Nothing Special   »   [go: up one dir, main page]

WO2019019813A1 - 一种感光组件 - Google Patents

一种感光组件 Download PDF

Info

Publication number
WO2019019813A1
WO2019019813A1 PCT/CN2018/090237 CN2018090237W WO2019019813A1 WO 2019019813 A1 WO2019019813 A1 WO 2019019813A1 CN 2018090237 W CN2018090237 W CN 2018090237W WO 2019019813 A1 WO2019019813 A1 WO 2019019813A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
filter film
light
image
sensing circuit
Prior art date
Application number
PCT/CN2018/090237
Other languages
English (en)
French (fr)
Inventor
田琪
钟钢
Original Assignee
深圳吉迪思电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳吉迪思电子科技有限公司 filed Critical 深圳吉迪思电子科技有限公司
Publication of WO2019019813A1 publication Critical patent/WO2019019813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference

Definitions

  • the present invention relates to a photosensitive member, and more particularly to a photosensitive member for obtaining an image.
  • the conventional photosensitive component acquires an image through a combination of lenses. Since a plurality of lenses are required to be used in combination, the photosensitive component is bulky, and the existing electronic products are increasingly thinner and lighter, which is bound to be light and thin to the photosensitive component. Development requirements, and existing photosensitive components have certain limitations.
  • a planar photosensitive member which does not require a plurality of lens combinations to obtain an image through a planar grating disposed in front of the photoelectric sensing element.
  • the existing flat photosensitive module has a single raster pattern, and the distance, the direction of the object to be photographed, and the sharpness of the obtained image cannot be adjusted as needed. Therefore, it is necessary to provide a more flexible and comprehensive image sensing component. .
  • the technical problem to be solved by the present invention is to provide a flexible and omni-directional clear image sensing assembly.
  • the present invention provides a photosensitive member comprising a filter film and a light sensing circuit, the light sensing circuit receiving an optical signal transmitted through the filter film.
  • the filter film includes a liquid crystal structure, and the liquid crystal structure includes a liquid crystal, and the liquid crystal constitutes a light transmitting portion and a light blocking portion of the filter film, and the light transmitting portion and the light shielding portion are spaced apart.
  • the liquid crystal structure further includes a driving electrode and a common electrode, and the liquid crystal deflection is press-driven between the driving electrode and the common electrode.
  • the liquid crystal structure further includes a thin film transistor connected to the driving electrode.
  • the thin film transistor is fabricated by using amorphous silicon or low temperature polysilicon technology.
  • the liquid crystal structure further includes an upper substrate and a lower substrate, the driving electrode is located on the upper substrate, the common electrode is located on the lower substrate, or the driving electrode is located in the lower substrate, and the common electrode is located on the upper substrate.
  • the shape of the light transmitting portion and the light blocking portion are variable.
  • the liquid crystal structure includes a plurality of cells, and the liquid crystal is located in the cell.
  • the photosensitive method of the photosensitive member is: the liquid crystal of the light shielding portion in the filter film is driven, the liquid crystal is deflected to a certain angle or continuously deflected, and the light sensing circuit acquires an optical signal transmitted through the filter film. The above optical signal is analyzed to obtain an image.
  • the light sensing circuit acquires an optical signal, and parses the optical signal to obtain an image; if the liquid crystal continuously deflects, the optical sensing circuit acquires multiple sets of light a signal, parsing the plurality of sets of optical signals to obtain an image, and splicing the plurality of images to obtain a complete image.
  • the liquid crystal is driven again to acquire an image.
  • the invention adopts liquid crystal as the material of the grating of the filter film, can change the rotation angle of the liquid crystal as needed, can obtain an image of all phases, and has a larger shooting range, and can adjust the shape of the light shielding portion as needed, and adjust the image obtained. Sharpness for more flexible image acquisition.
  • Figure 1 is a schematic view showing the structure of a photosensitive member of the present invention.
  • FIG. 2 is a schematic plan view of an embodiment of a filter film.
  • Fig. 3 is a plan view showing still another embodiment of the filter film.
  • FIG. 4 is a plan view showing another embodiment of a filter film.
  • Fig. 5 is a schematic view showing the structure of an embodiment of a filter film.
  • Fig. 6 is a schematic view showing the structure of still another embodiment of the filter film.
  • Figure 7 is a circuit diagram of the filter film of Figure 6.
  • Fig. 8 is a schematic view showing an optical path of an image obtained by a photosensitive member.
