Nothing Special   »   [go: up one dir, main page]

WO2019082696A1 - Separator, bag-shape separator, packaged electrode and lithium ion secondary battery - Google Patents

Separator, bag-shape separator, packaged electrode and lithium ion secondary battery

Info

Publication number
WO2019082696A1
WO2019082696A1 PCT/JP2018/038146 JP2018038146W WO2019082696A1 WO 2019082696 A1 WO2019082696 A1 WO 2019082696A1 JP 2018038146 W JP2018038146 W JP 2018038146W WO 2019082696 A1 WO2019082696 A1 WO 2019082696A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
bag
resin layer
ceramic layer
heat
Prior art date
Application number
PCT/JP2018/038146
Other languages
French (fr)
Japanese (ja)
Inventor
健人 高橋
文昭 小保内
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2019551000A priority Critical patent/JP7244431B2/en
Publication of WO2019082696A1 publication Critical patent/WO2019082696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator, a bag-shaped separator, a packaged electrode and a lithium ion secondary battery.
  • a porous resin film mainly composed of a polyolefin resin or a polyester resin is used as a separator.
  • Such a porous resin film has a shutdown function of blocking the flow of current by blocking the fine pores of the porous resin film when an abnormal current is generated and the temperature of the battery rises. Therefore, the porous membrane is effective from the viewpoint of avoiding thermal runaway of the battery.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2011-71009 describes a separator for a lithium ion secondary battery including a porous resin film and an insulating ceramic layer applied to at least the first surface thereof. ing.
  • a separator provided with such a ceramic layer is considered to be excellent in heat resistance because thermal contraction is suppressed.
  • the separator may be used as a bag-like separator by fusing a part of the separator.
  • the electrode is accommodated in the inside of the bag-like separator to form a packaged electrode.
  • the bag-like separator constituted by the separator provided with the ceramic layer has the following problems.
  • a separator provided with a ceramic layer generally has a resin layer such as a polyolefin resin layer or a polyester resin layer, and a ceramic layer provided on one surface of the resin layer.
  • the separator having such a multilayer structure When the separator having such a multilayer structure is heat-sealed into a bag, it is difficult to heat-seal the ceramic layers of the separators stably, so the resin-layers of the separators are heat-sealed. It had a bag shape.
  • the ceramic layer side contacts the heater block surface at the time of heat-sealing. It was revealed that adhesion of ceramic particles to the block surface and the like would occur.
  • the ceramic layer since the ceramic layer is disposed on the outside of the bag, there is a possibility that the ceramic layer may come off.
  • the present invention has been made in view of the above circumstances, and provides a bag-like separator in which the ceramic layer is prevented from falling off.
  • the present inventors diligently studied to solve the above problems.
  • the ceramic layer side of the separator is stably stabilized by removing a part of the ceramic layer at the portion to be heat-sealed of the separator before forming into a bag shape and exposing a part of the resin layer to the ceramic layer side.
  • a bag-like separator which can be heat-fused and as a result can be stably obtained in which the dropping of the ceramic layer is suppressed, and the present invention has been completed.
  • the present invention was devised based on such knowledge. That is, according to the present invention, the following separator, bag-like separator, bag electrode and lithium ion secondary battery are provided.
  • the heat-sealable portion is provided with a separator having an exposed portion in which a portion of the resin layer is exposed and a portion of the resin layer is exposed while the portion of the ceramic layer is removed.
  • a bag-like separator obtained by heat-sealing the site to be heat-fused in the separator of the present invention.
  • a packaged electrode comprising the above-described pouched separator of the present invention and an electrode accommodated in the pouched separator.
  • a lithium ion battery in which a positive electrode that absorbs and releases lithium, a negative electrode that absorbs and releases lithium, a non-aqueous electrolytic solution containing a lithium salt, and a separator sandwiched between the positive electrode and the negative electrode are accommodated in a container.
  • the separator comprises the bag-like separator of the present invention.
  • omission of the ceramic layer was suppressed can be provided.
  • FIG. 1 is a plan view schematically showing an example of the structure of a separator 20 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of the separator 20 according to the embodiment of the present invention at a position along the line AA 'shown in FIG.
  • the separator 20 according to the present embodiment is a separator for producing a bag-like separator obtained by heat-sealing the separator 20, and is provided on at least one surface of the resin layer 21 and the resin layer 21.
  • a ceramic layer 23 is provided, and a heat fusion scheduled portion 25 for producing a bag-like separator is provided on the ceramic layer 23 side, and a part of the ceramic layer 23 is removed from the heat sealing planned region 25 At the same time, an exposed portion 27 where a part of the resin layer 21 is exposed is provided on the ceramic layer 23 side.
  • the separator 20 according to the present embodiment can be used, for example, as a separator for a lithium ion secondary battery.
  • a separator provided with a ceramic layer generally has a resin layer such as a polyolefin resin layer or a polyester resin layer, and a ceramic layer provided on one surface of the resin layer.
  • a separator having such a multilayer structure is heat-sealed into a bag, it is difficult to heat-seal the ceramic layers of the separators stably, so the resin-layers of the separators are heat-sealed. It had a bag shape.
  • the ceramic layer side contacts the heater block surface at the time of heat-sealing. It was revealed that adhesion of ceramic particles to the block surface and the like would occur. In addition, since the ceramic layer is disposed on the outside of the bag, there is a possibility that the ceramic layer may come off. Therefore, as a result of intensive investigations, the inventor of the present invention removed a portion of the ceramic layer 23 at the portion 25 to be heat-sealed of the separator 20 before forming the bag shape and exposed a portion of the resin layer 21 on the ceramic layer 23 side.
  • the ceramic layer 23 side of the separator 20 can be stably heat-sealed as a result, and as a result, a bag-like separator in which the ceramic layer 23 is suppressed from dropping is stably obtained.
  • a separator 20 although the reason why the ceramic layer 23 side can be stably heat-sealed is not clear, it has an exposed portion 27 on the ceramic layer 23 side where a part of the resin layer 21 is exposed.
  • the amount of the melted resin component relatively exposed on the surface of the ceramic layer 23 at the time of heat sealing relatively increases, and as a result, the heat melting of the ceramic layer 23 is stably performed by the exposed resin component. It is thought that it can be done.
  • the side in contact with the heater block surface can be the resin layer 21 side when forming the bag shape. it can.
  • the ratio of the ceramic layer 23 in contact with the heater block surface can be reduced.
  • the separator 20 which concerns on this embodiment, the bag-like separator by which drop-off
  • the exposed portion 27 according to the present embodiment may be continuously extended without any gap in the region 25 to be heat-fused, or may be intermittently disposed with a gap, but is obtained. From the viewpoint of suppressing the generation of wrinkles due to the thermal contraction of the bag-like separator, it is preferable that the exposed portion 27 according to the present embodiment is intermittently disposed with a gap.
  • the separator 20 is preferably, 5 mm 2 or more that the sum of the areas of the resin layer 21 exposed in all of the exposed portion 27 in the separator 20 is 2 mm 2 or more Is more preferably 10 mm 2 or more, still more preferably 50 mm 2 or more, particularly preferably 100 mm 2 or more, and preferably 2000 mm 2 or less, and 1500 mm 2 or less. Some are more preferable, 1000 mm 2 or less is more preferable, and 500 mm 2 or less is particularly preferable.
  • the heat fusion of the ceramic layer 23 side of the separator 20 is performed more stably when the total value of the areas of the exposed resin layers 21 in all the exposed portions 27 in the separator 20 is equal to or more than the above lower limit.
  • the welding strength of the separators 20 can be enhanced, and a bag-like separator in which the ceramic layer 23 is suppressed from dropping can be obtained more stably, which is preferable.
  • the insulation of the separator 20 can be enhanced. It is preferable because a bag-like separator in which the dropout is suppressed can be obtained more stably.
  • the productivity of the separator 20 can be improved.
  • the size of the target lithium ion secondary battery is increased, the size of the separator is also increased. Therefore, the total value of the areas of the exposed resin layers 21 in all the exposed portions 27 in the separator 20 is the above upper limit It is preferable because the heat fusion can be stably performed and the production time can be shortened if the value is less than the value.
  • the heat fusion scheduled part 25 is a part heated by the heating device at the time of heat fusion of the separator 20, and is, for example, the peripheral part of the separator 20 as shown in FIG. Further, the heat fusion planned site 25 may be only around the exposed portion 27.
  • the method of manufacturing the separator 20 having the exposed portion 27 where a part of the resin layer 21 is exposed on the ceramic layer 23 side is not particularly limited, but, for example, at least one of the ceramic layers 23 at the heat fusion scheduled portion 25 of the separator 20 It can obtain by the manufacturing method including the process of removing the part.
  • the method for removing at least a part of the ceramic layer 23 at the portion 25 to be heat-sealed of the separator 20 is not particularly limited.
  • the method for removing it with a heat cutter or heat wire, or removing with a pressing blade or rotary blade Methods include removal by laser irradiation.
  • the ceramic layer at the heat fusion planned site 25 of the separator 20 by irradiating the ceramic layer 23 with a laser from the viewpoint of being able to accurately remove a part of the ceramic layer 23 at the heat fusion planned site 25 of the separator 20, the ceramic layer at the heat fusion planned site 25 of the separator 20 by irradiating the ceramic layer 23 with a laser.
  • the method of removing at least one part of 23 is preferable.
  • the laser to be used is not particularly limited, but the wavelength of the laser is preferably 300 nm or more and 600 nm or less, more preferably 350 nm or more and 550 nm or less, from the viewpoint of being able to remove a part of the ceramic layer 23 with much lower output and short time. Or 532 nm is more preferred. Further, from the viewpoint of excellent cost, a 532 nm laser is particularly preferable.
  • the wavelength of the laser is preferably 300 nm or more and 600 nm or less, more preferably 350 nm or more and 550 nm or less, from the viewpoint of being able to remove a part of the ceramic layer 23 with much lower output and short time. Or 532 nm is more preferred. Further, from the viewpoint of excellent cost, a 532 nm laser is particularly preferable.
  • the wavelength of the laser By setting the wavelength of the laser to the upper limit value or less, the energy absorption rate with respect to the ceramic layer 23 can be increased, and as a result, the ceramic layer
  • Examples of the laser having a wavelength of 300 nm or more and 600 nm or less include a laser in which a YVO 4 fundamental wave (wavelength 1064 nm), a YAG fundamental wave (wavelength 1064 nm) or the like is divided into integer multiples.
  • a laser having a wavelength of 532 nm is, for example, a YVO 4 fundamental wave (wavelength 1064 nm) or a YAG fundamental wave (wavelength 1064 nm) converted to a half wavelength
  • a laser having a wavelength of 355 nm is The YVO 4 fundamental wave (wavelength 1064 nm) and the YAG fundamental wave (wavelength 1064 nm) are converted to a wavelength of 1/3.
  • the planar shape of the separator 20 according to the present embodiment is not particularly limited, and can be appropriately selected according to the shapes of the electrode and the current collector, and can be, for example, rectangular.
  • the thickness of the resin layer 21 is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or less, from the viewpoint of balance between mechanical strength and lithium ion conductivity, and from the viewpoint of being able to improve the energy density of the obtained lithium ion secondary battery.
  • the thickness is 40 ⁇ m or more, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the resin for forming the resin layer 21 examples include polyolefin resins such as polypropylene resins and polyethylene resins, and polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. Among these, polyolefin resins are preferable, and polypropylene resins are more preferable, from the viewpoint of being excellent in balance of heat resistance, shutdown function, cost and the like. These resins may be used alone or in combination of two or more.
  • the resin layer 21 preferably contains at least one selected from a polyolefin resin and a polyester resin as a main component.
  • the term "main component" means that the proportion in the porous resin layer is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and 100% by mass It means that it may be.
  • polypropylene resin For example, a propylene homopolymer, the copolymer of propylene and other olefins, etc. are mentioned, A propylene homopolymer (homo polypropylene) is preferable.
  • the polypropylene resins may be used alone or in combination of two or more.
  • the olefins copolymerized with propylene include, for example, ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, etc. -An olefin etc. are mentioned.
  • polyethylene-type resin For example, an ethylene homopolymer, the copolymer of ethylene and other olefins, etc. are mentioned, An ethylene homopolymer (homo polyethylene) is preferable.
  • the polyethylene resins may be used alone or in combination of two or more.
  • olefins copolymerized with ethylene include ⁇ -olefins such as 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene. Etc.
  • the resin layer 21 is preferably a porous resin layer.
  • abnormal current is generated in the lithium ion secondary battery, and when the temperature of the battery rises, etc., the fine pores of the porous resin film can be blocked and the flow of current can be blocked, thereby causing thermal runaway of the battery. It can be avoided.
  • the porosity of the porous resin layer is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. Is particularly preferred.
  • porosity (%)
  • Ws basis weight (g / m 2 )
  • ds true density (g / cm 3 )
  • t film thickness ( ⁇ m).
  • the separator 20 according to the present embodiment has a ceramic layer 23 on at least one surface of the resin layer 21 from the viewpoint of improving the heat resistance.
  • the ceramic layer 23 is preferably provided only on one side of the resin layer 21 from the viewpoint of the handleability and productivity of the separator 20 according to the present embodiment, but the heat resistance of the separator 20 is preferable. May be provided on both sides of the resin layer 21 from the viewpoint of further improving the By having the ceramic layer 23, the separator 20 according to the present embodiment can further reduce the thermal contraction of the separator 20, and can further prevent a short circuit between electrodes.
  • the ceramic layer 23 can be formed, for example, by applying and drying a ceramic layer forming material on the resin layer 21.
  • a ceramic layer forming material for example, a material in which ceramic particles and a binder are dissolved or dispersed in an appropriate solvent can be used.
  • the ceramic particles used for the ceramic layer 23 can be appropriately selected from known materials used for a separator of a lithium ion secondary battery.
