Nothing Special   »   [go: up one dir, main page]

WO2019082856A1 - 面状照明装置および液晶表示装置 - Google Patents

面状照明装置および液晶表示装置

Info

Publication number
WO2019082856A1
WO2019082856A1 PCT/JP2018/039243 JP2018039243W WO2019082856A1 WO 2019082856 A1 WO2019082856 A1 WO 2019082856A1 JP 2018039243 W JP2018039243 W JP 2018039243W WO 2019082856 A1 WO2019082856 A1 WO 2019082856A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
refractive index
high refractive
incident
index layer
Prior art date
Application number
PCT/JP2018/039243
Other languages
English (en)
French (fr)
Inventor
直良 山田
齊藤 之人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019551131A priority Critical patent/JP6833059B2/ja
Publication of WO2019082856A1 publication Critical patent/WO2019082856A1/ja
Priority to US16/856,618 priority patent/US10996510B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources

Definitions

  • the present disclosure relates to a planar illumination device and a liquid crystal display device including the planar illumination device.
  • a liquid crystal display (LCD: Liquid Crystal Display) has low power consumption, and its use is expanding year by year as a space-saving image display device.
  • the liquid crystal display device has a configuration in which a backlight unit, a backlight side polarizing plate, a liquid crystal panel, a viewing side polarizing plate and the like are provided in this order.
  • the backlight unit includes, for example, a light guide plate and a light source disposed on the end face thereof, and an edge light type (side light) for guiding light incident from the light source to the end face and irradiating the light from the entire main surface toward the liquid crystal panel
  • an edge light type side light
  • the direct type is known, in which the light source is disposed directly under the liquid crystal panel without using the light guide plate) and the light is directed toward the liquid crystal panel from the entire main surface of the light diffusion plate provided on the light source. It is done.
  • a backlight capable of local dimming is essential for improving the image quality of the LCD.
  • the edge light type backlight has been proposed to be configured to enable dimming by arranging a plurality of light guide plates, and it is possible to make the thickness of the backlight unit 1 mm or less.
  • the edge light type backlight there is a problem that the division number can not be increased.
  • the conventional direct type backlight can use several point light sources as light sources, and can dim several hundreds or more.
  • direct type backlight units are difficult to thin, and existing ones have a thickness of 15 mm or more.
  • the light diffusion plate provided in the direct-type backlight unit is disposed for the purpose of reducing unevenness in luminance (non-uniformity in in-plane luminance) in the plane of emitted light by diffusing light from the light source. .
  • LED (light emitting diode) light sources have been mainstream due to demand for power saving and miniaturization, but since the LED light sources have strong directivity, in the case of direct type, the LED directly above is very bright. Significant brightness unevenness occurs. It is difficult to reduce the thickness of the direct-type backlight unit because it is necessary to separate the distance between the light diffusion plate and the LED light source sufficiently to obtain the irradiation light with little unevenness in luminance over the entire light emitting surface.
  • JP 2010-277986 A (hereinafter referred to as Patent Document 1), a light beam from a light source is provided by providing a plurality of light guide layers on an LED light source and providing unevenness on the interface of the light guide layers.
  • a technology in which light is made to be reflected by asperities to be incident on a light guide layer, and it is thin and uniform in luminance although it is a direct backlight.
  • the present disclosure provides a planar illumination device and a liquid crystal display device including the planar illumination device capable of emitting illumination light having a thin shape and uniform uniformity and little luminance unevenness. To aim.
  • a planar illumination device of the present disclosure includes: a light source unit including a plurality of point light sources arranged in a two-dimensional array; A light intensity equalizing member having an incident surface on which light emitted from the light source portion is incident and an emission surface facing the incident surface and emitting light, and uniformizing the luminance of the light from the light source portion and emitting the same Equipped with
  • a high-refractive-index layer is formed by alternately laminating a high-refractive-index layer having a relatively high refractive index and a low-refractive-index layer having a relatively low refractive index in the direction perpendicular to the light emission surface
  • the light incident portion comprises a hollow portion penetrating at least one high refractive index layer provided over two or more high refractive index layers included in the laminated structure, and refraction or side wall surface of the hollow portion Has a function of causing light to enter the high refractive index layer by reflection,
  • Each high refractive index layer is provided with a light extraction mechanism for emitting the light guided through the high refractive index layer to the emission surface side at a position separated from the light incident portion.
  • the "high refractive index layer having a relatively high refractive index” and the “low refractive index layer having a relatively low refractive index” mean that the high refractive index layer has a high refractive index with respect to the refractive index of the low refractive index layer. It means that it is what it has.
  • the hollow portion may have a wide opening on the emission surface side, and the diameter may be smaller toward the opposing point light source.
  • the cavity may have a conical shape having an opening on the incident surface side of the position facing the point light source.
  • the hollow portion may have a cylindrical shape having an opening facing the opposing point light source.
  • a light reflecting member or a light absorbing member may be provided at a position where the cavity portion is sandwiched and opposed to the point light source in the laminated structure.
  • the distance from the light incident portion of the light extraction mechanism provided in the high refractive index layer is larger as the high refractive index layer is closer to the incident surface side.
  • the light extraction mechanism may be provided in an annular shape centered on the light incident portion.
  • the low refractive index layer is preferably an air layer.
  • the liquid crystal display device of the present disclosure includes a liquid crystal display element and the planar illumination device of the present disclosure.
  • planar illumination device of the present disclosure includes the brightness equalizing member configured as described above, a thin shape can be realized, and illumination light that is uniform and has less uneven brightness can be emitted.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device 1 according to an embodiment of the present invention.
  • the liquid crystal display device 1 includes a liquid crystal display element 50 in which the backlight is incident from the backlight incident surface opposite to the image display surface, and a backlight unit 2 disposed on the backlight incident surface side of the liquid crystal display element 50.
  • the backlight unit 2 is an embodiment of the planar illumination device of the present invention.
  • the backlight unit 2 includes a light source unit 10 including a plurality of point light sources 14 arranged in a two-dimensional array, an incident surface 20a on which light emitted from the light source unit 10 is incident, and light opposed to the incident surface 20a.
  • An emission surface 20 b for emitting light is provided, and a brightness uniforming member 20 for uniformizing the brightness of light from the light source unit 10 and emitting the light is provided.
  • the backlight unit 2 may include a prism sheet, a diffusion sheet, a phosphor sheet, a brightness enhancement sheet, and the like (not shown) between the brightness uniforming member 20 and the liquid crystal display element 50.
  • the liquid crystal display element 50 includes a liquid crystal panel, a viewing side polarizing plate provided on the viewing side, and a backlight side polarizing plate provided on the backlight side.
  • the light source unit 10 includes a reflector 12 in which point light sources 14 are arranged.
  • FIG. 2 is a schematic plan view of the light source unit 10. As shown in FIG. 2, the point light sources 14 are evenly arranged on the reflection plate 12 vertically and horizontally at predetermined intervals. And the light source part 10 is provided with the side wall 13 provided in the periphery of the reflecting plate 12, and has the reflective surface 13a inside.
  • the point light source 14 may be an LED or a laser light source.
  • a laser light source is preferable in terms of the improvement of color reproducibility and the ability to spread light in the in-plane direction more efficiently.
  • the light source may be a white light source, or a plurality of light sources of different emission colors may be used.
  • the light source may be a monochromatic light source. When a monochromatic light source is used, the backlight unit or the liquid crystal display element has a member containing a phosphor, and white light or other desired light emission is obtained by wavelength-converting the light emitted from the monochromatic light source with the phosphor. You can get the color.
  • an LED emitting blue or ultraviolet light can be used as a light source, and a quantum dot phosphor can be used as a phosphor. Since the number of point light sources is directly linked to the number of area divisions of local dimming, in order to increase the number of area divisions, it is necessary to increase the number of point light sources. The number can be increased by using smaller sized point light sources. As such a point light source 14, an LED having a size of 0.15 mm or less, preferably 0.1 mm or less is suitable.
  • the substrate on which the point light source 14 is disposed is not limited to the reflection plate. However, among the light emitted from the point light source 14 toward the luminance equalizing member 20, the light reflected by the luminance equalizing member 20 is further reflected to reflect the point light source 14 in order to increase the utilization efficiency of the light. It is preferable to arrange on the board 12.
  • the reflecting plate 12 is not particularly limited, and various known ones can be used. In order to use light efficiently, it is preferable to have a reflective surface with low absorption and high reflectance. For example, although what has a reflective surface which consists of a multilayer film using white PET (polyethylene terephthalate) and polyester-based resin is suitable, it is not restricted to this. Examples of multilayer film using polyester resin include ESR (trade name) manufactured by 3M.
  • the light emitted from the point light source 14 of the backlight unit 2 is incident on the brightness uniforming member 20 from the incident surface 20a, and the in-plane brightness is uniformized in the brightness uniforming member 20. It is emitted from the emission surface 20b in the state of being.
  • the backlight with high in-plane uniformity emitted from the backlight unit 2 can be made to be incident on the liquid crystal display element 50.
  • FIG. 3 is a schematic plan view (upper view) of a portion of the backlight unit 2 shown in FIG. 1 and a schematic cross-sectional view along the line III-III (lower view).
  • the luminance equalizing member 20 is a planar member that equalizes the luminance of the light from the light source unit 10 incident on the incident surface 20 a and emits the light from the light exit surface 20 b.
  • the emission surface 20b alternately includes high refractive index layers 22 (22a, 22b, 22c,...) Having relatively high refractive index, and low refractive index layers 24 having relatively low refractive index.
  • the light incident surface 20a of the brightness equalizing member 20 is a light source portion of the high refractive index layer disposed closest to the light source portion 10 of the laminated structure including a plurality of high refractive index layers 22 and low refractive index layers 24 laminated alternately. It is a face that faces ten.
  • the exit surface 20 b of the luminance uniformizing member 20 is a surface facing the liquid crystal display element 50 of the high refractive index layer disposed closest to the liquid crystal display element 50 in the laminated structure.
  • the brightness equalizing member 20 includes five high refractive index layers 22 in a laminated structure.
