WO2019017183A1 - Estimation device, power storage device, estimation method, and computer program - Google Patents
Estimation device, power storage device, estimation method, and computer program Download PDFInfo
- Publication number
- WO2019017183A1 WO2019017183A1 PCT/JP2018/024811 JP2018024811W WO2019017183A1 WO 2019017183 A1 WO2019017183 A1 WO 2019017183A1 JP 2018024811 W JP2018024811 W JP 2018024811W WO 2019017183 A1 WO2019017183 A1 WO 2019017183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- characteristic
- voltage
- charge
- discharge
- potential
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an estimation device, a power storage device including the estimation device, an estimation method, and a computer program.
- LiCoO 2 LiCoO 2
- LiMeO 2 LiMeO 2
- an Li 2 MnO 3 -based active material which is a lithium excess type is being studied.
- This material has the property of hysteresis which causes a difference in voltage and electrochemical characteristics between SOC-OCV (Open Circuit Voltage) at the time of charge and discharge for the same SOC (State Of Charge). .
- SOC-OCV Open Circuit Voltage
- SOC-OCV curve can not be uniquely determined, it is also difficult to predict the dischargeable energy at a certain point.
- the material of the lithium excess type has a property of voltage drop (Voltage Fade) in which the SOC-OCP (Open Circuit Potential) curve of the positive electrode changes almost over the entire area by repetition of charge and discharge. Since the value of the average discharge potential decreases, it is necessary to estimate not only the dischargeable capacity but also the dischargeable power amount as the current state of health (SOH). Since the SOC-OCV curve shape of the battery cell based on the unipolar SOC-OCP curve (hereinafter, also simply referred to as "cell") changes significantly due to deterioration even if the latest charge / discharge history is the same, OCV The law can not be adopted. The conditions under which the latest charge and discharge history is the same include, for example, charge after passing through a complete discharge state. In charging after passing through the full discharge state, the SOC-OCV curve shape of the cell is significantly changed because the unipolar SOC-OCP curve changes according to the deterioration.
- Voltage Fade Voltage Fade
- SOC-OCP Open Circuit Potential
- BACKGROUND ART Storage devices such as lithium ion secondary batteries are often used repeatedly in a state in which the SOC is 40% or more in vehicles and the like.
- the voltage is often raised to near full charge, and when the degradation state can be grasped in a high voltage region (high SOC region) where the voltage is high, that is, the SOC is high after charging, dischargeable capacity and dischargeable Since the amount of power can be estimated and control can be performed to suppress deterioration at an appropriate timing, convenience is high. Even in the high SOC region, it is required to simply, quickly, and accurately estimate the degraded state.
- the determination unit of the storage battery evaluation device disclosed in Patent Document 1 determines the charge / discharge tendency of the storage battery based on measurement data including voltage data of the storage battery.
- the correction unit corrects the voltage data based on the correction parameter according to the charge / discharge tendency and / or the deterioration state of the storage battery.
- the QV curve generation unit generates a storage battery QV curve based on the voltage data.
- the evaluation unit evaluates the deterioration state based on the QV curve.
- the storage battery evaluation device of Patent Document 1 requires complicated steps to evaluate the storage battery.
- the voltage data is acquired by acquiring the voltage data and removing the voltage component caused by the internal resistance.
- the unipolar SOC-OCP does not change over substantially the entire region due to the repetition of charge and discharge.
- the storage battery evaluation device and evaluation method of Patent Document 1 can not be adopted.
- the present invention can be applied to a storage element having a single pole in which the storage capacity-potential characteristic changes due to repetition of charge and discharge, an estimation apparatus for estimating the storage capacity characteristic, etc., a storage apparatus including the estimation apparatus, an estimation method, and a computer
- the purpose is to provide a program.
- the storage amount means a charging rate such as SOC, an amount of power that can be released, and the like.
- An estimation device is a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change by repetition of charge and discharge.
- the first and second characteristics of the single pole of the storage element having at least one of V-dQ / dV, which is the relationship between the potential V and dQ / dV, are estimated.
- the estimation apparatus responds to the change in the feature value, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole corresponding to the feature value that changes due to the repetition of charge and discharge.
- Storage unit for storing the plurality of storage units as a function of the feature value, an acquisition unit for acquiring the feature value of the storage element, and the first characteristic based on the characteristic value acquired by the acquisition unit.
- a first estimation unit that estimates
- the storage amount characteristic of the storage element having a single electrode including the active material in which the first characteristic and the second characteristic change due to repetition of charge and discharge can be favorably estimated.
- FIG. 6 is a conceptual diagram showing a relationship between a unipolar potential range corresponding to a predetermined voltage range and a range of charge amount corresponding to each deterioration state in each potential range.
- FIG. 3A is a graph showing the relationship between the potential of the positive electrode and the dQ / dV of the initial product including the active material whose first and second characteristics change due to repetition of charge and discharge
- FIG. 3B is the potential of the positive electrode of the deteriorated product. It is a graph which shows the relationship between and dQ / dV.
- FIG. 2 is a perspective view showing an example of a power storage device. It is a perspective view which shows the other example of an electrical storage apparatus. It is an exploded perspective view of a battery module. It is a block diagram of a battery module. It is a flowchart which shows the procedure of the estimation process of the electrical storage amount characteristic by CPU. It is a graph which shows the result of having calculated the error to the SOC-OCP data based on an actual measurement value of the calculated SOC-OCP data.
- the estimation device has an electric storage having a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change with repeated charging and discharging. At least one of a first characteristic and a second characteristic of the single pole of the element and V ⁇ dQ / dV which is a relation between the potential V and dQ / dV is estimated.
- the estimation apparatus responds to the change in the feature value, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole corresponding to the feature value that changes due to the repetition of charge and discharge.
- Storage unit for storing the plurality of storage units as a function of the feature value, an acquisition unit for acquiring the feature value of the storage element, and the first characteristic based on the characteristic value acquired by the acquisition unit.
- a first estimation unit that estimates
- dQ / dV is a charge value or a differential value obtained by differentiating the discharge capacity Q by the potential V.
- a plurality of first characteristics, second characteristics, or V-dQ / dV corresponding to the feature value are stored according to the deterioration of the storage element.
- the current first property, second property or dQ / dV-V is estimated with reference to the stored first property, second property or V-dQ / dV. Be done.
- data relating to the first characteristic, the second characteristic, or V-dQ / dV is stored as a function of the feature value, and by substituting the current feature value, the first characteristic, the second feature, or the second characteristic is stored.
- dQ / dV-V is calculated.
- the quantity-potential characteristic or V-dQ / dV can be determined.
- the current single pole first characteristic, second characteristic, or V-dQ / dV is an index indicating the current deterioration state. Therefore, even in a complicated use environment, it is possible to monitor the deterioration state of the single pole with high accuracy.
- the characteristic value may be at least one of a charge amount or a discharge capacity in a predetermined voltage range and an average discharge potential.
- the storage unit stores a plurality of V-dQ / dV or stores the function according to the charge quantity or the discharge capacity, or the magnitude of the average discharge potential.
- the first estimation unit may estimate the unipolar V-dQ / dV with reference to the relationship between the feature value and the V-dQ / dV.
- a plurality of V-dQ / dV or the function is stored according to the size of the feature value, and by referring to the relationship between the feature value and the V-dQ / dV, the unipolar V-dQ / dV has high accuracy It can be estimated.
- the amount of charge or the discharge capacity may be corrected according to the degree of deterioration of the active material.
- the storage amount-potential characteristic or V-dQ / dV can be estimated more accurately by correcting according to the degree of deterioration.
- the feature value is dQ / dV at a predetermined voltage, a time from a first voltage to a second voltage, and between the first voltage and a second voltage within a high voltage range. It may be any of the slope of V ⁇ dQ / dV ( ⁇ (dQ / dV) / ⁇ V).
- the dQ / dV, the time, and the [ ⁇ (dQ / dV) / ⁇ V] change in response to changes in V ⁇ dQ / dV due to repeated charge and discharge. Therefore, when a plurality of first characteristics, second characteristics, or V-dQ / dV are stored in association with these feature values, the first characteristics, second characteristics, or V-dQ at the current time can be accurately obtained. / DV can be estimated.
- the estimation device has an electric storage having a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change with repeated charging and discharging. Estimate the degradation state of the element.
- the estimation device is configured to calculate the dQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V ⁇ dQ / dV between the first voltage and the second voltage within the high voltage range.
- An acquisition unit that acquires a feature value of [ ⁇ (dQ / dV) / ⁇ V], and an estimation unit that estimates a deterioration state of the storage element based on the feature value.
- the estimation unit may estimate the deterioration state of the storage element based on a threshold value of the feature value.
- the deterioration state of the storage element can be easily estimated by the threshold value.
- the active material exhibits a hysteresis between a first characteristic and a second characteristic, and the first characteristic and / or the second characteristic estimated by the first estimation unit, and the charging of the storage element.
- the third characteristic which is the charge amount-voltage charge characteristic for reference when estimating the charge amount based on the voltage of the storage element based on the history of discharge, and / or the charge amount-voltage discharge characteristic for reference
- the third characteristic and / or the fourth characteristic are accurately based on the first characteristic and / or the second characteristic according to the current deterioration state of the single pole and the charge / discharge history of the storage element. Properties can be estimated.
- the above-described estimation device may include a third estimation unit configured to estimate the storage amount based on the charge / discharge history, the third characteristic and / or the fourth characteristic, and the acquired voltage.
- the storage amount of the storage element having the active material having the property of potential drop and exhibiting the storage amount-voltage characteristic exhibiting hysteresis can be easily estimated. Since the voltage is used, the storage amount is not limited to the SOC, and the amount of current energy stored in the storage element, such as the amount of power, can be estimated. Based on the charge / discharge characteristics, dischargeable energy up to SOC 0% and charge energy required up to SOC 100% can be predicted. It is possible to estimate the current remaining power and the storable power. Therefore, it is possible to accurately perform balancing in the case of using a plurality of storage elements, control of regeneration reception, estimation of a traveling distance in the case of mounting the storage elements, and the like.
- a power storage device includes a power storage element and the above-described estimation device.
- the storage amount of the storage element can be accurately estimated even in a complicated use environment.
- the first and second characteristics of the single pole and / or V-dQ / dV, which is the relationship between the potential V and dQ / dV, are estimated.
- the change of the feature value at least one of the first characteristic, the second characteristic and the V-dQ / dV of the single pole corresponding to the feature value which changes due to the repetition of charge and discharge.
- At least one of the first characteristic, the second characteristic, and the V-dQ / dV is referred to Or, referring to the function, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole is estimated.
- the charge amount-potential characteristic or V-dQ / dV of a single electrode can be easily and accurately determined using the feature value. be able to.
- Another estimation method of the embodiment estimates the deterioration state of the storage element having a single electrode including an active material, in which the storage amount-potential charge characteristic and the storage amount-potential discharge characteristic change due to repetition of charge and discharge.
- the estimation method is dQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V-dQ / dV between the first voltage and the second voltage within the high voltage range.
- a feature value of [ ⁇ (dQ / dV) / ⁇ V] is acquired, and the degradation state of the storage element is estimated based on the feature value.
- dQ / dV, ⁇ t, or ⁇ (dQ / dV) / ⁇ V is acquired as a feature value, and the degradation state of the storage element can be favorably estimated using this feature value.
- the computer program according to the embodiment has a storage having a single electrode including an active material in which a first characteristic that is a storage amount-potential charge characteristic and a second characteristic that is a storage amount-potential discharge characteristic change with repeated charging and discharging.
- a computer for estimating at least one of the first characteristic and the second characteristic of the single pole of the element, and V-dQ / dV which is the relationship between the potential V and dQ / dV the charge / discharge of the storage element
- the first characteristic, the second characteristic, and the second characteristic of the single pole are referred to based on the acquired feature value with reference to the plurality of stored tables or the function stored with the function value.
- V-dQ / dV To execute a process of estimating at least one.
- Another computer program is a computer for estimating a deterioration state of a storage element having a single electrode including an active material whose storage amount-potential charge characteristic and storage amount-potential discharge characteristic change due to repetition of charge and discharge.
- DQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V-dQ / dV between the first voltage and the second voltage, [( ⁇ ( ⁇ ( A feature value of any of dQ / dV) / ⁇ V)] is acquired, and a process of estimating the degradation state of the storage element is executed based on the feature value.
- the single electrode of the electrode body of the storage element includes an active material having a property of potential drop and having a storage amount-potential characteristic of hysteresis.
- the shapes of the unipolar SOC-OCP curve (first characteristic, second characteristic) and the SOC-OCV curve of the cell change due to repetition of charge and discharge.
- a cell containing this active material flows a minute current, and when charged from a fully discharged state to a fully charged state, and when discharged from a fully charged state to a fully discharged state, the maximum potential difference between SOC-OCV curves is 100 mV. It has the hysteresis which is the above.
- FIG. 1 is a graph showing an example of the SOC-OCP of the positive electrode.
- the horizontal axis is SOC (%), and the vertical axis is the potential E as OCP (VvsLi / Li + : Li / Li + potential based on the equilibrium potential).
- the charge / discharge curve before deterioration is shown by a broken line, and the charge / discharge curve after deterioration is shown by a solid line.
- the potential drop occurs due to the deterioration, and the charge / discharge curve shifts downward.
- the hysteresis is not provided, and the unipolar SOC-OCP curve does not change by repetition of charge and discharge.
- the shape of the SOC-OCV curve of the cell changes due to the repetition of charge and discharge due to the deterioration of the single pole (the reduction of the curve) or the increase of the displacement of the capacity balance.
- the current storage amount characteristic is estimated.
- the storage amount characteristics include at least one of unipolar charge SOC-OCP characteristics, discharge SOC-OCP characteristics, charge V-dQ / dV, and discharge V-dQ / dV. There is a correlation between the feature value that changes due to the repetition of charge and discharge and the above-mentioned storage amount characteristic.
- the charge and discharge curve shape changes continuously and uniquely according to the change (deterioration) of the characteristic value.
- LiMeO 2 -Li respect 2 MnO 3 system of the active material along with the repetition of charge and discharge, the crystal structures have been reported to vary (Journal of Power Sources, vol.229 ( 2013), pp239-248). It is considered that the shape of the charge / discharge curve changes with the change of the crystal structure. It is suggested from the results of the paper that changes in crystal structure occur continuously in the short-term one temperature level charge / discharge cycle. And, from the report that the crystal structure has changed from layered to spinel-like crystals, it is presumed that the way of change is one way.
- the crystal structure changes continuously and uniquely. From this report, the inventor considered that the charge-discharge curve shape changes continuously and uniquely according to the change of the crystal structure in a long-term and any use history. From the experimental results described later, it was confirmed that the charge / discharge curve shape changes continuously and uniquely in the long run even if the usage history is different.
- the charge and discharge curve shape of a single electrode does not change by repetition of charge and discharge.
- the charge / discharge curve shape of the cell changes individually, that is, unambiguously, due to the repetition of charge / discharge.
- the storage characteristic of the single pole changes continuously and uniquely with respect to the change of the feature value, so that the transition of the change of the storage characteristic with respect to the change of the feature value is partially stored.
- the storage amount characteristic is stored as a function of the feature value.
- the CPU 62 described later acquires the current feature value.
- the CPU 62 acquires the feature value in the predetermined voltage range when the feature value is the charge amount of electricity or the discharge capacity.
- the potential of the counter electrode the charge amount characteristic of the counter electrode and the capacity balance deviation
- the battery voltage is converted to a unipolar potential and the potential converted for feature value extraction.
- Ranges may be used. As a unipolar potential range corresponding to the voltage range, there is a linear relationship between the charge quantity or discharge capacity and the average discharge potential of the unipolar, and the potential difference (cell voltage) with the counter electrode changes before and after deterioration. It is preferable to select a range that does not exist.
- FIG. 2 is a conceptual diagram showing the relationship between the potential range of the positive electrode corresponding to the predetermined voltage range and the range of the charge amount corresponding to each deterioration state in each potential range.
- the potential range becomes narrower in the order of a, b and c.
- the potential range narrows, the range of the charge amount of electricity narrows. That is, the error increases with the reduction of the potential range to be used.
- the potential range is wide, it takes time and effort to acquire the amount of charge electricity. Therefore, it is preferable to set an appropriate potential range in consideration of the balance between the estimation accuracy and the ease of measurement.
- the CPU 62 estimates the current storage amount characteristic based on the acquired feature value with reference to the stored storage amount characteristic. Alternatively, the CPU 62 substitutes the acquired feature value into the function of the stored feature value to calculate the current storage amount characteristic.
- FIG. 3A is a graph showing the relationship between the potential of the positive electrode of the initial product containing the active material and dQ / dV
- FIG. 3B is a graph showing the relationship between the potential of the positive electrode of the deteriorated product and dQ / dV.
- the horizontal axis is the potential (VvsLi / Li + : potential based on the Li / Li + equilibrium potential), and the vertical axis is dQ / dV.
- FIG. 4 is a graph showing transition of K absorption edge energy of Ni of the active material calculated by X-ray absorption spectrometry (XAFS measurement) with respect to charging potential.
- the horizontal axis is the charge potential E (VvsLi / Li + ), and the vertical axis is the K absorption edge energy E 0 (eV) of Ni.
- E charge potential
- E 0 eV
- LiNi 0.5 Mn 1.5 O 4 is stably present in the region of approximately 5V.
- a redox reaction caused by Ni occurs near 4.9 V.
- the curve is flattened in the high potential region and the reaction converges, whereas in the case of the deteriorated product, the reaction proceeds also in the high potential region.
- the time of charge or discharge of the power storage device by obtaining a dQ / dV of predetermined voltages V 1 in the high voltage range, it is possible to estimate the state of deterioration of the power storage device.
- the reaction described above occurs, the time ⁇ t from the first voltages V 1 in the high voltage range of the storage element up to the second voltage V 2 becomes longer.
- the state of deterioration of the storage element can be estimated.
- FIG. 5 shows an example of a power storage device.
- Power storage device 50 includes a plurality of power storage elements 200, monitoring device 100, and a storage case 300 for storing them.
- Power storage device 50 may be used as a power source of an electric vehicle (EV) or a plug-in hybrid electric vehicle (PHEV).
- the storage element 200 is not limited to a square cell, and may be a cylindrical cell or a pouch cell.
- the monitoring device 100 may be a circuit board disposed to face the plurality of storage elements 200. Monitoring device 100 monitors the state of storage element 200.
- the monitoring device 100 may be an estimation device. Alternatively, a computer or server wired or wirelessly connected to the monitoring apparatus 100 may execute an estimation method of estimating the storage capacity characteristic or the storage capacity based on the information output from the monitoring apparatus 100.
- FIG. 6 shows another example of the power storage device.
- the power storage device (hereinafter referred to as a battery module) 1 may be a 12 volt power source or a 48 volt power source suitably mounted on an engine vehicle.
- 6 is a perspective view of the battery module 1 for 12V power
- FIG. 7 is an exploded perspective view of the battery module 1
- FIG. 8 is a block diagram of the battery module 1.
- the battery module 1 has a rectangular parallelepiped case 2.
- a plurality of bus bars 4 a plurality of bus bars 4
- a BMU (Battery Management Unit) 6 are accommodated.
- the battery 3 includes a rectangular parallelepiped case 31 and a pair of terminals 32 and 32 provided on one side of the case 31 and having different polarities.
- the case 31 accommodates an electrode body 33 in which a positive electrode plate, a separator, and a negative electrode plate are stacked.
- At least one of the positive electrode active material of the positive electrode plate of the electrode body 33 and the negative electrode active material of the negative electrode plate has properties of potential drop and hysteresis.
- the positive electrode active material LiMeO 2 -Li 2 MnO 3 solid solution, Li 2 O-LiMeO 2 solid solution, Li 3 NbO 4 -LiMeO 2 solid solution, Li 4 WO 5 -LiMeO 2 solid solution, Li 4 TeO 5 -LiMeO 2 solid solution, Li 3 SbO 4 -LiFeO 2 solid solution, Li 2 RuO 3 -LiMeO 2 solid solution, and a Li-excess active material such as Li 2 RuO 3 -Li 2 MeO 3 solid solution.
- the negative electrode active material examples include hard carbon, metals such as hard carbon, Si, Sn, Cd, Zn, Al, Bi, Pb, Ge, Ag, or alloys thereof, chalcogenides containing these, and the like.
- chalcogenide is SiO.
- the technology of the present invention is applicable as long as at least one of the positive electrode active material and the negative electrode active material is included.
- Case 2 is made of synthetic resin.
- the case 2 includes a case body 21, a lid 22 closing the opening of the case body 21, a BMU accommodating portion 23 provided on the outer surface of the lid 22, a cover 24 covering the BMU accommodating portion 23, and an inner lid 25 and a partition plate 26.
- the inner lid 25 and the partition plate 26 may not be provided.
- the battery 3 is inserted between the partition plates 26 of the case main body 21.
- a plurality of metal bus bars 4 are mounted on the inner lid 25.
- the inner cover 25 is disposed on the terminal surface on which the terminals 32 of the battery 3 are provided, and the adjacent terminals 32 of the adjacent batteries 3 are connected by the bus bar 4 and the batteries 3 are connected in series.
- the BMU accommodating portion 23 has a box shape, and has a rectangular projecting portion 23 a at the center of one long side. A pair of external terminals 5 and 5 made of a metal such as a lead alloy and having different polarities is provided on both sides of the protrusion 23 a in the lid 22.
- the BMU 6 is formed by mounting an information processing unit 60, a voltage measurement unit 8, and a current measurement unit 9 on a substrate. The BMU 6 is accommodated in the BMU accommodating portion 23 and the BMU accommodating portion 23 is covered with the cover 24, whereby the battery 3 and the BMU 6 are connected.
- the information processing unit 60 includes a CPU 62 and a memory 63.
- the memory 63 stores, in the memory 63, a program for estimating the storage capacity characteristic according to the present embodiment, various programs 63a including a storage capacity estimation program, and a table 63b in which the storage capacity characteristic is stored.
- the program 63a is provided in the state of being stored in a computer readable recording medium 70 such as a CD-ROM, a DVD-ROM, a USB memory, etc., and is stored in the memory 63 by being installed in the BMU 6.
- the program 63a may be obtained from an external computer (not shown) connected to a communication network and stored in the memory 63.
- the memory 63 and the first estimation unit, the second estimation unit, or the third estimation unit as the processing unit of the CPU 62 are not limited to the case where they are mounted in the BMU 6. When these are mounted on an external device and the characteristic value is acquired, the storage amount-potential characteristic of single pole, the storage amount for voltage reference, the voltage characteristic, or the storage amount is estimated, and the result is passed to BMU6. Good.
- the storage amount characteristic stored in the table 63b will be described by taking a specific example. For each cell, each No. 1 cell was tested under the conditions of voltage range, cycle number, and test temperature shown in Table 1 below. Cycle test was conducted.
- the conditions of the confirmation test for determining SOC-OCP are as follows. ⁇ Anode: Li metal ⁇ Test rate: charge 0.1CA, discharge 0.1CA ⁇ Test temperature: 25 ° C Thereby, each No.
- the SOC-OCP characteristic of the positive electrode or the V-dQ / dV characteristic is determined as the storage capacity characteristic for the test of (1).
- the storage amount characteristic is stored in the table 63 b in association with the charge amount or discharge capacity of the predetermined voltage range, or the average discharge potential.
- a single pole storage capacity characteristic in a degraded state is acquired by each test, and this is arranged in the order of the feature value to associate the characteristic value with the storage capacity characteristic. It is confirmed that the storage capacity characteristic changes continuously and uniquely in the long run even if the usage history is different.
- the CPU 62 executes storage amount characteristic estimation processing and storage amount estimation processing described later according to the program read from the memory 63.
- the voltage measurement unit 8 is connected to both ends of the battery 3 via a voltage detection line, and measures the voltage of each battery 3 at predetermined time intervals.
- the current measuring unit 9 measures the current flowing through the battery 3 via the current sensor 7 at predetermined time intervals.
- the external terminals 5 and 5 of the battery module 1 are connected to a load 11 such as a starter motor for starting the engine and electrical components.
- the ECU (Electronic Control Unit) 10 is connected to the BMU 6 and the load 11.
- FIG. 9 is a flowchart showing the procedure of the process of estimating the storage capacity characteristic by the CPU 62.
- the CPU 62 repeats the processing from S1 at predetermined intervals.
- the CPU 62 acquires a feature value (S1).
- the CPU 62 calculates a storage amount characteristic corresponding to the acquired feature value.
- the CPU 62 calculates the target storage capacity characteristic from the storage capacity characteristic corresponding to, for example, two reference feature values by interpolation calculation (S2). Alternatively, the obtained characteristic value is substituted into the above-described function of the characteristic value to calculate the target storage amount characteristic.
- the CPU 62 stores the calculated storage capacity characteristic in the table 63b (S3).
- the CPU 62 estimates the deterioration state of the battery 3 based on the calculated storage capacity characteristic (S4), and ends the process.
- the storage capacity characteristic is an indicator of deterioration. Note that the process of S4 may not be performed, and the process may end after the process of S3.
- the CPU 62 obtains, as the characteristic value, a charge quantity with a unipolar potential range of P1V to P2V and a cell voltage range of C1V to C2V. This charge quantity of electricity is defined as QinP1-P2V.
- QinP1-P2V This charge quantity of electricity is defined as QinP1-P2V.
- Table 63b the numbers in Table 1 No. It is assumed that V-dQ / dV data is stored in association with QinP1-P2V for 1 to 15.
- the CPU 62 determines that the acquired feature value is No. 2 and No. If it is between three respective QinP1-P2V, No. 2 and No. Interpolation calculation is performed using each of the three V-dQ / dV data to obtain V-dQ / dV data corresponding to the feature value.
- the acquired V-dQ / dV data can be converted to SOC-OCP data.
- FIGS. 10 to 20 are graphs showing the results of determining the error with respect to the SOC-OCP data based on the actual measurement value of the SOC-OCP data calculated as described above.
- the horizontal axis represents the potential E during charging or discharging (VvsLi / Li + : potential based on the Li / Li + equilibrium potential), and the vertical axis is the error (%).
- e represents data of charge
- f represents data of discharge.
