Nothing Special   »   [go: up one dir, main page]

WO2019031023A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2019031023A1
WO2019031023A1 PCT/JP2018/020054 JP2018020054W WO2019031023A1 WO 2019031023 A1 WO2019031023 A1 WO 2019031023A1 JP 2018020054 W JP2018020054 W JP 2018020054W WO 2019031023 A1 WO2019031023 A1 WO 2019031023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving side
light receiving
solar cell
measured value
Prior art date
Application number
PCT/JP2018/020054
Other languages
English (en)
French (fr)
Inventor
広平 小島
徹 寺下
玄介 小泉
中村 淳一
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP18843957.4A priority Critical patent/EP3651211A4/en
Priority to CN201880050798.7A priority patent/CN110998866B/zh
Priority to JP2019535611A priority patent/JP7096251B2/ja
Publication of WO2019031023A1 publication Critical patent/WO2019031023A1/ja
Priority to US16/785,444 priority patent/US11469339B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/462Computing operations in or between colour spaces; Colour management systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell module.
  • ZEH zero energy house
  • ZEB net zero energy building
  • Solar cell modules are installed in buildings, but installation only on the roof of buildings does not have the necessary power, so installation in places other than the roof can be considered, and such technology development is also progressing It is.
  • a solar battery integrated type wall material like patent document 1 and the mount frame for installing a solar cell module in a wall surface like patent document 2 are mentioned.
  • the solar cell module when installing a solar cell module on the wall of a building, the solar cell module directly enters the view of a pedestrian or the like who is outdoors, and the light damage due to the reflected light from the solar cell module is taken into consideration It must be done.
  • the solar cell module is poor in the variation of the appearance, and when installed on the wall surface, may be a cause of reducing the designability of the building without conforming to the appearance of the wall surface (for example, the color of the wall).
  • the present invention has been made to solve the above-mentioned problems.
  • the object of the present invention is to provide a solar cell module that emits a similar color as a whole, which can be easily matched with the color of external members (walls, building materials, buildings, etc.) where the solar cell modules are installed.
  • the light receiving side sealing material and the light receiving side protective member are arranged in this order on the light receiving side on the basis of the solar battery cell and the solar cell, and the opposite of the light receiving side On the back side to be the side, the back side sealing material and the back side protection member are stacked in this order.
  • a measured value Px (L * [Px], a of the color of the reflected light which is a combination of the regular reflection light and the diffuse reflection light based on the light incident on the measurement object.
  • * [Px], b * [Px]) Measurement value Qx (L * [Qx], a * [Qx], b * [Qx]) of the color of only diffuse reflection light based on light incident on the object to be measured; Value calculated from the (Note, L *, a *, b * is CIE1976L * a * b * using the color system, the identification code g, m, s, c, k, t is inserted in x), It is as follows.
  • the light receiving side sealing material and the light receiving side protective member are arranged in this order on the light receiving side with respect to the solar cell and the light receiving side
  • the back side sealing material and the back side protection member are arranged in this order on the back side opposite to the above.
  • the measured value D50Px (L * [50Px] of the color of the reflected light combining the specularly reflected light and the diffusely reflected light based on the D50 light incident on the measurement object , a * [50Px], b * [50Px]), and the measured values D50Qx (L * [50Qx], a * [50Qx], b * [50Qx]) of the color of only diffuse reflection light;
  • Measured value of the color of reflected light combining specularly reflected light and diffusely reflected light based on D65 light made incident to the measurement object D65Px (L * [65Px], a * [65Px], b * [ 65Px]) and the measurement value D65Qx (L * [65Qx], a * [65Qx], b * [65Qx]) of the color of only diffuse reflection light Value calculated from the (Note, L *, a *, b * are used CIE1976L * a
  • C * [50 Pg] ⁇ 5 C * [50Qg] ⁇ 5 C * [65 Pg] ⁇ 5 C * [65 Qg] ⁇ 5
  • C * [50 Pg] (a * [50 Pg] 2 + b * [50 Pg] 2 ) 1/2
  • C * [50Qg] (a * [50Qg] 2 + b * [50Qg] 2 ) 1/2
  • C * [65 Pg] (a * [65 Pg] 2 + b * [65 Pg] 2 ) 1/2
  • C * [65Qg] (a * [65Qg] 2 + b * [65Qg] 2 ) 1/2 It is.
  • the solar cell module becomes entirely similar color, and can be easily matched with the color of the external member which is the installation position of the solar cell module, and as a result, the design of the external member can be improved .
  • FIG. 1 is a cross-sectional view of a solar cell module.
  • FIG. 2 is a plan view of the solar cell module of FIG.
  • FIG. 3 is a cross-sectional view of a solar cell module on which a back electrode type solar cell is mounted.
  • FIG. 4 is a plan view of the solar cell module of FIG.
  • FIG. 5 is a cross-sectional view of a solar cell module on which a double-sided electrode type solar cell is mounted.
  • 6 is a plan view of the solar cell module of FIG.
  • FIG. 7 is a cross-sectional view of a solar cell module on which a single-ring connected solar cell is mounted.
  • FIG. 8 is a plan view of the solar cell module of FIG.
  • ⁇ Solar cell module 1 to 8 show a solar cell module including at least a solar battery cell 11, a sealing material 12 (light receiving side sealing material 12U, back side sealing material 12B), a light receiving side protective member 13, and a back side protective member 14.
  • 19 is a schematic cross-sectional view and a plan view showing the reference numeral 19;
  • FIGS. 1 and 2 show a solar cell module 19 including one solar cell 11.
  • FIGS. 5 and 6 show a solar cell module 19 in which a plurality of solar cells 11 are electrically connected by a wiring member 15 for connection.
  • 7 and 8 show a solar cell module 19 in which a plurality of solar cells 11 are electrically connected without using a wiring member for connection.
  • An assembly of electrically connected solar cells 11 as shown in FIGS. 3 to 8 may be referred to as a solar cell string.
  • the solar battery cell 11 includes a front surface 11U and a back surface 11B as main surfaces, and in the present specification, the side of the front surface 11U is referred to as a front side, and the side of the back surface 11B opposite to the front side is referred to as a back side. Then, for convenience, the front side is a side (light receiving side / viewing side) to receive light more positively than the back side, and the back side not actively receiving light is described as a non-light receiving side (non-viewing side).
  • the solar cell module 19 is based on the solar cell 11 and the solar cell 11 on the light receiving side. 12U and the light receiving side protection member 13 are stacked in this order, while the back side sealing material 12B and the back side protection member 14 are stacked in this order on the back side opposite to the light receiving side.
  • the kind of solar cell 11 is not specifically limited, For example, a single crystal silicon solar cell, a polycrystalline silicon solar cell, a thin film silicon solar cell, a heterojunction solar cell, a compound type solar cell, or an organic thin film solar cell Can be mentioned.
  • the manufacturing method of the photovoltaic cell 11 is not specifically limited, either.
  • the first conductivity type region (for example, p-type region) and the second conductivity type region (for example, n-type region) are provided on the semiconductor substrate by known laminating means, and the first electrode on the first conductivity type region,
  • region is mentioned (In addition, the said conductivity type area
  • the type of electrode structure in the solar battery cell 11 is not particularly limited, and may be, for example, a back electrode type solar battery cell 11 having an electrode only on the back surface 11B (see FIGS. 3 and 4), It may be a double-sided electrode type solar battery cell 11 (see FIGS. 5 and 6) having electrodes on the front surface (light receiving surface) 11U and the back surface 11B of the battery cell.
  • the light receiving surface 11U has no electrode. Therefore, the solar cell module 19 provided with a plurality of back contact solar cells 11 in which the light receiving surface 11U has the same color is visually recognized in the same color as a whole, and has high designability.
  • a solar cell module 19 including a plurality of such double-sided electrode type solar cells 11 is also visually recognized as a similar color as a whole, and has high designability.
  • the adjacent solar cells 11 are mutually connected. Then, a part of the main surface on the light receiving side of one of the solar cells 11 (an end surface which is a part of the peripheral edge of the light receiving surface 11U) and a part of the main surface on the back side of the other It overlaps with the end face which is a part of the peripheral edge.
  • this solar cell module 19 is provided with a plurality of solar cells 11 in which the light receiving surface 11U has the same color, and as a whole, it is visually recognized as a similar color and has high designability.
  • An antireflection layer or an optical adjustment layer may be laminated on the light receiving side of the solar battery cell 11 as described above.
  • Such a reflection prevention layer or optical adjustment layer appropriately controls the reflected light of the surface 11U of the solar battery cell 11 when the thickness or the material is appropriately designed. Therefore, the antireflective layer or the optical adjustment layer is suitable for color adjustment of the solar cell module 19.
  • the sealing material 12 seals and protects the solar battery cell 11, and between the light receiving surface 11 U of the solar battery cell 11 and the light receiving side protection member 13, and the back surface 11 B and back side protection of the solar battery cell 11 It intervenes between the member 14.
  • the sealing material 12 covering the light receiving surface 11U of the solar battery cell 11 may be referred to as the light receiving side sealing material 12U
  • the sealing material 12 covering the back surface 11B of the solar battery cell 11 may be referred to as the back side sealing material 12B. is there.
  • the shapes of the light-receiving side sealing material 12U and the back side sealing material 12B are not particularly limited, and examples thereof include a sheet shape. It is because it will be easy to coat
  • the material of the sealing material 12 is not particularly limited, but it is preferable that the material has a characteristic of transmitting light (transparency) while having resistance to ultraviolet light. Moreover, it is preferable that the material of the sealing material 12 has adhesiveness to adhere the solar battery cell 11, the light receiving side protection member 13, and the back side protection member 14.
  • Such materials include, for example, ethylene / vinyl acetate copolymer (EVA), ethylene / ⁇ -olefin copolymer, ethylene / vinyl acetate / trially isocyanurate (Evat), polyvinyl butyrate (PVB), acrylic
  • the resin include translucent resins such as resins, urethane resins, and silicone resins.
  • the material of the light receiving side sealing material 12U and the material of the back side sealing material 12B may be the same or different.
  • such materials may contain additives such as organic peroxides, silane coupling agents, ultraviolet absorbers, crosslinking assistants, heat stabilizers, and light stabilizers.
  • the light receiving side sealing material 12U include a wavelength conversion additive that converts ultraviolet light and emits visible light.
  • a wavelength conversion additive that converts ultraviolet light and emits visible light.
  • the wavelength conversion additive does not absorb visible light and reflect the remaining light as in, for example, dyes and pigments, but converts received ultraviolet light into visible light to emit light. Therefore, the color of the solar cell module 19 is visually recognized more vividly than, for example, the solar cell module colored with a dye or the like contained in the light receiving side sealing material. Further, due to the light emission, adjustment of color matching with various members included in the solar cell module 19 (adjustment to make the solar cell module 19 as a whole similar color) can be easily performed.
  • the material of the wavelength conversion additive is not particularly limited, and examples thereof include metal complexes including rare earth elements having fluorescence of visible light, organic dyes, inorganic phosphors, and the like.
  • a wavelength conversion additive is disperse
  • the light receiving side protection member 13 covers the light receiving surface 11U of the solar battery cell 11 via the light receiving side sealing material 12U to protect the solar battery cell 11.
  • the shape of the light-receiving side protective member 13 is not particularly limited, but is preferably plate-like or sheet-like from the viewpoint of indirectly covering the planar light-receiving surface 11U.
  • the material of the light receiving side protection member 13 is not particularly limited, but like the sealing material 12, a material having translucency and resistance to ultraviolet light is preferable, for example, glass or Transparent resin such as acrylic resin or polycarbonate resin can be mentioned.
  • the surface of the light-receiving side protection member 13 may be processed into an uneven shape, or may be coated with an anti-reflection coating layer. With these configurations, it is difficult for the light receiving side protection member 13 to reflect the received light, and to guide more light to the solar battery cell 11.
  • the back side protection member 14 covers the back surface 11B of the solar cell 11 via the back side sealing material 12B to protect the solar cell 11.
  • the shape of the back side protection member 14 is not particularly limited, but in the same manner as the light receiving side protection member 13, a plate shape or a sheet shape is preferable from the viewpoint of indirectly covering the planar back surface 11B.
  • the laminated body of resin films such as a polyethylene terephthalate (PET), polyethylene (PE), an olefin resin, a fluorine-containing resin, or a silicone resin, and metal foil, such as aluminum foil, is mentioned.
  • connection wiring 15 for connection (hereinafter also referred to as connection wiring 15) is included.
  • the connection wiring 15 is used, for example, for connection between electrodes in adjacent solar cells 11, connection between solar cell strings, or connection between a solar cell string and a lead-out wiring from the solar cell string to an external device.
  • connection wiring 15 is bridged over the back surfaces 11 B of the solar battery cells 11 and bonded to the back surface 11 B with solder or conductive adhesive. .
  • connection wiring 15 is located between the adjacent solar battery cells 11 and the light receiving surface 11U of one of the solar battery cells 11. And the back surface 11B of the other solar battery cell 11, and is adhered to the back surface 11B with a solder, a conductive adhesive, or the like.
  • the material of the wiring member 15 is not particularly limited, metals such as copper, aluminum, silver, gold, or an alloy containing these may be mentioned.
  • a metal with a coating layer in which a conductive layer such as gold, silver, tin, or solder is coated on the surface of a metal such as copper, aluminum, silver, gold, or an alloy containing these is the material of the wiring member 15. It does not matter.
  • the wiring member 15 be blackened to make it difficult to see the metallic color. This is because the designability of the solar cell module 19 is enhanced.
  • the method for the blackening treatment is not particularly limited, but examples include application of a black paint, coating of a black base, or surface treatment with a chemical or the like.
  • the manufacturing method of the solar cell module 19 is not particularly limited.
  • the light receiving side protection member 13, the light receiving side sealing member 12U, the solar battery cell 11 (solar cell string), the back side sealing member 12B, and the back side protection member 14 are stacked in this order, It may be sealed by heating and pressurizing at a predetermined temperature and pressure.
  • the above solar cell module 19 is designed to emit a similar color as a whole by satisfying the conditions described below.
  • a reflection spectrum in a visible light region measured using an analyzer such as a spectral colorimeter, a spectral color difference meter, a spectral colorimeter, or an ultraviolet visible spectrophotometer is used. ing.
  • CIE International Commission on Illumination
  • Reflective color measurement method is highly correlated with human visual evaluation, a method of detecting only diffuse light (SCE: Specular Component Exclude), or specular reflection and diffuse reflection that easily reflect the influence of gloss A method (SCI: Specular Component Include) for detecting both reflected lights of light was used.
  • SCE Specular Component Exclude
  • SCI Specular Component Include
