Nothing Special   »   [go: up one dir, main page]

WO2019018997A1 - 一种抗菌藻酸盐纤维、其敷料的制备方法及应用 - Google Patents

一种抗菌藻酸盐纤维、其敷料的制备方法及应用 Download PDF

Info

Publication number
WO2019018997A1
WO2019018997A1 PCT/CN2017/094221 CN2017094221W WO2019018997A1 WO 2019018997 A1 WO2019018997 A1 WO 2019018997A1 CN 2017094221 W CN2017094221 W CN 2017094221W WO 2019018997 A1 WO2019018997 A1 WO 2019018997A1
Authority
WO
WIPO (PCT)
Prior art keywords
alginate
antibacterial
fiber
solution
alginate fiber
Prior art date
Application number
PCT/CN2017/094221
Other languages
English (en)
French (fr)
Inventor
孟永刚
莫晋文
Original Assignee
惠州华阳医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州华阳医疗器械有限公司 filed Critical 惠州华阳医疗器械有限公司
Priority to EP17919151.5A priority Critical patent/EP3660191B1/en
Priority to PCT/CN2017/094221 priority patent/WO2019018997A1/zh
Publication of WO2019018997A1 publication Critical patent/WO2019018997A1/zh
Priority to US16/428,854 priority patent/US11131040B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/04Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of alginates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00063Accessories for dressings comprising medicaments or additives, e.g. odor control, PH control, debriding, antimicrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00217Wound bandages not adhering to the wound
    • A61F2013/00229Wound bandages not adhering to the wound with alginate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/204Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with nitrogen-containing functional groups, e.g. aminoxides, nitriles, guanidines
    • A61L2300/206Biguanides, e.g. chlorohexidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2400/00Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
    • D06M2400/01Creating covalent bondings between the treating agent and the fibre