  • Figure 9 is a schematic diagram of liquid crystal deflection during image acquisition.
  • Fig. 10 is a schematic view showing the image of each bit obtained by the photosensitive member.
  • Figure 11 is a schematic diagram of the image mosaic of the various bits.
  • Figure 12 is a schematic view of a liquid crystal portion in a filter film.
  • Fig. 13 is a schematic view showing the liquid crystal portion after changing the form of the light shielding portion.
  • Fig. 14 is a flow chart showing the image pickup by the photosensitive member.
  • the photosensitive member of the present invention comprises a filter film 1 and a light sensing circuit 2, and the filter film 1 and the light sensing circuit 2 are bonded together by an optical colloid 3.
  • the filter film 1 obtains an optical signal by optical principles such as diffraction, interference, and the like of light, and the light sensing circuit 2 senses an optical signal formed by a light beam of the filter film 1.
  • the filter film 1 includes a plurality of transparent portions 10 and a plurality of light shielding portions 11 between the light transmitting portions 10, that is, the light transmitting portions 10 and The light shielding portions 11 are spaced apart.
  • the light transmitting portion 10 and the light shielding portion 11 of the filter film 1 can have various forms.
  • the light transmitting portion 10 and the light shielding portion 11 of the filter film 1 have a strip shape, and the light transmitting portion 10 and the light shielding portion 11 are arranged in parallel.
  • the light transmitting portion 10 and the light shielding portion 11 are circular, and the light transmitting portion 10 and the light shielding portion 11 have the same center, and the light transmitting portion 10 and the light shielding portion 11 at different positions have a circular shape.
  • the light transmitting portion 10 and the light shielding portion 11 are annular rings that are spaced apart at different radii.
  • the light transmitting portion 10 and the light shielding portion 11 are divergent patterns, and the light transmitting portion 10 and the light shielding portion 11 are strips that diverge outward from a center point, and the strip shape is more
  • the light sensing circuit 2 may employ a CCD (capacitive coupling) photosensitive element or a CMOS (Complementary Metal Oxide Semiconductor) photosensitive element.
  • the CMOS photosensitive element can be made of silicon or glass as a substrate.
  • the structure of the filter film 1 will be specifically described below according to various embodiments.
  • the filter film 1 is made of a liquid crystal material to form the light transmitting portion 10 and the light shielding portion 11.
  • the deflection angle of the liquid crystal 14 at different positions is different, and the deflection angle of the portion of the liquid crystal 14 does not block the light from entering, forming the filter film 1.
  • the deflection angle of the portion of the liquid crystal 14 blocks light from entering, and the light shielding portion 11 of the filter film 1 is formed.
  • the deflection angle of the liquid crystal 14 in the filter film can be adjusted as needed, and the shape, thickness, and spacing of the light transmitting portion 10 and the light shielding portion 11 can be adjusted.
  • the filter film 1 includes a liquid crystal structure including an upper substrate 12, a lower substrate 13, and the upper and lower substrates ( 12, 13) between the liquid crystal 14, the upper substrate 12 and the lower substrate 13 are glass substrates, the upper substrate 12 is provided with a driving electrode 15, the lower substrate 13 is provided with a common electrode 16, of course, the same The upper substrate 12 is provided with a common electrode 16, and the lower substrate 13 is provided with a drive electrode 15. A cavity is formed between the upper and lower substrates (12, 13), and a plurality of cells are formed in the cavity. The liquid crystals 14 are respectively poured into the cells in the cavity, and each liquid crystal 14 is located in one cell. When the driving electrode 15 and the common electrode 16 are pressurized, the liquid crystal 14 is driven to deflect. The light transmitting portion 10 and the light blocking portion 11 of the filter film 1 are formed according to the difference in the deflection angle of the liquid crystal 14.
  • the filter film 1 includes a liquid crystal structure including an upper substrate 12, a liquid crystal 14 and a lower substrate 13, The upper substrate 12 and the lower substrate 13 are disposed opposite to each other, and the liquid crystal 14 is located between the lower substrate 13 and the upper substrate 12.
  • the upper substrate 12 includes a common electrode 15, and the lower substrate 13 includes a plurality of thin film transistors (TFTs) 17 and drive electrodes 16, the thin film transistors 17 are arranged in an array, and the drive electrodes 16 correspond to the thin film transistors. 17 settings.
  • the driving electrode 16 and the common electrode 15 form a plurality of capacitors 18.