  • oxides or nitrides or sulfides or carbides having high insulating properties are preferable, and one or more selected from aluminum oxide, titanium oxide, silicon oxide, magnesium oxide, barium oxide, zirconium oxide, zinc oxide, iron oxide and the like It is more preferable to adjust two or more kinds of ceramics into particles.
  • aluminum oxide and titanium oxide are preferable.
  • the binder is not particularly limited, and examples thereof include cellulose resins such as carboxymethyl cellulose (CMC); acrylic resins; fluorine resins such as polyvinylidene fluoride (PVDF); and the like.
  • CMC carboxymethyl cellulose
  • PVDF polyvinylidene fluoride
  • the binder may be used alone or in combination of two or more.
  • the solvent for dissolving or dispersing these components is not particularly limited, and is appropriately selected from, for example, water, alcohols such as ethanol, N-methylpyrrolidone (NMP), toluene, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), etc. Can be used.
  • alcohols such as ethanol, N-methylpyrrolidone (NMP), toluene, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), etc.
  • NMP N-methylpyrrolidone
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the thickness of the ceramic layer 23 is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.5 ⁇ m or more and 30 ⁇ m or less, from the viewpoint of the balance of heat resistance, mechanical strength, handleability and lithium ion conductivity. More preferably, it is 1 ⁇ m or more and 15 ⁇ m or less.
  • ⁇ Sacky separator and bagging electrode> 3 and 4 are cross-sectional views schematically showing an example of the structure of the packaged electrode 80 according to the embodiment of the present invention.
  • the bag-like separator 50 according to the present embodiment can be obtained by heat-sealing the heat-fusion intended portion 25 of the separator 20.
  • a portion joined by thermally fusing the portion 25 to be thermally fused in the separator 20 is referred to as a junction portion 53.
  • the method for producing the bag-like separator 50 according to the present embodiment is not particularly limited, but for example, as shown in FIG. Alternatively, as shown in FIG. 4, it can be produced by folding one separator 20 and thermally fusing the portion 25 of the separator 20 to be fused by heat.
  • the portion 25 to be thermally fused is, for example, the peripheral portion of the separator 20.
  • the exposed portion 27 at the heat sealing scheduled portion 25 may be three or more of the peripheral portions of the four sides of the separator 20, and is preferably at four sides.
  • the bag-like separator 50 according to the present embodiment includes a state in which the peripheral edge is only heat-welded so as to suppress the movement of the electrode 83 accommodated therein, and the bag is not a complete bag. .
  • the packaged electrode 80 according to the present embodiment includes the bag-like separator 50 according to the present embodiment, and an electrode 83 accommodated in the bag-like separator 50.
  • the electrode 83 may be accommodated in the bag, or the electrode 83 is sandwiched between the separators 20, and then, The electrode 83 may be accommodated in the bag by heat-sealing the separator 20 to produce the bag-like separator 50.
  • the positive electrode and negative electrode which are mentioned later are mentioned, for example.
  • the bonding portion 53 may be at three or more sides in the peripheral portion at four sides, and at four sides preferable.
  • the lithium ion secondary battery according to the present embodiment has the following configuration.
  • the lithium ion secondary battery includes a positive electrode that inserts and receives lithium, a negative electrode that inserts and receives lithium, a non-aqueous electrolyte containing a lithium salt, and a separator sandwiched between the positive electrode and the negative electrode. It accommodates in a container and the said separator contains the bag-like separator which concerns on this embodiment.
  • the bag-like separator according to the present embodiment accommodates the positive electrode and the negative electrode.
  • the bonding portion 53 may be at three or more sides in the peripheral portion of four sides, preferably at four sides.
  • the form and type of the lithium ion secondary battery of the present embodiment are not particularly limited, but, for example, the following configuration can be made.
  • FIG. 5 is a schematic view schematically showing an example of the structure of the stacked battery 100 according to the embodiment of the present invention.
  • Stacked battery 100 includes battery elements in which positive electrode 1 and negative electrode 6 are alternately laminated in multiple layers with separator 20 interposed therebetween, and these battery elements are a flexible film together with an electrolytic solution (not shown). It is housed in a 30 container.
  • the positive electrode terminal 11 and the negative electrode terminal 16 are electrically connected to the battery element, and a part or all of the positive electrode terminal 11 and the negative electrode terminal 16 are drawn out of the flexible film 30. .
  • the positive electrode 1 is provided with the coated part 2 and the uncoated part of the positive electrode active material on the front and back of the positive electrode current collector 3, and the negative electrode 6 is coated on the front and back of the negative electrode current collector 8. 7 and an uncoated part are provided.
  • the positive electrode tabs 10 are assembled on the positive electrode terminal 11 and connected together by ultrasonic welding etc. together with the positive electrode terminal 11, and the negative electrode tabs 5 are assembled on the negative electrode terminal 16 connected together by ultrasonic welding etc. together with the negative electrode terminal 16. Be done.
  • one end of the positive electrode terminal 11 is drawn out of the flexible film 30, and one end of the negative electrode terminal 16 is also drawn out of the flexible film 30.
  • an insulating member can be formed at the boundary 4 between the coated part 2 and the non-coated part of the positive electrode active material, and the insulating member is not only the boundary 4 but also the positive electrode tab 10 and the positive electrode active material. It can be formed near both boundaries.
  • an insulating member can be formed at the boundary 9 between the coated part 7 and the non-coated part of the negative electrode active material as necessary, and formed near the boundary between both the negative electrode tab 5 and the negative electrode active material.
  • the external dimension of the application part 7 of a negative electrode active material is larger than the external dimension of the application part 2 of a positive electrode active material, and smaller than the external dimension of the separator 20.
  • FIG. 6 is a schematic view schematically showing an example of the structure of the wound battery 101 according to the embodiment of the present invention.
  • the wound battery 101 includes a battery element in which a positive electrode 1 and a negative electrode 6 are stacked via a separator 20 and wound, and this battery element is made of a flexible film together with an electrolytic solution (not shown). Contained in the The positive electrode terminal and the negative electrode terminal are also electrically connected to the battery element of the wound battery 101, and the other configuration is substantially the same as that of the laminated battery 100, and thus further description is omitted here.
  • the positive electrode 1 used in the present embodiment can be appropriately selected from among positive electrodes that can be used for known lithium ion secondary batteries, according to the application and the like.
  • the active material used for the positive electrode 1 is preferably a material having high electron conductivity so that lithium ions can be reversibly released and stored, and electron transport can be easily performed.
  • a complex oxide of lithium and transition metal such as lithium nickel complex oxide, lithium cobalt complex oxide, lithium manganese complex oxide, lithium-manganese-nickel complex oxide, etc .
  • Transition metal sulfides such as TiS 2 , FeS, MoS 2 and the like
  • transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2
  • olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
  • olivine-type lithium iron phosphorus oxide, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and lithium-manganese-nickel composite oxide are preferable.
  • These positive electrode active materials have large capacity in addition to high action potential and large energy density.
  • the positive electrode active material may be used alone or in combination of two or more.
  • a binder, a conductive agent, etc. can be suitably added to the positive electrode active material.
  • the conductive agent carbon black, carbon fiber, graphite or the like can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • carboxymethyl cellulose modified acrylonitrile rubber particles and the like can be used as the binder.
  • the positive electrode current collector 3 used for the positive electrode aluminum, stainless steel, nickel, titanium or an alloy thereof can be used. Among these, aluminum is particularly preferable.
  • the positive electrode 1 in the present embodiment can be manufactured by a known method. For example, after a positive electrode active material, a conductive agent, and a binder are dispersed in an organic solvent to obtain a slurry, a method of applying and drying this slurry on the positive electrode current collector 3 can be employed.
  • the negative electrode 6 used in the present embodiment can be appropriately selected from among negative electrodes that can be used for known lithium ion secondary batteries, depending on the application and the like.
  • the active material used for the negative electrode 6 can also be appropriately set according to the application etc. as long as it can be used for the negative electrode.
  • the material that can be used as the negative electrode active material include artificial graphite, natural graphite, amorphous carbon, diamond-like carbon, fullerenes, carbon materials such as carbon nanotubes and carbon nanohorns; lithium metal materials; silicon, tin, etc. Alloy-based materials; oxide-based materials such as Nb 2 O 5 and TiO 2 ; or composites of these can be used.
  • the negative electrode active material may be used alone or in combination of two or more.
  • a binder, a conductive agent, etc. can be suitably added to a negative electrode active material similarly to a positive electrode active material.
  • the same binder and conductive agent as those added to the positive electrode active material can be used.
  • the negative electrode current collector 8 copper, stainless steel, nickel, titanium or an alloy thereof can be used. Among these, copper is particularly preferable.
  • the negative electrode 6 in the present embodiment can be manufactured by a known method. For example, after a negative electrode active material and a binder are dispersed in an organic solvent to obtain a slurry, a method of applying and drying this slurry on the negative electrode current collector 8 can be employed.
  • Non-aqueous electrolyte containing lithium salt The non-aqueous electrolytic solution containing a lithium salt used in the present embodiment can be appropriately selected from known ones depending on the type of active material, the use of the lithium ion secondary battery, and the like.
  • lithium salt for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB Examples include (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
  • the solvent for dissolving the lithium salt is not particularly limited as long as it is generally used as a liquid for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), vinylene carbonate (VC) and other carbonates; ⁇ -butyrolactone, ⁇ -valerolactone and other lactones; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; Sulfoxides such as dimethyl sulfoxide; Oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; acetonitrile Nitrogenous solvents such as nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate,
  • a well-known member can be used for a container in this embodiment, and it is preferable to use the flexible film 30 from a viewpoint of weight reduction of a battery.
  • the flexible film 30 can use what provided the resin layer in front and back of the metal layer used as a base material.
  • the metal layer can be selected to have a barrier property to prevent leakage of the electrolytic solution and entry of moisture from the outside, and aluminum, stainless steel, etc. can be used.
  • a heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 30 are opposed to each other through the battery element to make the battery element
  • the sheath is formed by heat-sealing the periphery of the part to be stored.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.
  • the positive electrode terminal 11 may be made of aluminum or an aluminum alloy
  • the negative electrode terminal 16 may be copper or a copper alloy, or those plated with nickel.
  • Each terminal is drawn to the outside of the container, but a heat fusible resin can be provided in advance in a portion located at a portion of the respective terminal where the periphery of the package is heat welded.
  • Insulating member In the case of forming the insulating member at the boundary portions 4 and 9 between the coated portion and the non-coated portion of the active material, polyimide, glass fiber, polyester, polypropylene or those containing these in the structure can be used. Heat can be applied to these members to weld them to the boundaries 4 and 9, or a gel-like resin can be applied to the boundaries 4 and 9 and dried to form an insulating member.
  • the separator 20 according to this embodiment is used as the separator. The description here is omitted.
  • Example 1 A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 ⁇ m made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 ⁇ m formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of ⁇ 20 cm were prepared. Next, the peripheral portions of the two prepared separators are respectively irradiated from the ceramic layer side with a YVO 4 laser having a wavelength of 532 nm, in which the YVO 4 fundamental wave (wavelength 1064 nm) is converted to a half wavelength, Each part of the ceramic layer at the planned adhesion site was removed.
  • a YVO 4 laser having a wavelength of 532 nm, in which the YVO 4 fundamental wave (wavelength 1064 nm) is converted to a half wavelength
  • the total value of the areas of the exposed resin layers in all the exposed portions was 245 mm 2 (the total value of the areas of the exposed portions of the two separators).
  • two separators are stacked so that the ceramic layer sides are respectively inside, and the two separators are heat-sealed by heating the heat-sealable portion using a heater block to obtain a bag-like separator 1
  • the obtained evaluation results are shown in Table 1.
  • Example 2 A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 ⁇ m made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 ⁇ m formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of ⁇ 20 cm were prepared.
  • the YVO 4 fundamental wave (wavelength 1064 nm) is halved from the ceramic layer side
  • the YVO 4 laser having a wavelength of 532 nm converted to each was irradiated to remove a portion of the ceramic layer at the heat fusion scheduled portion, and a total of four exposed portions of 0.5 mm 2 were provided.
  • the total value of the areas of the exposed resin layers in all the exposed portions was 2 mm 2 .
  • a separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 ⁇ m made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 ⁇ m formed of aluminum oxide particles on one surface of the porous resin layer
  • Two pieces of ⁇ 20 cm were prepared. Next, two separators were stacked so that the porous resin layer side was inside, and the two separators were heat-sealed using a heater block, to obtain a bag-like separator 3. Each evaluation was performed with respect to the obtained bag-like separator 3. The obtained evaluation results are shown in Table 1.
  • Comparative example 2 A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 ⁇ m made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 ⁇ m formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of ⁇ 20 cm were prepared. Next, two separators were stacked so that the ceramic layer side was on the inside, and the two separators were thermally fused using a heater block. However, the two separators were not sufficiently bonded, and the bonding was insufficient. Therefore, each evaluation is not performed about comparative example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