  • the measurement value of the color of the reflected light which is the combination of the specularly reflected light and the diffusely reflected light based on the light incident on the object to be measured, is measured value Px (L * [Px], a * [Px], b * [Px]), and the measurement value of the color of only diffuse reflection light based on the light incident on the measurement object is measured value Qx (L * [Qx], a * [Qx], b * [Qx])
  • identification codes g, m, s, c, k and t are inserted into x for convenience.
  • the measurement light source used for calculating the reflection color is not particularly limited, and a light source having a known spectral distribution (for example, D50, D55, D65, D75, or C light source) may be used. .
  • the visual field used for calculating the reflection color is not particularly limited, and for example, 10 degrees or 2 degrees defined by the CIE may be used.
  • the solar cell module 19 described below is generally designed by designing the inherent color of the constituent members of the above-described solar cell module 19 or designing the color in a state where the constituent members overlap with each other. It emits similar colors and exhibits high designability.
  • the design of the external member can be enhanced. Also, by intentionally changing the color of the external member and the color of the solar cell module 19, for example, the design of the external member can be enhanced by forming a pattern on the external member with the solar cell module 19.
  • the condition (1) of all the combinations in the following conditions (1) to (5) It is preferable that it is design which satisfy
  • the color of the light receiving side protection member 13 contained in the solar cell module 19 is specific.
  • the light receiving side protection member 13 has almost no tint and can transmit visible light in a wide wavelength range.
  • the light receiving side protection member 13 has almost no tint and can transmit visible light in a wide wavelength range.
  • the light receiving side protection member 13 itself will have a tint, and for example, visible light which is easy to be recognized is emitted in large amounts as regular reflection light from the light receiving side protection member 13 . Therefore, when the solar cell module 19 mounting such a light receiving side protection member 13 is installed on a wall surface or the like that is easily visible to human eyes, the colored reflected light causes light damage.
  • the saturation C based on the measured value Pm (L * [Pm], a * [Pm], b * [Pm]) by the light incident from the light receiving side protection member 13 with respect to the overlapping portion.
  • the difference ⁇ T [m] between [Pm] and the saturation C * [Qm] based on the measured value Qm (L * [Qm], a * [Qm], b * [Qm]) is the following condition It is preferable to satisfy (2).
  • the solar cell module 19 which satisfies the condition (2), it is considered to adopt the light receiving side sealing material 12U to which the wavelength conversion additive is added and the back side protection member 14 which makes the light receiving side black.
  • the ultraviolet light which does not contribute to power generation is converted into visible light by the wavelength conversion additive, since the black back side protection member 14 is adopted, part of the converted visible light is protected on the back side. It is absorbed by the member 14.
  • the light path until the converted visible light reaches the back side protection member 14 makes the back side protection member 14 inconspicuous, and the converted visible light tends to be noticeable as the entire solar cell module 19 .
  • the solar cell module 19 as a whole tends to emit similar colors, and the design of the solar cell module 19 is extremely enhanced.
  • such a solar cell module 19 does not absorb and reflect visible light that contributes to the power generation of the solar cell such as a dye, but utilizes a point of converting and emitting visible light as a wavelength conversion additive. Even at the expense of some of the benefits of visible light, the design is enhanced. That is, it can be said that the solar cell module 19 achieves balance between power generation performance and design.
  • the method of adjusting the value of ⁇ T [m] is not particularly limited, it is possible to adjust the reflection color of the back side protection member 14 or of the wavelength conversion additive contained in the light receiving side sealing material 12U. Adjustment of kind or compounding amount may be mentioned.
  • a measured value Qs (L * [Qs], a * [Qs], b * [Qs]) by light incident from the light receiving side protection member 13 with respect to the overlapping portion described above;
  • the measured value Qm (L * [Qm], a * [Qm], b * [Qm]) used for setting the condition (2), It is preferable that the chromaticity difference ⁇ E [ms] calculated from the above satisfies the following condition (3).
  • the solar battery cells 11 disposed on the back side protection member 14 differ from each other in the color tone of the solar cells 14 and 11 in the stage assembled as the solar battery module 19 It is visually perceived as floating, and it is difficult for the solar cell module 19 to generally look similar color.
  • the method of adjusting the value of ⁇ E [ms] is not particularly limited, but the back side protection member 14 having the same color as the color of the solar battery cell 11 is used (that is, the condition (4) below) Or a reflection preventing layer or an optical adjusting layer is provided on the light receiving side of the solar battery cell 11, and the refractive index and thickness thereof are adjusted.
  • the present invention relates to the inherent color of the solar cells 11 and the back side protection member 14 included in the solar cell module 19.
  • the measured value Qc (L * [Qc], a * [Qc], b * [Qc]) for the solar battery cell 11 itself, and the measured value Qk (L * [Qk], a * for the back side protection member 14 itself . It is preferable that the chromaticity difference ⁇ E [ck] calculated from [Qk], b * [Qk]) satisfies the following condition (4).
  • the solar battery cells 11 disposed on the back side protection member 14 are visually perceived as if they floated up due to the difference in color tone, and the solar battery module 19 is totally It tends to be difficult to see similar colors.
  • the method of adjusting the value of ⁇ E [c ⁇ k] is not particularly limited, but it is preferable to use the back side protection member 14 of the same color as the color of the solar battery cell 11. That is, when the conditions (4) and (3) are satisfied at the same time, the solar cell module 19 can easily look like the similar color while having a sense of unity in color and saturation.
  • an antireflection layer or an optical adjustment layer may be provided on the light receiving side of the solar battery cell 11, and the value of ⁇ E [c ⁇ k] may be adjusted by adjusting the refractive index and thickness thereof.
  • the measured value Qt (L * [Qt], a * [Qt], b * [Qt]) by the light incident from the light receiving side protection member 13 with respect to the overlapping portion described above;
  • the measured value Qm (L * [Qm], a * [Qm], b * [Qm]) used for setting the condition (2), It is preferable that the chromaticity difference ⁇ E [mt] calculated from the above satisfies the following condition (5).
  • the method of adjusting the value of ⁇ E [m ⁇ t] is not particularly limited, but the surface on the light receiving side of the wiring member 15 may be colored in the same color as the back side protection member 14.
  • the solar cell module 19 may be used as a means to change the design of the external member (wall surface, building material, or building, etc.) on which the solar cell module 19 is installed according to this change.
  • the color temperature of sunlight on fine weather is 5,000 to 6,000 K and the color temperature of sunlight on cloudy weather is 6,000 to 7,000 K
  • the sunlight on fine weather Using the light [D50 light] of the D50 light source having 5003 K close to the color temperature of D50 and the light [D65 light] of the D65 light source having 6504 K close to the color temperature of sunlight in cloudy weather, the following condition (6) is satisfied It is preferable to do so.
  • the measured value D50Px (L * [50Px], a * [50Px] of the color of D50 light based on the reflected light combining specularly reflected light and diffusely reflected light based on light incident on the object to be measured b * [50Px]) and the measured value D50Qx of the color of D50 light based on the diffuse reflection light (L * [50Qx], a * [50Qx], b * [50Qx]).
  • the measured value of the D65 light color based on the reflected light combining specularly reflected light and diffusely reflected light based on the light incident on the measurement object D65Px (L * [65Px], a * [65Px], b * [65Px]) and the measured value of D65 light color based on the diffuse reflection light D65Qx (L * [65Qx], a * [65Qx], b * [65Qx]).
  • identification codes g, m and s are inserted into x.
  • condition (6) is a color with respect to the part to which the light reception side protection member 13, the light reception side sealing material 12U, and the photovoltaic cell 11 overlap in this order in the solar cell module 19 from the light reception side to the back side About.
  • the measured value D50Qs (L * [50Qs], a * [50Qs], b * [50Qs]) by the light incident from the light-receiving side protection member 13 with respect to the overlapping portion described above, Measured value D65Qs (L * [65Qs], a * [65Qs], b * [65Qs]), It is preferable that the value ⁇ U [Qs] calculated from the above satisfies the following condition (6).
  • This conditional expression (6) shows the degree to which the color tone of the photovoltaic cell 11 in the solar cell module 19 changes with the light from which color temperature differs. Therefore, as the value of ⁇ U [Qs] increases, the color of the solar battery cell 11 changes with changes in the external environment, for example, due to differences in time, weather, or seasons, and accordingly, the solar cell module The design of 19 is enhanced.
  • the method of adjusting the value of ⁇ U [Qs] is not particularly limited, and examples thereof include adjusting the type or the compounding amount of the wavelength conversion additive contained in the light receiving side sealing material 12U.
  • condition (6) may be satisfied in that the degree of freedom in design of the solar cell module 19 is increased, but in terms of making the color of the solar cell module 19 as a whole similar color, It is preferable to satisfy the conditions (1) and (3) simultaneously with the condition (6).
  • condition (1) does not depend on the light source, from the viewpoint that condition (6) depends on the light source, condition (6) corresponds to the following condition (1 ′): preferable.
  • the measured value D65Qg (L * [65Qg], a * [65Qg], b * [65Qg]) is used.
  • condition (3) does not depend on the light source, from the viewpoint that condition (6) depends on the light source, condition (6) corresponds to the following condition (3 ′): preferable.
  • measured value D50Qm (L * [50Qm], a * [50Qm], b * [50Qm]) and measured value D50Qs (L * [50Qs], a * [50Qs], b * [50Qs])
  • the chromaticity difference ⁇ E [50Qm-50Qs] calculated from and the measured value D65Qm (L * [65Qm], a * [65Qm], b * [65Qm]) and the measured value D65Qs (L * [65Qs]
  • the chromaticity difference ⁇ E [65Qm-65Qs] calculated from a * [65Qs], b * [65Qs]) satisfies the following condition (3 ′).
  • the conditions (2) and (4) are satisfied at the same time as the conditions (6), (1) (or (1 ')) and (3) (or (3')) are satisfied. And at least one of the three conditions of the condition (5) may be satisfied.
  • condition (5) does not depend on the light source, from the viewpoint that condition (6) depends on the light source, condition (6) corresponds to the following condition (5 ′): preferable.
  • the light receiving side protective member 13 enters the light receiving side protective member 13, the light receiving side sealing member 12U, and the wiring member 15 in this order from the light receiving side protective member 13 from the light receiving side to the back side.
  • measured value D50Qm (L * [50Qm], a * [50Qm], b * [50Qm]) and measured value D50Qt (L * [50Qt], a * [50Qt], b * [50Qt])
  • the chromaticity difference ⁇ E [50Qm-50Qt] calculated from and the measured value D65Qm (L * [65Qm], a * [65Qm], b * [65Qm]) and the measured value D65Qt (L * [65Qt]
  • the chromaticity difference ⁇ E [65Qm-65Qt] calculated from a * [65Qt], b * [65Qt]) satisfies the following condition (5 ′).
  • Light receiving side protection member A Cover glass for high transmission solar cells formed of 3 mm thick non-tempered glass.
  • .Light-receiving side protection members B and C ... 2 types of cover glass for high transmission solar cells made of tempered glass with a thickness of 3 mm with an antireflective film.
  • .Light-receiving side protection member D ... 3 mm thick light blue colored glass.
  • Solar cell A back electrode type solar cell using a crystalline silicon substrate.
  • ⁇ Back side protection member A sheet of black PET / aluminum foil / PET three-layer structure.
  • ⁇ Back side protection member B ... White olefin / PET two-layer sheet.
  • Example 1 In the solar cell module of Example 1, the back electrode type solar battery cell as a solar battery cell, the light receiving side protective material A as a light receiving side protective material, and the back side protective material A as a back side protective material. Furthermore, in the solar cell module of Example 1, the wavelength conversion additive and the EVA sheet (sealing material A) in which the wavelength conversion additive having blue fluorescence is dispersed as the sealing material is used as the light receiving side sealing material. The EVA sheet (sealing material B) which does not have a ultraviolet absorber together was used as a back side sealing material. The above members were laminated as shown in FIG. 1 and FIG. 2 and then laminated at 140 ° C. to produce a solar cell module.
  • the reflection spectrum of reflection light in which reflection light and diffuse reflection light are combined and reflection light of only diffuse reflection light is measured, and measurement light source D50, 10 ° visual field condition and measurement light source D65 ⁇ T [m], ⁇ E [50Qm-50Qs], ⁇ E [65Qm-65Qs], and ⁇ U [Qs] were calculated from the measured values under the 10 ° visual field condition.
  • ⁇ T [m] is expressed as ⁇ T [50 m] for the result of using D50 light and ⁇ T [65 m] for the result of using D65 light.
  • Comparative Example 1 A solar cell module was produced in the same manner as in Example 1 except that the sealing material B was used as the light receiving side sealing material, and the same measurement and observation were performed.
  • Comparative Example 2 The solar cell module was produced by the method similar to Example 1 except using the back side protection material B as a back side protection material, and the same measurement and observation were implemented.
  • Comparative Example 3 The solar cell module was produced by the method similar to Example 1 except using the sealing material B as a light-receiving side sealing material and the back side protection material B as a back side protection material, and implemented the same measurement and observation.
  • Comparative Example 4 A solar cell module was produced by the same method as Comparative Example 2 except that the light receiving side protective material D was used as the light receiving side protective material, and the same measurement and observation were performed.
  • Comparative Example 5 A solar cell module was produced in the same manner as in Comparative Example 4 except that the back side protective material B was used as the back side protective material, and the same measurement and observation were performed.
  • Comparative Example 6 A solar cell module is produced by the same method as Comparative Example 2 except that a blue tape having a polyethylene film as a base material is sandwiched between the light receiving side protective material and the light receiving side sealing material, and the same measurement and Observation was performed.
  • Comparative Example 7 A solar cell module was produced in the same manner as Comparative Example 6 except that the back side protective material B was used as the back side protective material, and the same measurement and observation were performed.
  • Example 2 The solar cell module of Example 2 uses the same members as in Example 1 and, as a wiring member connected to the electrodes of the solar cell, a flat solder-plated copper wire colored with black paint (wiring member A )It was used. Specifically, the above members were laminated as shown in FIG. 3 and FIG. 4 and then laminated at 140 ° C. to produce a solar cell module.
  • the reflection spectrum in reflection light which combined reflection light and diffuse reflection light, and reflection light of only diffuse reflection light is measured, and measurement light source D50, ⁇ E in the case of 10 ° visual field condition [50Qm-50Qt], and measurement light source D65, ⁇ E [65Qm-65Qt] in the case of 10 ° visual field condition was calculated.
  • Comparative Example 8 A solar cell module was produced in the same manner as in Example 2 except that an untreated flat solder-plated copper wire (wiring member B) was used, and the same measurement and observation were performed.
  • Comparative Example 9 The solar cell module was produced by the method similar to Example 2 except using the back side protection material B as a back side protection material, and the same measurement and observation were implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