- FIG. 5 and No. 5 From the data of No. It is a graph which shows the said error at the time of calculating
- FIG. 6 and No. No. 13 from the data. It is a graph which shows the said error at the time of calculating
- FIG. 12 and No. No. 13 from the data. It is a graph which shows the said error at the time of calculating
- FIG. 11 and No. No. 14 from the data. It is a graph which shows the said error at the time of calculating
- the error of the calculation is small, particularly when the potential is in the range of 3.5 V to 4.5 V, the error is smaller. Even if data with different test conditions are selected in various combinations, the calculation error is small. Therefore, it was confirmed that the V-dQ / dV data at the time of acquiring the feature value can be accurately calculated based on the V-dQ / dV data corresponding to the feature value and the acquired feature value. Since the shape of V-dQ / dV changes continuously and uniquely in the positive electrode containing the active material having the property of potential drop, the V at the time of full charge / discharge at this point can be accurately even using data with different test conditions -DQ / dV can be calculated. The transition of the change of V-dQ / dV with respect to the change of the feature value may be partially stored. The number of V-dQ / dV data stored in the table 63b may be small.
- 21 and 22 are flowcharts showing the procedure of the SOC estimation process by the CPU 62.
- the CPU 62 repeats the processing from S11 at predetermined intervals.
- the voltage with which the oxidation amount and the reduction amount of the reaction generating the hysteresis are small is previously determined by experiments and is set as the threshold value V1.
- the voltage acquired after the voltage becomes nobler than V1 is set to the upper reference voltage (Vup).
- Vup is updated when the acquired voltage is greater than the previously acquired voltage.
- the acquired voltage is set to the lower reference voltage (Vlow) after the voltage goes below V1.
- Vlow is updated when the acquired voltage is smaller than the previously acquired voltage.
- the CPU 62 acquires the voltage and current between the terminals of the battery 3 (S11). Since the threshold V1 and the upper reference voltage Vup are OCV, when the current amount of the battery 3 is large, it is necessary to correct the acquired voltage to the OCV.
- the correction value to the OCV can be obtained by estimating the voltage when the current is zero using a regression line from a plurality of voltage and current data. If the amount of current flowing through the battery 3 is as small as the dark current (small current), the acquired voltage is regarded as OCV.
- the CPU 62 determines whether the absolute value of the current is equal to or more than the pause threshold (S12).
- the rest threshold is set to determine whether the state of the battery 3 is in a charged state, a discharged state, or a rest state.
- the process proceeds to S22.
- the CPU 62 determines whether the current is larger than 0 (S13). If the current is greater than zero, the state of the battery 3 is determined to be in the charged state. When the CPU 62 determines that the current is not larger than 0 (S13: NO), the process proceeds to S18.
- the CPU 62 determines whether the acquired voltage is larger than Vup stored in the memory 63 last time (S15). When the CPU 62 determines that the voltage is not larger than the previous Vup (S15: NO), the process proceeds to S17.
- the memory 63 updates the voltage to Vup (S16).
- the CPU 62 estimates the SOC by current integration (S17), and ends the process.
- the CPU 62 determines whether the voltage is less than V1 (S18). When the CPU 62 determines that the voltage is not less than V1 (S18: NO), the process proceeds to S21. When the CPU 62 determines that the voltage is less than V1 (S18: YES), it determines whether the acquired voltage is smaller than the lower reference voltage Vlow stored in the memory 63 last time (S19). When the CPU 62 determines that the voltage is not smaller than the previous Vlow (S19: NO), the process proceeds to S21. When the CPU 62 determines that the voltage is smaller than the previous Vup (S19: YES), the memory 63 updates the voltage to Vlow (S20) The CPU 62 estimates the SOC by current integration (S21), and ends the process.
- the CPU 62 determines whether the set time has elapsed (S22).
- the set time is an experimentally determined time sufficient to regard the acquired voltage as an OCV.
- the CPU 62 determines whether or not the time has been exceeded, based on the number of acquisition times and the acquisition interval of the current after determining that the apparatus is in the pause state. Thus, the SOC can be estimated more accurately in the resting state.
- the CPU 62 estimates the SOC by current integration (S23), and ends the process.
- the acquired voltage can be regarded as an OCV.
- the CPU 62 acquires the latest stored electricity amount characteristic from the table 63b (S24). In addition, when a period becomes vacant from the day when the feature value was finally acquired, the estimated storage capacity characteristic is corrected or the storage capacity characteristic is newly obtained and updated in consideration of the history from the acquisition to the present time. Is preferred.
- the CPU 62 calculates the storage amount characteristic for voltage reference based on the acquired storage amount characteristic (S25). For example, when the storage amount characteristic is V-dQ / dV of the positive electrode, the CPU 62 converts it into V-dQ / dV of the cell. The CPU 62 calculates the charge SOC-OCV or the discharge SOC-OCV of the cell based on the V-dQ / dV of the cell.
- the CPU 62 calculates a charge SOC-OCV (third characteristic) for voltage reference or a discharge SOC-OCV (fourth characteristic) for voltage reference based on the charge SOC-OCV or the discharge SOC-OCV and Vup.
- the CPU 62 calculates the charge SOC-OCV or the discharge SOC-OCV for voltage reference, using, for example, the charge SOC-OCV or the discharge SOC-OCV in consideration of the oxidation amount and the reduction amount of the reaction that causes the hysteresis.
- the CPU 62 reads the SOC corresponding to the voltage acquired in S1 in the charge SOC-OCV or the discharge SOC-OCV for voltage reference, estimates the SOC (S26), and ends the processing.
- the charge amount of the current charge of the single pole can be obtained with high accuracy from a feature value only Potential characteristics or V-dQ / dV can be estimated.
- the number of V-dQ / dV data stored in the table 63b may be small.
- the current monopolar storage capacity-potential characteristic or V-dQ / dV is an index indicating the current deterioration state. Therefore, even in a complicated use environment, the deterioration state of the single pole can be monitored with high accuracy.
- the storage amount-voltage characteristics for voltage reference are accurately estimated based on the storage amount-potential characteristic according to the current deterioration state of the single pole and the charge / discharge history of the storage element. it can.
- the storage amount of the storage element including the active material having the property of potential drop can be easily and easily estimated by using knowledge of the behavior of the hysteresis in combination. Since the voltage is used, the storage amount is not limited to the SOC, and the amount of current energy stored in the storage element, such as the amount of power, can be estimated. Based on the charge / discharge characteristics, dischargeable energy up to SOC 0% and charge energy required up to SOC 100% can be predicted. It is possible to estimate the current remaining power and storable power. Therefore, it is possible to accurately perform balancing in the case of using a plurality of storage elements, control of regeneration reception, estimation of a traveling distance in the case of mounting the storage elements, and the like.
- Second Embodiment CPU62 of the information processing unit 60 of the battery module according to the second embodiment in the high voltage range, dQ at a predetermined voltage V 0 / dV, time ⁇ t from the first voltages V 1 up to the second voltage V 2, and obtaining first voltages V 1 and the feature value of either of the slope of the V-dQ / dV [ ⁇ ( dQ / dV) / ⁇ V] between the second voltage V 2.
- the CPU 62 estimates the deterioration state of the battery 3 based on the feature value. As shown in FIG.
- the state of deterioration of the battery 3 is estimated by acquiring the dQ / dV during charging or discharging of the battery 3 it can.
- the reaction described above occurs, the time ⁇ t from the first voltages V 1 in the high voltage range of the storage element up to the second voltage V 2 becomes longer. By acquiring ⁇ t, the state of deterioration of the storage element can be estimated.
- the high voltage range is preferably in the range of 4.4 V to 5.0 V.
- voltages V 0 , V 1 and V 2 refer to FIG. 4 and FIG. 24 and FIG. 25 described later, and select a voltage at which the change in the feature value increases according to deterioration during charging and discharging. Do.
- the relationship between the number of cycles and the dQ / dV, the relationship between the number of cycles and the ⁇ t, and the relationship between the number of cycles and ⁇ (dQ / dV) / ⁇ V obtained in advance by experiment One is stored.
- the memory 63 may store these relationships as functions.
- the relationships or functions described above may be stored by rate.
- the memory 63 may also store the relationship between the feature value and the SOH.
- FIG. 23 is a flowchart showing the procedure of the degradation state estimation process by the CPU 62.
- the CPU 62 acquires one of dQ / dV, ⁇ t, and ⁇ (dQ / dV) / ⁇ V feature values based on the charge / discharge history (S31).
- the CPU 62 reads the relationship between the cycle number and dQ / dV, ⁇ t, or ⁇ (dQ / dV) / ⁇ V from the table 63 b in accordance with the feature value.
- the CPU 62 refers to the read relationship, estimates whether or not the battery 3 at the current time is in the deteriorated state based on the acquired feature value (S32), and ends the process.
- the CPU 62 estimates the deterioration state in consideration of the use condition of the user of the battery 3, the use condition, the judgment standard of deterioration input from the user, and the like.
- the CPU 62 may estimate the deterioration state based on the relationship between the feature value and the SOH.
- the CPU 62 may estimate the deterioration state based on the function described above.
- the CPU 62 estimates that the battery 3 is in a deteriorated state when the feature value is equal to or greater than the threshold.
- the CPU 62 estimates that the battery 3 is in the deteriorated state when
- the CPU 62 estimates that the battery 3 is in a deteriorated state.
- ⁇ (dQ / dV) / ⁇ V is acquired as the feature value, the CPU 62 estimates that the battery 3 is in the deteriorated state when the feature value is equal to or less than the threshold value.
- Modification 2 In the table 63b of the memory 63 of the second modification, a plurality of V-dQ / dV corresponding to temporal deterioration are stored in association with feature values.
- the CPU 62 estimates the deterioration state according to the procedure shown in FIG. 9 as in the first embodiment.
- the CPU 62 acquires feature values of dQ / dV, ⁇ t, and ⁇ (dQ / dV) / ⁇ V (S1).
- the CPU 62 calculates a target storage capacity characteristic (V ⁇ dQ / dV) corresponding to the acquired feature value.
- the CPU 62 calculates the target storage capacity characteristic from the storage capacity characteristic corresponding to, for example, two reference feature values by interpolation calculation (S2).
- the acquired characteristic value is substituted into the function of the characteristic value to calculate the target storage capacity characteristic.
- the CPU 62 stores the calculated storage capacity characteristic in the table 63b (S3).
- the CPU 62 estimates the deterioration state of the battery 3 based on the calculated storage capacity characteristic (S4), and ends the process.
- the obtained storage capacity characteristic is an indicator of deterioration.
- the SOC-OCV was determined based on the obtained V-dQ / dV, the SOC-OCV for voltage reference was determined based on the SOC-OCV and the charge / discharge history, and the feature value was obtained by the OCV method. It is also possible to calculate the SOC of the time point.
- Example 2 Hereinafter, although the example of Embodiment 2 is concretely described, it is not limited to this example.
- the battery 3 of Example was produced using the above-mentioned Li excess type active material as a positive electrode active material, and graphite as a negative electrode active material.
- a charge / discharge cycle test was performed using this battery 3 to determine V-dQ / dV at the time of charge, corresponding to the number of cycles from 10 times to 480 times. The results are shown in FIG.
- the horizontal axis is voltage (V), and the vertical axis is dQ / dV.
- FIG. 24 is a graph showing the results of determination of V-dQ / dV during discharge, corresponding to the above-described plurality of cycles.
- the horizontal axis is voltage (V), and the vertical axis is dQ / dV.
- the upper curve has a larger number of cycles than the lower curve.
- the dQ / dV at 4.55 V of (1) increases as the number of cycles increases.
- the curve of V-dQ / dV is convex upward as the number of cycles increases, and more oxidation reaction occurs, so from 4.50 V to The time ⁇ t to reach 4.55 V becomes long.
- the slope ⁇ (dQ / dV) / ⁇ V in the range of (2) increases as the number of cycles increases.
- FIG. 25 is a graph showing the results of determination of V-dQ / dV at the time of discharge, corresponding to the above-described plurality of cycles.
- the horizontal axis is voltage (V), and the vertical axis is dQ / dV.
- the lower curve has a larger number of cycles than the upper curve.
- the absolute value of dQ / dV at 4.45 V in (3) increases as the number of cycles increases.
- the curve of V-dQ / dV is convex downward as the number of cycles increases, and more reduction reaction occurs, so from 4.45 V
- the time ⁇ t to reach 4.40 V becomes long.
- the slope [ ⁇ (dQ / dV) / ⁇ V] in the range of (4) decreases as the number of cycles increases.
- FIG. 26 is a graph showing the relationship between the number of cycles of the battery 3 and dQ / dV at 4.55 V during charging.
- the horizontal axis is the number of cycles, and the vertical axis is dQ / dV. As shown in FIG. 26, as the number of cycles increases, dQ / dV increases.
- FIG. 27 is a graph showing the relationship between the cycle number of the battery 3 and the time ⁇ t from 4.50 V to 4.55 V at the time of charge.
- the horizontal axis is the number of cycles, and the vertical axis is ⁇ t. As shown in FIG. 27, ⁇ t increases as the number of cycles increases.
- FIG. 28 shows the results of determination of the number of cycles of the battery 3 and the slope [ ⁇ (dQ / dV) / ⁇ V] of the V-dQ / dV curve between the voltages of 4.50 V and 4.55 V during charging.
- Is a graph showing The horizontal axis is the cycle number, and the vertical axis is ⁇ (dQ / dV) / ⁇ V.
- ⁇ (dQ / dV) / ⁇ V increases as the number of cycles increases.
- FIG. 29 is a graph showing the number of cycles of the battery 3 and
- the horizontal axis is the cycle number, and the vertical axis is
- increases as the number of cycles increases.
- FIG. 30 is a graph showing the relationship between the cycle number of the battery 3 and the time ⁇ t from 4.45 V to 4.40 V at the time of discharge.
- the horizontal axis is the number of cycles, and the vertical axis is ⁇ t. As shown in FIG. 30, ⁇ t increases as the number of cycles increases.
- FIG. 31 is a graph showing the number of cycles of battery 3 and the slope [ ⁇ (dQ / dV) / ⁇ V] of the V-dQ / dV curve between 4.45 V and 4.40 V during discharge. It is.
- the horizontal axis is the cycle number, and the vertical axis is ⁇ (dQ / dV) / ⁇ V.
- ⁇ (dQ / dV) / ⁇ V decreases.
- dQ / dV, ⁇ t, and ( ⁇ (dQ / dV) / ⁇ V) characteristically change in the high voltage range.
- the relationship between the number of cycles and dQ / dV, ⁇ t, or ⁇ (dQ / dV) / ⁇ V is stored in the table 63b, and the feature value is correlated by the amount of change in the feature value with the increase in the number of cycles and SOH.
- the degradation state at the time of acquisition can be estimated well.
- the deterioration state can also be favorably determined by the threshold value of the feature value.
- the deterioration state When charging in an unused period at night after use of the vehicle, the deterioration state can be easily and quickly estimated at the start of use based on the feature values in the high voltage range, and the convenience is high. Since the deterioration state can be accurately estimated, control for suppressing the deterioration can be performed at an appropriate timing, and the life of the battery 3 can be extended. The deterioration state can be estimated within the range of normal use conditions, and the battery 3 is not deteriorated when the deterioration state is estimated.
- the charge amount-voltage characteristic or the charge capacity or the voltage characteristic may be similarly applied to the case where the negative electrode includes the active material having the potential drop and the hysteresis.
- V-dQ / dV can be estimated.
- the estimation of the storage amount by voltage reference is not limited to the case of stopping, but may be performed in real time during charging or discharging.
- the current OCV is calculated from the acquired voltage and current.
- the calculation of the OCV can be obtained by, for example, estimating the voltage when the current is zero using regression lines from data of a plurality of voltages and currents. Also, when the current is small as dark current, the acquired voltage can be read as OCV.
- the estimation device according to the present invention is not limited to the case of being applied to an on-vehicle lithium ion secondary battery, and can be applied to other power storage devices such as a railway regenerative power storage device and a solar power generation system.
- the estimation device according to the present invention can also be applied to mobile devices such as notebook computers, mobile phones, and shavers.
- the voltage between the positive electrode terminal and the negative electrode terminal of the power storage element can be regarded as OCV.
- a CMU Cell Monitoring Unit
- the estimation device may be part of a battery module in which the monitoring device 100 or the like is incorporated.
- the estimation device may be configured separately from the storage element and the battery module, and connected to the battery module including the storage element for which the degradation state is to be estimated at the time of estimation of the degradation state.
- the estimation device may remotely monitor the storage element or the battery module.
- the storage element is not limited to a lithium ion secondary battery, and may be another secondary battery or an electrochemical cell having potential drop and hysteresis characteristics.
- the present invention can be applied to estimation of the deterioration state of a storage element such as a lithium ion secondary battery.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Power storage elements 3 each have a single pole including an active material in which a first characteristic that is a power storage amount-potential charging characteristic and a second characteristic that is a power storage amount-potential discharging characteristic are changed by repetition of charging/discharging. An estimation device 6 is provided with: a storage unit 63 that stores V - dQ/dV, the first characteristic, or the second characteristic of the single pole in association with a feature value changed by repetition of charging/discharging, so as to store plural values of the V - dQ/dV, the first characteristic, or the second characteristic in accordance with the change of the feature value, or to store the V - dQ/dV, the first characteristic, or the second characteristic as a function of the feature value; an acquisition unit 62 that acquires the feature value of each power storage element 3; and a first estimation unit 62 that estimates the V - dQ/dV, the first characteristic, or the second characteristic of the single pole by referring to the V - dQ/dV, the first characteristic, or the second characteristic of the single pole or by referring to the function on the basis of the feature value acquired by the acquisition unit 62.
Description
本発明は、推定装置、該推定装置を含む蓄電装置、推定方法、及びコンピュータプログラムに関する。
The present invention relates to an estimation device, a power storage device including the estimation device, an estimation method, and a computer program.
電気自動車、ハイブリッド車等に用いられる車両用の二次電池や、電力貯蔵装置、太陽光発電システム等に用いられる産業用の二次電池においては、高容量化が求められている。これまで様々な検討と改良が行われてきて、電極構造等の改良のみで更なる高容量化を実現することは困難である。その為、現行の材料より高容量である正極材料の開発が進められている。
In the secondary battery for vehicles used for an electric vehicle, a hybrid vehicle, etc., and the secondary battery for industrial use used for an electric power storage apparatus, a solar power generation system, etc., high-capacity-ization is calculated | required. Until now, various studies and improvements have been made, and it is difficult to realize a further increase in capacity only by improving the electrode structure and the like. Therefore, development of a positive electrode material having a higher capacity than current materials is in progress.
従来、リチウムイオン二次電池等の非水電解質二次電池用の正極活物質として、α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoO2を用いた非水電解質二次電池が広く実用化されていた。LiCoO2の放電容量は120~130mAh/g程度であった。
リチウム遷移金属複合酸化物をLiMeO2(Meは遷移金属)で表したとき、MeとしてMnを用いることが望まれてきた。MeとしてMnを含有させた場合、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できない為、充放電サイクル性能が著しく劣る。
Me中のMnのモル比Mn/Meが0.5以下であり、Meに対するLiのモル比Li/Meが略1であるLiMeO2型活物質が種々提案され、実用化されている。リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2O2及びLiNi1/3Co1/3Mn1/3O2等を含有する正極活物質は150~180mAh/gの放電容量を有する。 Conventionally, a lithium transition metal complex oxide having an α-NaFeO 2 type crystal structure has been studied as a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a non-aqueous electrolyte 2 using LiCoO 2 The secondary battery has been widely put to practical use. The discharge capacity of LiCoO 2 was about 120 to 130 mAh / g.
When the lithium transition metal complex oxide is represented by LiMeO 2 (Me is a transition metal), it has been desired to use Mn as Me. When Mn is contained as Me, when the molar ratio of Mn in Me exceeds 0.5, structural change occurs to the spinel type upon charging, and the crystal structure can not be maintained, so charge and discharge The cycle performance is extremely poor.
Various LiMeO 2 -type active materials have been proposed and put to practical use, in which the molar ratio Mn / Me of Mn in Me is 0.5 or less and the molar ratio Li / Me relative to Me is approximately 1. The positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 which are lithium transition metal composite oxides has a discharge capacity of 150 to 180 mAh / g. Have.
リチウム遷移金属複合酸化物をLiMeO2(Meは遷移金属)で表したとき、MeとしてMnを用いることが望まれてきた。MeとしてMnを含有させた場合、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できない為、充放電サイクル性能が著しく劣る。
Me中のMnのモル比Mn/Meが0.5以下であり、Meに対するLiのモル比Li/Meが略1であるLiMeO2型活物質が種々提案され、実用化されている。リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2O2及びLiNi1/3Co1/3Mn1/3O2等を含有する正極活物質は150~180mAh/gの放電容量を有する。 Conventionally, a lithium transition metal complex oxide having an α-NaFeO 2 type crystal structure has been studied as a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a non-aqueous electrolyte 2 using LiCoO 2 The secondary battery has been widely put to practical use. The discharge capacity of LiCoO 2 was about 120 to 130 mAh / g.
When the lithium transition metal complex oxide is represented by LiMeO 2 (Me is a transition metal), it has been desired to use Mn as Me. When Mn is contained as Me, when the molar ratio of Mn in Me exceeds 0.5, structural change occurs to the spinel type upon charging, and the crystal structure can not be maintained, so charge and discharge The cycle performance is extremely poor.
Various LiMeO 2 -type active materials have been proposed and put to practical use, in which the molar ratio Mn / Me of Mn in Me is 0.5 or less and the molar ratio Li / Me relative to Me is approximately 1. The positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 which are lithium transition metal composite oxides has a discharge capacity of 150 to 180 mAh / g. Have.
LiMeO2型活物質に対し、Me中のMnのモル比Mn/Meが0.5を超え、遷移金属(Me)の比率に対するLiの組成比率Li/Meが1より大きいリチウム遷移金属複合酸化物を含む、いわゆるリチウム過剰型活物質も知られている。
A lithium transition metal complex oxide in which the molar ratio Mn / Me of Mn in Me to LiMeO 2 type active material exceeds 0.5, and the composition ratio Li / Me of Li to the ratio of transition metal (Me) is more than 1 So-called excessive lithium type active materials are also known.
上述の高容量の正極材料として、リチウム過剰型であるLi2 MnO3 系の活物質が検討されている。この材料は、同一のSOC(State Of Charge)に対して、充電時及び放電時の各SOC-OCV(Open Circuit Voltage)間に、電圧及び電気化学的特性の差が生じる、ヒステリシスという性質を有する。
ヒステリシスを有する場合、SOCに対して電圧が一義的に決まらない為、SOC-OCVに基づいてSOCを推定するOCV法によるSOCの推定は困難である。SOC-OCV曲線が一義的に決まらない為、ある時点での放電可能エネルギーを予測することも困難である。 As the above-mentioned high-capacity positive electrode material, an Li 2 MnO 3 -based active material which is a lithium excess type is being studied. This material has the property of hysteresis which causes a difference in voltage and electrochemical characteristics between SOC-OCV (Open Circuit Voltage) at the time of charge and discharge for the same SOC (State Of Charge). .
In the case of having hysteresis, since the voltage can not be uniquely determined with respect to the SOC, it is difficult to estimate the SOC by the OCV method that estimates the SOC based on the SOC-OCV. Since the SOC-OCV curve can not be uniquely determined, it is also difficult to predict the dischargeable energy at a certain point.
ヒステリシスを有する場合、SOCに対して電圧が一義的に決まらない為、SOC-OCVに基づいてSOCを推定するOCV法によるSOCの推定は困難である。SOC-OCV曲線が一義的に決まらない為、ある時点での放電可能エネルギーを予測することも困難である。 As the above-mentioned high-capacity positive electrode material, an Li 2 MnO 3 -based active material which is a lithium excess type is being studied. This material has the property of hysteresis which causes a difference in voltage and electrochemical characteristics between SOC-OCV (Open Circuit Voltage) at the time of charge and discharge for the same SOC (State Of Charge). .
In the case of having hysteresis, since the voltage can not be uniquely determined with respect to the SOC, it is difficult to estimate the SOC by the OCV method that estimates the SOC based on the SOC-OCV. Since the SOC-OCV curve can not be uniquely determined, it is also difficult to predict the dischargeable energy at a certain point.
リチウム過剰型の材料は、充放電の繰り返しにより正極のSOC-OCP(Open Circuit Potential)曲線が略全域に亘って変化する、電位降下(Voltage Fade)という性質を有する。平均放電電位の値が減少するため、現時点のSOH(State of Health)として放電可能容量だけでなく、放電可能電力量を推定する必要がある。直近の充放電の履歴が同一であっても、劣化により単極のSOC-OCP曲線に基づく電池セル(以下、単に「セル」ともいう。)のSOC-OCV曲線形状が大幅に変わるため、OCV法は採用できない。直近の充放電履歴が同一の条件とは、例えば、完全放電状態を経由した後の充電が挙げられる。完全放電状態を経由した後の充電において、劣化に応じて単極のSOC-OCP曲線が変わる為、セルのSOC-OCV曲線形状が大幅に変わってしまう。
The material of the lithium excess type has a property of voltage drop (Voltage Fade) in which the SOC-OCP (Open Circuit Potential) curve of the positive electrode changes almost over the entire area by repetition of charge and discharge. Since the value of the average discharge potential decreases, it is necessary to estimate not only the dischargeable capacity but also the dischargeable power amount as the current state of health (SOH). Since the SOC-OCV curve shape of the battery cell based on the unipolar SOC-OCP curve (hereinafter, also simply referred to as "cell") changes significantly due to deterioration even if the latest charge / discharge history is the same, OCV The law can not be adopted. The conditions under which the latest charge and discharge history is the same include, for example, charge after passing through a complete discharge state. In charging after passing through the full discharge state, the SOC-OCV curve shape of the cell is significantly changed because the unipolar SOC-OCP curve changes according to the deterioration.
二次電池の充放電電流を積算する電流積算法によりSOCを推定する場合、電流積算が長期継続されると、電流センサの計測誤差が蓄積する。また、電池容量は経時的に小さくなる。その為、電流積算法によって推定されるSOCは、その推定誤差が経時的に大きくなる。従来、電流積算を長期継続した場合にOCV法によりSOCを推定して、誤差の蓄積をリセットするOCVリセットが行われている。
When estimating SOC by the current integration method which integrates the charging / discharging current of a secondary battery, when current integration is continued for a long period, the measurement error of a current sensor will accumulate. In addition, the battery capacity decreases with time. Therefore, in the SOC estimated by the current integration method, the estimation error increases with time. Conventionally, when current integration is continued for a long period, an OCV reset is performed to estimate the SOC by the OCV method and reset the accumulation of errors.
電位降下及びヒステリシスを有する電極材料を用いた蓄電素子においても、電流積算を継続すると誤差が蓄積する。しかし、SOCに対して電圧が一義的に決まらない為、OCV法によるSOCの推定を行うこと(OCVリセットを行うこと)は困難である。
Even in a storage element using an electrode material having a potential drop and hysteresis, errors continue to accumulate when current integration is continued. However, since the voltage can not be determined uniquely with respect to the SOC, it is difficult to estimate the SOC by the OCV method (to perform the OCV reset).