  • the high refractive index layers 22 and the low refractive index layers 24 are alternately stacked, it is sufficient to include at least two or more high refractive index layers 22. It is preferable that the number of high refractive index layers is three or more and ten or less in order to achieve sufficient uniformity of the brightness without sufficiently increasing the thickness as the brightness equalizing member.
  • the refractive index layer 22 At the interface between the high refractive index layer 22 and the low refractive index layer 24, in order to totally reflect more light incident on the interface from the high refractive index layer 22 side, the high refractive index layer 22 and the low refractive index layer 24
  • the refractive index difference of is preferably 0.2 or more.
  • the constituent materials of the high refractive index layer and the low refractive index layer are not particularly limited as long as the high refractive index layer has a refractive index higher than that of the low refractive index layer.
  • the low refractive index layer 24 is most preferably an air layer.
  • various known plate-like materials can be used as the high refractive index layer 22.
  • acrylic resin such as polyethylene terephthalate, polypropylene, polycarbonate and polymethyl methacrylate, benzyl methacrylate, MS resin (polymethacryl styrene), cycloolefin polymer, cycloolefin copolymer, cellulose acylate such as cellulose diacetate and cellulose triacetate, etc.
  • the light guide sheet formed with resin with high transparency similar to the light guide plate used for a well-known backlight apparatus is mentioned.
  • the resin is not limited to a thermoplastic resin, and may be, for example, an ionizing radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin or a thermosetting resin.
  • the thickness of one high refractive index layer 22 is preferably 2 ⁇ m to 100 ⁇ m.
  • the thickness of the low refractive index layer 24 (in the present embodiment, the air layer 24), that is, the gap between the high refractive index layers 22 may be any distance as long as the high refractive index layers 22 do not contact each other. preferable.
  • a spacer (not shown) is disposed in the air layer 24 in order to maintain a gap between the high refractive index layers 22, that is, to form the air layer 24.
  • the air layer 24 can be formed by dispersing and arranging silica spheres of several micrometers in diameter as the spacers between the high refractive index layers 22.
  • the brightness equalizing member 20 is provided with a light incident portion 30 at each position facing the plurality of point light sources 14 in the laminated structure.
  • the light incidence unit 30 causes the light from the point light source 14 to be incident on each of the high refractive index layers 22a, 22b, 22c,... Contained in the laminated structure.
  • the light incidence section 30 causes the light to enter the high refractive index layers 22a, 22b, 22c,... Under the condition that the light is totally reflected and guided in the respective high refractive index layers 22a, 22b, 22c.
  • the light incident portion 30 does not have to be made to enter the high refractive index layer 22 under the condition that all the light is totally reflected and guided in the high refractive index layer 22.
  • it is preferable that the light is incident on the high refractive index layer 22 under the condition in which more light is totally reflected and guided in the high refractive index layer 22.
  • the light incident portion 30 is provided for each point light source 14, it is possible to make the light from the point light source 14 uniform for each fixed region centered on each point light source 14.
  • the light incident portion 30 in the brightness equalizing member 20 is formed of a cylindrical hollow portion 31 which is a through hole penetrating the five high refractive index layers 22a to 22e.
  • the side wall surface of the hollow portion 31 is from the surface (hereinafter referred to as a side surface) having an inclination with respect to the surface of the high refractive index layer 22 (interface with the low refractive index layer 24) formed in the high refractive index layer 22.
  • the cavity 31 is configured to be surrounded by the side surface of the high refractive index layer, and the side wall surface of the cavity 31 is nothing but the side surface of the high refractive index layer.
  • the hollow portion 31 is a through hole penetrating the high refractive index layers 22a to 22e, but the light incident portion in the brightness uniforming member is provided over at least two high refractive index layers.
  • the hollow portion may be provided through at least one high refractive index layer thereof.
  • the light incident portion 30 has a function of causing light to be incident on the high refractive index layer by refraction or reflection on the side wall surface of the cavity portion 31.
  • the light incidence part 30 By the action of the light incidence part 30, the light emitted from the point light source 14 can be spread in the in-plane direction and guided.
  • a through hole is provided in each of the high refractive index layers 22a to 22e, and they are stacked so as to be continuous to form a hollow portion 31 composed of one through hole.
  • the light emitted from the point light source 14 enters the cavity 31, enters the side wall surface of the cavity 31, ie, the side surfaces 32a to 32e of the high refractive index layers 22a to 22e, and is refracted by the side surfaces 32a to 32e.
  • the direction of travel is changed. Under the present circumstances, if the incident angle to the interface with the low refractive index layer (air layer) 24 of light refracted by the side surfaces 32a to 32e and incident on the high refractive index layers 22a to 22e is equal to or more than the total reflection angle.
  • the light is guided in the in-plane direction by repeating total reflection in each of the high refractive index layers 22a to 22e.
  • light incident on the interface at an angle of less than the total reflection angle is emitted from the high refractive index layer 22.
  • the light emitted from the incident surface 20a of the brightness uniforming member 20 is reflected by the reflection plate 12 and returned to the output surface 20b side.
  • the hollow portion 31 may be filled with a low refractive material, but in order to make much of the light from the point light source enter the high refractive index layer 22 and to guide the light, the low refractive material and each high refractive index The difference in refractive index with the layer 22 is preferably large. Most preferably, cavity 31 is a void filled with air.
  • the side wall surface of the hollow portion 31 may be subjected to anti-reflection processing.
  • the anti-reflection treatment may include laminating a thin layer having a specific refractive index and film thickness, providing a moth-eye structure on the surface, and the like. By performing the anti-reflection process, more light from the point light source can be incident on the high refractive index layer 22.
  • the opening of the hollow portion 31 has a size equal to or larger than the size of the point light source, and has a size capable of including the point light source 14 in the opening in plan view.
  • the hollow portion 31 having the same opening diameter is provided across all the high refractive index layers 22a to 22e.
  • the aperture diameter of the holes provided in each of the high refractive index layers 22a to 22e may not necessarily be the same.
  • the brightness equalizing member 20 of the present embodiment is provided with a light reflecting member 36 facing the opening on the emission surface 20 b side of the hollow portion 31.
  • the light reflecting member 36 suppresses that the light emitted from the point light source 14 passes through the hollow portion 31 and is emitted from the emission surface 20 b as it is.
  • the light reflecting member 36 is a member that reflects 50% or more of light but transmits light of an amount greater than at least 0%.
  • a light absorbing member may be provided instead of the light reflecting member 36.
  • the light absorbing member is a member that absorbs 50% or more of light, but transmits at least an amount of light greater than 0%.
  • the high refractive index layer 22 is a light for causing the light guided through the high refractive index layer 22 to exit from the surface on the exit surface 20 b side of the high refractive index layer 22 at a position separated from the light incident portion 30.
  • the takeout mechanism 40 is provided.
  • the light extraction mechanism 40 breaks the total reflection condition of light in the high refractive index layer 22 when light being repeatedly guided by total reflection is incident on the light extraction mechanism 40, and the high refractive index layer 22 As long as the light is emitted from the light source.
  • the light extraction mechanism 40 is configured by the concave portion provided on the surface of the high refractive index layer 22.
  • a light extraction mechanism 40 is provided in each of the high refractive index layers 22a to 22e.
  • the plan view of FIG. 3 shows a part of the exit surface 20b of the luminance equalizing member 20 constituted by the high refractive index layer 22e disposed closest to the liquid crystal display element 50.
  • the light extraction mechanism 40 is an annular recess having a cross section of an inverted triangle.
  • a plurality of annular concave portions are provided concentrically, but the number and arrangement thereof may be appropriately set.
  • the light extraction mechanism 40 is located at a position closer to the light incident portion 30 as the high refractive index layer is closer to the incident surface 20a side of the brightness equalizing member 20. It is provided. That is, the plurality of high refractive index layers 22a to 22e provided in the brightness uniforming member 20 are provided with concentric recesses whose minimum radius gradually increases as the high refractive index layer disposed on the incident surface 20a side increases. . With this configuration, it is possible to perform light extraction after light is expanded and guided in the in-plane direction toward the high refractive index layer closer to the incident surface 20 a. The higher the refractive index layer disposed on the incident surface 20 a side, the larger the amount of light that is incident, so the effect of making the luminance uniform is high.
  • the light extraction mechanism 40 is formed of a recess provided as a continuous ring, but one annular light extraction mechanism 40 is discretely disposed in an annular shape. You may be comprised by the several recessed part. Moreover, the light extraction mechanism 40 may not necessarily be provided in an annular shape.
  • the light extraction mechanism 40 may be a convex portion. Further, the shape of the concave portion or the convex portion constituting the light extraction mechanism is not particularly limited, and may be a quadrangular pyramid (pyramid shape) hemispherical, conical, polygonal pyramid, or truncated cone, polygonal pyramid, etc. May be
  • the light extraction mechanism may be a light scattering structure provided internally or on the surface.
  • the high refractive index layer has a light scattering structure
  • the light which is input by the light incident portion and is totally reflected and guided in the high refractive index layer is scattered by the light scattering structure, and the light is emitted from the high refractive index layer It can be done.
  • the light scattering structure can be produced by disposing the light scattering particles inside or on the surface of the high refractive index layer, or by providing a fine uneven structure on the surface.
  • the light scattering structure should appropriately adjust its formation density so that the balance between the amount of light spreading in the plane of the high refractive index layer and the amount of light emitted from the high refractive index layer is appropriate. Is preferred.
  • the light extraction mechanism may be randomly arranged in the high refractive index layer, may be periodically arranged, or may be arranged to have a distribution structure in the plane.
  • the light extraction mechanism when the light extraction mechanism is provided on the surface of the high refractive index layer, it may be provided not only on one side but also on both sides.
  • those structures can also serve as the above-described spacer for forming the air layer 24.
  • the luminance equalizing member 20 is provided with the light incident portion 30 to guide light through the plurality of high refractive index layers 22a to 22e in a direction away from the point light source in the lateral direction (in-plane direction). Since the light can be expanded, it is possible to realize uniform luminance and to emit light with less luminance unevenness. Since each high refractive index layer is provided with side surfaces 32a to 32e that constitute the side wall surface of the cavity, light can be incident from the side surfaces 32a to 32e into the respective high refractive index layers 22a to 22e. The uptake efficiency of is high and the light utilization efficiency is excellent. Further, since the plurality of high refractive index layers can be provided as many light extraction mechanisms as the entire brightness equalizing member, it is possible to further improve the brightness uniformity and the light use efficiency.