  • Each capacitor 18 corresponds to a liquid crystal, and the capacitor is electrically connected to the thin film transistor 17, and the thin film transistor 17 is driven to charge the capacitor 18.
  • the capacitor 18 passes through The discharge achieves a drive inversion of the liquid crystal 14.
  • the selection of the liquid crystal 14 is controlled by controlling the selection of the thin film transistor 17.
  • the thin film transistor 17 can be fabricated using an amorphous silicon (a-Si) or low temperature polysilicon (LTPS) process.
  • a-Si amorphous silicon
  • LTPS low temperature polysilicon
  • the thin film transistor 17 is fabricated by a low temperature polysilicon process. Such a fabrication method can reduce the area of the thin film transistor 17 and is more advantageous for light introduction.
  • the liquid crystal 14 in the filter film 1 is driven, the liquid crystal 14 is deflected, and light is transmitted through the light transmitting portion 10 between the light shielding portions 11 of the filter film,
  • the form of the light portion 10 and the light shielding portion 11 obtains an optical signal according to an optical principle such as diffraction, interference, or the like of light, and the optical signal is acquired by the light sensing circuit 2, and the light sensing circuit 2 sets the optical signal Converted to an electrical signal.
  • the time when the liquid crystal 14 is deflected corresponds to the time when the light sensing circuit 2 receives the optical signal and converts it to an electrical signal. After the light sensing circuit 2 receives the optical signal and converts the optical signal into an electrical signal, The liquid crystal 14 is deflected for the next time.
  • the deflection direction of the liquid crystal 14 is controlled to determine the form of the light shielding portion 11 of the filter film 1, and the optical signal transmission filter film 1 is acquired by the light sensing circuit 2.
  • the optical signal acquired by the light sensing circuit 2 is analyzed to acquire an image.
  • the deflection direction of the liquid crystal 14 is adjusted to reacquire the image.
  • Figures 8-14 illustrate the process of acquiring an omnidirectional image.
  • the photosensitive element is intended to acquire a omnidirectional scene 19
  • the distance between the filter film opaque portions 11 is d1
  • the distance between the omnidirectional scene 19 and the photosensitive element is d2, d1
  • the size determines the distance of the subject, that is, how far the image is taken.
  • the size of d1 is related to the number of liquid crystal cells in the light transmitting portion 10, and the value thereof is a multiple of the length of the liquid crystal cell.
  • the liquid crystal 14 controlling the light shielding portion 11 is continuously deflected by the driving of the voltage. As shown in FIG.
  • the liquid crystal 14 exhibits different angles with the deflection of the liquid crystal 14 (liquid crystals of different angles during deflection are shown by broken lines), and the light sensing circuit 2 obtains light of different incident angles.
  • the signal that is, the sensing circuit obtains a plurality of sets of optical signals, and the optical signals of the same incident angle are a set of optical signals, and each set of optical signals obtains an image.
  • FIG. 9 shows the direction of deflection in the clockwise direction, this is not intended to limit the invention, but only to more clearly describe the invention, the direction of deflection of the liquid crystal 14 is not limited, it may be clockwise, Counterclockwise, it can be other ways. As shown in FIG.
  • the light sensing circuit 2 acquires multiple images in different orientations, acquires an image on the optical sensing circuit 2, performs image binarization processing, and acquires the acquired image.
  • the restoration of the acquired image can be done by means of Fourier variation.
  • FIG. 11 the above-mentioned restored multiple images are superimposed, that is, the images of the respective orientations are spliced to form a complete image.
  • Figures 12-14 the contrast of the obtained image is analyzed, that is, the edge of the image is detected, and the edge of the image refers to the edge of the two color merged portions of the image, and the contour edge of the image.
  • the amount of the deflecting liquid crystal 14 or the angle of the deflecting liquid crystal 14 or both are adjusted to change the shape of the light transmitting portion 10 in the filter film 1 so that the photosensitive member Get a farther distance image, ie d2 increases.
  • the above step of acquiring an image is repeated, and the liquid crystal 14 in the light shielding portion 11 is driven so that it is deflected, and a plurality of images are obtained during the deflection of the liquid crystal 14.
  • the image that can be obtained by the light sensing circuit 2 is changed, and the sharpness of the obtained image is adjusted.
  • the rotation angle of the liquid crystal 14 can be changed as needed, and an image of all phases can be obtained, the imaging range is larger, and the shape of the light shielding portion 11 can be adjusted as needed. , adjust the sharpness of the picture, and get more flexible images.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