このような活物質を含む蓄電素子を制御する上で、現時点の、満充電状態から完全放電状態まで、完全放電状態から満充電状態までの、正極のSOC-OCP特性を推定する必要がある。
現行の非水電解質二次電池のSOH及びSOCの推定技術は、VF及びヒステリシスの性質を有する活物質を使用した蓄電素子に適用することは困難である。 In controlling a storage element including such an active material, it is necessary to estimate the SOC-OCP characteristics of the positive electrode from the full charge state to the full discharge state, from the full discharge state to the full charge state.
Current SOH and SOC estimation techniques for non-aqueous electrolyte secondary batteries are difficult to apply to storage devices using active materials having VF and hysteresis properties.
現行の非水電解質二次電池のSOH及びSOCの推定技術は、VF及びヒステリシスの性質を有する活物質を使用した蓄電素子に適用することは困難である。 In controlling a storage element including such an active material, it is necessary to estimate the SOC-OCP characteristics of the positive electrode from the full charge state to the full discharge state, from the full discharge state to the full charge state.
Current SOH and SOC estimation techniques for non-aqueous electrolyte secondary batteries are difficult to apply to storage devices using active materials having VF and hysteresis properties.
リチウムイオン二次電池等の蓄電素子は、車載用等において、SOCが40%以上である状態で繰り返して使用されることが多い。充電する場合、満充電付近まで電圧を上げることも多く、充電終了後、電圧が高く、即ちSOCが高い高電圧領域(高SOC領域)で、劣化状態を把握できると、放電可能容量及び放電可能電力量を推定でき、適切なタイミングで劣化を抑制する制御を行うこともできるので、利便性が高い。
高SOC領域においても、簡便、迅速、かつ高精度に劣化状態を推定することが求められている。 BACKGROUND ART Storage devices such as lithium ion secondary batteries are often used repeatedly in a state in which the SOC is 40% or more in vehicles and the like. When charging, the voltage is often raised to near full charge, and when the degradation state can be grasped in a high voltage region (high SOC region) where the voltage is high, that is, the SOC is high after charging, dischargeable capacity and dischargeable Since the amount of power can be estimated and control can be performed to suppress deterioration at an appropriate timing, convenience is high.
Even in the high SOC region, it is required to simply, quickly, and accurately estimate the degraded state.
高SOC領域においても、簡便、迅速、かつ高精度に劣化状態を推定することが求められている。 BACKGROUND ART Storage devices such as lithium ion secondary batteries are often used repeatedly in a state in which the SOC is 40% or more in vehicles and the like. When charging, the voltage is often raised to near full charge, and when the degradation state can be grasped in a high voltage region (high SOC region) where the voltage is high, that is, the SOC is high after charging, dischargeable capacity and dischargeable Since the amount of power can be estimated and control can be performed to suppress deterioration at an appropriate timing, convenience is high.
Even in the high SOC region, it is required to simply, quickly, and accurately estimate the degraded state.
特許文献1に開示の蓄電池評価装置の判定部は、蓄電池の電圧データを含む計測データに基づいて畜電池の充放電傾向を判定する。補正部は畜電池の充放電傾向及び/又は劣化状態に応じた補正パラメータに基づいて電圧データを補正する。QV曲線生成部は電圧データに基づいて畜電池のQV曲線を生成する。評価部は、QV曲線に基づいて劣化状態を評価する。
The determination unit of the storage battery evaluation device disclosed in Patent Document 1 determines the charge / discharge tendency of the storage battery based on measurement data including voltage data of the storage battery. The correction unit corrects the voltage data based on the correction parameter according to the charge / discharge tendency and / or the deterioration state of the storage battery. The QV curve generation unit generates a storage battery QV curve based on the voltage data. The evaluation unit evaluates the deterioration state based on the QV curve.
特許文献1の畜電池評価装置は、畜電池の評価を行うために煩雑なステップを要する。電圧データを取得し、内部抵抗に起因する電圧成分を除去することにより電圧データを補正する。特許文献1の活物質は、単極のSOC-OCPが充放電の繰り返しにより略全域に亘って変化するものではない。電位降下を生じる活物質の場合、特許文献1の畜電池評価装置及び評価方法を採用することはできない。
The storage battery evaluation device of Patent Document 1 requires complicated steps to evaluate the storage battery. The voltage data is acquired by acquiring the voltage data and removing the voltage component caused by the internal resistance. In the active material of Patent Document 1, the unipolar SOC-OCP does not change over substantially the entire region due to the repetition of charge and discharge. In the case of an active material that causes a potential drop, the storage battery evaluation device and evaluation method of Patent Document 1 can not be adopted.
本発明は、蓄電量-電位特性が充放電の繰り返しにより変化する単極を持つ蓄電素子に適用できる、蓄電量特性等を推定する推定装置、該推定装置を備える蓄電装置、推定方法、及びコンピュータプログラムを提供することを目的とする。
ここで、蓄電量とは、SOC等の充電率、電力放出可能量等を意味する。 The present invention can be applied to a storage element having a single pole in which the storage capacity-potential characteristic changes due to repetition of charge and discharge, an estimation apparatus for estimating the storage capacity characteristic, etc., a storage apparatus including the estimation apparatus, an estimation method, and a computer The purpose is to provide a program.
Here, the storage amount means a charging rate such as SOC, an amount of power that can be released, and the like.
ここで、蓄電量とは、SOC等の充電率、電力放出可能量等を意味する。 The present invention can be applied to a storage element having a single pole in which the storage capacity-potential characteristic changes due to repetition of charge and discharge, an estimation apparatus for estimating the storage capacity characteristic, etc., a storage apparatus including the estimation apparatus, an estimation method, and a computer The purpose is to provide a program.
Here, the storage amount means a charging rate such as SOC, an amount of power that can be released, and the like.
本発明の一側面に係る推定装置は、蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定する。推定装置は、充放電の繰り返しにより変化する特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを、前記特徴値の変化に応じて複数記憶し、又は前記特徴値の関数として記憶する記憶部と、前記蓄電素子の前記特徴値を取得する取得部と、該取得部により取得した特徴値に基づき、前記第1特性、前記第2特性、及び、前記V-dQ/dVの少なくともいずれかを参照し、又は前記関数を参照して、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する第1推定部とを備える。
An estimation device according to one aspect of the present invention is a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change by repetition of charge and discharge. The first and second characteristics of the single pole of the storage element having at least one of V-dQ / dV, which is the relationship between the potential V and dQ / dV, are estimated. The estimation apparatus responds to the change in the feature value, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole corresponding to the feature value that changes due to the repetition of charge and discharge. Storage unit for storing the plurality of storage units as a function of the feature value, an acquisition unit for acquiring the feature value of the storage element, and the first characteristic based on the characteristic value acquired by the acquisition unit. Two characteristics, and at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole with reference to at least one of the V-dQ / dV or with reference to the function. And a first estimation unit that estimates
上記構成によれば、特徴値に基づいて、第1特性及び第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の蓄電量特性を良好に推定することができる。
According to the above configuration, based on the characteristic value, the storage amount characteristic of the storage element having a single electrode including the active material in which the first characteristic and the second characteristic change due to repetition of charge and discharge can be favorably estimated. .
以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
[実施形態の概要] Hereinafter, the present invention will be specifically described based on the drawings showing the embodiments thereof.
[Overview of the embodiment]
[実施形態の概要] Hereinafter, the present invention will be specifically described based on the drawings showing the embodiments thereof.
[Overview of the embodiment]
実施形態に係る推定装置は、蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定する。推定装置は、充放電の繰り返しにより変化する特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを、前記特徴値の変化に応じて複数記憶し、又は前記特徴値の関数として記憶する記憶部と、前記蓄電素子の前記特徴値を取得する取得部と、該取得部により取得した特徴値に基づき、前記第1特性、前記第2特性、及び、前記V-dQ/dVの少なくともいずれかを参照し、又は前記関数を参照して、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する第1推定部とを備える。
ここで、dQ/dVは充電電気量若しくは放電容量Qを電位Vで微分した微分値である。 The estimation device according to the embodiment has an electric storage having a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change with repeated charging and discharging. At least one of a first characteristic and a second characteristic of the single pole of the element and V−dQ / dV which is a relation between the potential V and dQ / dV is estimated. The estimation apparatus responds to the change in the feature value, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole corresponding to the feature value that changes due to the repetition of charge and discharge. Storage unit for storing the plurality of storage units as a function of the feature value, an acquisition unit for acquiring the feature value of the storage element, and the first characteristic based on the characteristic value acquired by the acquisition unit. Two characteristics, and at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole with reference to at least one of the V-dQ / dV or with reference to the function. And a first estimation unit that estimates
Here, dQ / dV is a charge value or a differential value obtained by differentiating the discharge capacity Q by the potential V.
ここで、dQ/dVは充電電気量若しくは放電容量Qを電位Vで微分した微分値である。 The estimation device according to the embodiment has an electric storage having a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change with repeated charging and discharging. At least one of a first characteristic and a second characteristic of the single pole of the element and V−dQ / dV which is a relation between the potential V and dQ / dV is estimated. The estimation apparatus responds to the change in the feature value, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole corresponding to the feature value that changes due to the repetition of charge and discharge. Storage unit for storing the plurality of storage units as a function of the feature value, an acquisition unit for acquiring the feature value of the storage element, and the first characteristic based on the characteristic value acquired by the acquisition unit. Two characteristics, and at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole with reference to at least one of the V-dQ / dV or with reference to the function. And a first estimation unit that estimates
Here, dQ / dV is a charge value or a differential value obtained by differentiating the discharge capacity Q by the potential V.
上記構成によれば、特徴値に対応する第1特性、第2特性、又はV-dQ/dVが、蓄電素子の劣化に応じて複数記憶される。現時点の特徴値が取得されたとき、記憶された第1特性、第2特性、又はV-dQ/dVを参照して、現時点の第1特性、第2特性、又はdQ/dV-Vが推定される。又は、これら第1特性、第2特性、若しくはV-dQ/dVに関するデータが、特徴値の関数として記憶されており、現時点の特徴値を代入することで、第1特性、第2特性、又はdQ/dV-Vが算出される。
充放電の繰り返しにより単極の蓄電量-電位特性が変化する、電位降下の性質を有する活物質を用いた場合に、特徴値を用いて、容易に、高精度に、現在の単極の蓄電量-電位特性、又はV-dQ/dVを求めることができる。
現在の単極の第1特性、第2特性、又はV-dQ/dVは、現時点の劣化状態を示す指標となる。従って、複雑な使用環境下においても、高精度に単極の劣化状態を監視することができる。 According to the above configuration, a plurality of first characteristics, second characteristics, or V-dQ / dV corresponding to the feature value are stored according to the deterioration of the storage element. When the current feature value is obtained, the current first property, second property or dQ / dV-V is estimated with reference to the stored first property, second property or V-dQ / dV. Be done. Alternatively, data relating to the first characteristic, the second characteristic, or V-dQ / dV is stored as a function of the feature value, and by substituting the current feature value, the first characteristic, the second feature, or the second characteristic is stored. dQ / dV-V is calculated.
In the case of using an active material having the property of potential drop, in which the charge amount-potential characteristic of a single pole changes by repetition of charge and discharge, current single pole charge storage easily and accurately using feature values The quantity-potential characteristic or V-dQ / dV can be determined.
The current single pole first characteristic, second characteristic, or V-dQ / dV is an index indicating the current deterioration state. Therefore, even in a complicated use environment, it is possible to monitor the deterioration state of the single pole with high accuracy.
充放電の繰り返しにより単極の蓄電量-電位特性が変化する、電位降下の性質を有する活物質を用いた場合に、特徴値を用いて、容易に、高精度に、現在の単極の蓄電量-電位特性、又はV-dQ/dVを求めることができる。
現在の単極の第1特性、第2特性、又はV-dQ/dVは、現時点の劣化状態を示す指標となる。従って、複雑な使用環境下においても、高精度に単極の劣化状態を監視することができる。 According to the above configuration, a plurality of first characteristics, second characteristics, or V-dQ / dV corresponding to the feature value are stored according to the deterioration of the storage element. When the current feature value is obtained, the current first property, second property or dQ / dV-V is estimated with reference to the stored first property, second property or V-dQ / dV. Be done. Alternatively, data relating to the first characteristic, the second characteristic, or V-dQ / dV is stored as a function of the feature value, and by substituting the current feature value, the first characteristic, the second feature, or the second characteristic is stored. dQ / dV-V is calculated.
In the case of using an active material having the property of potential drop, in which the charge amount-potential characteristic of a single pole changes by repetition of charge and discharge, current single pole charge storage easily and accurately using feature values The quantity-potential characteristic or V-dQ / dV can be determined.
The current single pole first characteristic, second characteristic, or V-dQ / dV is an index indicating the current deterioration state. Therefore, even in a complicated use environment, it is possible to monitor the deterioration state of the single pole with high accuracy.
上述の推定装置において、前記特徴値は、所定の電圧範囲における充電電気量又は放電容量、及び平均放電電位の少なくともいずれかであってもよい。
In the above-described estimation device, the characteristic value may be at least one of a charge amount or a discharge capacity in a predetermined voltage range and an average discharge potential.
充電電気量又は放電容量と平均放電電位との間に直線関係があり、劣化の前後で、対極との電位差(セル電圧)が変わらない電位範囲に対応するセルの電圧範囲が、前記所定の電圧範囲とされる。所定の電圧範囲における充電電気量又は放電容量を特徴値として用い、劣化の程度に応じた特徴値に対応付けて第1特性、第2特性、又はV-dQ/dVを複数記憶していた場合、精度良く、現時点での第1特性、第2特性、又はV-dQ/dVが推定できる。平均放電電位を用いた場合も、同様に精度良く第1特性、第2特性、又はV-dQ/dVが推定できる。
There is a linear relationship between the amount of charge or discharge capacity and the average discharge potential, and the voltage range of the cell corresponding to the potential range where the potential difference (cell voltage) with the counter electrode does not change before and after deterioration is the predetermined voltage. It is considered a range. In the case where a plurality of first characteristics, second characteristics, or V-dQ / dV are stored in association with a feature value according to the degree of deterioration using a charge quantity of charge or discharge capacity in a predetermined voltage range as a feature value The first characteristic, the second characteristic, or V-dQ / dV at the present time can be accurately estimated. Also when the average discharge potential is used, the first characteristic, the second characteristic, or V-dQ / dV can be estimated with high accuracy as well.
上述の推定装置において、前記記憶部は、前記充電電気量若しくは前記放電容量、又は前記平均放電電位の大小に応じて、複数のV-dQ/dVを記憶し、又は前記関数を記憶しており、前記第1推定部は、前記特徴値と前記V-dQ/dVとの関係を参照して、前記単極のV-dQ/dVを推定してもよい。
In the above-described estimation device, the storage unit stores a plurality of V-dQ / dV or stores the function according to the charge quantity or the discharge capacity, or the magnitude of the average discharge potential. The first estimation unit may estimate the unipolar V-dQ / dV with reference to the relationship between the feature value and the V-dQ / dV.
特徴値の大小に応じて複数のV-dQ/dV、又は前記関数を記憶し、特徴値とV-dQ/dVとの関係を参照することで、単極のV-dQ/dVが精度良く推定できる。
A plurality of V-dQ / dV or the function is stored according to the size of the feature value, and by referring to the relationship between the feature value and the V-dQ / dV, the unipolar V-dQ / dV has high accuracy It can be estimated.
上述の推定装置において、前記活物質の劣化の度合に応じて、前記充電電気量又は前記放電容量を補正してもよい。
In the above-described estimation device, the amount of charge or the discharge capacity may be corrected according to the degree of deterioration of the active material.
充電電気量又は放電容量は劣化に伴い、変化するので、劣化の度合に応じて補正することで、より精度良く蓄電量-電位特性又はV-dQ/dVが推定できる。
Since the charge quantity or discharge capacity changes with the deterioration, the storage amount-potential characteristic or V-dQ / dV can be estimated more accurately by correcting according to the degree of deterioration.
上述の推定装置において、前記特徴値は、高電圧範囲内の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き(Δ(dQ/dV)/ΔV)のいずれかであってもよい。
In the above-described estimation apparatus, the feature value is dQ / dV at a predetermined voltage, a time from a first voltage to a second voltage, and between the first voltage and a second voltage within a high voltage range. It may be any of the slope of V−dQ / dV (Δ (dQ / dV) / ΔV).
前記dQ/dV、前記時間、及び前記[Δ(dQ/dV)/ΔV]は、充放電の繰り返しによるV-dQ/dVの変化に対応して、変化する。従って、これらの特徴値に対応付けて第1特性、第2特性、又はV-dQ/dVを複数記憶していた場合、精度良く、現時点での第1特性、第2特性、又はV-dQ/dVが推定できる。
The dQ / dV, the time, and the [Δ (dQ / dV) / ΔV] change in response to changes in V−dQ / dV due to repeated charge and discharge. Therefore, when a plurality of first characteristics, second characteristics, or V-dQ / dV are stored in association with these feature values, the first characteristics, second characteristics, or V-dQ at the current time can be accurately obtained. / DV can be estimated.
実施形態に係る推定装置は、蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の劣化状態を推定する。推定装置は、高電圧範囲内の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかの特徴値を取得する取得部と、前記特徴値に基づいて、前記蓄電素子の劣化状態を推定する推定部とを備える。
The estimation device according to the embodiment has an electric storage having a single electrode including an active material in which a first characteristic, which is a storage amount-potential charge characteristic, and a second characteristic, which is a storage amount-potential discharge characteristic, change with repeated charging and discharging. Estimate the degradation state of the element. The estimation device is configured to calculate the dQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V−dQ / dV between the first voltage and the second voltage within the high voltage range. An acquisition unit that acquires a feature value of [Δ (dQ / dV) / ΔV], and an estimation unit that estimates a deterioration state of the storage element based on the feature value.
電位降下を有する活物質を用いた場合、劣化により生じた化合物に起因して、高電圧範囲においても反応が進行する。従って、劣化に伴い、dQ/dVが大きくなる。
高電圧範囲内で、上述の反応が生じるので、高電圧範囲内の第1電圧から第2電圧に至るまでの時間Δtが長くなる。
[Δ(dQ/dV)/ΔV]も劣化に応じて変化する。
dQ/dV、Δt、又はΔ(dQ/dV)/ΔVを特徴値として取得し、この特徴値を用いて、蓄電素子の劣化の状態を良好に推定できる。 When an active material having a potential drop is used, the reaction proceeds even in a high voltage range due to a compound generated by degradation. Therefore, dQ / dV increases with deterioration.
Since the above reaction occurs in the high voltage range, the time Δt from the first voltage to the second voltage in the high voltage range is increased.
[Δ (dQ / dV) / ΔV] also changes according to the deterioration.
It is possible to obtain dQ / dV, Δt, or Δ (dQ / dV) / ΔV as a feature value, and use this feature value to properly estimate the state of deterioration of the storage element.
高電圧範囲内で、上述の反応が生じるので、高電圧範囲内の第1電圧から第2電圧に至るまでの時間Δtが長くなる。
[Δ(dQ/dV)/ΔV]も劣化に応じて変化する。
dQ/dV、Δt、又はΔ(dQ/dV)/ΔVを特徴値として取得し、この特徴値を用いて、蓄電素子の劣化の状態を良好に推定できる。 When an active material having a potential drop is used, the reaction proceeds even in a high voltage range due to a compound generated by degradation. Therefore, dQ / dV increases with deterioration.
Since the above reaction occurs in the high voltage range, the time Δt from the first voltage to the second voltage in the high voltage range is increased.
[Δ (dQ / dV) / ΔV] also changes according to the deterioration.
It is possible to obtain dQ / dV, Δt, or Δ (dQ / dV) / ΔV as a feature value, and use this feature value to properly estimate the state of deterioration of the storage element.
上述の推定装置において、前記推定部は、前記特徴値の閾値に基づいて、前記蓄電素子の劣化状態を推定してもよい。
In the above-described estimation device, the estimation unit may estimate the deterioration state of the storage element based on a threshold value of the feature value.
閾値により、容易に蓄電素子の劣化状態を推定できる。
The deterioration state of the storage element can be easily estimated by the threshold value.
上述の推定装置において、前記活物質は、第1特性及び第2特性間のヒステリシスを示し、前記第1推定部により推定した前記第1特性及び/又は前記第2特性、並びに前記蓄電素子の充放電の履歴に基づいて、前記蓄電素子の電圧により蓄電量を推定するときの参照のための蓄電量-電圧充電特性である第3特性、及び/又は参照のための蓄電量-電圧放電特性である第4特性を推定する第2推定部を備えてもよい。
In the above-described estimation device, the active material exhibits a hysteresis between a first characteristic and a second characteristic, and the first characteristic and / or the second characteristic estimated by the first estimation unit, and the charging of the storage element. In the third characteristic which is the charge amount-voltage charge characteristic for reference when estimating the charge amount based on the voltage of the storage element based on the history of discharge, and / or the charge amount-voltage discharge characteristic for reference You may provide the 2nd estimation part which estimates a certain 4th characteristic.
活物質がヒステリシスを有する場合、現時点の単極の劣化状態に応じた第1特性及び/又は第2特性、並びに蓄電素子の充放電の履歴に基づいて、精度良く第3特性及び/又は第4特性を推定することができる。
When the active material has hysteresis, the third characteristic and / or the fourth characteristic are accurately based on the first characteristic and / or the second characteristic according to the current deterioration state of the single pole and the charge / discharge history of the storage element. Properties can be estimated.
上述の推定装置において、充放電の履歴、前記第3特性及び/又は前記第4特性、並びに取得した電圧に基づいて、蓄電量を推定する第3推定部を備えてもよい。
The above-described estimation device may include a third estimation unit configured to estimate the storage amount based on the charge / discharge history, the third characteristic and / or the fourth characteristic, and the acquired voltage.
上記構成においては、電位降下の性質を有し、蓄電量-電圧特性がヒステリシスを示す活物質を有する蓄電素子の蓄電量を良好に容易に推定できる。
電圧を用いるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量が推定できる。充放電特性に基づいて、SOC0%までの放電可能なエネルギー、及びSOC100%までに必要な充電エネルギーを予測することができる。現時点での残存電力量と貯蔵可能電力量とが推定できる。
従って、複数の蓄電素子を用いる場合のバランシング、回生受け入れの制御、蓄電素子を車載した場合の走行距離の推定等を精度良く行うことができる。 In the above configuration, the storage amount of the storage element having the active material having the property of potential drop and exhibiting the storage amount-voltage characteristic exhibiting hysteresis can be easily estimated.
Since the voltage is used, the storage amount is not limited to the SOC, and the amount of current energy stored in the storage element, such as the amount of power, can be estimated. Based on the charge / discharge characteristics, dischargeable energy up toSOC 0% and charge energy required up to SOC 100% can be predicted. It is possible to estimate the current remaining power and the storable power.
Therefore, it is possible to accurately perform balancing in the case of using a plurality of storage elements, control of regeneration reception, estimation of a traveling distance in the case of mounting the storage elements, and the like.
電圧を用いるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量が推定できる。充放電特性に基づいて、SOC0%までの放電可能なエネルギー、及びSOC100%までに必要な充電エネルギーを予測することができる。現時点での残存電力量と貯蔵可能電力量とが推定できる。
従って、複数の蓄電素子を用いる場合のバランシング、回生受け入れの制御、蓄電素子を車載した場合の走行距離の推定等を精度良く行うことができる。 In the above configuration, the storage amount of the storage element having the active material having the property of potential drop and exhibiting the storage amount-voltage characteristic exhibiting hysteresis can be easily estimated.
Since the voltage is used, the storage amount is not limited to the SOC, and the amount of current energy stored in the storage element, such as the amount of power, can be estimated. Based on the charge / discharge characteristics, dischargeable energy up to
Therefore, it is possible to accurately perform balancing in the case of using a plurality of storage elements, control of regeneration reception, estimation of a traveling distance in the case of mounting the storage elements, and the like.
実施形態に係る蓄電装置は、蓄電素子と、上述の推定装置とを備える。
A power storage device according to an embodiment includes a power storage element and the above-described estimation device.
上記構成においては、蓄電素子の蓄電量が、複雑な使用環境下においても、精度良く推定できる。
In the above configuration, the storage amount of the storage element can be accurately estimated even in a complicated use environment.
実施形態の推定方法は、蓄電量-電位充電特性である第1特性及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定する。推定方法は、充放電の繰り返しにより変化する特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを、前記特徴値の変化に応じて複数記憶し、又は前記特徴値の関数として記憶してあり、取得した特徴値に基づき、前記第1特性、前記第2特性、及び、前記V-dQ/dVの、少なくともいずれかを参照し、又は前記関数を参照して、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する。
According to an estimation method of an embodiment, a storage element having a single electrode including an active material in which a first characteristic which is a storage amount-potential charge characteristic and a second characteristic which is a storage amount-potential discharge characteristic change with repetition of charge and discharge. The first and second characteristics of the single pole and / or V-dQ / dV, which is the relationship between the potential V and dQ / dV, are estimated. According to the change of the feature value, at least one of the first characteristic, the second characteristic and the V-dQ / dV of the single pole corresponding to the feature value which changes due to the repetition of charge and discharge. , Or stored as a function of the feature value, and based on the obtained feature value, at least one of the first characteristic, the second characteristic, and the V-dQ / dV is referred to Or, referring to the function, at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole is estimated.
上記構成によれば、電位降下の性質を有する活物質を用いた場合に、特徴値を用いて、容易に、高精度に、単極の蓄電量-電位特性、又はV-dQ/dVを求めることができる。
According to the above configuration, when an active material having a property of potential drop is used, the charge amount-potential characteristic or V-dQ / dV of a single electrode can be easily and accurately determined using the feature value. be able to.
実施形態の他の推定方法は、蓄電量-電位充電特性及び蓄電量-電位放電特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の劣化状態を推定する。推定方法は、高電圧範囲内の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかの特徴値を取得し、前記特徴値に基づいて、前記蓄電素子の劣化状態を推定する。
Another estimation method of the embodiment estimates the deterioration state of the storage element having a single electrode including an active material, in which the storage amount-potential charge characteristic and the storage amount-potential discharge characteristic change due to repetition of charge and discharge. The estimation method is dQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V-dQ / dV between the first voltage and the second voltage within the high voltage range. A feature value of [Δ (dQ / dV) / ΔV] is acquired, and the degradation state of the storage element is estimated based on the feature value.