  • the backlight unit 2 includes the above-described brightness uniforming member 20, and can emit light with uniform brightness, so a thick space is not necessary between the light source unit 10 and the brightness uniforming member 20. is there. Therefore, the direct type backlight can be made much thinner than the conventional one. Since the backlight unit 2 is a direct type, multi-segment local dimming can be performed as many as the number of point light sources provided.
  • thinning of the backlight unit 2 can realize thinning of the liquid crystal display device 1 as a whole. Furthermore, since the backlight unit 2 can emit a backlight with sufficiently high luminance uniformity, the distance between the backlight unit 2 and the liquid crystal display element 50 can also be narrowed, and the liquid crystal display device Further reduction in thickness can be achieved.
  • FIGS. 4 to 9 are enlarged schematic views of a part of the brightness uniforming member, showing a region including one point light source 14 and one light incident portion disposed facing the point light source 14. There is.
  • FIG. 4 is a schematic cross-sectional view for explaining the light incident part 30A of the design modification example 1 of the luminance equalizing member.
  • the brightness equalizing member of FIG. 4 has a laminated structure in which three high refractive index layers 22 a to 22 c are alternately laminated with the air layer 24.
  • the light incident portion 30A is composed of a hollow portion 31A provided to penetrate the two high refractive index layers 22a and 22b on the side of the point light source 14 among the three high refractive index layers 22a to 22c.
  • the side wall surfaces of the hollow portion 31A consist of the side surfaces 32a and 32b of the high refractive index layers 22a and 22b.
  • the light scattering portion 38 is in a region facing the opening of the hollow portion 31A of the high refractive index layer 22c disposed closest to the liquid crystal display element side constituting the light emitting surface of the brightness equalizing member. It is provided.
  • the light scattering portion 38 is a region in which scattering particles are dispersed in the high refractive index layer 22c. The light scattering portion 38 suppresses that the light emitted from the point light source 14 passes through the cavity portion 31A and is emitted as it is from the emission surface 20b.
  • the light emitted from the point light source 14 enters the cavity 31A.
  • the light incident on the side wall surface (side surfaces 32a and 32b) after entering the cavity 31A is refracted at the side wall surface and introduced into the high refractive index layers 22a and 22b, and the light satisfying the total reflection condition is guided in the in-plane direction It is illuminated and spreads.
  • the light having passed through the cavity 31A enters the scattering unit 38 and is scattered by the light scattering unit 38.
  • a part of the light incident on the light scattering portion 38 is emitted as a scattered light from the emission surface, and a part of the light is repeatedly reflected and refracted in the brightness equalizing member, and at least a part of them is repeatedly emitted in the high refractive index layer 22. It propagates and spreads in the in-plane direction.
  • the light guided in the in-plane direction in the high refractive index layers 22a to 22c is emitted from the high refractive index layer 22 by the light extraction mechanism not shown in FIG. 4, and finally the light emitting surface of the luminance equalizing member It is emitted from
  • FIG. 5 is a cross-sectional schematic diagram of the design modification 2 of a brightness equalizing member.
  • the brightness equalizing member of FIG. 5 has a laminated structure in which four high refractive index layers 122 a to 122 d are alternately laminated with the air layer 24.
  • the light incident portion 130 is formed of a hollow portion 131 having a wide opening on the light emitting surface side in the laminated structure and having a smaller diameter toward the opposing point light source.
  • the hollow portion 131 penetrates the high refractive index layers 122 d and 122 c on the emission surface side, and a conical concave portion whose tip is closed is provided in the high refractive index layer 122 b.
  • the side wall surfaces of the cavity portion 131 constituting the light incident portion 130 are formed of the side surfaces 132 b to 132 d of the high refractive index layers 122 b to 122 d.
  • the side surfaces 132b to 232d of the high refractive index layers 122b to 222d are surfaces formed by providing the holes penetrating through the high refractive index layers 122c to 122d and the conical recesses in the high refractive index layer 122b.
  • the light emitted from the point light source 14 is totally reflected by the side wall surface (side surfaces 132 b to 132 d of the high refractive index layer) of the cavity portion 131 to enter the high refractive index layers 122 b to 122. It is introduced inside.
  • the side wall surfaces (side surfaces 132b to 132d of the high refractive index layer) of the cavity portion 131 are totally reflected by the side wall surfaces and light introduced into the high refractive index layer is guided while repeating total reflection inside the high refractive index layer.
  • the inclination angle of the side wall surface with respect to the interface between the high refractive index layer and the low refractive index layer is adjusted.
  • the side wall surface of the cavity portion 131 in the present embodiment is a curved surface in which the inclination angle gradually changes.
  • both the light incident surface side and the light emitting surface side are provided to the high refractive index layer 122a constituting the light incident surface of the brightness uniforming member and the high refractive index layer 122d constituting the light exit surface.
  • FIG. 6 is a schematic cross-sectional view of design modification example 3 of the luminance uniformizing member.
  • the brightness equalizing member of FIG. 6 has a laminated structure in which five high refractive index layers 222 a to 222 e are alternately laminated with the air layer 24.
  • the light incident portion 230 is a conical hollow portion 231 provided in the laminated structure and having an opening on the incident surface side of the position facing the point light source 14.
  • the hollow portion 231 penetrates the high refractive index layers 222a to 222d, and has a conical apex in the high refractive index layer 222e which constitutes the exit surface of the luminance uniformizing member.
  • the side wall surface of the hollow portion 231 is composed of the side surfaces 232a to 232e of the high refractive index layers 222a to 222e.
  • the side surfaces 232a to 232e of the high refractive index layers 222a to 222e are surfaces formed by providing the holes penetrating the high refractive index layers 222a to 222d and the concave portions in the conical tip portion in the high refractive index layer 222e. .
  • the opening of the conical cavity 231 is the portion that falls on the bottom of the cone.
  • the aperture and the point light source 14 are disposed to face each other, and the aperture size is preferably equal to or larger than the size of the point light source 14.
  • the light emitted from the point light source 14 is incident on the side wall surfaces (side surfaces 232a to 232e of the high refractive index layer) of the hollow portion 231 constituting the light incident portion 230 and is refracted. It is led to the refractive index layers 222a to 222e.
  • the inclination angle of the sidewall surface with respect to the interface between the high refractive index layer and the low refractive index layer is adjusted so that the refracted light is guided while repeating total reflection inside each of the high refractive index layers 222a to 222e.
  • FIG. 7 is a schematic cross-sectional view of design modification example 4 of the luminance uniformizing member.
  • the brightness equalizing member of FIG. 7 has a laminated structure in which four high refractive index layers 322 a to 322 d are alternately laminated with the air layer 24.
  • the light incident portion 330 is formed of a partially conical hollow portion 331 having an opening on the incident surface side of the position facing the point light source 14 provided in the laminated structure.
  • the hollow portion 331 penetrates the high refractive index layers 322a to 322c, and has a conical apex in the high refractive index layer 322d that constitutes the exit surface of the brightness uniforming member.
  • the side wall surfaces of the hollow portion 332 are composed of side surfaces 332a to 332d of the high refractive index layers 322a to 322d.
  • the side surfaces 332a to 332d of the high refractive index layers 322a to 322d are surfaces formed by providing the holes penetrating the high refractive index layers 322a to 322c and the concave portions in the conical tip portion in the high refractive index layer 322d. .
  • the inclination of the side wall surface of the hollow portion 331 is different between the high refractive index layer 322a disposed closest to the light source portion and the other high refractive index layers 322b to 322d.
  • the side wall surfaces of the cavity 331 may have different inclination angles between the high refractive index layers.
  • FIG. 8 is a schematic cross-sectional view of design modification example 5 of the luminance uniformizing member.
  • the brightness equalizing member shown in FIG. 8 has a laminated structure in which four high refractive index layers 422 a to 422 d are alternately laminated with the air layer 24.
  • the light incident portion 430 includes a cavity 431 provided over the high refractive index layers 422 a and 422 b and a cavity 433 provided over the high refractive index layers 422 c and 422 d.
  • the cavity 431 has a conical shape having an opening on the incident surface side of the position facing the point light source 14, has a cavity 433 and a wide opening on the emission surface side, and has a diameter toward the opposing point light source 14 Has a smaller shape.
  • the light incident portion 430 may be configured of a plurality of hollow portions 431 and 433.
  • FIG. 9 is a schematic cross-sectional view of design modification example 6 of the luminance uniformizing member.
  • the brightness equalizing member in FIG. 9 has a laminated structure in which four high refractive index layers 522 a to 522 d are alternately laminated with the air layer 24.
  • the light incident portion 530 is formed of a partially conical hollow portion 531 having an opening on the incident surface side of the position facing the point light source 14 provided across the two high refractive index layers 522 b and 522 c.
  • the light incident portion 530 is not provided in the high refractive index layer 522d that constitutes the light exit surface of the brightness uniforming member and the high refractive index layer 522a that constitutes the light incident surface of the brightness uniforming member.
  • the light incident part 530 may be provided inside the laminated structure.
  • the brightness equalizing member provided with through holes penetrating all high refractive index layers as shown in FIG. 1 is machine-cut or laser-irradiated in a state where a plurality of light guide sheets forming the high refractive index layer are laminated.
  • the through holes are formed, and the plurality of light guide sheets can be manufactured by providing an air layer between the respective light guide sheets and laminating them.
  • a mold is produced for each high refractive index layer and the imprinting using the mold is performed on the brightness equalizing member having a light incident portion including a cavity having a complicated shape as shown in FIGS. 4 to 9.
  • a plurality of light guide sheets having different recesses or holes can be manufactured, and an air layer can be provided between the light guide sheets and laminated.
  • the light extraction mechanism may be imprinted.
  • the light extraction mechanism may be produced by scratching the surface.
  • a low refractive material may be embedded in the holes and recesses provided in the high refractive index layer, which constitute the cavity provided in the laminated structure.
  • planar illumination device of the present disclosure can be used not only as a backlight unit in the above-described liquid crystal display device, but also as a backlight for a signboard, a sign, etc., an indoor light, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

