61.
- the protrusion 61a is in contact with the region corresponding to the force point 14a on the upper surface of the detection beam 13a.
- the protrusion 61b is in contact with a region corresponding to the force point 14d on the upper surface of the detection beam 13j.
- the protrusion 61c is in contact with a region corresponding to the force point 14c on the upper surface of the detection beam 13g.
- the protrusion 61d is in contact with the region corresponding to the force point 14b on the upper surface of the detection beam 13d.
- an external force can be applied to the sensor chip 10 via the force receiving plate 60 without using a strain body by adopting the configuration as shown in FIGS. 23A to 23C.
- the force sensor device 1B may be a manufacturing process in which the force receiving plate 60 is joined after the sensor chip 10 is completed, or a manufacturing process as described below. That is, a glass wafer (same size as the sensor chip wafer) to be the force receiving plate 60 is anodically bonded to the sensor chip wafer before dicing on which the sensor chip 10 is formed. The sensor chip 10 and the force receiving plate 60 can be formed simultaneously by dicing the anodic bonded sensor chip wafer and the glass wafer at the same time.
- the fourth modification of the first embodiment shows another example of a force sensor device that does not use a strain generating body. Note that in the fourth modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
- the force sensor device 1C includes a sensor chip 10 and a column structure 80.
- the sensor chip 10 is bonded onto the column structure 80.
- the column structure 80 can be formed of, for example, silicon, glass, metal, or the like.
- the pillar structure 80 has a base 81 and nine pillars 82a to 82i arranged on the base 81 at substantially equal intervals.
- the pillars 82 a, 82 c, 82 e, and 82 g are disposed at the four corners of the base 81.
- the column 82 i is disposed at the center of the base 81.
- the column 82b is disposed between the column 82a and the column 82c.
- the column 82d is disposed between the column 82c and the column 82e.
- the column 82f is disposed between the column 82e and the column 82g.
- the column 82h is disposed between the column 82g and the column 82a.
- an external force can be directly applied to the sensor chip 10 without using a strain generating body by adopting the configuration as shown in FIGS. 24A and 24B.
- the force receiving plate 60 may be provided on the sensor chip 10 as in the force sensor device 1B.
- the force sensor device 1C may be a manufacturing process in which the column structure 80 is joined after the sensor chip 10 is completed, or a manufacturing process as described below. That is, a glass wafer or silicon wafer (same size as the sensor chip wafer) to be the column structure 80 is anodically bonded to the sensor chip wafer before dicing on which the sensor chip 10 is formed. The sensor chip 10 and the column structure 80 can be formed simultaneously by dicing the anodic bonded sensor chip wafer and the glass wafer or silicon wafer at the same time.
- the force sensor device may be configured to include both the force receiving plate 60 shown in FIGS. 23A to 23C and the column structure 80 shown in FIGS. 24A and 24B.
- a glass wafer to be the force receiving plate 60 is anodically bonded to one surface side of the sensor chip wafer on which the sensor chip 10 is formed, and a glass wafer or silicon wafer to be the column structure 80 on the other surface side. Are anodically bonded.
- the force receiving plate 60, the sensor chip 10, and the column structure 80 are formed by dicing in a state where the sensor chip wafer is sandwiched between the glass wafer or the silicon wafer to be the force receiving plate 60 and the column structure 80. They can be formed simultaneously.
- Modification 5 of the first embodiment shows another example of a sensor chip different from the first embodiment. Note that in the fifth modification of the first embodiment, description of the same components as those of the already described embodiments may be omitted.
- 25A is a perspective view of the sensor chip 110 viewed from the upper side in the Z-axis direction
- FIG. 25B is a plan view of the sensor chip 110 viewed from the upper side in the Z-axis direction
- 26A is a perspective view of the sensor chip 110 viewed from the lower side in the Z-axis direction
- FIG. 26B is a bottom view of the sensor chip 110 viewed from the lower side in the Z-axis direction.
- the surface of the same height is shown with the same satin pattern for convenience.
- the sensor chip 110 shown in FIGS. 25A, 25B, 26A, and 26B is a MEMS sensor chip that can detect up to six axes, and is formed from a semiconductor substrate such as an SOI substrate. ing.
- the planar shape of the sensor chip 110 can be a square of about 3000 ⁇ m square, for example.
- the basic beam structure of the sensor chip 110 is the same as that of the sensor chip 10.
- the support portions 111a to 111e of the sensor chip 110 correspond to the support portions 11a to 11e of the sensor chip 10.
- the reinforcing beams 112a to 112h of the sensor chip 110 correspond to the reinforcing beams 12a to 12h of the sensor chip 10.
- the detection beams 113a to 113l of the sensor chip 110 correspond to the detection beams 13a to 13l of the sensor chip 10.
- the force points 114 a to 114 d of the sensor chip 110 correspond to the force points 14 a to 14 d of the sensor chip 10.
- the widths of the first detection beams (detection beams 113a, 113d, 113g, and 113j) and the second detection beams (detection beams 113b, 113e, 113h, and 113k) are: The width is smaller than the width of the third detection beam (detection beams 113c, 113f, 113i, and 113l).
- the lengths of the first detection beams (detection beams 113a, 113d, 113g, and 113j) and the second detection beams (detection beams 113b, 113e, 113h, and 113k) are the third lengths. This is longer than the length of the detection beams (detection beams 113c, 113f, 113i, and 113l).
- the sensor chip 110 and the sensor chip 10 have different widths and lengths of the detection beams.
- the detection beam 113a is narrower (about 0.67 times) and longer (about 1.36 times) than the detection beam 13a.
- the detection beams 113d, 113g, and 113j are narrower (about 0.67 times) and longer (1.36 times) than the detection beams 13d, 13g, and 13j. degree).
- the detection beam 113b has a narrowest width (about 0.47 times) and a length (about 2.9 times) as compared with the detection beam 13b.
- the detection beams 113e, 113h, and 113k have a narrowest width (about 0.47 times) and a longer length than the detection beams 13e, 13h, and 13k (2). .9 times).
- the connection portions with the other beams are formed thicker than the most detail in order to maintain the strength.
- the length of the detection beam 113c is shorter than that of the detection beam 13c (about 0.5 times).
- the detection beam 113c has the same average width as the detection beam 13c, but is different in that it has a portion that gradually decreases toward the support portion 111e.
- the lengths of the detection beams 113f, 113i, and 113l are shorter than the detection beams 13f, 13i, and 13l (about 0.5 times).
- the detection beams 13f, 13i, and 13l have the same average width as the detection beam 13c, but are different in that they have a portion that gradually decreases toward the support portion 111e.
- the support portion The area of 111e is larger than the area of the support part 11e.
- the detection beams 113a, 113d, 113g, and 113j reduce the stress generated in the beams more than the detection beams 13a, 13d, 13g, and 13j.
- the detection beams 113b, 113e, 113h, and 113k can reduce the stress generated in the beams more than the detection beams 13b, 13e, 13h, and 13k.
- the load resistance of the detection beams 113a, 113d, 113g, and 113j can be made larger than the load resistance of the detection beams 13a, 13d, 13g, and 13j. it can. Further, the load resistance of the detection beams 113b, 113e, 113h, and 113k can be made larger than the load resistance of the detection beams 13b, 13e, 13h, and 13k.
- the detection beams 113c, 113f, 113i, and 113l are shortened, and the detection beams 113b, 113e, 113h, and 113k are brought closer to the detection beams 113a, 113d, 113g, and 113j.
- the detection beams 113b, 113e, 113h, and 113k can be made significantly thinner and longer than the detection beams 13b, 13e, 13h, and 13k.
- the load capacity of the beams 113b, 113e, 113h, and 113k can be greatly improved.
- FIG. 27 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 110.
- the piezoresistive elements MxR3 and MxR4 are on a line that bisects the detection beam 113a in the longitudinal direction and is detected.
- the detection beam 113c is arranged at a symmetrical position with respect to a line that bisects the longitudinal direction (Y direction).
- the piezoresistive elements FyR3 and FyR4 are detected in a region closer to the reinforcing beam 112a than the line that bisects the detection beam 113a in the longitudinal direction and far from the detection beam 113c of the detection beam 113a.
- the beam 113c is arranged at a symmetrical position with respect to a line bisecting in the longitudinal direction.
- the piezoresistive elements MyR3 and MyR4 are on a line that bisects the detection beam 113d in the longitudinal direction and is close to the detection beam 113f of the detection beam 113d.
- the detection beam 113f is arranged symmetrically with respect to a line that bisects in the longitudinal direction (X direction).
- the piezoresistive elements FxR3 and FxR4 are detected in a region closer to the reinforcing beam 112b than the line that bisects the detection beam 113d in the longitudinal direction and far from the detection beam 113f of the detection beam 113d.
- the beams 113f are arranged at positions symmetrical with respect to a line that bisects the beam in the longitudinal direction.
- the piezoresistive elements MzR3 and MzR4 are detected in a region closer to the detection beam 113f than the line that bisects the detection beam 113d in the longitudinal direction and close to the detection beam 113f of the detection beam 113d.
- the beam 113f is arranged at a symmetrical position with respect to a line that bisects the beam in the longitudinal direction.
- the piezoresistive elements FzR2 and FzR3 are on the support portion 111e side with respect to the line that bisects the detection beam 113e in the longitudinal direction and in the region near the detection beam 113f of the detection beam 113e. Are arranged symmetrically with respect to a line that bisects in the longitudinal direction.
- the piezoresistive elements MxR1 and MxR2 are on a line that bisects the detection beam 113g in the longitudinal direction and is close to the detection beam 113i of the detection beam 113g. Are arranged symmetrically with respect to a line that bisects the detection beam 113i in the longitudinal direction (Y direction). Further, the piezoresistive elements FyR1 and FyR2 are detected in a region closer to the reinforcing beam 112c than the line that bisects the detection beam 113g in the longitudinal direction and far from the detection beam 113i of the detection beam 113g. The beam 113i is arranged at a symmetrical position with respect to a line bisecting in the longitudinal direction.
- the piezoresistive elements MyR1 and MyR2 are on a line that bisects the detection beam 113j in the longitudinal direction and is close to the detection beam 113l of the detection beam 113j. Are arranged symmetrically with respect to a line that bisects the detection beam 113l in the longitudinal direction (X direction). Further, the piezoresistive elements FxR1 and FxR2 are detected in a region closer to the reinforcing beam 112d than the line that bisects the detection beam 113j in the longitudinal direction and far from the detection beam 113l of the detection beam 113j.
- the beam 113l is arranged in a symmetrical position with respect to a line bisecting in the longitudinal direction.
- the piezoresistive elements MzR1 and MzR2 are detected in a region closer to the detection beam 113k than the line that bisects the detection beam 113j in the longitudinal direction and close to the detection beam 113l of the detection beam 113j.
- the beam 113l is arranged in a symmetrical position with respect to a line bisecting in the longitudinal direction.
- the piezoresistive elements FzR1 and FzR4 are on the support portion 111e side with respect to a line that bisects the detection beam 113k in the longitudinal direction and in the region far from the detection beam 113l of the detection beam 113k. Are arranged symmetrically with respect to a line that bisects in the longitudinal direction.
- the sensor chip 110 like the sensor chip 10, a plurality of piezoresistive elements are separately arranged in each detection block.
- a plurality of piezoresistive elements are separately arranged in each detection block.
- a dummy piezoresistive element is arranged in addition to the piezoresistive element used for detecting the strain.
- the dummy piezoresistive elements are arranged so that all the piezoresistive elements including the piezoresistive elements used for strain detection are point-symmetric with respect to the center of the support portion 111e.
- FIG. 28A to FIG. 31 are diagrams for explaining an improvement in load resistance in the sensor chip 110.
- FIG. FIG. 28A is a simulation result of a stress generation distribution when a force Fx in the X-axis direction is applied in the sensor chip 10, and the right diagram is an enlarged view of the broken line portion of the left diagram.
- FIG. 28B is a simulation result of a stress generation distribution when a force Fx in the X-axis direction is applied to the sensor chip 110, and the right diagram is an enlarged view of the broken line portion of the left diagram.
- a detection beam 13k that is short and hardly bent is a stress concentration portion.
- the detection beam 113k is thinner and longer than the detection beam 13k.
- the detection beam 113j is made thinner and longer than the detection beam 13j.
- the detection beam 113k, the detection beam 13k, the detection beam 113j, and the detection beam 13j have been described above. However, the detection beam 113a, the detection beam 13a, the detection beam 113b, the detection beam 13b, and the detection beam are described. The same applies to 113d, the detection beam 13d, the detection beam 113e, the detection beam 13e, the detection beam 113g, the detection beam 13g, the detection beam 113h, and the detection beam 13h.
- the ratio of the length of the detecting beam 113j shown in FIG. 29 L 1 and the length L 2 of the detecting beam 113k (detection beam 113a, 113d, the length of 113g and detection beams 113b, 113e, and the length of 113h the ratio is similar), and the ratio of the average width W 2 of the detection beam 113k and the average width W 1 of the detection beam 113j (detection beam 113b, 113e, the average width of 113h the detection beam 113a, 113d, of 113g
- the ratio to the average width the maximum stress generated in the detection beam can be made equal to or less than that of the sensor chip 10.
- FIG. 30A shows a simulation of the maximum stress generated in the stress concentrated portion of the sensor chip 110 with L 2 / L 1 as a parameter when the maximum stress generated in the stress concentrated portion shown in FIG. 28A in the sensor chip 10 is 100. It is the result.
- the horizontal axis is L 2 / L 1
- the vertical axis is stress.
- FIG. 30B shows the relationship between W 1 / W 2 and L 2 / L 1 for a plot where L 2 / L 1 is 0.36 or more and 0.82 or less in FIG. 30A.
- the horizontal axis is W 1 / W 2 and the vertical axis is L 2 / L 1 .
- the maximum stress generated in the detection beam can be made equal to or less than that of the sensor chip 10.
- the load resistance of the chip 110 can be improved as compared with the sensor chip 10.
- the load resistance of the sensor chip 110 can be significantly improved compared to the sensor chip 10. (In the example of FIG. 31, it is about 11 times).
- FIGS. 32A and 32B are diagrams for explaining the improvement of sensitivity in the sensor chip 110.
- FIG. As shown in FIGS. 32A and 32B, in the sensor chip 110, unlike the sensor chip 10, no piezoresistive element is arranged on the detection beam 113l (broken line portion) whose deformation due to stress is reduced by shortening the sensor chip 110.
- the piezoresistive element is disposed in the vicinity of the position where the stress of the detection beams 113j and 113k is maximum. The same applies to the detection beams 113c, 113f, and 113i.
- the sensor chip 110 can take in stress more efficiently than the sensor chip 10, and the sensitivity (resistance change of the piezoresistive element with respect to the same stress) is improved.
- the sensor chip 110 no piezoresistive element is arranged on the detection beams 113c, 113f, 113i, and 113l whose deformation due to stress is reduced by shortening. Instead, the stresses of the detection beams 113a, 113d, 113g, and 113j, and the detection beams 113b, 113e, 113h, and 113k, which are thinner and longer than the detection beams 113c, 113f, 113i, and 113l, and are easily bent like a bow, are included.
- a piezoresistive element is disposed in the vicinity of the position where the maximum is. As a result, the sensor chip 110 can efficiently take in stress, and can improve sensitivity (resistance change of the piezoresistive element with respect to the same stress).
- the beam width on the B side of the detection beam 113j shown in FIG. 29 (the same applies to the detection beams 113a, 113d, and 113g) is set to 75 to 80% of the beam width on the A side.
- the shape tapered toward the side it is possible to maintain the load resistance while improving the sensor sensitivity.
- the beam width on the B side is 75% or less of the beam width on the A side, the load resistance deteriorates and breaks easily. Further, when the beam width on the B side is 80% or more of the beam width on the A side, the sensor sensitivity is deteriorated.
- FIG. 33, FIG. 34A, and FIG. 34B are diagrams for explaining the improvement of other-axis interference (separation between force and moment) in the sensor chip 110.
- FIG. 33 simulation was performed by applying a force Fx in the X-axis direction in the sensor chip 110, and as a result, other-axis characteristics as shown in FIG. 34A were obtained.
- FIG. 34B shows other-axis characteristics obtained as a result of performing a simulation in which a force Fx in the X-axis direction is applied in the sensor chip 10.
- a component of the moment My appears when the force Fx is applied in the sensor chip 10 shown in FIG. 34B, but when the force Fx is applied in the sensor chip 110 shown in FIG. 34A.
- the other-axis component including the component of the moment My is substantially zero.
- the reason why the component of the moment My appears in FIG. 34B is that the detection beams 13a, 13d, and 13g are not easily deformed in the lateral direction because the detection beams 13b, 13e, 13h, and 13k of the sensor chip 10 are thick and short. And 13j are considered to be deformed in the vertical direction.
- the detection beams 113b, 113e, 113h, and 113k of the sensor chip 110 are narrower and longer than the detection beams 13b, 13e, 13h, and 13k of the sensor chip 10, the transverse direction (Fx, Fy) and twist directions (Mx, My) are easily deformed, and the detection beams 113a, 113d, 113g, and 113j are not deformed in the vertical direction.
- the component of the moment My does not appear, and it is considered that the separation between the force and the moment in the translational direction (that is, the other axis characteristics) is improved.
- FIG. 35A, FIG. 35B, FIG. 36A, and FIG. 36B are simulation results on the stress generated in the sensor chip 110 when a force and a moment are applied.
- the tensile normal stress is indicated by “+”
- the compressive normal stress is indicated by “ ⁇ ”.
- the piezoresistive elements FxR1 and FxR2 are located on the X1 side from the longitudinal center of the detection beam 113d, a tensile vertical stress is generated and the resistance value is increased.
- the piezoresistive elements FxR3 and FxR4 are located on the X2 side from the longitudinal center of the detection beam 113j, compressive vertical stress is generated and the resistance value is reduced. As a result, the balance of the piezoresistive elements FxR1 to FxR4 is lost, so that a voltage is output from the bridge circuit shown in FIG. 35A and the force Fx can be detected. The same applies to the force Fy.
- the sensor chip 110 when a displacement (force or moment) is input to the force point, bending and torsional stress corresponding to the input is generated in a predetermined detection beam.
- the resistance value of the piezoresistive element arranged at a predetermined position of the detection beam changes due to the generated stress, and the output voltage from each bridge circuit formed in the sensor chip 110 can be obtained from the electrode 15. Further, the output voltage of the electrode 15 can be obtained outside via the input / output substrate 30.
- the output of each axis can be obtained without combining the outputs.
- multi-axis displacement can be detected and output by a simple method that does not require complicated calculations and signal processing.
- the piezoresistive elements are divided into different detection beams depending on the type of input.
- shaft can be adjusted independently by changing the rigidity (thickness and width
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
This sensor chip comprises: a base plate; first supporting portions disposed at four corners of the base plate; a second supporting portion disposed at the center of the base plate; first detection beams linking the first supporting portions that are adjacent to one another; second detection beams which are provided between each of the first detection beams and the second supporting portion, parallel to each of the first detection beams; third detection beams which link the first detection beams and the second detection beams in the groups of first detection beams and second detection beams that are provided parallel to one another; and a plurality of strain detecting elements disposed at force application points to which a force is applied, disposed at the points of intersection of the first detection beams and the third detection beams, and at prescribed positions on the first detection beams, the second detection beams and the third detection beams. Displacement in a Z-axis direction, which is the thickness direction of the base plate, is detected on the basis of deformation of at least the third detection beams, and displacement in an X-axis direction and a Y-axis direction orthogonal to the Z-axis direction is detected on the basis of deformation of at least one of either the first detection beams or the second detection beams.
Description
本発明は、センサチップ、起歪体、力覚センサ装置に関する。
The present invention relates to a sensor chip, a strain generating body, and a force sensor device.
従来より、金属からなる起歪体に複数の歪ゲージを貼り付け、外力が印加された際の歪みを電気信号に変換することで多軸の力を検出する力覚センサ装置が知られている。しかし、この力覚センサ装置は、歪ゲージを1枚づつ手作業によって貼り付ける必要から、精度や生産性に問題があり、構造上小型化することが困難であった。
2. Description of the Related Art Conventionally, a force sensor device that detects a multiaxial force by attaching a plurality of strain gauges to a metal strain generating body and converting strain when an external force is applied into an electrical signal is known. . However, this force sensor device has a problem in accuracy and productivity because it is necessary to affix the strain gauges one by one by hand, and it is difficult to downsize the structure.
一方、歪ゲージを歪み検出用のMEMSのセンサチップに置き換えることで、貼り合わせ精度の問題を解消し、かつ小型化を実現する力覚センサ装置が提案されている(例えば、特許文献1参照)。
On the other hand, a force sensor device has been proposed in which the strain gauge is replaced with a MEMS sensor chip for strain detection, thereby solving the problem of bonding accuracy and realizing miniaturization (for example, see Patent Document 1). .
しかしながら、上記の力覚センサ装置では、センサチップの複数の歪み素子からの出力を演算(信号処理)して6軸出力を得る必要があり、簡易な方法で多軸出力を得ることができなかった。
However, in the force sensor device described above, it is necessary to calculate (signal processing) outputs from a plurality of strain elements of the sensor chip to obtain a 6-axis output, and a multi-axis output cannot be obtained by a simple method. It was.
本発明は、上記の点に鑑みてなされたもので、簡易な方法で多軸の変位を検知して出力可能なセンサチップを提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a sensor chip that can detect and output multi-axis displacement by a simple method.
本センサチップ(10)は、力点に印加された力または変位の向きに応じた、所定の梁に配置された複数の歪検出素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知するセンサチップであって、基板と、前記基板の四隅に配置された第1の支持部(11a~11d)と、前記基板の中央に配置された第2の支持部(11e)と、隣接する前記第1の支持部(11a~11d)同士を連結する第1の検知用梁(13a、13d、13g、13j)と、各々の前記第1の検知用梁(13a、13d、13g、13j)と前記第2の支持部(11e)との間に、各々の前記第1の検知用梁(13a、13d、13g、13j)に平行に設けられた第2の検知用梁(13b、13e、13h、13k)と、平行に設けられた前記第1の検知用梁(13a、13d、13g、13j)及び前記第2の検知用梁(13b、13e、13h、13k)の組において、前記第1の検知用梁(13a、13d、13g、13j)と前記第2の検知用梁(13b、13e、13h、13k)とを連結する第3の検知用梁(13c、13f、13i、13l)と、各々の前記第1の検知用梁(13a、13d、13g、13j)と各々の前記第3の検知用梁(13c、13f、13i、13l)との交点に配置された、力が印加される力点(14a~14d)と、前記第1の検知用梁(13a、13d、13g、13j)、前記第2の検知用梁(13b、13e、13h、13k)、及び前記第3の検知用梁(13f、13l)の所定位置に配置された複数の歪検出素子(MxR1~MxR4、MyR1~MyR4、MzR1~MzR4、FxR1~FxR4、FyR1~FyR4、FzR1~FzR4)と、を有し、前記基板の厚さ方向であるZ軸方向の変位は、少なくとも前記第3の検知用梁(13f、13l)の変形に基づいて検知し、前記Z軸方向に直交するX軸方向及びY軸方向の変位は、前記第1の検知用梁(13a、13d、13g、13j)又は前記第2の検知用梁(13b、13e、13h、13k)の少なくとも一方の変形に基づいて検知することを要件とする。
This sensor chip (10) maximizes the displacement in a predetermined axial direction based on the change in the output of a plurality of strain detection elements arranged on a predetermined beam according to the direction of the force or displacement applied to the force point. A sensor chip for detecting 6 axes, a substrate, first support portions (11a to 11d) disposed at four corners of the substrate, and a second support portion (11e) disposed at the center of the substrate. A first detection beam (13a, 13d, 13g, 13j) that connects the adjacent first support portions (11a to 11d), and each of the first detection beams (13a, 13d, 13g, 13j) and a second detection beam (13a, 13d, 13g, 13j) provided in parallel with each of the first detection beams (13a, 13d, 13g, 13j) between the second support portion (11e). 13b, 13e, 13h, 13k) and the first In the set of the detection beams (13a, 13d, 13g, 13j) and the second detection beams (13b, 13e, 13h, 13k), the first detection beams (13a, 13d, 13g, 13j) A third detection beam (13c, 13f, 13i, 13l) connecting the second detection beam (13b, 13e, 13h, 13k) and each of the first detection beams (13a, 13d, 13g, 13j) and the third detection beams (13c, 13f, 13i, 13l) arranged at the intersections of the force points (14a to 14d) to which a force is applied, and the first The detection beams (13a, 13d, 13g, 13j), the second detection beams (13b, 13e, 13h, 13k), and the third detection beams (13f, 13l) are disposed at predetermined positions. Multiple strain sensing elements (MxR1 to Mx R4, MyR1 to MyR4, MzR1 to MzR4, FxR1 to FxR4, FyR1 to FyR4, FzR1 to FzR4), and the displacement in the Z-axis direction that is the thickness direction of the substrate is at least for the third detection Detection based on deformation of the beam (13f, 13l), displacement in the X-axis direction and the Y-axis direction orthogonal to the Z-axis direction is the first detection beam (13a, 13d, 13g, 13j) or It is necessary to detect based on deformation of at least one of the second detection beams (13b, 13e, 13h, 13k).