一种感光组件,其包括滤光膜和光传感电路,所述光传感电路接收透过所述滤光膜的光信号。所述滤光膜包括液晶结构,所述液晶结构包括液晶,根据所述液晶偏转角度不同,所述液晶构成所述滤光膜的光部和遮光部,所述透光部和所述遮光部间隔设置。本发明通过采用液晶作为滤光膜遮光部的材料,能够根据需要变换液晶的转动角度,能够获得全相位的图像,拍摄范围更大。并且可以根据需要调节遮光部的形态,调整获得图片的清晰度,能够更加灵活的获取图像。

Description

一种感光组件 技术领域
本发明涉及一种感光组件,尤其是一种应用于获取图像的感光组件。
背景技术
传统的感光组件,是通过透镜的组合来获取图像,由于需要多个透镜组合使用,感光组件体积较大,而现有的电子产品,越来越向轻薄化发展,势必对感光组件有像轻薄发展的要求,而现有的感光组件具有一定的局限性。
为了解决传统感光组件体积大的问题,现提出了平面的感光组件,无需多个透镜组合,通过设置于光电传感元件前的平面光栅获得图像。现有的平面感光组件光栅图形单一,所能拍摄物体的距离、方向以及所获得图片的清晰度等问题,无法根据需要进行调节,因此有必要提供一种能够更加灵活获得全方位清晰图像感光组件。
发明内容
本发明要解决的技术问题是提供一种灵活获得全方位清晰图像感光组件。
为了实现上述目的,本发明提供一种感光组件,其包括滤光膜和光传感电路,所述光传感电路接收透过所述滤光膜的光信号。所述滤光膜包括液晶结构,所述液晶结构包括液晶,所述液晶构成所述滤光膜的透光部和遮光部,所述透光部和所述遮光部间隔设置。
进一步的,所述液晶结构还包括驱动电极和公共电极,在所述驱动电 极和公共电极之间加压驱动所述液晶偏转。
进一步的,所述液晶结构还包括薄膜晶体管,所述薄膜晶体管连接所述驱动电极。
进一步的,所述薄膜晶体管采用非晶硅或者低温多晶硅工艺制作。
进一步的,所述液晶结构还包括上基板和下基板,所述驱动电极位于上基板,所述公共电极位于下基板,或者所述驱动电极位于下基板,所述公共电极位于上基板。
进一步的,所述透光部和遮光部形态是可变的。
进一步的,所述液晶结构包括多个单元格,所述液晶位于单元格内。
上述感光组件的感光方法为:滤光膜中的遮光部的液晶被驱动,所述液晶发生偏转至一定角度或持续偏转,所述光传感电路获取透过所述滤光膜的光信号,对上述光信号进行解析,获得图像。
进一步的,若所述液晶偏转至一定角度,所述光传感电路获取光信号,对所述述光信号进行解析获得图像;若所述液晶持续偏转,所述光传感电路获取多组光信号,对所述多组光信号进行解析获得图像,对所述多幅图像进行拼接,获得完整图像。
进一步的,若要调整所获得图像的质量,调整所述滤光膜中透光部和遮光部的形态后,再次驱动所述液晶,获取图像。
本发明通过采用液晶作为滤光膜的遮光栅的材料,能够根据需要变换液晶的转动角度,能够获得全相位的图像,拍摄范围更大,并且可以根据需要调节遮光部的形态,调整获得图片的清晰度,能够更加灵活的获取图像。
附图说明
图1是本发明感光组件的结构示意图。
图2是滤光膜一实施例的平面示意图。
图3是滤光膜又一实施例的平面示意图。
图4是滤光膜另一实施例的平面示意图。
图5是滤光膜一实施例的结构示意图。
图6是滤光膜又一实施例的结构示意图。
图7是图6滤光膜的电路示意图。
图8是感光组件获取图像的光路示意图。
图9是图像获取过程中液晶偏转示意图。
图10是感光组件获得的各方位图像示意图。
图11是各方位图像拼接示意图。
图12是滤光膜中液晶部分示意图。