設置位置である外部部材の色味と調和させやすい太陽電池モジュールを提供する。太陽電池モジュール19は、太陽電池セル11と、太陽電池セル11を基準にして、受光側に、受光側封止材12U、受光側保護部材13をこの順で重ねて配置する一方、受光側の反対側となる裏側に、裏側封止材12B、裏側保護部材14をこの順で重ねて配置しており、測定対象物に対して入射させた光に基づいた正反射光と拡散反射光とを併せた反射光の色の測定値Pxと、測定対象物に対して入射させた光に基づいた拡散反射光のみの色の測定値Qxと、から計算される値が、特定の条件を満たす。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 環境への意識が高まる昨今、ZEH(net zero energy house)、ZEB(net zero energy building)への取り組みが活発になっている。ZEH、ZEBのためには、建築物自体で、必要電力を生産しなくてはならず、発電手段として太陽電池モジュールの検討が進められている。
 太陽電池モジュールは、建築物に設置されるが、建築物の屋上だけへの設置では、必要電力を賄えないことから、屋上以外の場所への設置が考えられ、そのような技術開発も進んでいる。例えば、特許文献1のような太陽電池一体型壁材、および、特許文献2のような壁面に太陽電池モジュールを設置するための架台が挙げられる。
特開2016-186156号公報 特開2016-000949号公報
 しかしながら、建築物の壁面に、太陽電池モジュールを設置する場合、屋外にいる歩行者等の視界に、直接、太陽電池モジュールが入ることになり、その太陽電池モジュールからの反射光による光害を考慮しなくてはならない。また、太陽電池モジュールは、外観のバリエーションに乏しく、壁面に設置した場合、壁面の外見(例えば、壁面の色味)と馴染まずに、建築物の意匠性を低下させる原因ともなり得る。
 本発明は、上記の課題を解決するためになされたものである。そして、その目的は、太陽電池モジュールの設置位置である外部部材(壁面、建材、または建物等)の色味に調和させやすい、全体的に同系色を発する太陽電池モジュールを提供することにある。
 本発明の太陽電池モジュールは、太陽電池セルと、前記太陽電池セルを基準にして、受光側に、受光側封止材、受光側保護部材をこの順で重ねて配置する一方、受光側の反対側となる裏側に、裏側封止材、裏側保護部材をこの順で重ねて配置する。
 そして、この太陽電池モジュールにあって、測定対象物に対して入射させた光に基づいた正反射光と拡散反射光とを併せた反射光の色の測定値Px(L*[Px],a*[Px],b*[Px])と、
測定対象物に対して入射させた光に基づいた拡散反射光のみの色の測定値Qx(L*[Qx],a*[Qx],b*[Qx])と、
から計算される値が(なお、L*,a*,b*はCIE1976L***表色系を用い、xには識別符号g,m,s,c,k,tが挿入)、以下の通りである。
 (1).前記受光側保護部材そのものに対する、測定値Pg(L*[Pg],a*[Pg],b*[Pg])に基づく彩度C*[Pg]、および、測定値Qg(L*[Qg],a*[Qg],b*[Qg])に基づく彩度C*[Qg]が、以下の条件を満たす。
   C*[Pg]≦5
   C*[Qg]≦5
なお、
 C*[Pg]=(a*[Pg]+b*[Pg])1/2
 C*[Qg]=(a*[Qg]+b*[Qg])1/2
である。
 (2).前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記裏側封止材、前記裏側保護部材がこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による、
測定値Pm(L*[Pm],a*[Pm],b*[Pm])に基づく彩度C*[Pm]と、
測定値Qm(L*[Qm],a*[Qm],b*[Qm])に基づく彩度C*[Qm]と、
の差ΔT[m]が以下の条件を満たす。
   ΔT[m]≧6
なお、
 ΔT[m]=C*[Qm]-C*[Pm]
     =(a*[Qm]+b*[Qm])1/2-(a*[Pm]+b*[Pm])1/2
である。
 (3).前記(2)における前記測定値Qm(L*[Qm],a*[Qm],b*[Qm])と、
前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記太陽電池セルがこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値Qs(L*[Qs],a*[Qs],b*[Qs])と、
から計算される色度差ΔE[m-s]が、以下の条件を満たす。
   ΔE[m-s]≦30
なお、
 ΔE[m-s]={(L*[Qm]-L*[Qs])+(a*[Qm]-a*[Qs])
       +(b*[Qm]-b*[Qs])1/2
である。
 また、本発明の太陽電池モジュールは、太陽電池セルと、前記太陽電池セルを基準にして、受光側に、受光側封止材、受光側保護部材をこの順で重ねて配置する一方、受光側の反対側となる裏側に、裏側封止材、裏側保護部材をこの順で重ねて配置する。
 そして、この太陽電池モジュールにあって、測定対象物に対して入射させたD50光に基づいた、正反射光と拡散反射光とを併せた反射光の色の測定値D50Px(L[50Px],a[50Px],b[50Px])、および、拡散反射光のみの色の測定値D50Qx(L[50Qx],a[50Qx],b[50Qx])と、
測定対象物に対して入射させたD65光に基づいた、正反射光と拡散反射光とを併せた反射光の色の測定値D65Px(L[65Px],a[65Px],b[65Px])、および、拡散反射光のみの色の測定値D65Qx(L[65Qx],a[65Qx],b[65Qx])と、
から計算される値が(なお、L*,a*,b*はCIE1976L***表色系を用い、xには識別符号g,m,sが挿入)、以下の通りである。
 (1’).前記受光側保護部材そのものに対する、
測定値D50Pg(L[50Pg],a[50Pg],b[50Pg])に基づく彩度C[50Pg]、
測定値D50Qg(L[50Qg],a[50Qg],b[50Qg])に基づく彩度C[50Qg]、
測定値D65Pg(L[65Pg],a[65Pg],b[65Pg])に基づく彩度C[65Pg]、
測定値D65Qg(L[65Qg],a[65Qg],b[65Qg])に基づく彩度C[65Qg]、
が、以下の条件を満たす。
   C[50Pg]≦5
   C[50Qg]≦5
   C[65Pg]≦5
   C[65Qg]≦5
なお、
 C[50Pg]=(a*[50Pg]+b*[50Pg])1/2
 C[50Qg]=(a*[50Qg]+b*[50Qg])1/2
 C[65Pg]=(a*[65Pg]+b*[65Pg])1/2
 C[65Qg]=(a*[65Qg]+b*[65Qg])1/2
である。
 (3’).前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記裏側封止材、前記裏側保護部材がこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])および測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])と、
前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記太陽電池セルがこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])および測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])と、
から計算される色度差ΔE[50Qm-50Qs]および色度差ΔE[65Qm-65Qs]が、以下の条件を満たす。
   ΔE[50Qm-50Qs]≦30
   ΔE[65Qm-65Qs]≦30
なお、
 ΔE[50Qm-50Qs]={(L*[50Qm]-L*[50Qs])
          +(a*[50Qm]-a*[50Qs])
          +(b*[50Qm]-b*[50Qs])1/2
 ΔE[65Qm-65Qs]={(L*[65Qm]-L*[65Qs])
          +(a*[65Qm]-a*[65Qs])
          +(b*[65Qm]-b*[65Qs])1/2
である。
 (6).前記測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])と、
前記測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])と、
から計算される値ΔU[Qs]が以下の条件を満たす。
   ΔU[Qs]≧1
なお、
 ΔU[Qs]={(L*[50Qs]-L*[65Qs])+(a*[50Qs]-a*[65Qs])
      +(b*[50Qs]-b*[65Qs])1/2
である。
 本発明によれば、太陽電池モジュールは、全体的に同系色になり、その太陽電池モジュールの設置位置である外部部材の色味に調和させやすくなり、その結果、外部部材の意匠性を高められる。
図1は、太陽電池モジュールの断面図である。 図2は、図1の太陽電池モジュールの平面図である。 図3は、裏面電極型の太陽電池セルを搭載する太陽電池モジュールの断面図である。 図4は、図3の太陽電池モジュールの平面図である。 図5は、両面電極型の太陽電池セルを搭載する太陽電池モジュールの断面図である。 図6は、図5の太陽電池モジュールの平面図である。 図7は、シングリング接続された太陽電池セルを搭載する太陽電池モジュールの断面図である。 図8は、図7の太陽電池モジュールの平面図である。
 本発明の一実施形態について説明すると以下の通りであるが、これに限定されるものではない。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。
 ≪太陽電池モジュール≫
 図1~図8は、少なくとも、太陽電池セル11、封止材12(受光側封止材12U、裏側封止材12B)、受光側保護部材13、および、裏側保護部材14を含む太陽電池モジュール19を示す模式的な断面図および平面図である。
 図1・2は、1枚の太陽電池セル11を含む太陽電池モジュール19を表す。図3・4および図5・6は、複数の太陽電池セル11を、接続用の配線部材15で電気的に接続させた太陽電池モジュール19を表す。図7・8は、接続用の配線部材を用いることなく、複数の太陽電池セル11同士を電気的に接続させた太陽電池モジュール19を表す。なお、図3~図8に示されるような、電気的に接続された太陽電池セル11の集合体を、太陽電池ストリングと称することもある。
 <太陽電池セル>
 太陽電池セル11は、主面として表面11Uと裏面11Bとを含んでおり、本明細書では、表面11Uの側を表側、これに対して反対側にあたる裏面11Bの側を裏側と称する。そして、便宜上、表側は裏側よりも積極的に受光させようとする側(受光側/視認側)とし、積極的に受光させない裏側を非受光側(非視認側)として説明する。
 したがって、図1、図3、図5、図7に示されるように、太陽電池モジュール19は、太陽電池セル11と、この太陽電池セル11を基準にして、受光側に、受光側封止材12U、受光側保護部材13をこの順で重ねて配置する一方、受光側の反対側となる裏側に、裏側封止材12B、裏側保護部材14をこの順で重ねて配置する。
 なお、太陽電池セル11の種類は、特に限定されず、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、薄膜シリコン太陽電池、ヘテロ接合太陽電池、化合物系太陽電池、または、有機薄膜太陽電池が挙げられる。
 また、太陽電池セル11の製造方法も、特に限定されない。例えば、半導体基板上に、公知の積層手段によって第一導電型領域(例えばp型領域)および第二導電型領域(例えばn型領域)が設けられ、第一導電型領域上に第一電極、第二導電型領域上に第二電極を設けられる太陽電池セル11の製造方法が挙げられる(なお、便宜上、前記の導電型領域および電極は不図示)。
 また、太陽電池セル11における電極構造の種類も、特に限定されず、例えば、裏面11Bのみに電極を有する裏面電極型太陽電池セル11であっても構わないし(図3・図4参照)、太陽電池セルの表面(受光面)11Uおよび裏面11Bに電極を有する両面電極型太陽電池セル11(図5・図6参照)であっても構わない。
 なお、裏面電極型太陽電池セル11では、受光面11Uに電極が無い。そのため、受光面11Uを同一色にした裏面電極型太陽電池セル11を複数備える太陽電池モジュール19は、全体として、同系色に視認され、高い意匠性を有する。
 一方で、両面電極型太陽電池セル11であっても、電極を受光面11Uの色と同系色に処理(例えば、黒色化処理)すると、受光面11U上の電極は目立たなくなる。そのため、このような両面電極型太陽電池セル11を複数備える太陽電池モジュール19も、全体として、同系色に視認され、高い意匠性を有する。