This separator (20), for producing a bag-shape separator obtained by thermally fusing the separator (20), is provided with a resin layer (21) and a ceramic layer (23) provided on at least one surface of the resin layer (21). A planned thermal fusion site (25) for producing a bag-shape separator is present on the ceramic layer (23) side, and the planned thermal fusion site (25) has an exposed part (27) where a portion of the ceramic layer (23) has been removed and a portion of the resin layer (21) is exposed on the ceramic layer (23) side.

Description

セパレータ、袋状セパレータ、袋詰電極およびリチウムイオン二次電池Separator, bag-shaped separator, packaged electrode and lithium ion secondary battery
 本発明は、セパレータ、袋状セパレータ、袋詰電極およびリチウムイオン二次電池に関する。 The present invention relates to a separator, a bag-shaped separator, a packaged electrode and a lithium ion secondary battery.
 リチウムイオン二次電池には、ポリオレフィン系樹脂やポリエステル系樹脂から主に構成された多孔性樹脂膜がセパレータとして使用されている。このような多孔性樹脂膜は、異常電流が発生し、電池の温度が上昇した場合等に多孔性樹脂膜の微細孔が閉塞して電流の流れを遮断するシャットダウン機能を有する。そのため、上記多孔性膜は、電池の熱暴走を回避する観点から有効とされている。 In a lithium ion secondary battery, a porous resin film mainly composed of a polyolefin resin or a polyester resin is used as a separator. Such a porous resin film has a shutdown function of blocking the flow of current by blocking the fine pores of the porous resin film when an abnormal current is generated and the temperature of the battery rises. Therefore, the porous membrane is effective from the viewpoint of avoiding thermal runaway of the battery.
 このようなセパレータに関する技術としては、例えば、特許文献1に記載のものが挙げられる。 As a technique regarding such a separator, the thing of patent document 1 is mentioned, for example.
 特許文献1(特開2011-71009号公報)には、多孔性樹脂膜と、その少なくとも第1面に付与された絶縁性のセラミックス層と、を含むリチウムイオン二次電池用のセパレータが記載されている。
 このようなセラミックス層を備えるセパレータは、一般的に、熱収縮が抑制され、耐熱性に優れるとされている。
Patent Document 1 (Japanese Unexamined Patent Publication No. 2011-71009) describes a separator for a lithium ion secondary battery including a porous resin film and an insulating ceramic layer applied to at least the first surface thereof. ing.
In general, a separator provided with such a ceramic layer is considered to be excellent in heat resistance because thermal contraction is suppressed.
特開2011-71009号公報JP, 2011-71009, A
 セパレータは、その一部を融着させることによって袋状セパレータにして用いる場合がある。この場合、袋状セパレータの内部に電極を収容して袋詰電極とする。
 本発明者の検討によれば、セラミックス層を備えるセパレータにより構成された袋状セパレータは以下の課題を有することが明らかになった。
 まず、セラミックス層を備えるセパレータは、一般的にポリオレフィン系樹脂層やポリエステル系樹脂層等の樹脂層と、この樹脂層の一方の面に設けられたセラミックス層と、を有する。このような多層構造を有するセパレータを熱融着して袋状にする場合、セパレータのセラミックス層側同士を安定的に熱融着することが難しかったため、セパレータの樹脂層側同士を熱融着して袋状にしていた。
 しかし、本発明者の検討によれば、セパレータの樹脂層側同士を熱融着して袋状にする場合、熱融着時にセラミックス層側がヒーターブロック表面に接触するため、セラミックス層の脱落やヒーターブロック表面へのセラミックス粒子の付着等が起きてしまうことが明らかになった。また、セラミックス層は袋の外側に配置されるため、セラミックス層の脱落のおそれもあった。
The separator may be used as a bag-like separator by fusing a part of the separator. In this case, the electrode is accommodated in the inside of the bag-like separator to form a packaged electrode.
According to the study of the present inventor, it has become clear that the bag-like separator constituted by the separator provided with the ceramic layer has the following problems.
First, a separator provided with a ceramic layer generally has a resin layer such as a polyolefin resin layer or a polyester resin layer, and a ceramic layer provided on one surface of the resin layer. When the separator having such a multilayer structure is heat-sealed into a bag, it is difficult to heat-seal the ceramic layers of the separators stably, so the resin-layers of the separators are heat-sealed. It had a bag shape.
However, according to the study of the present inventor, when the resin layer sides of the separators are heat-sealed to form a bag, the ceramic layer side contacts the heater block surface at the time of heat-sealing. It was revealed that adhesion of ceramic particles to the block surface and the like would occur. In addition, since the ceramic layer is disposed on the outside of the bag, there is a possibility that the ceramic layer may come off.
 本発明は上記事情に鑑みてなされたものであり、セラミックス層の脱落が抑制された袋状セパレータを提供するものである。 The present invention has been made in view of the above circumstances, and provides a bag-like separator in which the ceramic layer is prevented from falling off.
 本発明者らは上記課題を解決するために鋭意検討した。その結果、袋状にする前のセパレータの熱融着予定部位におけるセラミックス層の一部を除去し、セラミックス層側に樹脂層の一部を露出させることによって、セパレータのセラミックス層側を安定的に熱融着することができ、その結果、セラミックス層の脱落が抑制された袋状セパレータが安定的に得られることを見出し、本発明を完成させた。 The present inventors diligently studied to solve the above problems. As a result, the ceramic layer side of the separator is stably stabilized by removing a part of the ceramic layer at the portion to be heat-sealed of the separator before forming into a bag shape and exposing a part of the resin layer to the ceramic layer side. As a result, it has been found that a bag-like separator which can be heat-fused and as a result can be stably obtained in which the dropping of the ceramic layer is suppressed, and the present invention has been completed.
 本発明はこのような知見に基づいて発案されたものである。
 すなわち、本発明によれば、以下に示すセパレータ、袋状セパレータ、袋詰電極およびリチウムイオン二次電池が提供される。
The present invention was devised based on such knowledge.
That is, according to the present invention, the following separator, bag-like separator, bag electrode and lithium ion secondary battery are provided.
 本発明によれば、
 セパレータを熱融着することによって得られる袋状セパレータを作製するための上記セパレータであって、
 樹脂層と、上記樹脂層の少なくとも一方の面に設けられたセラミックス層と、
を備え、
 上記セラミックス層側に袋状セパレータを作製するための熱融着予定部位を有し、
 上記熱融着予定部位は、上記セラミックス層の一部が除去されているとともに上記セラミックス層側に上記樹脂層の一部が露出している露出部を有するセパレータが提供される。
According to the invention
The above separator for producing a bag-like separator obtained by heat-sealing the separator,
A resin layer, and a ceramic layer provided on at least one surface of the resin layer;
Equipped with
It has a heat fusion scheduled portion for producing a bag-like separator on the side of the ceramic layer,
The heat-sealable portion is provided with a separator having an exposed portion in which a portion of the resin layer is exposed and a portion of the resin layer is exposed while the portion of the ceramic layer is removed.
 また、本発明によれば、
 上記本発明のセパレータにおける上記熱融着予定部位を熱融着することによって得られる袋状セパレータが提供される。
Moreover, according to the present invention,
There is provided a bag-like separator obtained by heat-sealing the site to be heat-fused in the separator of the present invention.
 また、本発明によれば、
 上記本発明の袋状セパレータと、上記袋状セパレータに収容された電極と、を備える袋詰電極が提供される。
Moreover, according to the present invention,
There is provided a packaged electrode comprising the above-described pouched separator of the present invention and an electrode accommodated in the pouched separator.
 さらに、本発明によれば、
 リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含有する非水電解液と、上記正極と上記負極との間に挟まれたセパレータとが容器に収容されたリチウムイオン二次電池であって、
 上記セパレータが上記本発明の袋状セパレータを含むリチウムイオン二次電池が提供される。
Furthermore, according to the invention,
A lithium ion battery in which a positive electrode that absorbs and releases lithium, a negative electrode that absorbs and releases lithium, a non-aqueous electrolytic solution containing a lithium salt, and a separator sandwiched between the positive electrode and the negative electrode are accommodated in a container. The next battery,
There is provided a lithium ion secondary battery in which the separator comprises the bag-like separator of the present invention.
 本発明によれば、セラミックス層の脱落が抑制された袋状セパレータを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the bag-like separator in which drop-off | omission of the ceramic layer was suppressed can be provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
本発明に係る実施形態のセパレータの構造の一例を模式的に示した平面図である。It is the top view which showed typically an example of the structure of the separator of embodiment which concerns on this invention. 図1に示すA-A’線に沿う位置における、本発明に係る実施形態のセパレータの構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the separator of embodiment which concerns on this invention in the position which follows the A-A 'line | wire shown in FIG. 本発明に係る実施形態の袋詰電極の構造の一例を模式的に示した断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which showed typically an example of the structure of the packaged electrode of embodiment which concerns on this invention. 本発明に係る実施形態の袋詰電極の構造の一例を模式的に示した断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which showed typically an example of the structure of the packaged electrode of embodiment which concerns on this invention. 本発明に係る実施形態の積層型電池の構造の一例を模式的に示した概略図である。It is the schematic which showed typically an example of the structure of the laminated type battery of embodiment which concerns on this invention. 本発明に係る実施形態の捲回型電池の構造の一例を模式的に示した概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which showed typically an example of the structure of the winding type | mold battery of embodiment which concerns on this invention.
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。また、数値範囲の「~」は特に断りがなければ、以上から以下を表す。 Hereinafter, embodiments of the present invention will be described using the drawings. In all the drawings, similar components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. Further, in the drawings, each component schematically shows the shape, size and arrangement relationship to the extent that the present invention can be understood, and is different from the actual size. Further, unless otherwise noted, the numerical range “to” represents the above to the following.
<セパレータ>
 図1は、本発明に係る実施形態のセパレータ20の構造の一例を模式的に示した平面図である。図2には、図1に示すA-A’線に沿う位置における、本発明に係る実施形態のセパレータ20の構造の一例を模式的に示した断面図である。
<Separator>
FIG. 1 is a plan view schematically showing an example of the structure of a separator 20 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an example of the structure of the separator 20 according to the embodiment of the present invention at a position along the line AA 'shown in FIG.
 本実施形態に係るセパレータ20は、セパレータ20を熱融着することによって得られる袋状セパレータを作製するためのセパレータであって、樹脂層21と、樹脂層21の少なくとも一方の面に設けられたセラミックス層23と、を備え、セラミックス層23側に袋状セパレータを作製するための熱融着予定部位25を有し、熱融着予定部位25は、セラミックス層23の一部が除去されているとともにセラミックス層23側に樹脂層21の一部が露出している露出部27を有する。
 本実施形態に係るセパレータ20は、例えば、リチウムイオン二次電池用のセパレータとして用いることができる。
The separator 20 according to the present embodiment is a separator for producing a bag-like separator obtained by heat-sealing the separator 20, and is provided on at least one surface of the resin layer 21 and the resin layer 21. A ceramic layer 23 is provided, and a heat fusion scheduled portion 25 for producing a bag-like separator is provided on the ceramic layer 23 side, and a part of the ceramic layer 23 is removed from the heat sealing planned region 25 At the same time, an exposed portion 27 where a part of the resin layer 21 is exposed is provided on the ceramic layer 23 side.
The separator 20 according to the present embodiment can be used, for example, as a separator for a lithium ion secondary battery.
 本発明者の検討によれば、セラミックス層を備えるセパレータにより構成された袋状セパレータは以下の課題を有することが明らかになった。
 まず、セラミックス層を備えるセパレータは、一般的にポリオレフィン系樹脂層やポリエステル系樹脂層等の樹脂層と、この樹脂層の一方の面に設けられたセラミックス層と、を有する。このような多層構造を有するセパレータを熱融着して袋状にする場合、セパレータのセラミックス層側同士を安定的に熱融着することが難しかったため、セパレータの樹脂層側同士を熱融着して袋状にしていた。
 しかし、本発明者の検討によれば、セパレータの樹脂層側同士を熱融着して袋状にする場合、熱融着時にセラミックス層側がヒーターブロック表面に接触するため、セラミックス層の脱落やヒーターブロック表面へのセラミックス粒子の付着等が起きてしまうことが明らかになった。また、セラミックス層は袋の外側に配置されるため、セラミックス層の脱落のおそれもあった。
 そこで、本発明者は鋭意検討した結果、袋状にする前のセパレータ20の熱融着予定部位25におけるセラミックス層23の一部を除去し、セラミックス層23側に樹脂層21の一部を露出させることによって、セパレータ20のセラミックス層23側を安定的に熱融着することができ、その結果、セラミックス層23の脱落が抑制された袋状セパレータが安定的に得られることを見出した。
 このようなセパレータ20において、セラミックス層23側を安定的に熱融着することができる理由は明らかではないが、セラミックス層23側に樹脂層21の一部が露出している露出部27を有することによって、熱融着時にセラミックス層23の表面に露出する、溶融した樹脂成分の量が相対的に多くなり、その結果、露出した樹脂成分によってセラミックス層23側を安定的に熱融着することができるからだと考えられる。
 本実施形態に係るセパレータ20によれば、セラミックス層23側を安定的に熱融着することができるため、袋状にする際にヒーターブロック表面に接触する側を樹脂層21側とすることができる。あるいは、樹脂層21の両面にセラミックス層23を有する場合は、ヒーターブロック表面に接触する側のセラミックス層23の割合を減らすことができる。
 その結果、熱融着時にセラミックス層23の脱落やヒーターブロック表面へのセラミックス粒子の付着等を抑制することができる。
 以上から、本実施形態に係るセパレータ20によれば、熱融着予定部位25を熱融着することによって、セラミックス層23の脱落が抑制された袋状セパレータを実現することができる。
According to the study of the present inventor, it has become clear that the bag-like separator constituted by the separator provided with the ceramic layer has the following problems.
First, a separator provided with a ceramic layer generally has a resin layer such as a polyolefin resin layer or a polyester resin layer, and a ceramic layer provided on one surface of the resin layer. When the separator having such a multilayer structure is heat-sealed into a bag, it is difficult to heat-seal the ceramic layers of the separators stably, so the resin-layers of the separators are heat-sealed. It had a bag shape.
However, according to the study of the present inventor, when the resin layer sides of the separators are heat-sealed to form a bag, the ceramic layer side contacts the heater block surface at the time of heat-sealing. It was revealed that adhesion of ceramic particles to the block surface and the like would occur. In addition, since the ceramic layer is disposed on the outside of the bag, there is a possibility that the ceramic layer may come off.
Therefore, as a result of intensive investigations, the inventor of the present invention removed a portion of the ceramic layer 23 at the portion 25 to be heat-sealed of the separator 20 before forming the bag shape and exposed a portion of the resin layer 21 on the ceramic layer 23 side. As a result, it has been found that the ceramic layer 23 side of the separator 20 can be stably heat-sealed as a result, and as a result, a bag-like separator in which the ceramic layer 23 is suppressed from dropping is stably obtained.
In such a separator 20, although the reason why the ceramic layer 23 side can be stably heat-sealed is not clear, it has an exposed portion 27 on the ceramic layer 23 side where a part of the resin layer 21 is exposed. As a result, the amount of the melted resin component relatively exposed on the surface of the ceramic layer 23 at the time of heat sealing relatively increases, and as a result, the heat melting of the ceramic layer 23 is stably performed by the exposed resin component. It is thought that it can be done.
According to the separator 20 according to the present embodiment, since the ceramic layer 23 side can be stably heat-fused, the side in contact with the heater block surface can be the resin layer 21 side when forming the bag shape. it can. Alternatively, in the case where the ceramic layer 23 is provided on both sides of the resin layer 21, the ratio of the ceramic layer 23 in contact with the heater block surface can be reduced.