图13是改变遮光部的形态后所述液晶部分示意图。
图14是感光组件获取图像的流程示意图。
具体实施方式
下面结合附图和实施例对发明作进一步说明。
如图1所示,本发明的感光组件包括滤光膜1和光传感电路2,所述滤光膜1和所述光传感电路2通过光学胶体3贴合。所述滤光膜1利用光学原理如光的衍射、干涉等获得光信号,所述光传感电路2感应通过所述滤光膜1的光束形成的光信号。
如图2、图3、图4所示,所述滤光膜1包括多个透光部10和多个位于所述透光部10之间的遮光部11,即所述透光部10和所述遮光部11间隔设置。所述滤光膜1的透光部10和遮光部11可以有多种形态。
如图2所示,所述滤光膜1的透光部10和遮光部11的形状为条形,所述透光部10和遮光部11平行间隔排列。
如图3所示,所述透光部10和所述遮光部11为圆形,所述透光部10和所述遮光部11具有同一圆心,不同位置的透光部10和遮光部11具有不同的半径,所述透光部10和遮光部11为间隔设置的圆环。
如图4所示,所述透光部10和所述遮光部11为发散图形,所述透光部10和所述遮光部11为从中心点向外发散的条形,所述条形越靠近中心位置宽度越小,越靠近边界位置宽度越大,所诉透光部10和所述遮光部11的边界可以是直线,也可以是曲线。
所述光传感电路2可以采用CCD(电容耦合)感光元件或者CMOS(互补金属氧化物半导体)感光元件。其中CMOS感光元件可以采用硅、玻璃作为基材制作。
下面根据不同的实施例具体介绍所述滤光膜1的结构。
所述滤光膜1利用液晶材料制成透光部10和遮光部11,利用不同位置的液晶14的偏转角度不同,部分液晶14的偏转角度不会阻挡光线射入,形成滤光膜1的透光部10,部分液晶14的偏转角度遮挡光线射入,形成滤光膜1的遮光部11。可以根据需要控制调节所述滤光膜中液晶14的偏转角度,进而调节所述透光部10和所述遮光部11的形状、粗细、间隔等特征。
如图5所示,其为所述滤光膜1的一实施例,所述滤光膜1包括液晶结构,所述液晶结构包括上基板12、下基板13以及位于所述上、下基板(12、13)之间的液晶14,所述上基板12和下基板13为玻璃基板,所述上基板12设有驱动电极15,所述下基板13设有公共电极16,当然也可以所述上基板12设置公共电极16,下基板13设置驱动电极15。所述上、下基板(12、13)之间构成腔体,腔体内形成多个单元格,所述液晶14分别灌注于所述腔体内单元格内,每个液晶14位于一个单元格内。当对所述驱 动电极15和所述公共电极16加压时,驱动所述液晶14发生偏转。根据液晶14的偏转角度不同,构成滤光膜1的透光部10和遮光部11。
如图6-7所示,其为所述滤光膜1的另一实施例,所述滤光膜1包括液晶结构,所述液晶结构包括上基板12、液晶14和下基板13,所述上基板12和下基板13相对设置,所述液晶14位于所述下基板13和所述上基板12之间。所述上基板12包括公共电极15,所述下基板13包括多个薄膜晶体管(TFT)17和驱动电极16,所述薄膜晶体管17以阵列的形式排列,所述驱动电极16对应所述薄膜晶体管17设置。其中,所述驱动电极16和公共电极15组成多个电容18,每个电容18对应一液晶,且电容与薄膜晶体管17相电连接,驱动所述薄膜晶体管17对电容18充电,所电容18通过放电实现对液晶14的驱动翻转。通过控制对所述薄膜晶体管17的选择,进而控制对所述液晶14的选择。所述薄膜晶体管17可以采用非晶硅(a-Si)或者低温多晶硅(LTPS)工艺制作。最佳的,所述薄膜晶体管17采用低温多晶硅的工艺制作,这样的工艺制作方法能够减少薄膜晶体管17的面积,更有利于光的导入。