 また、シングリングと称される接続方法によって、複数の太陽電池セル11同士を電気的に接続させた太陽電池モジュール19にあっては(図7・図8参照)、隣り合う太陽電池セル11同士では、一方の太陽電池セル11の受光側の主面の一部(受光面11Uにおける周縁の一部である端面)と、他方の太陽電池セル11の裏側の主面の一部(裏面11Bにおける周縁の一部である端面)とが重なる。
 このような太陽電池モジュール19にて、隣り合う太陽電池セル11同士では、一方の太陽電池セル11の受光面11Uに、いわゆるバスバー電極のような配線部材があっても、他方の太陽電池セル11の裏面11Bにて覆われることになる。そのため、この太陽電池モジュール19は、受光面11Uを同一色にした太陽電池セル11を複数備えることになり、全体として、同系色に視認され、高い意匠性を有する。
 なお、以上のような太陽電池セル11の受光側には、反射防止層または光学調整層が積層されていても構わない。このような反射防止層または光学調整層は、厚みまたは材料を適宜設計されると、太陽電池セル11の表面11Uの反射光が適切に制御される。そのため、反射防止層または光学調整層は、太陽電池モジュール19の色味調整に好適である。
 <封止材>
 封止材12は、太陽電池セル11を封止して保護するもので、太陽電池セル11の受光面11Uと受光側保護部材13との間、および、太陽電池セル11の裏面11Bと裏側保護部材14との間に介在する。以降では、太陽電池セル11の受光面11Uを被覆する封止材12を受光側封止材12U、太陽電池セル11の裏面11Bを被覆する封止材12を裏側封止材12Bと称すこともある。
 受光側封止材12Uおよび裏側封止材12Bの形状は、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の太陽電池セル11の両主面11U・11Bを被覆しやすいためである。
 封止材12の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有する一方、紫外光に対して耐性を有すると好ましい。また、封止材12の材料は、太陽電池セル11と受光側保護部材13と裏側保護部材14とを接着させる接着性を有すると好ましい。
 このような材料としては、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、または、シリコーン樹脂等の透光性樹脂が挙げられる。なお、受光側封止材12Uの材料と裏側封止材12Bの材料とは、同一であっても構わないし異なっていても構わない。また、このような材料に、有機過酸化物、シランカップリング剤、紫外線吸収剤、架橋助剤、耐熱安定剤、または、耐光安定剤等の添加剤が含まれていても構わない。
 また、受光側封止材12Uには、紫外光を変換して可視光を発する波長変換添加剤が含まれると好ましい。このような波長変換添加剤が含有されていると、太陽電池セル11の発電に寄与しなかった紫外光が発電に寄与する可視光に変換されるため、太陽電池セル11、ひいては太陽電池モジュール19の発電量が増大する。
 また、波長変換添加剤は、例えば染料および顔料のように、可視光を吸収して残った光を反射させるのではなく、受けた紫外光を可視光に変換して発光させる。そのため、太陽電池モジュール19の色味が、例えば受光側封止材に含有させた染料等で色づけした太陽電池モジュールに比べて、鮮やかに視認される。また、発光に起因して、太陽電池モジュール19に含まれる種々部材との色合わせの調整(太陽電池モジュール19全体として同系色にする調整)も行いやすい。
 波長変換添加剤の材料としては、特に限定されるものではないが、可視光の蛍光を有する希土類元素を含む金属錯体等、有機色素、または、無機蛍光体等が挙げられる。なお、このような波長変換添加剤が、封止材12の材料となる樹脂に分散され、その樹脂がシート状等に成型されることによって、波長変換添加剤を分散させた封止材12が得られる。
 <受光側保護部材>
 受光側保護部材13は、受光側封止材12Uを介して、太陽電池セル11の受光面11Uを覆って、その太陽電池セル11を保護する。受光側保護部材13の形状は、特に限定されるものではないが、面状の受光面11Uを間接的に覆う点から、板状またはシート状が好ましい。
 受光側保護部材13の材料としては、特に限定されるものではないが、封止材12同様に、透光性を有しつつも紫外光に耐性の有る材料が好ましく、例えば、ガラス、または、アクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂が挙げられる。また、受光側保護部材13の表面は、凹凸状に加工されていても構わないし、反射防止コーティング層で被覆されていても構わない。これらのようになっていると、受光側保護部材13は、受けた光を反射させ難くして、より多くの光を太陽電池セル11に導けるためである。
 <裏側保護部材>
 裏側保護部材14は、裏側封止材12Bを介して、太陽電池セル11の裏面11Bを覆って、その太陽電池セル11を保護する。裏側保護部材14の形状は、特に限定されるものではないが、受光側保護部材13同様に、面状の裏面11Bを間接的に覆う点から、板状またはシート状が好ましい。
 裏側保護部材14の材料としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材料が好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、若しくは含シリコーン樹脂等の樹脂フィルムと、アルミニウム箔等の金属箔との積層体が挙げられる。
 <その他部材>
 例えば、図3~図6に示されるような、複数の太陽電池セル11を含む太陽電池モジュール19では、接続用の配線部材15(以下、接続配線15とも称する)が含まれる。接続配線15は、例えば、隣り合った太陽電池セル11での電極同士の接続、太陽電池ストリング同士の接続、または、太陽電池ストリングから外部装置への取出配線との接続のために使用される。
 接続配線15は、図3および図4に示されるような裏側電極型太陽電池セル11では、太陽電池セル11の裏面11B同士に架け渡り、はんだまたは導電性接着剤等で裏面11Bに接着される。
 一方、図5・図6に示されるような、両面電極型太陽電池セル11では、隣り合った太陽電池セル11同士にあって、接続配線15は、一方の太陽電池セル11の受光面11Uと、他方の太陽電池セル11の裏面11Bとに架け渡り、はんだまたは導電性接着剤等で裏面11Bに接着される。
 なお、配線部材15の材料は、特に限定されるものではないが、銅、アルミニウム、銀、金、または、これらを含む合金等の金属が挙げられる。また、銅、アルミニウム、銀、金、若しくはこれらを含む合金等の金属表面に、金、銀、スズ、若しくははんだ等の導電層を被覆させた被覆層付き金属が、配線部材15の材料であっても構わない。
 また、配線部材15は、金属色を見え難くすべく、黒色化処理されていると好ましい。このようになっていると、太陽電池モジュール19としての意匠性が高まるためである。黒色化処理の方法としては、特に限定されないが、黒色塗料の塗布、黒色基材の被覆、または、薬品等による表面処理等があげられる。
 <太陽電池モジュールの製造方法>
 太陽電池モジュール19の製造方法は、特に限定されるものではない。例えば、受光側保護部材13、受光側封止材12U、太陽電池セル11(太陽電池ストリング)、裏側封止材12B、および、裏側保護部材14をこの順で重ね、真空排気を行うラミネータ等を用いて、所定の温度、圧力にて加熱、加圧することによって封止すればよい。
 ≪CIE1976L***表色系について≫
 以上の太陽電池モジュール19は、以降に記載の条件を満たすことで、全体的に同系色を発するように設計されている。なお、色を定量的に評価するに際して、分光色彩計、分光色差計、分光測色計、または、紫外可視分光光度計等の分析装置を用いて測定される可視光領域での反射スペクトルを用いている。
 反射スペクトルに基づく色の数値化については、CIE(国際照明委員会)で規格化されたCIE1976L***表色系(L*:明[+]~暗[-]、a*:赤味[+]~緑味[-]、b*:黄[+]~青味[-])を用いた。
 反射色の測定法は、人間の目視の評価と相関性の高い、拡散反射光のみを検出する方法(SCE:Specular Component Exclude)、または、光沢の影響を反映しやすい、正反射光および拡散反射光の両反射光を併せて検出する方法(SCI:Specular Component Include)を用いた。
 そこで、本明細書では、測定対象物に対して入射させた光に基づいた正反射光と拡散反射光とを併せた反射光の色の測定値を、測定値Px(L*[Px],a*[Px],b*[Px])とし、測定対象物に対して入射させた光に基づいた拡散反射光のみの色の測定値を、測定値Qx(L*[Qx],a*[Qx],b*[Qx])とする。
なお、xには、便宜上、識別符号g,m,s,c,k,tを挿入する。
 また、反射色の算出に使用される測定光源は、特に限定されるものではなく、公知の分光分布を有する光源(例えば、D50、D55、D65、D75、またはC光源)を使用して構わない。また、反射色の算出に使用される視野も、特に限定されるものではなく、例えばCIEによって規定された10度または2度を用いて構わない。
 以下に説明する太陽電池モジュール19は、上述の太陽電池モジュール19の構成部材の固有の色味の設計、または、構成部材の重なり合った状態での色味の設計等を行うことにより、全体的に同系色を発するようになり、高い意匠性を発揮する。
 このような、全体的に同系色な太陽電池モジュール19になっていると、その太陽電池モジュール19の設置位置である外部部材(壁面、建材、または建物等)の色味に調和させることで、外部部材の意匠性を高められる。また、あえて、外部部材の色味と太陽電池モジュール19の色味とを異ならせることで、例えば、外部部材における模様を太陽電池モジュール19で形成させて、外部部材の意匠性を高められる。
 このような外部部材の意匠性を高める一手段として役立つ、全体的に同系色を発する太陽電池モジュール19では、以下の条件(1)~条件(5)における全ての組み合わせのうち、少なくとも条件(1)、条件(2)、条件(3)を同時に満たす設計であると好ましい。
 <受光側保護部材に関して>
 太陽電池モジュール19に含まれる受光側保護部材13固有の色味に関する。
 すなわち、受光側保護部材13そのものに対する測定値Pg(L*[Pg],a*[Pg],b*[Pg])に基づく彩度C*[Pg]、および、測定値Qg(L*[Qg],a*[Qg],b*[Qg])に基づく彩度C*[Qg]が、以下を条件(1)を満たすと好ましい。
 [条件(1)]
   C*[Pg]≦5
   C*[Qg]≦5
なお、
 C*[Pg]=(a*[Pg]+b*[Pg])1/2
 C*[Qg]=(a*[Qg]+b*[Qg])1/2
である。
 上記の条件(1)を満たしていると、受光側保護部材13は、それ自身に色味はほぼ無く、広範囲な波長域の可視光を透過させられる。その結果、太陽電池モジュール19の色味の設計において、受光側保護部材13そのものに起因する色味の影響を抑えられるだけで無く、太陽電池セル11の受光量も増やせ、太陽電池モジュール19の発電量が向上する。
 一方、上記の条件(1)を満たさないと、受光側保護部材13自身の色味が有ることになり、例えば、視認されやすい可視光が受光側保護部材13から正反射光として多量に出射する。そのため、このような受光側保護部材13を搭載する太陽電池モジュール19が人の目に付きやすい壁面等に設置されると、着色された反射光が光害を引き起こす。
 <A.太陽電池モジュールにおける各部材の積層部分に関して>
 太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、裏側封止材12B、裏側保護部材14がこの順で重なっている部分に対する色味に関する。
 すなわち、上記の重なっている部分に対し、受光側保護部材13から入射させた光による、測定値Pm(L*[Pm],a*[Pm],b*[Pm])に基づく彩度C*[Pm]と、測定値Qm(L*[Qm],a*[Qm],b*[Qm])に基づく彩度C*[Qm]と、の差ΔT[m]が、以下の条件(2)を満たすと好ましい。
 [条件(2)]
   ΔT[m]≧6
なお、
 ΔT[m]=C*[Qm]-C*[Pm]
     =(a*[Qm]+b*[Qm])1/2-(a*[Pm]+b*[Pm])1/2
である。
 上記の条件(2)を満たしていると、目視に相関性の高い彩度C*[Qm]が大きく、太陽電池モジュールが鮮やかに視認される。一方で、正反射光を含む彩度C*[Pm]は小さいため、人の目に付きやすい壁面等に設置された場合でも、反射光は白色に近い自然な光となり、光害が抑制される。