薄型な形状であり、かつ均一で輝度むらが少ない照明光を出射する面状照明装置および面状照明装置を備えた液晶表示装置を提供する。 面状照明装置は、複数の点光源を備えた光源部と、光の輝度を均一化して出射する輝度均一化部材とを備える。輝度均一化部材が、高屈折率層と低屈折率層との積層構造を有し、複数の点光源に対向する各位置に、点光源からの光を積層構造に含まれている高屈折率層へ入射させる光入射部を備える。光入射部は、積層構造に含まれる2層以上の高屈折率層に亘って設けられた、少なくとも1層の高屈折率層を貫通する空洞部からなり、空洞部の側壁面での屈折または反射によって光を高屈折率層に入射させる機能を有し、高屈折率層が、光入射部から離間した位置に、高屈折率層を導光される光を出射面側に出射させる光取出し機構を備える。

Description

面状照明装置および液晶表示装置
 本開示は、面状照明装置および面状照明装置を備えた液晶表示装置に関する。
 液晶表示装置(LCD:Liquid Crystal Display)は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、一例として、バックライトユニット、バックライト側偏光板、液晶パネルおよび視認側偏光板などを、この順で設けられた構成となっている。
 バックライトユニットとしては、例えば、導光板と、その端面に配置した光源を備え、光源から端面に入射された光を導光して主面全体から液晶パネルに向け照射するエッジライト型(サイドライト型と称する場合もある)や、導光板を用いず、液晶パネルの直下に光源を配置して、光源上に備えられた光拡散板の主面全体から液晶パネルに向け照射する直下型が知られている。
 LCDの高画質化のためには、ローカルディミングが可能なバックライトが必須である。エッジライト型バックライトは導光板を複数並べることでディミングを可能とした構成が提案されており、バックライトユニットとしての厚みを1mm以下とすることが可能である。一方で、エッジライト型バックライトでは分割数を大きくできないという課題がある。他方、従来の直下型バックライトは光源として複数の点光源を用いることにより、数百分割以上のディミングが可能である。
 しかしながら、直下型バックライトユニットは薄型化が困難であり、既存のものでは15mm以上の厚みがある。直下型バックライトユニットに備えられている光拡散板は、光源からの光を拡散させることにより、出射光の面内における輝度ムラ(面内輝度の不均一性)を低減する目的で配置される。近年、省電力化および小型化の要請により、LED(light emitting diode)光源が主流であるが、このLED光源は、指向性が強いため、特に直下型の場合には、LED直上が非常に明るくなり著しい輝度ムラが生じる。直下型バックライトユニットの薄型化が難しいのは、光出射面全体で輝度ムラの少ない照射光を得るためには、光拡散板とLED光源の距離を十分離す必要があるためである。
 特開2010-277986号公報(以下において、特許文献1という。)には、LED光源上に複数層の導光層を備え、導光層の界面に凹凸を設けることで、光源からの光線を凹凸で反射させて導光層へ入射させ、直下型バックライトでありながら薄型で輝度均一化を図った技術が開示されている。
 しかしながら、本発明者らの検討によれば、特許文献1の技術では、光源から出射された光を各導光層へ充分に効率よく入射させることが困難であり、輝度むらの抑制や光利用効率の向上を十分に実現することができない。
 本開示は、上記事情に鑑み、薄型な形状であり、かつ均一で輝度むらが少ない照明光を出射することができる面状照明装置および面状照明装置を備えた液晶表示装置を提供することを目的とする。
 本開示の面状照明装置は、二次元配列された複数の点光源を備えた光源部と、
 光源部から出射された光が入射される入射面、および入射面に対向する、光を出射する出射面を有し、かつ光源部からの光の輝度を均一化して出射する輝度均一化部材とを備え、
 輝度均一化部材が、相対的に高い屈折率である高屈折率層と相対的に低い屈折率である低屈折率層とが交互に出射面に垂直な方向に積層され、かつ高屈折率層を2層以上含む積層構造を有し、
 積層構造中の、複数の点光源に対向する各位置に、点光源からの光を積層構造に含まれている高屈折率層へ入射させる光入射部であって、光が高屈折率層中を全反射して導光される条件で光を高屈折率層に入射させる光入射部を備え、
 光入射部が、積層構造に含まれる2層以上の高屈折率層に亘って設けられた、少なくとも1層の高屈折率層を貫通する空洞部からなり、空洞部の側壁面での屈折または反射によって光を高屈折率層に入射させる機能を有し、
 各高屈折率層が、光入射部から離間した位置に、高屈折率層を導光される光を出射面側に出射させる光取出し機構を備えている。
 「相対的に高い屈折率である高屈折率層」および「相対的に低い屈折率である低屈折率層」とは、高屈折率層が低屈折率層の屈折率に対して高い屈折率を有するものであることを意味する。
 本開示の面状照明装置においては、空洞部が、出射面側に広い開口を有し、対向する点光源に向かって径が小さくなる形状であってもよい。
 本開示の面状照明装置においては、空洞部が、点光源に対向する位置の入射面側に開口を有する円錐形状であってもよい。
 本開示の面状照明装置においては、空洞部が、対向する点光源に面して開口を有する円筒形状であってもよい。
 本開示の面状照明装置においては、積層構造の、空洞部を挟み点光源に対向する位置に光反射部材または光吸収部材を備えていてもよい。
 本開示の面状照明装置においては、高屈折率層に備えられている光取出し機構の光入射部からの距離が、入射面側に近い高屈折率層ほど大きいことが好ましい。
 本開示の面状照明装置においては、光取出し機構が、光入射部を中心とする円環状に設けられていてもよい。
 本開示の面状照明装置においては、低屈折率層が空気層であることが好ましい。
 本開示の液晶表示装置は、液晶表示素子と、本開示の面状照明装置とを備えている。
 本開示の面状照明装置は、上記構成の輝度均一化部材を備えているので、薄型な形状を実現することができ、かつ均一で輝度ムラが少ない照明光を出射することができる。
本発明の一実施形態の液晶表示装置の概略構成を示す断面模式図である。 バックライトユニットの光源部の平面模式図である。 バックライトユニットの輝度均一化部材の一部の平面模式図および断面模式図である。 輝度均一化部材の設計変更例1の一部を示す断面模式図である。 輝度均一化部材の設計変更例2の一部を示す断面模式図である。 輝度均一化部材の設計変更例3の一部を示す断面模式図である。 輝度均一化部材の設計変更例4の一部を示す断面模式図である。 輝度均一化部材の設計変更例5の一部を示す断面模式図である。 輝度均一化部材の設計変更例6の一部を示す断面模式図である。
 以下、本発明の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。なお、視認しやすくするため、図面中の各構成要素の縮尺等は実際のものとは適宜変更している。また、本明細書において「~」を用いて表される数値範囲は、特に断りが無い限り「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 図1は本発明の一実施形態の液晶表示装置1の概略構成を示す断面図である。
 液晶表示装置1は、画像表示面と反対側のバックライト入射面からバックライトが入射される液晶表示素子50と、液晶表示素子50のバックライト入射面側に配置されたバックライトユニット2とを備えている。バックライトユニット2は、本発明の面状照明装置の一実施形態である。
 バックライトユニット2は、二次元配列された複数の点光源14を備えた光源部10と、光源部10から出射された光が入射される入射面20a、および入射面20aに対向する、光を出射する出射面20bを備え、光源部10からの光の輝度を均一化して出射する輝度均一化部材20とを備えている。また、バックライトユニット2は、輝度均一化部材20と液晶表示素子50との間に、図示しないプリズムシート、拡散シート、蛍光体シートおよび輝度向上シートなどを含んでいてもよい。
 液晶表示素子50は、液晶パネル、その視認側に設けられた視認側偏光板およびバックライト側に設けられたバックライト側偏光板を含む。
 光源部10は、点光源14が配列されている反射板12を含む。図2は、光源部10の平面模式図である。図2に示すように点光源14は、反射板12上に縦横に所定の間隔で均等に配置されている。そして、光源部10は、反射板12の周縁に設けられた、内側に反射面13aを有する側壁13を備えている。