上記構成によれば、dQ/dV、Δt、又はΔ(dQ/dV)/ΔVを特徴値として取得し、この特徴値を用いて、蓄電素子の劣化の状態を良好に推定できる。
According to the above configuration, dQ / dV, Δt, or Δ (dQ / dV) / ΔV is acquired as a feature value, and the degradation state of the storage element can be favorably estimated using this feature value.
実施形態に係るコンピュータプログラムは、蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定するコンピュータに、前記蓄電素子の、充放電の繰り返しにより変化する特徴値を取得し、前記特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかが、前記特徴値の変化に応じて複数記憶されたテーブルを参照し、又は前記特徴値の関数として記憶された、該関数を参照して、取得した前記特徴値に基づき、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する処理を実行させる。
The computer program according to the embodiment has a storage having a single electrode including an active material in which a first characteristic that is a storage amount-potential charge characteristic and a second characteristic that is a storage amount-potential discharge characteristic change with repeated charging and discharging. In a computer for estimating at least one of the first characteristic and the second characteristic of the single pole of the element, and V-dQ / dV which is the relationship between the potential V and dQ / dV, the charge / discharge of the storage element A feature value that changes due to repetition of at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole corresponding to the feature value changes in the feature value Accordingly, the first characteristic, the second characteristic, and the second characteristic of the single pole are referred to based on the acquired feature value with reference to the plurality of stored tables or the function stored with the function value. , V-dQ / dV, To execute a process of estimating at least one.
実施形態に係る他のコンピュータプログラムは、蓄電量-電位充電特性及び蓄電量-電位放電特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の劣化状態を推定するコンピュータに、高電圧範囲の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[(Δ(dQ/dV)/ΔV)]のいずれかの特徴値を取得し、該特徴値に基づいて、前記蓄電素子の劣化状態を推定する処理を実行させる。
Another computer program according to the embodiment is a computer for estimating a deterioration state of a storage element having a single electrode including an active material whose storage amount-potential charge characteristic and storage amount-potential discharge characteristic change due to repetition of charge and discharge. , DQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V-dQ / dV between the first voltage and the second voltage, [(Δ (Δ ( A feature value of any of dQ / dV) / ΔV)] is acquired, and a process of estimating the degradation state of the storage element is executed based on the feature value.
以下、実施形態を具体的に説明する。
実施形態に係る蓄電素子の電極体の単極は、電位降下の性質を有し、蓄電量-電位特性がヒステリシスを有する活物質を含む。
活物質が電位降下の性質を有する場合、充放電の繰り返しにより、単極のSOC-OCP曲線(第1特性、第2特性)、及び、セルのSOC-OCV曲線の形状が変化する。この活物質を含むセルは、微小電流を流して、完全放電状態から満充電状態に充電したとき、及び満充電状態から完全放電状態に放電したときのSOC-OCV曲線間の最大の電位差が100mV以上であるヒステリシスを有する。 The embodiment will be specifically described below.
The single electrode of the electrode body of the storage element according to the embodiment includes an active material having a property of potential drop and having a storage amount-potential characteristic of hysteresis.
When the active material has the property of potential drop, the shapes of the unipolar SOC-OCP curve (first characteristic, second characteristic) and the SOC-OCV curve of the cell change due to repetition of charge and discharge. A cell containing this active material flows a minute current, and when charged from a fully discharged state to a fully charged state, and when discharged from a fully charged state to a fully discharged state, the maximum potential difference between SOC-OCV curves is 100 mV. It has the hysteresis which is the above.
実施形態に係る蓄電素子の電極体の単極は、電位降下の性質を有し、蓄電量-電位特性がヒステリシスを有する活物質を含む。
活物質が電位降下の性質を有する場合、充放電の繰り返しにより、単極のSOC-OCP曲線(第1特性、第2特性)、及び、セルのSOC-OCV曲線の形状が変化する。この活物質を含むセルは、微小電流を流して、完全放電状態から満充電状態に充電したとき、及び満充電状態から完全放電状態に放電したときのSOC-OCV曲線間の最大の電位差が100mV以上であるヒステリシスを有する。 The embodiment will be specifically described below.
The single electrode of the electrode body of the storage element according to the embodiment includes an active material having a property of potential drop and having a storage amount-potential characteristic of hysteresis.
When the active material has the property of potential drop, the shapes of the unipolar SOC-OCP curve (first characteristic, second characteristic) and the SOC-OCV curve of the cell change due to repetition of charge and discharge. A cell containing this active material flows a minute current, and when charged from a fully discharged state to a fully charged state, and when discharged from a fully charged state to a fully discharged state, the maximum potential difference between SOC-OCV curves is 100 mV. It has the hysteresis which is the above.
図1は、正極のSOC-OCPの一例を示すグラフである。横軸はSOC(%)、縦軸はOCPとしての電位E(VvsLi/Li+ :Li/Li+平衡電位を基準にしたときの電位)である。劣化前の充放電曲線を破線で、劣化後の充放電曲線を実線で示す。
図1に示すように、劣化により電位降下が生じ、充放電曲線は下側にシフトする。 FIG. 1 is a graph showing an example of the SOC-OCP of the positive electrode. The horizontal axis is SOC (%), and the vertical axis is the potential E as OCP (VvsLi / Li + : Li / Li + potential based on the equilibrium potential). The charge / discharge curve before deterioration is shown by a broken line, and the charge / discharge curve after deterioration is shown by a solid line.
As shown in FIG. 1, the potential drop occurs due to the deterioration, and the charge / discharge curve shifts downward.
図1に示すように、劣化により電位降下が生じ、充放電曲線は下側にシフトする。 FIG. 1 is a graph showing an example of the SOC-OCP of the positive electrode. The horizontal axis is SOC (%), and the vertical axis is the potential E as OCP (VvsLi / Li + : Li / Li + potential based on the equilibrium potential). The charge / discharge curve before deterioration is shown by a broken line, and the charge / discharge curve after deterioration is shown by a solid line.
As shown in FIG. 1, the potential drop occurs due to the deterioration, and the charge / discharge curve shifts downward.
電位降下の性質を有さない活物質の場合、前記ヒステリシスは有さず、単極のSOC-OCP曲線は充放電の繰り返しによっては変化しない。単極の劣化(曲線の縮小)又は容量バランスのずれ量の拡大によって、セルのSOC-OCV曲線の形状は充放電の繰り返しにより変化する。
In the case of an active material not having the property of potential drop, the hysteresis is not provided, and the unipolar SOC-OCP curve does not change by repetition of charge and discharge. The shape of the SOC-OCV curve of the cell changes due to the repetition of charge and discharge due to the deterioration of the single pole (the reduction of the curve) or the increase of the displacement of the capacity balance.
本実施形態においては、現時点の蓄電量特性を推定する。蓄電量特性としては、単極の充電SOC-OCP特性、放電SOC-OCP特性、充電V-dQ/dV、及び放電V-dQ/dVの少なくともいずれかが挙げられる。
充放電の繰り返しにより変化する特徴値と、上述の蓄電量特性との間に、相関関係がある。 In the present embodiment, the current storage amount characteristic is estimated. The storage amount characteristics include at least one of unipolar charge SOC-OCP characteristics, discharge SOC-OCP characteristics, charge V-dQ / dV, and discharge V-dQ / dV.
There is a correlation between the feature value that changes due to the repetition of charge and discharge and the above-mentioned storage amount characteristic.
充放電の繰り返しにより変化する特徴値と、上述の蓄電量特性との間に、相関関係がある。 In the present embodiment, the current storage amount characteristic is estimated. The storage amount characteristics include at least one of unipolar charge SOC-OCP characteristics, discharge SOC-OCP characteristics, charge V-dQ / dV, and discharge V-dQ / dV.
There is a correlation between the feature value that changes due to the repetition of charge and discharge and the above-mentioned storage amount characteristic.
特徴値として充電電気量、放電容量を用いる場合、充電状態、正極有効度に基づいて補正してもよい。
充電電気量及び放電容量の補正のための算出式の一例を示す。
Q(x),dis=n×Q(x)
Q(x),cha=n×(100+ΔQox,max×Rcha)/100×Q(x)
但し、Q(x),dis:放電容量の補正値
Q(x):放電容量の実測値
Q(x),cha:充電電気量の補正値
n:正極の有効度、0≦n≦1、SOC-OCP曲線のx方向の収縮の度合を示す値
Rcha:正極の充電SOC-OCPの割合、
Rcha=(ΔQox,max-ΔQox)/ΔQox,max、0≦Rcha≦1
ΔQox=ΔSOCmax-ΔSOC
ΔQox,max:ΔQoxの最大値
ΔSOC:Q(x)を取得した電位における放電SOC-OCP及び充電SOC-OCP間のSOCの差
ΔSOCmax:ΔSOCの最大値 When using the charge quantity and the discharge capacity as the characteristic values, correction may be made based on the charge state and the positive electrode effectiveness.
An example of the calculation formula for correction | amendment of charge amount of charge and discharge capacity is shown.
Q (x), dis = n × Q (x)
Q (x), cha = n × (100 + ΔQox, max × Rcha) / 100 × Q (x)
However, Q (x), dis: Correction value of discharge capacity Q (x): Measured value of discharge capacity Q (x), cha: Correction value of charge amount n: Effectiveness of positive electrode, 0 ≦ n ≦ 1, A value indicating the degree of contraction of the SOC-OCP curve in the x direction Rcha: Ratio of charging SOC-OCP of positive electrode,
Rcha = (ΔQox, max-ΔQox) / ΔQox, max, 0 ≦ Rcha ≦ 1
ΔQox = ΔSOCmax−ΔSOC
ΔQox, max: maximum value of ΔQox ΔSOC: difference of SOC between the discharge SOC-OCP and the charge SOC-OCP at the potential at which Q (x) was acquired ΔSOCmax: maximum value of ΔSOC
充電電気量及び放電容量の補正のための算出式の一例を示す。
Q(x),dis=n×Q(x)
Q(x),cha=n×(100+ΔQox,max×Rcha)/100×Q(x)
但し、Q(x),dis:放電容量の補正値
Q(x):放電容量の実測値
Q(x),cha:充電電気量の補正値
n:正極の有効度、0≦n≦1、SOC-OCP曲線のx方向の収縮の度合を示す値
Rcha:正極の充電SOC-OCPの割合、
Rcha=(ΔQox,max-ΔQox)/ΔQox,max、0≦Rcha≦1
ΔQox=ΔSOCmax-ΔSOC
ΔQox,max:ΔQoxの最大値
ΔSOC:Q(x)を取得した電位における放電SOC-OCP及び充電SOC-OCP間のSOCの差
ΔSOCmax:ΔSOCの最大値 When using the charge quantity and the discharge capacity as the characteristic values, correction may be made based on the charge state and the positive electrode effectiveness.
An example of the calculation formula for correction | amendment of charge amount of charge and discharge capacity is shown.
Q (x), dis = n × Q (x)
Q (x), cha = n × (100 + ΔQox, max × Rcha) / 100 × Q (x)
However, Q (x), dis: Correction value of discharge capacity Q (x): Measured value of discharge capacity Q (x), cha: Correction value of charge amount n: Effectiveness of positive electrode, 0 ≦ n ≦ 1, A value indicating the degree of contraction of the SOC-OCP curve in the x direction Rcha: Ratio of charging SOC-OCP of positive electrode,
Rcha = (ΔQox, max-ΔQox) / ΔQox, max, 0 ≦ Rcha ≦ 1
ΔQox = ΔSOCmax−ΔSOC
ΔQox, max: maximum value of ΔQox ΔSOC: difference of SOC between the discharge SOC-OCP and the charge SOC-OCP at the potential at which Q (x) was acquired ΔSOCmax: maximum value of ΔSOC
電位降下の性質を有する活物質の場合、特徴値の変化(劣化)に対応して、充放電曲線形状が連続的かつ一義的に変化すると考えられる。LiMeO2-Li2MnO3系の活物質に関して、充放電の繰り返しに伴い、結晶構造が変化することが報告されている(Journal of Power Sources, vol.229(2013), pp239-248)。結晶構造の変化に伴い、充放電曲線の形状が変化すると考えられる。短期的で一つの温度水準の充放電サイクルにおいて、結晶構造の変化は連続的に生じることが論文の結果から示唆される。そして、結晶構造が層状からスピネル類縁結晶に変化したという報告から、変化の仕方は一通りであると推察される。即ち、短期的で一つの温度水準において、電位降下の性質を有する活物質の場合、結晶構造が連続的かつ一義的に変化している。この報告から、長期的かつ、いかなる使用履歴においても、結晶構造の変化に従って充放電曲線形状が連続的かつ一義的に変化すると、本願発明者は考えた。後述する実験結果から、長期的に、使用履歴が異なっても、充放電曲線形状が連続的かつ一義的に変化することが確認された。
In the case of the active material having the property of potential drop, it is considered that the charge and discharge curve shape changes continuously and uniquely according to the change (deterioration) of the characteristic value. LiMeO 2 -Li respect 2 MnO 3 system of the active material, along with the repetition of charge and discharge, the crystal structures have been reported to vary (Journal of Power Sources, vol.229 ( 2013), pp239-248). It is considered that the shape of the charge / discharge curve changes with the change of the crystal structure. It is suggested from the results of the paper that changes in crystal structure occur continuously in the short-term one temperature level charge / discharge cycle. And, from the report that the crystal structure has changed from layered to spinel-like crystals, it is presumed that the way of change is one way. That is, in the case of an active material having the property of potential drop at a single temperature level in the short term, the crystal structure changes continuously and uniquely. From this report, the inventor considered that the charge-discharge curve shape changes continuously and uniquely according to the change of the crystal structure in a long-term and any use history. From the experimental results described later, it was confirmed that the charge / discharge curve shape changes continuously and uniquely in the long run even if the usage history is different.
電位降下の性質を有さない活物質の場合、単極の充放電曲線形状は充放電の繰り返しによっては変化しない。上述のように単極の劣化又は容量バランスのずれ量の拡大によって、個別に、即ち非一義的に、セルの充放電曲線形状は充放電の繰り返しにより変化する。
In the case of an active material not having the property of potential drop, the charge and discharge curve shape of a single electrode does not change by repetition of charge and discharge. As described above, due to the deterioration of the single electrode or the expansion of the displacement amount of the capacity balance, the charge / discharge curve shape of the cell changes individually, that is, unambiguously, due to the repetition of charge / discharge.
本実施形態では、特徴値の変化に対して、単極の蓄電量特性が連続的かつ一義的に変化するので、特徴値の変化に対する蓄電量特性の変化の推移を一部記憶しておくことで、現時点での蓄電量特性を精度良く推定できる。
即ち、特徴値の変化に対応して、上述の少なくともいずれかの蓄電量特性を複数、テーブルに記憶しておく。又は、蓄電量特性を特徴値の関数として記憶しておく。 In the present embodiment, the storage characteristic of the single pole changes continuously and uniquely with respect to the change of the feature value, so that the transition of the change of the storage characteristic with respect to the change of the feature value is partially stored. Thus, it is possible to accurately estimate the storage amount characteristic at the present time.
That is, a plurality of at least one of the storage capacity characteristics described above are stored in a table in response to the change in the feature value. Alternatively, the storage amount characteristic is stored as a function of the feature value.
即ち、特徴値の変化に対応して、上述の少なくともいずれかの蓄電量特性を複数、テーブルに記憶しておく。又は、蓄電量特性を特徴値の関数として記憶しておく。 In the present embodiment, the storage characteristic of the single pole changes continuously and uniquely with respect to the change of the feature value, so that the transition of the change of the storage characteristic with respect to the change of the feature value is partially stored. Thus, it is possible to accurately estimate the storage amount characteristic at the present time.
That is, a plurality of at least one of the storage capacity characteristics described above are stored in a table in response to the change in the feature value. Alternatively, the storage amount characteristic is stored as a function of the feature value.
後述するCPU62は、現時点の特徴値を取得する。
CPU62は、特徴値が充電電気量又は放電容量である場合、所定電圧範囲における特徴値を取得する。但し、現時点における、各蓄電量に対する対極の電位(対極の蓄電量特性及び容量バランスのずれ)が推定できる場合は、電池電圧を単極電位に変換し、特徴値抽出のために、変換した電位範囲を使用してもよい。
電圧範囲に対応する単極の電位範囲として、充電電気量又は放電容量と単極の平均放電電位との間に、直線関係があり、劣化の前後で、対極との電位差(セル電圧)が変わらない範囲を選択するのが好ましい。 TheCPU 62 described later acquires the current feature value.
TheCPU 62 acquires the feature value in the predetermined voltage range when the feature value is the charge amount of electricity or the discharge capacity. However, if it is possible to estimate the potential of the counter electrode (the charge amount characteristic of the counter electrode and the capacity balance deviation) with respect to each storage amount at this time, the battery voltage is converted to a unipolar potential and the potential converted for feature value extraction. Ranges may be used.
As a unipolar potential range corresponding to the voltage range, there is a linear relationship between the charge quantity or discharge capacity and the average discharge potential of the unipolar, and the potential difference (cell voltage) with the counter electrode changes before and after deterioration. It is preferable to select a range that does not exist.
CPU62は、特徴値が充電電気量又は放電容量である場合、所定電圧範囲における特徴値を取得する。但し、現時点における、各蓄電量に対する対極の電位(対極の蓄電量特性及び容量バランスのずれ)が推定できる場合は、電池電圧を単極電位に変換し、特徴値抽出のために、変換した電位範囲を使用してもよい。
電圧範囲に対応する単極の電位範囲として、充電電気量又は放電容量と単極の平均放電電位との間に、直線関係があり、劣化の前後で、対極との電位差(セル電圧)が変わらない範囲を選択するのが好ましい。 The
The
As a unipolar potential range corresponding to the voltage range, there is a linear relationship between the charge quantity or discharge capacity and the average discharge potential of the unipolar, and the potential difference (cell voltage) with the counter electrode changes before and after deterioration. It is preferable to select a range that does not exist.
図2は、前記所定電圧範囲に対応する正極の電位範囲と、各電位範囲における、各劣化状態に対応する充電電気量の範囲との関係を示す概念図である。電位範囲はa、b、cの順に狭くなる。電位範囲が狭くなった場合、充電電気量の範囲が狭くなる。即ち、使用する電位範囲の縮小に伴い、誤差が増大する。一方、電位範囲が広い場合、充電電気量の取得に時間及び労力が要される。従って、推定精度及び測定の容易さのバランスを考慮して、適切な電位範囲を設定するのが好ましい。
FIG. 2 is a conceptual diagram showing the relationship between the potential range of the positive electrode corresponding to the predetermined voltage range and the range of the charge amount corresponding to each deterioration state in each potential range. The potential range becomes narrower in the order of a, b and c. When the potential range narrows, the range of the charge amount of electricity narrows. That is, the error increases with the reduction of the potential range to be used. On the other hand, when the potential range is wide, it takes time and effort to acquire the amount of charge electricity. Therefore, it is preferable to set an appropriate potential range in consideration of the balance between the estimation accuracy and the ease of measurement.
CPU62は、取得した特徴値に基づき、記憶した蓄電量特性を参照して、現時点の蓄電量特性を推定する。又は、CPU62は、記憶した特徴値の関数に取得した特徴値を代入して、現時点の蓄電量特性を算出する。
The CPU 62 estimates the current storage amount characteristic based on the acquired feature value with reference to the stored storage amount characteristic. Alternatively, the CPU 62 substitutes the acquired feature value into the function of the stored feature value to calculate the current storage amount characteristic.
図3Aは、前記活物質を含む初期品の正極の電位とdQ/dVとの関係を示すグラフ、図3Bは劣化品の正極の電位とdQ/dVとの関係を示すグラフである。横軸は電位(VvsLi/Li+:Li/Li+平衡電位を基準にしたときの電位)、縦軸はdQ/dVである。
FIG. 3A is a graph showing the relationship between the potential of the positive electrode of the initial product containing the active material and dQ / dV, and FIG. 3B is a graph showing the relationship between the potential of the positive electrode of the deteriorated product and dQ / dV. The horizontal axis is the potential (VvsLi / Li + : potential based on the Li / Li + equilibrium potential), and the vertical axis is dQ / dV.
図4は充電電位に対する、X線吸収分光測定(XAFS測定)によって算出した前記活物質のNiのK吸収端エネルギーの推移を示すグラフである。横軸は充電電位E(VvsLi/Li+ )であり、縦軸はNiのK吸収端エネルギーE0 (eV)である。図4において、初期品を●で、劣化品を■で示している。
FIG. 4 is a graph showing transition of K absorption edge energy of Ni of the active material calculated by X-ray absorption spectrometry (XAFS measurement) with respect to charging potential. The horizontal axis is the charge potential E (VvsLi / Li + ), and the vertical axis is the K absorption edge energy E 0 (eV) of Ni. In FIG. 4, the initial product is shown by ● and the degraded product is shown by ■.
図3Bにおいて、電位が略4.7Vで、dQ/dVが上に凸に膨らんでおり、反応が生じていることが分かる。図4において、初期品の場合、該領域でE0 が一定になっているのに対し、劣化品の場合、EとE0 とが比例関係を示している。
以上より、初期品の場合、4.5V以上の領域でNiの酸化反応は生じていないが、劣化が進むことにより、該領域でNiの酸化反応が生じることが分かる。
劣化により、5VスピネルのLiNi0.5Mn1.5O4 のような相が形成されたと考えられる。LiNi0.5Mn1.5O4 は略5Vの領域で、安定に存在する。LiNi0.5Mn1.5O4 の場合、4.9V付近において、Ni起因のレドックス反応が生じる。
図4に示すように、初期品の場合、高電位領域で曲線が平坦化し、反応が収束するのに対し、劣化品の場合、高電位領域においても反応が進行している。 In FIG. 3B, it can be seen that the potential is about 4.7 V and dQ / dV bulges upward, and a reaction occurs. In FIG. 4, in the case of the initial product, E 0 is constant in the region, whereas in the case of the deteriorated product, E and E 0 show a proportional relationship.
From the above, it can be seen that in the case of the initial product, the oxidation reaction of Ni does not occur in the region of 4.5 V or more, but as the deterioration progresses, the oxidation reaction of Ni occurs in the region.
It is believed that the deterioration caused the formation of a phase such as 5 V spinel LiNi 0.5 Mn 1.5 O 4 . LiNi 0.5 Mn 1.5 O 4 is stably present in the region of approximately 5V. In the case of LiNi 0.5 Mn 1.5 O 4 , a redox reaction caused by Ni occurs near 4.9 V.
As shown in FIG. 4, in the case of the initial product, the curve is flattened in the high potential region and the reaction converges, whereas in the case of the deteriorated product, the reaction proceeds also in the high potential region.
以上より、初期品の場合、4.5V以上の領域でNiの酸化反応は生じていないが、劣化が進むことにより、該領域でNiの酸化反応が生じることが分かる。
劣化により、5VスピネルのLiNi0.5Mn1.5O4 のような相が形成されたと考えられる。LiNi0.5Mn1.5O4 は略5Vの領域で、安定に存在する。LiNi0.5Mn1.5O4 の場合、4.9V付近において、Ni起因のレドックス反応が生じる。
図4に示すように、初期品の場合、高電位領域で曲線が平坦化し、反応が収束するのに対し、劣化品の場合、高電位領域においても反応が進行している。 In FIG. 3B, it can be seen that the potential is about 4.7 V and dQ / dV bulges upward, and a reaction occurs. In FIG. 4, in the case of the initial product, E 0 is constant in the region, whereas in the case of the deteriorated product, E and E 0 show a proportional relationship.
From the above, it can be seen that in the case of the initial product, the oxidation reaction of Ni does not occur in the region of 4.5 V or more, but as the deterioration progresses, the oxidation reaction of Ni occurs in the region.
It is believed that the deterioration caused the formation of a phase such as 5 V spinel LiNi 0.5 Mn 1.5 O 4 . LiNi 0.5 Mn 1.5 O 4 is stably present in the region of approximately 5V. In the case of LiNi 0.5 Mn 1.5 O 4 , a redox reaction caused by Ni occurs near 4.9 V.
As shown in FIG. 4, in the case of the initial product, the curve is flattened in the high potential region and the reaction converges, whereas in the case of the deteriorated product, the reaction proceeds also in the high potential region.
従って、蓄電素子の充電時又は放電時において、高電圧範囲内の所定電圧V1 のdQ/dVを取得することにより、蓄電素子の劣化の状態を推定することができる。
高電位範囲内で、上述の反応が生じるので、蓄電素子の高電圧範囲内の第1電圧V1 から第2電圧V2 に至るまでの時間Δtが長くなる。Δtを取得することにより、蓄電素子の劣化の状態を推定することができる。
第1電圧V1 から第2電圧V2 に至るまでのV-dQ/dVの傾き(Δ(dQ/dV)/ΔV)も劣化に応じて変化するので、[Δ(dQ/dV)/ΔV]を取得することにより、蓄電素子の劣化の状態を推定することができる。
高SOC領域においても、簡便、迅速、かつ高精度に劣化状態を推定することができる。 Accordingly, the time of charge or discharge of the power storage device, by obtaining a dQ / dV of predetermined voltages V 1 in the high voltage range, it is possible to estimate the state of deterioration of the power storage device.
In a high-potential range, the reaction described above occurs, the time Δt from the first voltages V 1 in the high voltage range of the storage element up to the second voltage V 2 becomes longer. By obtaining Δt, the state of deterioration of the storage element can be estimated.
Since changes in accordance with the V-dQ / dV slope (Δ (dQ / dV) / ΔV) deterioration from the first voltages V 1 up to the second voltage V 2, [Δ (dQ / dV) / ΔV The state of deterioration of the storage element can be estimated by acquiring.
Even in the high SOC region, the degradation state can be estimated easily, quickly, and with high accuracy.
高電位範囲内で、上述の反応が生じるので、蓄電素子の高電圧範囲内の第1電圧V1 から第2電圧V2 に至るまでの時間Δtが長くなる。Δtを取得することにより、蓄電素子の劣化の状態を推定することができる。
第1電圧V1 から第2電圧V2 に至るまでのV-dQ/dVの傾き(Δ(dQ/dV)/ΔV)も劣化に応じて変化するので、[Δ(dQ/dV)/ΔV]を取得することにより、蓄電素子の劣化の状態を推定することができる。
高SOC領域においても、簡便、迅速、かつ高精度に劣化状態を推定することができる。 Accordingly, the time of charge or discharge of the power storage device, by obtaining a dQ / dV of predetermined voltages V 1 in the high voltage range, it is possible to estimate the state of deterioration of the power storage device.
In a high-potential range, the reaction described above occurs, the time Δt from the first voltages V 1 in the high voltage range of the storage element up to the second voltage V 2 becomes longer. By obtaining Δt, the state of deterioration of the storage element can be estimated.