 一方、C*[Qm]およびC*[Pm]がともに小さい値の場合、あるいはC*[Qm]およびC*[Pm]がともに大きい値の場合において、上記の条件(2)を満たさないことになる。C*[Qm]およびC*[Pm]がともに小さい値の場合は、太陽電池モジュールが着色されて視認されないため、意匠性への効果が発揮されない。C*[Qm]およびC*[Pm]がともに大きい値の場合は、人の目に付きやすい壁面等に設置されると、着色された反射光によって光害を引き起こす。
 なお、ΔT[m]は、より大きいほど、鮮明な光になるため、例えば、8以上であるとより好ましく、10以上であるとより一層好ましい。
 ところで、条件(2)を満たすような太陽電池モジュール19の一例としては、波長変換添加剤を添加させた受光側封止材12Uと、受光側を黒色とする裏側保護部材14との採用が考えられる。この場合、波長変換添加剤によって、発電に寄与しない紫外光を変換させて可視光にしているものの、黒色の裏側保護部材14が採用されているため、変換された可視光の一部は裏側保護部材14に吸収されてしまう。
 一方で、変換された可視の出射光が、裏側保護部材14に到達するまでの光路によって、その裏側保護部材14を目立たなくさせ、太陽電池モジュール19全体として、変換された可視光が目立ちやすくなる。その結果、太陽電池モジュール19全体として、同系色を発しやすくなり、その太陽電池モジュール19の意匠性は極めて高まる。
 つまり、このような太陽電池モジュール19は、染料等の太陽電池セルの発電に寄与する可視光を吸収・反射させるものではなく、波長変換添加剤という可視光に変換・出射する点を利用しつつも、かかる可視光の利点を一部犠牲にして、意匠性を高めている。すなわち、発電性能と意匠性とのバランスを図った太陽電池モジュール19といえる。
 なお、ΔT[m]の値を調整する方法は、特に限定されるものではないが、裏側保護部材14の反射色を調整する、または、受光側封止材12Uに含まれる波長変換添加剤の種類若しくは配合量を調整する等が挙げられる。
 <B.太陽電池モジュールにおける各部材の積層部分に関して>
 太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、太陽電池セル11がこの順で重なっている部分に対する測定値Qs(L*[Qs],a*[Qs],b*[Qs])に関する。
 具体的には、上記の重なっている部分に対し、受光側保護部材13から入射させた光による、測定値Qs(L*[Qs],a*[Qs],b*[Qs])と、
条件(2)の設定に使用した前記測定値Qm(L*[Qm],a*[Qm],b*[Qm])と、
から計算される色度差ΔE[m-s]が、以下の条件(3)を満たすと好ましい。
 [条件(3)]
   ΔE[m-s]≦30
なお、
 ΔE[m-s]={(L*[Qm]-L*[Qs])+(a*[Qm]-a*[Qs])
       +(b*[Qm]-b*[Qs])1/2
である。
 上記の条件(3)を満たしていると、裏側保護部材14から反射し、裏側封止材12B、受光側封止材12U、および受光側保護部材13を透過してきた光と、太陽電池セル11から反射し、受光側封止材12U、および受光側保護部材13を透過してきた光との間の色度差が小さくなる。そのため、両部材14・11が、太陽電池モジュール19として組み立てられた段階において、比較的小さな色度差しかなく、太陽電池モジュール19が全体としても同系色に見える。
 一方、上記の条件(3)を満たさないと、太陽電池モジュール19として組み立てられた段階において、裏側保護部材14上に配置される太陽電池セル11が、互い14・11の色味の違いから、浮き上がったように視認され、太陽電池モジュール19が全体的に同系色に見え難い。
 なお、ΔE[m-s]は、より小さいほど、太陽電池モジュール19として全体的に同系色に視認されるため、例えば、15以下であるとより好ましく、10以下であるとより一層好ましい。また、ΔE[m-s]は小さいほど、広い視野角においても、太陽電池セル11が目立たなくなるといえるので、単体の太陽電池モジュール19だけでなく、太陽電池モジュール19を敷き詰めて設置しても、同系色として視認される。
 また、ΔE[m-s]の値を調整する方法は、特に限定されるものではないが、太陽電池セル11の色と同系色の裏側保護部材14を使用する(すなわち、以降の条件(4)を満たすようにする)、または、太陽電池セル11の受光側に反射防止層または光学調整層を設け、その屈折率および厚みを調整する等が挙げられる。
 <太陽電池セルと裏側保護部材とに関して>
 太陽電池モジュール19に含まれる太陽電池セル11および裏側保護部材14の固有の色味に関する。
 すなわち、太陽電池セル11そのものに対する測定値Qc(L*[Qc],a*[Qc],b*[Qc])と、裏側保護部材14そのものに対する測定値Qk(L*[Qk],a*[Qk],b*[Qk])と、から計算される色度差ΔE[c-k]が、以下の条件(4)を満たすと好ましい。
 [条件(4)]
   ΔE[c-k]≦60
なお、
 ΔE[c-k]={(L*[Qc]-L*[Qk])+(a*[Qc]-a*[Qk])
       +(b*[Qc]-b*[Qk])1/2
である。
 上記の条件(4)を満たしていると、裏側保護部材14上に配置される太陽電池セル11にあって、両部材14・11との間の色度差が小さい。すなわち、同系色な両部材14・11が配置されることになり、その結果、太陽電池モジュール19が全体としても同系色に見えやすい。また、条件(1)と条件(4)とが同時に満たされていると、太陽電池モジュール19の色味設計が容易である。
 一方、上記の条件(4)を満たさないと、裏側保護部材14上に配置される太陽電池セル11が、互いの色味の違いから、浮き上がったように視認され、太陽電池モジュール19が全体的に同系色に見え難くなりやすい。
 なお、ΔE[c-k]は、より小さいほど、太陽電池モジュール19として全体的に同系色に視認されやすいため、例えば、30以下であるとより好ましく、15以下であるとより一層好ましい。また、ΔE[c-k]は小さいほど、広い視野角においても、太陽電池セル11が目立たなくなりやすいので、単体の太陽電池モジュール19だけでなく、太陽電池モジュール19を敷き詰めて設置しても、同系色として視認されやすい。
 また、ΔE[c-k]の値を調整する方法としては、特に限定されるものではないが、太陽電池セル11の色と同系色の裏側保護部材14を使用すると好ましい。すなわち、条件(4)・(3)とが同時に満たされていると、太陽電池モジュール19は、色味的および彩度的に、統一感を有しながら同系色に見えやすくなる。
 また、太陽電池セル11の受光側に反射防止層または光学調整層を設け、その屈折率および厚みを調整する等で、ΔE[c-k]の値を調整しても構わない。
 <C.太陽電池モジュールにおける各部材の積層部分に関して>
 太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、配線部材15がこの順で重なっている部分に対する測定値Qt(L*[Qt],a*[Qt],b*[Qt])に関する。
 具体的には、上記の重なっている部分に対し、受光側保護部材13から入射させた光による、測定値Qt(L*[Qt],a*[Qt],b*[Qt])と、
条件(2)の設定に使用した前記測定値Qm(L*[Qm],a*[Qm],b*[Qm])と、
から計算される色度差ΔE[m-t]が、以下の条件(5)を満たすと好ましい。
 [条件(5)]
   ΔE[m-t]≦30
なお、
 ΔE[m-t]={(L*[Qm]-L*[Qt])+(a*[Qm]-a*[Qt])
       +(b*[Qm]-b*[Qt])1/2
である。
 上記の条件(5)を満たしていると、裏側保護部材14から反射し、裏側封止材12B、受光側封止材12U、および受光側保護部材13を透過してきた光と、配線部材(例えば、接続用の配線部材15またはバスバー電極)から反射し、受光側封止材12U、および受光側保護部材13を透過してきた光と、の間の色度差が小さくなる。そのため、両部材14・15が、太陽電池モジュール19として組み立てられた段階において、比較的小さな色度差しかなく、太陽電池モジュール19が全体としても同系色に見える。
 一方、上記の条件(5)を満たさないと、太陽電池モジュール19として組み立てられた段階において、裏側保護部材14上に配置される配線部材15が、互いの色味の違いから、浮き上がったように視認され、太陽電池モジュール19が全体的に同系色に見え難い。
 なお、ΔE[m-t]は、より小さいほど、太陽電池モジュール19として全体的に同系色に視認されるため、例えば、15以下であるとより好ましく、10以下であるとより一層好ましい。また、ΔE[m-t]は小さいほど、広い視野角においても、配線部材15が目立たなくなるといえるので、単体の太陽電池モジュール19だけでなく、太陽電池モジュール19を敷き詰めて設置しても、同系色として視認される。
 また、ΔE[m-t]の値を調整する方法は、特に限定されるものではないが、配線部材15の受光側の表面を、裏側保護部材14と同系色に着色することが挙げられる。
 <外部環境に関して>
 ところで、自然環境は、例えば、晴天であったり曇天であったりと、種々変化する。この変化に応じて、太陽電池モジュール19を設置される外部部材(壁面、建材、または建物等)の意匠を変化させる一手段として、太陽電池モジュール19を使用してもよい。
 具体的には、晴天での太陽光の色温度は5000~6000K、曇天での太陽光の色温度が6000~7000Kであるため、太陽電池モジュール19の色味の設計において、晴天での太陽光の色温度に近い5003Kを有するD50光源の光[D50光]、曇天での太陽光の色温度に近い6504Kを有するD65光源の光[D65光]を使用した、以下の条件(6)を満たすようにすると好ましい。
 なお、測定物に対して入射させた光に基づいた正反射光と拡散反射光とを併せた反射光に基づくD50光の色の測定値D50Px(L[50Px],a[50Px],b[50Px])とし、拡散反射光に基づくD50光の色の測定値D50Qx(L[50Qx],a[50Qx],b[50Qx])とする。
 また、測定物に対して入射させた光に基づいた正反射光と拡散反射光とを併せた反射光に基づくD65光の色の測定値D65Px(L[65Px],a[65Px],b[65Px])とし、拡散反射光に基づくD65光の色の測定値D65Qx(L[65Qx],a[65Qx],b[65Qx])とする。
なお、xには識別符号g,m,sを挿入する。
 そして、条件(6)は、太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、太陽電池セル11がこの順で重なっている部分に対する色味に関する。
 具体的には、上記の重なっている部分に対し、受光側保護部材13から入射させた光による、測定値D50Qs(L[50Qs],a[50Qs],b[50Qs])と、
測定値D65Qs(L[65Qs],a[65Qs],b[65Qs])と、
から計算される値ΔU[Qs]が、以下の条件(6)を満たすと好ましい。
 [条件(6)]
   ΔU[Qs]≧1
なお、
 ΔU[Qs]={(L[50Qs]-L[65Qs])+(a[50Qs]-a[65Qs])
      +(b[50Qs]-b[65Qs])1/2
である。
 この条件式(6)は、色温度の異なる光によって、太陽電池モジュール19における太陽電池セル11の色味が変化する程度を示す。したがって、ΔU[Qs]の値が大きくなればなるほど、外部環境の変化、例えば、時間、天候、または、季節の違いによって、太陽電池セル11の色味が変化し、それに伴って、太陽電池モジュール19の意匠性が高まる。
 一方、上記の条件(6)を満たさないと、色温度の異なる光によっては、太陽電池セル11の色味が変化しない。
 なお、ΔU[Qs]は、より大きいほど、外部環境に応じた変化に富む太陽電池モジュール19になるため、2以上であると好ましく、3以上であるとより一層好ましい。また、ΔU[Qs]の値を調整する方法は、特に限定されるものではないが、受光側封止材12Uに含まれる波長変換添加剤の種類または配合量を調整する等が挙げられる。
 また、太陽電池モジュール19の設計の自由度が増すという点で、条件(6)のみが満たされていても構わないが、太陽電池モジュール19の色味を全体として、同系色に見せる点では、条件(6)と同時に、条件(1)、および、条件(3)を満たすと好ましい。
 また、条件(1)は、光源に依存しない条件ではあるが、条件(6)が光源に依存する観点から、この条件(6)には、以下のような条件(1’)であるとより好ましい。
 すなわち、受光側保護部材13そのものに対するD50光の色の測定値D50Pg(L[50Pg],a[50Pg],b[50Pg])、および、測定値D50Qg(L[50Qg],a[50Qg],b[50Qg])と、受光側保護部材13そのものに対するD65光の色の測定値D65Pg(L[65Pg],a[65Pg],b[65Pg])、および、測定値D65Qg(L[65Qg],a[65Qg],b[65Qg])と、を用いる。