なお、上記括弧内の参照符号は、理解を容易にするために付したものであり、一例にすぎず、図示の態様に限定されるものではない。
Note that the reference numerals in the parentheses are given for easy understanding, are merely examples, and are not limited to the illustrated modes.
開示の技術によれば、簡易な方法で多軸の変位を検知して出力可能なセンサチップを提供できる。
According to the disclosed technology, it is possible to provide a sensor chip capable of detecting and outputting multi-axis displacement by a simple method.
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
〈第1の実施の形態〉
(力覚センサ装置1の概略構成)
図1は、第1の実施の形態に係る力覚センサ装置を例示する斜視図である。図2は、第1の実施の形態に係る力覚センサ装置のセンサチップ及び起歪体を例示する斜視図である。図1及び図2を参照するに、力覚センサ装置1は、センサチップ10と、起歪体20と、入出力基板30とを有している。力覚センサ装置1は、例えば、工作機械等に使用されるロボットの腕や指等に搭載される多軸の力覚センサ装置である。 <First Embodiment>
(Schematic configuration of the force sensor device 1)
FIG. 1 is a perspective view illustrating the force sensor device according to the first embodiment. FIG. 2 is a perspective view illustrating a sensor chip and a strain body of the force sensor device according to the first embodiment. 1 and 2, theforce sensor device 1 includes a sensor chip 10, a strain body 20, and an input / output substrate 30. The force sensor device 1 is a multi-axis force sensor device mounted on, for example, an arm or a finger of a robot used in a machine tool or the like.
(力覚センサ装置1の概略構成)
図1は、第1の実施の形態に係る力覚センサ装置を例示する斜視図である。図2は、第1の実施の形態に係る力覚センサ装置のセンサチップ及び起歪体を例示する斜視図である。図1及び図2を参照するに、力覚センサ装置1は、センサチップ10と、起歪体20と、入出力基板30とを有している。力覚センサ装置1は、例えば、工作機械等に使用されるロボットの腕や指等に搭載される多軸の力覚センサ装置である。 <First Embodiment>
(Schematic configuration of the force sensor device 1)
FIG. 1 is a perspective view illustrating the force sensor device according to the first embodiment. FIG. 2 is a perspective view illustrating a sensor chip and a strain body of the force sensor device according to the first embodiment. 1 and 2, the
センサチップ10は、起歪体20の上面側に、起歪体20から突出しないように接着されている。又、起歪体20の上面及び側面に、センサチップ10に対して信号の入出力を行う入出力基板30の一端側が接着されている。センサチップ10と入出力基板30の各電極31とは、ボンディングワイヤ等(図示せず)により、電気的に接続されている。入出力基板30の他端側には、力覚センサ装置1と接続される制御装置等との電気的な入出力が可能な端子(図示せず)が配列されている。
The sensor chip 10 is bonded to the upper surface side of the strain body 20 so as not to protrude from the strain body 20. Further, one end side of an input / output substrate 30 for inputting / outputting signals to / from the sensor chip 10 is bonded to the upper surface and the side surface of the strain generating body 20. The sensor chip 10 and each electrode 31 of the input / output substrate 30 are electrically connected by a bonding wire or the like (not shown). On the other end side of the input / output substrate 30, terminals (not shown) capable of electrical input / output with a control device connected to the force sensor device 1 are arranged.
なお、本実施の形態では、便宜上、力覚センサ装置1において、起歪体20の入出力基板30が設けられた側を上側又は一方の側、その反対側を下側又は他方の側とする。又、各部位の起歪体20の入出力基板30が設けられた側の面を一方の面又は上面、その反対側の面を他方の面又は下面とする。但し、力覚センサ装置1は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物をセンサチップ10の上面の法線方向(Z軸方向)から視ることを指し、平面形状とは対象物をセンサチップ10の上面の法線方向(Z軸方向)から視た形状を指すものとする。
In the present embodiment, for the sake of convenience, in the force sensor device 1, the side on which the input / output substrate 30 of the strain generating body 20 is provided is the upper side or one side, and the opposite side is the lower side or the other side. . Also, the surface of the strain generating body 20 on each side where the input / output substrate 30 is provided is defined as one surface or upper surface, and the opposite surface is defined as the other surface or lower surface. However, the force sensor device 1 can be used upside down, or can be arranged at an arbitrary angle. Further, the planar view means that the object is viewed from the normal direction (Z-axis direction) of the upper surface of the sensor chip 10, and the planar shape is the normal direction of the upper surface of the sensor chip 10 (Z-axis direction). ) Refers to the shape viewed from.
(センサチップ10)
図3Aは、センサチップ10をZ軸方向上側から視た斜視図であり、図3Bは、センサチップ10をZ軸方向上側から視た平面図である。図4Aは、センサチップ10をZ軸方向下側から視た斜視図であり、図4Bは、センサチップ10をZ軸方向下側から視た底面図である。図4Bにおいて、便宜上、同一高さの面を同一の梨地模様で示している。なお、センサチップ10の上面の一辺に平行な方向をX軸方向、垂直な方向をY軸方向、センサチップ10の厚さ方向(センサチップ10の上面の法線方向)をZ軸方向としている。X軸方向、Y軸方向、及びZ軸方向は、互いに直交している。 (Sensor chip 10)
3A is a perspective view of thesensor chip 10 viewed from the upper side in the Z-axis direction, and FIG. 3B is a plan view of the sensor chip 10 viewed from the upper side in the Z-axis direction. 4A is a perspective view of the sensor chip 10 viewed from the lower side in the Z-axis direction, and FIG. 4B is a bottom view of the sensor chip 10 viewed from the lower side in the Z-axis direction. In FIG. 4B, the surface of the same height is shown with the same satin pattern for convenience. The direction parallel to one side of the upper surface of the sensor chip 10 is the X-axis direction, the perpendicular direction is the Y-axis direction, and the thickness direction of the sensor chip 10 (the normal direction of the upper surface of the sensor chip 10) is the Z-axis direction. . The X axis direction, the Y axis direction, and the Z axis direction are orthogonal to each other.
図3Aは、センサチップ10をZ軸方向上側から視た斜視図であり、図3Bは、センサチップ10をZ軸方向上側から視た平面図である。図4Aは、センサチップ10をZ軸方向下側から視た斜視図であり、図4Bは、センサチップ10をZ軸方向下側から視た底面図である。図4Bにおいて、便宜上、同一高さの面を同一の梨地模様で示している。なお、センサチップ10の上面の一辺に平行な方向をX軸方向、垂直な方向をY軸方向、センサチップ10の厚さ方向(センサチップ10の上面の法線方向)をZ軸方向としている。X軸方向、Y軸方向、及びZ軸方向は、互いに直交している。 (Sensor chip 10)
3A is a perspective view of the
図3A、図3B、図4A、及び図4Bに示すセンサチップ10は、1チップで最大6軸を検知できるMEMS(Micro Electro Mechanical Systems)センサチップであり、SOI(Silicon On Insulator)基板等の半導体基板から形成されている。センサチップ10の平面形状は、例えば、3000μm角程度の正方形とすることができる。
The sensor chip 10 shown in FIGS. 3A, 3B, 4A, and 4B is a MEMS (Micro Electro Mechanical Systems) sensor chip that can detect up to six axes with one chip, and is a semiconductor such as an SOI (Silicon On Insulator) substrate. It is formed from a substrate. The planar shape of the sensor chip 10 can be a square of about 3000 μm square, for example.
センサチップ10は、柱状の5つの支持部11a~11eを備えている。支持部11a~11eの平面形状は、例えば、500μm角程度の正方形とすることができる。第1の支持部である支持部11a~11dは、センサチップ10の四隅に配置されている。第2の支持部である支持部11eは、支持部11a~11dの中央に配置されている。
The sensor chip 10 includes five columnar support portions 11a to 11e. The planar shape of the support portions 11a to 11e can be a square of about 500 μm square, for example. The support parts 11 a to 11 d as the first support parts are arranged at the four corners of the sensor chip 10. The support part 11e, which is the second support part, is arranged at the center of the support parts 11a to 11d.
支持部11a~11eは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができ、それぞれの厚さは、例えば、500μm程度とすることができる。
The support portions 11a to 11e can be formed of, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and the thickness of each can be set to about 500 μm, for example.
支持部11aと支持部11bとの間には、支持部11aと支持部11bとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12aが設けられている。支持部11bと支持部11cとの間には、支持部11bと支持部11cとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12bが設けられている。
Between the support portion 11a and the support portion 11b, there is provided a reinforcing beam 12a that is fixed at both ends to the support portion 11a and the support portion 11b (connects adjacent support portions) and reinforces the structure. It has been. Between the support part 11b and the support part 11c, both ends of the support part 11b and the support part 11c are fixed (to connect adjacent support parts), and a reinforcing beam 12b is provided to reinforce the structure. It has been.
支持部11cと支持部11dとの間には、支持部11cと支持部11dとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12cが設けられている。支持部11dと支持部11aとの間には、支持部11dと支持部11aとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁12dが設けられている。
Between the support portion 11c and the support portion 11d, there are provided reinforcing beams 12c that are fixed at both ends to the support portion 11c and the support portion 11d (to connect adjacent support portions) and reinforce the structure. It has been. Between the support part 11d and the support part 11a, both ends of the support part 11d and the support part 11a are fixed (to connect adjacent support parts), and a reinforcing beam 12d is provided to reinforce the structure. It has been.
言い換えれば、第1の補強用梁である4つの補強用梁12a、12b、12c、及び12dが枠状に形成され、各補強用梁の交点をなす角部が、支持部11b、11c、11d、11aとなる。
In other words, the four reinforcing beams 12a, 12b, 12c, and 12d, which are the first reinforcing beams, are formed in a frame shape, and the corners that form the intersections of the reinforcing beams are the support portions 11b, 11c, 11d. 11a.
支持部11aの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12eにより連結されている。支持部11bの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12fにより連結されている。
The inner corner of the support portion 11a and the opposite corner of the support portion 11e are connected by a reinforcing beam 12e for reinforcing the structure. The corner portion inside the support portion 11b and the corner portion of the support portion 11e opposite to the corner portion are connected by a reinforcing beam 12f for reinforcing the structure.
支持部11cの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12gにより連結されている。支持部11dの内側の角部と、それに対向する支持部11eの角部とは、構造を補強するための補強用梁12hにより連結されている。第2の補強用梁である補強用梁12e~12hは、X軸方向(Y軸方向)に対して斜めに配置されている。つまり、補強用梁12e~12hは、補強用梁12a、12b、12c、及び12dと非平行に配置されている。
The inner corner of the support portion 11c and the opposite corner of the support portion 11e are connected by a reinforcing beam 12g for reinforcing the structure. The corner part inside the support part 11d and the corner part of the support part 11e facing it are connected by a reinforcing beam 12h for reinforcing the structure. The reinforcing beams 12e to 12h, which are the second reinforcing beams, are arranged obliquely with respect to the X-axis direction (Y-axis direction). That is, the reinforcing beams 12e to 12h are disposed non-parallel to the reinforcing beams 12a, 12b, 12c, and 12d.
補強用梁12a~12hは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができる。補強用梁12a~12hの太さ(短手方向の幅)は、例えば、140μm程度とすることができる。補強用梁12a~12hのそれぞれの上面は、支持部11a~11eの上面と略面一である。
The reinforcing beams 12a to 12h can be formed from, for example, an active layer, a BOX layer, and a support layer of an SOI substrate. The thickness (width in the short direction) of the reinforcing beams 12a to 12h can be set to about 140 μm, for example. The upper surfaces of the reinforcing beams 12a to 12h are substantially flush with the upper surfaces of the support portions 11a to 11e.
これに対して、補強用梁12a~12hのそれぞれの下面は、支持部11a~11eの下面及び力点14a~14dの下面よりも数10μm程度上面側に窪んでいる。これは、センサチップ10を起歪体20に接着したときに、補強用梁12a~12hの下面が起歪体20の対向する面と接しないようにするためである。
On the other hand, the lower surfaces of the reinforcing beams 12a to 12h are recessed to the upper surface side by about several tens of μm from the lower surfaces of the support portions 11a to 11e and the lower surfaces of the force points 14a to 14d. This is to prevent the lower surfaces of the reinforcing beams 12a to 12h from coming into contact with the opposing surface of the strain body 20 when the sensor chip 10 is bonded to the strain body 20.
このように、歪を検知するための検知用梁とは別に、検知用梁よりも厚く形成した剛性の強い補強用梁を配置することで、センサチップ10全体の剛性を高めることができる。これにより、入力に対して検知用梁以外が変形しづらくなるため、良好なセンサ特性を得ることができる。
As described above, the rigidity of the entire sensor chip 10 can be increased by disposing the reinforcing beam having a high rigidity formed thicker than the detection beam separately from the detection beam for detecting the strain. This makes it difficult to deform other than the detection beam with respect to the input, so that good sensor characteristics can be obtained.
支持部11aと支持部11bとの間の補強用梁12aの内側には、補強用梁12aと所定間隔を空けて平行に、支持部11aと支持部11bとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13aが設けられている。
Inside the reinforcement beam 12a between the support part 11a and the support part 11b, both ends are fixed to the support part 11a and the support part 11b in parallel with a predetermined interval (adjacent to the reinforcement beam 12a). Detection beams 13a for detecting strain are provided.
検知用梁13aと支持部11eとの間には、検知用梁13a及び支持部11eと所定間隔を空けて検知用梁13aと平行に、検知用梁13bが設けられている。検知用梁13bは、補強用梁12eの支持部11e側の端部と補強用梁12fの支持部11e側の端部とを連結している。
Between the detection beam 13a and the support portion 11e, a detection beam 13b is provided in parallel with the detection beam 13a at a predetermined interval from the detection beam 13a and the support portion 11e. The detection beam 13b connects the end portion on the support portion 11e side of the reinforcement beam 12e and the end portion on the support portion 11e side of the reinforcement beam 12f.
検知用梁13aの長手方向の略中央部と、それに対向する検知用梁13bの長手方向の略中央部とは、検知用梁13a及び検知用梁13bと直交するように配置された、歪を検知するための検知用梁13cにより連結されている。
The substantially central portion in the longitudinal direction of the detection beam 13a and the substantially central portion in the longitudinal direction of the detection beam 13b facing the detection beam 13a are arranged so as to be orthogonal to the detection beam 13a and the detection beam 13b. It is connected by a detection beam 13c for detection.
支持部11bと支持部11cとの間の補強用梁12bの内側には、補強用梁12bと所定間隔を空けて平行に、支持部11bと支持部11cとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13dが設けられている。
Inside the reinforcing beam 12b between the support portion 11b and the support portion 11c, both ends are fixed to the support portion 11b and the support portion 11c (adjacent to each other) in parallel with the reinforcing beam 12b at a predetermined interval. 13 d of detection beams for detecting distortion are provided.
検知用梁13dと支持部11eとの間には、検知用梁13d及び支持部11eと所定間隔を空けて検知用梁13dと平行に、検知用梁13eが設けられている。検知用梁13eは、補強用梁12fの支持部11e側の端部と補強用梁12gの支持部11e側の端部とを連結している。
Between the detection beam 13d and the support portion 11e, a detection beam 13e is provided in parallel with the detection beam 13d at a predetermined interval from the detection beam 13d and the support portion 11e. The detection beam 13e connects the end portion on the support portion 11e side of the reinforcing beam 12f and the end portion on the support portion 11e side of the reinforcement beam 12g.
検知用梁13dの長手方向の略中央部と、それに対向する検知用梁13eの長手方向の略中央部とは、検知用梁13d及び検知用梁13eと直交するように配置された、歪を検知するための検知用梁13fにより連結されている。
A substantially central portion in the longitudinal direction of the detection beam 13d and a substantially central portion in the longitudinal direction of the detection beam 13e facing the detection beam 13d are arranged so as to be orthogonal to the detection beam 13d and the detection beam 13e. It is connected by a detection beam 13f for detection.
支持部11cと支持部11dとの間の補強用梁12cの内側には、補強用梁12cと所定間隔を空けて平行に、支持部11cと支持部11dとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13gが設けられている。
Inside the reinforcing beam 12c between the support part 11c and the support part 11d, both ends are fixed to the support part 11c and the support part 11d in parallel with a predetermined interval (adjacent to the reinforcing beam 12c). A supporting beam 13g for detecting strain is provided.
検知用梁13gと支持部11eとの間には、検知用梁13g及び支持部11eと所定間隔を空けて検知用梁13gと平行に、検知用梁13hが設けられている。検知用梁13hは、補強用梁12gの支持部11e側の端部と補強用梁12hの支持部11e側の端部とを連結している。
Between the detection beam 13g and the support portion 11e, a detection beam 13h is provided in parallel with the detection beam 13g at a predetermined interval from the detection beam 13g and the support portion 11e. The detection beam 13h connects the end portion on the support portion 11e side of the reinforcement beam 12g and the end portion on the support portion 11e side of the reinforcement beam 12h.
検知用梁13gの長手方向の略中央部と、それに対向する検知用梁13hの長手方向の略中央部とは、検知用梁13g及び検知用梁13hと直交するように配置された、歪を検知するための検知用梁13iにより連結されている。
A substantially central portion in the longitudinal direction of the detection beam 13g and a substantially central portion in the longitudinal direction of the detection beam 13h opposed thereto are arranged so as to be orthogonal to the detection beam 13g and the detection beam 13h. It is connected by a detection beam 13i for detection.
支持部11dと支持部11aとの間の補強用梁12dの内側には、補強用梁12dと所定間隔を空けて平行に、支持部11dと支持部11aとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁13jが設けられている。
Inside the reinforcing beam 12d between the supporting portion 11d and the supporting portion 11a, both ends are fixed to the supporting portion 11d and the supporting portion 11a in parallel with a predetermined distance from the reinforcing beam 12d (adjacent to each other). Detection beams 13j for detecting strain are provided.
検知用梁13jと支持部11eとの間には、検知用梁13j及び支持部11eと所定間隔を空けて検知用梁13jと平行に、検知用梁13kが設けられている。検知用梁13kは、補強用梁12hの支持部11e側の端部と補強用梁12eの支持部11e側の端部とを連結している。
Between the detection beam 13j and the support portion 11e, a detection beam 13k is provided in parallel with the detection beam 13j at a predetermined interval from the detection beam 13j and the support portion 11e. The detection beam 13k connects the end portion on the support portion 11e side of the reinforcement beam 12h and the end portion on the support portion 11e side of the reinforcement beam 12e.
検知用梁13jの長手方向の略中央部と、それに対向する検知用梁13kの長手方向の略中央部とは、検知用梁13j及び検知用梁13kと直交するように配置された、歪を検知するための検知用梁13lにより連結されている。
The substantially central portion in the longitudinal direction of the detection beam 13j and the substantially central portion in the longitudinal direction of the detection beam 13k facing the detection beam 13j are arranged so as to be orthogonal to the detection beam 13j and the detection beam 13k. It is connected by a detection beam 13l for detection.
検知用梁13a~13lは、支持部11a~11eの厚さ方向の上端側に設けられ、例えば、SOI基板の活性層から形成することができる。検知用梁13a~13lの太さ(短手方向の幅)は、例えば、75μm程度とすることができる。検知用梁13a~13lのそれぞれの上面は、支持部11a~11eの上面と略面一である。検知用梁13a~13lのそれぞれの厚さは、例えば、50μm程度とすることができる。
The detection beams 13a to 13l are provided on the upper end side in the thickness direction of the support portions 11a to 11e, and can be formed from, for example, an active layer of an SOI substrate. The thickness (width in the short direction) of the detection beams 13a to 13l can be set to about 75 μm, for example. The upper surfaces of the detection beams 13a to 13l are substantially flush with the upper surfaces of the support portions 11a to 11e. The thickness of each of the detection beams 13a to 13l can be set to about 50 μm, for example.
検知用梁13aの長手方向の中央部の下面側(検知用梁13aと検知用梁13cとの交点)には、力点14aが設けられている。検知用梁13a、13b、及び13cと力点14aとにより、1組の検知ブロックをなしている。
A force point 14a is provided on the lower surface side (intersection of the detection beam 13a and the detection beam 13c) of the central portion in the longitudinal direction of the detection beam 13a. The detection beams 13a, 13b, and 13c and the force point 14a constitute a set of detection blocks.
検知用梁13dの長手方向の中央部の下面側(検知用梁13dと検知用梁13fとの交点)には、力点14bが設けられている。検知用梁13d、13e、及び13fと力点14bとにより、1組の検知ブロックをなしている。
A force point 14b is provided on the lower surface side (intersection of the detection beam 13d and the detection beam 13f) of the central portion in the longitudinal direction of the detection beam 13d. The detection beams 13d, 13e, and 13f and the force point 14b form a set of detection blocks.
検知用梁13gの長手方向の中央部の下面側(検知用梁13gと検知用梁13iとの交点)には、力点14cが設けられている。検知用梁13g、13h、及び13iと力点14cとにより、1組の検知ブロックをなしている。
A force point 14c is provided on the lower surface side (intersection of the detection beam 13g and the detection beam 13i) of the central portion in the longitudinal direction of the detection beam 13g. The detection beams 13g, 13h, and 13i and the force point 14c form a set of detection blocks.
検知用梁13jの長手方向の中央部の下面側(検知用梁13jと検知用梁13lとの交点)には、力点14dが設けられている。検知用梁13j、13k、及び13lと力点14dとにより、1組の検知ブロックをなしている。
A force point 14d is provided on the lower surface side (intersection of the detection beam 13j and the detection beam 13l) of the central portion in the longitudinal direction of the detection beam 13j. The detection beams 13j, 13k, and 13l and the force point 14d form a set of detection blocks.
力点14a~14dは、外力が印加される箇所であり、例えば、SOI基板のBOX層及び支持層から形成することができる。力点14a~14dのそれぞれの下面は、支持部11a~11eの下面と略面一である。
The force points 14a to 14d are portions to which an external force is applied, and can be formed from, for example, a BOX layer and a support layer of an SOI substrate. The lower surfaces of the force points 14a to 14d are substantially flush with the lower surfaces of the support portions 11a to 11e.