Since changes in accordance with the V-dQ / dV slope (Δ (dQ / dV) / ΔV) deterioration from the first voltages V 1 up to the second voltage V 2, [Δ (dQ / dV) / ΔV The state of deterioration of the storage element can be estimated by acquiring.
Even in the high SOC region, the degradation state can be estimated easily, quickly, and with high accuracy.
[実施形態1]
以下、実施形態1として、車両に搭載される蓄電装置が例示される。
図5は、蓄電装置の一例を示す。蓄電装置50は、複数の蓄電素子200と、監視装置100と、それらを収容する収容ケース300とを備えている。蓄電装置50は、電気自動車(EV)や、プラグインハイブリッド電気自動車(PHEV)の動力源として使用されてもよい。
蓄電素子200は、角形セルに限定されず、円筒形セルやパウチセルであってもよい。監視装置100は、複数の蓄電素子200と対向して配置される回路基板であってもよい。監視装置100は、蓄電素子200の状態を監視する。監視装置100が、推定装置であってもよい。代替的に、監視装置100と有線接続または無線接続されるコンピュータやサーバが、監視装置100が出力する情報に基づいて蓄電量特性又は蓄電量を推定する推定方法を実行してもよい。Embodiment 1
Hereinafter, as the first embodiment, a power storage device mounted on a vehicle is exemplified.
FIG. 5 shows an example of a power storage device.Power storage device 50 includes a plurality of power storage elements 200, monitoring device 100, and a storage case 300 for storing them. Power storage device 50 may be used as a power source of an electric vehicle (EV) or a plug-in hybrid electric vehicle (PHEV).
Thestorage element 200 is not limited to a square cell, and may be a cylindrical cell or a pouch cell. The monitoring device 100 may be a circuit board disposed to face the plurality of storage elements 200. Monitoring device 100 monitors the state of storage element 200. The monitoring device 100 may be an estimation device. Alternatively, a computer or server wired or wirelessly connected to the monitoring apparatus 100 may execute an estimation method of estimating the storage capacity characteristic or the storage capacity based on the information output from the monitoring apparatus 100.
以下、実施形態1として、車両に搭載される蓄電装置が例示される。
図5は、蓄電装置の一例を示す。蓄電装置50は、複数の蓄電素子200と、監視装置100と、それらを収容する収容ケース300とを備えている。蓄電装置50は、電気自動車(EV)や、プラグインハイブリッド電気自動車(PHEV)の動力源として使用されてもよい。
蓄電素子200は、角形セルに限定されず、円筒形セルやパウチセルであってもよい。監視装置100は、複数の蓄電素子200と対向して配置される回路基板であってもよい。監視装置100は、蓄電素子200の状態を監視する。監視装置100が、推定装置であってもよい。代替的に、監視装置100と有線接続または無線接続されるコンピュータやサーバが、監視装置100が出力する情報に基づいて蓄電量特性又は蓄電量を推定する推定方法を実行してもよい。
Hereinafter, as the first embodiment, a power storage device mounted on a vehicle is exemplified.
FIG. 5 shows an example of a power storage device.
The
図6は、蓄電装置の他の例を示す。蓄電装置(以下、電池モジュールという)1は、エンジン車両に好適に搭載される、12ボルト電源や、48ボルト電源であってもよい。図6は12V電源用の電池モジュール1の斜視図、図7は電池モジュール1の分解斜視図、図8は電池モジュール1のブロック図である。
電池モジュール1は直方体状のケース2を有する。ケース2に複数のリチウムイオン二次電池(以下、電池という)3、複数のバスバー4、BMU(Battery Management Unit)6、電流センサ7が収容される。 FIG. 6 shows another example of the power storage device. The power storage device (hereinafter referred to as a battery module) 1 may be a 12 volt power source or a 48 volt power source suitably mounted on an engine vehicle. 6 is a perspective view of thebattery module 1 for 12V power, FIG. 7 is an exploded perspective view of the battery module 1, and FIG. 8 is a block diagram of the battery module 1. As shown in FIG.
Thebattery module 1 has a rectangular parallelepiped case 2. In case 2, a plurality of lithium ion secondary batteries (hereinafter referred to as batteries) 3, a plurality of bus bars 4, a BMU (Battery Management Unit) 6, and a current sensor 7 are accommodated.
電池モジュール1は直方体状のケース2を有する。ケース2に複数のリチウムイオン二次電池(以下、電池という)3、複数のバスバー4、BMU(Battery Management Unit)6、電流センサ7が収容される。 FIG. 6 shows another example of the power storage device. The power storage device (hereinafter referred to as a battery module) 1 may be a 12 volt power source or a 48 volt power source suitably mounted on an engine vehicle. 6 is a perspective view of the
The
電池3は、直方体状のケース31と、ケース31の一側面に設けられた、極性が異なる一対の端子32,32とを備える。ケース31には、正極板、セパレータ、及び負極板を積層した電極体33が収容されている。
The battery 3 includes a rectangular parallelepiped case 31 and a pair of terminals 32 and 32 provided on one side of the case 31 and having different polarities. The case 31 accommodates an electrode body 33 in which a positive electrode plate, a separator, and a negative electrode plate are stacked.
電極体33の正極板が有する正極活物質及び負極板が有する負極活物質の少なくとも一方は、電位降下及びヒステリシスの性質を有する。
正極活物質としては、LiMeO2-Li2MnO3固溶体、Li2O-LiMeO2固溶体、Li3NbO4 -LiMeO2固溶体、Li4WO5 -LiMeO2固溶体、Li4TeO5-LiMeO2固溶体、Li3SbO4 -LiFeO2固溶体、Li2RuO3 -LiMeO2固溶体、Li2RuO3 -Li2 MeO3 固溶体等のLi過剰型活物質が挙げられる。負極活物質としては、ハードカーボン、Si、Sn、Cd、Zn、Al、Bi、Pb、Ge、Ag等の金属若しくは合金、又はこれらを含むカルコゲン化物等が挙げられる。カルコゲン化物の一例として、SiOが挙げられる。本発明の技術は、これらの正極活物質及び負極活物質の少なくとも一方が含まれていれば適用可能である。 At least one of the positive electrode active material of the positive electrode plate of theelectrode body 33 and the negative electrode active material of the negative electrode plate has properties of potential drop and hysteresis.
As the positive electrode active material, LiMeO 2 -Li 2 MnO 3 solid solution, Li 2 O-LiMeO 2 solid solution, Li 3 NbO 4 -LiMeO 2 solid solution, Li 4 WO 5 -LiMeO 2 solid solution, Li 4 TeO 5 -LiMeO 2 solid solution, Li 3 SbO 4 -LiFeO 2 solid solution, Li 2 RuO 3 -LiMeO 2 solid solution, and a Li-excess active material such as Li 2 RuO 3 -Li 2 MeO 3 solid solution. Examples of the negative electrode active material include hard carbon, metals such as hard carbon, Si, Sn, Cd, Zn, Al, Bi, Pb, Ge, Ag, or alloys thereof, chalcogenides containing these, and the like. One example of the chalcogenide is SiO. The technology of the present invention is applicable as long as at least one of the positive electrode active material and the negative electrode active material is included.
正極活物質としては、LiMeO2-Li2MnO3固溶体、Li2O-LiMeO2固溶体、Li3NbO4 -LiMeO2固溶体、Li4WO5 -LiMeO2固溶体、Li4TeO5-LiMeO2固溶体、Li3SbO4 -LiFeO2固溶体、Li2RuO3 -LiMeO2固溶体、Li2RuO3 -Li2 MeO3 固溶体等のLi過剰型活物質が挙げられる。負極活物質としては、ハードカーボン、Si、Sn、Cd、Zn、Al、Bi、Pb、Ge、Ag等の金属若しくは合金、又はこれらを含むカルコゲン化物等が挙げられる。カルコゲン化物の一例として、SiOが挙げられる。本発明の技術は、これらの正極活物質及び負極活物質の少なくとも一方が含まれていれば適用可能である。 At least one of the positive electrode active material of the positive electrode plate of the
As the positive electrode active material, LiMeO 2 -Li 2 MnO 3 solid solution, Li 2 O-LiMeO 2 solid solution, Li 3 NbO 4 -LiMeO 2 solid solution, Li 4 WO 5 -LiMeO 2 solid solution, Li 4 TeO 5 -LiMeO 2 solid solution, Li 3 SbO 4 -LiFeO 2 solid solution, Li 2 RuO 3 -LiMeO 2 solid solution, and a Li-excess active material such as Li 2 RuO 3 -Li 2 MeO 3 solid solution. Examples of the negative electrode active material include hard carbon, metals such as hard carbon, Si, Sn, Cd, Zn, Al, Bi, Pb, Ge, Ag, or alloys thereof, chalcogenides containing these, and the like. One example of the chalcogenide is SiO. The technology of the present invention is applicable as long as at least one of the positive electrode active material and the negative electrode active material is included.
ケース2は合成樹脂製である。ケース2は、ケース本体21と、ケース本体21の開口部を閉塞する蓋部22と、蓋部22の外面に設けられたBMU収容部23と、BMU収容部23を覆うカバー24と、中蓋25と、仕切り板26とを備える。中蓋25や仕切り板26は、設けられなくてもよい。
ケース本体21の各仕切り板26の間に、電池3が挿入されている。Case 2 is made of synthetic resin. The case 2 includes a case body 21, a lid 22 closing the opening of the case body 21, a BMU accommodating portion 23 provided on the outer surface of the lid 22, a cover 24 covering the BMU accommodating portion 23, and an inner lid 25 and a partition plate 26. The inner lid 25 and the partition plate 26 may not be provided.
Thebattery 3 is inserted between the partition plates 26 of the case main body 21.
ケース本体21の各仕切り板26の間に、電池3が挿入されている。
The
中蓋25には、複数の金属製のバスバー4が載置されている。電池3の端子32が設けられている端子面に中蓋25が配置されて、隣り合う電池3の隣り合う端子32がバスバー4により接続され、電池3が直列に接続されている。
A plurality of metal bus bars 4 are mounted on the inner lid 25. The inner cover 25 is disposed on the terminal surface on which the terminals 32 of the battery 3 are provided, and the adjacent terminals 32 of the adjacent batteries 3 are connected by the bus bar 4 and the batteries 3 are connected in series.
BMU収容部23は箱状をなし、一長側面の中央部に、外側に角型に突出した突出部23aを有する。蓋部22における突出部23aの両側には、鉛合金等の金属製で、極性が異なる一対の外部端子5,5が設けられている。BMU6は、基板に情報処理部60、電圧計測部8、及び電流計測部9を実装してなる。BMU収容部23にBMU6を収容し、カバー24によりBMU収容部23を覆うことにより、電池3とBMU6とが接続される。
The BMU accommodating portion 23 has a box shape, and has a rectangular projecting portion 23 a at the center of one long side. A pair of external terminals 5 and 5 made of a metal such as a lead alloy and having different polarities is provided on both sides of the protrusion 23 a in the lid 22. The BMU 6 is formed by mounting an information processing unit 60, a voltage measurement unit 8, and a current measurement unit 9 on a substrate. The BMU 6 is accommodated in the BMU accommodating portion 23 and the BMU accommodating portion 23 is covered with the cover 24, whereby the battery 3 and the BMU 6 are connected.
図8に示すように、情報処理部60は、CPU62と、メモリ63とを備える。
メモリ63には、メモリ63には、本実施形態に係る蓄電量特性の推定プログラム、蓄電量の推定プログラムを含む各種のプログラム63aと、蓄電量特性が格納されたテーブル63bとが記憶されている。プログラム63aは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体70に格納された状態で提供され、BMU6にインストールすることによりメモリ63に格納される。代替的に、通信網に接続されている図示しない外部コンピュータからプログラム63aを取得し、メモリ63に記憶させてもよい。メモリ63、及びCPU62の処理部としての第1推定部、第2推定部、又は第3推定部は、BMU6に搭載されている場合に限定されない。これらを外部装置に搭載し、特徴値を取得したときに、単極の蓄電量-電位特性、電圧参照用蓄電量-電圧特性、又は蓄電量を推定し、BMU6へ結果を渡すことにしてもよい。 As shown in FIG. 8, theinformation processing unit 60 includes a CPU 62 and a memory 63.
Thememory 63 stores, in the memory 63, a program for estimating the storage capacity characteristic according to the present embodiment, various programs 63a including a storage capacity estimation program, and a table 63b in which the storage capacity characteristic is stored. . The program 63a is provided in the state of being stored in a computer readable recording medium 70 such as a CD-ROM, a DVD-ROM, a USB memory, etc., and is stored in the memory 63 by being installed in the BMU 6. Alternatively, the program 63a may be obtained from an external computer (not shown) connected to a communication network and stored in the memory 63. The memory 63 and the first estimation unit, the second estimation unit, or the third estimation unit as the processing unit of the CPU 62 are not limited to the case where they are mounted in the BMU 6. When these are mounted on an external device and the characteristic value is acquired, the storage amount-potential characteristic of single pole, the storage amount for voltage reference, the voltage characteristic, or the storage amount is estimated, and the result is passed to BMU6. Good.
メモリ63には、メモリ63には、本実施形態に係る蓄電量特性の推定プログラム、蓄電量の推定プログラムを含む各種のプログラム63aと、蓄電量特性が格納されたテーブル63bとが記憶されている。プログラム63aは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体70に格納された状態で提供され、BMU6にインストールすることによりメモリ63に格納される。代替的に、通信網に接続されている図示しない外部コンピュータからプログラム63aを取得し、メモリ63に記憶させてもよい。メモリ63、及びCPU62の処理部としての第1推定部、第2推定部、又は第3推定部は、BMU6に搭載されている場合に限定されない。これらを外部装置に搭載し、特徴値を取得したときに、単極の蓄電量-電位特性、電圧参照用蓄電量-電圧特性、又は蓄電量を推定し、BMU6へ結果を渡すことにしてもよい。 As shown in FIG. 8, the
The
テーブル63bに記憶する蓄電量特性について、具体例を挙げて説明する。
セルにつき、下記の表1に示す電圧範囲、サイクル数、及び試験温度の条件で各No.のサイクル試験を行った。 The storage amount characteristic stored in the table 63b will be described by taking a specific example.
For each cell, each No. 1 cell was tested under the conditions of voltage range, cycle number, and test temperature shown in Table 1 below. Cycle test was conducted.
セルにつき、下記の表1に示す電圧範囲、サイクル数、及び試験温度の条件で各No.のサイクル試験を行った。 The storage amount characteristic stored in the table 63b will be described by taking a specific example.
For each cell, each No. 1 cell was tested under the conditions of voltage range, cycle number, and test temperature shown in Table 1 below. Cycle test was conducted.
充放電の条件は、以下の通りである。
・負極:グラファイト
・試験レート:充電0.5CA、放電1.0CA The conditions of charge and discharge are as follows.
-Negative electrode: Graphite-Test rate: Charge 0.5 CA, Discharge 1.0 CA
・負極:グラファイト
・試験レート:充電0.5CA、放電1.0CA The conditions of charge and discharge are as follows.
-Negative electrode: Graphite-Test rate: Charge 0.5 CA, Discharge 1.0 CA
SOC-OCPを求めるための確認試験の条件は、以下の通りである。
・負極:Li金属
・試験レート:充電0.1CA、放電0.1CA
・試験温度:25℃
これにより、各No.の試験につき、蓄電量特性として、正極のSOC-OCP特性、又はV-dQ/dV特性が求められる。この蓄電量特性を所定電圧範囲の充電電気量若しくは放電容量、又は平均放電電位と対応付けて、テーブル63bに格納する。各試験により、劣化した状態の単極の蓄電量特性を取得し、これを特徴値の順に並べて、特徴値と蓄電量特性とを対応付ける。長期的に、使用履歴が異なっても、蓄電量特性が連続的かつ一義的に変化することが確認される。
CPU62はメモリ63から読み出したプログラムに従って、後述する蓄電量特性推定処理及び蓄電量推定処理を実行する。 The conditions of the confirmation test for determining SOC-OCP are as follows.
・ Anode: Li metal
・ Test rate: charge 0.1CA, discharge 0.1CA
・ Test temperature: 25 ° C
Thereby, each No. The SOC-OCP characteristic of the positive electrode or the V-dQ / dV characteristic is determined as the storage capacity characteristic for the test of (1). The storage amount characteristic is stored in the table 63 b in association with the charge amount or discharge capacity of the predetermined voltage range, or the average discharge potential. A single pole storage capacity characteristic in a degraded state is acquired by each test, and this is arranged in the order of the feature value to associate the characteristic value with the storage capacity characteristic. It is confirmed that the storage capacity characteristic changes continuously and uniquely in the long run even if the usage history is different.
TheCPU 62 executes storage amount characteristic estimation processing and storage amount estimation processing described later according to the program read from the memory 63.
・負極:Li金属
・試験レート:充電0.1CA、放電0.1CA
・試験温度:25℃
これにより、各No.の試験につき、蓄電量特性として、正極のSOC-OCP特性、又はV-dQ/dV特性が求められる。この蓄電量特性を所定電圧範囲の充電電気量若しくは放電容量、又は平均放電電位と対応付けて、テーブル63bに格納する。各試験により、劣化した状態の単極の蓄電量特性を取得し、これを特徴値の順に並べて、特徴値と蓄電量特性とを対応付ける。長期的に、使用履歴が異なっても、蓄電量特性が連続的かつ一義的に変化することが確認される。
CPU62はメモリ63から読み出したプログラムに従って、後述する蓄電量特性推定処理及び蓄電量推定処理を実行する。 The conditions of the confirmation test for determining SOC-OCP are as follows.
・ Anode: Li metal
・ Test rate: charge 0.1CA, discharge 0.1CA
・ Test temperature: 25 ° C
Thereby, each No. The SOC-OCP characteristic of the positive electrode or the V-dQ / dV characteristic is determined as the storage capacity characteristic for the test of (1). The storage amount characteristic is stored in the table 63 b in association with the charge amount or discharge capacity of the predetermined voltage range, or the average discharge potential. A single pole storage capacity characteristic in a degraded state is acquired by each test, and this is arranged in the order of the feature value to associate the characteristic value with the storage capacity characteristic. It is confirmed that the storage capacity characteristic changes continuously and uniquely in the long run even if the usage history is different.
The
電圧計測部8は、電圧検知線を介して電池3の両端に夫々接続されており、各電池3の電圧を所定時間間隔で測定する。
電流計測部9は、電流センサ7を介して電池3に流れる電流を所定時間間隔で計測する。
電池モジュール1の外部端子5,5は、エンジン始動用のスターターモータ及び電装品等の負荷11に接続されている。
ECU(Electronic Control Unit)10は、BMU6及び負荷11に接続されている。 Thevoltage measurement unit 8 is connected to both ends of the battery 3 via a voltage detection line, and measures the voltage of each battery 3 at predetermined time intervals.
The current measuring unit 9 measures the current flowing through thebattery 3 via the current sensor 7 at predetermined time intervals.
The external terminals 5 and 5 of the battery module 1 are connected to a load 11 such as a starter motor for starting the engine and electrical components.
The ECU (Electronic Control Unit) 10 is connected to theBMU 6 and the load 11.
電流計測部9は、電流センサ7を介して電池3に流れる電流を所定時間間隔で計測する。
電池モジュール1の外部端子5,5は、エンジン始動用のスターターモータ及び電装品等の負荷11に接続されている。
ECU(Electronic Control Unit)10は、BMU6及び負荷11に接続されている。 The
The current measuring unit 9 measures the current flowing through the
The
The ECU (Electronic Control Unit) 10 is connected to the
以下、本実施形態に係る蓄電量特性の推定方法について説明する。
図9は、CPU62による蓄電量特性の推定処理の手順を示すフローチャートである。
CPU62は、所定の間隔でS1からの処理を繰り返す。
CPU62は、特徴値を取得する(S1)。
CPU62は、取得した特徴値に対応する蓄電量特性を算出する。CPU62は、例えば2つの参照する特徴値に対応する蓄電量特性から目的の蓄電量特性を内挿計算により算出する(S2)。又は、上述の特徴値の関数に、取得した特徴値を代入して、目的の蓄電量特性を算出する。
CPU62は、算出した蓄電量特性をテーブル63bに記憶する(S3)。
CPU62は、算出した蓄電量特性に基づいて、電池3の劣化状態を推定し(S4)、処理を終了する。蓄電量特性は劣化の指標となる。なお、S4の処理を行わず、S3の処理後、終了してもよい。 Hereinafter, the method of estimating the storage capacity characteristic according to the present embodiment will be described.
FIG. 9 is a flowchart showing the procedure of the process of estimating the storage capacity characteristic by theCPU 62.
TheCPU 62 repeats the processing from S1 at predetermined intervals.
TheCPU 62 acquires a feature value (S1).
TheCPU 62 calculates a storage amount characteristic corresponding to the acquired feature value. The CPU 62 calculates the target storage capacity characteristic from the storage capacity characteristic corresponding to, for example, two reference feature values by interpolation calculation (S2). Alternatively, the obtained characteristic value is substituted into the above-described function of the characteristic value to calculate the target storage amount characteristic.
TheCPU 62 stores the calculated storage capacity characteristic in the table 63b (S3).
TheCPU 62 estimates the deterioration state of the battery 3 based on the calculated storage capacity characteristic (S4), and ends the process. The storage capacity characteristic is an indicator of deterioration. Note that the process of S4 may not be performed, and the process may end after the process of S3.
図9は、CPU62による蓄電量特性の推定処理の手順を示すフローチャートである。
CPU62は、所定の間隔でS1からの処理を繰り返す。
CPU62は、特徴値を取得する(S1)。
CPU62は、取得した特徴値に対応する蓄電量特性を算出する。CPU62は、例えば2つの参照する特徴値に対応する蓄電量特性から目的の蓄電量特性を内挿計算により算出する(S2)。又は、上述の特徴値の関数に、取得した特徴値を代入して、目的の蓄電量特性を算出する。
CPU62は、算出した蓄電量特性をテーブル63bに記憶する(S3)。
CPU62は、算出した蓄電量特性に基づいて、電池3の劣化状態を推定し(S4)、処理を終了する。蓄電量特性は劣化の指標となる。なお、S4の処理を行わず、S3の処理後、終了してもよい。 Hereinafter, the method of estimating the storage capacity characteristic according to the present embodiment will be described.
FIG. 9 is a flowchart showing the procedure of the process of estimating the storage capacity characteristic by the
The
The
The
The
The
以下、具体的に説明する。
CPU62は、特徴値として、単極の電位の範囲がP1V~P2V、セルの電圧範囲がC1V~C2Vである充電電気量を取得する。この充電電気量がQinP1-P2Vと定義される。
テーブル63bには、表1のNo.1~15に対し、QinP1-P2Vと対応付けて、V-dQ/dVのデータが記憶されているとする。
CPU62は、取得した特徴値が、No.2及びNo.3夫々のQinP1-P2Vの間にある場合、No.2及びNo.3夫々のV-dQ/dVデータを用い、内挿計算を行って、特徴値に対応するV-dQ/dVデータを取得する。
取得したV-dQ/dVデータはSOC-OCPデータに変換できる。 The details will be described below.
TheCPU 62 obtains, as the characteristic value, a charge quantity with a unipolar potential range of P1V to P2V and a cell voltage range of C1V to C2V. This charge quantity of electricity is defined as QinP1-P2V.
In Table 63b, the numbers in Table 1 No. It is assumed that V-dQ / dV data is stored in association with QinP1-P2V for 1 to 15.
TheCPU 62 determines that the acquired feature value is No. 2 and No. If it is between three respective QinP1-P2V, No. 2 and No. Interpolation calculation is performed using each of the three V-dQ / dV data to obtain V-dQ / dV data corresponding to the feature value.
The acquired V-dQ / dV data can be converted to SOC-OCP data.
CPU62は、特徴値として、単極の電位の範囲がP1V~P2V、セルの電圧範囲がC1V~C2Vである充電電気量を取得する。この充電電気量がQinP1-P2Vと定義される。
テーブル63bには、表1のNo.1~15に対し、QinP1-P2Vと対応付けて、V-dQ/dVのデータが記憶されているとする。
CPU62は、取得した特徴値が、No.2及びNo.3夫々のQinP1-P2Vの間にある場合、No.2及びNo.3夫々のV-dQ/dVデータを用い、内挿計算を行って、特徴値に対応するV-dQ/dVデータを取得する。
取得したV-dQ/dVデータはSOC-OCPデータに変換できる。 The details will be described below.
The
In Table 63b, the numbers in Table 1 No. It is assumed that V-dQ / dV data is stored in association with QinP1-P2V for 1 to 15.
The
The acquired V-dQ / dV data can be converted to SOC-OCP data.
図10~図20は、上記のようにして算出したSOC-OCPデータの、実測値に基づくSOC-OCPデータに対する誤差を求めた結果を示すグラフである。横軸は充電時又は放電時の電位E(VvsLi/Li+ :Li/Li+平衡電位を基準にしたときの電位)、縦軸は誤差(%)である。図中、eは充電のデータを、fは放電のデータを示す。
図10は、No.1及びNo.3のデータからNo.2のデータを求めた場合の、前記誤差を示すグラフである。
図11は、No.2及びNo.4のデータからNo.3のデータを求めた場合の、前記誤差を示すグラフである。
図12は、No.3及びNo.7のデータからNo.4のデータを求めた場合の、前記誤差を示すグラフである。
図13は、No.4及びNo.5のデータからNo.7のデータを求めた場合の、前記誤差を示すグラフである。 FIGS. 10 to 20 are graphs showing the results of determining the error with respect to the SOC-OCP data based on the actual measurement value of the SOC-OCP data calculated as described above. The horizontal axis represents the potential E during charging or discharging (VvsLi / Li + : potential based on the Li / Li + equilibrium potential), and the vertical axis is the error (%). In the figure, e represents data of charge and f represents data of discharge.
FIG. 1 and No. 1 No. 3 from the data of No. It is a graph which shows the said error at the time of calculating | requiring 2 data.
FIG. 2 and No. From the data of No. It is a graph which shows the said error at the time of calculating | requiring 3 data.
FIG. 3 and No. No. 7 from the data of No. It is a graph which shows the said error at the time of calculating | requiring 4 data.
FIG. 4 and No. 4 No. 5 from the data of No. It is a graph which shows the said error at the time of calculating | requiring 7 data.
図10は、No.1及びNo.3のデータからNo.2のデータを求めた場合の、前記誤差を示すグラフである。
図11は、No.2及びNo.4のデータからNo.3のデータを求めた場合の、前記誤差を示すグラフである。
図12は、No.3及びNo.7のデータからNo.4のデータを求めた場合の、前記誤差を示すグラフである。
図13は、No.4及びNo.5のデータからNo.7のデータを求めた場合の、前記誤差を示すグラフである。 FIGS. 10 to 20 are graphs showing the results of determining the error with respect to the SOC-OCP data based on the actual measurement value of the SOC-OCP data calculated as described above. The horizontal axis represents the potential E during charging or discharging (VvsLi / Li + : potential based on the Li / Li + equilibrium potential), and the vertical axis is the error (%). In the figure, e represents data of charge and f represents data of discharge.