 具体的には、測定値D50Pg(L*[50Pg],a[50Pg],b[50Pg])に基づく彩度C[50Pg]と、D50Qg(L*[50Qg],a[50Qg],b[50Qg])に基づく彩度C[50Qg]と、測定値D65Pg(L*[65Pg],a[65Pg],b[65Pg])に基づく彩度C[65Pg]と、測定値D65Qg(L*[65Qg],a[65Qg],b[65Qg])に基づく彩度C[65Qg]とが、以下の条件を満たすと好ましい。
[条件(1’)]
   C[50Pg]≦5
   C[50Qg]≦5
   C[65Pg]≦5
   C[65Qg]≦5
なお、
 C[50Pg]=(a*[50Pg]+b*[50Pg])1/2
 C[50Qg]=(a*[50Qg]+b*[50Qg])1/2
 C[65Pg]=(a*[65Pg]+b*[65Pg])1/2
 C[65Qg]=(a*[65Qg]+b*[65Qg])1/2
である。
 また、条件(3)は、光源に依存しない条件ではあるが、条件(6)が光源に依存する観点から、この条件(6)には、以下のような条件(3’)であるとより好ましい。
 すなわち、太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、裏側封止材12B、裏側保護部材14がこの順で重なっている部分に対し、受光側保護部材13から入射させた光による測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])および測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])を使用する。
 さらに、太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、太陽電池セル11がこの順で重なっている部分に対し、受光側保護部材13から入射させた光による測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])および測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])を使用する。
 具体的には、測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])と測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])とから計算される色度差ΔE[50Qm-50Qs]、および、測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])と測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])とから計算される色度差ΔE[65Qm-65Qs]が、以下の条件(3’)を満たすと好ましい。
 [条件(3’)]
   ΔE[50Qm-50Qs]≦30
   ΔE[65Qm-65Qs]≦30
なお、
 ΔE[50Qm-50Qs]={(L*[50Qm]-L*[50Qs])
          +(a*[50Qm]-a*[50Qs])
          +(b*[50Qm]-b*[50Qs])1/2
 ΔE[65Qm-65Qs]={(L*[65Qm]-L*[65Qs])
          +(a*[65Qm]-a*[65Qs])
          +(b*[65Qm]-b*[65Qs])1/2
である。
 なお、上記の条件(6)、条件(1)(または条件(1’))、および、条件(3)(または条件(3’))を満たすと同時に、条件(2)、条件(4)および条件(5)の3条件のうちの少なくとも1条件を満たしても構わない。
 また、条件(5)は、光源に依存しない条件ではあるが、条件(6)が光源に依存する観点から、この条件(6)には、以下のような条件(5’)であるとより好ましい。
 すなわち、太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、裏側封止材12B、裏側保護部材14がこの順で重なっている部分に対し、受光側保護部材13から入射させた光による測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])および測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])を使用する。
 さらに、太陽電池モジュール19において、受光側から裏側に向かって、受光側保護部材13、受光側封止材12U、配線部材15がこの順で重なっている部分に対し、受光側保護部材13から入射させた光による測定値D50Qt(L*[50Qt],a*[50Qt],b*[50Qt])および測定値D65Qt(L*[65Qt],a*[65Qt],b*[65Qt])を使用する。
 具体的には、測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])と測定値D50Qt(L*[50Qt],a*[50Qt],b*[50Qt])とから計算される色度差ΔE[50Qm-50Qt]、および、測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])と測定値D65Qt(L*[65Qt],a*[65Qt],b*[65Qt])とから計算される色度差ΔE[65Qm-65Qt]が、以下の条件(5’)を満たすと好ましい。
 [条件(5’)]
   ΔE[50Qm-50Qt]≦30
   ΔE[65Qm-65Qt]≦30
なお、
 ΔE[50Qm-50Qt]={(L*[50Qm]-L*[50Qt])
          +(a*[50Qm]-a*[50Qt])
          +(b*[50Qm]-b*[50Qt])1/2
 ΔE[65Qm-65Qt]={(L*[65Qm]-L*[65Qt])
          +(a*[65Qm]-a*[65Qt])
          +(b*[65Qm]-b*[65Qt])1/2
  である。
 なお、本発明は上記した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、反射スペクトルの測定では、日本電色工業株式会社製の分光色彩計(品番SD5000)を用いた。
 <受光側保護材に関して>
 下記の受光側保護部材A~Dに対し、分光色彩計を用いて、正反射光と拡散反射光とを併せた反射光、および、拡散反射光のみの反射光の反射スペクトルを測定した。これにより、測定光源D50、10度視野条件でのC*[50Pg]、C*[50Qg]と、測定光源D65、10度視野条件でのC*[65Pg]、C*[65Qg]とを算出した。結果を表1に示す。
 ・受光側保護部材A
   …厚さ3mmの非強化ガラスで形成された高透過太陽電池用カバーガラス。
 ・受光側保護部材B,C
   …反射防止膜付きの厚さ3mmの強化ガラスで形成された高透過太陽電池用カバーガラス2種。
 ・受光側保護部材D
   …厚さ3mmのライトブルー色のカラーガラス。
Figure JPOXMLDOC01-appb-T000001
 <太陽電池セルと裏側保護部材とに関して>
 下記の部材に対し、分光色彩計を用いて、拡散反射光のみの反射光における反射スペクトルを測定した。これにより、測定光源D50、10度視野条件でのΔE[c-k]を算出した。得られた結果を表2に示す。
 ・太陽電池セル
   …結晶シリコン基板を使用した裏面電極型の太陽電池セル。
 ・裏側保護部材A
   …黒色PET/アルミニウム箔/PETの3層構造のシート。
 ・裏側保護部材B
   …白色オレフィン/PETの2層構造のシート。
Figure JPOXMLDOC01-appb-T000002
 <太陽電池モジュールに関して>
 [実施例1]
 実施例1の太陽電池モジュールは、太陽電池セルとして前記裏面電極型の太陽電池セル、受光側保護材として前記受光側保護材A、裏側保護材として前記裏側保護材Aを使用した。さらに、実施例1の太陽電池モジュールは、封止材として、青色の蛍光を有する波長変換添加剤を分散させたEVAシート(封止材A)を受光側封止材として、波長変換添加剤と紫外線吸収剤をともに有さないEVAシート(封止材B)を裏側封止材として、使用した。なお、以上の部材は、図1および図2に示すように積層配置された後、140℃にてラミネートされることで、太陽電池モジュールとして製造された。
 得られた太陽電池モジュールに対し、反射光と拡散反射光とを併せた反射光、および、拡散反射光のみの反射光の反射スペクトルを測定し、測定光源D50、10度視野条件および測定光源D65、10度視野条件での測定値から、ΔT[m]、ΔE[50Qm-50Qs]、ΔE[65Qm-65Qs]、ΔU[Qs]を算出した。なお、ΔT[m]は、便宜上、D50光を使用した結果にはΔT[50m]、D65光を使用した結果にはΔT[65m]と表記する。
 加えて、太陽光下で、下記(A)~(C)について観察し、該当する場合は○、該当しない場合は×と判定した。
(A)太陽電池モジュールが全体的に青色に見える(○)か見えない(×)か。
(B)太陽電池モジュールからの正反射光に色味が無い(○)か有る(×)か。
(C)太陽電池モジュールの全体視において、セルが浮き出て見えない(○)か浮き出て見える(×)か。
 [比較例1]
 受光側封止材として封止材Bを使用すること以外は、実施例1と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例2]
 裏側保護材として裏側保護材Bを使用すること以外は、実施例1と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例3]
 受光側封止材として封止材B、裏側保護材として裏側保護材Bを使用すること以外は、実施例1と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例4]
 受光側保護材として受光側保護材Dを使用すること以外は、比較例2と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例5]
 裏側保護材として裏側保護材Bを使用すること以外は、比較例4と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例6]
 受光側保護材と受光側封止材の間に、ポリエチレンフィルムを基材とした青色テープを挟み積層したこと以外は、比較例2と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例7]
 裏側保護材として裏側保護材Bを使用すること以外は、比較例6と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 以上の実施例および比較例の部材構成を表3、得られた結果を表4に示す。実施例は、観察項目(A)~(C)が全て(○)となったことから、全体として同系色を発する太陽電池モジュールといえる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [実施例2]
 実施例2の太陽電池モジュールは、実施例1と同様の部材を使用するとともに、太陽電池セルの電極に接続する配線部材として、塗料で黒色に着色した平角状のはんだめっき銅線(配線部材A)を使用した。具体的には、以上の部材は、図3および図4に示すように積層配置された後、140℃にてラミネートされることで、太陽電池モジュールとして製造された。
 得られた太陽電池モジュールについて、反射光と拡散反射光とを併せた反射光、および、拡散反射光のみの反射光における反射スペクトルを測定し、測定光源D50、10度視野条件の場合でのΔE[50Qm-50Qt]、および、測定光源D65、10度視野条件の場合でのΔE[65Qm-65Qt]を算出した。
 加えて、太陽光下で、下記(D)について観察し、該当する場合は○、該当しない場合は×と判定した。
(D)太陽電池モジュールの全体視において、配線部材が浮き出て見えない(○)か浮き出て見える(×)か。
 [比較例8]
 未処理の平角状はんだめっき銅線(配線部材B)を使用した以外は、実施例2と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 [比較例9]
 裏側保護材として裏側保護材Bを使用すること以外は、実施例2と同様の方法で太陽電池モジュールを作製し、同様の測定と観察を実施した。
 上記の実施例および比較例の結果を表5に示す。実施例は、観察項目(D)が全て(○)となったことから、全体として同系色を発する太陽電池モジュールといえる。
Figure JPOXMLDOC01-appb-T000005
  11    太陽電池セル
  11U   太陽電池セルの表面(受光面)
  11B   太陽電池セルの裏面
  12    封止材
  12U   受光側封止材
  12B   裏側封止材
  13    受光側保護部材
  14    裏側保護部材
  15    配線部材
  19    太陽電池モジュール