As a result, it is possible to suppress the detachment of the ceramic layer 23 and the adhesion of the ceramic particles to the surface of the heater block at the time of heat fusion.
As mentioned above, according to the separator 20 which concerns on this embodiment, the bag-like separator by which drop-off | omission of the ceramic layer 23 was suppressed can be implement | achieved by heat-fusing the heat-fusion plan part 25 by heat.
 本実施形態に係る露出部27は、熱融着予定部位25に隙間なく連続的に伸びて配置されていてもよいし、または隙間を隔てて間欠的に配置されていてもよいが、得られる袋状セパレータの熱収縮によるシワの発生を抑制する観点から、本実施形態に係る露出部27は隙間を隔てて間欠的に配置されていることが好ましい。
 ここで、本実施形態に係るセパレータ20において、当該セパレータ20中のすべての露出部27における露出している樹脂層21の面積の合計値が2mm以上であることが好ましく、5mm以上であることがより好ましく、10mm以上であることがさらに好ましく、50mm以上であることがさらにより好ましく、100mm以上であることが特に好ましく、そして2000mm以下であることが好ましく、1500mm以下であることがより好ましく、1000mm以下であることがさらに好ましく、500mm以下であることが特に好ましい。
 当該セパレータ20中のすべての露出部27における露出している樹脂層21の面積の合計値が上記下限値以上であると、セパレータ20のセラミックス層23側をより一層安定的に熱融着することができ、その結果、セパレータ20同士の溶着強度を高めることができたり、セラミックス層23の脱落が抑制された袋状セパレータをより一層安定的に得ることができたりするため好ましい。
 また、当該セパレータ20中のすべての露出部27における露出している樹脂層21の面積の合計値が上記上限値以下であると、セパレータ20の絶縁性を高めることができたり、セラミックス層23の脱落が抑制された袋状セパレータをより一層安定的に得ることができたりするため好ましい。
 また、当該セパレータ20中のすべての露出部27における露出している樹脂層21の面積の合計値が上記上限値以下であると、後述するセパレータ20の熱融着予定部位25におけるセラミックス層23の少なくとも一部を除去する工程を短くすることができるため、セパレータ20の生産性を向上させることができる。特に、目的とするリチウムイオン二次電池が大型化した場合はセパレータのサイズも大きくなるため、当該セパレータ20中のすべての露出部27における露出している樹脂層21の面積の合計値が上記上限値以下であると、安定的に熱融着することができながら製造時間を短縮できるため好ましい。
 ここで、熱融着予定部位25とは、セパレータ20の熱融着時において、加熱装置によって加熱される部位であり、例えば、図1に示すようなセパレータ20の周縁部である。また、熱融着予定部位25は、露出部27の周辺だけであってもよい。
The exposed portion 27 according to the present embodiment may be continuously extended without any gap in the region 25 to be heat-fused, or may be intermittently disposed with a gap, but is obtained. From the viewpoint of suppressing the generation of wrinkles due to the thermal contraction of the bag-like separator, it is preferable that the exposed portion 27 according to the present embodiment is intermittently disposed with a gap.
Here, the separator 20 according to this embodiment, is preferably, 5 mm 2 or more that the sum of the areas of the resin layer 21 exposed in all of the exposed portion 27 in the separator 20 is 2 mm 2 or more Is more preferably 10 mm 2 or more, still more preferably 50 mm 2 or more, particularly preferably 100 mm 2 or more, and preferably 2000 mm 2 or less, and 1500 mm 2 or less. Some are more preferable, 1000 mm 2 or less is more preferable, and 500 mm 2 or less is particularly preferable.
The heat fusion of the ceramic layer 23 side of the separator 20 is performed more stably when the total value of the areas of the exposed resin layers 21 in all the exposed portions 27 in the separator 20 is equal to or more than the above lower limit. As a result, the welding strength of the separators 20 can be enhanced, and a bag-like separator in which the ceramic layer 23 is suppressed from dropping can be obtained more stably, which is preferable.
In addition, when the total value of the areas of the exposed resin layers 21 in all the exposed portions 27 in the separator 20 is equal to or less than the upper limit value, the insulation of the separator 20 can be enhanced. It is preferable because a bag-like separator in which the dropout is suppressed can be obtained more stably.
In addition, when the total value of the areas of the exposed resin layers 21 in all the exposed portions 27 in the separator 20 is equal to or less than the upper limit value, the ceramic layer 23 in the heat fusion scheduled portion 25 of the separator 20 described later. Since the process of removing at least a part can be shortened, the productivity of the separator 20 can be improved. In particular, when the size of the target lithium ion secondary battery is increased, the size of the separator is also increased. Therefore, the total value of the areas of the exposed resin layers 21 in all the exposed portions 27 in the separator 20 is the above upper limit It is preferable because the heat fusion can be stably performed and the production time can be shortened if the value is less than the value.
Here, the heat fusion scheduled part 25 is a part heated by the heating device at the time of heat fusion of the separator 20, and is, for example, the peripheral part of the separator 20 as shown in FIG. Further, the heat fusion planned site 25 may be only around the exposed portion 27.
 セラミックス層23側に樹脂層21の一部が露出している露出部27を有するセパレータ20の製造方法は特に限定されないが、例えば、セパレータ20の熱融着予定部位25におけるセラミックス層23の少なくとも一部を除去する工程を含む製造方法により得ることができる。 The method of manufacturing the separator 20 having the exposed portion 27 where a part of the resin layer 21 is exposed on the ceramic layer 23 side is not particularly limited, but, for example, at least one of the ceramic layers 23 at the heat fusion scheduled portion 25 of the separator 20 It can obtain by the manufacturing method including the process of removing the part.
 セパレータ20の熱融着予定部位25におけるセラミックス層23の少なくとも一部を除去する方法としては特に限定されないが、例えば、熱カッターや熱ワイヤー等で除去する方法や、押し切り刃や回転刃で除去する方法、レーザーを照射することにより除去する方法が挙げられる。
 これらの中でも、セパレータ20の熱融着予定部位25におけるセラミックス層23の一部を精度よく除去できる観点から、レーザーをセラミックス層23に照射することによってセパレータ20の熱融着予定部位25におけるセラミックス層23の少なくとも一部を除去する方法が好ましい。
The method for removing at least a part of the ceramic layer 23 at the portion 25 to be heat-sealed of the separator 20 is not particularly limited. For example, the method for removing it with a heat cutter or heat wire, or removing with a pressing blade or rotary blade Methods include removal by laser irradiation.
Among these, from the viewpoint of being able to accurately remove a part of the ceramic layer 23 at the heat fusion planned site 25 of the separator 20, the ceramic layer at the heat fusion planned site 25 of the separator 20 by irradiating the ceramic layer 23 with a laser. The method of removing at least one part of 23 is preferable.
 使用するレーザーとしては特に限定されないが、より一層低出力かつ短時間でセラミックス層23の一部を除去できる観点から、レーザーの波長は300nm以上600nm以下が好ましく、350nm以上550nm以下がより好ましく、355nmまたは532nmがさらに好ましい。また、コストに優れる観点から、532nmのレーザーが特に好ましい。
 レーザーの波長を上記上限値以下とすることにより、セラミックス層23に対するエネルギー吸収率を高めることができ、その結果、より一層低出力かつ短時間でセラミックス層23を除去することが可能となる。
 また、レーザーの波長を上記下限値以上とすることにより、エネルギーの出力を高めることができたり、レーザー設備を簡略化できたりするため、より一層効率よくセラミックス層23を除去することが可能となり、さらにコストも低減することができる。
The laser to be used is not particularly limited, but the wavelength of the laser is preferably 300 nm or more and 600 nm or less, more preferably 350 nm or more and 550 nm or less, from the viewpoint of being able to remove a part of the ceramic layer 23 with much lower output and short time. Or 532 nm is more preferred. Further, from the viewpoint of excellent cost, a 532 nm laser is particularly preferable.
By setting the wavelength of the laser to the upper limit value or less, the energy absorption rate with respect to the ceramic layer 23 can be increased, and as a result, the ceramic layer 23 can be removed in a still lower output and in a short time.
Further, by setting the wavelength of the laser to the lower limit value or more, the energy output can be increased or the laser equipment can be simplified, so that the ceramic layer 23 can be removed more efficiently. Furthermore, the cost can be reduced.
 波長が300nm以上600nm以下であるレーザーは、例えば、YVO基本波(波長1064nm)やYAG基本波(波長1064nm)等を整数倍に分割したレーザーが挙げられる。ここで、波長が532nmのレーザーは、例えば、YVO基本波(波長1064nm)やYAG基本波(波長1064nm)を2分の1の波長に変換したものであり、波長が355nmのレーザーは、例えば、YVO基本波(波長1064nm)やYAG基本波(波長1064nm)を3分の1の波長に変換したものである。 Examples of the laser having a wavelength of 300 nm or more and 600 nm or less include a laser in which a YVO 4 fundamental wave (wavelength 1064 nm), a YAG fundamental wave (wavelength 1064 nm) or the like is divided into integer multiples. Here, a laser having a wavelength of 532 nm is, for example, a YVO 4 fundamental wave (wavelength 1064 nm) or a YAG fundamental wave (wavelength 1064 nm) converted to a half wavelength, and a laser having a wavelength of 355 nm is The YVO 4 fundamental wave (wavelength 1064 nm) and the YAG fundamental wave (wavelength 1064 nm) are converted to a wavelength of 1/3.
 本実施形態に係るセパレータ20の平面形状は、特に限定されず、電極や集電体の形状に合わせて適宜選択することが可能であり、例えば、矩形とすることができる。 The planar shape of the separator 20 according to the present embodiment is not particularly limited, and can be appropriately selected according to the shapes of the electrode and the current collector, and can be, for example, rectangular.
 樹脂層21の厚みは、機械的強度およびリチウムイオン伝導性のバランスの観点や、得られるリチウムイオン二次電池のエネルギー密度を向上できる観点から、好ましくは1μm以上50μm以下であり、より好ましくは5μm以上40μm以下であり、さらに好ましくは10μm以上30μm以下である。 The thickness of the resin layer 21 is preferably 1 μm or more and 50 μm or less, more preferably 5 μm or less, from the viewpoint of balance between mechanical strength and lithium ion conductivity, and from the viewpoint of being able to improve the energy density of the obtained lithium ion secondary battery. The thickness is 40 μm or more, and more preferably 10 μm to 30 μm.
 樹脂層21を形成する樹脂としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂等のポリオレフィン系樹脂や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂等が挙げられる。これらの中でも、耐熱性、シャットダウン機能、コスト等のバランスに優れる観点から、ポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂がより好ましい。これらの樹脂は一種単独で用いてもよいし、2種以上を併用してもよい。
 ここで、樹脂層21はポリオレフィン系樹脂およびポリエステル系樹脂から選択される少なくとも一種を主成分として含むことが好ましい。ここで、「主成分」とは、多孔性樹脂層中における割合が50質量%以上であることをいい、好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、100質量%であってもよいことを意味する。
Examples of the resin for forming the resin layer 21 include polyolefin resins such as polypropylene resins and polyethylene resins, and polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. Among these, polyolefin resins are preferable, and polypropylene resins are more preferable, from the viewpoint of being excellent in balance of heat resistance, shutdown function, cost and the like. These resins may be used alone or in combination of two or more.
Here, the resin layer 21 preferably contains at least one selected from a polyolefin resin and a polyester resin as a main component. Here, the term "main component" means that the proportion in the porous resin layer is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and 100% by mass It means that it may be.
 上記ポリプロピレン系樹脂としては特に限定されず、例えば、プロピレン単独重合体、プロピレンと他のオレフィンとの共重合体等が挙げられ、プロピレン単独重合体(ホモポリプロピレン)が好ましい。ポリプロピレン系樹脂は、単独で用いても二種以上を併用して用いてもよい。
 なお、プロピレンと共重合されるオレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセン等のα-オレフィン等が挙げられる。
It does not specifically limit as said polypropylene resin, For example, a propylene homopolymer, the copolymer of propylene and other olefins, etc. are mentioned, A propylene homopolymer (homo polypropylene) is preferable. The polypropylene resins may be used alone or in combination of two or more.
The olefins copolymerized with propylene include, for example, ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, etc. -An olefin etc. are mentioned.
 上記ポリエチレン系樹脂としては特に限定されず、例えば、エチレン単独重合体、エチレンと他のオレフィンとの共重合体等が挙げられ、エチレン単独重合体(ホモポリエチレン)が好ましい。ポリエチレン系樹脂は、単独で用いても二種以上を併用して用いてもよい。
 なお、エチレンと共重合されるオレフィンとしては、例えば、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセン等のα-オレフィン等が挙げられる。
It does not specifically limit as said polyethylene-type resin, For example, an ethylene homopolymer, the copolymer of ethylene and other olefins, etc. are mentioned, An ethylene homopolymer (homo polyethylene) is preferable. The polyethylene resins may be used alone or in combination of two or more.
Examples of olefins copolymerized with ethylene include α-olefins such as 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene. Etc.
 樹脂層21は多孔性樹脂層であることが好ましい。これにより、リチウムイオン二次電池に異常電流が発生し、電池の温度が上昇した場合等に多孔性樹脂膜の微細孔が閉塞して電流の流れを遮断することができ、電池の熱暴走を回避することができる。 The resin layer 21 is preferably a porous resin layer. As a result, abnormal current is generated in the lithium ion secondary battery, and when the temperature of the battery rises, etc., the fine pores of the porous resin film can be blocked and the flow of current can be blocked, thereby causing thermal runaway of the battery. It can be avoided.
 上記多孔性樹脂層の空孔率は、機械的強度およびリチウムイオン伝導性のバランスの観点から、20%以上80%以下が好ましく、30%以上70%以下がより好ましく、40%以上60%以下が特に好ましい。
 空孔率は、下記式から求めることができる。
 ε={1-Ws/(ds・t)}×100
 ここで、ε:空孔率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、t:膜厚(μm)である。
From the viewpoint of the balance between mechanical strength and lithium ion conductivity, the porosity of the porous resin layer is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. Is particularly preferred.
The porosity can be determined from the following equation.
ε = {1-Ws / (ds · t)} × 100
Here, ε: porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), t: film thickness (μm).
 本実施形態に係るセパレータ20は、耐熱性を向上させる観点から、樹脂層21の少なくとも一方の面にセラミックス層23を有する。ここで、セラミックス層23は、本実施形態に係るセパレータ20の取り扱い性や、生産性などの観点から、樹脂層21の一方の面のみに設けられていることが好ましいが、セパレータ20の耐熱性をより一層向上させる観点から、樹脂層21の両面に設けられていてもよい。
 本実施形態に係るセパレータ20は、セラミックス層23を有することにより、セパレータ20の熱収縮をより小さくすることができ、電極間の短絡をより一層防止することができる。
The separator 20 according to the present embodiment has a ceramic layer 23 on at least one surface of the resin layer 21 from the viewpoint of improving the heat resistance. Here, the ceramic layer 23 is preferably provided only on one side of the resin layer 21 from the viewpoint of the handleability and productivity of the separator 20 according to the present embodiment, but the heat resistance of the separator 20 is preferable. May be provided on both sides of the resin layer 21 from the viewpoint of further improving the
By having the ceramic layer 23, the separator 20 according to the present embodiment can further reduce the thermal contraction of the separator 20, and can further prevent a short circuit between electrodes.
 セラミックス層23は、例えば、樹脂層21上に、セラミックス層形成材料を塗布して乾燥させることにより形成することができる。セラミックス層形成材料としては、例えば、セラミックス粒子と結着剤とを適当な溶媒に溶解または分散させたものを用いることができる。 The ceramic layer 23 can be formed, for example, by applying and drying a ceramic layer forming material on the resin layer 21. As the ceramic layer forming material, for example, a material in which ceramic particles and a binder are dissolved or dispersed in an appropriate solvent can be used.