FIG. 1 and No. 1 No. 3 from the data of No. It is a graph which shows the said error at the time of calculating | requiring 2 data.
FIG. 2 and No. From the data of No. It is a graph which shows the said error at the time of calculating | requiring 3 data.
FIG. 3 and No. No. 7 from the data of No. It is a graph which shows the said error at the time of calculating | requiring 4 data.
FIG. 4 and No. 4 No. 5 from the data of No. It is a graph which shows the said error at the time of calculating | requiring 7 data.
図14は、No.5及びNo.6のデータからNo.13のデータを求めた場合の、前記誤差を示すグラフである。
図15は、No.6及びNo.13のデータからNo.5のデータを求めた場合の、前記誤差を示すグラフである。
図16は、No.12及びNo.13のデータからNo.6のデータを求めた場合の、前記誤差を示すグラフである。
図17は、No.6及びNo.14のデータからNo.12のデータを求めた場合の、前記誤差を示すグラフである。 FIG. 5 and No. 5 From the data of No. It is a graph which shows the said error at the time of calculating | requiring 13 data.
FIG. 6 and No. No. 13 from the data. It is a graph which shows the said error at the time of calculating | requiring 5 data.
FIG. 12 and No. No. 13 from the data. It is a graph which shows the said error at the time of calculating | requiring 6 data.
FIG. 6 and No. No. 14 from the data. It is a graph which shows the said error at the time of calculating | requiring 12 data.
図15は、No.6及びNo.13のデータからNo.5のデータを求めた場合の、前記誤差を示すグラフである。
図16は、No.12及びNo.13のデータからNo.6のデータを求めた場合の、前記誤差を示すグラフである。
図17は、No.6及びNo.14のデータからNo.12のデータを求めた場合の、前記誤差を示すグラフである。 FIG. 5 and No. 5 From the data of No. It is a graph which shows the said error at the time of calculating | requiring 13 data.
FIG. 6 and No. No. 13 from the data. It is a graph which shows the said error at the time of calculating | requiring 5 data.
FIG. 12 and No. No. 13 from the data. It is a graph which shows the said error at the time of calculating | requiring 6 data.
FIG. 6 and No. No. 14 from the data. It is a graph which shows the said error at the time of calculating | requiring 12 data.
図18は、No.11及びNo.14のデータからNo.8のデータを求めた場合の、前記誤差を示すグラフである。
図19は、No.8及びNo.10のデータからNo.11のデータを求めた場合の、前記誤差を示すグラフである。
図20は、No.9及びNo.11のデータからNo.10のデータを求めた場合の、前記誤差を示すグラフである。 FIG. 11 and No. No. 14 from the data. It is a graph which shows the said error at the time of calculating | requiring 8 data.
In FIG. 8 and No. No. 10 data to No. It is a graph which shows the said error at the time of calculating | requiring 11 data.
In FIG. 9 and No. No. 11 from the data. It is a graph which shows the said error at the time of calculating | requiring 10 data.
図19は、No.8及びNo.10のデータからNo.11のデータを求めた場合の、前記誤差を示すグラフである。
図20は、No.9及びNo.11のデータからNo.10のデータを求めた場合の、前記誤差を示すグラフである。 FIG. 11 and No. No. 14 from the data. It is a graph which shows the said error at the time of calculating | requiring 8 data.
In FIG. 8 and No. No. 10 data to No. It is a graph which shows the said error at the time of calculating | requiring 11 data.
In FIG. 9 and No. No. 11 from the data. It is a graph which shows the said error at the time of calculating | requiring 10 data.
図10~図20より、算出の誤差は小さく、特に電位が3.5V~4.5Vの範囲内にある場合、誤差がより小さいことが分かる。試験条件が異なるデータを種々の組み合わせで選択しても、算出の誤差は小さい。
従って、特徴値に対応するV-dQ/dVデータと、取得した特徴値とに基づいて、特徴値を取得した時点のV-dQ/dVデータを精度良く算出できることが確認された。電位降下の性質を有する活物質を含む正極は、連続的かつ一義的にV-dQ/dVの形状が変化するので、試験条件が異なるデータを用いても精度良く現時点における完全充放電時のV-dQ/dVを算出できる。特徴値の変化に対するV-dQ/dVの変化の推移が一部記憶されればよい。テーブル63bに記憶するV-dQ/dVデータの数は少なくて済む。 From FIG. 10 to FIG. 20, it can be understood that the error of the calculation is small, particularly when the potential is in the range of 3.5 V to 4.5 V, the error is smaller. Even if data with different test conditions are selected in various combinations, the calculation error is small.
Therefore, it was confirmed that the V-dQ / dV data at the time of acquiring the feature value can be accurately calculated based on the V-dQ / dV data corresponding to the feature value and the acquired feature value. Since the shape of V-dQ / dV changes continuously and uniquely in the positive electrode containing the active material having the property of potential drop, the V at the time of full charge / discharge at this point can be accurately even using data with different test conditions -DQ / dV can be calculated. The transition of the change of V-dQ / dV with respect to the change of the feature value may be partially stored. The number of V-dQ / dV data stored in the table 63b may be small.
従って、特徴値に対応するV-dQ/dVデータと、取得した特徴値とに基づいて、特徴値を取得した時点のV-dQ/dVデータを精度良く算出できることが確認された。電位降下の性質を有する活物質を含む正極は、連続的かつ一義的にV-dQ/dVの形状が変化するので、試験条件が異なるデータを用いても精度良く現時点における完全充放電時のV-dQ/dVを算出できる。特徴値の変化に対するV-dQ/dVの変化の推移が一部記憶されればよい。テーブル63bに記憶するV-dQ/dVデータの数は少なくて済む。 From FIG. 10 to FIG. 20, it can be understood that the error of the calculation is small, particularly when the potential is in the range of 3.5 V to 4.5 V, the error is smaller. Even if data with different test conditions are selected in various combinations, the calculation error is small.
Therefore, it was confirmed that the V-dQ / dV data at the time of acquiring the feature value can be accurately calculated based on the V-dQ / dV data corresponding to the feature value and the acquired feature value. Since the shape of V-dQ / dV changes continuously and uniquely in the positive electrode containing the active material having the property of potential drop, the V at the time of full charge / discharge at this point can be accurately even using data with different test conditions -DQ / dV can be calculated. The transition of the change of V-dQ / dV with respect to the change of the feature value may be partially stored. The number of V-dQ / dV data stored in the table 63b may be small.
以下、直近に算出したV-dQ/dVデータを用いてSOCを推定する場合について説明する。
図21及び図22は、CPU62によるSOC推定処理の手順を示すフローチャートである。CPU62は、所定の間隔でS11からの処理を繰り返す。
予め実験により、ヒステリシスを生じる反応の酸化量及び還元量が小さい電圧が求められ、閾値V1とされる。電圧がV1よりも貴になった後に取得した電圧が上側基準電圧(Vup)に設定される。Vupは、取得した電圧が前回取得した電圧より大きい場合に更新される。電圧がV1よりも卑になった後に取得した電圧が下側基準電圧(Vlow)に設定される。Vlowは、取得した電圧が前回取得した電圧より小さい場合に更新される。 Hereinafter, the case of estimating the SOC using the V-dQ / dV data calculated most recently will be described.
21 and 22 are flowcharts showing the procedure of the SOC estimation process by theCPU 62. The CPU 62 repeats the processing from S11 at predetermined intervals.
The voltage with which the oxidation amount and the reduction amount of the reaction generating the hysteresis are small is previously determined by experiments and is set as the threshold value V1. The voltage acquired after the voltage becomes nobler than V1 is set to the upper reference voltage (Vup). Vup is updated when the acquired voltage is greater than the previously acquired voltage. The acquired voltage is set to the lower reference voltage (Vlow) after the voltage goes below V1. Vlow is updated when the acquired voltage is smaller than the previously acquired voltage.
図21及び図22は、CPU62によるSOC推定処理の手順を示すフローチャートである。CPU62は、所定の間隔でS11からの処理を繰り返す。
予め実験により、ヒステリシスを生じる反応の酸化量及び還元量が小さい電圧が求められ、閾値V1とされる。電圧がV1よりも貴になった後に取得した電圧が上側基準電圧(Vup)に設定される。Vupは、取得した電圧が前回取得した電圧より大きい場合に更新される。電圧がV1よりも卑になった後に取得した電圧が下側基準電圧(Vlow)に設定される。Vlowは、取得した電圧が前回取得した電圧より小さい場合に更新される。 Hereinafter, the case of estimating the SOC using the V-dQ / dV data calculated most recently will be described.
21 and 22 are flowcharts showing the procedure of the SOC estimation process by the
The voltage with which the oxidation amount and the reduction amount of the reaction generating the hysteresis are small is previously determined by experiments and is set as the threshold value V1. The voltage acquired after the voltage becomes nobler than V1 is set to the upper reference voltage (Vup). Vup is updated when the acquired voltage is greater than the previously acquired voltage. The acquired voltage is set to the lower reference voltage (Vlow) after the voltage goes below V1. Vlow is updated when the acquired voltage is smaller than the previously acquired voltage.
CPU62は、電池3の端子間の電圧及び電流を取得する(S11)。閾値V1及び上側基準電圧VupはOCVであるので、電池3の電流量が大きい場合、取得した電圧をOCVに補正する必要がある。OCVへの補正値は、複数の電圧及び電流のデータから回帰直線を用いて、電流がゼロである場合の電圧を推定すること等により得られる。電池3を流れる電流量が暗電流程度に小さい(微小電流である)場合、取得した電圧がOCVとみなされる。
The CPU 62 acquires the voltage and current between the terminals of the battery 3 (S11). Since the threshold V1 and the upper reference voltage Vup are OCV, when the current amount of the battery 3 is large, it is necessary to correct the acquired voltage to the OCV. The correction value to the OCV can be obtained by estimating the voltage when the current is zero using a regression line from a plurality of voltage and current data. If the amount of current flowing through the battery 3 is as small as the dark current (small current), the acquired voltage is regarded as OCV.
CPU62は、電流の絶対値が休止閾値以上であるか否かを判定する(S12)。休止閾値は、電池3の状態が充電状態又は放電状態と、休止状態とのいずれであるかを判定する為に設定される。CPU62は電流の絶対値が休止閾値以上でないと判定した場合(S12:NO)、処理をS22へ進める。
The CPU 62 determines whether the absolute value of the current is equal to or more than the pause threshold (S12). The rest threshold is set to determine whether the state of the battery 3 is in a charged state, a discharged state, or a rest state. When the CPU 62 determines that the absolute value of the current is not equal to or more than the pause threshold (S12: NO), the process proceeds to S22.
CPU62は、電流の絶対値が休止閾値以上であると判定した場合(S12:YES)、電流が0より大きいか否かを判定する(S13)。電流が0より大きい場合、電池3の状態は充電状態であると判定される。CPU62は電流が0より大きくないと判定した場合(S13:NO)、処理をS18へ進める。
When the CPU 62 determines that the absolute value of the current is equal to or more than the pause threshold (S12: YES), the CPU 62 determines whether the current is larger than 0 (S13). If the current is greater than zero, the state of the battery 3 is determined to be in the charged state. When the CPU 62 determines that the current is not larger than 0 (S13: NO), the process proceeds to S18.
CPU62は電流が0より大きいと判定した場合(S13:YES)、電圧がV1以上であるか否かを判定する(S14)。CPU62は電圧がV1以上でないと判定した場合(S14:NO)、処理をS17へ進める。
When the CPU 62 determines that the current is greater than 0 (S13: YES), it determines whether the voltage is V1 or more (S14). When the CPU 62 determines that the voltage is not V1 or more (S14: NO), the process proceeds to S17.
CPU62は電圧がV1以上であると判定した場合(S14:YES)、取得した電圧が前回メモリ63に記憶されたVupより大きいか否かを判定する(S15)。CPU62は電圧が前回のVupより大きくないと判定した場合(S15:NO)、処理をS17へ進める。
When the CPU 62 determines that the voltage is V1 or more (S14: YES), the CPU 62 determines whether the acquired voltage is larger than Vup stored in the memory 63 last time (S15). When the CPU 62 determines that the voltage is not larger than the previous Vup (S15: NO), the process proceeds to S17.
CPU62は電圧が前回のVupより大きいと判定した場合(S15:YES)、メモリ63において、電圧をVupに更新する(S16)。
CPU62は、電流積算によりSOCを推定し(S17)、処理を終了する。 When theCPU 62 determines that the voltage is larger than the previous Vup (S15: YES), the memory 63 updates the voltage to Vup (S16).
TheCPU 62 estimates the SOC by current integration (S17), and ends the process.
CPU62は、電流積算によりSOCを推定し(S17)、処理を終了する。 When the
The
CPU62は電流が0より小さく、電池3の状態が放電状態であると判定した場合(S13:NO)、電圧がV1未満であるか否かを判定する(S18)。CPU62は電圧がV1未満でないと判定した場合(S18:NO)、処理をS21へ進める。
CPU62は電圧がV1未満であると判定した場合(S18:YES)、取得した電圧が前回メモリ63に記憶された下側基準電圧Vlowより小さいか否かを判定する(S19)。
CPU62は電圧が前回のVlowより小さくないと判定した場合(S19:NO)、処理をS21へ進める。
CPU62は電圧が前回のVupより小さいと判定した場合(S19:YES)、メモリ63において、電圧をVlowに更新する(S20)
CPU62は、電流積算によりSOCを推定し(S21)、処理を終了する。 When theCPU 62 determines that the current is smaller than 0 and the battery 3 is in the discharged state (S13: NO), the CPU 62 determines whether the voltage is less than V1 (S18). When the CPU 62 determines that the voltage is not less than V1 (S18: NO), the process proceeds to S21.
When theCPU 62 determines that the voltage is less than V1 (S18: YES), it determines whether the acquired voltage is smaller than the lower reference voltage Vlow stored in the memory 63 last time (S19).
When theCPU 62 determines that the voltage is not smaller than the previous Vlow (S19: NO), the process proceeds to S21.
When theCPU 62 determines that the voltage is smaller than the previous Vup (S19: YES), the memory 63 updates the voltage to Vlow (S20)
TheCPU 62 estimates the SOC by current integration (S21), and ends the process.
CPU62は電圧がV1未満であると判定した場合(S18:YES)、取得した電圧が前回メモリ63に記憶された下側基準電圧Vlowより小さいか否かを判定する(S19)。
CPU62は電圧が前回のVlowより小さくないと判定した場合(S19:NO)、処理をS21へ進める。
CPU62は電圧が前回のVupより小さいと判定した場合(S19:YES)、メモリ63において、電圧をVlowに更新する(S20)
CPU62は、電流積算によりSOCを推定し(S21)、処理を終了する。 When the
When the
When the
When the
The
CPU62は電流の絶対値が休止閾値未満であり、電池3の状態が休止状態であると判定した場合(S12:NO)、設定時間が経過したか否かを判定する(S22)。設定時間は、取得した電圧をOCVとみなす為に十分な、実験により求めた時間である。CPU62は、休止状態であると判定してからの電流の取得回数及び取得間隔に基づき、前記時間を超えたか否かを判定する。これにより、休止状態において、より高精度にSOCが推定される。
CPU62は設定時間が経過していないと判定した場合(S22:NO)、電流積算によりSOCを推定し(S23)、処理を終了する。 When theCPU 62 determines that the absolute value of the current is less than the pause threshold and the state of the battery 3 is in the pause state (S12: NO), the CPU 62 determines whether the set time has elapsed (S22). The set time is an experimentally determined time sufficient to regard the acquired voltage as an OCV. The CPU 62 determines whether or not the time has been exceeded, based on the number of acquisition times and the acquisition interval of the current after determining that the apparatus is in the pause state. Thus, the SOC can be estimated more accurately in the resting state.
When it is determined that the set time has not elapsed (S22: NO), theCPU 62 estimates the SOC by current integration (S23), and ends the process.
CPU62は設定時間が経過していないと判定した場合(S22:NO)、電流積算によりSOCを推定し(S23)、処理を終了する。 When the
When it is determined that the set time has not elapsed (S22: NO), the
CPU62は設定時間が経過したと判定した場合(S22:YES)、取得した電圧はOCVとみなすことができる。
When the CPU 62 determines that the set time has elapsed (S22: YES), the acquired voltage can be regarded as an OCV.
CPU62は、直近の蓄電量特性をテーブル63bから取得する(S24)。なお、最後に特徴値を取得した日から期間が空いた場合、取得後から現時点までの履歴を考慮して、推定した蓄電量特性を補正する、又は蓄電量特性を新たに求めて更新するのが好ましい。
CPU62は、取得した蓄電量特性に基づいて電圧参照のための蓄電量特性を算出する(S25)。CPU62は、例えば蓄電量特性が正極のV-dQ/dVである場合、セルのV-dQ/dVに換算する。CPU62は、セルのV-dQ/dVに基づいてセルの充電SOC-OCV又は放電SOC-OCVを算出する。CPU62は、該充電SOC-OCV又は放電SOC-OCV、及びVupに基づいて電圧参照用の充電SOC-OCV(第3特性)又は電圧参照用の放電SOC-OCV(第4特性)を算出する。CPU62は、例えば、ヒステリシスを生じる反応の酸化量,還元量を考慮して、充電SOC-OCV又は放電SOC-OCVを用いて、電圧参照用の充電SOC-OCV又は放電SOC-OCVを算出する。 TheCPU 62 acquires the latest stored electricity amount characteristic from the table 63b (S24). In addition, when a period becomes vacant from the day when the feature value was finally acquired, the estimated storage capacity characteristic is corrected or the storage capacity characteristic is newly obtained and updated in consideration of the history from the acquisition to the present time. Is preferred.
TheCPU 62 calculates the storage amount characteristic for voltage reference based on the acquired storage amount characteristic (S25). For example, when the storage amount characteristic is V-dQ / dV of the positive electrode, the CPU 62 converts it into V-dQ / dV of the cell. The CPU 62 calculates the charge SOC-OCV or the discharge SOC-OCV of the cell based on the V-dQ / dV of the cell. The CPU 62 calculates a charge SOC-OCV (third characteristic) for voltage reference or a discharge SOC-OCV (fourth characteristic) for voltage reference based on the charge SOC-OCV or the discharge SOC-OCV and Vup. The CPU 62 calculates the charge SOC-OCV or the discharge SOC-OCV for voltage reference, using, for example, the charge SOC-OCV or the discharge SOC-OCV in consideration of the oxidation amount and the reduction amount of the reaction that causes the hysteresis.
CPU62は、取得した蓄電量特性に基づいて電圧参照のための蓄電量特性を算出する(S25)。CPU62は、例えば蓄電量特性が正極のV-dQ/dVである場合、セルのV-dQ/dVに換算する。CPU62は、セルのV-dQ/dVに基づいてセルの充電SOC-OCV又は放電SOC-OCVを算出する。CPU62は、該充電SOC-OCV又は放電SOC-OCV、及びVupに基づいて電圧参照用の充電SOC-OCV(第3特性)又は電圧参照用の放電SOC-OCV(第4特性)を算出する。CPU62は、例えば、ヒステリシスを生じる反応の酸化量,還元量を考慮して、充電SOC-OCV又は放電SOC-OCVを用いて、電圧参照用の充電SOC-OCV又は放電SOC-OCVを算出する。 The
The
CPU62は、電圧参照用の充電SOC-OCV又は放電SOC-OCVにおいて、S1で取得した電圧に対応するSOCを読み取ってSOCを推定し(S26)、処理を終了する。
The CPU 62 reads the SOC corresponding to the voltage acquired in S1 in the charge SOC-OCV or the discharge SOC-OCV for voltage reference, estimates the SOC (S26), and ends the processing.
なお、CPU62が電圧計測部8から取得する電圧は、電流により多少変動するので、実験により補正係数を求めて電圧を補正することもできる。
Note that the voltage obtained by the CPU 62 from the voltage measurement unit 8 slightly fluctuates due to the current, so that the voltage can be corrected by obtaining a correction coefficient by experiment.
以上のように、本実施形態においては、現時点の特徴値を取得し、記憶した蓄電量-電圧特性又はV-dQ/dV、又はその関数を参照して、現時点の蓄電量-電位特性又はV-dQ/dVを推定する。
充放電の繰り返しにより単極の蓄電量-電位特性が変化する活物質を有する蓄電素子を用いた場合に、特徴値のみから、簡便な方法により、高精度に、単極の現時点の蓄電量-電位特性又はV-dQ/dVが推定できる。テーブル63bに記憶するV-dQ/dVデータの数は少なくて済む。 As described above, in the present embodiment, the stored value-voltage characteristic or V-dQ / dV stored at the current characteristic value and stored, or the current stored amount-potential characteristic or V with reference to the function thereof. Estimate dQ / dV.
When using a storage element having an active material in which the charge amount-potential characteristic of the single pole changes by repetition of charge and discharge, the charge amount of the current charge of the single pole can be obtained with high accuracy from a feature value only Potential characteristics or V-dQ / dV can be estimated. The number of V-dQ / dV data stored in the table 63b may be small.
充放電の繰り返しにより単極の蓄電量-電位特性が変化する活物質を有する蓄電素子を用いた場合に、特徴値のみから、簡便な方法により、高精度に、単極の現時点の蓄電量-電位特性又はV-dQ/dVが推定できる。テーブル63bに記憶するV-dQ/dVデータの数は少なくて済む。 As described above, in the present embodiment, the stored value-voltage characteristic or V-dQ / dV stored at the current characteristic value and stored, or the current stored amount-potential characteristic or V with reference to the function thereof. Estimate dQ / dV.
When using a storage element having an active material in which the charge amount-potential characteristic of the single pole changes by repetition of charge and discharge, the charge amount of the current charge of the single pole can be obtained with high accuracy from a feature value only Potential characteristics or V-dQ / dV can be estimated. The number of V-dQ / dV data stored in the table 63b may be small.
現在の単極の蓄電量-電位特性、又はV-dQ/dVは、現在の劣化状態を示す指標となる。従って、複雑な使用環境下においても、高精度に単極の劣化状態が監視され得る。
The current monopolar storage capacity-potential characteristic or V-dQ / dV is an index indicating the current deterioration state. Therefore, even in a complicated use environment, the deterioration state of the single pole can be monitored with high accuracy.
所定の電圧範囲における充電電気量、放電容量を特徴値として用い、劣化の程度に応じた特徴値に対応付けて蓄電量-電位特性又はV-dQ/dVを複数記憶していた場合、精度良く、現時点での蓄電量-電位特性又はV-dQ/dVが推定できる。平均放電電位の場合も同様である。
In the case where multiple charge amounts / potential characteristics or V-dQ / dV are stored in association with the characteristic value according to the degree of deterioration using the charge quantity in the predetermined voltage range and the discharge capacity as the feature value, it is accurate The current storage amount-potential characteristic or V-dQ / dV can be estimated. The same applies to the case of the average discharge potential.
活物質がヒステリシスを有する場合に、現在の単極の劣化状態に応じた蓄電量-電位特性、及び蓄電素子の充放電の履歴に基づいて、精度良く電圧参照用の蓄電量-電圧特性が推定できる。電位降下の性質を有する活物質を含む蓄電素子につき、ヒステリシスの挙動の知見を併用することで、蓄電量が良好に容易に推定できる。
電圧を用いるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量が推定できる。充放電特性に基づいて、SOC0%までの放電可能なエネルギー、及びSOC100%までに必要な充電エネルギーを予測することができる。現時点での残存電力量と貯蔵可能電力量とを推定できる。
従って、複数の蓄電素子を用いる場合のバランシング、回生受け入れの制御、蓄電素子を車載した場合の走行距離の推定等を精度良く行うことができる。 When the active material has a hysteresis, the storage amount-voltage characteristics for voltage reference are accurately estimated based on the storage amount-potential characteristic according to the current deterioration state of the single pole and the charge / discharge history of the storage element. it can. The storage amount of the storage element including the active material having the property of potential drop can be easily and easily estimated by using knowledge of the behavior of the hysteresis in combination.
Since the voltage is used, the storage amount is not limited to the SOC, and the amount of current energy stored in the storage element, such as the amount of power, can be estimated. Based on the charge / discharge characteristics, dischargeable energy up toSOC 0% and charge energy required up to SOC 100% can be predicted. It is possible to estimate the current remaining power and storable power.
Therefore, it is possible to accurately perform balancing in the case of using a plurality of storage elements, control of regeneration reception, estimation of a traveling distance in the case of mounting the storage elements, and the like.
電圧を用いるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量が推定できる。充放電特性に基づいて、SOC0%までの放電可能なエネルギー、及びSOC100%までに必要な充電エネルギーを予測することができる。現時点での残存電力量と貯蔵可能電力量とを推定できる。
従って、複数の蓄電素子を用いる場合のバランシング、回生受け入れの制御、蓄電素子を車載した場合の走行距離の推定等を精度良く行うことができる。 When the active material has a hysteresis, the storage amount-voltage characteristics for voltage reference are accurately estimated based on the storage amount-potential characteristic according to the current deterioration state of the single pole and the charge / discharge history of the storage element. it can. The storage amount of the storage element including the active material having the property of potential drop can be easily and easily estimated by using knowledge of the behavior of the hysteresis in combination.
Since the voltage is used, the storage amount is not limited to the SOC, and the amount of current energy stored in the storage element, such as the amount of power, can be estimated. Based on the charge / discharge characteristics, dischargeable energy up to
Therefore, it is possible to accurately perform balancing in the case of using a plurality of storage elements, control of regeneration reception, estimation of a traveling distance in the case of mounting the storage elements, and the like.