 点光源14は、LEDであっても良いし、レーザー光源であってもよい。色再現性の向上と、より効率良く光を面内方向に拡げることができる点で、レーザー光源が好ましい。また、光源は白色光源であっても良いし、異なる発光色の光源が複数使用されてもよい。さらに、光源は単色光源であっても良い。単色光源を用いる場合には、バックライトユニット、もしくは液晶表示素子が蛍光体を含む部材を有し、単色光源から出射した光を前記蛍光体で波長変換することによって、白色光やその他所望の発光色を得ることができる。たとえば、光源として青色または紫外線を発光するLEDを用い、蛍光体として量子ドット蛍光体を用いることができる。点光源の数はローカルディミングのエリア分割数に直結するため、エリア分割数を上げるためには、点光源の数を増加させる必要がある。より小さいサイズの点光源を用いることにより、個数を増加させることができる。このような点光源14としては、サイズが0.15mm以下、好ましくは0.1mm以下のLEDが好適である。
 点光源14が配置される基板は反射板に限らない。しかしながら、点光源14から輝度均一化部材20に向けて出射された光のうち、輝度均一化部材20により反射された光をさらに反射させて光の利用効率を上げるために、点光源14を反射板12上に配置することが好ましい。反射板12は、特に制限なく、公知のものが、各種、利用可能である。光を効率的に用いるために、吸収が小さく反射率が高い反射面を有することが好ましい。例えば、白色PET(polyethylene terephthalate)やポリエステル系樹脂を用いた多層膜フイルムからなる反射面を有するものが好適であるが、これに限るものではない。ポリエステル系樹脂を用いた多層膜フイルムとしては、例えば、3M社製のESR(商品名)が挙げられる。
 本液晶表示装置1においては、バックライトユニット2の点光源14から出射された光は、輝度均一化部材20に、その入射面20aから入射され、輝度均一化部材20において面内輝度が均一化された状態で出射面20bから出射される。バックライトユニット2から出射された面内均一性の高いバックライトを、液晶表示素子50に入射させることができる。
 図1と共に図3を参照して、本実施形態の輝度均一化部材20について詳細に説明する。図3は、図1に示すバックライトユニット2の一部の平面模式図(上図)およびIII-III線断面模式図(下図)である。
 輝度均一化部材20は、入射面20aに入射された光源部10からの光の輝度を均一化して出射面20bから出射する面状の部材である。
 輝度均一化部材20は、相対的に高屈折率である高屈折率層22(22a,22b,22c…)と、相対的に低屈折率である低屈折率層24とが交互に出射面20bに垂直な方向に積層された積層構造を有している。輝度均一化部材20の入射面20aは、交互に積層された複数の高屈折率層22および低屈折率層24からなる積層構造の最も光源部10側に配置された高屈折率層の光源部10に対面する面である。また、輝度均一化部材20の出射面20bは、積層構造の最も液晶表示素子50側に配置された高屈折率層の液晶表示素子50に対面する面である。
 本例において、輝度均一化部材20は積層構造中に5層の高屈折率層22を備えている。しかしながら、高屈折率層22と低屈折率層24とが交互に積層された積層構造としては、少なくとも2層以上の高屈折率層22を含んでいればよい。輝度均一化部材としての厚みが厚くなりすぎず、十分な輝度均一化を図るには、高屈折率層は3層以上、10層以下であることが好ましい。
 なお、以下において、複数の高屈折率層22の各層を区別する必要のある場合には、高屈折率層22a,22b,22c…と表記し、特に区別する必要のない場合には、単に高屈折率層22と表記する。
 高屈折率層22と低屈折率層24との界面において、高屈折率層22側から界面に入射する光をより多く全反射させるためには、高屈折率層22と低屈折率層24との屈折率差は、0.2以上であることが好ましい。
 高屈折率層および低屈折率層の構成材料は、高屈折率層が低屈折率層より高い屈折率を有するものであれば特に限定されない。低屈折率層24としては、空気層が最も好ましい。高屈折率層22としては、公知の板状物(シート状物)が、各種、利用可能である。一例として、ポリエチレンテレフタレート、ポリプロピレン、ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ベンジルメタクリレート、MS樹脂(ポリメタクリルスチレン)、シクロオレフィンポリマ、シクロオレフィンコポリマ、セルロースジアセテートやセルローストリアセテートなどのセルロースアシレート等、公知のバックライト装置に用いられる導光板と同様の透明性が高い樹脂で形成された導光シートが挙げられる。上記樹脂は熱可塑性樹脂に限らず、例えば、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂あるいは熱硬化性樹脂であってもよい。
 高屈折率層22の一層分の厚みは2μm~100μmが好ましい。
 低屈折率層24(本実施形態においては空気層24)の厚み、すなわち高屈折率層22間の空隙は、高屈折率層22同士が接触しない距離であればよく、0μmより大きく10μm以下が好ましい。この空気層24には高屈折率層22間の空隙を維持するため、すなわち、空気層24を形成するための図示しないスペーサが配置されている。例えば、直径数μmオーダーのシリカ球をスペーサとして高屈折率層22間に分散配置させることにより、空気層24を形成することができる。
 輝度均一化部材20は、積層構造中の、複数の点光源14に対向する各位置に光入射部30を備えている。光入射部30は、点光源14からの光を積層構造に含まれている各高屈折率層22a,22b,22c…へ入射させる。この場合、光入射部30は、光が各高屈折率層22a,22b,22c…中を全反射して導光される条件で光を高屈折率層22a,22b,22c…に入射させる。但し、光入射部30は、すべての光が高屈折率層22中で全反射して導光される条件で高屈折率層22に入射させるものである必要はない。しかしながら、より多くの光が高屈折率層22中で全反射して導光される条件で高屈折率層22に入射させることが好ましい。
 点光源14毎に光入射部30を備えているので、各点光源14を中心とした一定の領域毎に、点光源14からの光の均一化を図ることができる。
 輝度均一化部材20における光入射部30は、5層の高屈折率層22a~22eを貫く貫通孔である円筒状の空洞部31からなる。空洞部31の側壁面は、高屈折率層22に形成された、高屈折率層22の表面(低屈折率層24との界面)に対して傾きを有する面(以下において側面という。)からなる。言い換えると、空洞部31は、高屈折率層の側面により囲まれて構成されるものであり、空洞部31の側壁面は、高屈折率層の側面に他ならない。
 なお、本実施形態においては、空洞部31が高屈折率層22a~22eを貫く貫通孔であるが、輝度均一化部材における光入射部としては、少なくとも2層の高屈折率層に亘って設けられた空洞部であって、そのうちの少なくとも1層の高屈折率層を貫通して設けられていればよい。
 光入射部30は、空洞部31の側壁面での屈折または反射によって光を高屈折率層に入射させる機能を有する。この光入射部30の作用により、点光源14から出射された光を面内方向に拡げて導光させることができる。
 各高屈折率層22a~22eにはそれぞれに貫通孔が設けられており、それらが連続するように積層されて1つの貫通孔からなる空洞部31が構成されている。点光源14から出射した光は、空洞部31に入射し、空洞部31の側壁面、すなわち各高屈折率層22a~22eの側面32a~32eに入射し、その側面32a~32eで屈折して進行方向が変化される。この際、側面32a~32eで屈折してそれぞれ高屈折率層22a~22eに入射された光の、低屈折率層(空気層)24との界面への入射角が全反射角以上であれば、光は各高屈折率層22a~22e中でそれぞれ全反射を繰り返して面内方向に導光される。他方、上記界面に全反射角未満で入射する光は、高屈折率層22から出射される。なお、輝度均一化部材20の入射面20aから出射した光は反射板12で反射されて出射面20b側に戻される。
 空洞部31は、低屈折材料が充填されていてもよいが、点光源からの光の多くを高屈折率層22に入射させ、かつ導光させるためには、低屈折材料と各高屈折率層22との屈折率差は大きい方が好ましい。空洞部31は、空気で満たされた空隙であることがもっとも好ましい。
 また、空洞部31の側壁面は、反射防止処理がなされていてもよい。反射防止処理としては、特定の屈折率および膜厚を有する薄層を積層することや、表面にモスアイ構造を設けること等が含まれ得る。反射防止処理を施すことにより、点光源からの光をより多く高屈折率層22に入射させることができる。
 空洞部31の開口は、点光源のサイズと同一以上の大きさであり、平面視において、点光源14を開口中に内包できる大きさである。
 本実施形態においては、全ての高屈折率層22a~22eに亘って同一の開口径の空洞部31が設けられている。しかしながら、各高屈折率層22a~22eに設けられている孔の開口径は必ずしも同一でなくてもよい。
 本実施形態の輝度均一化部材20は、空洞部31の出射面20b側の開口に対向して光反射部材36を備えている。光反射部材36は、点光源14から出射した光が空洞部31を通過してそのまま出射面20bから出射されるのを抑制する。一方で光反射部材36に積層構造側から入射する光の一部を透過させることにより、点光源14の直上において一定の輝度を確保する。