このように、力または変位を4つの力点14a~14dから取り入れることで、力の種類毎に異なる梁の変形が得られるため、6軸の分離性が良いセンサを実現することができる。
In this way, by taking in force or displacement from the four force points 14a to 14d, different beam deformations can be obtained for each type of force, so that a sensor with good separability of 6 axes can be realized.
なお、センサチップ10において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。
In addition, in the sensor chip 10, from the viewpoint of suppressing the stress concentration, it is preferable that the portion that forms the inner angle has an R shape.
図5は、各軸にかかる力及びモーメントを示す符号を説明する図である。図5に示すように、X軸方向の力をFx、Y軸方向の力をFy、Z軸方向の力をFzとする。又、X軸を軸として回転させるモーメントをMx、Y軸を軸として回転させるモーメントをMy、Z軸を軸として回転させるモーメントをMzとする。
FIG. 5 is a diagram for explaining symbols indicating the force and moment applied to each axis. As shown in FIG. 5, the force in the X-axis direction is Fx, the force in the Y-axis direction is Fy, and the force in the Z-axis direction is Fz. In addition, a moment for rotating about the X axis as Mx, a moment for rotating about the Y axis as My, and a moment for rotating about the Z axis as Mz are set as Mz.
図6は、センサチップ10のピエゾ抵抗素子の配置を例示する図である。4つ力点14a~14dに対応する各検知ブロックの所定位置には、ピエゾ抵抗素子が配置されている。
FIG. 6 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 10. Piezoresistive elements are arranged at predetermined positions of the respective detection blocks corresponding to the four force points 14a to 14d.
具体的には、図3A、図3B、及び図6を参照すると、力点14aに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR3及びMxR4は、検知用梁13aを長手方向に二等分する線上であって、かつ、検知用梁13cを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR3及びFyR4は、検知用梁13bを長手方向に二等分する線よりも検知用梁13a側であって、かつ、検知用梁13cを長手方向に二等分する線に対して対称な位置に配置されている。
Specifically, referring to FIGS. 3A, 3B, and 6, in the detection block corresponding to the force point 14a, the piezoresistive elements MxR3 and MxR4 are on a line that bisects the detection beam 13a in the longitudinal direction. And it arrange | positions in the symmetrical position with respect to the line | wire which bisects the beam 13c for a detection in the longitudinal direction. Further, the piezoresistive elements FyR3 and FyR4 are on the side of the detection beam 13a with respect to the line that bisects the detection beam 13b in the longitudinal direction, and the line that bisects the detection beam 13c in the longitudinal direction. They are arranged at symmetrical positions.
又、力点14bに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR3及びMyR4は、検知用梁13dを長手方向に二等分する線上であって、かつ、検知用梁13fを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR3及びFxR4は、検知用梁13eを長手方向に二等分する線よりも検知用梁13d側であって、かつ、検知用梁13fを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 14b, the piezoresistive elements MyR3 and MyR4 are on a line that bisects the detection beam 13d in the longitudinal direction and bisect the detection beam 13f in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. Further, the piezoresistive elements FxR3 and FxR4 are on the detection beam 13d side with respect to the line that bisects the detection beam 13e in the longitudinal direction, and are lines that bisect the detection beam 13f in the longitudinal direction. They are arranged at symmetrical positions.
又、MzR3及びMzR4は、検知用梁13fを短手方向に二等分する線よりも検知用梁13e側であって、かつ、検知用梁13fを長手方向に二等分する線に対して対称な位置に配置されている。又、FzR3及びFzR4は、検知用梁13fを長手方向に二等分する線上であって、かつ、検知用梁13fを短手方向に二等分する線に対して対称な位置に配置されている。
Further, MzR3 and MzR4 are on the detection beam 13e side with respect to the line that bisects the detection beam 13f in the short direction, and with respect to the line that bisects the detection beam 13f in the longitudinal direction. It is arranged in a symmetrical position. Further, FzR3 and FzR4 are arranged on a line that bisects the detection beam 13f in the longitudinal direction and symmetrically with respect to a line that bisects the detection beam 13f in the short direction. Yes.
又、力点14cに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR1及びMxR2は、検知用梁13gを長手方向に二等分する線上であって、かつ、検知用梁13iを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR1及びFyR2は、検知用梁13hを長手方向に二等分する線よりも検知用梁13g側であって、かつ、検知用梁13iを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 14c, the piezoresistive elements MxR1 and MxR2 are on a line that bisects the detection beam 13g in the longitudinal direction and bisects the detection beam 13i in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. Further, the piezoresistive elements FyR1 and FyR2 are on the side of the detection beam 13g with respect to the line that bisects the detection beam 13h in the longitudinal direction, and the line that bisects the detection beam 13i in the longitudinal direction. They are arranged at symmetrical positions.
又、力点14dに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR1及びMyR2は、検知用梁13jを長手方向に二等分する線上であって、かつ、検知用梁13lを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR1及びFxR2は、検知用梁13kを長手方向に二等分する線よりも検知用梁13j側であって、かつ、検知用梁13lを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 14d, the piezoresistive elements MyR1 and MyR2 are on a line that bisects the detection beam 13j in the longitudinal direction and bisects the detection beam 13l in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. The piezoresistive elements FxR1 and FxR2 are on the side of the detection beam 13j with respect to the line that bisects the detection beam 13k in the longitudinal direction, and are lines that bisect the detection beam 13l in the longitudinal direction. They are arranged at symmetrical positions.
又、MzR1及びMzR2は、検知用梁13lを短手方向に二等分する線よりも検知用梁13k側であって、かつ、検知用梁13lを長手方向に二等分する線に対して対称な位置に配置されている。又、FzR1及びFzR2は、検知用梁13lを長手方向に二等分する線上であって、かつ、検知用梁13lを短手方向に二等分する線に対して対称な位置に配置されている。
Further, MzR1 and MzR2 are located on the detection beam 13k side with respect to the line that bisects the detection beam 13l in the short direction, and with respect to the line that bisects the detection beam 13l in the longitudinal direction. It is arranged in a symmetrical position. Further, FzR1 and FzR2 are arranged on a line that bisects the detection beam 13l in the longitudinal direction and symmetrically with respect to a line that bisects the detection beam 13l in the short direction. Yes.
ここで、ピエゾ抵抗素子FxR1~FxR4は力Fxを検出し、ピエゾ抵抗素子FyR1~FyR4は力Fyを検出し、ピエゾ抵抗素子FzR1~FzR4は力Fzを検出する。又、ピエゾ抵抗素子MxR1~MxR4はモーメントMxを検出し、ピエゾ抵抗素子MyR1~MyR4はモーメントMyを検出し、ピエゾ抵抗素子MzR1~MzR4はモーメントMzを検出する。
Here, the piezoresistive elements FxR1 to FxR4 detect the force Fx, the piezoresistive elements FyR1 to FyR4 detect the force Fy, and the piezoresistive elements FzR1 to FzR4 detect the force Fz. The piezoresistive elements MxR1 to MxR4 detect the moment Mx, the piezoresistive elements MyR1 to MyR4 detect the moment My, and the piezoresistive elements MzR1 to MzR4 detect the moment Mz.
このように、センサチップ10では、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、力点14a~14dに印加(伝達)された力または変位の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。
Thus, in the sensor chip 10, a plurality of piezoresistive elements are separately arranged in each detection block. As a result, based on the change in the output of the plurality of piezoresistive elements arranged on the predetermined beam in accordance with the direction of the force or displacement (axial direction) applied (transmitted) to the force points 14a to 14d, the predetermined axis It is possible to detect the displacement in the direction up to 6 axes.
具体的には、センサチップ10において、Z軸方向の変位(Mx、My、Fz)は、所定の検知用梁の変形に基づいて検知することができる。すなわち、X軸方向及びY軸方向のモーメント(Mx、My)は、第1の検知用梁である検知用梁13a、13d、13g、及び13jの変形に基づいて検知することができる。又、Z軸方向の力(Fz)は、第3の検知用梁である検知用梁13f及び13lの変形に基づいて検知することができる。
Specifically, in the sensor chip 10, the displacement (Mx, My, Fz) in the Z-axis direction can be detected based on a predetermined deformation of the detection beam. That is, the moments (Mx, My) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 13a, 13d, 13g, and 13j that are the first detection beams. Further, the force (Fz) in the Z-axis direction can be detected based on the deformation of the detection beams 13f and 13l which are the third detection beams.
又、センサチップ10において、X軸方向及びY軸方向の変位(Fx、Fy、Mz)は、所定の検知用梁の変形に基づいて検知することができる。すなわち、X軸方向及びY軸方向の力(Fx、Fy)は、第2の検知用梁である検知用梁13b、13e、13h、及び13kの変形に基づいて検知することができる。又、Z軸方向のモーメント(Mz)は、第3の検知用梁である検知用梁13f及び13lの変形に基づいて検知することができる。
Further, in the sensor chip 10, the displacements (Fx, Fy, Mz) in the X-axis direction and the Y-axis direction can be detected based on a predetermined deformation of the detection beam. That is, the forces (Fx, Fy) in the X-axis direction and the Y-axis direction can be detected based on the deformation of the detection beams 13b, 13e, 13h, and 13k, which are the second detection beams. The moment (Mz) in the Z-axis direction can be detected based on the deformation of the detection beams 13f and 13l that are the third detection beams.
各検知用梁の厚みと幅を可変することで、検出感度の均一化や、検出感度の向上等の調整を図ることができる。
調整 By varying the thickness and width of each detection beam, it is possible to make adjustments such as uniform detection sensitivity and improved detection sensitivity.
但し、ピエゾ抵抗素子の数を減らし、5軸以下の所定の軸方向の変位を検知するセンサチップとすることも可能である。
However, the number of piezoresistive elements can be reduced to provide a sensor chip that detects displacement in a predetermined axial direction of 5 axes or less.
図7は、センサチップ10における電極配置と配線を例示する図であり、センサチップ10をZ軸方向上側から視た平面図である。図7に示すように、センサチップ10は、電気信号を取り出すための複数の電極15を有している。各電極15は、力点14a~14dに力が印加された際の歪みが最も少ない、センサチップ10の支持部11a~11dの上面に配置されている。各ピエゾ抵抗素子から電極15までの配線16は、各補強用梁上及び各検知用梁上を適宜引き回すことができる。
FIG. 7 is a diagram illustrating the electrode arrangement and wiring in the sensor chip 10, and is a plan view of the sensor chip 10 as viewed from the upper side in the Z-axis direction. As shown in FIG. 7, the sensor chip 10 has a plurality of electrodes 15 for taking out an electrical signal. Each electrode 15 is disposed on the upper surface of the support portions 11a to 11d of the sensor chip 10 with the least distortion when a force is applied to the force points 14a to 14d. The wiring 16 from each piezoresistive element to the electrode 15 can be appropriately routed on each reinforcing beam and each detecting beam.
このように、各補強用梁は、必要に応じて配線を引き出す際の迂回路としても利用できるため、検知用梁とは別に補強用梁を配置することで、配線設計の自由度を向上することができる。これにより、各ピエゾ抵抗素子を、より理想的な位置に配置することが可能となる。
In this way, each reinforcing beam can also be used as a detour when pulling out the wiring as needed, so by arranging the reinforcing beam separately from the detection beam, the degree of freedom in wiring design is improved. be able to. Thereby, each piezoresistive element can be arranged at a more ideal position.
図8は、センサチップ10の温度センサを例示する拡大平面図である。図7及び図8に示すように、センサチップ10は、歪み検出用に用いるピエゾ抵抗素子に温度補正を行うための温度センサ17を備えている。温度センサ17は、4つのピエゾ抵抗素子TR1、TR2、TR3、及びTR4がブリッジ接続された構成である。
FIG. 8 is an enlarged plan view illustrating the temperature sensor of the sensor chip 10. As shown in FIGS. 7 and 8, the sensor chip 10 includes a temperature sensor 17 for performing temperature correction on a piezoresistive element used for strain detection. The temperature sensor 17 has a configuration in which four piezoresistive elements TR1, TR2, TR3, and TR4 are bridge-connected.
ピエゾ抵抗素子TR1、TR2、TR3、及びTR4のうち、対向する2つは歪み検出用に用いるピエゾ抵抗素子MxR1等と同一特性とされている。又、ピエゾ抵抗素子TR1、TR2、TR3、及びTR4のうち、対向する他の2つは、不純物半導体により不純物濃度を変えることで、ピエゾ抵抗素子MxR1等と異なる特性とされている。これにより、温度変化によりブリッジのバランスが崩れるため、温度検出が可能となる。
Among the piezoresistive elements TR1, TR2, TR3, and TR4, two opposing ones have the same characteristics as the piezoresistive element MxR1 used for strain detection. The other two opposing piezoresistive elements TR1, TR2, TR3, and TR4 have different characteristics from the piezoresistive element MxR1 and the like by changing the impurity concentration depending on the impurity semiconductor. Thereby, since the balance of the bridge is lost due to temperature change, temperature detection is possible.
なお、歪み検出用に用いるピエゾ抵抗素子(MxR1等)は、全て、センサチップ10を構成する半導体基板(シリコン等)の結晶方位に水平又は垂直に配置されている。これにより、同じ歪みに対して、より大きな抵抗の変化を得ることができ、印加される力及びモーメントの測定精度を向上させることが可能となる。
Note that all of the piezoresistive elements (such as MxR1) used for strain detection are arranged horizontally or vertically with respect to the crystal orientation of the semiconductor substrate (such as silicon) constituting the sensor chip 10. As a result, a larger resistance change can be obtained with respect to the same strain, and the measurement accuracy of the applied force and moment can be improved.
これに対して、温度センサ17を構成するピエゾ抵抗素子TR1、TR2、TR3、及びTR4は、センサチップ10を構成する半導体基板(シリコン等)の結晶方位に対して45度傾けて配置されている。これにより、応力に対する抵抗変化を低減できるため、温度変化のみを精度よく検知できる。
On the other hand, the piezoresistive elements TR1, TR2, TR3, and TR4 that constitute the temperature sensor 17 are arranged so as to be inclined by 45 degrees with respect to the crystal orientation of the semiconductor substrate (such as silicon) that constitutes the sensor chip 10. . Thereby, since the resistance change with respect to stress can be reduced, only a temperature change can be detected accurately.
又、温度センサ17は、力点14a~14dに力が印加された際の歪みが最も少ない、センサチップ10の支持部11aの上面に配置されている。これにより、応力に対する抵抗変化をいっそう低減できる。
Further, the temperature sensor 17 is disposed on the upper surface of the support portion 11a of the sensor chip 10 with the least distortion when a force is applied to the force points 14a to 14d. Thereby, the resistance change with respect to stress can be reduced further.
なお、ピエゾ抵抗素子は、本発明にかかる歪検出素子の代表的な一例である。
The piezoresistive element is a typical example of the strain detecting element according to the present invention.
(起歪体20)
図9は、起歪体20を例示する斜視図である。図10Aは、起歪体20を例示する平面図であり、図10Bは、図10AのA-A線に沿う断面斜視図である。図10Aにおいて、便宜上、同一高さの面を同一の梨地模様で示している。 (Distortion body 20)
FIG. 9 is a perspective view illustrating thestrain body 20. 10A is a plan view illustrating the strain body 20, and FIG. 10B is a cross-sectional perspective view taken along line AA of FIG. 10A. In FIG. 10A, the surface of the same height is shown with the same satin pattern for convenience.
図9は、起歪体20を例示する斜視図である。図10Aは、起歪体20を例示する平面図であり、図10Bは、図10AのA-A線に沿う断面斜視図である。図10Aにおいて、便宜上、同一高さの面を同一の梨地模様で示している。 (Distortion body 20)
FIG. 9 is a perspective view illustrating the
図9、図10A、及び図10Bに示すように、起歪体20において、土台21上の四隅には、第1の柱である4本の柱22a~22dが配置され、隣接する柱同士を連結する第1の梁である4本の梁23a~23dが枠状に設けられている。又、土台21上の中央には、第2の柱である柱22eが配置されている。柱22eは、センサチップ10を固定するための柱であり、柱22a~22dよりも太くて短く形成されている。なお、センサチップ10は、柱22a~22dの上面から突出しないように、柱22e上に固定される。
As shown in FIGS. 9, 10A, and 10B, in the strain body 20, four pillars 22a to 22d, which are the first pillars, are arranged at the four corners on the base 21, and adjacent pillars are connected to each other. Four beams 23a to 23d, which are first beams to be connected, are provided in a frame shape. A pillar 22e, which is a second pillar, is disposed at the center on the base 21. The pillar 22e is a pillar for fixing the sensor chip 10, and is thicker and shorter than the pillars 22a to 22d. The sensor chip 10 is fixed on the pillar 22e so as not to protrude from the upper surfaces of the pillars 22a to 22d.
起歪体20の概略形状は、例えば、縦5000μm程度、横5000μm程度、高さ7000μm程度の直方体状とすることができる。柱22a~22dの横断面形状は、例えば、1000μm角程度の正方形とすることができる。柱22eの横断面形状は、例えば、2000μm角程度の正方形とすることができる。
The schematic shape of the strain body 20 can be, for example, a rectangular parallelepiped having a length of about 5000 μm, a width of about 5000 μm, and a height of about 7000 μm. The cross-sectional shape of the pillars 22a to 22d can be a square of about 1000 μm square, for example. The cross-sectional shape of the pillar 22e can be, for example, a square of about 2000 μm square.
梁23a~23dのそれぞれの上面の長手方向の中央部には、梁23a~23dの長手方向の中央部から上方に突起する突起部が設けられ、突起部上に、例えば円柱状の入力部24a~24dが設けられている。入力部24a~24dは外部から力が印加される部分であり、入力部24a~24dに力が印加されると、それに応じて梁23a~23d及び柱22a~22dが変形する。
A protrusion that protrudes upward from the center in the longitudinal direction of the beams 23a to 23d is provided at the center of the upper surface of each of the beams 23a to 23d. On the protrusion, for example, a cylindrical input portion 24a To 24d are provided. The input portions 24a to 24d are portions to which a force is applied from the outside. When a force is applied to the input portions 24a to 24d, the beams 23a to 23d and the columns 22a to 22d are deformed accordingly.
なお、柱22eは、印加された力により変形する梁23a~23dや、印加された力により変形する柱22a~22dとは分離されているため、入力部24a~24dに力が印加されても可動することはない(印加された力により変形しない)。
The column 22e is separated from the beams 23a to 23d that are deformed by the applied force and the columns 22a to 22d that are deformed by the applied force. Therefore, even if a force is applied to the input units 24a to 24d. Does not move (does not deform due to applied force).
このように、4つの入力部24a~24dを設けることで、例えば1つの入力部の構造と比較して、梁23a~23dの耐荷重を向上することができる。
Thus, by providing the four input portions 24a to 24d, the load resistance of the beams 23a to 23d can be improved as compared with, for example, the structure of one input portion.
柱22eの上面の四隅には第3の柱である4本の柱25a~25dが配置され、柱22eの上面の中央部には第4の柱である柱25eが配置されている。柱25a~25eは、同一の高さに形成されている。
Four pillars 25a to 25d, which are third pillars, are arranged at the four corners of the upper surface of the pillar 22e, and a pillar 25e, which is the fourth pillar, is arranged at the center of the upper surface of the pillar 22e. The columns 25a to 25e are formed at the same height.
すなわち、柱25a~25eのそれぞれの上面は、同一平面上に位置している。柱25a~25eのそれぞれの上面は、センサチップ10の下面と接着される接合部となる。柱25a~25eは印加された力により変形する梁23a~23dや、印加された力により変形する柱22a~22dとは分離されているため、入力部24a~24dに力が印加されても可動することはない(印加された力により変形しない)。
That is, the upper surfaces of the pillars 25a to 25e are located on the same plane. The upper surface of each of the columns 25a to 25e serves as a bonding portion bonded to the lower surface of the sensor chip 10. Since the columns 25a to 25e are separated from the beams 23a to 23d deformed by the applied force and the columns 22a to 22d deformed by the applied force, the columns 25a to 25e are movable even if a force is applied to the input units 24a to 24d. (It will not be deformed by the applied force).
梁23a~23dのそれぞれの内側面の長手方向の中央部には、梁23a~23dのそれぞれの内側面から水平方向内側に突出する梁26a~26dが設けられている。梁26a~26dは、梁23a~23dや柱22a~22dの変形をセンサチップ10に伝達する第2の梁である。又、梁26a~26dのそれぞれの上面の先端側には、梁26a~26dのそれぞれの上面の先端側から上方に突起する突起部27a~27dが設けられている。
Beams 26a to 26d projecting inward in the horizontal direction from the inner side surfaces of the beams 23a to 23d are provided at the longitudinal center portions of the inner side surfaces of the beams 23a to 23d. The beams 26a to 26d are second beams that transmit the deformation of the beams 23a to 23d and the columns 22a to 22d to the sensor chip 10. Further, projections 27a to 27d projecting upward from the distal end sides of the upper surfaces of the beams 26a to 26d are provided on the distal ends of the upper surfaces of the beams 26a to 26d.
突起部27a~27dは、同一の高さに形成されている。すなわち、突起部27a~27dのそれぞれの上面は、同一平面上に位置している。突起部27a~27dのそれぞれの上面は、センサチップ10の下面と接着される接合部となる。梁26a~26d及び突起部27a~27dは、可動部となる梁23a~23dと連結されているため、入力部24a~24dに力が印加されると、それに応じて変形する。
The protrusions 27a to 27d are formed at the same height. That is, the upper surfaces of the protrusions 27a to 27d are located on the same plane. The upper surfaces of the projecting portions 27a to 27d serve as joint portions that are bonded to the lower surface of the sensor chip 10. Since the beams 26a to 26d and the projecting portions 27a to 27d are connected to the beams 23a to 23d serving as movable portions, when a force is applied to the input portions 24a to 24d, the beams are deformed accordingly.
なお、入力部24a~24dに力が印加されていない状態では、柱25a~25eのそれぞれの上面と、突起部27a~27dのそれぞれの上面とは、同一平面上に位置している。
Note that, when no force is applied to the input portions 24a to 24d, the upper surfaces of the columns 25a to 25e and the upper surfaces of the protrusions 27a to 27d are located on the same plane.
起歪体20において、土台21、柱22a~22e、梁23a~23d、入力部24a~24d、柱25a~25e、梁26a~26d、及び突起部27a~27dの各部位は、剛性を確保しかつ精度良く作製する観点から、一体に形成されていることが好ましい。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。
In the strain body 20, the base 21, columns 22a to 22e, beams 23a to 23d, input portions 24a to 24d, columns 25a to 25e, beams 26a to 26d, and projections 27a to 27d are secured with rigidity. Moreover, it is preferable that they are integrally formed from the viewpoint of manufacturing with high accuracy. As a material of the strain body 20, for example, a hard metal material such as SUS (stainless steel) can be used. Among them, it is particularly preferable to use SUS630 that is particularly hard and has high mechanical strength.
このように、センサチップ10と同様に、起歪体20も柱と梁とを備えた構造とすることで、印加される力によって6軸それぞれで異なる変形を示すため、6軸の分離性が良い変形をセンサチップ10に伝えることができる。
Thus, like the sensor chip 10, the strain-generating body 20 also has a structure including a column and a beam, so that the six-axis separability is exhibited because the six-axis changes due to the applied force. Good deformation can be transmitted to the sensor chip 10.
すなわち、起歪体20の入力部24a~24dに印加された力を、柱22a~22d、梁23a~23d、及び梁26a~26dを介してセンサチップ10に伝達し、センサチップ10で変位を検知する。そして、センサチップ10において、1つの軸につき1個ずつ形成されたブリッジ回路から各軸の出力を得ることができる。
That is, the force applied to the input portions 24a to 24d of the strain body 20 is transmitted to the sensor chip 10 via the columns 22a to 22d, the beams 23a to 23d, and the beams 26a to 26d, and the displacement is caused by the sensor chip 10. Detect. In the sensor chip 10, the output of each axis can be obtained from a bridge circuit formed one for each axis.