Definitions

  • Antibacterial alginate fiber preparation method and application thereof
  • the present invention relates to the field of wound care or wound healing medicine, and more particularly to an antibacterial alginate fiber, a method of preparing the same, and an application thereof.
  • Alginate dressings after absorbing wound exudate, form a soft gel that provides an ideal moist environment for wound healing, promotes wound healing, and relieves wound pain. It has the advantages of safe, non-toxic, high hygroscopicity, hemostatic, gelatinizing, and promoting wound healing. It is widely used in the field of wound care. However, there are disadvantages such as weak antibacterial properties.
  • Polyhexamethylene biguanide salt contains strong positive electricity, adsorbs various kinds of bacteria and viruses which are usually negatively charged, enters the cell membrane, inhibits the synthesis of liposome in the membrane, and causes apoptosis of the cells, which is excellent. Sterilization effect. Has a broad spectrum of sterilization, has been very mature in wound management, has been proven to promote positive wound healing, and can reduce pain, odor and carrion, as an antibacterial agent, a good substitute for silver, honey or iodine , widely used in antibacterial wound dressings.
  • polyhexamethylene biguanide salt has a high content of cesium, which has potential carcinogenic, mutagenic and reproductive toxicity.
  • the European Consumer Safety Science Committee (SCCS) issued a new bill in April 2017, which will The safety limit is set to 0.1%; the homopolyhexamethylene biguanide salt is a cationic polymer, and the alginate is an anionic polymer, the two of which undergo ion complexation reaction, and their antibacterial activity is quickly passivated and invalidated, in order to achieve antibacterial activity.
  • SCCS European Consumer Safety Science Committee
  • Chinese patent CN106075534A discloses a chitosan alginate dressing which combines the advantages of chitosan and traditional alginate dressing to enhance the original hemostatic and moisture absorbing properties of alginate dressings. It has antibacterial properties and promotes wound healing.
  • chitosan itself is not a broad-spectrum antibacterial agent, and its antibacterial activity is difficult to meet the expected requirements, and the antibacterial properties of the product are weak.
  • Chinese patent CN105999362A discloses a medical composite alginate dressing containing an antibacterial drug.
  • the drug is resistant and has other potentially adverse side effects.
  • Chinese patent CN105536041A US Patent No. 7,714,183 discloses an antibacterial alginic acid containing honey
  • the salt compound dressing has good anti-infection effect, but the honey is added in a high amount and the cost is high.
  • Chinese patent CN103835025B discloses a sodium alginate reacted with a polymeric antibacterial agent, and then reacted with a mixed light rare earth element to obtain a polymer complex spinning mother liquor, and then prepared by an wet spinning process.
  • the technique requires a large amount of polyhexamethylene biguanide salt to be added by means of a complex of alginate and macromolecular polyanthracene cation.
  • the polymer polyfluorene is easily dissolved in water, especially in a dressing with a thin film or The presence of fine particles in the fine particles is almost instantaneously soluble in water, posing a potential safety risk.
  • US Pat. No. 8,921, 427 discloses an antibacterial preparation for the preparation of a wound dressing or bandage, wherein the antibacterial agent biguanide derivative, oketidine or methyldiazine is imparted to the alginic acid by spraying or dipping. Salt antibacterial.
  • the polyhexamethylene biguanide hydrochloride was loaded onto the calcium alginate fiber by a conventional impregnation method, and the loading amounts were 0.5%, 1.0%, 1.5%, 2.0%, respectively, and evaluated by agar diffusion method. Its antibacterial properties.
  • the patent also states: this is contrary to the general view held by experts, according to the general view: If cationic polyhexamethylene biguanide hydrochloride is used, even a small amount of negative charge, such as alginate, acrylate, lactate Or in the form of iodide ions, it also has the ability to passivate its antibacterial action quickly.
  • the antibacterial evaluation model in the patent is problematic and has not been quantitatively evaluated using the more reasonable AATCC Test Method 100-2012. It is well known that simple plate counts, sodium alginate solution as a neutralizer for polyhexamethylene biguanide hydrochloride antibacterial agent, can be proved by simple experimental design. The correctness.
  • the polyhexamethylene biguanide hydrochloride supported on the alginate is highly soluble in water by the conventional impregnation method, and the polyhexamethylene biguanide hydrochloride used in the technology is high in content (0.5%-10). ⁇ 3 ⁇ 4), the security risk is great.
  • An antibacterial alginate fiber the structure of the antibacterial alginate fiber is as shown in formula 1:
  • X 10 to 40
  • n 10 to 40
  • A is any one of hydrochloric acid, phosphoric acid, propionic acid, and gluconic acid.
  • a and b are a general description of the molecular structure of alginate, without specific numerical limitations.
  • the antibacterial alginate fiber is obtained by carrying a polyhexamethylene biguanide salt by a covalent bond linkage of an alginate fiber.
  • the alginate is selected from the group consisting of water-soluble alginate or water-insoluble alginate or a blend of the two;
  • the water-soluble alginate is sodium alginate, potassium alginate, alginic acid Any one of lithium, magnesium alginate, and ammonium alginate;
  • the water-insoluble alginate is any one of calcium alginate and zinc alginate.
  • the blend of the two comprises a blend of calcium ion or zinc ion as a crosslinking agent in a water-soluble alginate.
  • the polyhexamethylene sulfonium salt is polyhexamethylene hydrazine hydrochloride, polyhexamethylene biguanide hydrochloride, polyhexamethylene phosphonium phosphate, polyhexamethylene biguanide phosphate, and C Any one of acid polyhexamethylene sulfonium, polyhexamethylene biguanide propionate, polyhexamethylene gluconate gluconate, polyhexamethylene biguanide gluconate, and derivatives thereof.
  • the mass percentage of the polyhexamethylene sulfonium salt is 0.05 ⁇ 3 ⁇ 4 to 0.5%.
  • a method for preparing the above-mentioned antibacterial alginate fiber dressing comprising the following specific steps:
  • the alginate fiber treated by the step SI is added to the antibacterial active ethanol solution to have a reaction time of 0.5.
  • reaction temperature is 10 ⁇ 40 ° C
  • the antibacterial active ethanol solution is polyhexamethylene biguanide hydrochloride (PHMB) ethanol solution
  • reaction time of the alginate fiber treated with the antibacterial active ethanol solution in the chloroform solution is 0.5 to 24 hours, and the reaction temperature is 10 to 40 ° C;
  • the hydrochloric acid aqueous solution has a hydrochloric acid mass fraction of 0.1 ⁇ 3 ⁇ 4 ⁇ 5.0 ⁇ 3 ⁇ 4, a water mass fraction of 85.0 ⁇ 3 ⁇ 4 ⁇ 99.9 ⁇ 3 ⁇ 4, and a mass ratio of the solution to the alginate fiber of 4.0 to 10.0.
  • the activation time is 0.5 ⁇ 24.
  • activation temperature is 10 ⁇ 40 ° C;
  • Step SI the hydrochloric acid ethanol solution of hydrochloric acid mass fraction 0.5
  • the catalyst is prepared by: pre-dissolving triphenylphosphine and iodine in chloroform to prepare a desired concentration; and then rapidly adding the metered hydrazine at a temperature of 50 to 100 r/min. Diisopropylethylamine is then added to activate the alginate fibers.
  • the mass ratio of the mixed solution to the alginate fiber in step S1 is 4.0 to 20.0; the activation time of the alginate fiber in the solution is 10 to 60 minutes, and the activation temperature is 10 to 40 ° C;
  • the mass concentration of the antibacterial active ethanol solution in S2 is 0.01 ⁇ 3 ⁇ 4 ⁇ 5.00 ⁇ 3 ⁇ 4, and the mass of the antibacterial active ethanol solution is 2 to 10 times the mass of the alginate fiber.
  • An antibacterial alginate fiber dressing application the above antibacterial alginate fiber is carded, laid, and needled to form alginate non-woven fabric, which is then cut, packaged, and sterilized.
  • Alginate antibacterial dressing products such as alginate antibacterial tops, alginate antibacterial non-woven fabrics, alginate antibacterial gauze, for acute and chronic wound care.
  • the alginate dressing has good wound care properties such as safe, non-toxic, highly hygroscopic, hemostatic, gel-forming, and promoting wound healing.
  • Polyhexamethylene biguanide hydrochloride is broad-spectrum antibacterial, highly effective and safe, and is considered to be a safe and non-toxic disinfectant.
  • a new generation of antibacterial dressings with polyhexamethylene biguanide hydrochloride as antibacterial agents such as FortaDermTM Antimicrobial PHMB Wound Dressing, COPA AMD dressings, CollaWound ART, PolyFIT+ Absorbing Antimicrobial
  • PHMB Polyhexamethylene biguanide hydrochloride
  • [0034] (2) is a cationic polymer in an aqueous solution, and remains substantially unchanged over a wide pH range;
  • the alginate fiber is loaded with polyhexamethylene biguanide salt by interfacial reaction covalent bond linking, and the antibacterial activity of the material is not blunt
  • the polyhexamethylene biguanide salt bonded at the alginate dressing interface has almost no dissolution, and only a small amount of polyhexamethylene biguanide salt is accompanied by part of the algae.
  • the acid salt dissolves and dissolves.
  • the application of polyhexamethylene sulfonium salt in wound management has been very mature, has been confirmed to have a positive effect on wound healing, and can reduce pain, odor and carrion;
  • the novel alginate antibacterial dressing of the present invention is
  • the alginate fiber interface forms a polyhexamethylene sulfonium salt coating, which solves the problem of combining the two excellent properties of alginate and polyhexamethylene sulfonium salt, and significantly reduces the polyhexamethylene group.
  • the potential safety risks of strontium salts are particularly suitable for the treatment of chronic wounds.
  • the invention solves the technical problem that the cationic polymer polyhexamethylene sulfonium salt is mixed with the anionic polymer alginate, and the antibacterial activity of the cerium salt is quickly passivated, and the lower content of the polyhexamethylene is realized.
  • the base alginate dressing has good long-term antibacterial activity; the polyhexamethylene sulfonium salt has low dissolution, provides good safety, and significantly reduces the potential risk of carcinogenic, mutagenic and reproductive toxicity.
  • the alginate fiber interface has a good antibacterial effect with only a small amount of PHMB, and its mass percentage For: o.os ⁇ o.so ⁇ .
  • FIG. 2 is a schematic diagram of the interface structure of the polyhexamethylene biguanide salt and the alginate fiber of the present invention
  • 3 is a standard curve for testing polyhexamethylene biguanide hydrochloride.
  • An antibacterial alginate fiber the structure of the antibacterial alginate fiber is as follows:
  • a and b are a general description of the molecular structure of alginate, without specific numerical limitations.
  • the antibacterial alginate fiber is obtained by carrying a polyhexamethylene biguanide salt by a covalent bond linkage of an alginate fiber.
  • the alginate is selected from the group consisting of water-soluble alginate or water-insoluble alginate or a blend of the two;
  • the water-soluble alginate is ammonium alginate;
  • the water-insoluble alginate is calcium alginate.
  • the blend of the two comprises a blend of calcium ions as a crosslinking agent in a water-soluble alginate.
  • the polyhexamethylene sulfonium salt is polyhexamethylene gluconate gluconate and a derivative thereof.
  • the polyhexamethylene sulfonium salt has a mass percentage of 0.3%.
  • a method for preparing the above-mentioned antibacterial alginate fiber dressing comprising the following specific steps:
  • step SI The alginate fiber treated in step SI is added to the antibacterial active ethanol solution to have a reaction time of 12 hours, the reaction temperature is 29 ° C, and the antibacterial active ethanol solution is polyhexamethylene.
  • reaction time of the alginate fiber treated with the antibacterial active ethanol solution in the chloroform solution is 12 hours, and the reaction temperature is 29 ° C;
  • the obtained alginate fiber was washed once with 40/10000 sodium hydroxide alcohol solution, the alcohol concentration was 70%; 8 5% alcohol was washed 4 times, anhydrous ethanol was washed twice, and then vacuum pump dried at 55 ° C for 20 hours.
  • Antibacterial alginate fiber is produced by hydrazine.
  • the hydrochloric acid aqueous solution has a hydrochloric acid mass fraction of 1%, a water mass fraction of 99%, a solution to alginate fiber mass ratio of 7.0, an activation daytime of 12 hours, and an activation temperature of 29°C;
  • the hydrochloric acid hydrochloric acid solution has a hydrochloric acid mass fraction of 3%, a water mass fraction of 25%, an ethanol mass fraction of 72%, a hydrochloric acid ethanol solution and an alginate mass ratio of 7.0, and an activation enthalpy. The interval was 12 hours and the activation temperature was 29 °C.
  • the catalyst is a mixture of triphenylphosphine, iodine, ruthenium, osmium-diisopropylethylamine, the triphenylphosphine and iodine in equimolar ratio, the three in chloroform
  • the catalyst is prepared by: pre-dissolving triphenylphosphine and iodine in chloroform to prepare a desired concentration; and then rapidly adding the measured enthalpy, ⁇ -two at a stirring rate of 90 rpm. Isopropylethylamine is then added to activate the alginate fiber.
  • the mass ratio of the mixed solution to the alginate fiber in step S1 is 18; the activation time of the alginate fiber in the solution is 25 minutes, the activation temperature is 29 ° C; the antibacterial activity in the step S2
  • the mass concentration of the ethanol solution is 2.5%, and the mass of the antibacterial active ethanol solution is 5 times that of the alginate fiber.
  • a method for preparing an antibacterial alginate fiber dressing taking 1000g of short fiber alginate of 3 ⁇ 5cm and placing it in 5000g of 0.54% hydrochloric acid, 9.5% ethanol aqueous solution at 20 ° C, stirring and activating 3.0 hours Separate the liquid by centrifugation, then infiltrate the fiber with 2000 g of absolute ethanol for 10 to 15 minutes, and centrifuge to separate the ethanol to obtain an activated alginate fiber; 110 g of N,N-diisopropylethylamine 70 r/min is added to 5500 g of trichloromethane with stirring. Methane solution
  • the fiber was placed in a previous chloroform solution and stirred at 25 ° C for 4 hours, and then the solution was centrifuged to obtain a PHMB coated alginate fiber, and finally 15/10000 sodium hydroxide alcohol (alcohol concentration 70%).
  • the solution was washed once, washed with 95% alcohol for 4 times, washed once with absolute ethanol, and dried under vacuum at 55 ° C for 24 hours to obtain 925 g of semi-finished product.
  • the alginate fiber bonded to the interface of PHMB is subjected to acupuncture and hot press drying process: alginate non-woven fabric is prepared by carding, laying, and needle-punching; and then cut, packaged, and sterilized.
  • a non-woven alginate antibacterial dressing having a PHMB content of 0.056% was prepared, and the dressing weight was 148 g/m 2
  • a method for preparing an antibacterial alginate fiber dressing taking 1000g of short fiber alginate of 3 ⁇ 5cm and placing it in 5000g of 0.54% hydrochloric acid, 9.5% ethanol aqueous solution at 20 ° C, stirring and activating 3.0 hours Centrifugal separation solution Body, then 2000 g of absolute ethanol infiltrated the fiber for 10 to 15 minutes, and centrifuged to separate ethanol to obtain an activated alginate fiber; 110 g of N,N-diisopropylethylamine 70 r/min was added to 5500 g of chloroform solution with stirring.
  • the fiber was placed in a previous chloroform solution and stirred at 25 ° C for 4 hours, and then the solution was centrifuged to obtain a PHMB coated alginate fiber, and finally 15/10000 sodium hydroxide alcohol (alcohol concentration 70%).
  • the solution was washed once, washed with 95% alcohol for 4 times, washed once with absolute ethanol, and dried under vacuum at 55 ° C for 24 hours to obtain 941 g of semi-finished product.
  • the alginate fiber bonded to the interface of PHMB is subjected to acupuncture and hot press drying process: alginate non-woven fabric is prepared by carding, laying, and needle-punching; and then cut, packaged, and sterilized.
  • a non-woven alginate antibacterial dressing having a PHMB content of 0.076% was prepared, and the weight of the dressing was 136 g/m 2 .