 したがって、光反射部材36は、50%以上の光を反射するが、少なくとも0%よりも大きい量の光を透過する部材である。
 なお、光反射部材36に代えて光吸収部材を備えていてもよい。光吸収部材は、50%以上の光を吸収するが、少なくとも0%よりも大きい量の光を透過する部材を用いる。
 また、高屈折率層22は、光入射部30から離間した位置に、高屈折率層22を導光される光を、高屈折率層22の出射面20b側の面から出射させるための光取出し機構40を備えている。
 光取出し機構40は、高屈折率層22中において、全反射を繰り返して導光している光がその光取出し機構40に入射した場合にその光の全反射条件を崩し、高屈折率層22から光を出射させる構造であればよい。本実施形態においては、高屈折率層22の表面に備えられた凹部により光取出し機構40が構成される。
 高屈折率層22a~22eにはそれぞれ光取出し機構40が設けられている。図3の平面図は、最も液晶表示素子50側に配置された高屈折率層22eにより構成される輝度均一化部材20の出射面20bの一部を示す。本実施形態において光取出し機構40は、倒立三角形の断面を有する円環状の凹部である。各高屈折率層22a~22eにおいて、円環状の凹部は同心円状に複数設けられているが、その個数および配置は適宜設定すればよい。
 本実施形態においては、高屈折率層22a~22eのうち、輝度均一化部材20の入射面20a側に近い高屈折率層ほど、光入射部30から距離が離れた位置に光取出し機構40が設けられている。すなわち、輝度均一化部材20に備えられている複数の高屈折率層22a~22eは、入射面20a側に配置された高屈折率層ほど最少半径が漸次大きくなる同心円状の凹部を備えている。本構成により、入射面20aに近い高屈折率層ほど光を面内方向により拡げて導光させた上で、光取出しを行うことができる。入射面20a側に配置された高屈折率層ほど入射される光の量が多いため、輝度の均一化の効果が高い。
 なお、本実施形態において、光取出し機構40は、連続的な円環として設けられた凹部からなるものとしたが、1つの円環状の光取出し機構40が、円環状に離散的に配置された複数の凹部により構成されていてもよい。また、光取出し機構40は、必ずしも円環状に設けられていなくてもよい。光取出し機構40は凸部であってもよい。また、光取出し機構を構成する凹部あるいは凸部の形状は、特に限定されず、四角錐状(ピラミッド形状)半球状、円錐状、多角錐状、あるいは円錐台状、多角錐台状などであってもよい。
 また、光取出し機構は、内部または表面に設けられた光散乱構造であってもよい。高屈折率層が光散乱構造を有する場合、光入射部により入力され高屈折率層中を全反射して導光されている光が光散乱構造で散乱され、高屈折率層から光を出射させることができる。光散乱構造は、高屈折率層の内部または表面に光散乱粒子を配置すること、あるいは、表面に微細な凹凸構造を設けること等によって、作製することができる。また、光散乱構造は、高屈折率層内を面内に拡がる光の量と、高屈折率層から出射する光の量とのバランスが適切になるように、その形成密度を適宜調整することが好ましい。
 光取出し機構は、高屈折率層においてランダムに配置されていてもよいし、周期的に配置されていてもよく、面内に分布構造をもつように配置されていてもよい。また、光取出し機構が高屈折率層の表面に備えられる場合には、一方の面のみならず両方の面に備えられていてもよい。さらに、光取り出し機構が凸部や微細な凹凸構造を有する場合は、それらの構造が、空気層24を形成するための前述のスペーサを兼ねることもできる。
 上記輝度均一化部材20は、光入射部30を備えたことにより、光を複数の高屈折率層22a~22e中を導光させて横方向(面内方向)に点光源から離間する方向に拡げることができるため輝度均一化を実現でき、輝度むらが少ない光を出射することができる。各高屈折率層に空洞部の側壁面を構成する側面32a~32eが設けられて、この側面32a~32eからそれぞれの高屈折率層22a~22e中に光を入射させることができるので、光の取り込み効率が高く、光利用効率に優れる。また、複数の高屈折率層を備えることから輝度均一化部材全体として光取出し機構を多数設けることができるので、輝度均一化と光利用効率をさらに向上させることができる。
 バックライトユニット2は、上記輝度均一化部材20を備えており、輝度が均一化された光を出射することができるため、光源部10と輝度均一化部材20との間に厚い空間は不要である。したがって、直下型バックライトでありながら従来と比べて非常に薄くすることができる。
 バックライトユニット2は、直下型であるため、備えられている点光源の数だけの多分割のローカルディミングが可能である。
 また、バックライトユニット2の薄型化により、液晶表示装置1全体としての薄型化も実現できる。さらに、バックライトユニット2から輝度の均一性が十分に高いバックライトを出射させることができるため、バックライトユニット2と液晶表示素子50との間隔も狭くすることが可能であり、液晶表示装置のさらなる薄型化を図ることができる。
 以下、輝度均一化部材の設計変更例を図4~図9を参照して説明する。なお図4~図9は、輝度均一化部材の一部の拡大模式図であり、1つの点光源14とその点光源14に対向して配置される1つの光入射部を含む領域を示している。
 図4は輝度均一化部材の設計変更例1の光入射部30Aを説明するための断面模式図である。図4の輝度均一化部材は、3層の高屈折率層22a~22cが空気層24と交互に積層された積層構造を有する。光入射部30Aは、3層の高屈折率層22a~22cのうちの点光源14側の2層の高屈折率層22aおよび22bを貫通して設けられた空洞部31Aからなる。空洞部31Aの側壁面は高屈折率層22aおよび22bの側面32aおよび32bでからなる。
 図4の輝度均一化部材においては、輝度均一化部材の出射面を構成する最も液晶表示素子側に配置された高屈折率層22cの空洞部31Aの開口に面する領域に光散乱部38が設けられている。光散乱部38は高屈折率層22c中に散乱粒子が分散された領域である。この光散乱部38は、点光源14から出射した光が空洞部31Aを通過してそのまま出射面20bから出射されるのを抑制する。
 本構成の輝度均一化部材においては、点光源14から出射された光の多くは空洞部31Aに入射する。空洞部31Aに入射した後に側壁面(側面32a、32b)に入射した光は側壁面で屈折して高屈折率層22a、22b内に導入され、全反射条件を満たす光が面内方向に導光されて拡がる。一方、空洞部31Aを通過した光は散乱部38に入射し、光散乱部38で散乱される。光散乱部38に入射した光は、散乱光として一部が出射面から出射され、一部は輝度均一化部材内で反射と屈折を繰り返し、そのうちの少なくとも一部は高屈折率層22内を伝搬して面内方向に拡がっていく。
 高屈折率層22a~22cにおいて面内方向に導光された光は図4においては図示していない光取出し機構により高屈折率層22から出射され、最終的には輝度均一化部材の出射面から出射される。
 図5は輝度均一化部材の設計変更例2の断面模式図である。図5の輝度均一化部材は、4層の高屈折率層122a~122dが空気層24と交互に積層された積層構造を有する。光入射部130は、積層構造において出射面側に広い開口を有し、対向する点光源に向かって径が小さくなる形状の空洞部131からなる。この空洞部131は、出射面側の高屈折率層122dおよび122cを貫通し、高屈折率層122b中に先端が閉じた円錐状凹部が設けられている。光入射部130を構成する空洞部131の側壁面は、高屈折率層122b~122dの側面132b~132dから構成されている。高屈折率層122b~222dの側面132b~232dは、高屈折率層122c~122dを貫通する孔および高屈折率層122bに円錐状凹部が設けられたことにより形成された面である。
 本構成の輝度均一化部材においては、点光源14から出射された光が空洞部131の側壁面(高屈折率層の側面132b~132d)で全反射し、高屈折率層122b~122内に内部に導入される。空洞部131の側壁面(高屈折率層の側面132b~132d)はその側壁面で全反射して高屈折率層に導入された光が高屈折率層の内部で全反射を繰り返しながら導光されるように、高屈折率層と低屈折率層との界面に対する側壁面の傾斜角が調整されている。図5に示すように、本実施形態における空洞部131の側壁面は傾斜角が徐々に変化する曲面である。
 図5に示す輝度均一化部材においては、輝度均一化部材の入射面を構成する高屈折率層122aおよび、出射面を構成する高屈折率層122dには、入射面側および出射面側の両面にそれぞれ光取出し機構40および42を備えている。光取出し機構を増やすことにより輝度均一化の効果を向上させることができる。