 セラミックス層23に用いられるセラミックス粒子は、リチウムイオン二次電池のセパレータに使用される公知の材料の中から適宜選択することができる。例えば、絶縁性の高い酸化物、窒化物、硫化物、炭化物等が好ましく、酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、酸化バリウム、酸化ジルコニウム、酸化亜鉛および酸化鉄等から選択される一種または二種以上のセラミックスを粒子状に調整したものがより好ましい。これらの中でも、酸化アルミニウムおよび酸化チタンが好ましい。 The ceramic particles used for the ceramic layer 23 can be appropriately selected from known materials used for a separator of a lithium ion secondary battery. For example, oxides or nitrides or sulfides or carbides having high insulating properties are preferable, and one or more selected from aluminum oxide, titanium oxide, silicon oxide, magnesium oxide, barium oxide, zirconium oxide, zinc oxide, iron oxide and the like It is more preferable to adjust two or more kinds of ceramics into particles. Among these, aluminum oxide and titanium oxide are preferable.
 上記結着剤は特に限定されず、例えば、カルボキシメチルセルロース(CMC)等のセルロース系樹脂;アクリル系樹脂;ポリビニリデンフロライド(PVDF)等のフッ素系樹脂;等が挙げられる。結着剤は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The binder is not particularly limited, and examples thereof include cellulose resins such as carboxymethyl cellulose (CMC); acrylic resins; fluorine resins such as polyvinylidene fluoride (PVDF); and the like. The binder may be used alone or in combination of two or more.
 これら成分を溶解または分散させる溶媒は特に限定されず、例えば、水、エタノール等のアルコール類、N-メチルピロリドン(NMP)、トルエン、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等から適宜選択して用いることができる。 The solvent for dissolving or dispersing these components is not particularly limited, and is appropriately selected from, for example, water, alcohols such as ethanol, N-methylpyrrolidone (NMP), toluene, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), etc. Can be used.
 セラミックス層23の厚みは、耐熱性、機械的強度、取扱い性およびリチウムイオン伝導性のバランスの観点から、好ましくは0.1μm以上50μm以下であり、より好ましくは0.5μm以上30μm以下であり、さらに好ましくは1μm以上15μm以下である。 The thickness of the ceramic layer 23 is preferably 0.1 μm or more and 50 μm or less, more preferably 0.5 μm or more and 30 μm or less, from the viewpoint of the balance of heat resistance, mechanical strength, handleability and lithium ion conductivity. More preferably, it is 1 μm or more and 15 μm or less.
<袋状セパレータおよび袋詰電極>
 図3および4は、本発明に係る実施形態の袋詰電極80の構造の一例を模式的に示した断面図である。
 本実施形態に係る袋状セパレータ50は、セパレータ20における熱融着予定部位25を熱融着することによって得ることができる。ここで、セパレータ20における熱融着予定部位25を熱融着することによって接合された部位を接合部53と呼ぶ。
 本実施形態に係る袋状セパレータ50の作製方法は特に限定されないが、例えば、図3に示すように、2枚のセパレータ20の熱融着予定部位25を熱融着することによって作製することができる、あるいは図4に示すように、1枚のセパレータ20を折り返し、セパレータ20の熱融着予定部位25を熱融着することによっても作製することができる。
 ここで、熱融着予定部位25は、例えば、セパレータ20の周縁部である。
 また、セパレータ20が矩形状の場合、熱融着予定部位25における露出部27は、セパレータ20の4辺の周縁部のうち3辺以上にあればよく、4辺にあるのが好ましい。
 また、本実施形態に係る袋状セパレータ50には、内部に収容された電極83の移動を抑制するように周縁部を熱溶着しただけであって、完全な袋になっていない状態も含まれる。
<Sacky separator and bagging electrode>
3 and 4 are cross-sectional views schematically showing an example of the structure of the packaged electrode 80 according to the embodiment of the present invention.
The bag-like separator 50 according to the present embodiment can be obtained by heat-sealing the heat-fusion intended portion 25 of the separator 20. Here, a portion joined by thermally fusing the portion 25 to be thermally fused in the separator 20 is referred to as a junction portion 53.
The method for producing the bag-like separator 50 according to the present embodiment is not particularly limited, but for example, as shown in FIG. Alternatively, as shown in FIG. 4, it can be produced by folding one separator 20 and thermally fusing the portion 25 of the separator 20 to be fused by heat.
Here, the portion 25 to be thermally fused is, for example, the peripheral portion of the separator 20.
When the separator 20 has a rectangular shape, the exposed portion 27 at the heat sealing scheduled portion 25 may be three or more of the peripheral portions of the four sides of the separator 20, and is preferably at four sides.
In addition, the bag-like separator 50 according to the present embodiment includes a state in which the peripheral edge is only heat-welded so as to suppress the movement of the electrode 83 accommodated therein, and the bag is not a complete bag. .
 本実施形態に係る袋詰電極80は、本実施形態に係る袋状セパレータ50と、袋状セパレータ50に収容された電極83と、を備える。ここで、本実施形態に係るセパレータ20を用いて袋状セパレータ50を作製した後に、袋の中に電極83を収容してもよいし、あるいは、電極83をセパレータ20の間に挟み、その後、セパレータ20を熱融着して袋状セパレータ50を作製することによって、袋の中に電極83を収容してもよい。
 袋の中に収容する電極83としては、例えば、後述する正極や負極が挙げられる。
 ここで、本実施形態に係る袋詰電極80において、袋状セパレータ50が矩形状の場合、接合部53は、4辺の周縁部のうち3辺以上にあればよく、4辺にあるのが好ましい。
The packaged electrode 80 according to the present embodiment includes the bag-like separator 50 according to the present embodiment, and an electrode 83 accommodated in the bag-like separator 50. Here, after the bag-like separator 50 is manufactured using the separator 20 according to the present embodiment, the electrode 83 may be accommodated in the bag, or the electrode 83 is sandwiched between the separators 20, and then, The electrode 83 may be accommodated in the bag by heat-sealing the separator 20 to produce the bag-like separator 50.
As an electrode 83 accommodated in a bag, the positive electrode and negative electrode which are mentioned later are mentioned, for example.
Here, in the packaged electrode 80 according to the present embodiment, when the bag-like separator 50 has a rectangular shape, the bonding portion 53 may be at three or more sides in the peripheral portion at four sides, and at four sides preferable.
<リチウムイオン二次電池>
 本実施形態に係るリチウムイオン二次電池は、以下の構成を備える。
 当該リチウムイオン二次電池は、リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含有する非水電解液と、上記正極と上記負極との間に挟まれたセパレータとが容器に収容されたものであり、上記セパレータが本実施形態に係る袋状セパレータを含む。ここで、本実施形態に係る袋状セパレータは、上記正極と上記負極とを収容する。
 ここで、本実施形態に係るリチウムイオン電池において、袋状セパレータが矩形状の場合は、接合部53は、4辺の周縁部のうち3辺以上にあればよく、4辺にあるのが好ましい。
 本実施形態のリチウムイオン二次電池は特にその形態や種類が限定されるものではないが、例えば、以下のような構成とすることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery according to the present embodiment has the following configuration.
The lithium ion secondary battery includes a positive electrode that inserts and receives lithium, a negative electrode that inserts and receives lithium, a non-aqueous electrolyte containing a lithium salt, and a separator sandwiched between the positive electrode and the negative electrode. It accommodates in a container and the said separator contains the bag-like separator which concerns on this embodiment. Here, the bag-like separator according to the present embodiment accommodates the positive electrode and the negative electrode.
Here, in the lithium ion battery according to the present embodiment, in the case where the bag-like separator has a rectangular shape, the bonding portion 53 may be at three or more sides in the peripheral portion of four sides, preferably at four sides. .
The form and type of the lithium ion secondary battery of the present embodiment are not particularly limited, but, for example, the following configuration can be made.
[積層型電池]
 図5は、本発明に係る実施形態の積層型電池100の構造の一例を模式的に示した概略図である。積層型電池100は、正極1と負極6とが、セパレータ20を介して交互に複数層積層された電池要素を備えており、これらの電池要素は電解液(図示せず)とともに可撓性フィルム30からなる容器に収納されている。電池要素には正極端子11および負極端子16が電気的に接続されており、正極端子11および負極端子16の一部または全部が可撓性フィルム30の外部に引き出されている構成になっている。
[Stacked battery]
FIG. 5 is a schematic view schematically showing an example of the structure of the stacked battery 100 according to the embodiment of the present invention. Stacked battery 100 includes battery elements in which positive electrode 1 and negative electrode 6 are alternately laminated in multiple layers with separator 20 interposed therebetween, and these battery elements are a flexible film together with an electrolytic solution (not shown). It is housed in a 30 container. The positive electrode terminal 11 and the negative electrode terminal 16 are electrically connected to the battery element, and a part or all of the positive electrode terminal 11 and the negative electrode terminal 16 are drawn out of the flexible film 30. .
 正極1には正極集電体3の表裏に、正極活物質の塗布部2と未塗布部がそれぞれ設けられており、負極6には負極集電体8の表裏に、負極活物質の塗布部7と未塗布部が設けられている。 The positive electrode 1 is provided with the coated part 2 and the uncoated part of the positive electrode active material on the front and back of the positive electrode current collector 3, and the negative electrode 6 is coated on the front and back of the negative electrode current collector 8. 7 and an uncoated part are provided.
 正極集電体3における正極活物質の未塗布部を正極端子11と接続するための正極タブ10とし、負極集電体8における負極活物質の未塗布部を負極端子16と接続するための負極タブ5とする。
 正極タブ10同士は正極端子11上にまとめられ、正極端子11とともに超音波溶接等で互いに接続され、負極タブ5同士は負極端子16上にまとめられ、負極端子16とともに超音波溶接等で互いに接続される。そのうえで、正極端子11の一端は可撓性フィルム30の外部に引き出され、負極端子16の一端も可撓性フィルム30の外部に引き出されている。
A negative electrode for connecting the uncoated portion of the negative electrode active material in the negative electrode current collector 8 to the negative electrode terminal 16 with the uncoated portion of the positive electrode active material in the positive electrode current collector 3 as the positive electrode tab 10 for connecting to the positive electrode terminal 11 It is referred to as tab 5.
The positive electrode tabs 10 are assembled on the positive electrode terminal 11 and connected together by ultrasonic welding etc. together with the positive electrode terminal 11, and the negative electrode tabs 5 are assembled on the negative electrode terminal 16 connected together by ultrasonic welding etc. together with the negative electrode terminal 16. Be done. In addition, one end of the positive electrode terminal 11 is drawn out of the flexible film 30, and one end of the negative electrode terminal 16 is also drawn out of the flexible film 30.
 正極活物質の塗布部2と未塗布部の境界部4には、必要に応じて絶縁部材を形成することができ、当該絶縁部材は境界部4だけでなく、正極タブ10と正極活物質の双方の境界部付近に形成することができる。 If necessary, an insulating member can be formed at the boundary 4 between the coated part 2 and the non-coated part of the positive electrode active material, and the insulating member is not only the boundary 4 but also the positive electrode tab 10 and the positive electrode active material. It can be formed near both boundaries.
 負極活物質の塗布部7と未塗布部の境界部9にも同様に、必要に応じて絶縁部材を形成することができ、負極タブ5と負極活物質の双方の境界部付近に形成することができる。 Similarly, an insulating member can be formed at the boundary 9 between the coated part 7 and the non-coated part of the negative electrode active material as necessary, and formed near the boundary between both the negative electrode tab 5 and the negative electrode active material. Can.
 通常、負極活物質の塗布部7の外形寸法は正極活物質の塗布部2の外形寸法よりも大きく、セパレータ20の外形寸法よりも小さい。 Usually, the external dimension of the application part 7 of a negative electrode active material is larger than the external dimension of the application part 2 of a positive electrode active material, and smaller than the external dimension of the separator 20.
[捲回型電池]
 図6は、本発明に係る実施形態の捲回型電池101の構造の一例を模式的に示した概略図である。捲回型電池101は正極1と負極6とがセパレータ20を介して積層され、捲回された電池要素を備えており、この電池要素は電解液(図示せず)とともに可撓性のフィルムからなる容器に収納されている。
 捲回型電池101の電池要素にも正極端子や負極端子が電気的に接続されている等、その他の構成は積層型電池100と概ね一致するため、ここでのこれ以上の説明は省略する。
[Wound battery]
FIG. 6 is a schematic view schematically showing an example of the structure of the wound battery 101 according to the embodiment of the present invention. The wound battery 101 includes a battery element in which a positive electrode 1 and a negative electrode 6 are stacked via a separator 20 and wound, and this battery element is made of a flexible film together with an electrolytic solution (not shown). Contained in the
The positive electrode terminal and the negative electrode terminal are also electrically connected to the battery element of the wound battery 101, and the other configuration is substantially the same as that of the laminated battery 100, and thus further description is omitted here.
 つづいて、本実施形態のリチウムイオン二次電池に用いられる各構成について説明する。 It continues and demonstrates each structure used for the lithium ion secondary battery of this embodiment.
(リチウムを吸蔵放出する正極)
 本実施形態に用いる正極1は、用途等に応じて、公知のリチウムイオン二次電池に使用することのできる正極の中から適宜選択することができる。正極1に用いられる活物質としては、リチウムイオンを可逆に放出・吸蔵でき、電子輸送が容易に行えるように電子伝導度の高い材料が好ましい。
(Positive electrode for absorbing and desorbing lithium)
The positive electrode 1 used in the present embodiment can be appropriately selected from among positive electrodes that can be used for known lithium ion secondary batteries, according to the application and the like. The active material used for the positive electrode 1 is preferably a material having high electron conductivity so that lithium ions can be reversibly released and stored, and electron transport can be easily performed.
 正極1に用いられる活物質としては、例えば、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウム-マンガン-ニッケル複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
As an active material used for the positive electrode 1, for example, a complex oxide of lithium and transition metal such as lithium nickel complex oxide, lithium cobalt complex oxide, lithium manganese complex oxide, lithium-manganese-nickel complex oxide, etc .; Transition metal sulfides such as TiS 2 , FeS, MoS 2 and the like; transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , and olivine-type lithium phosphorus oxide.
The olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウム-マンガン-ニッケル複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Among these, olivine-type lithium iron phosphorus oxide, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and lithium-manganese-nickel composite oxide are preferable. These positive electrode active materials have large capacity in addition to high action potential and large energy density.
The positive electrode active material may be used alone or in combination of two or more.
 正極活物質には結着剤や導電剤等を適宜加えることができる。導電剤としては、カーボンブラック、炭素繊維、黒鉛等を用いることができる。また、結着剤としてはポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子等を用いることができる。 A binder, a conductive agent, etc. can be suitably added to the positive electrode active material. As the conductive agent, carbon black, carbon fiber, graphite or the like can be used. Further, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), carboxymethyl cellulose, modified acrylonitrile rubber particles and the like can be used as the binder.
 正極1に用いられる正極集電体3としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができ、これらの中でもアルミニウムが特に好ましい。 As the positive electrode current collector 3 used for the positive electrode 1, aluminum, stainless steel, nickel, titanium or an alloy thereof can be used. Among these, aluminum is particularly preferable.