  • a preparation method of antibacterial alginate fiber dressing taking 1000 g of filament fiber alginate into 5 000 g of 0.54% hydrochloric acid, 9.5% ethanol aqueous solution at 20 ° C, stirring and activating 3.0 ⁇ , centrifuging Separate the liquid, then infiltrate the fiber with 2000 g of absolute ethanol for 10 to 15 minutes, and centrifuge to separate the ethanol to obtain an activated alginate fiber; 110 g of N,N-diisopropylethylamine 70 r/min is added to 5500 g of chloroform solution with stirring. Medium (triphenylphosphine: 0.235%, iodine: 0.228%), and start the stopwatch.
  • a method for preparing an antibacterial alginate fiber dressing taking 1000g of short fiber alginate of 3 ⁇ 5cm and placing it in 5000g of 0.54% hydrochloric acid, 9.5% ethanol aqueous solution at 20 ° C, stirring and activating 3.0 hours Separate the liquid by centrifugation, then infiltrate the fiber with 2000 g of absolute ethanol for 10 to 15 minutes, and centrifuge to separate the ethanol to obtain an activated alginate fiber; 110 g of N,N-diisopropylethylamine 70 r/min is added to 5500 g of trichloromethane with stirring. Methane solution
  • the fiber was placed in a previous chloroform solution and stirred at 25 ° C for 4 hours, and then the solution was centrifuged to obtain a PHMB coated alginate fiber, and finally 15/10000 sodium hydroxide alcohol (alcohol concentration 70%).
  • the solution was washed once, washed with 95% alcohol for 4 times, washed once with absolute ethanol, and dried under vacuum at 55 ° C for 24 hours to obtain 921 g of semi-finished product.
  • the alginate fiber bonded to the interface of PHMB is subjected to acupuncture and hot press drying process: alginate non-woven fabric is prepared by carding, laying, and needle-punching; and then cut, packaged, and sterilized.
  • a non-woven alginate antibacterial dressing having a PHMB content of 0.181% was prepared, and the dressing weight was 145 g/m 2 .
  • a method for preparing an antibacterial alginate fiber dressing taking 1000g of short fiber alginate of 3 ⁇ 5cm and placing it in 5000g of 0.54% hydrochloric acid, 9.5% ethanol aqueous solution at 20 ° C, stirring and activating 3.0 hours Separate the liquid by centrifugation, then infiltrate the fiber with 2000 g of absolute ethanol for 10 to 15 minutes, and centrifuge to separate the ethanol to obtain an activated alginate fiber; 110 g of N,N-diisopropylethylamine 70 r/min is added to 5500 g of trichloromethane with stirring. Methane solution
  • alginate fiber bonded to the interface of PHMB is subjected to acupuncture and hot press drying process: alginate non-woven fabric is prepared by carding, laying, and needle-punching; and then cut, packaged, and sterilized.
  • a non-woven alginate antibacterial dressing having a PHMB content of 0.249% was prepared, and the dressing weight was 119 g/m 2
  • a method for preparing an antibacterial alginate fiber dressing taking 1000g of short fiber alginate of 3 ⁇ 5cm and placing it in 5000g of 0.54% hydrochloric acid, 9.5% ethanol aqueous solution at 20 ° C, stirring and activating 3.0 hours Separate the liquid by centrifugation, then infiltrate the fiber with 2000 g of absolute ethanol for 10 to 15 minutes, and centrifuge to separate the ethanol to obtain an activated alginate fiber; 110 g of N,N-diisopropylethylamine 70 r/min is added to 5500 g of trichloromethane with stirring. Methane solution
  • the fiber was placed in a previous chloroform solution and stirred at 25 ° C for 4 hours, and then the solution was centrifuged to obtain a PHMB coated alginate fiber, and finally 15/10000 sodium hydroxide alcohol (alcohol concentration 70%).
  • the solution was washed once, washed with 95% alcohol for 4 times, washed once with absolute ethanol, and dried under vacuum at 55 ° C for 24 hours to obtain 918 g of semi-finished product.
  • the alginate fiber bonded to the interface of PHMB is subjected to acupuncture and hot press drying process: alginate non-woven fabric is prepared by carding, laying, and needle-punching; and then cut, packaged, and sterilized.
  • a non-woven alginate antibacterial dressing having a PHMB content of 0.512% was prepared, and the weight of the dressing was 107 g/m 2 .
  • An antibacterial alginate fiber the structure of the antibacterial alginate fiber is as follows:
  • a and b are a general description of the molecular structure of alginate, without specific numerical limitations.
  • the antibacterial alginate fiber is obtained by carrying a polyhexamethylene biguanide salt by a covalent bond linkage of an alginate fiber.
  • the alginate is selected from the group consisting of water-soluble alginate or water-insoluble alginate or a blend of the two; the water-soluble alginate is sodium alginate; the water-insoluble alginate is Calcium alginate.
  • the blend of the two comprises a blend of calcium ions as a crosslinking agent in a water-soluble alginate.
  • the polyhexamethylene sulfonium salt is polyhexamethylene hydrazine hydrochloride and a derivative thereof.
  • the polyhexamethylene sulfonium salt has a mass percentage of 0.5%.
  • a method for preparing the above-mentioned antibacterial alginate fiber dressing comprising the following specific steps:
  • step SI The alginate fiber treated in step SI is added to the antibacterial active ethanol solution to have a reaction time of 0.5 ⁇ , the reaction temperature is 10 ° C, and the antibacterial active ethanol solution is polyhexamethylene. Biguanide hydrochloride (P HMB) ethanol solution;
  • reaction time of the alginate fiber treated with the antibacterial active ethanol solution in the chloroform solution is 0.5 ⁇ , and the reaction temperature is 10 ° C;
  • the obtained alginate fiber is washed once with a 10/100 sodium hydroxide alcohol solution, the alcohol concentration is 70%; 80% alcohol is washed 6 times, washed with absolute ethanol once, and then vacuum dried at 40 ° C for 12 hours.
  • Antibacterial alginate fiber is produced by hydrazine.
  • the hydrochloric acid aqueous solution has a hydrochloric acid mass fraction of 0.1% by mass, a water mass fraction of 99.9%, a solution to alginate fiber mass ratio of 4.0, and an activation enthalpy of 0.5 ⁇ , an activation temperature. 10 ° C;
  • the hydrochloric acid hydrochloric acid solution has a hydrochloric acid mass fraction of 0.5% by mass, a water mass fraction of 10%, an ethanol mass fraction of 89.5%, and a hydrochloric acid ethanol solution to alginate mass ratio of 4.0, activated.
  • the daytime is 0.5 hours and the activation temperature is 10 °C.
  • the catalyst is a mixture of triphenylphosphine, iodine, ruthenium, osmium-diisopropylethylamine, the triphenylphosphine and iodine in an equimolar ratio, and the three are in chloroform.
  • the catalyst is prepared by: pre-dissolving triphenylphosphine and iodine in chloroform to prepare a desired concentration; and then rapidly adding the measured enthalpy, ⁇ -two at 50 r/min stirring. Isopropylethylamine is then added to activate the alginate fiber.
  • the mass ratio of the mixed solution to the alginate fiber in step S1 is 4.0; the activation time of the alginate fiber in the solution is 10 minutes, the activation temperature is 10 ° C; the antibacterial activity in the step S2
  • the mass concentration of the ethanol solution is 0.01%, and the mass of the antibacterial active ethanol solution is twice the mass of the alginate fiber.
  • An antibacterial alginate fiber dressing application the above antibacterial alginate fiber is carded, laid, and needled to form alginate non-woven fabric, which is then cut, packaged, and sterilized.
  • Alginate antibacterial dressing products such as alginate antibacterial tops, alginate antibacterial non-woven fabrics, alginate antibacterial gauze, for acute and chronic wound care.
  • An antibacterial alginate fiber the structure of the antibacterial alginate fiber is as follows:
  • a and b are a general description of the molecular structure of alginate, without specific numerical limitations.
  • the antibacterial alginate fiber is obtained by carrying a polyhexamethylene biguanide salt by a covalent bond linkage of an alginate fiber.
  • the alginate is selected from the group consisting of water-soluble alginate or water-insoluble alginate or a blend of the two; the water-soluble alginate is magnesium alginate; the water-insoluble alginate is Zinc alginate.
  • the blend of the two comprises a blend of zinc ions as a crosslinking agent in a water-soluble alginate.
  • the polyhexamethylene sulfonium salt is polyhexamethylene phosphite phosphate and a derivative thereof.
  • the polyhexamethylene sulfonium salt has a mass percentage of 0.05%.
  • a method for preparing the above-mentioned antibacterial alginate fiber dressing comprising the following specific steps:
  • reaction time of the alginate fiber treated with the antibacterial active ethanol solution in the chloroform solution is 24 hours, and the reaction temperature is 40 ° C;
  • the obtained alginate fiber was washed once with 50/10000 sodium hydroxide alcohol solution, the alcohol concentration was 70%; 95% alcohol was washed 3 times, anhydrous ethanol was washed 3 times, and then vacuum dried at 65 ° C for 24 hours. An antibacterial alginate fiber is obtained.
  • the hydrochloric acid aqueous solution has a hydrochloric acid mass fraction of 5.0%, a water mass fraction of 85.0%, a solution to alginate fiber mass ratio of 10.0, and an activation daytime of 24.0 hours, activation.
  • the temperature is 40 ° C; in step S1, the hydrochloric acid hydrochloric acid solution has a hydrochloric acid mass fraction of 5.0%, a water mass fraction of 30%, an ethanol mass fraction of 65%, a hydrochloric acid ethanol solution and an alginate mass ratio of 10, and activation.
  • the daytime is 24.0 hours and the activation temperature is 40 °C.
  • the catalyst is a mixture of triphenylphosphine, iodine, ruthenium, osmium-diisopropylethylamine, the triphenylphosphine and iodine in an equimolar ratio, and the three are in chloroform.
  • the catalyst is prepared by: pre-dissolving triphenylphosphine and iodine in chloroform to prepare a desired concentration; then rapidly adding the measured enthalpy, ⁇ -two under stirring at 100 rpm Isopropylethylamine is then added to activate the alginate fiber.
  • the mass ratio of the mixed solution to the alginate fiber in step S1 is 20.0; the activation time of the alginate fiber in the solution is 60 minutes, the activation temperature is 40 ° C; the antibacterial activity in the step S2
  • the mass concentration of the ethanol solution is: 5.00%, and the mass of the antibacterial active ethanol solution is 10 times that of the alginate fiber.
  • An antibacterial alginate fiber dressing application the above antibacterial alginate fiber is carded, laid, and needled to form alginate non-woven fabric, which is then cut, packaged, and sterilized.
  • Alginate antibacterial dressing products such as alginate antibacterial tops, alginate antibacterial non-woven fabrics, alginate antibacterial gauze, for acute and chronic wounds Care.
  • An antibacterial alginate fiber the structure of the antibacterial alginate fiber is as follows:
  • a and b are a general description of the molecular structure of alginate, without specific numerical limitations.
  • the antibacterial alginate fiber is obtained by carrying a polyhexamethylene biguanide salt by a covalent bond linkage of an alginate fiber.
  • the alginate is selected from the group consisting of water-soluble alginate or water-insoluble alginate or a blend of the two; the water-soluble alginate is potassium alginate; the water-insoluble alginate is Calcium alginate.
  • the blend of the two comprises a blend of calcium ions as a crosslinking agent in a water-soluble alginate.
  • the polyhexamethylene sulfonium salt is polyhexamethylene sulfonate propionate and a derivative thereof.
  • the polyhexamethylene sulfonium salt has a mass percentage of 0.2%.
  • a method for preparing the above-mentioned antibacterial alginate fiber dressing comprising the following specific steps:
  • step SI The alginate fiber treated in step SI is added to the antibacterial active ethanol solution to have a reaction time of 8 hours, the reaction temperature is 25 ° C, and the antibacterial active ethanol solution is polyhexamethylene.
  • reaction time of the alginate fiber treated with the antibacterial active ethanol solution in the chloroform solution is 8 hours, and the reaction temperature is 25 ° C;
  • the obtained alginate fiber is washed once with 30/10000 sodium hydroxide alcohol solution, the alcohol concentration is 70%; 90% alcohol is washed 5 times, anhydrous ethanol is washed twice, and then vacuum pump is dried at 50 °C for 18 hours.
  • Antibacterial alginate fiber is produced by hydrazine.
  • the hydrochloric acid aqueous solution has a hydrochloric acid mass fraction of 2.0%, a water mass fraction of 88%, a solution to alginate fiber mass ratio of 6.0, and an activation daytime of 8 hours, an activation temperature. 25 ° C;
  • the hydrochloric acid hydrochloric acid solution has a hydrochloric acid mass fraction of 2%, a water mass fraction of 20%, an ethanol mass fraction of 78%, a hydrochloric acid ethanol solution and an alginate mass ratio of 6, activation
  • the daytime is 8 hours and the activation temperature is 25. C.
  • the catalyst is a mixture of triphenylphosphine, iodine, ruthenium, osmium-diisopropylethylamine, the triphenylphosphine and iodine in an equimolar ratio, and the three are in chloroform.
  • the mass fractions in the solvent were: triphenylphosphine: 1.0%, iodine: 1.0%, hydrazine, hydrazine-diisopropylethylamine: 3.0 ⁇ 3 ⁇ 4.
  • the catalyst is prepared by: pre-dissolving triphenylphosphine and iodine in chloroform to prepare a desired concentration; then rapidly adding the measured enthalpy, ⁇ -two at 80 r/min stirring. Isopropylethylamine is then added to activate the alginate fiber.
  • the mass ratio of the mixed solution to the alginate fiber in step S1 is 6.0; the activation time of the alginate fiber in the solution is 30 minutes, the activation temperature is 25 ° C; the antibacterial in the step S2
  • the mass concentration of the active ethanol solution is: 2.0%, and the mass of the antibacterial active ethanol solution is 6 times the mass of the alginate fiber.
  • Alginate antibacterial dressing application the above antibacterial alginate fiber is carded, laid, and needled to form alginate non-woven fabric, which is then cut, packaged, and sterilized.
  • Alginate antibacterial dressing products Such as alginate antibacterial tops, alginate antibacterial non-woven fabrics, alginate antibacterial gauze, applied to acute and chronic wound care. Effect test example
  • Antibacterial performance test is as follows:
  • Test strains Gram-positive bacteria, Enterococcus faecalis (ATCC 51575); Gram-negative bacteria, Pseudomonas aeruginosa (ATCC 9027);
  • SWF Simulated wound exudate
  • Live bacteria concentration 2x10 6 cfu/ml ⁇ 4xl0 6 cfu/ml;
  • Neutralizing reagent TPS solution with a concentration of 20g/L lecithin and 20g/L Tween 80, dosage 100ml;
  • Antibacterial effect 24 hours, 7 days / 168 hours, 14 days / 336 Xiao Yan
  • control sample is an alginate dressing without antibacterial ingredients.
  • Aqueous solution was prepared into a colorless 1.5% (mass) agar solution, cooled to 50 ⁇ 55 ° C. 25.00 ⁇ 0.05g was poured into a 90mm surface dish to make a 3 ⁇ 4mm thick sheet gel mimicking the skin; 5x5cm alginic acid
  • the salt fiber dressing is added with 8 times its own weight of phosphate buffer solution (PBS) to form a gel. If there is excess free water, it is dripped and dried for about 1 minute. Then the alginate gel is spread on the surface of the agar gel and covered with a surface.
  • PBS phosphate buffer solution
  • control sample is a commercially available product PHMB foam dressing approved by the US FDA.
  • Stabilizer solution blank alginate dressing: 2.0000 ⁇ 0.0005g, trisodium citrate dihydrate 10.5800 ⁇ 0.0 005g, distilled water 187.42 ⁇ 0.05g. Dissolve the trisodium citrate dihydrate in a 500 ml beaker containing 187.42 distilled water. After the dissolution is complete, add the blank alginate dressing, then stir and dissolve with a stirring disperser, stir at low speed, and slowly accelerate after 3 to 5 minutes. Finally, 1.5 Torr was stirred and dissolved at 2200 r/min, and then the lost distilled water was quantitatively replenished, and then filtered through a 0.45 ⁇ filter, and then sealed at room temperature for use.
  • the content of polyhexamethylene biguanide hydrochloride (PHMB) has a good linear relationship between 0.253 and 4.380 ppm.
  • the coefficient R 0.99763.
  • the PHMB content in the alginate fiber dressing is as follows according to the above measurement method:
  • the above-mentioned antibacterial alginate fiber is subjected to carding, laying, and needle-punching to prepare alginate non-woven fabric, which is then cut, packaged, and sterilized to obtain an alginate antibacterial dressing product, such as alginic acid. Salt antibacterial tops, alginate antibacterial non-woven fabrics, alginate antibacterial gauze, applied to acute and chronic wound care.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明提供一种抗菌藻酸盐纤维、其敷料的制备方法及应用,本发明解决了阳离子聚合物聚六亚甲基胍盐与阴离子聚合物藻酸盐相混合,其胍盐抗菌活性很快钝化的技术难题,实现了较低含量的聚六亚甲基胍盐藻酸盐纤维及医用制品具有良好的、长期的抗菌活性;聚六亚甲基胍盐溶出度低,提供了良好的安全性,显著降低了潜在的致癌,致突变和生殖毒性的风险。