 図6は輝度均一化部材の設計変更例3の断面模式図である。図6の輝度均一化部材は、5層の高屈折率層222a~222eが空気層24と交互に積層された積層構造を有する。光入射部230は、積層構造に設けられた、点光源14に対向する位置の入射面側に開口を有する円錐形状の空洞部231である。空洞部231は、高屈折率層222a~222dを貫通し、輝度均一化部材の出射面を構成する高屈折率層222eに円錐頂点を有する。空洞部231の側壁面は、高屈折率層222a~222eの側面232a~232eから構成されている。高屈折率層222a~222eの側面232a~232eは、高屈折率層222a~222dを貫通する孔および高屈折率層222eに円錐先端部状の凹部が設けられたことにより形成された面である。
 円錐形状の空洞部231の開口は円錐の底面に当たる部分である。開口と点光源14が対面して配置されており、この開口サイズは点光源14のサイズ以上であることが好ましい。
 本構成の輝度均一化部材においては、点光源14から出射した光は光入射部230を構成する空洞部231の側壁面(高屈折率層の側面232a~232e)に入射して屈折され、高屈折率層222a~222eへと導かれる。その屈折した光が各高屈折率層222a~222eの内部で全反射を繰り返しながら導光されるように、高屈折率層と低屈折率層の界面に対する側壁面の傾斜角が調整されている。
 図7は輝度均一化部材の設計変更例4の断面模式図である。図7の輝度均一化部材は、4層の高屈折率層322a~322dが空気層24と交互に積層された積層構造を有する。光入射部330は、積層構造に設けられた、点光源14に対向する位置の入射面側に開口を有する一部円錐形状の空洞部331からなる。空洞部331は、高屈折率層322a~322cを貫通し、輝度均一化部材の出射面を構成する高屈折率層322dに円錐頂点を有する。空洞部332の側壁面は、高屈折率層322a~322dの側面332a~332dから構成されている。高屈折率層322a~322dの側面332a~332dは、高屈折率層322a~322cを貫通する孔および高屈折率層322dに円錐先端部状の凹部が設けられたことにより形成された面である。本実施形態においては、空洞部331の側壁面の傾斜が、最も光源部側に配置されている高屈折率層322aと他の高屈折率層322b~322dとで異なっている。このように空洞部331の側壁面はその傾斜角が高屈折率層間で異なっていてもよい。
 図8は輝度均一化部材の設計変更例5の断面模式図である。図8の輝度均一化部材は、4層の高屈折率層422a~422dが空気層24と交互に積層された積層構造を有する。光入射部430は、高屈折率層422aおよび422bに亘って設けられた空洞部431および高屈折率層422cおよび422dに亘って設けられた空洞部433からなる。空洞部431は、点光源14に対向する位置の入射面側に開口を有する円錐形状を有し、空洞部433と、出射面側に広い開口を有し、対向する点光源14に向かって径が小さくなる形状を有する。このように、光入射部430は、複数の空洞部431、433から構成されていてもよい。
 図9は輝度均一化部材の設計変更例6の断面模式図である。図9の輝度均一化部材は、4層の高屈折率層522a~522dが空気層24と交互に積層された積層構造を有する。光入射部530は、2層の高屈折率層522bおよび522cに亘って設けられた、点光源14に対向する位置の入射面側に開口を有する一部円錐形状の空洞部531からなる。本実施形態においては、輝度均一化部材の出射面を構成する高屈折率層522d、輝度均一化部材の入射面を構成する高屈折率層522aには光入射部530が設けられていない。このように光入射部530は積層構造の内部に備えられていてもよい。
 図7~図9で説明した設計変更例4~6の輝度均一化部材における光入射部330、430および530は、先に説明した設計変更例1~3の輝度均一化部材における光入射部と同様の作用により、光を面内方向に導光させることができる。
 図4~図9を参照して説明した設計変更例の輝度均一化部材を備えた場合には、図3を参照して説明した輝度均一化部材20を備えた場合と同様の効果を得ることができる。
 図1に示すような全ての高屈折率層を貫通する貫通孔を備えた輝度均一化部材は、高屈折率層をなす導光シートを複数層積層させた状態で機械切削、またはレーザー照射して貫通孔を形成し、この複数の導光シートを、各導光シート間に空気層を設けて積層させることにより作製することができる。
 図4~図9に示すような複雑な形状の空洞部からなる光入射部を有する輝度均一化部材は、例えば、それぞれの高屈折率層毎にモールドを作製し、モールドを用いたインプリントにより異なる凹部あるいは孔を有する複数の導光シートを作製し、導光シート間に空気層を設けて積層させることにより作製することができる。
 なお、光取出し機構についてもインプリント形成してもよい。光取出し機構は表面に諸キズをつけて作製してもよい。
 なお、積層構造に備えられた空洞部を構成する、高屈折率層に設けられた孔および凹部には低屈折材料が埋め込まれていてもよい。
 本開示の面状照明装置は、上述した液晶表示装置におけるバックライトユニットとしてのみならず、看板、標識などのバックライト、室内灯などとしても用いることが可能である。
 2017年10月25日に出願された日本出願特願2017-206038の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  二次元配列された複数の点光源を備えた光源部と、
     該光源部から出射された光が入射される入射面、および該入射面に対向する、光を出射する出射面を有し、かつ前記光源部からの光の輝度を均一化して出射する輝度均一化部材とを備え、
     前記輝度均一化部材が、相対的に高い屈折率である高屈折率層と相対的に低い屈折率である低屈折率層とが交互に前記出射面に垂直な方向に積層され、かつ前記高屈折率層を2層以上含む積層構造を有し、
     該積層構造中の、前記複数の点光源に対向する各位置に、該点光源からの光を該積層構造に含まれている高屈折率層へ入射させる光入射部であって、前記光が前記高屈折率層中を全反射して導光される条件で該光を該高屈折率層に入射させる光入射部を備え、
     該光入射部が、前記積層構造に含まれる2層以上の高屈折率層に亘って設けられた、少なくとも1層の高屈折率層を貫通する空洞部からなり、該空洞部の側壁面での屈折または反射によって前記光を前記高屈折率層に入射させる機能を有し、
     前記各高屈折率層が、前記光入射部から離間した位置に、該高屈折率層を導光される光を前記出射面側に出射させる光取出し機構を備えている面状照明装置。
  2.  前記空洞部が、前記出射面側に広い開口を有し、対向する前記点光源に向かって径が小さくなる形状である請求項1記載の面状照明装置。
  3.  前記空洞部が、前記点光源に対向する位置の前記入射面側に開口を有する円錐形状である請求項1記載の面状照明装置。
  4.  前記空洞部が、対向する前記点光源に面して開口を有する円筒形状である請求項1記載の面状照明装置。
  5.  前記積層構造の、前記空洞部を挟み前記点光源に対向する位置に光反射部材または光吸収部材を備えた請求項1から4のいずれか1項に記載の面状照明装置。
  6.  前記高屈折率層に備えられている前記光取出し機構の前記光入射部からの距離が、前記入射面側に近い高屈折率層ほど大きい請求項1から5のいずれか1項に記載の面状照明装置。
  7.  前記光取出し機構が、前記光入射部を中心とする円環状に設けられている請求項1から6のいずれか1項に記載の面状照明装置。
  8.  前記低屈折率層が空気層である請求項1から7のいずれか1項に記載の面状照明装置。
  9.  液晶表示素子と、
     請求項1から8のいずれか1項に記載の面状照明装置とを備えた液晶表示装置。
PCT/JP2018/039243 2017-10-25 2018-10-22 面状照明装置および液晶表示装置 WO2019082856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019551131A JP6833059B2 (ja) 2017-10-25 2018-10-22 面状照明装置および液晶表示装置
US16/856,618 US10996510B2 (en) 2017-10-25 2020-04-23 Planar lighting device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-206038 2017-10-25
JP2017206038 2017-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/856,618 Continuation US10996510B2 (en) 2017-10-25 2020-04-23 Planar lighting device and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2019082856A1 true WO2019082856A1 (ja) 2019-05-02