[実施形態2]
実施形態2に係る電池モジュールの情報処理部60のCPU62は、高電圧範囲内の、所定電圧V0 におけるdQ/dV、第1電圧V1 から第2電圧V2 に至るまでの時間Δt、及び第1電圧V1 と第2電圧V2との間のV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかを特徴値として取得する。CPU62は該特徴値に基づいて電池3の劣化状態を推定する。
図4に示したように、初期品の場合、高電位領域で曲線が平坦化し、反応が収束するのに対し、劣化品の場合、高電位領域においても反応が進行している。劣化により、電池3の高電圧範囲内のV0 におけるdQ/dVが変化するので、電池3の充電時又は放電時において、該dQ/dVを取得することにより、電池3の劣化の状態を推定できる。
高電位範囲内で、上述の反応が生じるので、蓄電素子の高電圧範囲内の第1電圧V1 から第2電圧V2 に至るまでの時間Δtが長くなる。Δtを取得することにより、蓄電素子の劣化の状態を推定できる。
第1電圧V1 と第2電圧V2 との間のV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]も劣化に応じて変化するので、Δ(dQ/dV)/ΔVを取得することにより、蓄電素子の劣化の状態を推定できる。
高電圧範囲としては、4.4Vから5.0Vの範囲が好ましい。電圧V0 、V1 、V2 については、図4、後述する図24及び図25等を参照し、充電時、放電時夫々において、劣化に応じて特徴値の変化量が大きくなる電圧を選択する。 Second Embodiment
CPU62 of theinformation processing unit 60 of the battery module according to the second embodiment, in the high voltage range, dQ at a predetermined voltage V 0 / dV, time Δt from the first voltages V 1 up to the second voltage V 2, and obtaining first voltages V 1 and the feature value of either of the slope of the V-dQ / dV [Δ ( dQ / dV) / ΔV] between the second voltage V 2. The CPU 62 estimates the deterioration state of the battery 3 based on the feature value.
As shown in FIG. 4, in the case of the initial product, the curve is flattened in the high potential region and the reaction converges, whereas in the case of the deteriorated product, the reaction proceeds also in the high potential region. Since dQ / dV at V 0 in the high voltage range of thebattery 3 changes due to deterioration, the state of deterioration of the battery 3 is estimated by acquiring the dQ / dV during charging or discharging of the battery 3 it can.
In a high-potential range, the reaction described above occurs, the time Δt from the first voltages V 1 in the high voltage range of the storage element up to the second voltage V 2 becomes longer. By acquiring Δt, the state of deterioration of the storage element can be estimated.
Since changes in accordance with the V-dQ / dV slope [Δ (dQ / dV) / ΔV] deterioration between the first voltages V 1 and the second voltage V 2, delta and (dQ / dV) / ΔV By acquiring, it is possible to estimate the state of deterioration of the storage element.
The high voltage range is preferably in the range of 4.4 V to 5.0 V. For voltages V 0 , V 1 and V 2 , refer to FIG. 4 and FIG. 24 and FIG. 25 described later, and select a voltage at which the change in the feature value increases according to deterioration during charging and discharging. Do.
実施形態2に係る電池モジュールの情報処理部60のCPU62は、高電圧範囲内の、所定電圧V0 におけるdQ/dV、第1電圧V1 から第2電圧V2 に至るまでの時間Δt、及び第1電圧V1 と第2電圧V2との間のV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかを特徴値として取得する。CPU62は該特徴値に基づいて電池3の劣化状態を推定する。
図4に示したように、初期品の場合、高電位領域で曲線が平坦化し、反応が収束するのに対し、劣化品の場合、高電位領域においても反応が進行している。劣化により、電池3の高電圧範囲内のV0 におけるdQ/dVが変化するので、電池3の充電時又は放電時において、該dQ/dVを取得することにより、電池3の劣化の状態を推定できる。
高電位範囲内で、上述の反応が生じるので、蓄電素子の高電圧範囲内の第1電圧V1 から第2電圧V2 に至るまでの時間Δtが長くなる。Δtを取得することにより、蓄電素子の劣化の状態を推定できる。
第1電圧V1 と第2電圧V2 との間のV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]も劣化に応じて変化するので、Δ(dQ/dV)/ΔVを取得することにより、蓄電素子の劣化の状態を推定できる。
高電圧範囲としては、4.4Vから5.0Vの範囲が好ましい。電圧V0 、V1 、V2 については、図4、後述する図24及び図25等を参照し、充電時、放電時夫々において、劣化に応じて特徴値の変化量が大きくなる電圧を選択する。 Second Embodiment
CPU62 of the
As shown in FIG. 4, in the case of the initial product, the curve is flattened in the high potential region and the reaction converges, whereas in the case of the deteriorated product, the reaction proceeds also in the high potential region. Since dQ / dV at V 0 in the high voltage range of the
In a high-potential range, the reaction described above occurs, the time Δt from the first voltages V 1 in the high voltage range of the storage element up to the second voltage V 2 becomes longer. By acquiring Δt, the state of deterioration of the storage element can be estimated.
Since changes in accordance with the V-dQ / dV slope [Δ (dQ / dV) / ΔV] deterioration between the first voltages V 1 and the second voltage V 2, delta and (dQ / dV) / ΔV By acquiring, it is possible to estimate the state of deterioration of the storage element.
The high voltage range is preferably in the range of 4.4 V to 5.0 V. For voltages V 0 , V 1 and V 2 , refer to FIG. 4 and FIG. 24 and FIG. 25 described later, and select a voltage at which the change in the feature value increases according to deterioration during charging and discharging. Do.
メモリ63のテーブル63bには、予め実験により求めた、サイクル数と前記dQ/dVとの関係、サイクル数と前記Δtとの関係、及びサイクル数とΔ(dQ/dV)/ΔVとの関係のいずれかが記憶されている。メモリ63には、これらの関係を関数化して記憶してもよい。上述の関係又は関数は、レート別に記憶してもよい。メモリ63には、特徴値とSOHとの関係も記憶してもよい。
In the table 63b of the memory 63, the relationship between the number of cycles and the dQ / dV, the relationship between the number of cycles and the Δt, and the relationship between the number of cycles and Δ (dQ / dV) / ΔV obtained in advance by experiment One is stored. The memory 63 may store these relationships as functions. The relationships or functions described above may be stored by rate. The memory 63 may also store the relationship between the feature value and the SOH.
図23は、CPU62による劣化状態の推定処理の手順を示すフローチャートである。
CPU62は、充放電の履歴に基づいて、dQ/dV、Δt、及びΔ(dQ/dV)/ΔVのいずれかの特徴値を取得する(S31)。
CPU62は、特徴値に対応して、サイクル数とdQ/dV、Δt、又はΔ(dQ/dV)/ΔVとの関係をテーブル63bから読み出す。CPU62は、読み出した関係を参照し、取得した特徴値に基づいて、現時点の電池3が劣化状態にあるか否かを推定し(S32)、処理を終了する。
CPU62は、電池3のユーザの使用状況、使用条件、及びユーザから入力した劣化の判断基準等を考慮して、劣化状態を推定する。CPU62は、特徴値とSOHとの関係に基づいて劣化状態を推定してもよい。CPU62は、上述の関数に基づいて劣化状態を推定してもよい。 FIG. 23 is a flowchart showing the procedure of the degradation state estimation process by theCPU 62.
TheCPU 62 acquires one of dQ / dV, Δt, and Δ (dQ / dV) / ΔV feature values based on the charge / discharge history (S31).
TheCPU 62 reads the relationship between the cycle number and dQ / dV, Δt, or Δ (dQ / dV) / ΔV from the table 63 b in accordance with the feature value. The CPU 62 refers to the read relationship, estimates whether or not the battery 3 at the current time is in the deteriorated state based on the acquired feature value (S32), and ends the process.
TheCPU 62 estimates the deterioration state in consideration of the use condition of the user of the battery 3, the use condition, the judgment standard of deterioration input from the user, and the like. The CPU 62 may estimate the deterioration state based on the relationship between the feature value and the SOH. The CPU 62 may estimate the deterioration state based on the function described above.
CPU62は、充放電の履歴に基づいて、dQ/dV、Δt、及びΔ(dQ/dV)/ΔVのいずれかの特徴値を取得する(S31)。
CPU62は、特徴値に対応して、サイクル数とdQ/dV、Δt、又はΔ(dQ/dV)/ΔVとの関係をテーブル63bから読み出す。CPU62は、読み出した関係を参照し、取得した特徴値に基づいて、現時点の電池3が劣化状態にあるか否かを推定し(S32)、処理を終了する。
CPU62は、電池3のユーザの使用状況、使用条件、及びユーザから入力した劣化の判断基準等を考慮して、劣化状態を推定する。CPU62は、特徴値とSOHとの関係に基づいて劣化状態を推定してもよい。CPU62は、上述の関数に基づいて劣化状態を推定してもよい。 FIG. 23 is a flowchart showing the procedure of the degradation state estimation process by the
The
The
The
(変形例1)
変形例1のメモリ63のテーブル63bには、サイクル数とdQ/dV、Δt、又はΔ(dQ/dV)/ΔVとの関係に基づき、劣化状態を推定するために設定した特徴値の閾値を記憶する。
この場合、CPU62は、S32において、S31で取得した特徴値に対応する閾値をテーブル63bから読み出し、閾値に基づいて、電池3の劣化状態を推定する。
電池3の充電時に、dQ/dV、Δt、又はΔ(dQ/dV)/ΔVを取得した場合、特徴値が閾値以上である場合、CPU62は、電池3が劣化状態であると推定する。
電池3の放電時に、特徴値として、dQ/dV又はΔtを取得した場合、|dQ/dV|又はΔtが閾値以上である場合、CPU62は電池3が劣化状態であると推定する。dQ/dVを負の数として用いる場合、dQ/dVが閾値以下である場合、CPU62は電池3が劣化状態であると推定する。
特徴値としてΔ(dQ/dV)/ΔVを取得した場合、CPU62は特徴値が閾値以下である場合、電池3が劣化状態であると推定する。 (Modification 1)
In the table 63b of thememory 63 of the first modification, the threshold value of the feature value set to estimate the deterioration state based on the relationship between the cycle number and dQ / dV, Δt, or Δ (dQ / dV) / ΔV. Remember.
In this case, in S32, theCPU 62 reads the threshold value corresponding to the feature value acquired in S31 from the table 63b, and estimates the deterioration state of the battery 3 based on the threshold value.
When dQ / dV, Δt, or Δ (dQ / dV) / ΔV is acquired when thebattery 3 is charged, the CPU 62 estimates that the battery 3 is in a deteriorated state when the feature value is equal to or greater than the threshold.
When dQ / dV or Δt is acquired as the feature value when thebattery 3 is discharged, the CPU 62 estimates that the battery 3 is in the deteriorated state when | dQ / dV | or Δt is equal to or greater than the threshold. When dQ / dV is used as a negative number, if dQ / dV is equal to or less than the threshold, the CPU 62 estimates that the battery 3 is in a deteriorated state.
When Δ (dQ / dV) / ΔV is acquired as the feature value, theCPU 62 estimates that the battery 3 is in the deteriorated state when the feature value is equal to or less than the threshold value.
変形例1のメモリ63のテーブル63bには、サイクル数とdQ/dV、Δt、又はΔ(dQ/dV)/ΔVとの関係に基づき、劣化状態を推定するために設定した特徴値の閾値を記憶する。
この場合、CPU62は、S32において、S31で取得した特徴値に対応する閾値をテーブル63bから読み出し、閾値に基づいて、電池3の劣化状態を推定する。
電池3の充電時に、dQ/dV、Δt、又はΔ(dQ/dV)/ΔVを取得した場合、特徴値が閾値以上である場合、CPU62は、電池3が劣化状態であると推定する。
電池3の放電時に、特徴値として、dQ/dV又はΔtを取得した場合、|dQ/dV|又はΔtが閾値以上である場合、CPU62は電池3が劣化状態であると推定する。dQ/dVを負の数として用いる場合、dQ/dVが閾値以下である場合、CPU62は電池3が劣化状態であると推定する。
特徴値としてΔ(dQ/dV)/ΔVを取得した場合、CPU62は特徴値が閾値以下である場合、電池3が劣化状態であると推定する。 (Modification 1)
In the table 63b of the
In this case, in S32, the
When dQ / dV, Δt, or Δ (dQ / dV) / ΔV is acquired when the
When dQ / dV or Δt is acquired as the feature value when the
When Δ (dQ / dV) / ΔV is acquired as the feature value, the
(変形例2)
変形例2のメモリ63のテーブル63bには、経時的な劣化に対応する複数のV-dQ/dVが、特徴値と関連付けて記憶されている。
CPU62は、実施形態1と同様に、図9に示す手順により、劣化状態を推定する。
CPU62は、dQ/dV、Δt、及びΔ(dQ/dV)/ΔVのいずれかの特徴値を取得する(S1)。
CPU62は、取得した特徴値に対応する、目的の蓄電量特性(V-dQ/dV)を算出する。CPU62は、例えば2つの参照する特徴値に対応する蓄電量特性から目的の蓄電量特性を内挿計算により算出する(S2)。又は、特徴値の関数に、取得した特徴値を代入して、目的の蓄電量特性を算出する。
CPU62は、算出した蓄電量特性をテーブル63bに記憶する(S3)。
CPU62は、算出した蓄電量特性に基づいて、電池3の劣化状態を推定し(S4)、処理を終了する。得られた蓄電量特性が劣化の指標となる。
得られたV-dQ/dVに基づいてSOC-OCVを求め、該SOC-OCV及び充放電の履歴に基づいて、電圧参照のためのSOC-OCVを求め、OCV法により、特徴値を取得した時点のSOCを算出することもできる。 (Modification 2)
In the table 63b of thememory 63 of the second modification, a plurality of V-dQ / dV corresponding to temporal deterioration are stored in association with feature values.
TheCPU 62 estimates the deterioration state according to the procedure shown in FIG. 9 as in the first embodiment.
TheCPU 62 acquires feature values of dQ / dV, Δt, and Δ (dQ / dV) / ΔV (S1).
TheCPU 62 calculates a target storage capacity characteristic (V−dQ / dV) corresponding to the acquired feature value. The CPU 62 calculates the target storage capacity characteristic from the storage capacity characteristic corresponding to, for example, two reference feature values by interpolation calculation (S2). Alternatively, the acquired characteristic value is substituted into the function of the characteristic value to calculate the target storage capacity characteristic.
TheCPU 62 stores the calculated storage capacity characteristic in the table 63b (S3).
TheCPU 62 estimates the deterioration state of the battery 3 based on the calculated storage capacity characteristic (S4), and ends the process. The obtained storage capacity characteristic is an indicator of deterioration.
The SOC-OCV was determined based on the obtained V-dQ / dV, the SOC-OCV for voltage reference was determined based on the SOC-OCV and the charge / discharge history, and the feature value was obtained by the OCV method. It is also possible to calculate the SOC of the time point.
変形例2のメモリ63のテーブル63bには、経時的な劣化に対応する複数のV-dQ/dVが、特徴値と関連付けて記憶されている。
CPU62は、実施形態1と同様に、図9に示す手順により、劣化状態を推定する。
CPU62は、dQ/dV、Δt、及びΔ(dQ/dV)/ΔVのいずれかの特徴値を取得する(S1)。
CPU62は、取得した特徴値に対応する、目的の蓄電量特性(V-dQ/dV)を算出する。CPU62は、例えば2つの参照する特徴値に対応する蓄電量特性から目的の蓄電量特性を内挿計算により算出する(S2)。又は、特徴値の関数に、取得した特徴値を代入して、目的の蓄電量特性を算出する。
CPU62は、算出した蓄電量特性をテーブル63bに記憶する(S3)。
CPU62は、算出した蓄電量特性に基づいて、電池3の劣化状態を推定し(S4)、処理を終了する。得られた蓄電量特性が劣化の指標となる。
得られたV-dQ/dVに基づいてSOC-OCVを求め、該SOC-OCV及び充放電の履歴に基づいて、電圧参照のためのSOC-OCVを求め、OCV法により、特徴値を取得した時点のSOCを算出することもできる。 (Modification 2)
In the table 63b of the
The
The
The
The
The
The SOC-OCV was determined based on the obtained V-dQ / dV, the SOC-OCV for voltage reference was determined based on the SOC-OCV and the charge / discharge history, and the feature value was obtained by the OCV method. It is also possible to calculate the SOC of the time point.
(実施例)
以下、実施形態2の実施例を具体的に説明するが、この実施例に限定されるものではない。
正極活物質として上述のLi過剰型の活物質を、負極活物質としてグラファイトを用いて実施例の電池3を作製した。この電池3を用いて充放電サイクル試験を行い、10回から480回目までの複数のサイクル数に対応して、充電時のV-dQ/dVを求めた。その結果を図24に示す。横軸は電圧(V)、縦軸はdQ/dVである。
充放電サイクル試験においては、温度25℃の条件下、0.5Cで電圧が4.6Vに到達するまでCC充電を行い、4.6Vで電流が0.1Cに到達するまでCV充電を行い、10分間休止した。その後、1.0Cで電圧が2.0Vに到達するまでCC放電を行い、10分間休止した。これを1サイクルとして、充放電を繰り返した。
図24は、上述の複数のサイクル数に対応して、放電時のV-dQ/dVを求めた結果示すグラフである。横軸は電圧(V)、縦軸はdQ/dVである。
図24において、上側の曲線が下側の曲線よりサイクル数が大きい。図24に示されるように、(1)の4.55VにおけるdQ/dVは、サイクル数が大きい程、大きくなることが分かる。
(2)の4.50V~4.55Vの範囲において、サイクル数が大きくなるに従い、V-dQ/dVの曲線は上に凸になり、酸化反応がより多く生じているので、4.50Vから4.55Vに至るまでの時間Δtが長くなる。(2)の範囲における傾きΔ(dQ/dV)/ΔVは、サイクル数が大きくなるに従って大きくなる。 (Example)
Hereinafter, although the example ofEmbodiment 2 is concretely described, it is not limited to this example.
Thebattery 3 of Example was produced using the above-mentioned Li excess type active material as a positive electrode active material, and graphite as a negative electrode active material. A charge / discharge cycle test was performed using this battery 3 to determine V-dQ / dV at the time of charge, corresponding to the number of cycles from 10 times to 480 times. The results are shown in FIG. The horizontal axis is voltage (V), and the vertical axis is dQ / dV.
In the charge and discharge cycle test, CC charging is performed until the voltage reaches 4.6 V at 0.5 C under conditions of 25 ° C., and CV charging is performed until the current reaches 0.1 C at 4.6 V, Rested for 10 minutes. Thereafter, CC discharge was performed at 1.0 C until the voltage reached 2.0 V and rested for 10 minutes. Charge and discharge were repeated by making this one cycle.
FIG. 24 is a graph showing the results of determination of V-dQ / dV during discharge, corresponding to the above-described plurality of cycles. The horizontal axis is voltage (V), and the vertical axis is dQ / dV.
In FIG. 24, the upper curve has a larger number of cycles than the lower curve. As shown in FIG. 24, it can be seen that the dQ / dV at 4.55 V of (1) increases as the number of cycles increases.
In the range of 4.50 V to 4.55 V of (2), the curve of V-dQ / dV is convex upward as the number of cycles increases, and more oxidation reaction occurs, so from 4.50 V to The time Δt to reach 4.55 V becomes long. The slope Δ (dQ / dV) / ΔV in the range of (2) increases as the number of cycles increases.
以下、実施形態2の実施例を具体的に説明するが、この実施例に限定されるものではない。
正極活物質として上述のLi過剰型の活物質を、負極活物質としてグラファイトを用いて実施例の電池3を作製した。この電池3を用いて充放電サイクル試験を行い、10回から480回目までの複数のサイクル数に対応して、充電時のV-dQ/dVを求めた。その結果を図24に示す。横軸は電圧(V)、縦軸はdQ/dVである。
充放電サイクル試験においては、温度25℃の条件下、0.5Cで電圧が4.6Vに到達するまでCC充電を行い、4.6Vで電流が0.1Cに到達するまでCV充電を行い、10分間休止した。その後、1.0Cで電圧が2.0Vに到達するまでCC放電を行い、10分間休止した。これを1サイクルとして、充放電を繰り返した。
図24は、上述の複数のサイクル数に対応して、放電時のV-dQ/dVを求めた結果示すグラフである。横軸は電圧(V)、縦軸はdQ/dVである。
図24において、上側の曲線が下側の曲線よりサイクル数が大きい。図24に示されるように、(1)の4.55VにおけるdQ/dVは、サイクル数が大きい程、大きくなることが分かる。
(2)の4.50V~4.55Vの範囲において、サイクル数が大きくなるに従い、V-dQ/dVの曲線は上に凸になり、酸化反応がより多く生じているので、4.50Vから4.55Vに至るまでの時間Δtが長くなる。(2)の範囲における傾きΔ(dQ/dV)/ΔVは、サイクル数が大きくなるに従って大きくなる。 (Example)
Hereinafter, although the example of
The
In the charge and discharge cycle test, CC charging is performed until the voltage reaches 4.6 V at 0.5 C under conditions of 25 ° C., and CV charging is performed until the current reaches 0.1 C at 4.6 V, Rested for 10 minutes. Thereafter, CC discharge was performed at 1.0 C until the voltage reached 2.0 V and rested for 10 minutes. Charge and discharge were repeated by making this one cycle.
FIG. 24 is a graph showing the results of determination of V-dQ / dV during discharge, corresponding to the above-described plurality of cycles. The horizontal axis is voltage (V), and the vertical axis is dQ / dV.
In FIG. 24, the upper curve has a larger number of cycles than the lower curve. As shown in FIG. 24, it can be seen that the dQ / dV at 4.55 V of (1) increases as the number of cycles increases.
In the range of 4.50 V to 4.55 V of (2), the curve of V-dQ / dV is convex upward as the number of cycles increases, and more oxidation reaction occurs, so from 4.50 V to The time Δt to reach 4.55 V becomes long. The slope Δ (dQ / dV) / ΔV in the range of (2) increases as the number of cycles increases.
図25は、上述の複数のサイクル数に対応して、放電時のV-dQ/dVを求めた結果示すグラフである。横軸は電圧(V)、縦軸はdQ/dVである。
図25において、下側の曲線が上側の曲線よりサイクル数が大きい。図25に示されるように、(3)の4.45VにおけるdQ/dVの絶対値は、サイクル数が大きい程、大きくなることが分かる。
(4)の4.40V~4.45Vの範囲において、サイクル数が大きくなるに従い、V-dQ/dVの曲線は下に凸になり、還元反応がより多く生じているので、4.45Vから4.40Vに至るまでの時間Δtが長くなる。(4)の範囲における傾き[Δ(dQ/dV)/ΔV]は、サイクル数が大きくなるに従って小さくなる。 FIG. 25 is a graph showing the results of determination of V-dQ / dV at the time of discharge, corresponding to the above-described plurality of cycles. The horizontal axis is voltage (V), and the vertical axis is dQ / dV.
In FIG. 25, the lower curve has a larger number of cycles than the upper curve. As shown in FIG. 25, it can be seen that the absolute value of dQ / dV at 4.45 V in (3) increases as the number of cycles increases.
In the range of 4.40 V to 4.45 V in (4), the curve of V-dQ / dV is convex downward as the number of cycles increases, and more reduction reaction occurs, so from 4.45 V The time Δt to reach 4.40 V becomes long. The slope [Δ (dQ / dV) / ΔV] in the range of (4) decreases as the number of cycles increases.
図25において、下側の曲線が上側の曲線よりサイクル数が大きい。図25に示されるように、(3)の4.45VにおけるdQ/dVの絶対値は、サイクル数が大きい程、大きくなることが分かる。
(4)の4.40V~4.45Vの範囲において、サイクル数が大きくなるに従い、V-dQ/dVの曲線は下に凸になり、還元反応がより多く生じているので、4.45Vから4.40Vに至るまでの時間Δtが長くなる。(4)の範囲における傾き[Δ(dQ/dV)/ΔV]は、サイクル数が大きくなるに従って小さくなる。 FIG. 25 is a graph showing the results of determination of V-dQ / dV at the time of discharge, corresponding to the above-described plurality of cycles. The horizontal axis is voltage (V), and the vertical axis is dQ / dV.
In FIG. 25, the lower curve has a larger number of cycles than the upper curve. As shown in FIG. 25, it can be seen that the absolute value of dQ / dV at 4.45 V in (3) increases as the number of cycles increases.
In the range of 4.40 V to 4.45 V in (4), the curve of V-dQ / dV is convex downward as the number of cycles increases, and more reduction reaction occurs, so from 4.45 V The time Δt to reach 4.40 V becomes long. The slope [Δ (dQ / dV) / ΔV] in the range of (4) decreases as the number of cycles increases.
図26は、電池3のサイクル数と、充電時の4.55VにおけるdQ/dVとの関係を求めた結果を示すグラフである。横軸はサイクル数、縦軸はdQ/dVである。
図26に示すように、サイクル数が増加するに従い、dQ/dVは大きくなる。 FIG. 26 is a graph showing the relationship between the number of cycles of thebattery 3 and dQ / dV at 4.55 V during charging. The horizontal axis is the number of cycles, and the vertical axis is dQ / dV.
As shown in FIG. 26, as the number of cycles increases, dQ / dV increases.
図26に示すように、サイクル数が増加するに従い、dQ/dVは大きくなる。 FIG. 26 is a graph showing the relationship between the number of cycles of the
As shown in FIG. 26, as the number of cycles increases, dQ / dV increases.
図27は、電池3のサイクル数と、充電時の電圧が4.50Vから4.55Vに至るまでの時間Δtとの関係を求めた結果を示すグラフである。横軸はサイクル数、縦軸はΔtである。
図27に示すように、サイクル数が増加するに従い、Δtは大きくなる。 FIG. 27 is a graph showing the relationship between the cycle number of thebattery 3 and the time Δt from 4.50 V to 4.55 V at the time of charge. The horizontal axis is the number of cycles, and the vertical axis is Δt.
As shown in FIG. 27, Δt increases as the number of cycles increases.
図27に示すように、サイクル数が増加するに従い、Δtは大きくなる。 FIG. 27 is a graph showing the relationship between the cycle number of the
As shown in FIG. 27, Δt increases as the number of cycles increases.
図28は、電池3のサイクル数と、充電時の電圧が4.50Vと4.55Vとの間のV-dQ/dVの曲線の傾き[Δ(dQ/dV)/ΔV]を求めた結果を示すグラフである。横軸はサイクル数、縦軸はΔ(dQ/dV)/ΔVである。
図28に示すように、サイクル数が増加するに従い、Δ(dQ/dV)/ΔVは大きくなる。 FIG. 28 shows the results of determination of the number of cycles of thebattery 3 and the slope [Δ (dQ / dV) / ΔV] of the V-dQ / dV curve between the voltages of 4.50 V and 4.55 V during charging. Is a graph showing The horizontal axis is the cycle number, and the vertical axis is Δ (dQ / dV) / ΔV.
As shown in FIG. 28, Δ (dQ / dV) / ΔV increases as the number of cycles increases.
図28に示すように、サイクル数が増加するに従い、Δ(dQ/dV)/ΔVは大きくなる。 FIG. 28 shows the results of determination of the number of cycles of the
As shown in FIG. 28, Δ (dQ / dV) / ΔV increases as the number of cycles increases.