Description

一种抗菌藻酸盐纤维、 其敷料的制备方法及应用 技术领域
[0001] 本发明涉及伤口护理或者伤口愈合医学领域, 更具体地, 本发明涉及一种抗菌 藻酸盐纤维、 其敷料的制备方法及应用。
背景技术
[0002] 藻酸盐敷料吸收伤口渗出液后, 能形成柔软的凝胶, 为伤口愈合提供理想的湿 润环境, 促进伤口愈合, 缓解伤口疼痛。 具有安全无毒、 高吸湿性、 止血性、 成胶性、 促进伤口愈合等优点, 广泛用于伤口护理领域。 但是存在抗菌性能弱 等缺点。
[0003] 聚六亚甲基双胍盐含有强烈的正电性, 吸附通常呈负电性的各类细菌、 病毒, 进入细胞膜, 抑制膜内脂质体合成, 造成菌体凋亡, 达到极佳的杀菌效果。 具 有杀菌广谱、 在伤口管理中的应用已经非常成熟, 已经被证实对于伤口愈合有 积极的促进作用, 而且可以减少疼痛、 异味和腐肉, 作为抗菌剂, 是银、 蜂蜜 或碘的良好替代物, 广泛应用于抗菌伤口敷料。
[0004] 但是, 聚六亚甲基双胍盐在含量较高吋, 具有潜在的致癌, 致突变和生殖毒性 , 欧盟消费者安全科学委员会 (SCCS)于 2017年 4月份颁布的新法案, 将其安全限 值制定为 0.1% ; 同吋聚六亚甲基双胍盐为阳离子聚合物, 藻酸盐为阴离子聚合 物, 两者发生离子络合反应, 其抗菌活性很快钝化失效, 为了达到抗菌效果, 需添加大量的聚六亚甲基双胍盐。
[0005] 中国专利 CN106075534A公幵了一种壳聚糖藻酸盐敷料, 结合了壳聚糖和传统 藻酸盐敷料的优势, 在加强藻酸盐敷料原有的止血、 吸湿保湿性能的同吋, 又 具有抗菌性和促创面愈合等性能。 但壳聚糖本身非广谱抗菌剂, 且抗菌活性很 难满足预期要求, 产品的抗菌性能较弱。
[0006] 中国专利 CN105999362A公幵了一种含有抗菌药物的医用复合海藻酸盐敷料。
药物具有耐药性及其它潜在的不良副作用。
[0007] 中国专利 CN105536041A、 美国专利 US7,714,183公幵了一种含蜂蜜的抗菌藻酸 盐复合敷料, 具有良好的抗感染作用, 但是蜂蜜添加量较高、 成本高。
[0008] 中国专利 CN105963755A、 CN201610149152.7、 CN103768643B , 美国专利 US9 ,499,64、 US6,719,987、 US9,345,805、 US7,229,689、 US6,696,077、 US6,093,414 、 US5,744,151公幵了一种含有银离子的藻酸盐敷料, 具有良好的抗菌性能。 含 银藻酸盐敷料大量用于临床, 但是, 银被机体吸收会导致毒性反应以及耐药微 生物的形成。 在一项细胞培养的体外研究发现: 含银藻酸盐敷料影响角蛋白细 胞和成纤维细胞的细胞形态, 降低了成纤维细胞再生能力, 抑制了成纤维细胞 的胶原合成, 从而阻碍伤口愈合, 产生持续的细胞毒性; 银可以进入人体细胞 潜在诱发神经退行性疾病的风险。 有研究提出: 低剂量的银反复作用于伤口也 可能会产生细菌耐药性, 体外实验也证明了类似现象的存在。
[0009] 中国专利 CN106049036A、 CN101721734A、 CN1935268A公幵了一种含有纳米 银的藻酸盐敷料, 具有良好的抗菌性能。 但是, 公幵文献显示纳米银有一定的 细胞毒性。
[0010] 中国专利 CN103835025B公幵了一种海藻酸钠与高分子型抗菌剂聚胍反应后再 与混合轻稀土元素反应得到高分子络合物喷丝母液, 再通过湿法纺丝工艺制备 抗菌海藻纤维的技术。 该技术通过藻酸盐与高分子聚胍阴阳离子络合的方式, 需添加大量的聚六亚甲基双胍盐, 高分子聚胍极易溶解于水, 特别是在敷料中 以薄状膜或微细颗粒存在吋, 几乎是瞬间溶于水, 潜在安全风险大。
[0011] 美国专利 US8921427公幵了一种用于制备伤口敷料或绷带的抗菌制剂, 其所述 抗菌剂双胍衍生物、 奥克太啶或甲双二嗪是通过喷雾或浸渍的方法赋予藻酸盐 抗菌性。 其在实施例中采用常规浸渍法将聚六亚甲基双胍盐酸盐负载到藻酸钙 纤维上, 其负载量分别为: 0.5%, 1.0% , 1.5% , 2.0% , 采用琼脂扩散法评价其 抗菌性能。 专利中还提出:这与专家所持的普遍观点相反, 根据该普遍观点: 如 果使用阳离子聚六亚甲基双胍盐酸盐, 即使少量的负电荷, 例如以海藻酸盐、 丙烯酸盐、 乳酸盐或碘化物离子的形式, 也有能力使其抗菌作用很快钝化。 专 利中抗菌评价模型是有问题的, 没有采用更加合理的 AATCC Test Method 100-2012进行定量评价。 众所周知, 采用简单的平板计数, 以海藻酸钠溶液作为 聚六亚甲基双胍盐酸盐抗菌剂的中和剂, 通过简单实验设计便能证明专家观点 的正确性。 另外, 采用常规浸渍法负载与藻酸盐上的聚六亚甲基双胍盐酸盐极 易溶解于水, 该技术采用的聚六亚甲基双胍盐酸盐的含量很高 (0.5%-10<¾) , 安全风险大。
技术问题
[0012] 要实现藻酸盐敷料良好的抗菌性能, 又要确保对人体有足够的安全系数, 现行 的抗菌藻酸盐敷料技术都存在着一定的缺陷。
问题的解决方案
技术解决方案
[0013] 一种抗菌藻酸盐纤维, 所述抗菌藻酸盐纤维的结构如式 1 :
[0014]
Figure imgf000005_0001
式 1
[0015] 其中, X=10〜40, n= 10〜40, A为盐酸、 磷酸、 丙酸、 葡萄糖酸中的任一种
。 特别的, a、 b为海藻酸盐通常分子结构式描述, 无具体数值限制。
[0016] 进一步的, 所述抗菌藻酸盐纤维是由藻酸盐纤维以界面反应共价键链接方式负 载聚六亚甲基双胍盐得到。
[0017] 进一步的, 所述藻酸盐选自水溶性藻酸盐或水不溶性藻酸盐或两者的共混物; 所述水溶性藻酸盐为藻酸钠、 藻酸钾、 藻酸锂、 藻酸镁、 藻酸铵中的任一种; 水不溶性藻酸盐为藻酸钙、 藻酸锌中的任一种。
[0018] 进一步的, 所述两者的共混物包括以钙离子或锌离子为交联剂在水溶性的藻酸 盐中所形成的共混物。
[0019] 进一步的, 所述的聚六亚甲基胍盐为盐酸聚六亚甲基胍、 盐酸聚六亚甲基双胍 、 磷酸聚六亚甲基胍、 磷酸聚六亚甲基双胍、 丙酸聚六亚甲基胍、 丙酸聚六亚 甲基双胍、 葡萄糖酸聚六亚甲基胍、 葡萄糖酸聚六亚甲基双胍中的任一种及其 衍生物。 特别的, 聚六亚甲基胍盐的质量百分比含量为 0.05<¾~0.5%。
[0020] 一种上述的抗菌藻酸盐纤维敷料的制备方法, 包含以下具体步骤:
[0021] S1.采用盐酸水溶液或盐酸乙醇溶液作为无机反应相, 三氯甲烷溶液为有机反 应相, 添加催化剂, 将藻酸盐纤维在混合溶液中的活化吋间为 10〜60分钟, 活 化温度为 10〜40°C;
[0022] S2.将经过步骤 SI处理的藻酸盐纤维加入抗菌活性物乙醇溶液中反应吋间为 0.5
〜24小吋, 反应温度为 10〜40°C, 所述抗菌活性物乙醇溶液为聚六亚甲基双胍盐 酸盐 (PHMB) 乙醇溶液;
[0023] S3.将经抗菌活性物乙醇溶液处理过的藻酸盐纤维在三氯甲烷溶液中的反应吋 间为 0.5〜24小吋, 反应温度为 10〜40°C;
[0024] S4.聚六亚甲基双胍盐酸盐在界面共价键键合藻酸盐纤维, 形成分子级聚六亚 甲基双胍盐酸盐涂层, 反应原理如图 1所示, 其结构简图如图 2所示;
[0025] S5.所得到的藻酸盐纤维经 10/10000〜50/10000氢氧化钠酒精溶液清洗 1次, 酒 精浓度为 70%; 80~95%酒精清洗 3〜6次, 无水乙醇清洗 1~3次, 而后 40〜65°C真 空泵真空干燥 12〜24小吋制得抗菌藻酸盐纤维。
[0026] 进一步的, 步骤 S1中, 所述盐酸水溶液的盐酸质量分数 0.1<¾〜5.0<¾, 水质量分 数为 85.0<¾〜99.9<¾, 溶液与藻酸盐纤维质量比为 4.0〜10.0, 活化吋间为 0.5〜24.
0小吋, 活化温度为 10〜40°C; 步骤 SI中, 所述盐酸乙醇溶液的盐酸质量分数 0.5
^ s.o^, 水质量分数为 ^)^〜?。^, 乙醇质量分数为?。^〜^^, 盐酸乙醇溶 液与藻酸盐质量比为 4.0〜10, 活化吋间为 0.5〜24.0小吋, 活化温度为 10〜40°C
[0027] 进一步的, 所述催化剂为三苯基膦、 碘、 Ν,Ν-二异丙基乙胺的混合物, 所述三 苯基膦和碘以等摩尔配比, 三者在三氯甲烷溶剂中的质量分数分别为: 三苯基 膦: 。'(^〜 .。。^, 碘: 。'(^〜 .。。^, Ν,Ν-二异丙基乙胺: 0.5%— 8.0%=
[0028] 特别的, 所述催化剂的配制方法为: 三苯基膦和碘预先溶解于三氯甲烷, 配制 成所需浓度; 然后在 50〜100r/min搅拌下快速加入已计量的 Ν,Ν-二异丙基乙胺, 然后加入一次活化藻酸盐纤维。
[0029] 进一步的, 步骤 S1中混合溶液与藻酸盐纤维质量比为 4.0〜20.0; 藻酸盐纤维在 溶液中的活化吋间为 10〜60分钟, 活化温度为 10〜40°C; 步骤 S2中所述抗菌活 性物乙醇溶液质量浓度为: 0.01<¾〜5.00<¾, 抗菌活性物乙醇溶液质量为藻酸盐 纤维质量的 2〜 10倍。
[0030] 一种抗菌藻酸盐纤维敷料的应用, 将上述抗菌藻酸盐纤维经梳理、 铺网、 针刺 工序制成藻酸盐无纺布, 再经剪切、 包装、 灭菌, 制得藻酸盐抗菌敷料产品, 如藻酸盐抗菌毛条、 藻酸盐抗菌无纺布、 藻酸盐抗菌纱布, 应用于急慢性伤口 护理。
[0031] 本发明中, 藻酸盐敷料具有安全无毒、 高吸湿性、 止血性、 成胶性、 促进伤口 愈合等良好的伤口护理性能。 聚六亚甲基双胍盐酸盐广谱抗菌, 高效安全, 被 认为是安全无毒的消毒剂。 新一代的抗菌敷料, 纷纷以聚六亚甲基双胍盐酸盐 为抗菌剂, 例如 FortaDerm™ Antimicrobial PHMB Wound Dressing, COPA AMD dressings, CollaWound ART, PolyFIT+ Absorbing Antimicrobial
Dressings , Kendall Kerlix AMD Antimicrobial Gauze Dressing, Suprasorb® X + PHMB Antimicrobial HydroBalance wound dressing, CelluDress-PHMB
Medicareplus International等广品。
[0032] 聚六亚甲基双胍盐酸盐 (PHMB) 在伤口管理中的应用已经非常成熟, 与壳聚 糖、 银和碘等其它抗菌剂相比, 有如下特殊属性:
[0033] ( 1) 极易溶解于水, 特别是在敷料中以薄状膜或微细颗粒存在吋, 几乎是瞬 间溶于水;
[0034] (2) 水溶液中为阳离子聚合物, 且在很宽的 PH范围内基本保持不变;
[0035] (3) 人体吸收较高含量 (欧盟消费者安全科学委员会 (SCCS)于 2017年 4月份颁 布的新法案, 将其安全限值制定为 0.1%) 吋, 有潜在的致癌, 致突变和生殖毒 性。
[0036] 因此, 这三个特殊属性决定了聚六亚甲基双胍盐不能与藻酸盐敷料以通常的浸 渍, 喷雾或涂抹等方法进行负载。 其原因在于: (1) 藻酸盐为阴离子聚合物, 聚六亚甲基双胍盐酸盐为阳离子聚合物, 两者在水溶液状态发生离子络合反应 , 聚六亚甲基双胍盐酸盐抗菌活性很快钝化, 因此需要添加大量的聚六亚甲基 双胍盐; (2) 敷料中的聚六亚甲基双胍盐酸盐快速溶解于伤口渗液, 继而快速 渗透伤口细胞, 致使敷料内抗菌剂浓度在较短吋间内衰减至最小抗菌浓度以下 , 最终失去抗菌性能, 无法满足敷料长久抗菌的需求; (3) 大量溶出的聚六亚 甲基双胍盐不符合安全要求。
[0037] 基于以上因素, 经过本发明人的大量创造性研究实验, 首次发现并证实, 将藻 酸盐纤维以界面反应共价键链接方式负载聚六亚甲基双胍盐, 材料抗菌活性不 但没有钝化, 反而比原有活性有了更进一步的显著提高; 并且在藻酸盐敷料界 面键合的聚六亚甲基双胍盐, 几乎没有溶出, 仅有少量聚六亚甲基双胍盐伴随 部分藻酸盐的溶解而溶出。 本发明的特殊发现将为幵发出新一代的藻酸盐抗菌 敷料提供了强有力的技术原理支撑。
[0038] 聚六亚甲基胍盐在伤口管理中的应用已经非常成熟, 已经被证实对于伤口愈合 有积极的促进作用, 而且可以减少疼痛、 异味和腐肉; 本发明新型藻酸盐抗菌 敷料在藻酸盐纤维界面形成聚六亚甲基胍盐涂层, 解决了藻酸盐和聚六亚甲基 胍盐这两种性能优异材料的结合难题, 并同吋显著降低了聚六亚甲基胍盐的潜 在安全风险, 特别适用于慢性伤口的治疗。
发明的有益效果
有益效果
[0039] 本发明解决了阳离子聚合物聚六亚甲基胍盐与阴离子聚合物藻酸盐相混合, 其 胍盐抗菌活性很快钝化的技术难题, 实现了较低含量的聚六亚甲基胍盐藻酸盐 敷料具有良好的、 长期的抗菌活性; 聚六亚甲基胍盐溶出度低, 提供了良好的 安全性, 显著降低了潜在的致癌, 致突变和生殖毒性的风险, 能够达到以下技 术效果如下:
[0040] 1、 藻酸盐纤维界面只需微量的 PHMB就具有良好的抗菌效果, 其质量百分比 为: o.os^o.so^。
[0041] 2、 良好的抗菌性能, 抗菌吋效长久, 可达 7~14天, 符合理想现代伤口敷料抗 菌性能的需求。
对附图的简要说明
附图说明
[0042] 图 1为本发明反应过程示意图;
[0043] 图 2为本发明聚六亚甲基双胍盐与藻酸盐纤维的界面结构简图;
[0044] 图 3为测试聚六亚甲基双胍盐酸盐的标准曲线。
实施该发明的最佳实施例
本发明的最佳实施方式
[0045] 一种抗菌藻酸盐纤维, 所述抗菌藻酸盐纤维的结构如下式:
[]
Figure imgf000009_0001
[0046] 其中, X=30, n= 30, A为丙酸。 特别的, a、 b为海藻酸盐通常分子结构式描 述, 无具体数值限制。
[0047] 进一步的, 所述抗菌藻酸盐纤维是由藻酸盐纤维以界面反应共价键链接方式负 载聚六亚甲基双胍盐得到。
[0048] 进一步的, 所述藻酸盐选自水溶性藻酸盐或水不溶性藻酸盐或两者的共混物; 所述水溶性藻酸盐为藻酸铵; 水不溶性藻酸盐为藻酸钙。
[0049] 进一步的, 所述两者的共混物包括以钙离子为交联剂在水溶性的藻酸盐中所形 成的共混物。