Claims (10)

  1.  太陽電池セルと、前記太陽電池セルを基準にして、受光側に、受光側封止材、受光側保護部材をこの順で重ねて配置する一方、受光側の反対側となる裏側に、裏側封止材、裏側保護部材をこの順で重ねて配置する太陽電池モジュールにあって、
     測定対象物に対して入射させた光に基づいた正反射光と拡散反射光とを併せた反射光の色の測定値Px(L*[Px],a*[Px],b*[Px])と、
    測定対象物に対して入射させた光に基づいた拡散反射光のみの色の測定値Qx(L*[Qx],a*[Qx],b*[Qx])と、
    から計算される値が(なお、L*,a*,b*はCIE1976L***表色系を用い、xには識別符号g,m,s,c,k,tが挿入)、以下の通りである太陽電池モジュール。
     (1).前記受光側保護部材そのものに対する、測定値Pg(L*[Pg],a*[Pg],b*[Pg])に基づく彩度C*[Pg]、および、測定値Qg(L*[Qg],a*[Qg],b*[Qg])に基づく彩度C*[Qg]が、以下の条件を満たす。
       C*[Pg]≦5
       C*[Qg]≦5
    なお、
     C*[Pg]=(a*[Pg]+b*[Pg])1/2
     C*[Qg]=(a*[Qg]+b*[Qg])1/2
    である。
     (2).前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記裏側封止材、前記裏側保護部材がこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による、
    測定値Pm(L*[Pm],a*[Pm],b*[Pm])に基づく彩度C*[Pm]と、
    測定値Qm(L*[Qm],a*[Qm],b*[Qm])に基づく彩度C*[Qm]と、
    の差ΔT[m]が以下の条件を満たす。
       ΔT[m]≧6
    なお、
     ΔT[m]=C*[Qm]-C*[Pm]
         =(a*[Qm]+b*[Qm])1/2-(a*[Pm]+b*[Pm])1/2
    である。
     (3).前記(2)における前記測定値Qm(L*[Qm],a*[Qm],b*[Qm])と、
    前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記太陽電池セルがこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値Qs(L*[Qs],a*[Qs],b*[Qs])と、
    から計算される色度差ΔE[m-s]が、以下の条件を満たす。
       ΔE[m-s]≦30
    なお、
     ΔE[m-s]={(L*[Qm]-L*[Qs])+(a*[Qm]-a*[Qs])
           +(b*[Qm]-b*[Qs])1/2
    である。
  2.  (4).前記太陽電池セルそのものに対する、測定値Qc(L*[Qc],a*[Qc],b*[Qc])と、
    前記裏側保護部材そのものに対する、測定値Qk(L*[Qk],a*[Qk],b*[Qk])と、
    から計算される色度差ΔE[c-k]が、以下の条件を満たす、請求項1に記載の太陽電池モジュール。
       ΔE[c-k]≦60
    なお、
     ΔE[c-k]={(L*[Qc]-L*[Qk])+(a*[Qc]-a*[Qk])
           +(b*[Qc]-b*[Qk])1/2
    である。
  3.  配線部材が含まれており、
     (5).前記(2)における前記測定値Qm(L*[Qm],a*[Qm],b*[Qm])と、
    前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記配線部材がこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値Qt(L*[Qt],a*[Qt],b*[Qt])と、
    から計算される色度差ΔE[m-t]が、以下の条件を満たす、請求項1または2に記載の太陽電池モジュール。
       ΔE[m-t]≦30
    なお、
     ΔE[m-t]={(L*[Qm]-L*[Qt])+(a*[Qm]-a*[Qt])
           +(b*[Qm]-b*[Qt])1/2
    である。
  4.  (6).前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記太陽電池セルがこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による、D50光に基づいた拡散反射光のみの色の測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])と、
    D65光に基づいた拡散反射光のみの色の測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])と、
    から計算される値ΔU[Qs]が、以下の条件を満たす、請求項1~3に記載の太陽電池モジュール。
       ΔU[Qs]≧1
    なお、
     ΔU[Qs]={(L*[50Qs]-L*[65Qs])+(a*[50Qs]-a*[65Qs])
          +(b*[50Qs]-b*[65Qs])1/2
    である。
  5.  太陽電池セルと、前記太陽電池セルを基準にして、受光側に、受光側封止材、受光側保護部材をこの順で重ねて配置する一方、受光側の反対側となる裏側に、裏側封止材、裏側保護部材を重ねて配置する太陽電池モジュールにあって、
     測定対象物に対して入射させたD50光に基づいた、正反射光と拡散反射光とを併せた反射光の色の測定値D50Px(L[50Px],a[50Px],b[50Px])、および、拡散反射光のみの色の測定値D50Qx(L[50Qx],a[50Qx],b[50Qx])と、
     測定対象物に対して入射させたD65光に基づいた、正反射光と拡散反射光とを併せた反射光の色の測定値D65Px(L[65Px],a[65Px],b[65Px])、および、拡散反射光のみの色の測定値D65Qx(L[65Qx],a[65Qx],b[65Qx])と、
    から計算される値が(なお、L*,a*,b*はCIE1976L***表色系を用い、xには識別符号g,m,sが挿入)、以下の通りである太陽電池モジュール。
     (1’).前記受光側保護部材そのものに対する、
    測定値D50Pg(L[50Pg],a[50Pg],b[50Pg])に基づく彩度C[50Pg]、
    測定値D50Qg(L[50Qg],a[50Qg],b[50Qg])に基づく彩度C[50Qg]、
    測定値D65Pg(L[65Pg],a[65Pg],b[65Pg])に基づく彩度C[65Pg]、
    測定値D65Qg(L[65Qg],a[65Qg],b[65Qg])に基づく彩度C[65Qg]、
    が、以下の条件を満たす。
       C[50Pg]≦5
       C[50Qg]≦5
       C[65Pg]≦5
       C[65Qg]≦5
    なお、
     C[50Pg]=(a*[50Pg]+b*[50Pg])1/2
     C[50Qg]=(a*[50Qg]+b*[50Qg])1/2
     C[65Pg]=(a*[65Pg]+b*[65Pg])1/2
     C[65Qg]=(a*[65Qg]+b*[65Qg])1/2
    である。
     (3’).前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記裏側封止材、前記裏側保護部材がこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])および測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])と、
    前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記太陽電池セルがこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])および測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])と、
    から計算される色度差ΔE[50Qm-50Qs]および色度差ΔE[65Qm-65Qs]が、以下の条件を満たす。
       ΔE[50Qm-50Qs]≦30
       ΔE[65Qm-65Qs]≦30
    なお、
     ΔE[50Qm-50Qs]={(L*[50Qm]-L*[50Qs])
              +(a*[50Qm]-a*[50Qs])
              +(b*[50Qm]-b*[50Qs])1/2
     ΔE[65Qm-65Qs]={(L*[65Qm]-L*[65Qs])
              +(a*[65Qm]-a*[65Qs])
              +(b*[65Qm]-b*[65Qs])1/2
    である。
     (6).前記測定値D50Qs(L*[50Qs],a*[50Qs],b*[50Qs])と、
    前記測定値D65Qs(L*[65Qs],a*[65Qs],b*[65Qs])と、
    から計算される値ΔU[Qs]が以下の条件を満たす。
       ΔU[Qs]≧1
    なお、
     ΔU[Qs]={(L*[50Qs]-L*[65Qs])+(a*[50Qs]-a*[65Qs])
          +(b*[50Qs]-b*[65Qs])1/2
    である。
  6.  配線部材が含まれており、
     (5’).前記(3’)における前記測定値D50Qm(L*[50Qm],a*[50Qm],b*[50Qm])および前記測定値D65Qm(L*[65Qm],a*[65Qm],b*[65Qm])と、
    前記受光側から前記裏側に向かって、前記受光側保護部材、前記受光側封止材、前記配線部材がこの順で重なっている部分に対し、前記受光側保護部材から入射させた光による測定値D50Qt(L*[50Qt],a*[50Qt],b*[50Qt])および測定値D65Qt(L*[65Qt],a*[65Qt],b*[65Qt])と、
    から計算される色度差ΔE[50Qm-50Qt]およびΔE[65Qm-65Qt]が、以下の条件を満たす、請求項5に記載の太陽電池モジュール。
       ΔE[50Qm-50Qt]≦30
       ΔE[65Qm-65Qt]≦30
    なお、
     ΔE[50Qm-50Qt]={(L*[50Qm]-L*[50Qt])
              +(a*[50Qm]-a*[50Qt])
              +(b*[50Qm]-b*[50Qt])1/2
     ΔE[65Qm-65Qt]={(L*[65Qm]-L*[65Qt])
              +(a*[65Qm]-a*[65Qt])
              +(b*[65Qm]-b*[65Qt])1/2
    である。
  7.  前記受光側封止材は、波長変換添加剤を含有する、請求項1~6のいずれか1項に記載の太陽電池モジュール。
  8.  前記太陽電池セルは、裏面接合型太陽電池セルである、請求項1~7のいずれか1項に記載の太陽電池モジュール。
  9.  前記配線部材は、黒色化処理された配線部材である、請求項3または6のいずれか1項に記載の太陽電池モジュール。
  10.  前記太陽電池セルは複数含まれており、
     隣り合う前記太陽電池セル同士では、一方の前記太陽電池セルの受光側の主面の一部と、他方の前記太陽電池セルの裏側の主面の一部とが、重なっている、請求項1~9のいずれか1項に記載の太陽電池モジュール。
PCT/JP2018/020054 2017-08-10 2018-05-24 太陽電池モジュール WO2019031023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18843957.4A EP3651211A4 (en) 2017-08-10 2018-05-24 SOLAR CELL MODULE
CN201880050798.7A CN110998866B (zh) 2017-08-10 2018-05-24 太阳能电池模块
JP2019535611A JP7096251B2 (ja) 2017-08-10 2018-05-24 太陽電池モジュール
US16/785,444 US11469339B2 (en) 2017-08-10 2020-02-07 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-155597 2017-08-10
JP2017155597 2017-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/785,444 Continuation US11469339B2 (en) 2017-08-10 2020-02-07 Solar cell module