下面具体介绍上述感光组件获取图像的方法。
在获取图像的过程中,所述滤光膜1中的液晶14被驱动,所述液晶14发生偏转,光线透过所述滤光膜遮光部11之间的透光部10,利用所述透光部10和所述遮光部11的形态,依据光学原理如光的衍射、干涉等获得光信号,光信号被所述光传感电路2获取,所述光传感电路2将所述光信号转换为电信号。所述液晶14偏转的时间与所述光传感电路2接收光信号转换至电信号的时间相对应,在所述光传感电路2接收光信号并将所述光信号转换为电信号后,所述液晶14进行下一次偏转。
获取图像时,控制所述液晶14的偏转方向,确定所述滤光膜1的遮光 部11的形态,光信号透过滤光膜1被所述光传感电路2获取。对所述光传感电路2获取的光信号进行解析,获取图像。若要获取其他方位的图像,调整所述液晶14的偏转方向,重新获取图像。
图8-14示出了获取全方位图像的过程。如图8所示,所述感光元件想要获取全方位景象19,所述滤光膜遮光部11之间的距离为d1,所述全方位景象19与所述感光元件的距离是d2,d1的大小决定了拍摄物体的距离,即拍摄多远距离的图像。d1的大小与透光部10中液晶单元格的数量有关,其数值是液晶单元格长度的倍数。在一次图像获取的过程中,控制所述遮光部11的液晶14在电压的驱动下不断偏转。如图9所示,随着所述液晶14的偏转,所述液晶14呈现不同的角度(偏转过程中不同角度的液晶由虚线示出),所述光传感电路2获得不同入射角度的光信号,即所述传感电路获得多组光信号,同一入射角度的光信号为一组光信号,每组光信号获得一幅图像。虽然图9示出了顺时针的偏转方向,但这并不是用于限定本发明,而只是为了更清楚的描述本发明,所述液晶14的偏转方向不受限定,可以是顺时针,可以是逆时针,也可以是其他方式。如图10所示,在一次图像获取过程中,所述光传感电路2获取不同方位的多幅图像,对所述光传感电路2获取图像进行图像二值化处理,并将获取的图像进行还原,对获取图像的还原可以通过傅里叶变化的方式。如图11所示,将上述还原的多幅图像进行叠加,即将各个方位的图像进行拼接,形成完整的图像。如图12-14所示,对获得图像的对比度进行分析,即检测图像的边缘,所述图像的边缘是指图像两种色彩汇合部分边缘,图像的轮廓边缘。若所述图像的对比度未达到最大值,通过调整偏转液晶14的数量或者偏转液晶14的角度或者两者都进行调整,以改变滤光膜1中透光部10的形态,使得所述感光元件获得更远距离的图像,即d2增大。再重复上述获取图像的 步骤,驱动所述遮光部11中的液晶14,使得其发生偏转,在所述液晶14偏转的过程中,获得多幅图像。对上述图像进行还原拼接,分析所获得图像的对比度是否达到最大值,若未达到最大值,继续调整透光部10的直径或宽度(若透光部10为条形,调整透光部10的宽度,若透光部10为环形,调整所述透光部10的圆环的直径),改变入射光线的角度等方式,使得图像更加清晰饱和,直至所述图像的对比度达到最佳,输出图像。
通过变换所述滤光膜1的透光部10的形态,改变所述光传感电路2能够获得的图像,进而调整获得图像的清晰度。
本发明通过采用液晶14作为滤光膜1的遮光部11的材料,能够根据需要变换液晶14的转动角度,能够获得全相位的图像,拍摄范围更大,并且可以根据需要调节遮光部11的形态,调整获得图片的清晰度,能够更加灵活的获取图像。