[0050] 进一步的, 所述的聚六亚甲基胍盐为葡萄糖酸聚六亚甲基胍及其衍生物。 特别 的, 聚六亚甲基胍盐的质量百分比含量为 0.3%。
[0051] 一种上述的抗菌藻酸盐纤维敷料的制备方法, 包含以下具体步骤:
[0052] S1.采用盐酸水溶液或盐酸乙醇溶液作为无机反应相, 三氯甲烷溶液为有机反 应相, 添加催化剂, 将藻酸盐纤维在混合溶液中的活化吋间为 35分钟, 活化温 度为 29°C;
[0053] S2.将经过步骤 SI处理的藻酸盐纤维加入抗菌活性物乙醇溶液中反应吋间为 12 小吋, 反应温度为 29°C, 所述抗菌活性物乙醇溶液为聚六亚甲基双胍盐酸盐 (P HMB) 乙醇溶液;
[0054] S3.将经抗菌活性物乙醇溶液处理过的藻酸盐纤维在三氯甲烷溶液中的反应吋 间为 12小吋, 反应温度为 29°C;
[0055] S4.聚六亚甲基双胍盐酸盐在界面共价键键合藻酸盐纤维, 形成分子级聚六亚 甲基双胍盐酸盐涂层, 反应原理如图 1所示, 其结构简图如图 2所示;
[0056] S5.
所得到的藻酸盐纤维经 40/10000氢氧化钠酒精溶液清洗 1次, 酒精浓度为 70%; 8 5%酒精清洗 4次, 无水乙醇清洗 2次, 而后 55°C真空泵真空干燥 20小吋制得抗菌 藻酸盐纤维。
[0057] 进一步的, 步骤 S1中, 所述盐酸水溶液的盐酸质量分数 1%, 水质量分数为 99% , 溶液与藻酸盐纤维质量比为 7.0, 活化吋间为 12小吋, 活化温度为 29°C; 步骤 S 1中, 所述盐酸盐酸乙醇溶液的盐酸质量分数 3%, 水质量分数为 25%, 乙醇质量 分数为 72%, 盐酸乙醇溶液与藻酸盐质量比为 7.0, 活化吋间为 12小吋, 活化温 度为 29°C。
[0058] 进一步的, 所述催化剂为三苯基膦、 碘、 Ν,Ν-二异丙基乙胺的混合物, 所述三 苯基膦和碘以等摩尔配比, 三者在三氯甲烷溶剂中的质量分数分别为: 三苯基 膦: 1.8% , 碘: 1.8% , Ν,Ν-二异丙基乙胺: 4.5%= [0059] 特别的, 所述催化剂的配制方法为: 三苯基膦和碘预先溶解于三氯甲烷, 配制 成所需浓度; 然后在 90r/min搅拌下快速加入已计量的 Ν,Ν-二异丙基乙胺, 然后 加入一次活化藻酸盐纤维。
[0060] 进一步的, 步骤 S1中混合溶液与藻酸盐纤维质量比为 18; 藻酸盐纤维在溶液中 的活化吋间为 25分钟, 活化温度为 29°C; 步骤 S2中所述抗菌活性物乙醇溶液质 量浓度为: 2.5%, 抗菌活性物乙醇溶液质量为藻酸盐纤维质量的 5倍。
本发明的实施方式
[0061] 实施例 1
[0062] 一种抗菌藻酸盐纤维敷料的制备方法, 取 3〜5cm的短纤维藻酸盐 1000g于 20°C 下放入 5000g含 0.54%盐酸, 9.5%乙醇水溶液中, 搅拌活化 3.0小吋, 离心分离液 体, 然后 2000克无水乙醇浸润纤维 10〜15分钟, 离心分离乙醇, 得到一次活化 藻酸盐纤维; 110gN,N-二异丙基乙胺 70r/min搅拌下加入到 5500g三氯甲烷溶液中
(三苯基膦: 0.235%, 碘: 0.228%) , 并幵始秒表计吋, 搅拌 1〜2分钟后将一 次活化藻酸盐纤维投入到此溶液中, 搅拌 3〜5分钟后在 35°C活化 30分钟, 而后取 出纤维, 压榨分离溶液, 得到二次活化纤维; 接着将质量浓度为 0.028%的 PHMB 乙醇溶液 4000g与二次活化纤维在 25°C混合搅拌反应 40分钟, 压榨分离溶液后将 纤维放入先前的三氯甲烷溶液中于 25°C搅拌反应 4小吋, 而后离心分离溶液, 得 到 PHMB涂层藻酸盐纤维, 最后用 15/10000氢氧化钠酒精 (酒精浓度 70%) 溶液 清洗 1次, 95%酒精清洗 4次, 无水乙醇清洗 1次, 于 55°C真空干燥 24小吋制得 925 g半成品。 将界面键合 PHMB的藻酸盐纤维采用针刺、 热压机干燥工艺: 经梳理 、 铺网、 针刺工序制成藻酸盐无纺布; 再经剪切、 包装、 灭菌。
[0063] 制备得到 PHMB含量为 0.056%的无纺布藻酸盐抗菌敷料, 敷料克重为 148g/m 2
[0064]
[0065] 实施例 2
[0066] 一种抗菌藻酸盐纤维敷料的制备方法, 取 3〜5cm的短纤维藻酸盐 1000g于 20°C 下放入 5000g含 0.54%盐酸, 9.5%乙醇水溶液中, 搅拌活化 3.0小吋, 离心分离液 体, 然后 2000克无水乙醇浸润纤维 10〜15分钟, 离心分离乙醇, 得到一次活化 藻酸盐纤维; 110gN,N-二异丙基乙胺 70r/min搅拌下加入到 5500g三氯甲烷溶液中
(三苯基膦: 0.235%, 碘: 0.228%) , 并幵始秒表计吋, 搅拌 1〜2分钟后将一 次活化藻酸盐纤维投入到此溶液中, 搅拌 3〜5分钟后在 35°C活化 30分钟, 而后取 出纤维, 压榨分离溶液, 得到二次活化纤维; 接着将质量浓度为 0.038%的 PHMB 乙醇溶液 4000g与二次活化纤维在 25°C混合搅拌反应 40分钟, 压榨分离溶液后将 纤维放入先前的三氯甲烷溶液中于 25°C搅拌反应 4小吋, 而后离心分离溶液, 得 到 PHMB涂层藻酸盐纤维, 最后用 15/10000氢氧化钠酒精 (酒精浓度 70%) 溶液 清洗 1次, 95%酒精清洗 4次, 无水乙醇清洗 1次, 于 55°C真空干燥 24小吋制得 941 g半成品。 将界面键合 PHMB的藻酸盐纤维采用针刺、 热压机干燥工艺: 经梳理 、 铺网、 针刺工序制成藻酸盐无纺布; 再经剪切、 包装、 灭菌。
[0067] 制备得到 PHMB含量为 0.076%的无纺布藻酸盐抗菌敷料, 敷料克重为 136g/m 2
[0068]
[0069] 实施例 3
[0070] 一种抗菌藻酸盐纤维敷料的制备方法, 取长丝纤维藻酸盐 1000g于 20°C下放入 5 000g含 0.54%盐酸, 9.5%乙醇水溶液中, 搅拌活化 3.0小吋, 离心分离液体, 然 后 2000克无水乙醇浸润纤维 10〜15分钟, 离心分离乙醇, 得到一次活化藻酸盐 纤维; 110gN,N-二异丙基乙胺 70r/min搅拌下加入到 5500g三氯甲烷溶液中 (三苯 基膦: 0.235% , 碘: 0.228%) , 并幵始秒表计吋, 搅拌 1〜2分钟后将一次活化 藻酸盐纤维投入到此溶液中, 搅拌 3〜5分钟后在 35°C活化 30分钟, 而后取出纤维 , 压榨分离溶液, 得到二次活化纤维; 接着将质量浓度为 0.052%的 PHMB乙醇溶 液 4000g与二次活化纤维在 25°C混合搅拌反应 40分钟, 压榨分离溶液后将纤维放 入先前的三氯甲烷溶液中于 25°C搅拌反应 4小吋, 而后离心分离溶液, 得到 PHM B涂层藻酸盐纤维, 最后用 15/10000氢氧化钠酒精 (酒精浓度 70%) 溶液清洗 1次 , 95%酒精清洗 4次, 无水乙醇清洗 1次, 于 55°C真空干燥 24小吋制得 930g半成品 。 将界面键合 PHMB的藻酸盐长丝纤维编织成藻酸盐纱布; 再经剪切、 包装、 灭 菌。 [0071] 制备得到 PHMB含量为 0.115%的纱布藻酸盐抗菌敷料, 敷料克重为 167g/m 2。
[0072]
[0073] 实施例 4
[0074] 一种抗菌藻酸盐纤维敷料的制备方法, 取 3〜5cm的短纤维藻酸盐 1000g于 20°C 下放入 5000g含 0.54%盐酸, 9.5%乙醇水溶液中, 搅拌活化 3.0小吋, 离心分离液 体, 然后 2000克无水乙醇浸润纤维 10〜15分钟, 离心分离乙醇, 得到一次活化 藻酸盐纤维; 110gN,N-二异丙基乙胺 70r/min搅拌下加入到 5500g三氯甲烷溶液中
(三苯基膦: 0.235%, 碘: 0.228%) , 并幵始秒表计吋, 搅拌 1〜2分钟后将一 次活化藻酸盐纤维投入到此溶液中, 搅拌 3〜5分钟后在 35°C活化 30分钟, 而后取 出纤维, 压榨分离溶液, 得到二次活化纤维; 接着将质量浓度为 0.082%的 PHMB 乙醇溶液 4000g与二次活化纤维在 25°C混合搅拌反应 40分钟, 压榨分离溶液后将 纤维放入先前的三氯甲烷溶液中于 25°C搅拌反应 4小吋, 而后离心分离溶液, 得 到 PHMB涂层藻酸盐纤维, 最后用 15/10000氢氧化钠酒精 (酒精浓度 70%) 溶液 清洗 1次, 95%酒精清洗 4次, 无水乙醇清洗 1次, 于 55°C真空干燥 24小吋制得 921 g半成品。 将界面键合 PHMB的藻酸盐纤维采用针刺、 热压机干燥工艺: 经梳理 、 铺网、 针刺工序制成藻酸盐无纺布; 再经剪切、 包装、 灭菌。
[0075] 制备得到 PHMB含量为 0.181%的无纺布藻酸盐抗菌敷料, 敷料克重为 145g/m 2
[0076]
[0077] 实施例 5
[0078] 一种抗菌藻酸盐纤维敷料的制备方法, 取 3〜5cm的短纤维藻酸盐 1000g于 20°C 下放入 5000g含 0.54%盐酸, 9.5%乙醇水溶液中, 搅拌活化 3.0小吋, 离心分离液 体, 然后 2000克无水乙醇浸润纤维 10〜15分钟, 离心分离乙醇, 得到一次活化 藻酸盐纤维; 110gN,N-二异丙基乙胺 70r/min搅拌下加入到 5500g三氯甲烷溶液中
(三苯基膦: 0.235%, 碘: 0.228%) , 并幵始秒表计吋, 搅拌 1〜2分钟后将一 次活化藻酸盐纤维投入到此溶液中, 搅拌 3〜5分钟后在 35°C活化 30分钟, 而后取 出纤维, 压榨分离溶液, 得到二次活化纤维; 接着将质量浓度为 0.104%的 PHMB 乙醇溶液 4000g与二次活化纤维在 25°C混合搅拌反应 40分钟, 压榨分离溶液后将 纤维放入先前的三氯甲烷溶液中于 25°C搅拌反应 4小吋, 而后离心分离溶液, 得 到 PHMB涂层藻酸盐纤维, 最后用 15/10000氢氧化钠酒精 (酒精浓度 70%) 溶液 清洗 1次, 95%酒精清洗 4次, 无水乙醇清洗 1次, 于 55°C真空干燥 24小吋制得 925 g半成品。 将界面键合 PHMB的藻酸盐纤维采用针刺、 热压机干燥工艺: 经梳理 、 铺网、 针刺工序制成藻酸盐无纺布; 再经剪切、 包装、 灭菌。
[0079] 制备得到 PHMB含量为 0.249%的无纺布藻酸盐抗菌敷料, 敷料克重为 119g/m 2
[0080]
[0081]
[0082] 实施例 6
[0083] 一种抗菌藻酸盐纤维敷料的制备方法, 取 3〜5cm的短纤维藻酸盐 1000g于 20°C 下放入 5000g含 0.54%盐酸, 9.5%乙醇水溶液中, 搅拌活化 3.0小吋, 离心分离液 体, 然后 2000克无水乙醇浸润纤维 10〜15分钟, 离心分离乙醇, 得到一次活化 藻酸盐纤维; 110gN,N-二异丙基乙胺 70r/min搅拌下加入到 5500g三氯甲烷溶液中
(三苯基膦: 0.235%, 碘: 0.228%) , 并幵始秒表计吋, 搅拌 1〜2分钟后将一 次活化藻酸盐纤维投入到此溶液中, 搅拌 3〜5分钟后在 35°C活化 30分钟, 而后取 出纤维, 压榨分离溶液, 得到二次活化纤维; 接着将质量浓度为 0.183%的 PHMB 乙醇溶液 4000g与二次活化纤维在 25°C混合搅拌反应 40分钟, 压榨分离溶液后将 纤维放入先前的三氯甲烷溶液中于 25°C搅拌反应 4小吋, 而后离心分离溶液, 得 到 PHMB涂层藻酸盐纤维, 最后用 15/10000氢氧化钠酒精 (酒精浓度 70%) 溶液 清洗 1次, 95%酒精清洗 4次, 无水乙醇清洗 1次, 于 55°C真空干燥 24小吋制得 918 g半成品。 将界面键合 PHMB的藻酸盐纤维采用针刺、 热压机干燥工艺: 经梳理 、 铺网、 针刺工序制成藻酸盐无纺布; 再经剪切、 包装、 灭菌。
[0084] 制备得到 PHMB含量为 0.512%的无纺布藻酸盐抗菌敷料, 敷料克重为 107g/m 2
[0085]
[0086] 实施例 7
[0087] 一种抗菌藻酸盐纤维, 所述抗菌藻酸盐纤维的结构如下式:
Figure imgf000015_0001
[0088] 其中, X=10, n= 10, A为盐酸。 特别的, a、 b为海藻酸盐通常分子结构式描 述, 无具体数值限制。
[0089] 进一步的, 所述抗菌藻酸盐纤维是由藻酸盐纤维以界面反应共价键链接方式负 载聚六亚甲基双胍盐得到。
[0090] 进一步的, 所述藻酸盐选自水溶性藻酸盐或水不溶性藻酸盐或两者的共混物; 所述水溶性藻酸盐为藻酸钠; 水不溶性藻酸盐为藻酸钙。
[0091] 进一步的, 所述两者的共混物包括以钙离子为交联剂在水溶性的藻酸盐中所形 成的共混物。
[0092] 进一步的, 所述的聚六亚甲基胍盐为盐酸聚六亚甲基胍及其衍生物。 特别的, 聚六亚甲基胍盐的质量百分比含量为 0.5%。
[0093] 一种上述的抗菌藻酸盐纤维敷料的制备方法, 包含以下具体步骤:
[0094] S1.采用盐酸水溶液或盐酸乙醇溶液作为无机反应相, 三氯甲烷溶液为有机反 应相, 添加催化剂, 将藻酸盐纤维在混合溶液中的活化吋间为 10分钟, 活化温 度为 10°C;
[0095] S2.将经过步骤 SI处理的藻酸盐纤维加入抗菌活性物乙醇溶液中反应吋间为 0.5 小吋, 反应温度为 10°C, 所述抗菌活性物乙醇溶液为聚六亚甲基双胍盐酸盐 (P HMB) 乙醇溶液;
[0096] S3.将经抗菌活性物乙醇溶液处理过的藻酸盐纤维在三氯甲烷溶液中的反应吋 间为 0.5小吋, 反应温度为 10°C;
[0097] S4.聚六亚甲基双胍盐酸盐在界面共价键键合藻酸盐纤维, 形成分子级聚六亚 甲基双胍盐酸盐涂层, 反应原理如图 1所示, 其结构简图如图 2所示;
[0098] S5.
所得到的藻酸盐纤维经 10/10000氢氧化钠酒精溶液清洗 1次, 酒精浓度为 70%; 8 0%酒精清洗 6次, 无水乙醇清洗 1次, 而后 40°C真空泵真空干燥 12小吋制得抗菌 藻酸盐纤维。
[0099] 进一步的, 步骤 S1中, 所述盐酸水溶液的盐酸质量分数 0.1%%, 水质量分数为 99.9% , 溶液与藻酸盐纤维质量比为 4.0, 活化吋间为 0.5小吋, 活化温度为 10°C ; 步骤 S1中, 所述盐酸盐酸乙醇溶液的盐酸质量分数 0.5%%, 水质量分数为 10% , 乙醇质量分数为 89.5%, 盐酸乙醇溶液与藻酸盐质量比为 4.0, 活化吋间为 0.5 小吋, 活化温度为 10°C。