図29は、電池3のサイクル数と、放電時の4.45Vにおける|dQ/dV|を求めた結果を示すグラフである。横軸はサイクル数、縦軸は|dQ/dV|である。
図29に示すように、サイクル数が増加するに従い、|dQ/dV|は大きくなる。 FIG. 29 is a graph showing the number of cycles of thebattery 3 and | dQ / dV | at 4.45 V during discharge. The horizontal axis is the cycle number, and the vertical axis is | dQ / dV |.
As shown in FIG. 29, | dQ / dV | increases as the number of cycles increases.
図29に示すように、サイクル数が増加するに従い、|dQ/dV|は大きくなる。 FIG. 29 is a graph showing the number of cycles of the
As shown in FIG. 29, | dQ / dV | increases as the number of cycles increases.
図30は、電池3のサイクル数と、放電時の電圧が4.45Vから4.40Vに至るまでの時間Δtとの関係を求めた結果を示すグラフである。横軸はサイクル数、縦軸はΔtである。
図30に示すように、サイクル数が増加するに従い、Δtは大きくなる。 FIG. 30 is a graph showing the relationship between the cycle number of thebattery 3 and the time Δt from 4.45 V to 4.40 V at the time of discharge. The horizontal axis is the number of cycles, and the vertical axis is Δt.
As shown in FIG. 30, Δt increases as the number of cycles increases.
図30に示すように、サイクル数が増加するに従い、Δtは大きくなる。 FIG. 30 is a graph showing the relationship between the cycle number of the
As shown in FIG. 30, Δt increases as the number of cycles increases.
図31は、電池3のサイクル数と、放電時の4.45Vと4.40Vとの間のV-dQ/dV曲線の傾き[Δ(dQ/dV)/ΔV]を求めた結果を示すグラフである。横軸はサイクル数、縦軸はΔ(dQ/dV)/ΔVである。
図31に示すように、サイクル数が増加するに従い、Δ(dQ/dV)/ΔVは小さくなる。 FIG. 31 is a graph showing the number of cycles ofbattery 3 and the slope [Δ (dQ / dV) / ΔV] of the V-dQ / dV curve between 4.45 V and 4.40 V during discharge. It is. The horizontal axis is the cycle number, and the vertical axis is Δ (dQ / dV) / ΔV.
As shown in FIG. 31, as the number of cycles increases, Δ (dQ / dV) / ΔV decreases.
図31に示すように、サイクル数が増加するに従い、Δ(dQ/dV)/ΔVは小さくなる。 FIG. 31 is a graph showing the number of cycles of
As shown in FIG. 31, as the number of cycles increases, Δ (dQ / dV) / ΔV decreases.
以上のように、電位降下を有する活物質を用いた場合、高電圧範囲で、dQ/dV、Δt、及び(Δ(dQ/dV)/ΔV)が劣化に伴い、特徴的に変化する。
サイクル数とdQ/dV、Δt、又はΔ(dQ/dV)/ΔVとの関係をテーブル63bに記憶し、サイクル数の増加に伴う特徴値の変化量とSOHとを関連づけることで、特徴値を取得した時点の劣化状態を良好に推定できる。劣化状態は特徴値の閾値によっても良好に判定できる。 As described above, when an active material having a potential drop is used, dQ / dV, Δt, and (Δ (dQ / dV) / ΔV) characteristically change in the high voltage range.
The relationship between the number of cycles and dQ / dV, Δt, or Δ (dQ / dV) / ΔV is stored in the table 63b, and the feature value is correlated by the amount of change in the feature value with the increase in the number of cycles and SOH. The degradation state at the time of acquisition can be estimated well. The deterioration state can also be favorably determined by the threshold value of the feature value.
サイクル数とdQ/dV、Δt、又はΔ(dQ/dV)/ΔVとの関係をテーブル63bに記憶し、サイクル数の増加に伴う特徴値の変化量とSOHとを関連づけることで、特徴値を取得した時点の劣化状態を良好に推定できる。劣化状態は特徴値の閾値によっても良好に判定できる。 As described above, when an active material having a potential drop is used, dQ / dV, Δt, and (Δ (dQ / dV) / ΔV) characteristically change in the high voltage range.
The relationship between the number of cycles and dQ / dV, Δt, or Δ (dQ / dV) / ΔV is stored in the table 63b, and the feature value is correlated by the amount of change in the feature value with the increase in the number of cycles and SOH. The degradation state at the time of acquisition can be estimated well. The deterioration state can also be favorably determined by the threshold value of the feature value.
車両の使用後、夜の未使用期間に充電する場合に、高電圧範囲の特徴値に基づき、使用開始時に簡便に、かつ迅速に劣化状態を推定でき、利便性が高い。
精度良く劣化状態を推定できる為、適切なタイミングで劣化を抑制する為の制御を行うことができ、電池3の寿命を延ばすことができる。
通常の使用条件の範囲内で劣化状態を推定でき、劣化状態を推定するときに電池3が劣化することがない。 When charging in an unused period at night after use of the vehicle, the deterioration state can be easily and quickly estimated at the start of use based on the feature values in the high voltage range, and the convenience is high.
Since the deterioration state can be accurately estimated, control for suppressing the deterioration can be performed at an appropriate timing, and the life of thebattery 3 can be extended.
The deterioration state can be estimated within the range of normal use conditions, and thebattery 3 is not deteriorated when the deterioration state is estimated.
精度良く劣化状態を推定できる為、適切なタイミングで劣化を抑制する為の制御を行うことができ、電池3の寿命を延ばすことができる。
通常の使用条件の範囲内で劣化状態を推定でき、劣化状態を推定するときに電池3が劣化することがない。 When charging in an unused period at night after use of the vehicle, the deterioration state can be easily and quickly estimated at the start of use based on the feature values in the high voltage range, and the convenience is high.
Since the deterioration state can be accurately estimated, control for suppressing the deterioration can be performed at an appropriate timing, and the life of the
The deterioration state can be estimated within the range of normal use conditions, and the
本発明は上述した実施形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
The present invention is not limited to the contents of the embodiments described above, and various modifications can be made within the scope of the claims. That is, an embodiment obtained by combining technical means appropriately modified within the scope of the claims is also included in the technical scope of the present invention.
実施形態1及び2においては、正極が電位降下及びヒステリシスを有する活物質を含む場合につき説明したが、負極が電位降下及びヒステリシスを有する活物質を含む場合も、同様にして蓄電量-電位特性又はV-dQ/dVを推定することができる。
In the first and second embodiments, the case where the positive electrode includes the active material having the potential drop and the hysteresis has been described, but the charge amount-voltage characteristic or the charge capacity or the voltage characteristic may be similarly applied to the case where the negative electrode includes the active material having the potential drop and the hysteresis. V-dQ / dV can be estimated.
本発明に係る電圧参照による蓄電量の推定は休止時に行う場合に限定されず、充電時又は放電時にリアルタイムに行ってもよい。この場合、取得した電圧及び電流から現時点のOCVが算出される。OCVの算出は、複数の電圧及び電流のデータから回帰直線を用いて、電流がゼロである場合の電圧を推定すること等により得られる。また、電流が暗電流のように小さい場合は、取得した電圧をOCVに読み替えることもできる。
The estimation of the storage amount by voltage reference according to the present invention is not limited to the case of stopping, but may be performed in real time during charging or discharging. In this case, the current OCV is calculated from the acquired voltage and current. The calculation of the OCV can be obtained by, for example, estimating the voltage when the current is zero using regression lines from data of a plurality of voltages and currents. Also, when the current is small as dark current, the acquired voltage can be read as OCV.
本発明に係る推定装置は、車載用のリチウムイオン二次電池に適用される場合に限定されず、鉄道用回生電力貯蔵装置、太陽光発電システム等の他の蓄電装置にも適用できる。また、本発明に係る推定装置は、ノートパソコン、携帯電話機、及びシェーバー等のモバイル機器にも適用できる。微小電流が流れる蓄電装置においては、蓄電素子の正極端子・負極端子間の電圧をOCVとみなすことができる。
The estimation device according to the present invention is not limited to the case of being applied to an on-vehicle lithium ion secondary battery, and can be applied to other power storage devices such as a railway regenerative power storage device and a solar power generation system. The estimation device according to the present invention can also be applied to mobile devices such as notebook computers, mobile phones, and shavers. In a power storage device in which a minute current flows, the voltage between the positive electrode terminal and the negative electrode terminal of the power storage element can be regarded as OCV.
監視装置100又はBMU6が推定装置である場合を例示した。代替的に、CMU(Cell Monitoring Unit)が推定装置でよい。推定装置は、監視装置100等が組み込まれた電池モジュールの一部であってもよい。推定装置は、蓄電素子や電池モジュールとは別個に構成されて、劣化状態の推定対象の蓄電素子を含む電池モジュールに、劣化状態の推定時に接続されてもよい。推定装置は、蓄電素子や電池モジュールを遠隔監視してもよい。
蓄電素子は、リチウムイオン二次電池に限定されるものではなく、電位降下及びヒステリシス特性を有する他の二次電池や電気化学セルであってもよい。 The case where themonitoring apparatus 100 or BMU 6 is an estimation apparatus was illustrated. Alternatively, a CMU (Cell Monitoring Unit) may be an estimation device. The estimation device may be part of a battery module in which the monitoring device 100 or the like is incorporated. The estimation device may be configured separately from the storage element and the battery module, and connected to the battery module including the storage element for which the degradation state is to be estimated at the time of estimation of the degradation state. The estimation device may remotely monitor the storage element or the battery module.
The storage element is not limited to a lithium ion secondary battery, and may be another secondary battery or an electrochemical cell having potential drop and hysteresis characteristics.
蓄電素子は、リチウムイオン二次電池に限定されるものではなく、電位降下及びヒステリシス特性を有する他の二次電池や電気化学セルであってもよい。 The case where the
The storage element is not limited to a lithium ion secondary battery, and may be another secondary battery or an electrochemical cell having potential drop and hysteresis characteristics.
本発明は、リチウムイオン二次電池等の蓄電素子の劣化状態の推定に適用できる。
The present invention can be applied to estimation of the deterioration state of a storage element such as a lithium ion secondary battery.
1、50 電池モジュール(蓄電装置)
2 ケース
21 ケース本体
22 蓋部
23 BMU収容部
24 カバー
25 中蓋
26 仕切り板
3、200 電池(蓄電素子)
31 ケース
32 端子
33 電極体
4 バスバー
5 外部端子
6 BMU(推定装置)
60 情報処理部
62 CPU(取得部、第1推定部、第2推定部、第3推定部)
63 メモリ(記憶部)
63a プログラム
63b テーブル
7 電流センサ
8 電圧計測部
9 電流計測部
10 ECU
100 監視装置(推定装置)
300 収容ケース 1, 50 battery module (power storage device)
DESCRIPTION OFSYMBOLS 2 case 21 case main body 22 lid part 23 BMU accommodating part 24 cover 25 middle lid 26 partition plate 3, 200 battery (electric storage element)
31case 32 terminal 33 electrode body 4 bus bar 5 external terminal 6 BMU (estimation device)
60information processing unit 62 CPU (acquisition unit, first estimation unit, second estimation unit, third estimation unit)
63 Memory (storage unit)
63a Program 63b Table 7Current Sensor 8 Voltage Measurement Unit 9 Current Measurement Unit 10 ECU
100 Monitoring device (estimation device)
300 storage case
2 ケース
21 ケース本体
22 蓋部
23 BMU収容部
24 カバー
25 中蓋
26 仕切り板
3、200 電池(蓄電素子)
31 ケース
32 端子
33 電極体
4 バスバー
5 外部端子
6 BMU(推定装置)
60 情報処理部
62 CPU(取得部、第1推定部、第2推定部、第3推定部)
63 メモリ(記憶部)
63a プログラム
63b テーブル
7 電流センサ
8 電圧計測部
9 電流計測部
10 ECU
100 監視装置(推定装置)
300 収容ケース 1, 50 battery module (power storage device)
DESCRIPTION OF
31
60
63 Memory (storage unit)
63a Program 63b Table 7
100 Monitoring device (estimation device)
300 storage case
Claims (14)
- 蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定する推定装置であって、
充放電の繰り返しにより変化する特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを、前記特徴値の変化に応じて複数記憶し、又は前記特徴値の関数として記憶する記憶部と、
前記蓄電素子の前記特徴値を取得する取得部と、
該取得部により取得した特徴値に基づき、前記第1特性、前記第2特性、及び、前記V-dQ/dVの少なくともいずれかを参照し、又は前記関数を参照して、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する第1推定部と
を備える、推定装置。 The first characteristic of the storage element having a single electrode including an active material whose first characteristic, which is a storage amount-potential charge characteristic, and the second characteristic, which is a storage amount-potential discharge characteristic, change with repetition of charging and discharging An estimation apparatus for estimating at least one of a characteristic, a second characteristic, and V-dQ / dV that is a relationship between an electric potential V and dQ / dV,
A plurality of at least one of the first characteristic, the second characteristic and the V-dQ / dV of the single pole corresponding to the characteristic value which changes due to repetition of charge and discharge is stored according to the change of the characteristic value. Or a storage unit which stores the data as a function of the feature value;
An acquisition unit configured to acquire the feature value of the storage element;
With reference to at least one of the first characteristic, the second characteristic, and the V-dQ / dV based on the feature value acquired by the acquisition unit, or with reference to the function, A first estimation unit configured to estimate at least one of the first characteristic, the second characteristic, and V-dQ / dV. - 前記特徴値は、所定の電圧範囲における充電電気量若しくは放電容量、又は平均放電電位である、請求項1に記載の推定装置。 The estimation device according to claim 1, wherein the characteristic value is a charge quantity or a discharge capacity in a predetermined voltage range, or an average discharge potential.
- 前記記憶部は、前記充電電気量若しくは前記放電容量、又は前記平均放電電位の大小に応じて、複数のV-dQ/dVを記憶し、又は前記関数を記憶しており、
前記第1推定部は、前記特徴値と前記V-dQ/dVとの関係を参照して、前記単極のV-dQ/dVを推定する、請求項2に記載の推定装置。 The storage unit stores a plurality of V-dQ / dV or stores the function according to the charge quantity or the discharge capacity, or the magnitude of the average discharge potential.
The estimation device according to claim 2, wherein the first estimation unit estimates the unipolar V-dQ / dV with reference to the relationship between the feature value and the V-dQ / dV. - 前記活物質の劣化の度合に応じて、前記充電電気量又は前記放電容量を補正する、請求項2又は3に記載の推定装置。 The estimation device according to claim 2, wherein the amount of charge or the discharge capacity is corrected according to the degree of deterioration of the active material.
- 前記特徴値は、高電圧範囲内の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかである、請求項1に記載の推定装置。 The characteristic values are dQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and V-dQ / dV between the first voltage and the second voltage within the high voltage range. The estimation device according to claim 1, which has one of a slope [Δ (dQ / dV) / ΔV].
- 蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の劣化状態を推定する推定装置であって、
高電圧範囲内の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかの特徴値を取得する取得部と、
前記特徴値に基づいて、前記蓄電素子の劣化状態を推定する推定部と
を備える、推定装置。 It is estimated that the first characteristic, which is a storage amount-potential charge characteristic, and the second characteristic, which is a storage amount-potential discharge characteristic, estimate the degradation state of a storage element having a single electrode containing an active material that changes with repeated charging and discharging. A device,
DQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V-dQ / dV between the first voltage and the second voltage within the high voltage range [Δ (dQ An acquisition unit for acquiring any feature value of / dV) / ΔV];
An estimation unit configured to estimate a deterioration state of the storage element based on the feature value. - 前記推定部は、前記特徴値の閾値に基づいて、前記蓄電素子の劣化状態を推定する、請求項6に記載の推定装置。 The estimation device according to claim 6, wherein the estimation unit estimates a deterioration state of the storage element based on a threshold of the feature value.
- 前記活物質は、第1特性及び第2特性間のヒステリシスを示し、
前記第1推定部により推定した前記第1特性及び/又は前記第2特性、並びに前記蓄電素子の充放電の履歴に基づいて、前記蓄電素子の電圧により蓄電量を推定するときの参照のための蓄電量-電圧充電特性である第3特性、及び/又は参照のための蓄電量-電圧放電特性である第4特性を推定する第2推定部を備える、請求項1から5までのいずれか1項に記載の推定装置。 The active material exhibits hysteresis between the first and second characteristics,
For reference when estimating the storage amount by the voltage of the storage element based on the first characteristic and / or the second characteristic estimated by the first estimation unit and the charge / discharge history of the storage element The second estimation unit according to any one of claims 1 to 5, further comprising a second estimation unit that estimates a third characteristic that is a storage amount-voltage charge characteristic and / or a fourth characteristic that is a storage amount-voltage discharge characteristic for reference. The estimation device described in the item. - 充放電の履歴、前記第3特性及び/又は前記第4特性、並びに取得した電圧に基づいて、蓄電量を推定する第3推定部を備える、請求項8に記載の推定装置。 The estimation device according to claim 8, further comprising: a third estimation unit configured to estimate a storage amount based on the history of charge and discharge, the third characteristic and / or the fourth characteristic, and the acquired voltage.
- 蓄電素子と、
請求項1から9までのいずれか1項に記載の推定装置と
を備える、蓄電装置。 A storage element,
A storage device comprising: the estimation device according to any one of claims 1 to 9. - 蓄電量-電位充電特性である第1特性及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定する推定方法であって、
充放電の繰り返しにより変化する特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを、前記特徴値の変化に応じて複数記憶し、又は前記特徴値の関数として記憶してあり、
取得した特徴値に基づき、前記第1特性、前記第2特性、及び、前記V-dQ/dVの、少なくともいずれかを参照し、又は前記関数を参照して、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する、推定方法。 The first characteristic of a storage element having a single electrode including an active material whose first characteristic, which is a storage amount-potential charge characteristic, and the second characteristic, which is a storage amount-potential discharge characteristic, change with repetition of charge and discharge A second characteristic, and / or V-dQ / dV, which is a relationship between the potential V and dQ / dV,
A plurality of at least one of the first characteristic, the second characteristic and the V-dQ / dV of the single pole corresponding to the characteristic value which changes due to repetition of charge and discharge is stored according to the change of the characteristic value. Or stored as a function of the feature value,
The first characteristic of the single pole, referring to at least one of the first characteristic, the second characteristic, and the V-dQ / dV, or referring to the function, based on the acquired characteristic value. An estimation method for estimating at least one of a second characteristic and V-dQ / dV. - 蓄電量-電位充電特性及び蓄電量-電位放電特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の劣化状態を推定する推定方法であって、
高電圧範囲内の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかの特徴値を取得し、
前記特徴値に基づいて、前記蓄電素子の劣化状態を推定する、推定方法。 A storage amount-potential charge characteristic and a storage amount-potential discharge characteristic are estimation methods for estimating the degradation state of a storage element having a single electrode containing an active material that changes due to repetition of charge and discharge,
DQ / dV at a predetermined voltage, the time from the first voltage to the second voltage, and the slope of V-dQ / dV between the first voltage and the second voltage within the high voltage range [Δ (dQ Get any feature value of / dV) / ΔV],
The estimation method which estimates the deterioration state of the said electrical storage element based on the said characteristic value. - 蓄電量-電位充電特性である第1特性、及び蓄電量-電位放電特性である第2特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の前記単極の第1特性、第2特性、及び、電位VとdQ/dVとの関係であるV-dQ/dV、の少なくともいずれかを推定するコンピュータに、
前記蓄電素子の、充放電の繰り返しにより変化する特徴値を取得し、
前記特徴値に対応する、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかが、前記特徴値の変化に応じて複数記憶されたテーブルを参照し、又は前記特徴値の関数として記憶された、該関数を参照して、取得した前記特徴値に基づき、前記単極の第1特性、第2特性、及び、V-dQ/dV、の少なくともいずれかを推定する
処理を実行させる、コンピュータプログラム。 The first characteristic of the storage element having a single electrode including an active material whose first characteristic, which is a storage amount-potential charge characteristic, and the second characteristic, which is a storage amount-potential discharge characteristic, change with repetition of charging and discharging A computer for estimating at least one of a characteristic, a second characteristic, and V−dQ / dV, which is a relationship between the potential V and dQ / dV,
Acquiring a feature value of the storage element that changes due to repeated charging and discharging;
Referring to a table in which a plurality of at least one of the single pole first characteristic, second characteristic, and V-dQ / dV corresponding to the feature value is stored according to the change of the feature value, Or at least one of the first characteristic, the second characteristic, and V-dQ / dV of the single pole based on the acquired feature value with reference to the function stored as a function of the feature value A computer program that causes the process to be performed. - 蓄電量-電位充電特性及び蓄電量-電位放電特性が、充放電の繰り返しにより変化する活物質を含む単極を有する蓄電素子の劣化状態を推定するコンピュータに、
高電圧範囲の、所定の電圧におけるdQ/dV、第1電圧から第2電圧に至るまでの時間、及び第1電圧と第2電圧との間におけるV-dQ/dVの傾き[Δ(dQ/dV)/ΔV]のいずれかの特徴値を取得し、
該特徴値に基づいて、前記蓄電素子の劣化状態を推定する
処理を実行させる、コンピュータプログラム。 A computer for estimating the state of deterioration of a storage element having a single electrode containing an active material whose storage amount-potential charge characteristic and storage amount-potential discharge characteristic change due to repetition of charge / discharge,
DQ / dV at a predetermined voltage, time from the first voltage to the second voltage, and V-dQ / dV slope between the first voltage and the second voltage [Δ (dQ / dV) in the high voltage range. Get any feature value of dV) / ΔV],
A computer program that executes a process of estimating a deterioration state of the storage element based on the feature value.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18835384.1A EP3657190A4 (en) | 2017-07-19 | 2018-06-29 | Estimation device, power storage device, estimation method, and computer program |
US16/630,957 US20200225292A1 (en) | 2017-07-19 | 2018-06-29 | Estimation device, energy storage apparatus, estimation method, and computer program |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017140256 | 2017-07-19 | ||
JP2017-140256 | 2017-07-19 | ||
JP2018113985A JP6477957B2 (en) | 2017-07-19 | 2018-06-14 | Estimation device, power storage device, estimation method, and computer program |
JP2018-113985 | 2018-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019017183A1 true WO2019017183A1 (en) | 2019-01-24 |
Family
ID=65016296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024811 WO2019017183A1 (en) | 2017-07-19 | 2018-06-29 | Estimation device, power storage device, estimation method, and computer program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019017183A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021176745A1 (en) * | 2020-03-05 | 2021-09-10 | Tdk株式会社 | Control device for secondary battery, battery pack, and control method for secondary battery |
WO2021191993A1 (en) * | 2020-03-24 | 2021-09-30 | Tdk株式会社 | Control device for secondary battery, control system for secondary battery, and control method for secondary battery pack and secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013019709A (en) * | 2011-07-08 | 2013-01-31 | Toyota Motor Corp | Secondary battery system and vehicle |
JP2013140037A (en) * | 2011-12-28 | 2013-07-18 | Gs Yuasa Corp | Ocv characteristic estimation device for nonaqueous electrolyte secondary battery, ocv characteristic estimation method, power storage system, and battery pack |
JP2014062829A (en) * | 2012-09-21 | 2014-04-10 | Gs Yuasa Corp | State estimation apparatus, open circuit voltage characteristics generation method |
JP2015060761A (en) * | 2013-09-19 | 2015-03-30 | 株式会社東芝 | Deterioration diagnostic system and deterioration diagnostic method of secondary battery |
JP2016085166A (en) | 2014-10-28 | 2016-05-19 | 株式会社東芝 | Device and method of evaluating storage battery |
WO2017098686A1 (en) * | 2015-12-10 | 2017-06-15 | ソニー株式会社 | Battery pack, electricity storage device and deterioration detecting method |
-
2018
- 2018-06-29 WO PCT/JP2018/024811 patent/WO2019017183A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013019709A (en) * | 2011-07-08 | 2013-01-31 | Toyota Motor Corp | Secondary battery system and vehicle |
JP2013140037A (en) * | 2011-12-28 | 2013-07-18 | Gs Yuasa Corp | Ocv characteristic estimation device for nonaqueous electrolyte secondary battery, ocv characteristic estimation method, power storage system, and battery pack |
JP2014062829A (en) * | 2012-09-21 | 2014-04-10 | Gs Yuasa Corp | State estimation apparatus, open circuit voltage characteristics generation method |
JP2015060761A (en) * | 2013-09-19 | 2015-03-30 | 株式会社東芝 | Deterioration diagnostic system and deterioration diagnostic method of secondary battery |
JP2016085166A (en) | 2014-10-28 | 2016-05-19 | 株式会社東芝 | Device and method of evaluating storage battery |
WO2017098686A1 (en) * | 2015-12-10 | 2017-06-15 | ソニー株式会社 | Battery pack, electricity storage device and deterioration detecting method |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF POWER SOURCES, vol. 229, 2013, pages 239 - 248 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021176745A1 (en) * | 2020-03-05 | 2021-09-10 | Tdk株式会社 | Control device for secondary battery, battery pack, and control method for secondary battery |
JP7490044B2 (en) | 2020-03-05 | 2024-05-24 | Tdk株式会社 | Secondary battery control device, battery pack, and secondary battery control method |
WO2021191993A1 (en) * | 2020-03-24 | 2021-09-30 | Tdk株式会社 | Control device for secondary battery, control system for secondary battery, and control method for secondary battery pack and secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7111015B2 (en) | Estimation device, power storage device, estimation method, and computer program | |
JP7322529B2 (en) | Estimation device, power storage device, estimation method, and computer program | |
US11181584B2 (en) | Storage amount estimation device, energy storage module, storage amount estimation method, and computer program | |
JP6409208B1 (en) | Storage amount estimation device, storage module, storage amount estimation method, and computer program | |
US20160204639A1 (en) | Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus | |
JP6443577B2 (en) | Management device, power storage module, management method, and computer program | |
WO2018181620A1 (en) | Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program | |
JP7115345B2 (en) | Estimation device, power storage device, estimation method, and computer program | |
US11237214B2 (en) | Estimation device, energy storage apparatus, estimation method, and computer program | |
JP7556287B2 (en) | Deterioration estimation device, deterioration estimation method, and computer program | |
WO2019017183A1 (en) | Estimation device, power storage device, estimation method, and computer program | |
JP6406469B1 (en) | Storage amount estimation device, storage module, storage amount estimation method, and computer program | |
JP6406470B1 (en) | Management device, power storage module, management method, and computer program | |
WO2018181624A1 (en) | Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program | |
WO2022202318A1 (en) | Estimating device, electricity storage module, estimating method, and computer program | |
WO2018221514A1 (en) | Management device, power storage module, management method, and computer program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18835384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018835384 Country of ref document: EP Effective date: 20200219 |