Claims (10)

  1. 一种感光组件,其包括滤光膜和光传感电路,所述光传感电路接收透过所述滤光膜的光信号,其特征在于:所述滤光膜包括液晶结构,所述液晶结构包括上基板,下基板,位于所述上基板和下基板间的液晶,以及驱动电极和公共电极;所述液晶设置于所述上基板和下基板间的数个单元格内,通过在所述驱动电极和公共电极之间加压来驱动所述液晶偏转,在所述滤光膜上形成间隔的透光部和遮光部。
  2. 如权利要求1所述的感光组件,其特征在于:所述液晶结构还包括薄膜晶体管,所述薄膜晶体管连接所述驱动电极。
  3. 如权利要求2所述的感光组件,其特征在于:所述薄膜晶体管采用非晶硅或者低温多晶硅工艺制作。
  4. 如权利要求1所述的感光组件,其特征在于:所述驱动电极设于所述上基板上,所述公共电极设于下基板,或者所述驱动电极设于所述下基板,所述公共电极设于所述上基板。
  5. 如权利要求1所述的感光组件,其特征在于:所述间隔的透光部和遮光部的形态是可变的。
  6. 如权利要求1或2所述的感光组件,其特征在于:所述不同单元格内的液晶分别由不同的驱动电极和公共电极驱动发生不同的偏转角度,根据所述液晶的偏转角度不同,在滤光膜上形成透光部或遮光部。
  7. 如权利要求1所述的感光组件的感光方法,其特征在于包括:根据预设驱动滤光膜中的遮光部的液晶偏转至一定角度或持续偏转,以形成不同入射角度的光信号,所述光传感电路获取透过所述滤光膜的光信号,并对所述光信号进行解析,获得图像。
  8. 如权利要求7所述的感光组件的感光方法,其特征在于:所述液晶偏转的时间与所述光传感电路接收光信号转换至电信号的时间相对应。
  9. 如权利要求7所述的感光组件的感光方法,其特征在于:若所述液晶偏转至一定角度,所述光传感电路获取光信号,对上述光信号进行解析获得图像;若所述液晶持续偏转,所述光传感电路获取多组光信号,对所述多组光信号进行解析获得图像,对所述多幅图像进行拼接,获得完整图像。
  10. 如权利要求7所述的感光组件的感光方法,其特征在于:若要调整所获得图像的质量,调整所述滤光膜中透光部和遮光部的形态后,再次驱动所述液晶,获取图像。
PCT/CN2018/090237 2017-07-28 2018-06-07 一种感光组件 WO2019019813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710664239.2 2017-07-28
CN201710664239.2A CN107589566B (zh) 2017-07-28 2017-07-28 一种感光组件

Publications (1)

Publication Number Publication Date
WO2019019813A1 true WO2019019813A1 (zh) 2019-01-31

Family

ID=61043167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090237 WO2019019813A1 (zh) 2017-07-28 2018-06-07 一种感光组件

Country Status (2)