[0100] 进一步的, 所述催化剂为三苯基膦、 碘、 Ν,Ν-二异丙基乙胺的混合物, 所述三 苯基膦和碘以等摩尔配比, 三者在三氯甲烷溶剂中的质量分数分别为: 三苯基 膦: 0.05% , 碘: 0.05% , Ν,Ν-二异丙基乙胺: 0.5%=
[0101] 特别的, 所述催化剂的配制方法为: 三苯基膦和碘预先溶解于三氯甲烷, 配制 成所需浓度; 然后在 50r/min搅拌下快速加入已计量的 Ν,Ν-二异丙基乙胺, 然后 加入一次活化藻酸盐纤维。
[0102] 进一步的, 步骤 S1中混合溶液与藻酸盐纤维质量比为 4.0; 藻酸盐纤维在溶液 中的活化吋间为 10分钟, 活化温度为 10°C; 步骤 S2中所述抗菌活性物乙醇溶液 质量浓度为: 0.01%, 抗菌活性物乙醇溶液质量为藻酸盐纤维质量的 2倍。
[0103] 一种抗菌藻酸盐纤维敷料的应用, 将上述抗菌藻酸盐纤维经梳理、 铺网、 针刺 工序制成藻酸盐无纺布, 再经剪切、 包装、 灭菌, 制得藻酸盐抗菌敷料产品, 如藻酸盐抗菌毛条、 藻酸盐抗菌无纺布、 藻酸盐抗菌纱布, 应用于急慢性伤口 护理。
[0104] [0105] 实施例 8
[0106] 一种抗菌藻酸盐纤维, 所述抗菌藻酸盐纤维的结构如下式:
Figure imgf000017_0001
[0107] 其中, X=40, n= 40, A为葡萄糖酸。 特别的, a、 b为海藻酸盐通常分子结构 式描述, 无具体数值限制。
[0108] 进一步的, 所述抗菌藻酸盐纤维是由藻酸盐纤维以界面反应共价键链接方式负 载聚六亚甲基双胍盐得到。
[0109] 进一步的, 所述藻酸盐选自水溶性藻酸盐或水不溶性藻酸盐或两者的共混物; 所述水溶性藻酸盐为藻酸镁; 水不溶性藻酸盐为藻酸锌。
[0110] 进一步的, 所述两者的共混物包括以锌离子为交联剂在水溶性的藻酸盐中所形 成的共混物。
[0111] 进一步的, 所述的聚六亚甲基胍盐为磷酸聚六亚甲基胍及其衍生物。 特别的, 聚六亚甲基胍盐的质量百分比含量为 0.05%。
[0112] 一种上述的抗菌藻酸盐纤维敷料的制备方法, 包含以下具体步骤:
[0113] S1.采用盐酸水溶液或盐酸乙醇溶液作为无机反应相, 三氯甲烷溶液为有机反 应相, 添加催化剂, 将藻酸盐纤维在混合溶液中的活化吋间为 60分钟, 活化温 度为 40°C; [0114] S2.将经过步骤 SI处理的藻酸盐纤维加入抗菌活性物乙醇溶液中反应吋间为 24 小吋, 反应温度为 40°C, 所述抗菌活性物乙醇溶液为聚六亚甲基双胍盐酸盐 (P HMB) 乙醇溶液;
[0115] S3.将经抗菌活性物乙醇溶液处理过的藻酸盐纤维在三氯甲烷溶液中的反应吋 间为 24小吋, 反应温度为 40°C;
[0116] S4.聚六亚甲基双胍盐酸盐在界面共价键键合藻酸盐纤维, 形成分子级聚六亚 甲基双胍盐酸盐涂层, 反应原理如图 1所示, 其结构简图如图 2所示;
[0117] S5.
所得到的藻酸盐纤维经 50/10000氢氧化钠酒精溶液清洗 1次, 酒精浓度为 70%; 95%酒精清洗 3次, 无水乙醇清洗 3次, 而后 65°C真空泵真空干燥 24小吋制得抗菌 藻酸盐纤维。
[0118] 进一步的, 步骤 S1中, 所述盐酸水溶液的盐酸质量分数 5.0%, 水质量分数为 85 .0% , 溶液与藻酸盐纤维质量比为 10.0, 活化吋间为 24.0小吋, 活化温度为 40°C ; 步骤 S1中, 所述盐酸盐酸乙醇溶液的盐酸质量分数 5.0%, 水质量分数为 30% , 乙醇质量分数为 65%, 盐酸乙醇溶液与藻酸盐质量比为 10, 活化吋间为 24.0小 吋, 活化温度为 40°C。
[0119] 进一步的, 所述催化剂为三苯基膦、 碘、 Ν,Ν-二异丙基乙胺的混合物, 所述三 苯基膦和碘以等摩尔配比, 三者在三氯甲烷溶剂中的质量分数分别为: 三苯基 膦: 3.00% , 碘: 3.00%, Ν,Ν-二异丙基乙胺: 8.0%=
[0120] 特别的, 所述催化剂的配制方法为: 三苯基膦和碘预先溶解于三氯甲烷, 配制 成所需浓度; 然后在 lOOr/min搅拌下快速加入已计量的 Ν,Ν-二异丙基乙胺, 然后 加入一次活化藻酸盐纤维。
[0121] 进一步的, 步骤 S1中混合溶液与藻酸盐纤维质量比为 20.0; 藻酸盐纤维在溶液 中的活化吋间为 60分钟, 活化温度为 40°C; 步骤 S2中所述抗菌活性物乙醇溶液 质量浓度为: 5.00%, 抗菌活性物乙醇溶液质量为藻酸盐纤维质量的 10倍。
[0122] 一种抗菌藻酸盐纤维敷料的应用, 将上述抗菌藻酸盐纤维经梳理、 铺网、 针刺 工序制成藻酸盐无纺布, 再经剪切、 包装、 灭菌, 制得藻酸盐抗菌敷料产品, 如藻酸盐抗菌毛条、 藻酸盐抗菌无纺布、 藻酸盐抗菌纱布, 应用于急慢性伤口 护理。
[0123] 实施例 9
[0124] 一种抗菌藻酸盐纤维, 所述抗菌藻酸盐纤维的结构如下式:
[]
Figure imgf000019_0001
[0125] 其中, X=20, n= 20, A为磷酸。 特别的, a、 b为海藻酸盐通常分子结构式描 述, 无具体数值限制。
[0126] 进一步的, 所述抗菌藻酸盐纤维是由藻酸盐纤维以界面反应共价键链接方式负 载聚六亚甲基双胍盐得到。
[0127] 进一步的, 所述藻酸盐选自水溶性藻酸盐或水不溶性藻酸盐或两者的共混物; 所述水溶性藻酸盐为藻酸钾; 水不溶性藻酸盐为藻酸钙。
[0128] 进一步的, 所述两者的共混物包括以钙离子为交联剂在水溶性的藻酸盐中所形 成的共混物。
[0129] 进一步的, 所述的聚六亚甲基胍盐为丙酸聚六亚甲基胍及其衍生物。 特别的, 聚六亚甲基胍盐的质量百分比含量为 0.2%。
[0130] 一种上述的抗菌藻酸盐纤维敷料的制备方法, 包含以下具体步骤:
[0131] S1.采用盐酸水溶液或盐酸乙醇溶液作为无机反应相, 三氯甲烷溶液为有机反 应相, 添加催化剂, 将藻酸盐纤维在混合溶液中的活化吋间为 30分钟, 活化温 度为 25°C ;
[0132] S2.将经过步骤 S I处理的藻酸盐纤维加入抗菌活性物乙醇溶液中反应吋间为 8小 吋, 反应温度为 25°C, 所述抗菌活性物乙醇溶液为聚六亚甲基双胍盐酸盐 (PH MB) 乙醇溶液;
[0133] S3.将经抗菌活性物乙醇溶液处理过的藻酸盐纤维在三氯甲烷溶液中的反应吋 间为 8小吋, 反应温度为 25°C ;
[0134] S4.聚六亚甲基双胍盐酸盐在界面共价键键合藻酸盐纤维, 形成分子级聚六亚 甲基双胍盐酸盐涂层, 反应原理如图 1所示, 其结构简图如图 2所示;
[0135] S5.
所得到的藻酸盐纤维经 30/10000氢氧化钠酒精溶液清洗 1次, 酒精浓度为 70% ; 9 0%酒精清洗 5次, 无水乙醇清洗 2次, 而后 50°C真空泵真空干燥 18小吋制得抗菌 藻酸盐纤维。
[0136] 进一步的, 步骤 S 1中, 所述盐酸水溶液的盐酸质量分数 2.0%, 水质量分数为 88 %, 溶液与藻酸盐纤维质量比为 6.0, 活化吋间为 8小吋, 活化温度为 25°C; 步骤 S 1中, 所述盐酸盐酸乙醇溶液的盐酸质量分数 2%, 水质量分数为 20%, 乙醇质 量分数为 78%, 盐酸乙醇溶液与藻酸盐质量比为 6, 活化吋间为 8小吋, 活化温度 为 25。C。
[0137] 进一步的, 所述催化剂为三苯基膦、 碘、 Ν,Ν-二异丙基乙胺的混合物, 所述三 苯基膦和碘以等摩尔配比, 三者在三氯甲烷溶剂中的质量分数分别为: 三苯基 膦: 1.0% , 碘: 1.0%, Ν,Ν-二异丙基乙胺: 3.0<¾。
[0138] 特别的, 所述催化剂的配制方法为: 三苯基膦和碘预先溶解于三氯甲烷, 配制 成所需浓度; 然后在 80r/min搅拌下快速加入已计量的 Ν,Ν-二异丙基乙胺, 然后 加入一次活化藻酸盐纤维。
[0139] 进一步的, 步骤 S 1中混合溶液与藻酸盐纤维质量比为 6.0 ; 藻酸盐纤维在溶液 中的活化吋间为 30分钟, 活化温度为 25°C ; 步骤 S2中所述抗菌活性物乙醇溶液 质量浓度为: 2.0%, 抗菌活性物乙醇溶液质量为藻酸盐纤维质量的 6倍。
[0140] 一种抗菌藻酸盐纤维敷料的应用, 将上述抗菌藻酸盐纤维经梳理、 铺网、 针刺 工序制成藻酸盐无纺布, 再经剪切、 包装、 灭菌, 制得藻酸盐抗菌敷料产品, 如藻酸盐抗菌毛条、 藻酸盐抗菌无纺布、 藻酸盐抗菌纱布, 应用于急慢性伤口 护理。 效果测试例
1.抗菌性能测试如下:
抗菌活性定量评价方法参照 《AATCC 100-2012 Antibacterial Finishes on Textile
Materials Assessment of Fulltext Information , 简述如下:
( 1) 测试菌种:革兰氏阳性菌,粪肠球菌 (ATCC 51575) ; 革兰氏阴性菌,铜绿假 单胞菌 (ATCC 9027);
(2) 培养基:营养肉汤 /琼脂培养基 (NB, NA) ;
(3) 稀释液: 无菌 PBS;
(4)模拟伤口渗出液 (SWF) : 含 10% (V/V) 的胎牛血清的 PBS;
(5)活菌浓度: 2x10 6cfu/ml~4xl0 6cfu/ml;
(6)实验样品: 1片直径为 4.8cm±0.1cm ( 1.9±0.03英寸) 的圆形藻酸盐敷料; (7) 接种液: 1.0±0.1ml 10% (V/V) 胎牛血清的 PBS, 活菌浓度 2x10 6 cfu/ml~4xl0 6cfu/ml;
(8) 中和试剂: 浓度为 20g/L卵磷脂, 20g/L吐温 80的 TPS溶液, 用量 100ml; (9)抗菌吋效: 24小吋, 7天 /168小吋, 14天 /336小吋
测试结果如下表所示:
Figure imgf000022_0001
[0155] 备注: 对照样品为不含抗菌成分的藻酸盐敷料
[0156] 2.聚六亚甲基胍盐含量的测试方法:
[0157] 水溶液配制无色的 1.5% (质量) 琼脂溶液, 冷却到 50〜55°C吋将 25.00±0.05g倒 入 90mm表面皿制成 3〜4mm厚片状凝胶模拟皮肤; 5x5cm藻酸盐纤维敷料加 8倍 自重的磷酸盐缓冲溶液 (PBS) 形成凝胶, 若有多余自由水, 则悬空滴干约 1分 钟; 然后藻酸盐凝胶平铺于琼脂凝胶表面, 盖上表面皿, PE膜密封保护, 于 37 °C培养箱中放置 72小吋和 168小吋, 而后将琼脂凝胶用两倍纯水浸提; 密封浸提 体系, 在 37°C培养箱中浸提 24小吋, 而后滤纸过滤浸提液, 测量浸提液中 PHMB 含量, 从而获得藻酸盐敷料中 PHMB滤出量。
[0158] 测试结果如下表所示:
[]
Figure imgf000022_0002
[0159] 备注: 对照样品为美国 FDA批准的某公司市售产品 PHMB泡沫敷料
[0160]
[0161] 3.藻酸盐纤维中 PHMB含量的测试:
[0162] (1) 原理: 胍基和曙红 (Eosin染料)之间显色反应, 颜色改变可以通过在波 长 546nm处测量吸光度值。
[0163] (2) 指示溶液: 配制浓度为 0.2891g/L曙红 Y (Eosin Y) 水溶液 500ml, 然后 经 0.45μηι滤膜过滤, 而后避光保存备用。
[0164] (3) 缓冲溶液: 乙酸: 三水合醋酸钠 =1:0.9514 (质量比) , 醋酸根摩尔浓 度 3.8532mol/L缓冲溶液 500ml,然后经 0.45μηι滤膜过滤, 而后室温密封保存备用 [0165] (4)
稳定剂溶液: 空白藻酸盐敷料: 2.0000±0.0005g, 二水合柠檬酸三钠 10.5800±0.0 005g, 蒸馏水 187.42±0.05g。 将二水合柠檬酸三钠溶解于盛有 187.42蒸馏水的 500 ml烧杯中, 溶解完全后加入空白藻酸盐敷料, 而后用搅拌分散器搅拌溶解, 先 低速搅拌, 3〜5分钟稳定后缓慢加速, 最终以 2200r/min搅拌溶解 1.5小吋, 然后 定量补充损失的蒸馏水, 然后经 0.45μηι滤膜过滤, 而后室温密封保存备用。
[0166] (5) 标准曲线绘制: 以胍浓度… -吸光度值为数据作图, 得到关系曲线, 线 性拟合生成曲线方程如图 3所示:
[0167] 得到的标准曲线式为 Υ=0.12326*Χ十 0.00942, 由作出的标准曲线可知, 聚六亚 甲基双胍盐酸盐 (PHMB) 含量在 0.253〜4.380ppm间有良好的线性关系, 相关 系数 R=0.99763。
[0168] 藻酸盐纤维敷料中 PHMB含量根据以上测量方法结果如下:
Figure imgf000023_0001
[0169] 对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且 在不背离本发明的精神或基本特征的情况下, 能够以其他的具体形式实现本发 明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非限制 性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落在权 利要求的等同要件的含义和范围内的所有变化囊括在本发明内。 不应将权利要 求中的任何附图标记视为限制所涉及的权利要求。
[0170] 此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施方式 仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领 域技术人员应当将说明书作为一个整体, 各实施例中的技术方案也可以经适当 组合, 形成本领域技术人员可以理解的其他实施方式。 需注意的是, 本发明中 所未详细描述的技术特征, 均可以通过任一现有技术实现。
工业实用性
[0171] 将上述抗菌藻酸盐纤维经梳理、 铺网、 针刺工序制成藻酸盐无纺布, 再经剪切 、 包装、 灭菌, 制得藻酸盐抗菌敷料产品, 如藻酸盐抗菌毛条、 藻酸盐抗菌无 纺布、 藻酸盐抗菌纱布, 应用于急慢性伤口护理。