なお、起歪体20において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。
In addition, in the strain body 20, it is preferable that the part which forms an internal angle is made into R shape from a viewpoint of suppressing stress concentration.
(力覚センサ装置1の製造工程)
図11A~図13Bは、力覚センサ装置1の製造工程を例示する図である。まず、図11Aに示すように、起歪体20を作製する。起歪体20は、例えば、成形や切削、ワイヤ放電等により一体に形成することができる。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。起歪体20を成形により作製する場合には、例えば、金属粒子とバインダーとなる樹脂とを金型に入れて成形し、その後、焼結して樹脂を蒸発させることで、金属からなる起歪体20を作製できる。 (Manufacturing process of force sensor device 1)
11A to 13B are diagrams illustrating the manufacturing process of theforce sensor device 1. First, as shown in FIG. 11A, the strain body 20 is produced. The strain body 20 can be integrally formed, for example, by molding, cutting, wire discharge, or the like. As a material of the strain body 20, for example, a hard metal material such as SUS (stainless steel) can be used. Among them, it is particularly preferable to use SUS630 that is particularly hard and has high mechanical strength. When the strain generating body 20 is produced by molding, for example, the metal particles and the resin serving as a binder are placed in a mold and then molded, and then the resin is evaporated by sintering, thereby generating the strain generated from the metal. The body 20 can be produced.
図11A~図13Bは、力覚センサ装置1の製造工程を例示する図である。まず、図11Aに示すように、起歪体20を作製する。起歪体20は、例えば、成形や切削、ワイヤ放電等により一体に形成することができる。起歪体20の材料としては、例えば、SUS(ステンレス鋼)等の硬質な金属材料を用いることができる。中でも、特に硬質で機械的強度の高いSUS630を用いることが好ましい。起歪体20を成形により作製する場合には、例えば、金属粒子とバインダーとなる樹脂とを金型に入れて成形し、その後、焼結して樹脂を蒸発させることで、金属からなる起歪体20を作製できる。 (Manufacturing process of force sensor device 1)
11A to 13B are diagrams illustrating the manufacturing process of the
次に、図11Bに示す工程では、柱25a~25eの上面、及び突起部27a~27dの上面に接着剤41を塗布する。接着剤41としては、例えば、エポキシ系の接着剤等を用いることができる。外部から印加される力に対する耐力の点から、接着剤41はヤング率1GPa以上で厚さ20μm以下であることが好ましい。
Next, in the step shown in FIG. 11B, an adhesive 41 is applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d. As the adhesive 41, for example, an epoxy adhesive or the like can be used. From the viewpoint of proof strength against externally applied force, the adhesive 41 preferably has a Young's modulus of 1 GPa or more and a thickness of 20 μm or less.
次に、図12Aに示す工程では、センサチップ10を作製する。センサチップ10は、例えば、SOI基板を準備し、準備した基板にエッチング加工(例えば、反応性イオンエッチング等)等を施す周知の方法により作製できる。又、電極や配線は、例えば、基板の表面にスパッタ法等により銅等の金属膜を成膜後、金属膜をフォトリソグラフィによってパターニングすることにより作製できる。
Next, in the step shown in FIG. 12A, the sensor chip 10 is manufactured. The sensor chip 10 can be manufactured by, for example, a well-known method of preparing an SOI substrate and etching the prepared substrate (for example, reactive ion etching). The electrodes and wirings can be produced, for example, by forming a metal film such as copper on the surface of the substrate by sputtering or the like and then patterning the metal film by photolithography.
次に、図12Bに示す工程では、センサチップ10の下面が柱25a~25eの上面、及び突起部27a~27dの上面に塗布された接着剤41と接するように、センサチップ10を起歪体20内に加圧しながら配置する。そして、接着剤41を所定温度に加熱して硬化させる。これにより、センサチップ10が起歪体20内に固定される。具体的には、センサチップ10の支持部11a~11dが各々柱25a~25e上に固定され、支持部11eが柱25e上に固定され、力点14a~14dが各々突起部27a~27d上に固定される。
Next, in the step shown in FIG. 12B, the sensor chip 10 is distorted so that the lower surface of the sensor chip 10 is in contact with the adhesive 41 applied to the upper surfaces of the pillars 25a to 25e and the upper surfaces of the protrusions 27a to 27d. 20 while being pressurized. Then, the adhesive 41 is heated to a predetermined temperature and cured. Thereby, the sensor chip 10 is fixed in the strain body 20. Specifically, the support parts 11a to 11d of the sensor chip 10 are fixed on the pillars 25a to 25e, the support part 11e is fixed on the pillar 25e, and the force points 14a to 14d are fixed on the protrusions 27a to 27d, respectively. Is done.
次に、図13Aに示す工程では、柱22a~22dの上面に、接着剤42を塗布する。接着剤42としては、例えば、エポキシ系の接着剤等を用いることができる。なお、接着剤42は、入出力基板30を起歪体20上に固定するためのものであり、外部から力が印加されないため、汎用の接着剤を用いることができる。
Next, in the step shown in FIG. 13A, an adhesive 42 is applied to the upper surfaces of the columns 22a to 22d. As the adhesive 42, for example, an epoxy adhesive or the like can be used. Note that the adhesive 42 is for fixing the input / output substrate 30 on the strain body 20, and since a force is not applied from the outside, a general-purpose adhesive can be used.
次に、図13Bに示す工程では、入出力基板30を準備し、入出力基板30の下面が柱22a~22dの上面に塗布された接着剤42と接するように、入出力基板30を起歪体20上に配置する。そして、入出力基板30を起歪体20側に加圧しながら接着剤42を所定温度に加熱して硬化させる。これにより、入出力基板30が起歪体20に固定される。
Next, in the step shown in FIG. 13B, the input / output substrate 30 is prepared, and the input / output substrate 30 is strained so that the lower surface of the input / output substrate 30 is in contact with the adhesive 42 applied to the upper surfaces of the columns 22a to 22d. Place on the body 20. Then, the adhesive 42 is heated to a predetermined temperature and cured while pressing the input / output substrate 30 toward the strain body 20 side. As a result, the input / output substrate 30 is fixed to the strain body 20.
なお、入出力基板30は、センサチップ10及び入力部24a~24dを露出するように起歪体20に固定される。入出力基板30の各電極31は、入力部24a~24dに力が印加された際の歪みが最も少ない、起歪体20の柱22a~22d上に配置することが好ましい。
The input / output board 30 is fixed to the strain body 20 so that the sensor chip 10 and the input parts 24a to 24d are exposed. The electrodes 31 of the input / output substrate 30 are preferably disposed on the pillars 22a to 22d of the strain generating body 20 with the least distortion when a force is applied to the input portions 24a to 24d.
その後、入出力基板30の起歪体20から水平方向にはみ出した部分(入力端子側を除く)を、起歪体20の側面側に折り曲げる。そして、入出力基板30とセンサチップ10の対応する部分をボンディングワイヤ等(図示せず)により電気的に接続する。これにより、図1に示す力覚センサ装置1が完成する。
Thereafter, the portion of the input / output board 30 that protrudes in the horizontal direction from the strain body 20 (except the input terminal side) is bent to the side surface side of the strain body 20. Then, corresponding portions of the input / output substrate 30 and the sensor chip 10 are electrically connected by bonding wires or the like (not shown). Thereby, the force sensor device 1 shown in FIG. 1 is completed.
このように、力覚センサ装置1は、センサチップ10、起歪体20、及び入出力基板30の3部品のみで作製できるため、組み立てが容易であり、かつ位置合わせ箇所も最低限で済むため、実装起因による精度の劣化を抑制できる。
As described above, the force sensor device 1 can be manufactured with only the three components of the sensor chip 10, the strain body 20, and the input / output substrate 30. Therefore, the assembly can be easily performed and the number of alignment positions can be minimized. , Deterioration of accuracy due to mounting can be suppressed.
又、起歪体20において、センサチップ10との接続箇所(柱25a~25eの上面、及び突起部27a~27dの上面)は全て同一平面にあるため、起歪体20に対するセンサチップ10の位置合わせが1度で済み、起歪体20にセンサチップ10を実装することが容易である。
Further, in the strain body 20, since the connection points to the sensor chip 10 (the top surfaces of the columns 25 a to 25 e and the top surfaces of the protrusions 27 a to 27 d) are all on the same plane, the position of the sensor chip 10 with respect to the strain body 20. The alignment is only required once, and it is easy to mount the sensor chip 10 on the strain body 20.
(応力のシミュレーション)
図14及び図15は、起歪体20に力及びモーメントを印加した際の変形(歪)についてのシミュレーション結果である。力及びモーメントは、起歪体20の入力部24a~24d(図9等参照)から印加した。又、図16A~図18Bは、図14及び図15の力及びモーメントを印加した際にセンサチップ10に発生する応力についてのシミュレーション結果である。図16A~図18Bにおいて、引張の垂直応力を『+』、圧縮の垂直応力を『-』で示している。 (Simulation of stress)
14 and 15 show simulation results for deformation (strain) when a force and a moment are applied to thestrain body 20. The force and moment were applied from the input parts 24a to 24d (see FIG. 9 and the like) of the strain body 20. FIGS. 16A to 18B show simulation results for the stress generated in the sensor chip 10 when the forces and moments shown in FIGS. 14 and 15 are applied. In FIG. 16A to FIG. 18B, the tensile normal stress is indicated by “+”, and the compressive normal stress is indicated by “−”.
図14及び図15は、起歪体20に力及びモーメントを印加した際の変形(歪)についてのシミュレーション結果である。力及びモーメントは、起歪体20の入力部24a~24d(図9等参照)から印加した。又、図16A~図18Bは、図14及び図15の力及びモーメントを印加した際にセンサチップ10に発生する応力についてのシミュレーション結果である。図16A~図18Bにおいて、引張の垂直応力を『+』、圧縮の垂直応力を『-』で示している。 (Simulation of stress)
14 and 15 show simulation results for deformation (strain) when a force and a moment are applied to the
X軸に沿ってX1からX2の方向に力Fxが印加された場合は、起歪体20は図14に示すように変形し、センサチップ10には図16Aのような応力が発生する。具体的には、力Fxの印加により、検知用梁13k及び13eが力Fxの方向に歪む。
When the force Fx is applied in the direction from X1 to X2 along the X axis, the strain generating body 20 is deformed as shown in FIG. 14, and stress as shown in FIG. Specifically, the detection beams 13k and 13e are distorted in the direction of the force Fx by application of the force Fx.
ここで、ピエゾ抵抗素子FxR1及びFxR2は、検知用梁13kの長手方向の中心よりもX1側に位置しているため、引張の垂直応力が発生して抵抗値が増加する。一方、ピエゾ抵抗素子FxR3及びFxR4は、検知用梁13eの長手方向の中心よりもX2側に位置しているため、圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FxR1~FxR4のバランスが崩れるため、図16Aに示すブリッジ回路から電圧が出力され、力Fxを検出することができる。
Here, since the piezoresistive elements FxR1 and FxR2 are located on the X1 side from the longitudinal center of the detection beam 13k, a tensile vertical stress is generated and the resistance value is increased. On the other hand, since the piezoresistive elements FxR3 and FxR4 are located on the X2 side from the longitudinal center of the detection beam 13e, compressive vertical stress is generated and the resistance value is reduced. As a result, the balance of the piezoresistive elements FxR1 to FxR4 is lost, so that a voltage is output from the bridge circuit shown in FIG. 16A and the force Fx can be detected.
なお、検知用梁13d及び13jも力Fxの方向に歪むが、ピエゾ抵抗素子MyR1及びMyR2、並びにピエゾ抵抗素子MyR3及びMyR4の位置では、ほとんど応力が生じないか、或いは同方向の応力が生じる。そのため、ブリッジのバランスが維持され、図18Aに示すモーメントMyのブリッジ回路からは電圧は出力されない。
Although the detection beams 13d and 13j are also distorted in the direction of the force Fx, little or no stress is generated at the positions of the piezoresistive elements MyR1 and MyR2 and the piezoresistive elements MyR3 and MyR4. Therefore, the balance of the bridge is maintained, and no voltage is output from the bridge circuit of the moment My shown in FIG. 18A.
Y軸に沿ってY1からY2の方向に力Fyが印加された場合は、センサチップ10には図16Bのような応力が発生する。具体的には、力Fyの印加により、検知用梁13b及び13hが力Fyの方向に歪む。
When a force Fy is applied in the direction from Y1 to Y2 along the Y axis, stress as shown in FIG. 16B is generated in the sensor chip 10. Specifically, the detection beams 13b and 13h are distorted in the direction of the force Fy by the application of the force Fy.
ここで、ピエゾ抵抗素子FyR3及びFyR4は、検知用梁13bの長手方向の中心よりもY1側に位置しているため、引張の垂直応力が発生して抵抗値が増加する。一方、ピエゾ抵抗素子FyR1及びFyR2は、検知用梁13hの長手方向の中心よりもY2側に位置しているため、圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FyR1~FyR4のバランスが崩れるため、図16Bに示すブリッジ回路から電圧が出力され、力Fyを検出することができる。
Here, since the piezoresistive elements FyR3 and FyR4 are located on the Y1 side from the longitudinal center of the detection beam 13b, a tensile vertical stress is generated and the resistance value is increased. On the other hand, since the piezoresistive elements FyR1 and FyR2 are located on the Y2 side from the longitudinal center of the detection beam 13h, compressive vertical stress is generated and the resistance value is reduced. As a result, the balance of the piezoresistive elements FyR1 to FyR4 is lost, so that a voltage is output from the bridge circuit shown in FIG. 16B and the force Fy can be detected.
なお、モーメントMyと同様の理由により、図17Bに示すモーメントMxのブリッジ回路からは電圧は出力されない。
For the same reason as the moment My, no voltage is output from the bridge circuit of the moment Mx shown in FIG. 17B.
Z軸に沿ってZ2からZ1の方向に力Fzが印加された場合は、起歪体20は図14に示すように変形し、センサチップ10には図17Aのような応力が発生する。具体的には、力Fzの印加により、検知用梁13a、13b、13g、13h、13d、13e、13j、13k、13c、13f、13l、及び13iが力Fzの方向に歪む。
When the force Fz is applied in the direction from Z2 to Z1 along the Z axis, the strain generating body 20 is deformed as shown in FIG. 14, and a stress as shown in FIG. Specifically, the detection beams 13a, 13b, 13g, 13h, 13d, 13e, 13j, 13k, 13c, 13f, 13l, and 13i are distorted in the direction of the force Fz by applying the force Fz.
ここで、ピエゾ抵抗素子FzR1及びFzR4には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子FzR2及びFzR3には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FzR1~FzR4のバランスが崩れるため、図17Aに示すブリッジ回路により、力Fzを検出することができる。
Here, a tensile normal stress is generated in the piezoresistive elements FzR1 and FzR4, and the resistance value is increased. Further, compressive normal stress is generated in the piezoresistive elements FzR2 and FzR3, and the resistance value is reduced. As a result, the balance of the piezoresistive elements FzR1 to FzR4 is lost, so that the force Fz can be detected by the bridge circuit shown in FIG. 17A.
なお、上記と同様の理由により、図16Aに示す力Fxのブリッジ回路、図16Bに示す力Fyのブリッジ回路、図17Bに示すモーメントMxのブリッジ回路、及び図18Aに示すモーメントMyのブリッジ回路、図18Bに示すモーメントMzのブリッジ回路からは電圧は出力されない。
For the same reason as described above, a bridge circuit of force Fx shown in FIG. 16A, a bridge circuit of force Fy shown in FIG. 16B, a bridge circuit of moment Mx shown in FIG. 17B, and a bridge circuit of moment My shown in FIG. No voltage is output from the bridge circuit of moment Mz shown in FIG. 18B.
X軸を回転軸としてY2-Z2-Y1の方向にモーメントMxが印加された場合は、センサチップ10には図17Bのような応力が発生する。具体的には、モーメントMxの印加により、検知用梁13g及び13aがモーメントMxの方向に歪む。そのため、ピエゾ抵抗素子MxR1及びMxR2には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MxR3及びMxR4には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MxR1~MxR4のバランスが崩れるため、図17Bに示すブリッジ回路により、モーメントMxを検出することができる。
When the moment Mx is applied in the Y2-Z2-Y1 direction with the X axis as the rotation axis, stress as shown in FIG. Specifically, the application of the moment Mx distorts the detection beams 13g and 13a in the direction of the moment Mx. Therefore, tensile normal stress is generated in the piezoresistive elements MxR1 and MxR2, and the resistance value increases. Further, compressive vertical stress is generated in the piezoresistive elements MxR3 and MxR4, and the resistance value is reduced. Accordingly, the balance of the piezoresistive elements MxR1 to MxR4 is lost, so that the moment Mx can be detected by the bridge circuit shown in FIG. 17B.
なお、上記と同様の理由により、図16Bに示す力Fyのブリッジ回路からは電圧は出力されない。
For the same reason as described above, no voltage is output from the bridge circuit of force Fy shown in FIG. 16B.
Y軸を回転軸としてX1-Z2-X2の方向にモーメントMyが印加された場合は、起歪体20は図15に示すように変形し、センサチップ10には図18Aのような応力が発生する。具体的には、モーメントMyの印加により、検知用梁13j及び13dがモーメントMyの方向に歪む。
When the moment My is applied in the direction of X1-Z2-X2 with the Y axis as the rotation axis, the strain body 20 is deformed as shown in FIG. 15, and stress as shown in FIG. To do. Specifically, the detection beams 13j and 13d are distorted in the direction of the moment My by the application of the moment My.
ここで、ピエゾ抵抗素子MyR1及びMyR2には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MyR3及びMyR4には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MyR1~MyR4のバランスが崩れるため、図18Aに示すブリッジ回路により、モーメントMyを検出することができる。
Here, a tensile normal stress is generated in the piezoresistive elements MyR1 and MyR2, and the resistance value increases. In addition, compressive vertical stress is generated in the piezoresistive elements MyR3 and MyR4, and the resistance value decreases. Thereby, the balance of the piezoresistive elements MyR1 to MyR4 is lost, so that the moment My can be detected by the bridge circuit shown in FIG. 18A.
なお、上記と同様の理由により、図16Aに示す力Fxのブリッジ回路からは電圧は出力されない。
For the same reason as described above, no voltage is output from the bridge circuit of force Fx shown in FIG. 16A.
Z軸を回転軸としてX2-Y2-X1の方向にモーメントMzが印加された場合は、起歪体20は図15に示すように変形し、センサチップ10には図18Bのような応力が発生する。具体的には、モーメントMzの印加により、検知用梁13a、13b、13g、13h、13d、13e、13j、13k、13c、13f、13l、及び13iがモーメントMzの方向に歪む。
When the moment Mz is applied in the direction of X2-Y2-X1 with the Z axis as the rotation axis, the strain body 20 is deformed as shown in FIG. 15, and stress as shown in FIG. To do. Specifically, the detection beams 13a, 13b, 13g, 13h, 13d, 13e, 13j, 13k, 13c, 13f, 13l, and 13i are distorted in the direction of the moment Mz by applying the moment Mz.
ここで、ピエゾ抵抗素子MzR1及びMzR4には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MzR2及びMzR3には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MzR1~MzR4のバランスが崩れるため、図18Bに示すブリッジ回路により、モーメントMzを検出することができる。
Here, a tensile normal stress is generated in the piezoresistive elements MzR1 and MzR4, and the resistance value is increased. Further, compressive vertical stress is generated in the piezoresistive elements MzR2 and MzR3, and the resistance value is reduced. As a result, the balance of the piezoresistive elements MzR1 to MzR4 is lost, so that the moment Mz can be detected by the bridge circuit shown in FIG. 18B.
なお、上記と同様の理由により、図16Aに示す力Fxのブリッジ回路、図16Bに示す力Fyのブリッジ回路、図17Bに示すモーメントMxのブリッジ回路、図18Aに示すモーメントMyのブリッジ回路からは電圧は出力されない。
For the same reason as described above, the force Fx bridge circuit shown in FIG. 16A, the force Fy bridge circuit shown in FIG. 16B, the moment Mx bridge circuit shown in FIG. 17B, and the moment My bridge circuit shown in FIG. No voltage is output.
このように、センサチップ10では、力点に変位(力又はモーメント)が入力されると、入力に応じた曲げ及び捩れの応力が所定の検知用梁に発生する。発生した応力により検知用梁の所定位置に配置されたピエゾ抵抗素子の抵抗値が変化し、センサチップ10に形成された各ブリッジ回路からの出力電圧を電極15から得ることができる。更に、電極15の出力電圧は、入出力基板30を経由して外部で得ることができる。
As described above, in the sensor chip 10, when displacement (force or moment) is input to the power point, bending and torsional stress corresponding to the input is generated in the predetermined detection beam. The resistance value of the piezoresistive element arranged at a predetermined position of the detection beam is changed by the generated stress, and the output voltage from each bridge circuit formed in the sensor chip 10 can be obtained from the electrode 15. Further, the output voltage of the electrode 15 can be obtained outside via the input / output substrate 30.
又、センサチップ10では、1つの軸につき1個のブリッジ回路が形成されているため、出力の合成を伴わずに各軸の出力を得ることができる。これにより、複雑な計算や信号処理を必要としない簡易な方法で多軸の変位を検知して出力可能となる。
Further, in the sensor chip 10, since one bridge circuit is formed for each axis, the output of each axis can be obtained without combining the outputs. As a result, multi-axis displacement can be detected and output by a simple method that does not require complicated calculations and signal processing.
又、ピエゾ抵抗素子を入力の種類により異なる検知用梁に分けて配置している。これにより、該当する検知用梁の剛性(厚みや幅)を変更することで、任意の軸の感度を独立して調整することができる。
Also, the piezoresistive elements are divided into different detection beams depending on the type of input. Thereby, the sensitivity of an arbitrary axis | shaft can be adjusted independently by changing the rigidity (thickness and width | variety) of the applicable detection beam.
なお、本明細書における、『平行』、『垂直』、『直交』、『同一平面』等の文言は、厳密な意味での『平行』、『垂直』、『直交』、『同一平面』等のみでなく、実質的に『平行』、『垂直』、『直交』、『同一平面』等である場合も含むものとする。すなわち、本実施の形態の作用及び効果が得られる範囲でバラツキがある態様も含むものとする。
In this specification, the terms “parallel”, “vertical”, “orthogonal”, “same plane”, etc. are strictly “parallel”, “vertical”, “orthogonal”, “same plane”, etc. In addition to the above, the case of “parallel”, “vertical”, “orthogonal”, “same plane”, etc. is also included. That is, a mode in which there is variation within a range in which the operation and effect of the present embodiment can be obtained is also included.
〈第1の実施の形態の変形例1〉
第1の実施の形態の変形例1では、受力板を備えた力覚センサ装置の例を示す。なお、第1の実施の形態の変形例1において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Variation 1 of the first embodiment>
In the first modification of the first embodiment, an example of a force sensor device including a force receiving plate is shown. In the first modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
第1の実施の形態の変形例1では、受力板を備えた力覚センサ装置の例を示す。なお、第1の実施の形態の変形例1において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <
In the first modification of the first embodiment, an example of a force sensor device including a force receiving plate is shown. In the first modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
図19は、第1の実施の形態の変形例1に係る力覚センサ装置を例示する斜視図である。図20Aは、第1の実施の形態の変形例1に係る力覚センサ装置を例示する平面図であり、図20Bは、図20AのB-B線に沿う断面図である。図19、図20A、及び図20Bを参照するに、力覚センサ装置1Aは、起歪体20の入力部24a~24d上に受力板40を設けた点が力覚センサ装置1と相違する。
FIG. 19 is a perspective view illustrating a force sensor device according to Modification 1 of the first embodiment. 20A is a plan view illustrating a force sensor device according to Modification 1 of the first embodiment, and FIG. 20B is a cross-sectional view taken along line BB in FIG. 20A. Referring to FIGS. 19, 20A, and 20B, the force sensor device 1A is different from the force sensor device 1 in that a force receiving plate 40 is provided on the input portions 24a to 24d of the strain body 20. .