 また、本実施形態における正極1は、公知の方法により製造することができる。例えば、正極活物質、導電剤および結着剤を有機溶媒中に分散させスラリーを得た後、このスラリーを正極集電体3に塗布・乾燥する等の方法を採用することができる。 In addition, the positive electrode 1 in the present embodiment can be manufactured by a known method. For example, after a positive electrode active material, a conductive agent, and a binder are dispersed in an organic solvent to obtain a slurry, a method of applying and drying this slurry on the positive electrode current collector 3 can be employed.
(リチウムを吸蔵放出する負極)
 本実施形態に用いる負極6は、用途等に応じて、公知のリチウムイオン二次電池に使用することのできる負極の中から適宜選択することができる。負極6に用いられる活物質についても負極に使用可能なものであれば用途等に応じて適宜設定することができる。
(Anode that occludes and releases lithium)
The negative electrode 6 used in the present embodiment can be appropriately selected from among negative electrodes that can be used for known lithium ion secondary batteries, depending on the application and the like. The active material used for the negative electrode 6 can also be appropriately set according to the application etc. as long as it can be used for the negative electrode.
 負極活物質として使用可能な材料の具体例としては、人造黒鉛、天然黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーン等の炭素材料;リチウム金属材料;シリコンやスズ等の合金系材料;NbやTiO等の酸化物系材料;あるいはこれらの複合物を用いることができる。
 負極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Specific examples of the material that can be used as the negative electrode active material include artificial graphite, natural graphite, amorphous carbon, diamond-like carbon, fullerenes, carbon materials such as carbon nanotubes and carbon nanohorns; lithium metal materials; silicon, tin, etc. Alloy-based materials; oxide-based materials such as Nb 2 O 5 and TiO 2 ; or composites of these can be used.
The negative electrode active material may be used alone or in combination of two or more.
 また、負極活物質には、正極活物質と同様に、結着剤や導電剤等を適宜加えることができる。これら結着剤や導電剤は正極活物質に添加するものと同じものを用いることができる。 Moreover, a binder, a conductive agent, etc. can be suitably added to a negative electrode active material similarly to a positive electrode active material. The same binder and conductive agent as those added to the positive electrode active material can be used.
 負極集電体8としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができ、これらの中でも銅が特に好ましい。 As the negative electrode current collector 8, copper, stainless steel, nickel, titanium or an alloy thereof can be used. Among these, copper is particularly preferable.
 また、本実施形態における負極6は、公知の方法により製造することができる。例えば負極活物質と結着剤とを有機溶媒中に分散させスラリーを得た後、このスラリーを負極集電体8に塗布・乾燥する等の方法を採用することができる。 In addition, the negative electrode 6 in the present embodiment can be manufactured by a known method. For example, after a negative electrode active material and a binder are dispersed in an organic solvent to obtain a slurry, a method of applying and drying this slurry on the negative electrode current collector 8 can be employed.
(リチウム塩を含有する非水電解液)
 本実施形態に用いるリチウム塩を含有する非水電解液は活物質の種類やリチウムイオン二次電池の用途等に応じて公知のものの中から適宜選択することができる。
(Non-aqueous electrolyte containing lithium salt)
The non-aqueous electrolytic solution containing a lithium salt used in the present embodiment can be appropriately selected from known ones depending on the type of active material, the use of the lithium ion secondary battery, and the like.
 具体的なリチウム塩の例としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等を挙げることができる。 Specific examples of the lithium salt, for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB Examples include (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
 リチウム塩を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであればとくに限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素溶媒;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。 The solvent for dissolving the lithium salt is not particularly limited as long as it is generally used as a liquid for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), vinylene carbonate (VC) and other carbonates; γ-butyrolactone, γ-valerolactone and other lactones; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; Sulfoxides such as dimethyl sulfoxide; Oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; acetonitrile Nitrogenous solvents such as nitromethane, formamide and dimethylformamide; methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like organic acid esters; phosphoric acid triesters and diglymes; triglymes; Sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, and naphtha sultone. These may be used singly or in combination of two or more.
(容器)
 本実施形態において容器には公知の部材を用いることができ、電池の軽量化の観点からは可撓性フィルム30を用いることが好ましい。可撓性フィルム30は、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には電解液の漏出や外部からの水分の侵入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼等を用いることができる。金属層の少なくとも一方の面には変性ポリオレフィン等の熱融着性の樹脂層が設けられ、可撓性フィルム30の熱融着性の樹脂層同士を電池要素を介して対向させ、電池要素を収納する部分の周囲を熱融着することで外装体を形成する。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルム等の樹脂層を設けることができる。
(container)
A well-known member can be used for a container in this embodiment, and it is preferable to use the flexible film 30 from a viewpoint of weight reduction of a battery. The flexible film 30 can use what provided the resin layer in front and back of the metal layer used as a base material. The metal layer can be selected to have a barrier property to prevent leakage of the electrolytic solution and entry of moisture from the outside, and aluminum, stainless steel, etc. can be used. A heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 30 are opposed to each other through the battery element to make the battery element The sheath is formed by heat-sealing the periphery of the part to be stored. A resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.
(端子)
 本実施形態において、正極端子11にはアルミニウムやアルミニウム合金で構成されたもの、負極端子16には銅や銅合金あるいはそれらにニッケルメッキを施したもの等を用いることができる。それぞれの端子は容器の外部に引き出されるが、それぞれの端子における外装体の周囲を熱溶着する部分に位置する箇所には熱融着性の樹脂をあらかじめ設けることができる。
(Terminal)
In the present embodiment, the positive electrode terminal 11 may be made of aluminum or an aluminum alloy, and the negative electrode terminal 16 may be copper or a copper alloy, or those plated with nickel. Each terminal is drawn to the outside of the container, but a heat fusible resin can be provided in advance in a portion located at a portion of the respective terminal where the periphery of the package is heat welded.
(絶縁部材)
 活物質の塗布部と未塗布部の境界部4、9に絶縁部材を形成する場合には、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレンあるいはこれらを構成中に含むものを用いることができる。これらの部材に熱を加えて境界部4、9に溶着させるか、または、ゲル状の樹脂を境界部4、9に塗布、乾燥させることで絶縁部材を形成することができる。
(Insulation member)
In the case of forming the insulating member at the boundary portions 4 and 9 between the coated portion and the non-coated portion of the active material, polyimide, glass fiber, polyester, polypropylene or those containing these in the structure can be used. Heat can be applied to these members to weld them to the boundaries 4 and 9, or a gel-like resin can be applied to the boundaries 4 and 9 and dried to form an insulating member.
(セパレータ)
 セパレータとしては、本実施形態に係るセパレータ20を用いる。ここでの説明は省略する。
(Separator)
The separator 20 according to this embodiment is used as the separator. The description here is omitted.
 以上、実施形態に基づいて本発明を説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
As mentioned above, although this invention was demonstrated based on embodiment, these are the illustrations of this invention, and various structures other than the above can also be employ | adopted.
Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described by way of Examples and Comparative Examples, but the present invention is not limited thereto.
<評価>
(1)セパレータの空孔率
 下記式から求めた。
 ε={1-Ws/(ds・t)}×100
 ここで、ε:空孔率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、t:膜厚(μm)である。
<Evaluation>
(1) Porosity of separator It calculated | required from the following formula.
ε = {1-Ws / (ds · t)} × 100
Here, ε: porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), t: film thickness (μm).
(2)熱融着予定部位における露出部の観察
 電子顕微鏡(SEM)を用いて、セパレータの熱融着予定部位における露出部を観察し、すべての露出部における露出している樹脂層の面積の合計値を算出した。
(2) Observation of Exposed Portion at Thermal Fusion Planned Site Using an electron microscope (SEM), the exposed area at the thermal fusion planned site of the separator is observed, and the area of the exposed resin layer at all exposed areas. The total value was calculated.
(3)セラミックス層の脱落の評価
 電子顕微鏡(SEM)を用いて、袋状セパレータにおけるセラミックス層表面を観察して、セラミックス層の脱落を調べ、以下の基準により評価した。
○:セラミックス層表面にセラミックス粒子の脱落が観察されない。
△:セラミックス層表面の一部にセラミックス粒子の脱落が観察される。
×:セラミックス層表面の全体にセラミックス粒子の脱落が観察される。
(3) Evaluation of falling off of the ceramic layer The surface of the ceramic layer in the bag-like separator was observed using an electron microscope (SEM), and the falling off of the ceramic layer was examined and evaluated according to the following criteria.
:: Drop-off of ceramic particles is not observed on the surface of the ceramic layer.
Fair: Falling of ceramic particles is observed on part of the surface of the ceramic layer.
X: Drop-off of ceramic particles is observed on the entire surface of the ceramic layer.
(4)ヒーターブロック表面へのセラミックス粒子の付着の評価
 ヒーターブロック表面を目視で観察して、セラミックス粒子の付着を調べ、以下の基準により評価した。
○:ヒーターブロック表面にセラミックス粒子の付着が観察されない。
×:ヒーターブロック表面にセラミックス粒子の付着が観察される。
(4) Evaluation of adhesion of ceramic particles to the surface of the heater block The surface of the heater block was visually observed to examine the adhesion of the ceramic particles and evaluated according to the following criteria.
○: No adhesion of ceramic particles on the surface of the heater block.
X: Adhesion of ceramic particles is observed on the heater block surface.
(実施例1)
 ポリプロピレン系樹脂からなる厚さ18μm、空孔率50%の多孔性樹脂層と、多孔性樹脂層の一方の面に酸化アルミニウム粒子により形成された厚さ5μmのセラミックス層とを有するセパレータ(サイズ20cm×20cm)を2枚準備した。
 次いで、準備した2枚のセパレータの周縁部に対して、セラミックス層側からYVO基本波(波長1064nm)を2分の1の波長に変換した波長532nmのYVOレーザーをそれぞれ照射し、熱融着予定部位におけるセラミックス層の一部をそれぞれ除去した。
 ここで、すべての露出部における露出している樹脂層の面積の合計値は245mmであった(2枚のセパレータの露出部の面積の合計値)。
 次いで、セラミックス層側がそれぞれ内側になるように2枚のセパレータを重ね合わせ、ヒーターブロックを用いて熱融着予定部位を加熱することによって2枚のセパレータを熱融着させ、袋状セパレータ1を得た。得られた袋状セパレータ1に対し、各評価をおこなった。得られた評価結果を表1に示す。
Example 1
A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 μm made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 μm formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of × 20 cm were prepared.
Next, the peripheral portions of the two prepared separators are respectively irradiated from the ceramic layer side with a YVO 4 laser having a wavelength of 532 nm, in which the YVO 4 fundamental wave (wavelength 1064 nm) is converted to a half wavelength, Each part of the ceramic layer at the planned adhesion site was removed.
Here, the total value of the areas of the exposed resin layers in all the exposed portions was 245 mm 2 (the total value of the areas of the exposed portions of the two separators).
Next, two separators are stacked so that the ceramic layer sides are respectively inside, and the two separators are heat-sealed by heating the heat-sealable portion using a heater block to obtain a bag-like separator 1 The Each evaluation was performed with respect to the obtained bag-like separator 1. The obtained evaluation results are shown in Table 1.
(実施例2)
 ポリプロピレン系樹脂からなる厚さ18μm、空孔率50%の多孔性樹脂層と、多孔性樹脂層の一方の面に酸化アルミニウム粒子により形成された厚さ5μmのセラミックス層とを有するセパレータ(サイズ20cm×20cm)を2枚準備した。
 次いで、準備した2枚のセパレータのうち、一方のセパレータの周縁部における4辺の長さ方向の中央部に対して、セラミックス層側からYVO基本波(波長1064nm)を2分の1の波長に変換した波長532nmのYVOレーザーをそれぞれ照射し、熱融着予定部位におけるセラミックス層の一部をそれぞれ除去し、0.5mmの露出部を合計4か所設けた。ここで、すべての露出部における露出している樹脂層の面積の合計値は2mmであった。
 次いで、セラミックス層側がそれぞれ内側になるように2枚のセパレータを重ね合わせ、ヒーターブロックを用いて熱融着予定部位を加熱することによって2枚のセパレータを熱融着させ、袋状セパレータ2を得た。得られた袋状セパレータ2に対し、各評価をおこなった。得られた評価結果を表1に示す。
(Example 2)
A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 μm made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 μm formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of × 20 cm were prepared.
Next, with respect to the central portion in the lengthwise direction of the four sides of the peripheral portion of one of the two prepared separators, the YVO 4 fundamental wave (wavelength 1064 nm) is halved from the ceramic layer side The YVO 4 laser having a wavelength of 532 nm converted to each was irradiated to remove a portion of the ceramic layer at the heat fusion scheduled portion, and a total of four exposed portions of 0.5 mm 2 were provided. Here, the total value of the areas of the exposed resin layers in all the exposed portions was 2 mm 2 .
Next, two separators are stacked so that the ceramic layer sides are respectively inside, and the two separators are heat-sealed by heating the heat-sealable portion using a heater block to obtain a bag-like separator 2 The Each evaluation was performed with respect to the obtained bag-like separator 2. The obtained evaluation results are shown in Table 1.
(比較例1)
 ポリプロピレン系樹脂からなる厚さ18μm、空孔率50%の多孔性樹脂層と、多孔性樹脂層の一方の面に酸化アルミニウム粒子により形成された厚さ5μmのセラミックス層とを有するセパレータ(サイズ20cm×20cm)を2枚準備した。
 次いで、多孔性樹脂層側がそれぞれ内側になるように2枚のセパレータを重ね合わせ、ヒーターブロックを用いて2枚のセパレータを熱融着させ、袋状セパレータ3を得た。得られた袋状セパレータ3に対し、各評価をおこなった。得られた評価結果を表1に示す。
(Comparative example 1)
A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 μm made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 μm formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of × 20 cm were prepared.
Next, two separators were stacked so that the porous resin layer side was inside, and the two separators were heat-sealed using a heater block, to obtain a bag-like separator 3. Each evaluation was performed with respect to the obtained bag-like separator 3. The obtained evaluation results are shown in Table 1.
(比較例2)
 ポリプロピレン系樹脂からなる厚さ18μm、空孔率50%の多孔性樹脂層と、多孔性樹脂層の一方の面に酸化アルミニウム粒子により形成された厚さ5μmのセラミックス層とを有するセパレータ(サイズ20cm×20cm)を2枚準備した。
 次いで、セラミックス層側がそれぞれ内側になるように2枚のセパレータを重ね合わせ、ヒーターブロックを用いて2枚のセパレータを熱融着させた。しかし、2枚のセパレータは十分に接合せず、接合が不十分であった。そのため、比較例2については各評価はおこなっていない。
(Comparative example 2)
A separator (size: 20 cm) comprising a porous resin layer having a thickness of 18 μm made of a polypropylene resin and having a porosity of 50%, and a ceramic layer having a thickness of 5 μm formed of aluminum oxide particles on one surface of the porous resin layer Two pieces of × 20 cm were prepared.
Next, two separators were stacked so that the ceramic layer side was on the inside, and the two separators were thermally fused using a heater block. However, the two separators were not sufficiently bonded, and the bonding was insufficient. Therefore, each evaluation is not performed about comparative example 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2017年10月25日に出願された日本出願特願2017-205855号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-205855 filed Oct. 25, 2017, the entire disclosure of which is incorporated herein.