Claims

权利要求书
[权利要求 1] 一种抗菌藻酸盐纤维, 其特征在于, 所述抗菌藻酸盐纤维的分子结构 如式 1 :
Figure imgf000025_0001
式 1
其中, X=10〜40, n= 10〜40, A为盐酸、 磷酸、 丙酸、 葡萄糖酸中 的任一种。
2.根据权利要求 1所述的抗菌藻酸盐纤维, 其特征在于, 所述抗菌藻 酸盐纤维是由藻酸盐纤维以界面反应共价键链接方式负载聚六亚甲基 胍盐得到。
3.根据权利要求 2所述的抗菌藻酸盐纤维, 其特征在于, 所述藻酸盐 选自水溶性藻酸盐或水不溶性藻酸盐或两者的共混物; 所述水溶性藻 酸盐为海藻酸钠, 海藻酸钾, 藻酸镁, 藻酸铵中的任一种; 水不溶性 藻酸盐为藻酸钙、 藻酸锌中的任一种; 所述两者的共混物包括以钙离 子或锌离子为交联剂在水溶性的藻酸盐中所形成的共混物。
4.根据权利要求 2所述的抗菌藻酸盐纤维, 其特征在于, 所述的聚六 亚甲基胍盐为盐酸聚六亚甲基胍、 盐酸聚六亚甲基双胍、 磷酸聚六亚
5.—种权利要求 1-4任一项所述的抗菌藻酸盐纤维敷料的制备方法, 其 特征在于, 包含以下具体步骤:
51.采用盐酸水溶液或盐酸乙醇溶液作为无机反应相, 三氯甲烷溶液 为有机反应相, 添加催化剂, 藻酸盐纤维在混合溶液中的活化吋间为
10〜60分钟, 活化温度为 10〜40°C;
52.将经过步骤 SI处理的藻酸盐纤维加入抗菌活性物乙醇溶液中, 反 应吋间为 0.5〜24小吋, 反应温度为 10〜40°C, 所述抗菌活性物乙醇 溶液为聚六亚甲基双胍盐酸盐乙醇溶液;
53.将经抗菌活性物乙醇溶液处理过的藻酸盐纤维在三氯甲烷溶液中 的反应吋间为 0.5〜24小吋, 反应温度为 10〜40°C;
54.聚六亚甲基双胍盐酸盐在界面共价键键合藻酸盐纤维, 形成分子 级聚六亚甲基双胍盐酸盐涂层;
55.所得到的藻酸盐纤维经 10/10000〜50/10000氢氧化钠酒精溶液清 洗 1次, 酒精浓度为 70%; 80~95%酒精清洗 3〜6次, 无水乙醇清洗 1~ 3次, 而后 40〜65°C真空泵真空干燥 12〜24小吋制得抗菌藻酸盐纤维
6.根据权利要求 5所述的抗菌藻酸盐纤维敷料的制备方法, 其特征在 于, 步骤 S1中, 所述盐酸水溶液的盐酸质量分数 0.1%〜5.0<¾, 水质 量分数为 85.0<¾〜99.9<¾, 溶液与藻酸盐纤维质量比为 4.0〜10.0; 步 骤 S1中, 所述盐酸乙醇溶液的盐酸质量分数 0.5<¾〜5.0%, 水质量分 数为 10<¾〜30<¾, 乙醇质量分数为 70<¾〜90<¾, 盐酸乙醇溶液与藻酸 盐质量比为 4.0〜10。
7.根据权利要求 5所述的抗菌藻酸盐纤维敷料的制备方法, 其特征在 于, 所述催化剂为三苯基膦、 碘、 Ν,Ν-二异丙基乙胺的混合物, 所述 三苯基膦和碘以等摩尔配比, 三者在三氯甲烷溶剂中的质量分数分别 为: 三苯基膦: O.OS^S.OO 碘: O.OS^S.OO Ν,Ν-二异丙基 乙胺: 0.5%— 8.0%=
8.根据权利要求 5所述的抗菌藻酸盐纤维敷料的制备方法, 其特征在 于, 步骤 S1中混合溶液与藻酸盐纤维质量比为 4.0〜20.0; 藻酸盐纤维 在溶液中的活化吋间为 10〜60分钟, 活化温度为 10〜40°C; 步骤 S2中 所述抗菌活性物乙醇溶液质量浓度为: 0.01<¾〜5.00<¾, 抗菌活性物 乙醇溶液质量为藻酸盐纤维质量的 2〜10倍。
9.一种权利要求 1-4任一项所述的抗菌藻酸盐纤维敷料的应用, 其特征 在于, 将抗菌藻酸盐纤维经梳理、 铺网、 针刺工序制成藻酸盐无纺布 , 或经编织制备藻酸盐纱布, 再经剪切、 包装、 灭菌, 制得藻酸盐抗 菌敷料产品, 应用于急慢性伤口护理。
PCT/CN2017/094221 2017-07-25 2017-07-25 一种抗菌藻酸盐纤维、其敷料的制备方法及应用 WO2019018997A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17919151.5A EP3660191B1 (en) 2017-07-25 2017-07-25 Antimicrobial alginate fibre, and preparation method for and use of dressing thereof
PCT/CN2017/094221 WO2019018997A1 (zh) 2017-07-25 2017-07-25 一种抗菌藻酸盐纤维、其敷料的制备方法及应用
US16/428,854 US11131040B2 (en) 2017-07-25 2019-05-31 Antimicrobial alginate fiber, and preparation method for and use of dressing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094221 WO2019018997A1 (zh) 2017-07-25 2017-07-25 一种抗菌藻酸盐纤维、其敷料的制备方法及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/428,854 Continuation-In-Part US11131040B2 (en) 2017-07-25 2019-05-31 Antimicrobial alginate fiber, and preparation method for and use of dressing thereof