受力板40の下面側には4つ凹部40xが設けられている。又、受力板40の上面側の、各々の凹部40xと平面視で略重複する位置に、4つの凹部40yが設けられている。4つの凹部40xは各々起歪体20の入力部24a~24dを覆うように配置され、各々の凹部40xの底面は入力部24a~24dの上面と接している。
Four recesses 40x are provided on the lower surface side of the force receiving plate 40. Further, four concave portions 40y are provided on the upper surface side of the force receiving plate 40 at positions substantially overlapping with the respective concave portions 40x in plan view. The four concave portions 40x are arranged so as to cover the input portions 24a to 24d of the strain body 20, and the bottom surfaces of the concave portions 40x are in contact with the upper surfaces of the input portions 24a to 24d.
このような構造により、受力板40と起歪体20とを位置決めすることができる。又、凹部40yは、力覚センサ装置1Aをロボット等に取り付ける際の位置決めに用いることができる。
With such a structure, the force receiving plate 40 and the strain body 20 can be positioned. The recess 40y can be used for positioning when the force sensor device 1A is attached to a robot or the like.
受力板40の材料としては、例えば、SUS(ステンレス鋼)630等を用いることができる。受力板40は、例えば、起歪体20に溶接、接着、ねじ止め等により固定することができる。
As the material of the force receiving plate 40, for example, SUS (stainless steel) 630 or the like can be used. The force receiving plate 40 can be fixed to the strain body 20 by welding, bonding, screwing, or the like, for example.
このように、受力板40を設けることで、受力板40を介して起歪体20の入力部24a~24dに外部から力を入力することができる。
Thus, by providing the force receiving plate 40, it is possible to input force from the outside to the input portions 24a to 24d of the strain generating body 20 via the force receiving plate 40.
〈第1の実施の形態の変形例2〉
第1の実施の形態の変形例2では、第1の実施の形態とは異なるセンサチップの例を示す。なお、第1の実施の形態の変形例2において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 2 of the first embodiment>
In the second modification of the first embodiment, an example of a sensor chip different from the first embodiment is shown. In the second modification of the first embodiment, the description of the same components as those of the already described embodiment may be omitted.
第1の実施の形態の変形例2では、第1の実施の形態とは異なるセンサチップの例を示す。なお、第1の実施の形態の変形例2において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 2 of the first embodiment>
In the second modification of the first embodiment, an example of a sensor chip different from the first embodiment is shown. In the second modification of the first embodiment, the description of the same components as those of the already described embodiment may be omitted.
図21Aは、センサチップ50をZ軸方向上側から視た平面図であり、図21Bは、センサチップ50をZ軸方向下側から視た底面図である。図21Bにおいて、便宜上、同一高さの面を同一の梨地模様で示している。
21A is a plan view of the sensor chip 50 viewed from the upper side in the Z-axis direction, and FIG. 21B is a bottom view of the sensor chip 50 viewed from the lower side in the Z-axis direction. In FIG. 21B, the surface of the same height is shown with the same satin pattern for convenience.
図21A及び図21Bに示すセンサチップ50は、センサチップ10と同様に、1チップで最大6軸を検知できるMEMSセンサチップであり、SOI基板等から作製することができる。センサチップ50の平面形状は、例えば、3000μm角程度の正方形とすることができる。力覚センサ装置1において、センサチップ10に代えて、センサチップ50を用いることができる。
The sensor chip 50 shown in FIG. 21A and FIG. 21B is a MEMS sensor chip that can detect a maximum of six axes with one chip, like the sensor chip 10, and can be manufactured from an SOI substrate or the like. The planar shape of the sensor chip 50 can be a square of about 3000 μm square, for example. In the force sensor device 1, a sensor chip 50 can be used instead of the sensor chip 10.
センサチップ50は、柱状の5つの支持部51a~51eを備えている。支持部51a~51eの平面形状は、例えば、500μm角程度の正方形とすることができる。第1の支持部である支持部51a~51dは、センサチップ50の四隅に配置されている。第2の支持部である支持部51eは、支持部51a~51dの中央に配置されている。
The sensor chip 50 includes five columnar support portions 51a to 51e. The planar shape of the support parts 51a to 51e can be a square of about 500 μm square, for example. Support portions 51 a to 51 d as first support portions are arranged at the four corners of the sensor chip 50. The support part 51e, which is the second support part, is arranged at the center of the support parts 51a to 51d.
支持部51a~51eは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができ、それぞれの厚さは、例えば、500μm程度とすることができる。
The support portions 51a to 51e can be formed from, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and the thickness of each can be about 500 μm, for example.
支持部51aと支持部51bとの間には、支持部51aと支持部51bとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁52aが設けられている。支持部51bと支持部51cとの間には、支持部51bと支持部51cとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁52bが設けられている。
Between the support portions 51a and 51b, there are provided reinforcing beams 52a for reinforcing the structure, both ends of which are fixed to the support portions 51a and 51b (to connect adjacent support portions). It has been. Between the support part 51b and the support part 51c, both ends of the support part 51b and the support part 51c are fixed (to connect adjacent support parts), and a reinforcing beam 52b for reinforcing the structure is provided. It has been.
支持部51cと支持部51dとの間には、支持部51cと支持部51dとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁52cが設けられている。支持部51dと支持部51aとの間には、支持部51dと支持部51aとに両端を固定された(隣接する支持部同士を連結する)、構造を補強するための補強用梁52dが設けられている。
Between the support portion 51c and the support portion 51d, there is provided a reinforcing beam 52c that is fixed at both ends to the support portion 51c and the support portion 51d (connects adjacent support portions) and reinforces the structure. It has been. Between the support part 51d and the support part 51a, both ends are fixed to the support part 51d and the support part 51a (adjacent support parts are connected), and a reinforcing beam 52d for reinforcing the structure is provided. It has been.
言い換えれば、第1の補強用梁である4つの補強用梁52a、52b、52c、及び52dが枠状に形成され、各補強用梁の交点をなす角部が、支持部51b、51c、51d、51aとなる。
In other words, the four reinforcing beams 52a, 52b, 52c, and 52d, which are the first reinforcing beams, are formed in a frame shape, and the corners forming the intersections of the reinforcing beams are the support portions 51b, 51c, 51d. 51a.
補強用梁52a~52dは、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができる。補強用梁52a~52dの太さ(短手方向の幅)は、例えば、30μm程度とすることができる。補強用梁52a~52dのそれぞれの上面は、支持部51a~51eの上面と略面一である。
The reinforcing beams 52a to 52d can be formed of, for example, an active layer, a BOX layer, and a support layer of an SOI substrate. The thickness (width in the short direction) of the reinforcing beams 52a to 52d can be set to about 30 μm, for example. The upper surfaces of the reinforcing beams 52a to 52d are substantially flush with the upper surfaces of the support portions 51a to 51e.
これに対して、補強用梁52a~52dのそれぞれの下面は、支持部51a~51eの下面及び力点54a~54dの下面よりも数10μm程度上面側に窪んでいる。これは、センサチップ50を起歪体20に接着したときに、補強用梁52a~52dの下面が起歪体20の対向する面と接しないようにするためである。
On the other hand, the lower surfaces of the reinforcing beams 52a to 52d are recessed to the upper surface side by about several tens of μm from the lower surfaces of the support portions 51a to 51e and the lower surfaces of the force points 54a to 54d. This is to prevent the lower surfaces of the reinforcing beams 52a to 52d from coming into contact with the opposing surface of the strain body 20 when the sensor chip 50 is bonded to the strain body 20.
このように、歪を検知するための検知用梁とは別に、検知用梁よりも厚く形成した剛性の強い補強用梁を配置することで、センサチップ50全体の剛性を高めることができる。これにより、入力に対して検知用梁以外が変形しづらくなるため、良好なセンサ特性を得ることができる。
As described above, the rigidity of the sensor chip 50 as a whole can be increased by disposing the reinforcing beam having a high rigidity formed thicker than the detection beam separately from the detection beam for detecting the strain. This makes it difficult to deform other than the detection beam with respect to the input, so that good sensor characteristics can be obtained.
支持部51aと支持部51bとの間の補強用梁52aの内側には、補強用梁52aと所定間隔を空けて平行に、支持部51aと支持部51bとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁53aが設けられている。
Inside the reinforcing beam 52a between the support portion 51a and the support portion 51b, both ends are fixed to the support portion 51a and the support portion 51b (adjacent to each other) in parallel with the reinforcing beam 52a with a predetermined interval. Detection beams 53a for detecting strain are provided.
検知用梁53aと支持部51eとの間には、検知用梁53a及び支持部51eと所定間隔を空けて、長手方向が検知用梁53aと平行な枠状の検知用梁53bが設けられている。検知用梁53bは、検知用梁53aの長手方向の略中央部と、それに対向する支持部51eの1辺の略中央部との間を連結する、検知用梁53aの長手方向に対して略垂直方向に伸びる検知用梁53cの長手方向の略中央部に保持されている。
Between the detection beam 53a and the support portion 51e, a frame-shaped detection beam 53b having a predetermined distance from the detection beam 53a and the support portion 51e and having a longitudinal direction parallel to the detection beam 53a is provided. Yes. The detection beam 53b is connected to a substantially central portion in the longitudinal direction of the detection beam 53a and a substantially central portion of one side of the support portion 51e facing the detection beam 53a, and is approximately in the longitudinal direction of the detection beam 53a. The detection beam 53c extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
支持部51bと支持部51cとの間の補強用梁52bの内側には、補強用梁52bと所定間隔を空けて平行に、支持部51bと支持部51cとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁53dが設けられている。
Inside the reinforcing beam 52b between the support part 51b and the support part 51c, both ends are fixed to the support part 51b and the support part 51c (adjacent to each other) in parallel with the reinforcing beam 52b with a predetermined distance therebetween. A detecting beam 53d for detecting strain is provided.
検知用梁53dと支持部51eとの間には、検知用梁53d及び支持部51eと所定間隔を空けて、長手方向が検知用梁53dと平行な枠状の検知用梁53eが設けられている。検知用梁53eは、検知用梁53dの長手方向の略中央部と、それに対向する支持部51eの1辺の略中央部との間を連結する、検知用梁53dの長手方向に対して略垂直方向に伸びる検知用梁53fの長手方向の略中央部に保持されている。
Between the detection beam 53d and the support portion 51e, there is provided a frame-shaped detection beam 53e that is spaced apart from the detection beam 53d and the support portion 51e and whose longitudinal direction is parallel to the detection beam 53d. Yes. The detection beam 53e is substantially in the longitudinal direction of the detection beam 53d, which connects between a substantially central portion in the longitudinal direction of the detection beam 53d and a substantially central portion of one side of the support portion 51e facing the detection beam 53d. The detection beam 53f extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
支持部51cと支持部51dとの間の補強用梁52cの内側には、補強用梁52cと所定間隔を空けて平行に、支持部51cと支持部51dとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁53gが設けられている。
Inside the reinforcing beam 52c between the support portion 51c and the support portion 51d, both ends are fixed to (adjacent to) the support portion 51c and the support portion 51d in parallel with the reinforcing beam 52c at a predetermined interval. A detecting beam 53g for detecting strain is provided.
検知用梁53gと支持部51eとの間には、検知用梁53g及び支持部51eと所定間隔を空けて、長手方向が検知用梁53gと平行な枠状の検知用梁53hが設けられている。検知用梁53hは、検知用梁53gの長手方向の略中央部と、それに対向する支持部51eの1辺の略中央部との間を連結する、検知用梁53gの長手方向に対して略垂直方向に伸びる検知用梁53iの長手方向の略中央部に保持されている。
Between the detection beam 53g and the support portion 51e, a frame-shaped detection beam 53h having a predetermined distance from the detection beam 53g and the support portion 51e and having a longitudinal direction parallel to the detection beam 53g is provided. Yes. The detection beam 53h is approximately in the longitudinal direction of the detection beam 53g that connects between the substantially central portion in the longitudinal direction of the detection beam 53g and the substantially central portion of one side of the support portion 51e facing the detection beam 53g. The detection beam 53i extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
支持部51dと支持部51aとの間の補強用梁52dの内側には、補強用梁52dと所定間隔を空けて平行に、支持部51dと支持部51aとに両端を固定された(隣接する支持部同士を連結する)、歪を検知するための検知用梁53jが設けられている。
Inside the reinforcing beam 52d between the support portion 51d and the support portion 51a, both ends thereof are fixed to the support portion 51d and the support portion 51a in parallel with a predetermined distance (adjacent to each other). A support beam 53j for detecting strain is provided.
検知用梁53jと支持部51eとの間には、検知用梁53j及び支持部51eと所定間隔を空けて、長手方向が検知用梁53jと平行な枠状の検知用梁53kが設けられている。検知用梁53kは、検知用梁53jの長手方向の略中央部と、それに対向する支持部51eの1辺の略中央部との間を連結する、検知用梁53jの長手方向に対して略垂直方向に伸びる検知用梁53lの長手方向の略中央部に保持されている。
Between the detection beam 53j and the support portion 51e, a frame-shaped detection beam 53k whose longitudinal direction is parallel to the detection beam 53j is provided with a predetermined distance from the detection beam 53j and the support portion 51e. Yes. The detection beam 53k is approximately in the longitudinal direction of the detection beam 53j that connects between the substantially central portion of the detection beam 53j in the longitudinal direction and the substantially central portion of one side of the support portion 51e facing the detection beam 53j. The detection beam 53l extending in the vertical direction is held at a substantially central portion in the longitudinal direction.
検知用梁53a~53lは、支持部51a~51eの厚さ方向の上端側に設けられ、例えば、SOI基板の活性層から形成することができる。検知用梁53a~53lの太さ(短手方向の幅)は、例えば、150μm程度とすることができる。検知用梁53a~53lのそれぞれの上面は、支持部51a~51eの上面と略面一である。検知用梁53a~53lのそれぞれの厚さは、例えば、50μm程度とすることができる。
The detection beams 53a to 53l are provided on the upper end side in the thickness direction of the support portions 51a to 51e, and can be formed from, for example, an active layer of an SOI substrate. The thickness (width in the short direction) of the detection beams 53a to 53l can be set to, for example, about 150 μm. The upper surfaces of the detection beams 53a to 53l are substantially flush with the upper surfaces of the support portions 51a to 51e. The thickness of each of the detection beams 53a to 53l can be set to about 50 μm, for example.
検知用梁53aの長手方向の中央部の下面側(検知用梁53aと検知用梁53cとの交点)には、力点54aが設けられている。検知用梁53a、53b、及び53cと力点54aとにより、1組の検知ブロックをなしている。
A force point 54a is provided on the lower surface side (intersection of the detection beam 53a and the detection beam 53c) of the central portion in the longitudinal direction of the detection beam 53a. The detection beams 53a, 53b and 53c and the force point 54a form a set of detection blocks.
検知用梁53dの長手方向の中央部の下面側(検知用梁53dと検知用梁53fとの交点)には、力点54bが設けられている。検知用梁53d、53e、及び53fと力点54bとにより、1組の検知ブロックをなしている。
A force point 54b is provided on the lower surface side (intersection of the detection beam 53d and the detection beam 53f) of the central portion in the longitudinal direction of the detection beam 53d. The detection beams 53d, 53e, and 53f and the force point 54b constitute a set of detection blocks.
検知用梁53gの長手方向の中央部の下面側(検知用梁53gと検知用梁53iとの交点)には、力点54cが設けられている。検知用梁53g、53h、及び53iと力点54cとにより、1組の検知ブロックをなしている。
A force point 54c is provided on the lower surface side (intersection of the detection beam 53g and the detection beam 53i) of the central portion in the longitudinal direction of the detection beam 53g. The detection beams 53g, 53h, and 53i and the force point 54c form a set of detection blocks.
検知用梁53jの長手方向の中央部の下面側(検知用梁53jと検知用梁53lとの交点)には、力点54dが設けられている。検知用梁53j、53k、及び53lと力点54dとにより、1組の検知ブロックをなしている。
A force point 54d is provided on the lower surface side (intersection of the detection beam 53j and the detection beam 53l) of the central portion in the longitudinal direction of the detection beam 53j. The detection beams 53j, 53k, and 53l and the force point 54d form a set of detection blocks.
力点54a~54dは、外力が印加される箇所であり、例えば、SOI基板のBOX層及び支持層から形成することができる。力点54a~54dのそれぞれの下面は、支持部51a~51eの下面と略面一である。
The force points 54a to 54d are places where an external force is applied, and can be formed from, for example, a BOX layer and a support layer of an SOI substrate. The lower surfaces of the force points 54a to 54d are substantially flush with the lower surfaces of the support portions 51a to 51e.
このように、力を4つの力点54a~54dから取り入れることで、力の種類毎に異なる梁の変形が得られるため、6軸の分離性が良いセンサを実現することができる。
In this way, by taking in the force from the four force points 54a to 54d, different beam deformations can be obtained for each type of force, so a sensor with good separation of 6 axes can be realized.
図22は、センサチップ50のピエゾ抵抗素子の配置を例示する図である。4つ力点54a~54dに対応する各検知ブロックの所定位置には、ピエゾ抵抗素子配置されている。
FIG. 22 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 50. Piezoresistive elements are arranged at predetermined positions of the respective detection blocks corresponding to the four force points 54a to 54d.
具体的には、図21A、図21B、及び図22を参照すると、力点54aに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR3及びMxR4は、検知用梁53aを長手方向に二等分する線上であって、かつ、検知用梁53cを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR3及びFyR4は、枠状の検知用梁53bの開口部よりも検知用梁53a側であって、かつ、検知用梁53cを長手方向に二等分する線に対して対称な位置に配置されている。
Specifically, referring to FIGS. 21A, 21B, and 22, in the detection block corresponding to the force point 54a, the piezoresistive elements MxR3 and MxR4 are on a line that bisects the detection beam 53a in the longitudinal direction. In addition, the detection beam 53c is arranged at a symmetrical position with respect to a line that bisects the beam in the longitudinal direction. The piezoresistive elements FyR3 and FyR4 are located on the detection beam 53a side of the opening of the frame-shaped detection beam 53b and are symmetric with respect to a line that bisects the detection beam 53c in the longitudinal direction. It is arranged in the position.
又、力点54bに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR3及びMyR4は、検知用梁53dを長手方向に二等分する線上であって、かつ、検知用梁53fを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR3及びFxR4は、枠状の検知用梁53eの開口部よりも検知用梁53d側であって、かつ、検知用梁53fを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 54b, the piezoresistive elements MyR3 and MyR4 are on a line that bisects the detection beam 53d in the longitudinal direction and bisects the detection beam 53f in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. The piezoresistive elements FxR3 and FxR4 are on the detection beam 53d side of the opening of the frame-shaped detection beam 53e, and are symmetric with respect to a line that bisects the detection beam 53f in the longitudinal direction. It is arranged in the position.
又、MzR3及びMzR4は、検知用梁53eよりも支持部51e側であって、かつ、検知用梁53fを長手方向に二等分する線に対して対称な位置に配置されている。又、FzR3及びFzR4は、検知用梁53fを長手方向に二等分する線上であって、かつ、枠状の検知用梁53eの開口部を長手方向に二等分する線に対して対称な位置に配置されている。
Further, MzR3 and MzR4 are arranged on the support portion 51e side with respect to the detection beam 53e and symmetrically with respect to a line that bisects the detection beam 53f in the longitudinal direction. FzR3 and FzR4 are on a line that bisects the detection beam 53f in the longitudinal direction, and are symmetrical with respect to a line that bisects the opening of the frame-shaped detection beam 53e in the longitudinal direction. Placed in position.
又、力点54cに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR1及びMxR2は、検知用梁53gを長手方向に二等分する線上であって、かつ、検知用梁53iを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR1及びFyR2は、枠状の検知用梁53hの開口部よりも検知用梁53g側であって、かつ、検知用梁53iを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 54c, the piezoresistive elements MxR1 and MxR2 are on a line that bisects the detection beam 53g in the longitudinal direction and bisect the detection beam 53i in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. The piezoresistive elements FyR1 and FyR2 are on the detection beam 53g side with respect to the opening of the frame-shaped detection beam 53h, and are symmetrical with respect to a line that bisects the detection beam 53i in the longitudinal direction. It is arranged in the position.
又、力点54dに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR1及びMyR2は、検知用梁53jを長手方向に二等分する線上であって、かつ、検知用梁53lを長手方向に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR1及びFxR2は、枠状の検知用梁13kの開口部よりも検知用梁53j側であって、かつ、検知用梁53lを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 54d, the piezoresistive elements MyR1 and MyR2 are on a line that bisects the detection beam 53j in the longitudinal direction and bisects the detection beam 53l in the longitudinal direction. It is arranged at a symmetrical position with respect to the line. Further, the piezoresistive elements FxR1 and FxR2 are on the detection beam 53j side with respect to the opening of the frame-shaped detection beam 13k and are symmetric with respect to a line that bisects the detection beam 53l in the longitudinal direction. It is arranged in the position.
又、MzR1及びMzR2は、検知用梁53kよりも支持部51e側であって、かつ、検知用梁53lを長手方向に二等分する線に対して対称な位置に配置されている。又、FzR1及びFzR2は、検知用梁53lを長手方向に二等分する線上であって、かつ、枠状の検知用梁53kの開口部を長手方向に二等分する線に対して対称な位置に配置されている。
Further, MzR1 and MzR2 are arranged on the support portion 51e side with respect to the detection beam 53k and symmetrically with respect to a line that bisects the detection beam 53l in the longitudinal direction. FzR1 and FzR2 are on a line that bisects the detection beam 53l in the longitudinal direction and are symmetrical with respect to a line that bisects the opening of the frame-shaped detection beam 53k in the longitudinal direction. Placed in position.
このように、センサチップ50では、センサチップ10と同様に、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、センサチップ10と同様に、力点54a~54dに印加(伝達)された力の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。
As described above, in the sensor chip 50, similarly to the sensor chip 10, a plurality of piezoresistive elements are separately arranged in each detection block. As a result, similar to the sensor chip 10, based on changes in the outputs of a plurality of piezoresistive elements arranged on a predetermined beam according to the direction (axial direction) of the force applied (transmitted) to the force points 54a to 54d. Thus, it is possible to detect up to six axes of displacement in a predetermined axial direction.
〈第1の実施の形態の変形例3〉
第1の実施の形態の変形例3では、起歪体を用いない力覚センサ装置の例を示す。なお、第1の実施の形態の変形例3において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 3 of the first embodiment>
Modification 3 of the first embodiment shows an example of a force sensor device that does not use a strain generating body. Note that in the third modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
第1の実施の形態の変形例3では、起歪体を用いない力覚センサ装置の例を示す。なお、第1の実施の形態の変形例3において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 3 of the first embodiment>
Modification 3 of the first embodiment shows an example of a force sensor device that does not use a strain generating body. Note that in the third modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
図23A~図23Cは、第1の実施の形態の変形例3に係る力覚センサ装置を例示する斜視図である。図23A~図23Cを参照するに、力覚センサ装置1Bは、センサチップ10と、受力板60と、パッケージ70とを有している。センサチップ10上に受力板60が接合され、センサチップ10はパッケージ70内に保持されている。受力板60は、例えば、ガラスにより形成することができる。パッケージ70は、例えば、セラミックスにより形成することができる。
23A to 23C are perspective views illustrating a force sensor device according to Modification 3 of the first embodiment. Referring to FIGS. 23A to 23C, the force sensor device 1B includes a sensor chip 10, a force receiving plate 60, and a package. A force receiving plate 60 is bonded onto the sensor chip 10, and the sensor chip 10 is held in the package 70. The force receiving plate 60 can be formed of glass, for example. The package 70 can be formed of ceramics, for example.