Claims (13)

  1.  セパレータを熱融着することによって得られる袋状セパレータを作製するための前記セパレータであって、
     樹脂層と、前記樹脂層の少なくとも一方の面に設けられたセラミックス層と、
    を備え、
     前記セラミックス層側に袋状セパレータを作製するための熱融着予定部位を有し、
     前記熱融着予定部位は、前記セラミックス層の一部が除去されているとともに前記セラミックス層側に前記樹脂層の一部が露出している露出部を有するセパレータ。
    The separator for producing a bag-like separator obtained by heat-sealing a separator, comprising:
    A resin layer, and a ceramic layer provided on at least one surface of the resin layer;
    Equipped with
    It has a heat fusion scheduled portion for producing a bag-like separator on the ceramic layer side,
    The separator to which the portion to be heat-fused is an exposed portion in which a portion of the ceramic layer is removed and a portion of the resin layer is exposed on the ceramic layer side.
  2.  請求項1に記載のセパレータにおいて、
     当該セパレータ中のすべての前記露出部における露出している前記樹脂層の面積の合計値が2mm以上であるセパレータ。
    In the separator according to claim 1,
    The separator whose sum total of the area of the said resin layer exposed in all the said exposed parts in the said separator is 2 mm 2 or more.
  3.  請求項1または2に記載のセパレータにおいて、
     前記樹脂層はポリオレフィン系樹脂およびポリエステル系樹脂から選択される少なくとも一種を含むセパレータ。
    In the separator according to claim 1 or 2,
    The said resin layer is a separator containing at least 1 type selected from polyolefin resin and polyester resin.
  4.  請求項1乃至3のいずれか一項に記載のセパレータにおいて、
     前記樹脂層が多孔性樹脂層であるセパレータ。
    In the separator according to any one of claims 1 to 3,
    The separator whose said resin layer is a porous resin layer.
  5.  請求項4に記載のセパレータにおいて、
     前記多孔性樹脂層の空孔率が20%以上80%以下であるセパレータ。
    In the separator according to claim 4,
    The separator in which the porosity of the porous resin layer is 20% or more and 80% or less.
  6.  請求項1乃至5のいずれか一項に記載のセパレータにおいて、
     前記樹脂層の厚みが1μm以上50μm以下であるセパレータ。
    In the separator according to any one of claims 1 to 5,
    The separator whose thickness of the said resin layer is 1 micrometer-50 micrometers.
  7.  請求項1乃至6のいずれか一項に記載のセパレータにおいて、
     前記セラミックス層はセラミックス粒子により構成されているセパレータ。
    The separator according to any one of claims 1 to 6.
    The ceramic layer is a separator made of ceramic particles.
  8.  請求項7に記載のセパレータにおいて、
     前記セラミックス粒子が酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、酸化バリウム、酸化ジルコニウム、酸化亜鉛および酸化鉄から選択される一種または二種以上を含むセパレータ。
    In the separator according to claim 7,
    The separator in which the ceramic particles contain one or more selected from aluminum oxide, titanium oxide, silicon oxide, magnesium oxide, barium oxide, zirconium oxide, zinc oxide and iron oxide.
  9.  請求項1乃至8のいずれか一項に記載のセパレータにおいて、
     前記セラミックス層の厚みが0.1μm以上50μm以下であるセパレータ。
    The separator according to any one of claims 1 to 8.
    The separator whose thickness of the said ceramic layer is 0.1 micrometer or more and 50 micrometers or less.
  10.  請求項1乃至9のいずれか一項に記載のセパレータにおいて、
     当該セパレータがリチウムイオン二次電池用セパレータであるセパレータ。
    The separator according to any one of claims 1 to 9,
    A separator in which the separator is a lithium ion secondary battery separator.
  11.  請求項1乃至10のいずれか一項に記載のセパレータにおける前記熱融着予定部位を熱融着することによって得られる袋状セパレータ。 A bag-shaped separator obtained by heat-sealing the heat-fusion intended portion of the separator according to any one of claims 1 to 10.
  12.  請求項11に記載の袋状セパレータと、前記袋状セパレータに収容された電極と、を備える袋詰電極。 A packaged electrode comprising the pouch-shaped separator according to claim 11 and an electrode accommodated in the pouch-shaped separator.
  13.  リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含有する非水電解液と、前記正極と前記負極との間に挟まれたセパレータとが容器に収容されたリチウムイオン二次電池であって、
     前記セパレータが請求項11に記載の袋状セパレータを含むリチウムイオン二次電池。
    A lithium ion secondary battery in which a positive electrode that absorbs and releases lithium, a negative electrode that inserts and discharges lithium, a non-aqueous electrolyte containing a lithium salt, and a separator sandwiched between the positive electrode and the negative electrode are accommodated in a container The next battery,
    A lithium ion secondary battery, wherein the separator comprises the bag-like separator according to claim 11.
PCT/JP2018/038146 2017-10-25 2018-10-12 Separator, bag-shape separator, packaged electrode and lithium ion secondary battery WO2019082696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019551000A JP7244431B2 (en) 2017-10-25 2018-10-12 Separators, bag separators, bagged electrodes and lithium ion secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017205855 2017-10-25
JP2017-205855 2017-10-25