Country Link
CN (1) CN107589566B (zh)
WO (1) WO2019019813A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589566B (zh) * 2017-07-28 2020-09-15 深圳吉迪思电子科技有限公司 一种感光组件
CN111158178B (zh) * 2020-02-27 2021-11-23 武汉华星光电技术有限公司 液晶面板及液晶显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476028A (en) * 1987-09-17 1989-03-22 Canon Kk Liquid crystal optical modulator
JPH0951484A (ja) * 1995-08-08 1997-02-18 Mazda Motor Corp 電子カメラの光量制御装置
JPH09281330A (ja) * 1996-04-11 1997-10-31 Asahi Glass Co Ltd 液晶回折格子、その製造方法及びそれを用いた光ヘッド装置
US20070121046A1 (en) * 2005-09-16 2007-05-31 Yasuo Toko Liquid crystal optical element, manufacturing method thereof, and vehicle light using same
CN101715066A (zh) * 2008-09-30 2010-05-26 富士通先端科技株式会社 信息读取用摄像装置
CN101931742A (zh) * 2009-06-18 2010-12-29 鸿富锦精密工业(深圳)有限公司 影像感测模组及取像模组
CN103913791A (zh) * 2012-12-31 2014-07-09 中国科学院微电子研究所 一种液晶滤波方法、液晶滤波器和空间滤波系统
CN107589566A (zh) * 2017-07-28 2018-01-16 深圳吉迪思电子科技有限公司 一种感光组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295513A (ja) * 1998-04-14 1999-10-29 Minolta Co Ltd 色分光素子を有する装置
CN102221340A (zh) * 2010-04-19 2011-10-19 财团法人工业技术研究院 可调式影像判距装置及方法
JP2012073522A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 位相型回折素子、その製造方法、および撮像装置
JP2013046013A (ja) * 2011-08-26 2013-03-04 Sony Corp 固体撮像素子および電子機器
CN103887316B (zh) * 2012-12-21 2017-04-12 上海天马微电子有限公司 一种图像传感器
CN106847111B (zh) * 2017-03-31 2019-03-22 京东方科技集团股份有限公司 显示面板及其像素电路、像素电路的驱动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476028A (en) * 1987-09-17 1989-03-22 Canon Kk Liquid crystal optical modulator
JPH0951484A (ja) * 1995-08-08 1997-02-18 Mazda Motor Corp 電子カメラの光量制御装置
JPH09281330A (ja) * 1996-04-11 1997-10-31 Asahi Glass Co Ltd 液晶回折格子、その製造方法及びそれを用いた光ヘッド装置
US20070121046A1 (en) * 2005-09-16 2007-05-31 Yasuo Toko Liquid crystal optical element, manufacturing method thereof, and vehicle light using same
CN101715066A (zh) * 2008-09-30 2010-05-26 富士通先端科技株式会社 信息读取用摄像装置
CN101931742A (zh) * 2009-06-18 2010-12-29 鸿富锦精密工业(深圳)有限公司 影像感测模组及取像模组
CN103913791A (zh) * 2012-12-31 2014-07-09 中国科学院微电子研究所 一种液晶滤波方法、液晶滤波器和空间滤波系统
CN107589566A (zh) * 2017-07-28 2018-01-16 深圳吉迪思电子科技有限公司 一种感光组件

Also Published As

Publication number Publication date
CN107589566A (zh) 2018-01-16
CN107589566B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
US11747641B2 (en) Imaging apparatus with cylindrical lenses
KR100263579B1 (ko) 입사면이초점면에정렬될수있는전하전송소자가장착된고체촬상장치
US9389454B2 (en) Liquid crystal lens, method of driving liquid crystal lens, lens unit, camera module, and capsule type medical device
US11282882B2 (en) Focus detecting device and electronic device
US8218032B2 (en) Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same
US6888613B2 (en) Diffractive focusing using multiple selectively light opaque elements
EP4398304A3 (en) Image sensor including color separating lens array and electronic device including the image sensor
US10594919B2 (en) Camera device and method for capturing images by using the same
KR100856092B1 (ko) 광학렌즈 및 광학렌즈가 장착된 카메라 모듈
US20100321595A1 (en) Camera module with liquid crystal module
JP2014530581A (ja) 適応光学要素を含むレンズスタックアレイ
EP2720084B1 (en) Method of integrating circuits for a camera and a liquid crystal lens in a liquid crystal display panel and the liquid crystal display panel
CN106168727B (zh) 液晶透镜阵列、成像装置与方法
US9380205B2 (en) Liquid crystal lens imaging apparatus and liquid crystal lens imaging method
CN105182453A (zh) 透镜阵列基板、电光装置以及电子设备
WO2017148109A1 (zh) 一种彩色成像装置以及获取彩色图像的方法
WO2019019813A1 (zh) 一种感光组件
JP2011100971A (ja) 湾曲した回路を製造するための方法
US10225458B2 (en) Display panel and display apparatus using the same
WO2008087485A2 (en) Imaging system with relaxed assembly tolerances and associated methods
US20210203821A1 (en) Imaging device and electronic apparatus
JP7564193B2 (ja) Tofカメラ
KR100645635B1 (ko) 광학 소자를 포함하는 이미지 픽업 모듈
US20140267876A1 (en) Camera module
CN202870434U (zh) 液晶面板及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837580

Country of ref document: EP

Kind code of ref document: A1