受力板60は、略円形状の本体61と、本体61の下面側に設けられた4つの突起部61a、61b、61c、及び61dとを有している。突起部61aは、検知用梁13aの上面の、力点14aに対応する領域と接している。突起部61bは、検知用梁13jの上面の、力点14dに対応する領域と接している。突起部61cは、検知用梁13gの上面の、力点14cに対応する領域と接している。突起部61dは、検知用梁13dの上面の、力点14bに対応する領域と接している。
The force receiving plate 60 has a substantially circular main body 61 and four protrusions 61 a, 61 b, 61 c and 61 d provided on the lower surface side of the main body 61. The protrusion 61a is in contact with the region corresponding to the force point 14a on the upper surface of the detection beam 13a. The protrusion 61b is in contact with a region corresponding to the force point 14d on the upper surface of the detection beam 13j. The protrusion 61c is in contact with a region corresponding to the force point 14c on the upper surface of the detection beam 13g. The protrusion 61d is in contact with the region corresponding to the force point 14b on the upper surface of the detection beam 13d.
力覚センサ装置1Bでは、図23A~図23Cのような構成とすることで、起歪体を用いずに、受力板60を介してセンサチップ10に外力を印加することができる。
In the force sensor device 1B, an external force can be applied to the sensor chip 10 via the force receiving plate 60 without using a strain body by adopting the configuration as shown in FIGS. 23A to 23C.
なお、力覚センサ装置1Bは、センサチップ10の完成後に受力板60を接合する製造プロセスとしてもよいし、以下のような製造プロセスとしてもよい。すなわち、センサチップ10が形成されたダイシング前のセンサチップウェハに対して、受力板60となるガラスウェハ(センサチップウェハと同サイズ)を陽極接合する。そして、陽極接合されたセンサチップウェハとガラスウェハを同時にダイシングすることで、センサチップ10と受力板60を同時に形成することができる。
The force sensor device 1B may be a manufacturing process in which the force receiving plate 60 is joined after the sensor chip 10 is completed, or a manufacturing process as described below. That is, a glass wafer (same size as the sensor chip wafer) to be the force receiving plate 60 is anodically bonded to the sensor chip wafer before dicing on which the sensor chip 10 is formed. The sensor chip 10 and the force receiving plate 60 can be formed simultaneously by dicing the anodic bonded sensor chip wafer and the glass wafer at the same time.
〈第1の実施の形態の変形例4〉
第1の実施の形態の変形例4では、起歪体を用いない力覚センサ装置の他の例を示す。なお、第1の実施の形態の変形例4において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 4 of the first embodiment>
The fourth modification of the first embodiment shows another example of a force sensor device that does not use a strain generating body. Note that in the fourth modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
第1の実施の形態の変形例4では、起歪体を用いない力覚センサ装置の他の例を示す。なお、第1の実施の形態の変形例4において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 4 of the first embodiment>
The fourth modification of the first embodiment shows another example of a force sensor device that does not use a strain generating body. Note that in the fourth modification of the first embodiment, the description of the same components as those of the already described embodiments may be omitted.
図24A及び図24Bは、第1の実施の形態の変形例4に係る力覚センサ装置を例示する斜視図である。図24A及び図24Bを参照するに、力覚センサ装置1Cは、センサチップ10と、柱構造部80とを有している。センサチップ10は柱構造部80上に接着されている。柱構造部80は、例えば、シリコン、ガラス、金属等により形成することができる。
24A and 24B are perspective views illustrating a force sensor device according to Modification 4 of the first embodiment. Referring to FIGS. 24A and 24B, the force sensor device 1C includes a sensor chip 10 and a column structure 80. The sensor chip 10 is bonded onto the column structure 80. The column structure 80 can be formed of, for example, silicon, glass, metal, or the like.
柱構造部80は、土台81と、土台81上に略等間隔で配置された9本の柱82a~82iとを有している。柱82a、82c、82e、及び82gは、土台81の四隅に配置されている。柱82iは、土台81の中央に配置されている。柱82bは、柱82aと柱82cとの間に配置されている。柱82dは、柱82cと柱82eとの間に配置されている。柱82fは、柱82eと柱82gとの間に配置されている。柱82hは、柱82gと柱82aとの間に配置されている。
The pillar structure 80 has a base 81 and nine pillars 82a to 82i arranged on the base 81 at substantially equal intervals. The pillars 82 a, 82 c, 82 e, and 82 g are disposed at the four corners of the base 81. The column 82 i is disposed at the center of the base 81. The column 82b is disposed between the column 82a and the column 82c. The column 82d is disposed between the column 82c and the column 82e. The column 82f is disposed between the column 82e and the column 82g. The column 82h is disposed between the column 82g and the column 82a.
力覚センサ装置1Cでは、図24A及び図24Bのような構成とすることで、起歪体を用いずに、センサチップ10に直接外力を印加することができる。なお、力覚センサ装置1Bと同様に、センサチップ10上に受力板60を設けてもよい。
In the force sensor device 1C, an external force can be directly applied to the sensor chip 10 without using a strain generating body by adopting the configuration as shown in FIGS. 24A and 24B. Note that the force receiving plate 60 may be provided on the sensor chip 10 as in the force sensor device 1B.
なお、力覚センサ装置1Cは、センサチップ10の完成後に柱構造部80を接合する製造プロセスとしてもよいし、以下のような製造プロセスとしてもよい。すなわち、センサチップ10が形成されたダイシング前のセンサチップウェハに対して、柱構造部80となるガラスウェハ又はシリコンウェハ(センサチップウェハと同サイズ)を陽極接合する。そして、陽極接合されたセンサチップウェハとガラスウェハ又はシリコンウェハを同時にダイシングすることで、センサチップ10と柱構造部80を同時に形成することができる。
It should be noted that the force sensor device 1C may be a manufacturing process in which the column structure 80 is joined after the sensor chip 10 is completed, or a manufacturing process as described below. That is, a glass wafer or silicon wafer (same size as the sensor chip wafer) to be the column structure 80 is anodically bonded to the sensor chip wafer before dicing on which the sensor chip 10 is formed. The sensor chip 10 and the column structure 80 can be formed simultaneously by dicing the anodic bonded sensor chip wafer and the glass wafer or silicon wafer at the same time.
又、力覚センサ装置は、図23A~図23Cに示す受力板60と図24A及び図24Bに示す柱構造部80の両方を備える構成としてもよい。この場合、例えば、センサチップ10が形成されるセンサチップウェハの一方の面側に受力板60となるガラスウェハを陽極接合し、他方の面側に柱構造部80となるガラスウェハ又はシリコンウェハを陽極接合する。そして、陽極接合後に、受力板60や柱構造部80となるガラスウェハ又はシリコンウェハでセンサチップウェハを挟み込んだ状態でダイシングすることで、受力板60、センサチップ10、柱構造部80を同時に形成することができる。
Also, the force sensor device may be configured to include both the force receiving plate 60 shown in FIGS. 23A to 23C and the column structure 80 shown in FIGS. 24A and 24B. In this case, for example, a glass wafer to be the force receiving plate 60 is anodically bonded to one surface side of the sensor chip wafer on which the sensor chip 10 is formed, and a glass wafer or silicon wafer to be the column structure 80 on the other surface side. Are anodically bonded. Then, after anodic bonding, the force receiving plate 60, the sensor chip 10, and the column structure 80 are formed by dicing in a state where the sensor chip wafer is sandwiched between the glass wafer or the silicon wafer to be the force receiving plate 60 and the column structure 80. They can be formed simultaneously.
〈第1の実施の形態の変形例5〉
第1の実施の形態の変形例5では、第1の実施の形態とは異なるセンサチップの他の例を示す。なお、第1の実施の形態の変形例5において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <Modification 5 of the first embodiment>
Modification 5 of the first embodiment shows another example of a sensor chip different from the first embodiment. Note that in the fifth modification of the first embodiment, description of the same components as those of the already described embodiments may be omitted.
第1の実施の形態の変形例5では、第1の実施の形態とは異なるセンサチップの他の例を示す。なお、第1の実施の形態の変形例5において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。 <
図25Aは、センサチップ110をZ軸方向上側から視た斜視図であり、図25Bは、センサチップ110をZ軸方向上側から視た平面図である。図26Aは、センサチップ110をZ軸方向下側から視た斜視図であり、図26Bは、センサチップ110をZ軸方向下側から視た底面図である。図26Bにおいて、便宜上、同一高さの面を同一の梨地模様で示している。
25A is a perspective view of the sensor chip 110 viewed from the upper side in the Z-axis direction, and FIG. 25B is a plan view of the sensor chip 110 viewed from the upper side in the Z-axis direction. 26A is a perspective view of the sensor chip 110 viewed from the lower side in the Z-axis direction, and FIG. 26B is a bottom view of the sensor chip 110 viewed from the lower side in the Z-axis direction. In FIG. 26B, the surface of the same height is shown with the same satin pattern for convenience.
図25A、図25B、図26A、及び図26Bに示すセンサチップ110は、センサチップ10と同様に、1チップで最大6軸を検知できるMEMSセンサチップであり、SOI基板等の半導体基板から形成されている。センサチップ110の平面形状は、例えば、3000μm角程度の正方形とすることができる。
Similar to the sensor chip 10, the sensor chip 110 shown in FIGS. 25A, 25B, 26A, and 26B is a MEMS sensor chip that can detect up to six axes, and is formed from a semiconductor substrate such as an SOI substrate. ing. The planar shape of the sensor chip 110 can be a square of about 3000 μm square, for example.
センサチップ110の基本的な梁構造は、センサチップ10と同様である。センサチップ110の支持部111a~111eは、センサチップ10の支持部11a~11eに相当する。
The basic beam structure of the sensor chip 110 is the same as that of the sensor chip 10. The support portions 111a to 111e of the sensor chip 110 correspond to the support portions 11a to 11e of the sensor chip 10.
同様に、センサチップ110の補強用梁112a~112hは、センサチップ10の補強用梁12a~12hに相当する。同様に、センサチップ110の検知用梁113a~113lは、センサチップ10の検知用梁13a~13lに相当する。同様に、センサチップ110の力点114a~114dは、センサチップ10の力点14a~14dに相当する。
Similarly, the reinforcing beams 112a to 112h of the sensor chip 110 correspond to the reinforcing beams 12a to 12h of the sensor chip 10. Similarly, the detection beams 113a to 113l of the sensor chip 110 correspond to the detection beams 13a to 13l of the sensor chip 10. Similarly, the force points 114 a to 114 d of the sensor chip 110 correspond to the force points 14 a to 14 d of the sensor chip 10.
センサチップ110では、第1の検知用梁(検知用梁113a、113d、113g、及び113j)、並びに、第2の検知用梁(検知用梁113b、113e、113h、及び113k)の幅は、第3の検知用梁(検知用梁113c、113f、113i、及び113l)の幅よりも狭くなっている。
In the sensor chip 110, the widths of the first detection beams ( detection beams 113a, 113d, 113g, and 113j) and the second detection beams ( detection beams 113b, 113e, 113h, and 113k) are: The width is smaller than the width of the third detection beam ( detection beams 113c, 113f, 113i, and 113l).
又、第1の検知用梁(検知用梁113a、113d、113g、及び113j)、並びに、第2の検知用梁(検知用梁113b、113e、113h、及び113k)の長さは、第3の検知用梁(検知用梁113c、113f、113i、及び113l)の長さよりも長くなっている。
The lengths of the first detection beams ( detection beams 113a, 113d, 113g, and 113j) and the second detection beams ( detection beams 113b, 113e, 113h, and 113k) are the third lengths. This is longer than the length of the detection beams ( detection beams 113c, 113f, 113i, and 113l).
又、図25A及び図25Bを図3A及び図3Bと比較すると、センサチップ110とセンサチップ10では、検知用梁の幅や長さが異なっていることがわかる。例えば、検知用梁113aは、検知用梁13aと比べて幅が狭くなり(0.67倍程度)、長さが長くなっている(1.36倍程度)。同様に、検知用梁113d、113g、及び113jは、検知用梁13d、13g、及び13jと比べて幅が狭くなり(0.67倍程度)、長さが長くなっている(1.36倍程度)。
Also, comparing FIGS. 25A and 25B with FIGS. 3A and 3B, it can be seen that the sensor chip 110 and the sensor chip 10 have different widths and lengths of the detection beams. For example, the detection beam 113a is narrower (about 0.67 times) and longer (about 1.36 times) than the detection beam 13a. Similarly, the detection beams 113d, 113g, and 113j are narrower (about 0.67 times) and longer (1.36 times) than the detection beams 13d, 13g, and 13j. degree).
又、検知用梁113bは、検知用梁13bと比べて最細部の幅が狭くなり(0.47倍程度)、長さが長くなっている(2.9倍程度)。同様に、検知用梁113e、113h、及び113kは、検知用梁13e、13h、及び13kと比べて最細部の幅が狭くなり(0.47倍程度)、長さが長くなっている(2.9倍程度)。但し、検知用梁113b、113e、113h、及び113kにおいて、他の梁との接続部分は、強度を維持するために最細部よりも太めに形成されている。
Further, the detection beam 113b has a narrowest width (about 0.47 times) and a length (about 2.9 times) as compared with the detection beam 13b. Similarly, the detection beams 113e, 113h, and 113k have a narrowest width (about 0.47 times) and a longer length than the detection beams 13e, 13h, and 13k (2). .9 times). However, in the detection beams 113b, 113e, 113h, and 113k, the connection portions with the other beams are formed thicker than the most detail in order to maintain the strength.
又、検知用梁113cは、検知用梁13cと比べて長さが短くなっている(0.5倍程度)。検知用梁113cは、検知用梁13cと比べて平均的な幅は同程度であるが、支持部111e側に向かって徐々に縮幅する部分を有する点で相違する。同様に、検知用梁113f、113i、及び113lは、検知用梁13f、13i、及び13lと比べて長さが短くなっている(0.5倍程度)。検知用梁13f、13i、及び13lは、検知用梁13cと比べて平均的な幅は同程度であるが、支持部111e側に向かって徐々に縮幅する部分を有する点で相違する。
Further, the length of the detection beam 113c is shorter than that of the detection beam 13c (about 0.5 times). The detection beam 113c has the same average width as the detection beam 13c, but is different in that it has a portion that gradually decreases toward the support portion 111e. Similarly, the lengths of the detection beams 113f, 113i, and 113l are shorter than the detection beams 13f, 13i, and 13l (about 0.5 times). The detection beams 13f, 13i, and 13l have the same average width as the detection beam 13c, but are different in that they have a portion that gradually decreases toward the support portion 111e.
又、検知用梁113c、113f、113i、及び113lを短くして、検知用梁113b、113e、113h、及び113kを検知用梁113a、113d、113g、及び113jに近つけたことにより、支持部111eの面積が支持部11eの面積よりも大きくなっている。
Further, by shortening the detection beams 113c, 113f, 113i, and 113l and bringing the detection beams 113b, 113e, 113h, and 113k closer to the detection beams 113a, 113d, 113g, and 113j, the support portion The area of 111e is larger than the area of the support part 11e.
以上の相違点により、同じ歪(変位)が入力されたときに、検知用梁113a、113d、113g、及び113jは検知用梁13a、13d、13g、及び13jよりも梁に発生する応力を減少させ、検知用梁113b、113e、113h、及び113kは検知用梁13b、13e、13h、及び13kよりも梁に発生する応力を減少させることが可能となる。
Due to the above differences, when the same strain (displacement) is input, the detection beams 113a, 113d, 113g, and 113j reduce the stress generated in the beams more than the detection beams 13a, 13d, 13g, and 13j. Thus, the detection beams 113b, 113e, 113h, and 113k can reduce the stress generated in the beams more than the detection beams 13b, 13e, 13h, and 13k.
これにより、大きな歪(変位)が入力されたときに、検知用梁113a、113d、113g、及び113jの耐荷重を検知用梁13a、13d、13g、及び13jの耐荷重よりも大きくすることができる。又、検知用梁113b、113e、113h、及び113kの耐荷重を検知用梁13b、13e、13h、及び13kの耐荷重よりも大きくすることができる。
Accordingly, when a large strain (displacement) is input, the load resistance of the detection beams 113a, 113d, 113g, and 113j can be made larger than the load resistance of the detection beams 13a, 13d, 13g, and 13j. it can. Further, the load resistance of the detection beams 113b, 113e, 113h, and 113k can be made larger than the load resistance of the detection beams 13b, 13e, 13h, and 13k.
特に、検知用梁113c、113f、113i、及び113lを短くして、検知用梁113b、113e、113h、及び113kを検知用梁113a、113d、113g、及び113jに近つけた効果が大きい。これにより、検知用梁113b、113e、113h、及び113kを検知用梁13b、13e、13h、及び13kと比べて大幅に細く長くできたため、弓なりに撓みやすくなって応力集中を緩和でき、検知用梁113b、113e、113h、及び113kの耐荷重を大幅に向上することができる。
Particularly, the detection beams 113c, 113f, 113i, and 113l are shortened, and the detection beams 113b, 113e, 113h, and 113k are brought closer to the detection beams 113a, 113d, 113g, and 113j. As a result, the detection beams 113b, 113e, 113h, and 113k can be made significantly thinner and longer than the detection beams 13b, 13e, 13h, and 13k. The load capacity of the beams 113b, 113e, 113h, and 113k can be greatly improved.
図27は、センサチップ110のピエゾ抵抗素子の配置を例示する図である。図25A、図25B、及び図27を参照すると、力点14aに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR3及びMxR4は、検知用梁113aを長手方向に二等分する線上であって、かつ、検知用梁113aの検知用梁113cに近い領域において検知用梁113cを長手方向(Y方向)に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR3及びFyR4は、検知用梁113aを長手方向に二等分する線よりも補強用梁112a側であって、かつ、検知用梁113aの検知用梁113cから遠い領域において検知用梁113cを長手方向に二等分する線に対して対称な位置に配置されている。
FIG. 27 is a diagram illustrating the arrangement of the piezoresistive elements of the sensor chip 110. Referring to FIGS. 25A, 25B, and 27, in the detection block corresponding to the force point 14a, the piezoresistive elements MxR3 and MxR4 are on a line that bisects the detection beam 113a in the longitudinal direction and is detected. In the region near the detection beam 113c of the detection beam 113a, the detection beam 113c is arranged at a symmetrical position with respect to a line that bisects the longitudinal direction (Y direction). Further, the piezoresistive elements FyR3 and FyR4 are detected in a region closer to the reinforcing beam 112a than the line that bisects the detection beam 113a in the longitudinal direction and far from the detection beam 113c of the detection beam 113a. The beam 113c is arranged at a symmetrical position with respect to a line bisecting in the longitudinal direction.
又、力点14bに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR3及びMyR4は、検知用梁113dを長手方向に二等分する線上であって、かつ、検知用梁113dの検知用梁113fに近い領域において検知用梁113fを長手方向(X方向)に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR3及びFxR4は、検知用梁113dを長手方向に二等分する線よりも補強用梁112b側であって、かつ、検知用梁113dの検知用梁113fから遠い領域において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 14b, the piezoresistive elements MyR3 and MyR4 are on a line that bisects the detection beam 113d in the longitudinal direction and is close to the detection beam 113f of the detection beam 113d. In FIG. 5, the detection beam 113f is arranged symmetrically with respect to a line that bisects in the longitudinal direction (X direction). Further, the piezoresistive elements FxR3 and FxR4 are detected in a region closer to the reinforcing beam 112b than the line that bisects the detection beam 113d in the longitudinal direction and far from the detection beam 113f of the detection beam 113d. The beams 113f are arranged at positions symmetrical with respect to a line that bisects the beam in the longitudinal direction.
又、ピエゾ抵抗素子MzR3及びMzR4は、検知用梁113dを長手方向に二等分する線よりも検知用梁113f側であって、かつ、検知用梁113dの検知用梁113fに近い領域において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FzR2及びFzR3は、検知用梁113eを長手方向に二等分する線よりも支持部111e側であって、かつ、検知用梁113eの検知用梁113fに近い領域において検知用梁113fを長手方向に二等分する線に対して対称な位置に配置されている。
Further, the piezoresistive elements MzR3 and MzR4 are detected in a region closer to the detection beam 113f than the line that bisects the detection beam 113d in the longitudinal direction and close to the detection beam 113f of the detection beam 113d. The beam 113f is arranged at a symmetrical position with respect to a line that bisects the beam in the longitudinal direction. The piezoresistive elements FzR2 and FzR3 are on the support portion 111e side with respect to the line that bisects the detection beam 113e in the longitudinal direction and in the region near the detection beam 113f of the detection beam 113e. Are arranged symmetrically with respect to a line that bisects in the longitudinal direction.
又、力点14cに対応する検知ブロックにおいて、ピエゾ抵抗素子MxR1及びMxR2は、検知用梁113gを長手方向に二等分する線上であって、かつ、検知用梁113gの検知用梁113iに近い領域において検知用梁113iを長手方向(Y方向)に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FyR1及びFyR2は、検知用梁113gを長手方向に二等分する線よりも補強用梁112c側であって、かつ、検知用梁113gの検知用梁113iから遠い領域において検知用梁113iを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 14c, the piezoresistive elements MxR1 and MxR2 are on a line that bisects the detection beam 113g in the longitudinal direction and is close to the detection beam 113i of the detection beam 113g. Are arranged symmetrically with respect to a line that bisects the detection beam 113i in the longitudinal direction (Y direction). Further, the piezoresistive elements FyR1 and FyR2 are detected in a region closer to the reinforcing beam 112c than the line that bisects the detection beam 113g in the longitudinal direction and far from the detection beam 113i of the detection beam 113g. The beam 113i is arranged at a symmetrical position with respect to a line bisecting in the longitudinal direction.
又、力点14dに対応する検知ブロックにおいて、ピエゾ抵抗素子MyR1及びMyR2は、検知用梁113jを長手方向に二等分する線上であって、かつ、検知用梁113jの検知用梁113lに近い領域において検知用梁113lを長手方向(X方向)に二等分する線に対して対称な位置に配置されている。又、ピエゾ抵抗素子FxR1及びFxR2は、検知用梁113jを長手方向に二等分する線よりも補強用梁112d側であって、かつ、検知用梁113jの検知用梁113lから遠い領域において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。
In the detection block corresponding to the force point 14d, the piezoresistive elements MyR1 and MyR2 are on a line that bisects the detection beam 113j in the longitudinal direction and is close to the detection beam 113l of the detection beam 113j. Are arranged symmetrically with respect to a line that bisects the detection beam 113l in the longitudinal direction (X direction). Further, the piezoresistive elements FxR1 and FxR2 are detected in a region closer to the reinforcing beam 112d than the line that bisects the detection beam 113j in the longitudinal direction and far from the detection beam 113l of the detection beam 113j. The beam 113l is arranged in a symmetrical position with respect to a line bisecting in the longitudinal direction.