Family

ID=66246563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039243 WO2019082856A1 (ja) 2017-10-25 2018-10-22 面状照明装置および液晶表示装置

Country Status (3)

Country Link
US (1) US10996510B2 (ja)
JP (1) JP6833059B2 (ja)
WO (1) WO2019082856A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021050523A1 (en) 2019-09-11 2021-03-18 Bright View Technologies Corporation Back light unit for backlit displays
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
US12032242B1 (en) 2023-05-22 2024-07-09 Brightview Technologies, Inc. Back light unit for backlit displays

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3746696A4 (en) 2018-01-30 2021-10-13 BrightView Technologies, Inc. MICROSTRUCTURES FOR CONVERTING LIGHT WITH LAMBERTSCHER DISTRIBUTION INTO BAT DISTRIBUTIONS
WO2020142362A1 (en) 2019-01-03 2020-07-09 Bright View Technologies Corporation Color conversion film and back light unit for backlit displays
WO2021150813A1 (en) 2020-01-24 2021-07-29 Brightview Technologies, Inc. Optical film for back light unit and back light unit including same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547173A (ja) * 2005-06-24 2008-12-25 スリーエム イノベイティブ プロパティズ カンパニー 混色照明ユニット及びそれを用いた光学システム
JP2010277986A (ja) * 2009-04-27 2010-12-09 Toshiba Corp 面状照明装置およびこれを備えた液晶表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478930B2 (en) * 2006-01-12 2009-01-20 Samsung Corning Precision Glass Co., Ltd. Backlight unit with an oxide compound-laminated optical layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547173A (ja) * 2005-06-24 2008-12-25 スリーエム イノベイティブ プロパティズ カンパニー 混色照明ユニット及びそれを用いた光学システム
JP2010277986A (ja) * 2009-04-27 2010-12-09 Toshiba Corp 面状照明装置およびこれを備えた液晶表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021050523A1 (en) 2019-09-11 2021-03-18 Bright View Technologies Corporation Back light unit for backlit displays
JP2022548578A (ja) * 2019-09-11 2022-11-21 ブライトビュー テクノロジーズ, インコーポレイテッド バックライト付きディスプレイのためのバックライトユニット
EP4028830A4 (en) * 2019-09-11 2023-10-04 BrightView Technologies, Inc. BACKLIGHT UNIT FOR BACKLIT SCREENS
US11822158B2 (en) 2019-09-11 2023-11-21 Brightview Technologies, Inc. Back light unit for backlit displays
JP7539172B2 (ja) 2019-09-11 2024-08-23 ブライトビュー テクノロジーズ, インコーポレイテッド バックライト付きディスプレイのためのバックライトユニット
US12032242B1 (en) 2023-05-22 2024-07-09 Brightview Technologies, Inc. Back light unit for backlit displays

Also Published As

Publication number Publication date
US20200249529A1 (en) 2020-08-06
JP6833059B2 (ja) 2021-02-24
JPWO2019082856A1 (ja) 2020-11-12
US10996510B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP6833059B2 (ja) 面状照明装置および液晶表示装置
US10578921B2 (en) Brightness homogenizing member, backlight unit, and liquid crystal display device
WO2019138722A1 (ja) バックライトユニットおよび液晶表示装置
JP5338319B2 (ja) 光学シート、面光源装置、表示装置及び光学シートの製造方法
US8408775B1 (en) Light recycling directional control element and light emitting device using the same
JP2019530967A (ja) ローカルディミングのためのバックライトユニットおよび光束制御部材
JP5463966B2 (ja) 導光板、面光源装置および液晶表示装置
JP5736957B2 (ja) 導光板、面光源装置および表示装置
JP2010044270A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
JP2010256431A (ja) 積層樹脂シートとそれを用いたバックライトユニットおよびディスプレイ装置
JP5098576B2 (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP2010044269A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
JP2015191686A (ja) 導光体、エッジライト型照明装置および画像表示装置
WO2019223528A1 (zh) 背光模组及显示装置
WO2012144451A1 (ja) 照明装置および表示装置
JP2014086387A (ja) 導光板、導光板を備えたバックライトユニットおよび表示装置
JP2012014933A (ja) 導光板およびその製造方法、面光源装置ならびに液晶表示装置
JP2011133556A (ja) 光学シート、バックライトユニット及びディスプレイ装置、並びに金型
JP5194859B2 (ja) 光学シート及びバックライトユニット並びにディスプレイ装置
JP2010044268A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
TW202305417A (zh) 光擴散片、光擴散片積層體、背光單元及液晶顯示裝置
JP5120210B2 (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
JP5309826B2 (ja) 光学シート、バックライトユニット及びディスプレイ装置
JP5509779B2 (ja) 光学シート、バックライトユニット及びディスプレイ装置
TW202434915A (zh) 光學片積層體、背光單元、液晶顯示裝置、以及資訊機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870162

Country of ref document: EP

Kind code of ref document: A1