Publications (1)

Publication Number Publication Date
WO2019018997A1 true WO2019018997A1 (zh) 2019-01-31

Family

ID=65039346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094221 WO2019018997A1 (zh) 2017-07-25 2017-07-25 一种抗菌藻酸盐纤维、其敷料的制备方法及应用

Country Status (3)

Country Link
US (1) US11131040B2 (zh)
EP (1) EP3660191B1 (zh)
WO (1) WO2019018997A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115262227B (zh) * 2022-08-29 2023-10-13 成都飞凡微盾生物科技有限公司 一种抗菌整理剂及其制备方法和用途
CN115554457B (zh) * 2022-10-28 2023-09-05 动之医学技术(上海)有限公司 海藻酸盐敷料及其制备方法和应用

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US949964A (en) 1908-12-16 1910-02-22 Joseph F Schmidt Railroad-switch.
US5744151A (en) 1995-06-30 1998-04-28 Capelli; Christopher C. Silver-based pharmaceutical compositions
US6093414A (en) 1997-08-11 2000-07-25 Christopher C. Capelli Silver-based antimicrobial compositions
US6696077B2 (en) 2001-07-26 2004-02-24 George H. Scherr Silver alginate foam compositions
US6719987B2 (en) 2000-04-17 2004-04-13 Nucryst Pharmaceuticals Corp. Antimicrobial bioabsorbable materials
CN1935268A (zh) 2006-10-18 2007-03-28 上海川本卫生材料有限公司 纳米银海藻酸钙抗菌敷料
US7229689B2 (en) 2000-11-03 2007-06-12 Ssl International Polysaccharide fibres
CN101381907A (zh) * 2008-10-06 2009-03-11 武汉科技学院 抗菌海藻酸钙纤维的制造方法
US7714183B2 (en) 2000-06-30 2010-05-11 Apimed Medical Honey Limited Use of honey in dressings
CN101721734A (zh) 2008-10-22 2010-06-09 威海威高创新有限公司 医用海藻酸钙抗菌敷料及其制备方法
CN102462860A (zh) * 2010-11-10 2012-05-23 广东百合医疗科技有限公司 一种具有抗菌作用的纤维类伤口敷料及其制备方法
CN103074699A (zh) * 2012-12-28 2013-05-01 佛山市优特医疗科技有限公司 化学改性的海丝纤维、由其制成的伤口敷料及其制备方法
CN103768643A (zh) 2014-02-17 2014-05-07 周继胡 一种银离子海藻酸盐缓释抗菌凝胶及其制备方法
CN103835025A (zh) 2014-03-07 2014-06-04 青岛大学 一种永久抗菌聚胍海藻纤维的制备方法
US8921427B2 (en) 2006-01-16 2014-12-30 Lohmann & Rauscher Gmbh & Co. Kg Antiseptic alginate preparation
EP2659865B1 (en) * 2012-05-04 2015-08-05 Advanced Medical Solutions Limited Wound Dressing
CN105536041A (zh) 2016-01-21 2016-05-04 常州陀谱生物医学技术有限公司 一种含王浆酸的抗菌生物敷料、制备方法及其用途
US9345805B2 (en) 2000-09-21 2016-05-24 Convatec Technologies Inc. Silver containing wound dressing
CN105963755A (zh) 2016-06-29 2016-09-28 广东泰宝医疗科技股份有限公司 一种藻酸盐缓释抗菌敷料及其制备方法
CN105999362A (zh) 2016-06-02 2016-10-12 四川奎星医用高分子制品有限责任公司 含有抗菌药物的医用复合海藻酸盐敷料及其制备方法
CN106049036A (zh) 2016-06-23 2016-10-26 青岛大学 一种纳米银海藻酸盐短纤维的原位合成方法
CN106075534A (zh) 2016-07-07 2016-11-09 浙江大学 一种壳聚糖藻酸盐敷料及其浸渍制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714783B2 (en) 2007-08-02 2010-05-11 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communications
US20100215723A1 (en) * 2009-02-20 2010-08-26 Min Yao Wound Dressing with Antimicrobial Gauze and Bonding Agent
CN104024498B (zh) * 2011-11-01 2017-08-22 布莱特维克公司 伤口敷料以及可用于伤口敷料中的线
TWI472536B (zh) 2013-05-14 2015-02-11 Hopewang Ent Co Ltd 含金屬晶體之海藻酸單體結構、含金屬晶體之海藻酸鹽單體結構、及含金屬晶體之海藻酸鹽凝膠結構與其製造方法
CN105709262A (zh) 2016-03-16 2016-06-29 张家港耐尔纳米科技有限公司 一种载银抗菌敷料及其制备方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US949964A (en) 1908-12-16 1910-02-22 Joseph F Schmidt Railroad-switch.
US5744151A (en) 1995-06-30 1998-04-28 Capelli; Christopher C. Silver-based pharmaceutical compositions
US6093414A (en) 1997-08-11 2000-07-25 Christopher C. Capelli Silver-based antimicrobial compositions
US6719987B2 (en) 2000-04-17 2004-04-13 Nucryst Pharmaceuticals Corp. Antimicrobial bioabsorbable materials
US7714183B2 (en) 2000-06-30 2010-05-11 Apimed Medical Honey Limited Use of honey in dressings
US9345805B2 (en) 2000-09-21 2016-05-24 Convatec Technologies Inc. Silver containing wound dressing
US7229689B2 (en) 2000-11-03 2007-06-12 Ssl International Polysaccharide fibres
US6696077B2 (en) 2001-07-26 2004-02-24 George H. Scherr Silver alginate foam compositions
US8921427B2 (en) 2006-01-16 2014-12-30 Lohmann & Rauscher Gmbh & Co. Kg Antiseptic alginate preparation
CN1935268A (zh) 2006-10-18 2007-03-28 上海川本卫生材料有限公司 纳米银海藻酸钙抗菌敷料
CN101381907A (zh) * 2008-10-06 2009-03-11 武汉科技学院 抗菌海藻酸钙纤维的制造方法
CN101721734A (zh) 2008-10-22 2010-06-09 威海威高创新有限公司 医用海藻酸钙抗菌敷料及其制备方法
CN102462860A (zh) * 2010-11-10 2012-05-23 广东百合医疗科技有限公司 一种具有抗菌作用的纤维类伤口敷料及其制备方法
EP2659865B1 (en) * 2012-05-04 2015-08-05 Advanced Medical Solutions Limited Wound Dressing
CN103074699A (zh) * 2012-12-28 2013-05-01 佛山市优特医疗科技有限公司 化学改性的海丝纤维、由其制成的伤口敷料及其制备方法
CN103768643A (zh) 2014-02-17 2014-05-07 周继胡 一种银离子海藻酸盐缓释抗菌凝胶及其制备方法
CN103835025A (zh) 2014-03-07 2014-06-04 青岛大学 一种永久抗菌聚胍海藻纤维的制备方法
CN105536041A (zh) 2016-01-21 2016-05-04 常州陀谱生物医学技术有限公司 一种含王浆酸的抗菌生物敷料、制备方法及其用途
CN105999362A (zh) 2016-06-02 2016-10-12 四川奎星医用高分子制品有限责任公司 含有抗菌药物的医用复合海藻酸盐敷料及其制备方法
CN106049036A (zh) 2016-06-23 2016-10-26 青岛大学 一种纳米银海藻酸盐短纤维的原位合成方法
CN105963755A (zh) 2016-06-29 2016-09-28 广东泰宝医疗科技股份有限公司 一种藻酸盐缓释抗菌敷料及其制备方法
CN106075534A (zh) 2016-07-07 2016-11-09 浙江大学 一种壳聚糖藻酸盐敷料及其浸渍制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660191A4

Also Published As

Publication number Publication date
US20190284727A1 (en) 2019-09-19
US11131040B2 (en) 2021-09-28
EP3660191A1 (en) 2020-06-03
EP3660191A4 (en) 2020-08-12
EP3660191B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
CN107385917B (zh) 一种抗菌藻酸盐纤维、其敷料的制备方法及应用
Montaser et al. Designing strategy for coating cotton gauze fabrics and its application in wound healing
EP2695622B1 (en) A chitosan wound dressing and its method of manufacturing
CN103961738B (zh) 一种壳聚糖-纳米银伤口敷料及其制备方法
JP6069394B2 (ja) 医薬組成物
CN104623718B (zh) 壳聚糖凡士林纱布及其制备方法
US11938230B2 (en) Hemostatic material and wound dressing containing same
CN105457074A (zh) 一种含peg嵌段的聚硅氧烷超分子弹性体创面敷料的制备
CN109224116A (zh) 一种高吸收性的抗菌止血医用敷料及制备方法
CN103638551B (zh) 壳聚糖6-oh固载环糊精包合茶树油温敏凝胶的制备方法
CN107296975A (zh) 一种抗菌止血复合医用敷料及其制备方法
CN113069591A (zh) 一种壳聚糖-聚谷氨酸钙生物敷料及其制备方法
CN104771779B (zh) 一种功能敷料及其制备方法
WO2019018997A1 (zh) 一种抗菌藻酸盐纤维、其敷料的制备方法及应用
Ruan et al. Development of ZnO/selenium nanoparticles embedded chitosan‐based anti‐bacterial wound dressing for potential healing ability and nursing care after paediatric fracture surgery
CN109364286B (zh) 一种氧化石墨烯复合纳米纤维结构敷料及制备方法
CN111481732A (zh) 保护性伤口敷料的制备方法
US20120282320A1 (en) Hemostatic dressing
CN109224124B (zh) 一种止血促愈合的液体敷料
WO2010109588A1 (ja) 医療用及び基礎化粧用(スキンケア用)高分子材料並びにその製造方法
CN115779131B (zh) 一种医用敷料的加工工艺及其医用敷料
RU2814059C1 (ru) Способ получения биокомпозиционных материалов с регенеративными и антисептическими свойствами на основе гидрогелей бактериальной целлюлозы
Li et al. Acer tegmentosum extract-mediated silver nanoparticles loaded chitosan/alginic acid scaffolds enhance healing of E. coli-infected wounds
CN115869452A (zh) 一种抗菌促凝血的气胸密封贴及其制备方法
CN109706744A (zh) 一种快速止血、抗菌水胶体油纱及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919151

Country of ref document: EP

Effective date: 20200225