又、ピエゾ抵抗素子MzR1及びMzR2は、検知用梁113jを長手方向に二等分する線よりも検知用梁113k側であって、かつ、検知用梁113jの検知用梁113lに近い領域において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。ピエゾ抵抗素子FzR1及びFzR4は、検知用梁113kを長手方向に二等分する線よりも支持部111e側であって、かつ、検知用梁113kの検知用梁113lから遠い領域において検知用梁113lを長手方向に二等分する線に対して対称な位置に配置されている。
Further, the piezoresistive elements MzR1 and MzR2 are detected in a region closer to the detection beam 113k than the line that bisects the detection beam 113j in the longitudinal direction and close to the detection beam 113l of the detection beam 113j. The beam 113l is arranged in a symmetrical position with respect to a line bisecting in the longitudinal direction. The piezoresistive elements FzR1 and FzR4 are on the support portion 111e side with respect to a line that bisects the detection beam 113k in the longitudinal direction and in the region far from the detection beam 113l of the detection beam 113k. Are arranged symmetrically with respect to a line that bisects in the longitudinal direction.
このように、センサチップ110では、センサチップ10と同様に、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、センサチップ10と同様に、力点114a~114dに印加(伝達)された力の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の抵抗の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。
As described above, in the sensor chip 110, like the sensor chip 10, a plurality of piezoresistive elements are separately arranged in each detection block. Thus, similar to the sensor chip 10, based on the change in resistance of a plurality of piezoresistive elements arranged on a predetermined beam according to the direction (axial direction) of the force applied (transmitted) to the force points 114a to 114d. Thus, it is possible to detect up to six axes of displacement in a predetermined axial direction.
なお、センサチップ110では、歪の検出に用いるピエゾ抵抗素子以外にも、ダミーのピエゾ抵抗素子が配置されている。ダミーのピエゾ抵抗素子は、歪の検出に用いるピエゾ抵抗素子も含めた全てのピエゾ抵抗素子が、支持部111eの中心に対して点対称となるように配置されている。
In the sensor chip 110, a dummy piezoresistive element is arranged in addition to the piezoresistive element used for detecting the strain. The dummy piezoresistive elements are arranged so that all the piezoresistive elements including the piezoresistive elements used for strain detection are point-symmetric with respect to the center of the support portion 111e.
図28A~図31は、センサチップ110における耐荷重の改善について説明する図である。図28Aは、センサチップ10においてX軸方向の力Fxを印加したときの応力発生分布のシミュレーション結果であり、右図は左図の破線部を拡大したものである。図28Bは、センサチップ110においてX軸方向の力Fxを印加したときの応力発生分布のシミュレーション結果であり、右図は左図の破線部を拡大したものである。
FIG. 28A to FIG. 31 are diagrams for explaining an improvement in load resistance in the sensor chip 110. FIG. FIG. 28A is a simulation result of a stress generation distribution when a force Fx in the X-axis direction is applied in the sensor chip 10, and the right diagram is an enlarged view of the broken line portion of the left diagram. FIG. 28B is a simulation result of a stress generation distribution when a force Fx in the X-axis direction is applied to the sensor chip 110, and the right diagram is an enlarged view of the broken line portion of the left diagram.
図28Aに示すように、センサチップ10では、短くて撓みにくい検知用梁13kが応力集中部となっている。図28Bに示すように、センサチップ110では、検知用梁113kを検知用梁13kと比べて細く長くしている。合わせて、検知用梁113jを検知用梁13jと比べて細く長くしている。
As shown in FIG. 28A, in the sensor chip 10, a detection beam 13k that is short and hardly bent is a stress concentration portion. As shown in FIG. 28B, in the sensor chip 110, the detection beam 113k is thinner and longer than the detection beam 13k. In addition, the detection beam 113j is made thinner and longer than the detection beam 13j.
以上は、検知用梁113kと検知用梁13k及び検知用梁113jと検知用梁13jについて説明したが、検知用梁113aと検知用梁13a及び検知用梁113bと検知用梁13b、検知用梁113dと検知用梁13d及び検知用梁113eと検知用梁13e、検知用梁113gと検知用梁13g及び検知用梁113hと検知用梁13hについても同様である。
The detection beam 113k, the detection beam 13k, the detection beam 113j, and the detection beam 13j have been described above. However, the detection beam 113a, the detection beam 13a, the detection beam 113b, the detection beam 13b, and the detection beam are described. The same applies to 113d, the detection beam 13d, the detection beam 113e, the detection beam 13e, the detection beam 113g, the detection beam 13g, the detection beam 113h, and the detection beam 13h.
図29に示す検知用梁113jの長さL1と検知用梁113kの長さL2との比(検知用梁113a、113d、113gの長さと検知用梁113b、113e、113hの長さとの比も同様)、及び検知用梁113kの平均幅W2と検知用梁113jの平均幅W1との比(検知用梁113b、113e、113hの平均幅と検知用梁113a、113d、113gの平均幅との比も同様)を調整することで、検知用梁に発生する最大応力をセンサチップ10と同等以下にすることができる。
The ratio of the length of the detecting beam 113j shown in FIG. 29 L 1 and the length L 2 of the detecting beam 113k ( detection beam 113a, 113d, the length of 113g and detection beams 113b, 113e, and the length of 113h the ratio is similar), and the ratio of the average width W 2 of the detection beam 113k and the average width W 1 of the detection beam 113j ( detection beam 113b, 113e, the average width of 113h the detection beam 113a, 113d, of 113g By adjusting the ratio to the average width, the maximum stress generated in the detection beam can be made equal to or less than that of the sensor chip 10.
図30Aは、センサチップ10において図28Aに示す応力集中部に発生する最大応力を100としたときの、センサチップ110の応力集中部に発生する最大応力を、L2/L1をパラメータとしてシミュレーションした結果である。図30Aにおいて、横軸がL2/L1、縦軸が応力である。図30Bは、図30AにおいてL2/L1が0.36以上0.82以下のプロットについて、W1/W2とL2/L1との関係を示したものである。図30Bにおいて、横軸がW1/W2、縦軸がL2/L1である。
FIG. 30A shows a simulation of the maximum stress generated in the stress concentrated portion of the sensor chip 110 with L 2 / L 1 as a parameter when the maximum stress generated in the stress concentrated portion shown in FIG. 28A in the sensor chip 10 is 100. It is the result. In FIG. 30A, the horizontal axis is L 2 / L 1 , and the vertical axis is stress. FIG. 30B shows the relationship between W 1 / W 2 and L 2 / L 1 for a plot where L 2 / L 1 is 0.36 or more and 0.82 or less in FIG. 30A. In FIG. 30B, the horizontal axis is W 1 / W 2 and the vertical axis is L 2 / L 1 .
図30A及び図30Bに示すように、L2/L1を0.36以上0.82以下とし、W1/W2を5.3以上37.7以下とすることで、センサチップ110において、検知用梁に発生する最大応力をセンサチップ10と同等以下にすることができる。
As shown in FIG. 30A and FIG. 30B, by setting L 2 / L 1 to be 0.36 or more and 0.82 or less and W 1 / W 2 to be 5.3 or more and 37.7 or less, in the sensor chip 110, The maximum stress generated in the detection beam can be made equal to or less than that of the sensor chip 10.
このように、センサチップ110において、W1/W2とL2/L1との関係を選択して剛性を下げることで、検知用梁に発生する最大応力を低減することが可能となり、センサチップ110の耐荷重をセンサチップ10よりも向上できる。W1/W2とL2/L1との関係を選択することで、例えば、図31に示すように、センサチップ110では、センサチップ10と比べて耐荷重を大幅に向上することができる(図31の例では約11倍)。
As described above, in the sensor chip 110, by selecting the relationship between W 1 / W 2 and L 2 / L 1 and reducing the rigidity, it is possible to reduce the maximum stress generated in the detection beam. The load resistance of the chip 110 can be improved as compared with the sensor chip 10. By selecting the relationship between W 1 / W 2 and L 2 / L 1 , for example, as shown in FIG. 31, the load resistance of the sensor chip 110 can be significantly improved compared to the sensor chip 10. (In the example of FIG. 31, it is about 11 times).
図32A及び図32Bは、センサチップ110における感度の向上について説明する図である。図32A及び図32Bに示すように、センサチップ110では、センサチップ10とは異なり、短くしたことで応力に対する変形が小さくなった検知用梁113l(破線部)にはピエゾ抵抗素子を配置せず、検知用梁113j及び113kの応力が最大になる位置の近傍にピエゾ抵抗素子を配置している。検知用梁113c、113f、及び113iについても同様である。
32A and 32B are diagrams for explaining the improvement of sensitivity in the sensor chip 110. FIG. As shown in FIGS. 32A and 32B, in the sensor chip 110, unlike the sensor chip 10, no piezoresistive element is arranged on the detection beam 113l (broken line portion) whose deformation due to stress is reduced by shortening the sensor chip 110. The piezoresistive element is disposed in the vicinity of the position where the stress of the detection beams 113j and 113k is maximum. The same applies to the detection beams 113c, 113f, and 113i.
その結果、図32Cのシミュレーション結果に示すように、センサチップ110では、センサチップ10よりも効率よく応力を取り込むことが可能となり、感度(同じ応力に対するピエゾ抵抗素子の抵抗変化)が向上する。
As a result, as shown in the simulation result of FIG. 32C, the sensor chip 110 can take in stress more efficiently than the sensor chip 10, and the sensitivity (resistance change of the piezoresistive element with respect to the same stress) is improved.
すなわち、センサチップ110では、短くしたことで応力に対する変形が小さくなった検知用梁113c、113f、113i、及び113lにはピエゾ抵抗素子を配置していない。その代り、検知用梁113c、113f、113i、及び113lよりも細くて長く、弓なりに撓みやすい検知用梁113a、113d、113g、及び113j、並びに検知用梁113b、113e、113h、及び113kの応力が最大になる位置の近傍にピエゾ抵抗素子を配置している。その結果、センサチップ110では、効率よく応力を取り込むことが可能となり、感度(同じ応力に対するピエゾ抵抗素子の抵抗変化)を向上することができる。
That is, in the sensor chip 110, no piezoresistive element is arranged on the detection beams 113c, 113f, 113i, and 113l whose deformation due to stress is reduced by shortening. Instead, the stresses of the detection beams 113a, 113d, 113g, and 113j, and the detection beams 113b, 113e, 113h, and 113k, which are thinner and longer than the detection beams 113c, 113f, 113i, and 113l, and are easily bent like a bow, are included. A piezoresistive element is disposed in the vicinity of the position where the maximum is. As a result, the sensor chip 110 can efficiently take in stress, and can improve sensitivity (resistance change of the piezoresistive element with respect to the same stress).
なお、図29に示す検知用梁113j(検知用梁113a、113d、113gについても同様)のB側の梁幅をA側の梁幅の75~80%の幅に設定し、A側からB側に向けて先細る形状とすることで、センサ感度を向上させつつ、耐荷重を維持することができる。B側の梁幅がA側の梁幅の75%以下になると、耐荷重が悪化し破損しやすくなる。又、B側の梁幅がA側の梁幅の80%以上になるとセンサ感度が悪くなる。
Note that the beam width on the B side of the detection beam 113j shown in FIG. 29 (the same applies to the detection beams 113a, 113d, and 113g) is set to 75 to 80% of the beam width on the A side. By making the shape tapered toward the side, it is possible to maintain the load resistance while improving the sensor sensitivity. When the beam width on the B side is 75% or less of the beam width on the A side, the load resistance deteriorates and breaks easily. Further, when the beam width on the B side is 80% or more of the beam width on the A side, the sensor sensitivity is deteriorated.
図33、図34A、及び図34Bは、センサチップ110における他軸干渉(力とモーメントとの分離性)の改善について説明する図である。図33に示すようにセンサチップ110においてX軸方向の力Fxを印加したシミュレーションを行った結果、図34Aに示すような他軸特性が得られた。図34Bはセンサチップ10においてX軸方向の力Fxを印加したシミュレーションを行った結果得られた他軸特性である。
33, FIG. 34A, and FIG. 34B are diagrams for explaining the improvement of other-axis interference (separation between force and moment) in the sensor chip 110. FIG. As shown in FIG. 33, simulation was performed by applying a force Fx in the X-axis direction in the sensor chip 110, and as a result, other-axis characteristics as shown in FIG. 34A were obtained. FIG. 34B shows other-axis characteristics obtained as a result of performing a simulation in which a force Fx in the X-axis direction is applied in the sensor chip 10.
図34Aと図34Bとを比較すると、図34Bに示すセンサチップ10では力Fxを印加したときにモーメントMyの成分が出現しているが、図34Aに示すセンサチップ110では力Fxを印加したときには、モーメントMyの成分を含めた他軸成分は略ゼロとなっている。
When comparing FIG. 34A and FIG. 34B, a component of the moment My appears when the force Fx is applied in the sensor chip 10 shown in FIG. 34B, but when the force Fx is applied in the sensor chip 110 shown in FIG. 34A. The other-axis component including the component of the moment My is substantially zero.
図34BでモーメントMyの成分が出現している理由は、センサチップ10の検知用梁13b、13e、13h、及び13kが太く短いため横方向に変形し難い分、検知用梁13a、13d、13g、及び13jが上下方向に変形したためと考えられる。
The reason why the component of the moment My appears in FIG. 34B is that the detection beams 13a, 13d, and 13g are not easily deformed in the lateral direction because the detection beams 13b, 13e, 13h, and 13k of the sensor chip 10 are thick and short. And 13j are considered to be deformed in the vertical direction.
これに対して、センサチップ110の検知用梁113b、113e、113h、及び113kはセンサチップ10の検知用梁13b、13e、13h、及び13kより細く長いため、厚みに対して横方向(Fx、Fy)や捻じれ方向(Mx、My)の変形が容易となり、検知用梁113a、113d、113g、及び113jが上下方向に変形しなくなる。その結果、図34Aに示すように、モーメントMyの成分が出現しなくなり、並進方向の力とモーメントとの分離性(すなわち、他軸特性)が向上したものと考えられる。
On the other hand, since the detection beams 113b, 113e, 113h, and 113k of the sensor chip 110 are narrower and longer than the detection beams 13b, 13e, 13h, and 13k of the sensor chip 10, the transverse direction (Fx, Fy) and twist directions (Mx, My) are easily deformed, and the detection beams 113a, 113d, 113g, and 113j are not deformed in the vertical direction. As a result, as shown in FIG. 34A, the component of the moment My does not appear, and it is considered that the separation between the force and the moment in the translational direction (that is, the other axis characteristics) is improved.
(応力のシミュレーション)
図35A、図35B、図36A、及び図36Bは、力及びモーメントを印加した際にセンサチップ110に発生する応力についてのシミュレーション結果である。図35A、図35B、図36A、及び図36Bにおいて、引張の垂直応力を『+』、圧縮の垂直応力を『-』で示している。 (Simulation of stress)
FIG. 35A, FIG. 35B, FIG. 36A, and FIG. 36B are simulation results on the stress generated in thesensor chip 110 when a force and a moment are applied. In FIG. 35A, FIG. 35B, FIG. 36A, and FIG. 36B, the tensile normal stress is indicated by “+”, and the compressive normal stress is indicated by “−”.
図35A、図35B、図36A、及び図36Bは、力及びモーメントを印加した際にセンサチップ110に発生する応力についてのシミュレーション結果である。図35A、図35B、図36A、及び図36Bにおいて、引張の垂直応力を『+』、圧縮の垂直応力を『-』で示している。 (Simulation of stress)
FIG. 35A, FIG. 35B, FIG. 36A, and FIG. 36B are simulation results on the stress generated in the
X軸に沿ってX1からX2の方向に力Fxが印加された場合は、センサチップ110には図35Aのような応力が発生する。具体的には、力Fxの印加により、検知用梁113d及び113jが力Fxの方向に歪む。
When the force Fx is applied in the direction from X1 to X2 along the X axis, stress as shown in FIG. 35A is generated in the sensor chip 110. Specifically, the detection beams 113d and 113j are distorted in the direction of the force Fx by the application of the force Fx.
ここで、ピエゾ抵抗素子FxR1及びFxR2は、検知用梁113dの長手方向の中心よりもX1側に位置しているため、引張の垂直応力が発生して抵抗値が増加する。一方、ピエゾ抵抗素子FxR3及びFxR4は、検知用梁113jの長手方向の中心よりもX2側に位置しているため、圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FxR1~FxR4のバランスが崩れるため、図35Aに示すブリッジ回路から電圧が出力され、力Fxを検出することができる。力Fyについても同様である。
Here, since the piezoresistive elements FxR1 and FxR2 are located on the X1 side from the longitudinal center of the detection beam 113d, a tensile vertical stress is generated and the resistance value is increased. On the other hand, since the piezoresistive elements FxR3 and FxR4 are located on the X2 side from the longitudinal center of the detection beam 113j, compressive vertical stress is generated and the resistance value is reduced. As a result, the balance of the piezoresistive elements FxR1 to FxR4 is lost, so that a voltage is output from the bridge circuit shown in FIG. 35A and the force Fx can be detected. The same applies to the force Fy.
Z軸に沿ってZ2からZ1の方向(センサチップ110の表面側から裏面側)に力Fzが印加された場合は、センサチップ110には図35Bのような応力が発生する。具体的には、力Fzの印加により、検知用梁113a、113b、113g、113h、113d、113e、113j、113k、113c、113f、113l、及び113iが力Fzの方向に歪む。
When the force Fz is applied in the direction Z2 to Z1 (from the front surface side to the back surface side of the sensor chip 110) along the Z axis, stress as shown in FIG. 35B is generated in the sensor chip 110. Specifically, the detection beams 113a, 113b, 113g, 113h, 113d, 113e, 113j, 113k, 113c, 113f, 113l, and 113i are distorted in the direction of the force Fz by applying the force Fz.
ここで、ピエゾ抵抗素子FzR1及びFzR4には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子FzR2及びFzR3には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子FzR1~FzR4のバランスが崩れるため、図35Bに示すブリッジ回路により、力Fzを検出することができる。
Here, a tensile normal stress is generated in the piezoresistive elements FzR1 and FzR4, and the resistance value is increased. Further, compressive normal stress is generated in the piezoresistive elements FzR2 and FzR3, and the resistance value is reduced. As a result, the balance of the piezoresistive elements FzR1 to FzR4 is lost, so that the force Fz can be detected by the bridge circuit shown in FIG. 35B.
Y軸を回転軸としてX1-Z2-X2の方向にモーメントMyが印加された場合は、センサチップ110には図36Aのような応力が発生する。具体的には、モーメントMyの印加により、検知用梁113d及び113jがモーメントMyの方向に歪む。
When the moment My is applied in the X1-Z2-X2 direction with the Y axis as the rotation axis, stress as shown in FIG. 36A is generated in the sensor chip 110. Specifically, the detection beams 113d and 113j are distorted in the direction of the moment My by applying the moment My.
ここで、ピエゾ抵抗素子MyR1及びMyR2には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MyR3及びMyR4には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MyR1~MyR4のバランスが崩れるため、図36Aに示すブリッジ回路により、モーメントMyを検出することができる。
Here, a tensile normal stress is generated in the piezoresistive elements MyR1 and MyR2, and the resistance value increases. In addition, compressive vertical stress is generated in the piezoresistive elements MyR3 and MyR4, and the resistance value decreases. Thereby, the balance of the piezoresistive elements MyR1 to MyR4 is lost, so that the moment My can be detected by the bridge circuit shown in FIG. 36A.
Z軸を回転軸としてX2-Y2-X1の方向にモーメントMzが印加された場合は、センサチップ110には図36Bのような応力が発生する。具体的には、モーメントMzの印加により、検知用梁113a、113b、113g、113h、113d、113e、113j、113k、113c、113f、113l、及び113iがモーメントMzの方向に歪む。
When the moment Mz is applied in the X2-Y2-X1 direction with the Z axis as the rotation axis, stress as shown in FIG. 36B is generated in the sensor chip 110. Specifically, the detection beams 113a, 113b, 113g, 113h, 113d, 113e, 113j, 113k, 113c, 113f, 113l, and 113i are distorted in the direction of the moment Mz by applying the moment Mz.
ここで、ピエゾ抵抗素子MzR1及びMzR4には引張の垂直応力が発生して抵抗値が増加する。又、ピエゾ抵抗素子MzR2及びMzR3には圧縮の垂直応力が発生して抵抗値が減少する。これにより、ピエゾ抵抗素子MzR1~MzR4のバランスが崩れるため、図36Bに示すブリッジ回路により、モーメントMzを検出することができる。
Here, a tensile normal stress is generated in the piezoresistive elements MzR1 and MzR4, and the resistance value is increased. Further, compressive vertical stress is generated in the piezoresistive elements MzR2 and MzR3, and the resistance value is reduced. As a result, the balance of the piezoresistive elements MzR1 to MzR4 is lost, so that the moment Mz can be detected by the bridge circuit shown in FIG. 36B.
このように、センサチップ110では、力点に変位(力又はモーメント)が入力されると、入力に応じた曲げ及び捩れの応力が所定の検知用梁に発生する。発生した応力により検知用梁の所定位置に配置されたピエゾ抵抗素子の抵抗値が変化し、センサチップ110に形成された各ブリッジ回路からの出力電圧を電極15から得ることができる。更に、電極15の出力電圧は、入出力基板30を経由して外部で得ることができる。
As described above, in the sensor chip 110, when a displacement (force or moment) is input to the force point, bending and torsional stress corresponding to the input is generated in a predetermined detection beam. The resistance value of the piezoresistive element arranged at a predetermined position of the detection beam changes due to the generated stress, and the output voltage from each bridge circuit formed in the sensor chip 110 can be obtained from the electrode 15. Further, the output voltage of the electrode 15 can be obtained outside via the input / output substrate 30.
又、センサチップ110では、1つの軸につき1個のブリッジ回路が形成されているため、出力の合成を伴わずに各軸の出力を得ることができる。これにより、複雑な計算や信号処理を必要としない簡易な方法で多軸の変位を検知して出力可能となる。
In the sensor chip 110, since one bridge circuit is formed for each axis, the output of each axis can be obtained without combining the outputs. As a result, multi-axis displacement can be detected and output by a simple method that does not require complicated calculations and signal processing.
又、ピエゾ抵抗素子を入力の種類により異なる検知用梁に分けて配置している。これにより、該当する検知用梁の剛性(厚みや幅)を変更することで、任意の軸の感度を独立して調整することができる。
Also, the piezoresistive elements are divided into different detection beams depending on the type of input. Thereby, the sensitivity of an arbitrary axis | shaft can be adjusted independently by changing the rigidity (thickness and width | variety) of the applicable detection beam.
以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
The preferred embodiment has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications and replacements are made to the above-described embodiment without departing from the scope described in the claims. Can be added.
本国際出願は2016年10月7日に出願した日本国特許出願2016-199486号、及び2017年4月26日に出願した日本国特許出願2017-086966号に基づく優先権を主張するものであり、日本国特許出願2016-199486号、及び日本国特許出願2017-086966号の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2016-99486 filed on October 7, 2016 and Japanese Patent Application No. 2017-086966 filed on April 26, 2017. The entire contents of Japanese Patent Application No. 2016-199486 and Japanese Patent Application No. 2017-086966 are incorporated herein by reference.