Publications (1)

Publication Number Publication Date
WO2019031023A1 true WO2019031023A1 (ja) 2019-02-14

Family

ID=65272927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020054 WO2019031023A1 (ja) 2017-08-10 2018-05-24 太陽電池モジュール

Country Status (5)

Country Link
US (1) US11469339B2 (ja)
EP (1) EP3651211A4 (ja)
JP (1) JP7096251B2 (ja)
CN (1) CN110998866B (ja)
WO (1) WO2019031023A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252505A (ja) * 1999-02-25 2000-09-14 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2005079170A (ja) * 2003-08-28 2005-03-24 Kyocera Corp 太陽電池モジュールおよびその製造方法
JP2010243353A (ja) * 2009-04-07 2010-10-28 Ricoh Co Ltd 光沢感評価方法、光沢感評価装置、該装置を有する画像評価装置、画像評価方法および該方法を実行するためのプログラム
US20120247541A1 (en) * 2011-03-31 2012-10-04 Ats Automation Tooling Systems Inc. Colored photovoltaic modules and methods of construction
JP2014139992A (ja) * 2013-01-21 2014-07-31 Toyo Ink Sc Holdings Co Ltd 太陽電池封止材用樹脂組成物
JP2015220894A (ja) * 2014-05-19 2015-12-07 大日本印刷株式会社 太陽電池付表示装置および太陽電池パネル
JP2016000949A (ja) 2014-06-12 2016-01-07 イーバイスリー株式会社 太陽電池架台
JP2016186156A (ja) 2015-03-27 2016-10-27 三菱化学株式会社 太陽電池一体型壁材
JP2017050541A (ja) * 2015-09-03 2017-03-09 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60044384D1 (de) 1999-02-25 2010-06-24 Kaneka Corp Photoelektrische Dünnschicht-Umwandlungsvorrichtung und Verfahren zur Abscheidung durch Zerstäubung
JP3805996B2 (ja) * 2001-04-20 2006-08-09 シャープ株式会社 採光型合わせガラス構造太陽電池モジュール及び採光型複層構造太陽電池モジュール
JP2010087011A (ja) * 2008-09-29 2010-04-15 Kyocera Corp 太陽電池モジュールおよびその製造方法
US20100231386A1 (en) * 2009-03-13 2010-09-16 Lumen International, Inc. Solar-powered sensing
EP2302688A1 (de) * 2009-09-23 2011-03-30 Robert Bosch GmbH Verfahren zur Herstellung eines Substrats mit einer farbigen Interferenzfilterschicht, dieses Substrat, enthaltend eine farbige Interferenzfilterschicht, die Verwendung dieses Substrats als farbige Solarzelle oder als farbiges Solarmodul oder als Bestandteil hiervon sowie ein Array, umfassend mindestens zwei dieser Substrate
JP5614360B2 (ja) * 2011-03-31 2014-10-29 大日本印刷株式会社 太陽電池モジュール用裏面保護シート
JP6583828B2 (ja) * 2014-02-26 2019-10-02 パナソニックIpマネジメント株式会社 太陽電池モジュール
US9866171B2 (en) * 2015-10-13 2018-01-09 Industrial Technology Research Institute Measuring device for property of photovoltaic device and measuring method using the same
US20180342640A1 (en) * 2017-05-24 2018-11-29 Tesla, Inc. Colored photovoltaic module with nanoparticle layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252505A (ja) * 1999-02-25 2000-09-14 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP2005079170A (ja) * 2003-08-28 2005-03-24 Kyocera Corp 太陽電池モジュールおよびその製造方法
JP2010243353A (ja) * 2009-04-07 2010-10-28 Ricoh Co Ltd 光沢感評価方法、光沢感評価装置、該装置を有する画像評価装置、画像評価方法および該方法を実行するためのプログラム
US20120247541A1 (en) * 2011-03-31 2012-10-04 Ats Automation Tooling Systems Inc. Colored photovoltaic modules and methods of construction
JP2014139992A (ja) * 2013-01-21 2014-07-31 Toyo Ink Sc Holdings Co Ltd 太陽電池封止材用樹脂組成物
JP2015220894A (ja) * 2014-05-19 2015-12-07 大日本印刷株式会社 太陽電池付表示装置および太陽電池パネル
JP2016000949A (ja) 2014-06-12 2016-01-07 イーバイスリー株式会社 太陽電池架台
JP2016186156A (ja) 2015-03-27 2016-10-27 三菱化学株式会社 太陽電池一体型壁材
JP2017050541A (ja) * 2015-09-03 2017-03-09 エルジー エレクトロニクス インコーポレイティド 太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651211A4

Also Published As

Publication number Publication date
JPWO2019031023A1 (ja) 2020-08-20
EP3651211A1 (en) 2020-05-13
EP3651211A4 (en) 2020-05-27
US20200176621A1 (en) 2020-06-04
US11469339B2 (en) 2022-10-11
CN110998866B (zh) 2022-12-06
CN110998866A (zh) 2020-04-10
JP7096251B2 (ja) 2022-07-05

Similar Documents

Publication Publication Date Title
EP2839512B1 (en) A backsheet for a photovoltaic module using infrared reflective pigments
CN114765969B (zh) 具有复合窗格结构的彩色外墙元件
CN112740424B (zh) 具有图案化盖板和光学干涉层的太阳能模块
US20190211617A1 (en) Glass building material
JP2005079170A (ja) 太陽電池モジュールおよびその製造方法
JP7165198B2 (ja) 均質な色印象を有するソーラーモジュール
KR102702086B1 (ko) 구조화된 커버 플레이트 및 컬러 필터층을 갖는 착색된 플레이트형 부품
WO2020129501A1 (ja) 太陽電池モジュール集積デバイス
WO2019031023A1 (ja) 太陽電池モジュール
CN111727509B (zh) 太阳能电池模块
JP2005129565A (ja) 太陽電池モジュールおよびその製造方法
JP2004165508A (ja) 光透過型太陽電池モジュール及びその製造方法
CN112868106B (zh) 太阳能电池模块
CN219017675U (zh) 彩色电池组件和光伏系统
KR20230068902A (ko) 미디어 건물 일체형 태양광 모듈
CN115663046A (zh) 彩色电池组件和光伏系统
CN118531950A (zh) 一种光伏建筑板材以及建筑物
JP2005209957A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018843957

Country of ref document: EP

Effective date: 20200206