Publications (1)

Publication Number Publication Date
WO2019082696A1 true WO2019082696A1 (en) 2019-05-02

Family

ID=66247819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038146 WO2019082696A1 (en) 2017-10-25 2018-10-12 Separator, bag-shape separator, packaged electrode and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP7244431B2 (en)
WO (1) WO2019082696A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105630A1 (en) * 2012-01-12 2013-07-18 日産自動車株式会社 Secondary battery fabrication method, secondary battery, and deposition device
JP2013247031A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Nonaqueous electricity storage device and lithium ion secondary battery
WO2013187368A1 (en) * 2012-06-11 2013-12-19 住友化学株式会社 Coated film detachment device, secondary battery separator fabrication device, coated film detachment method, and secondary battery separator fabrication method
WO2014157416A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
JP2017157346A (en) * 2016-02-29 2017-09-07 株式会社豊田自動織機 Manufacturing apparatus of separator material, manufacturing method of separator material, and manufacturing method of electrode housing separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105630A1 (en) * 2012-01-12 2013-07-18 日産自動車株式会社 Secondary battery fabrication method, secondary battery, and deposition device
JP2013247031A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Nonaqueous electricity storage device and lithium ion secondary battery
WO2013187368A1 (en) * 2012-06-11 2013-12-19 住友化学株式会社 Coated film detachment device, secondary battery separator fabrication device, coated film detachment method, and secondary battery separator fabrication method
WO2014157416A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery
JP2017157346A (en) * 2016-02-29 2017-09-07 株式会社豊田自動織機 Manufacturing apparatus of separator material, manufacturing method of separator material, and manufacturing method of electrode housing separator

Also Published As

Publication number Publication date
JP7244431B2 (en) 2023-03-22
JPWO2019082696A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US10439249B2 (en) Lithium ion secondary battery
WO2018163636A1 (en) Lithium ion battery
JP3494558B2 (en) Battery
JP2002245988A (en) Thin battery
JP7004568B2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
JP2004039651A (en) Battery
JP7256126B2 (en) Separator manufacturing method, separator and lithium ion secondary battery
WO2019088047A1 (en) Battery
JP7244431B2 (en) Separators, bag separators, bagged electrodes and lithium ion secondary batteries
JP2017117739A (en) battery
JP3283213B2 (en) Lithium secondary battery
JP6928738B2 (en) Lithium ion battery
WO2018163660A1 (en) Method for manufacturing separator, separator, and lithium ion secondary battery
JP5419811B2 (en) Non-aqueous secondary battery
JP6852279B2 (en) Non-aqueous electrolyte secondary battery
JP6321771B2 (en) Non-aqueous secondary battery
JP6781079B2 (en) Method of manufacturing secondary batteries and secondary batteries
JP2008186779A (en) Nonaqueous electrolyte battery
JPH11144738A (en) Polymer electrolyte secondary battery
JP2023182327A (en) Non-aqueous electrolyte solution secondary battery
JP2024015816A (en) Non-aqueous electrolyte secondary battery
JP2017103162A (en) Lithium ion secondary battery
JP2016058314A (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870379

Country of ref document: EP

Kind code of ref document: A1