1、1A、1B、1C 力覚センサ装置
10、50、110 センサチップ
11a~11e、51a~51e、111a~111e 支持部
12a~12h、52a~52d、112a~112h 補強用梁
13a~13l、53a~53l、113a~113l 検知用梁
14a~14d、54a~54d、114a~114d 力点
15 電極
16 配線
17 温度センサ
20 起歪体
21、81 土台
22a~22e、25a~25d、82a~82i 柱
23a~23d、26a~26d 梁
24a~24d 入力部
27a~27d、61a~61d 突起部
30 入出力基板
40、60 受力板
40x、40y 凹部
41、42 接着剤
70 パッケージ
80 柱構造部 1, 1A, 1B, 1C Force sensor device 10, 50, 110 Sensor chips 11a to 11e, 51a to 51e, 111a to 111e Support portions 12a to 12h, 52a to 52d, 112a to 112h Reinforcing beams 13a to 13l, 53a ˜53l, 113a˜113l Detection beams 14a˜14d, 54a˜54d, 114a˜114d Force point 15 Electrode 16 Wiring 17 Temperature sensor 20 Strain body 21, 81 Base 22a˜22e, 25a˜25d, 82a˜82i Pillar 23a˜ 23d, 26a to 26d Beam 24a to 24d Input portion 27a to 27d, 61a to 61d Protrusion portion 30 Input / output substrate 40, 60 Power receiving plate 40x, 40y Recess 41, 42 Adhesive 70 Package 80 Column structure portion
10、50、110 センサチップ
11a~11e、51a~51e、111a~111e 支持部
12a~12h、52a~52d、112a~112h 補強用梁
13a~13l、53a~53l、113a~113l 検知用梁
14a~14d、54a~54d、114a~114d 力点
15 電極
16 配線
17 温度センサ
20 起歪体
21、81 土台
22a~22e、25a~25d、82a~82i 柱
23a~23d、26a~26d 梁
24a~24d 入力部
27a~27d、61a~61d 突起部
30 入出力基板
40、60 受力板
40x、40y 凹部
41、42 接着剤
70 パッケージ
80 柱構造部 1, 1A, 1B, 1C
Claims (21)
- 力点に印加された力または変位の向きに応じた、所定の梁に配置された複数の歪検出素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知するセンサチップであって、
基板と、
前記基板の四隅に配置された第1の支持部と、
前記基板の中央に配置された第2の支持部と、
隣接する前記第1の支持部同士を連結する第1の検知用梁と、
各々の前記第1の検知用梁と前記第2の支持部との間に、各々の前記第1の検知用梁に平行に設けられた第2の検知用梁と、
平行に設けられた前記第1の検知用梁及び前記第2の検知用梁の組において、前記第1の検知用梁と前記第2の検知用梁とを連結する第3の検知用梁と、
各々の前記第1の検知用梁と各々の前記第3の検知用梁との交点に配置された、力が印加される力点と、
前記第1の検知用梁、前記第2の検知用梁、及び前記第3の検知用梁の所定位置に配置された複数の歪検出素子と、を有し、
前記基板の厚さ方向であるZ軸方向の変位は、少なくとも前記第3の検知用梁の変形に基づいて検知し、
前記Z軸方向に直交するX軸方向及びY軸方向の変位は、前記第1の検知用梁又は前記第2の検知用梁の少なくとも一方の変形に基づいて検知することを特徴とするセンサチップ。 A sensor chip that detects a maximum six-axis displacement in a predetermined axial direction based on changes in the output of a plurality of strain detection elements arranged on a predetermined beam according to the force applied to the force point or the direction of the displacement. There,
A substrate,
First support portions disposed at four corners of the substrate;
A second support disposed in the center of the substrate;
A first detection beam for connecting adjacent first support portions;
A second detection beam provided in parallel with each of the first detection beams between each of the first detection beams and the second support;
A third detection beam connecting the first detection beam and the second detection beam in a set of the first detection beam and the second detection beam provided in parallel; ,
A force point to which a force is applied, arranged at an intersection of each of the first detection beams and each of the third detection beams;
A plurality of strain detection elements arranged at predetermined positions of the first detection beam, the second detection beam, and the third detection beam;
The displacement in the Z-axis direction that is the thickness direction of the substrate is detected based on at least deformation of the third detection beam,
The displacement in the X-axis direction and the Y-axis direction orthogonal to the Z-axis direction is detected based on deformation of at least one of the first detection beam or the second detection beam. . - 力点に印加された力または変位の向きに応じた、所定の梁に配置された複数の歪検出素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知するセンサチップであって、
基板と、
前記基板の四隅に配置された第1の支持部と、
前記基板の中央に配置された第2の支持部と、
隣接する前記第1の支持部同士を連結する第1の検知用梁と、
各々の前記第1の検知用梁と前記第2の支持部との間に、各々の前記第1の検知用梁に平行に設けられた第2の検知用梁と、
平行に設けられた前記第1の検知用梁及び前記第2の検知用梁の組において、前記第1の検知用梁と前記第2の検知用梁とを連結する第3の検知用梁と、
各々の前記第1の検知用梁と各々の前記第3の検知用梁との交点に配置された、力が印加される力点と、
前記第1の検知用梁及び前記第2の検知用梁の所定位置に配置された複数の歪検出素子と、を有し、
前記基板の厚さ方向であるZ軸方向の変位は、前記第1の検知用梁又は前記第2の検知用梁の変形に基づいて検知し、
前記Z軸方向に直交するX軸方向及びY軸方向の変位は、前記第1の検知用梁の変形に基づいて検知することを特徴とするセンサチップ。 A sensor chip that detects a maximum six-axis displacement in a predetermined axial direction based on changes in the output of a plurality of strain detection elements arranged on a predetermined beam according to the force applied to the force point or the direction of the displacement. There,
A substrate,
First support portions disposed at four corners of the substrate;
A second support disposed in the center of the substrate;
A first detection beam for connecting adjacent first support portions;
A second detection beam provided in parallel with each of the first detection beams between each of the first detection beams and the second support;
A third detection beam connecting the first detection beam and the second detection beam in a set of the first detection beam and the second detection beam provided in parallel; ,
A force point to which a force is applied, arranged at an intersection of each of the first detection beams and each of the third detection beams;
A plurality of strain detection elements arranged at predetermined positions of the first detection beam and the second detection beam;
The displacement in the Z-axis direction, which is the thickness direction of the substrate, is detected based on deformation of the first detection beam or the second detection beam,
The displacement in the X-axis direction and the Y-axis direction orthogonal to the Z-axis direction is detected based on deformation of the first detection beam. - 前記第1の検知用梁に、前記X軸方向のモーメント及び前記Y軸方向のモーメントを検知する歪検出素子を配置し、
前記第2の検知用梁に、前記X軸方向の力及び前記Y軸方向の力を検知する歪検出素子を配置し、
前記第3の検知用梁に、前記Z軸方向のモーメント及び前記Z軸方向の力を検知する歪検出素子を配置したことを特徴とする請求項1に記載のセンサチップ。 A strain detection element that detects the moment in the X-axis direction and the moment in the Y-axis direction is disposed on the first detection beam,
A strain detection element that detects the force in the X-axis direction and the force in the Y-axis direction is disposed on the second detection beam,
2. The sensor chip according to claim 1, wherein a strain detection element for detecting the moment in the Z-axis direction and the force in the Z-axis direction is arranged on the third detection beam. - 前記第1の検知用梁に、前記X軸方向のモーメント、前記Y軸方向のモーメント、前記X軸方向の力、前記Y軸方向の力、及び前記Z軸方向のモーメントを検知する歪検出素子を配置し、
前記第2の検知用梁に、前記Z軸方向の力を検知する歪検出素子を配置したことを特徴とする請求項2に記載のセンサチップ。 A strain detecting element that detects the moment in the X-axis direction, the moment in the Y-axis direction, the force in the X-axis direction, the force in the Y-axis direction, and the moment in the Z-axis direction on the first detection beam. And place
The sensor chip according to claim 2, wherein a strain detection element that detects the force in the Z-axis direction is disposed on the second detection beam. - 前記第1の検知用梁及び前記第2の検知用梁の幅は、前記第3の検知用梁の幅よりも狭く、
前記第1の検知用梁及び前記第2の検知用梁の長さは、前記第3の検知用梁の長さよりも長いことを特徴とする請求項2に記載のセンサチップ。 The width of the first detection beam and the second detection beam is narrower than the width of the third detection beam,
3. The sensor chip according to claim 2, wherein lengths of the first detection beam and the second detection beam are longer than a length of the third detection beam. 4. - 前記第1の検知用梁の外側に前記第1の検知用梁と平行に設けられた、隣接する前記第1の支持部同士を連結する第1の補強用梁と、
前記第1の支持部と前記第2の支持部とを連結する第2の補強用梁と、を有し、
前記第2の補強用梁は、前記第1の補強用梁と非平行に配置され、
前記第1の補強用梁及び前記第2の補強用梁は、前記第1の検知用梁、前記第2の検知用梁、及び前記第3の検知用梁よりも厚く形成され、
前記第2の検知用梁は、隣接する前記第2の補強用梁の前記第2の支持部側の端部同士を連結していることを特徴とする請求項1に記載のセンサチップ。 A first reinforcing beam provided on the outside of the first detection beam in parallel with the first detection beam and connecting the adjacent first support portions;
A second reinforcing beam for connecting the first support portion and the second support portion;
The second reinforcing beam is disposed non-parallel to the first reinforcing beam;
The first reinforcing beam and the second reinforcing beam are formed thicker than the first detecting beam, the second detecting beam, and the third detecting beam,
2. The sensor chip according to claim 1, wherein the second detection beam connects ends of the second reinforcing beams adjacent to each other on the second support portion side. - 前記第1の検知用梁、前記第2の検知用梁、及び前記第3の検知用梁は、前記第1の支持部及び前記第2の支持部の厚さ方向の上端側に設けられ、
前記第1の支持部及び前記第2の支持部の厚さ方向の下端側において、前記第1の支持部の下面、前記第2の支持部の下面、及び前記力点の下面は面一であり、
前記下端側において、前記第1の補強用梁の下面及び前記第2の補強用梁の下面は、前記第1の支持部の下面、前記第2の支持部の下面、及び前記力点の下面よりも前記上端側に窪んでいることを特徴とする請求項6に記載のセンサチップ。 The first detection beam, the second detection beam, and the third detection beam are provided on the upper end side in the thickness direction of the first support portion and the second support portion,
On the lower end side in the thickness direction of the first support portion and the second support portion, the lower surface of the first support portion, the lower surface of the second support portion, and the lower surface of the force point are flush with each other. ,
On the lower end side, the lower surface of the first reinforcing beam and the lower surface of the second reinforcing beam are lower than the lower surface of the first supporting portion, the lower surface of the second supporting portion, and the lower surface of the force point. The sensor chip according to claim 6, wherein the sensor chip is also recessed toward the upper end side. - 前記第1の補強用梁及び前記第2の補強用梁の一方又は双方の上面に、配線が形成されていることを特徴とする請求項6に記載のセンサチップ。 The sensor chip according to claim 6, wherein a wiring is formed on an upper surface of one or both of the first reinforcing beam and the second reinforcing beam.
- 前記第1の支持部の上面に、前記配線と接続された電極が配置されていることを特徴とする請求項8に記載のセンサチップ。 9. The sensor chip according to claim 8, wherein an electrode connected to the wiring is disposed on an upper surface of the first support portion.
- 前記センサチップは半導体基板から形成され、
歪検出素子と不純物半導体により構成された温度センサを有し、
前記温度センサを構成する前記歪検出素子と、変位検知用の前記歪検出素子とは、前記半導体基板の結晶方位に対して異なる方向に配置されていることを特徴とする請求項1に記載のセンサチップ。 The sensor chip is formed from a semiconductor substrate,
It has a temperature sensor composed of a strain detection element and an impurity semiconductor,
The strain detection element constituting the temperature sensor and the strain detection element for displacement detection are arranged in different directions with respect to the crystal orientation of the semiconductor substrate. Sensor chip. - 前記第1の支持部の上面に、前記温度センサが配置されていることを特徴とする請求項10に記載のセンサチップ。 The sensor chip according to claim 10, wherein the temperature sensor is disposed on an upper surface of the first support portion.
- 所定の軸方向の変位を検知するセンサチップと接着される起歪体であって、
四隅に配置された、印加された力により変形する第1の柱と、
中央に配置された、印加された力により変形しない第2の柱と、
隣接する前記第1の柱同士を連結する、印加された力により変形する4つの第1の梁と、
各々の前記第1の梁の内側面から水平方向内側に突出する、前記第1の柱及び前記第1の梁の変形を前記センサチップに伝達する第2の梁と、
各々の前記第1の梁の長手方向の中央部から上方に突起する、力が印加される4つの入力部と、を有することを特徴とする起歪体。 A strain body bonded to a sensor chip that detects displacement in a predetermined axial direction,
First pillars arranged at the four corners and deformed by applied force;
A second pillar arranged in the center and not deformed by the applied force;
Four first beams deforming by an applied force, connecting the adjacent first columns;
A second beam projecting inward in the horizontal direction from an inner surface of each first beam and transmitting the deformation of the first column and the first beam to the sensor chip;
A strain generating body comprising: four input portions to which a force is applied, protruding upward from a longitudinal center portion of each of the first beams. - 前記第2の柱の一方の面の四隅に設けられた第3の柱と、
前記第2の柱の一方の面の中央に設けられた第4の柱と、を有することを特徴とする請求項12に記載の起歪体。 Third pillars provided at the four corners of one surface of the second pillar;
The strain body according to claim 12, further comprising: a fourth column provided at a center of one surface of the second column. - 前記第2の梁は、各々の前記第1の梁の長手方向の中央部の内側面から水平方向内側に突出することを特徴とする請求項13に記載の起歪体。 14. The strain generating body according to claim 13, wherein the second beam protrudes inward in the horizontal direction from an inner surface of a central portion in a longitudinal direction of each of the first beams.
- 各々の前記第2の梁の先端側に、上方に突起して前記センサチップと接する突起部が設けられていることを特徴とする請求項13に記載の起歪体。 14. The strain generating body according to claim 13, wherein a protruding portion that protrudes upward and comes into contact with the sensor chip is provided on a tip side of each of the second beams.
- 請求項1に記載のセンサチップと、請求項13に記載の起歪体と、を有する力覚センサ装置であって、
前記センサチップの前記第1の支持部が、前記起歪体の前記第3の柱上に固定され、
前記センサチップの前記第2の支持部が、前記起歪体の前記第4の柱上に固定され、
前記センサチップの前記力点が、前記起歪体の前記第2の梁の先端側に固定されていることを特徴とする力覚センサ装置。 A force sensor device comprising: the sensor chip according to claim 1; and the strain body according to claim 13.
The first support part of the sensor chip is fixed on the third column of the strain body;
The second support part of the sensor chip is fixed on the fourth pillar of the strain body;
The force sensor device, wherein the force point of the sensor chip is fixed to a tip side of the second beam of the strain body. - 前記センサチップは、前記第1の柱の上面から突出しないように、前記起歪体に固定されていることを特徴とする請求項16に記載の力覚センサ装置。 The force sensor device according to claim 16, wherein the sensor chip is fixed to the strain body so as not to protrude from an upper surface of the first pillar.
- 前記センサチップに対して信号の入出力を行う入出力基板を有し、
前記入出力基板は、電極が前記第1の柱上に配置されるように前記起歪体に接着されていることを特徴とする請求項16に記載の力覚センサ装置。 An input / output substrate for inputting / outputting signals to / from the sensor chip;
The force sensor device according to claim 16, wherein the input / output substrate is bonded to the strain body so that an electrode is disposed on the first pillar. - 前記入出力基板の電極が形成されている領域の裏面は、樹脂により、前記第1の柱に接着されていることを特徴とする請求項18に記載の力覚センサ装置。 19. The force sensor device according to claim 18, wherein a back surface of a region where the electrode of the input / output substrate is formed is bonded to the first pillar with a resin.
- 4つの前記入力部上に受力板を設けたことを特徴とする請求項16に記載の力覚センサ装置。 The force sensor device according to claim 16, wherein force receiving plates are provided on the four input units.
- 前記受力板には4つの凹部が設けられ、
前記受力板は、各々の前記凹部が前記入力部を覆うことで前記起歪体と位置決めされることを特徴とする請求項20に記載の力覚センサ装置。 The force receiving plate is provided with four recesses,
21. The force sensor device according to claim 20, wherein each of the force receiving plates is positioned with respect to the strain generating body by covering each of the concave portions with the input portion.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780052579.8A CN109642839B (en) | 2016-10-07 | 2017-10-03 | Sensor chip, strain body, and force sensor device |
US16/327,084 US10801904B2 (en) | 2016-10-07 | 2017-10-03 | Sensor chip, flexure element, and force sensor device |
EP17858395.1A EP3495794B8 (en) | 2016-10-07 | 2017-10-03 | Sensor chip, flexure element, and force sensor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016199486 | 2016-10-07 | ||
JP2016-199486 | 2016-10-07 | ||
JP2017086966A JP6760575B2 (en) | 2016-10-07 | 2017-04-26 | Sensor chip, strain generator, force sensor device |
JP2017-086966 | 2017-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066557A1 true WO2018066557A1 (en) | 2018-04-12 |
Family
ID=61832154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035973 WO2018066557A1 (en) | 2016-10-07 | 2017-10-03 | Sensor chip, strain inducing body, and force sensor device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018066557A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3404390A3 (en) * | 2017-04-26 | 2019-02-13 | Mitsumi Electric Co., Ltd. | Force sensor |
WO2019146695A1 (en) * | 2018-01-29 | 2019-08-01 | ミネベアミツミ株式会社 | Sensor chip and force sensor device |
WO2019146696A1 (en) * | 2018-01-29 | 2019-08-01 | ミネベアミツミ株式会社 | Sensor chip and force sensor device |
JP2019132614A (en) * | 2018-01-29 | 2019-08-08 | ミツミ電機株式会社 | Sensor chip and force sensor device |
WO2020158168A1 (en) * | 2019-01-28 | 2020-08-06 | 日本電産コパル電子株式会社 | Elastic body and force sensor using same |
WO2020158166A1 (en) * | 2019-01-28 | 2020-08-06 | 日本電産コパル電子株式会社 | Elastic body and force sensor using same |
US11524414B2 (en) * | 2018-08-30 | 2022-12-13 | Toyota Jidosha Kabushiki Kaisha | Sensor unit, sensor system, robot hand, robot arm, server device, calculation method, and program |
US11653568B2 (en) * | 2020-01-08 | 2023-05-16 | Texas Instmments Incorporated | Integrated circuit stress sensor |
US11879796B2 (en) * | 2019-10-29 | 2024-01-23 | Minebea Mitsumi Inc. | Force torque sensor device including sensor chip bonded to strain body by adhesive |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5526700A (en) * | 1995-09-29 | 1996-06-18 | Akeel; Hadi A. | Six component force gage |
JP2001331271A (en) * | 2000-05-22 | 2001-11-30 | Alps Electric Co Ltd | Input device |
JP2007298471A (en) * | 2006-05-02 | 2007-11-15 | Honda Motor Co Ltd | Chip for force/torque sensor |
JP4011345B2 (en) | 2002-01-11 | 2007-11-21 | 本田技研工業株式会社 | Multi-axis force sensor chip |
JP2013002942A (en) * | 2011-06-16 | 2013-01-07 | Honda Motor Co Ltd | Force sensor chip |
JP2016199486A (en) | 2015-04-08 | 2016-12-01 | 株式会社ダイセル | Method for producing diepoxy compound |
JP2017086966A (en) | 2017-02-03 | 2017-05-25 | 株式会社ユニバーサルエンターテインメント | Game machine and game medium discrimination device |
-
2017
- 2017-10-03 WO PCT/JP2017/035973 patent/WO2018066557A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5526700A (en) * | 1995-09-29 | 1996-06-18 | Akeel; Hadi A. | Six component force gage |
JP2001331271A (en) * | 2000-05-22 | 2001-11-30 | Alps Electric Co Ltd | Input device |
JP4011345B2 (en) | 2002-01-11 | 2007-11-21 | 本田技研工業株式会社 | Multi-axis force sensor chip |
JP2007298471A (en) * | 2006-05-02 | 2007-11-15 | Honda Motor Co Ltd | Chip for force/torque sensor |
JP2013002942A (en) * | 2011-06-16 | 2013-01-07 | Honda Motor Co Ltd | Force sensor chip |
JP2016199486A (en) | 2015-04-08 | 2016-12-01 | 株式会社ダイセル | Method for producing diepoxy compound |
JP2017086966A (en) | 2017-02-03 | 2017-05-25 | 株式会社ユニバーサルエンターテインメント | Game machine and game medium discrimination device |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3404390A3 (en) * | 2017-04-26 | 2019-02-13 | Mitsumi Electric Co., Ltd. | Force sensor |
US10634695B2 (en) | 2017-04-26 | 2020-04-28 | Minebea Mitsumi Inc. | Force sensor |
WO2019146695A1 (en) * | 2018-01-29 | 2019-08-01 | ミネベアミツミ株式会社 | Sensor chip and force sensor device |
WO2019146696A1 (en) * | 2018-01-29 | 2019-08-01 | ミネベアミツミ株式会社 | Sensor chip and force sensor device |
JP2019132613A (en) * | 2018-01-29 | 2019-08-08 | ミツミ電機株式会社 | Sensor chip and force sensor device |
JP2019132614A (en) * | 2018-01-29 | 2019-08-08 | ミツミ電機株式会社 | Sensor chip and force sensor device |
US11473987B2 (en) | 2018-01-29 | 2022-10-18 | Minebea Mitsumi Inc. | Sensor chip and force sensor device |
US11524414B2 (en) * | 2018-08-30 | 2022-12-13 | Toyota Jidosha Kabushiki Kaisha | Sensor unit, sensor system, robot hand, robot arm, server device, calculation method, and program |
JP2020118645A (en) * | 2019-01-28 | 2020-08-06 | 日本電産コパル電子株式会社 | Elastic body and force sensor using the same |
JP2020118647A (en) * | 2019-01-28 | 2020-08-06 | 日本電産コパル電子株式会社 | Elastic body and force sensor using the same |
CN113167670A (en) * | 2019-01-28 | 2021-07-23 | 日本电产科宝电子株式会社 | Elastic body and force sensor using same |
JP6999586B2 (en) | 2019-01-28 | 2022-01-18 | 日本電産コパル電子株式会社 | Elastic body and force sensor using it |
JP6999587B2 (en) | 2019-01-28 | 2022-01-18 | 日本電産コパル電子株式会社 | Elastic body and force sensor using it |
WO2020158166A1 (en) * | 2019-01-28 | 2020-08-06 | 日本電産コパル電子株式会社 | Elastic body and force sensor using same |
WO2020158168A1 (en) * | 2019-01-28 | 2020-08-06 | 日本電産コパル電子株式会社 | Elastic body and force sensor using same |
CN113167670B (en) * | 2019-01-28 | 2023-02-17 | 日本电产科宝电子株式会社 | Elastic body and force sensor using same |
US11879796B2 (en) * | 2019-10-29 | 2024-01-23 | Minebea Mitsumi Inc. | Force torque sensor device including sensor chip bonded to strain body by adhesive |
US11653568B2 (en) * | 2020-01-08 | 2023-05-16 | Texas Instmments Incorporated | Integrated circuit stress sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6863552B2 (en) | Sensor chip, force sensor device | |
WO2018066557A1 (en) | Sensor chip, strain inducing body, and force sensor device | |
CN108827521B (en) | Force sensor device | |
JP6940037B2 (en) | Force sensor device | |
JP6919964B2 (en) | Sensor chip and force sensor device | |
CN112747855A (en) | Force sensor device | |
CN111670349B (en) | Sensor chip and force sensor device | |
JP6957823B2 (en) | Sensor chip and force sensor device | |
JP7302780B2 (en) | Force sensor device | |
JP7074407B2 (en) | Force sensor device | |
JP6919965B2 (en) | Sensor chip and force sensor device | |
JP2023023688A (en) | Force sensor device | |
JP2023023689A (en) | Force sensor device | |
JP2022047296A (en) | Damping mechanism and force detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858395 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017858395 Country of ref document: EP Effective date: 20190225 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |