Nothing Special   »   [go: up one dir, main page]

JP2016058314A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2016058314A
JP2016058314A JP2014185410A JP2014185410A JP2016058314A JP 2016058314 A JP2016058314 A JP 2016058314A JP 2014185410 A JP2014185410 A JP 2014185410A JP 2014185410 A JP2014185410 A JP 2014185410A JP 2016058314 A JP2016058314 A JP 2016058314A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
layer
terminal portion
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014185410A
Other languages
Japanese (ja)
Inventor
泰正 小熊
Yasumasa Oguma
泰正 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014185410A priority Critical patent/JP2016058314A/en
Publication of JP2016058314A publication Critical patent/JP2016058314A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of preventing overcurrent without increasing the internal resistance.SOLUTION: A secondary battery includes a battery element that can be charged and discharged, a positive electrode terminal connected with the battery element, a negative electrode terminal 6 connected with the battery element, and a reaction material layer 20 formed on the surface of the positive electrode terminal or the negative electrode terminal 6. Sulfur contained in the reaction material layer 20 reacts on the copper contained in the positive electrode terminal or the negative electrode terminal 6 as the temperature rises, to create a product material layer 21 containing copper sulfide having a volume increased compared with a portion in the positive electrode terminal or a negative electrode terminal 20 contributive to the reaction.SELECTED DRAWING: Figure 6

Description

本発明は、二次電池に関する。   The present invention relates to a secondary battery.

リチウムイオン電池や全固体電池のような二次電池は、近年の性能の向上により、自動車や携帯機器など様々な分野で利用されている。その利用が進むと共に、二次電池には性能や安全性の更なる向上が望まれている。   Secondary batteries such as lithium ion batteries and all solid state batteries are used in various fields such as automobiles and portable devices due to the recent improvement in performance. As its use progresses, further improvements in performance and safety are desired for secondary batteries.

安全性の向上を実現する方法として、過充電、過放電および過電流を防止するための技術が研究されている。例えば、特許文献1には、過電流の防止として、温度上昇により膨張する多孔性ポリマーを電極活物質層中または電極活物質層とセパレータとの間に挿入する技術が開示されている。特許文献1によれば、通常動作のときには電解液は多孔性ポリマー中にも存在し、多孔性ポリマーを介して移動できるが、過電流発生のときには温度上昇により多孔性ポリマーが膨張するので、電解液は多孔性ポリマーから排出され、多孔性ポリマーを介して移動することはできない。その結果、通常動作のときと比較して、過電流発生のときには多孔性ポリマーは高抵抗となり、電流を抑制または遮断する。   Techniques for preventing overcharge, overdischarge, and overcurrent have been studied as methods for improving safety. For example, Patent Document 1 discloses a technique of inserting a porous polymer that expands due to a temperature rise into an electrode active material layer or between an electrode active material layer and a separator as prevention of overcurrent. According to Patent Document 1, the electrolyte solution is also present in the porous polymer during normal operation and can move through the porous polymer. However, when an overcurrent occurs, the porous polymer expands due to temperature rise. The liquid is drained from the porous polymer and cannot move through the porous polymer. As a result, the porous polymer has a high resistance when an overcurrent is generated as compared with the normal operation, and suppresses or cuts off the current.

特開2001−229912号公報JP 2001-229912 A

特許文献1のように多孔性ポリマーを電極活物質層中または電極活物質層とセパレータとの間に挿入する方法では、通常動作のとき多孔性ポリマー中にも電解液が含まれるとはいえ、多孔性ポリマーによる内部抵抗の増加は避けられない。言い換えれば、特許文献1の技術は、過電流を防止する機能を実現するために、内部抵抗を犠牲にしている。内部抵抗を増加させずに、過電流を防止する技術が望まれる。   In the method of inserting the porous polymer in the electrode active material layer or between the electrode active material layer and the separator as in Patent Document 1, the electrolyte is also contained in the porous polymer during normal operation. An increase in internal resistance due to the porous polymer is inevitable. In other words, the technique of Patent Document 1 sacrifices internal resistance in order to realize a function of preventing overcurrent. A technique for preventing overcurrent without increasing the internal resistance is desired.

本発明によれば、充放電可能な電池素子と、前記電池素子に接続された正極端子部と、前記電池素子に接続された負極端子部と、前記正極端子部または前記負極端子部の表面に形成された反応物質層と、を備え、前記反応物質層に含まれる硫黄は温度上昇により前記正極端子部または前記負極端子部に含まれる銅と反応して、前記正極端子部または前記負極端子部における反応に寄与した部分よりも体積が増大した硫化銅を含む生成物質層を生成する。   According to the present invention, a chargeable / dischargeable battery element, a positive terminal portion connected to the battery element, a negative terminal portion connected to the battery element, and a surface of the positive terminal portion or the negative terminal portion A reaction material layer formed, and sulfur contained in the reaction material layer reacts with copper contained in the positive electrode terminal portion or the negative electrode terminal portion due to a temperature rise, and thereby the positive electrode terminal portion or the negative electrode terminal portion. A product material layer containing copper sulfide having a volume larger than that of the portion contributing to the reaction is generated.

本発明によれば、内部抵抗の増加させずに、過電流を防止することができる。   According to the present invention, overcurrent can be prevented without increasing the internal resistance.

図1は、実施の形態に係る二次電池の構成例を示す概略上面図である。FIG. 1 is a schematic top view illustrating a configuration example of the secondary battery according to the embodiment. 図2は、実施の形態に係る電池素子の構成例を示す概略部分側面図である。FIG. 2 is a schematic partial side view showing a configuration example of the battery element according to the embodiment. 図3は、第1の実施の形態に係る二次電池の構成例を示す概略部分側面図である。FIG. 3 is a schematic partial side view showing a configuration example of the secondary battery according to the first embodiment. 図4は、第1の実施の形態に係る反応物質層と延長部材との関係を示す概略斜視図である。FIG. 4 is a schematic perspective view showing the relationship between the reactant layer and the extension member according to the first embodiment. 図5は、第2の実施の形態に係る二次電池の構成例を示す概略部分上面図である。FIG. 5 is a schematic partial top view illustrating a configuration example of the secondary battery according to the second embodiment. 図6は、第2の実施の形態に係る反応物質層と溶接部との関係を示す概略側面図である。FIG. 6 is a schematic side view showing the relationship between the reactant layer and the weld according to the second embodiment.

本発明によれば、充放電可能な電池素子と、前記電池素子に接続された正極端子部と、前記電池素子に接続された負極端子部と、前記正極端子部または前記負極端子部の表面に形成された反応物質層と、を備え、前記反応物質層に含まれる硫黄は温度上昇により前記正極端子部または前記負極端子部に含まれる銅と反応して、前記正極端子部または前記負極端子部における反応に寄与した部分よりも体積が増大した硫化銅を含む生成物質層を生成する。   According to the present invention, a chargeable / dischargeable battery element, a positive terminal portion connected to the battery element, a negative terminal portion connected to the battery element, and a surface of the positive terminal portion or the negative terminal portion A reaction material layer formed, and sulfur contained in the reaction material layer reacts with copper contained in the positive electrode terminal portion or the negative electrode terminal portion due to a temperature rise, and thereby the positive electrode terminal portion or the negative electrode terminal portion. A product material layer containing copper sulfide having a volume larger than that of the portion contributing to the reaction is generated.

このような二次電池によれば、過電流が発生してジュール熱により正極端子部または負極端子部の温度が上昇したとき、正極端子部または負極端子部に含まれる銅と反応物質層に含まれる硫黄とが反応して、硫化銅を含む生成物質層が生成される。そのとき、生成物質層の硫化銅の体積は、正極端子部または負極端子部における反応に寄与した部分の銅の体積よりも膨張する。そのため、生成物質層の硫化銅の構造は疎になり、その強度は低くなる。その結果、体積の膨張のときに生成物質層の硫化銅とそれに隣接する材料の銅との間に生じる応力などにより、生成物質層の硫化銅内で破断が起こる、または、生成物質層の硫化銅とそれに隣接する材料の銅との境界で破断が起こる。すなわち、正極端子部または負極端子部が切断される。それにより、過電流を遮断することができる。ここで、反応物質層の硫黄は、正極端子部または負極端子部の銅の全部または一部分の表面に形成されるが、過電流が発生しない限り正極端子部または負極端子部とほとんど反応していないので、正極端子部または負極端子部での電流の流れに影響を及ぼさない。したがって、この二次電池は、通常動作のときでの内部抵抗の増加を起こすことなく、過電流を遮断することができる。また、反応物質層を形成するとき、正極端子部自身または負極端子部自身の断面積を小さくする必要がない。更に、反応物質層は薄く軽いため、二次電池のエネルギー密度を低下させるおそれはない。   According to such a secondary battery, when an overcurrent occurs and the temperature of the positive electrode terminal portion or the negative electrode terminal portion rises due to Joule heat, it is included in the copper and the reactant layer contained in the positive electrode terminal portion or the negative electrode terminal portion. As a result, the product material layer containing copper sulfide is generated. At that time, the volume of copper sulfide in the product material layer expands more than the volume of copper in the portion contributing to the reaction in the positive electrode terminal portion or the negative electrode terminal portion. Therefore, the structure of the copper sulfide in the product material layer is sparse and its strength is low. As a result, fracture occurs in the copper sulfide of the product material layer due to stress generated between the copper sulfide of the product material layer and the copper of the adjacent material during volume expansion, or the product material layer is sulfided. Fracture occurs at the boundary between copper and the adjacent material copper. That is, the positive electrode terminal portion or the negative electrode terminal portion is cut. Thereby, an overcurrent can be interrupted. Here, the sulfur in the reactant layer is formed on the surface of all or part of the copper in the positive electrode terminal portion or the negative electrode terminal portion, but hardly reacts with the positive electrode terminal portion or the negative electrode terminal portion unless overcurrent occurs. Therefore, it does not affect the flow of current at the positive terminal portion or the negative terminal portion. Therefore, this secondary battery can cut off the overcurrent without causing an increase in internal resistance during normal operation. Further, when forming the reactant layer, it is not necessary to reduce the cross-sectional area of the positive electrode terminal portion itself or the negative electrode terminal portion itself. Furthermore, since the reactant layer is thin and light, there is no risk of reducing the energy density of the secondary battery.

反応物質層の材料としては、硫黄を含む材料が挙げあれ、硫黄が好適に用いられる。その他の材料としては、高温で非常に反応性に富み、正極端子部または負極端子部に用いられる金属と反応して生成物質層を形成するような材料が考え得る。ただし、その生成物質層は、反応のときの体積膨張により正極端子部または負極端子部に用いられる材料の密度より低い密度を有し、相対的に疎な構造を有する。また、正極端子部または負極端子部の材料としては、銅を含む材料が挙げられ、銅が好適に用いられる。その他の材料としては、反応物質層の材料と上記の反応を起こし、上記の生成物質を形成するような材料が考え得る。   Examples of the material for the reactant layer include materials containing sulfur, and sulfur is preferably used. As the other material, a material that is very reactive at high temperature and reacts with a metal used for the positive electrode terminal portion or the negative electrode terminal portion to form a product layer can be considered. However, the product substance layer has a density relatively lower than the density of the material used for the positive electrode terminal portion or the negative electrode terminal portion due to volume expansion during the reaction, and has a relatively sparse structure. Moreover, as a material of a positive electrode terminal part or a negative electrode terminal part, the material containing copper is mentioned, Copper is used suitably. As the other material, a material that causes the above reaction with the material of the reactant layer and forms the above-mentioned product substance can be considered.

また、正極端子部は、前記電池素子の正極集電体の端部から延びる正極延長部材と、前記正極延長部材に接続された正極タブと、を備え、前記負極端子部は、前記電池素子の負極集電体の端部から延びる負極延長部材と、前記負極延長部材に接続された負極タブと、を備えていてもよい。その場合、前記反応物質層は、前記正極タブの表面であって前記正極延長部材と前記正極タブとを接続する正極溶接部、もしくは、前記負極タブの表面であって前記負極延長部材と前記負極タブとを接続する負極溶接部、または、それらの周辺部に形成されることが好ましい。   The positive electrode terminal portion includes a positive electrode extension member extending from an end of the positive electrode current collector of the battery element, and a positive electrode tab connected to the positive electrode extension member, and the negative electrode terminal portion of the battery element You may provide the negative electrode extension member extended from the edge part of a negative electrode electrical power collector, and the negative electrode tab connected to the said negative electrode extension member. In this case, the reactive substance layer is a surface of the positive electrode tab that connects the positive electrode extension member and the positive electrode tab, or a positive electrode welded portion that connects the positive electrode extension member and the positive electrode tab. It is preferable to form in the negative electrode welding part which connects a tab, or those peripheral parts.

二次電池が複数の単セルを積層した構造を有する場合、複数の正極延長部材が正極溶接部で一まとめに正極タブに接続される。同様に、複数の負極延長部材が負極溶接部で一まとめに負極タブに接続される。そのため、例えば、正極タブの表面であって正極溶接部の周辺部に反応物質層を形成することで、複数の正極延長部材が一まとめに正極タブから除かれる。すなわち、複数の正極延長部材と正極タブとの接続が一括で切断される。その結果、切断されていない正極延長部材が残って、その正極延長部材に電流が集中して発熱がより増加するという現象を確実に防止できる。なお、負極タブの表面であって負極溶接部の周辺部に反応物質層を形成する場合も上記の正極タブの表面の場合と同様である。   When the secondary battery has a structure in which a plurality of single cells are stacked, a plurality of positive electrode extension members are collectively connected to the positive electrode tab at the positive electrode welding portion. Similarly, a plurality of negative electrode extension members are collectively connected to the negative electrode tab at the negative electrode weld. Therefore, for example, a plurality of positive electrode extension members are collectively removed from the positive electrode tab by forming a reactive material layer on the surface of the positive electrode tab and around the positive electrode weld. That is, the connection between the plurality of positive electrode extension members and the positive electrode tab is collectively cut. As a result, it is possible to reliably prevent a phenomenon in which a positive electrode extension member that is not cut remains, current concentrates on the positive electrode extension member, and heat generation further increases. The case where the reactive material layer is formed on the surface of the negative electrode tab and around the negative electrode welded portion is the same as the case of the surface of the positive electrode tab.

反応物質層20の製造方法としては、膜が形成できれば特に制限はなく、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法およびスクリーン印刷法などの任意の塗布方法により、反応物質層20の材料を含むスラリーを正極端子部または負極端子部の全部または一部分の表面に塗布し、乾燥させる方法が例示される。スラリーは、例えば、硫黄の粉末にバインダーを混合して形成する。バインダーとしては、PVDFなどが例示される。他の方法としては、反応物質層20の材料を含むターゲットを用いてスパッタ法で正極端子部または負極端子部の全部または一部分に膜を形成する方法が例示される。   The method for producing the reactive material layer 20 is not particularly limited as long as a film can be formed. For example, any coating method such as a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method. Thus, a method of applying the slurry containing the material of the reactant layer 20 to the surface of all or a part of the positive electrode terminal portion or the negative electrode terminal portion and drying the slurry is exemplified. The slurry is formed, for example, by mixing a binder with sulfur powder. Examples of the binder include PVDF. As another method, a method of forming a film on all or a part of the positive electrode terminal portion or the negative electrode terminal portion by sputtering using a target containing the material of the reactant layer 20 is exemplified.

以下、本発明の実施の形態に係る二次電池について図面を参照して説明する。   Hereinafter, a secondary battery according to an embodiment of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は、本実施の形態に係る二次電池Aの構成例を示す概略上面図である。二次電池Aは、電池素子1と、ラミネートフィルム2と、正極端子部3と、負極端子部4とを備えている。電池素子1は充放電可能な電池である。正極端子部3は、二次電池Aの正極側の端子であり、正極延長部材16aと正極タブ5とを備えている。正極延長部材16aは、正極集電体(後述)の端部から延びる部材であり、正極集電体と一体であってもよい。正極タブ5は、正極延長部材16aを外側に引き出す部材であり、正極延長部材16aと正極溶接部18で接続されている。すなわち、正極延長部材16aは正極タブ5に、例えば超音波溶接のような方法で溶接されている。負極端子部4は、二次電池Aの負極側の端子であり、負極延長部材17aと負極タブ6とを備えている。負極延長部材17aは、負極集電体(後述)の端部から延びる部材であり、負極集電体と一体であってもよい。負極タブ6は、負極延長部材17aを外側に引き出す部材であり、負極延長部材17aと負極溶接部18で接続されている。すなわち、負極延長部材17aは負極タブ6に、例えば超音波溶接のような方法で溶接されている。ラミネートフィルム2は、電池素子1並びに正極端子部3および負極端子部4を保護するフィルムであり、電池素子1並びに正極端子部3および負極端子部4を両側面から覆っている。ただし、図面の手前側のラミネートフィルムは図示が省略されている。
(First embodiment)
FIG. 1 is a schematic top view showing a configuration example of the secondary battery A according to the present embodiment. The secondary battery A includes a battery element 1, a laminate film 2, a positive electrode terminal portion 3, and a negative electrode terminal portion 4. The battery element 1 is a chargeable / dischargeable battery. The positive electrode terminal portion 3 is a positive electrode side terminal of the secondary battery A, and includes a positive electrode extension member 16 a and a positive electrode tab 5. The positive electrode extension member 16a is a member extending from an end portion of a positive electrode current collector (described later), and may be integrated with the positive electrode current collector. The positive electrode tab 5 is a member that pulls out the positive electrode extension member 16 a to the outside, and is connected to the positive electrode extension member 16 a and the positive electrode welding portion 18. That is, the positive electrode extension member 16a is welded to the positive electrode tab 5 by a method such as ultrasonic welding. The negative electrode terminal portion 4 is a terminal on the negative electrode side of the secondary battery A, and includes a negative electrode extension member 17 a and a negative electrode tab 6. The negative electrode extension member 17a is a member extending from an end portion of a negative electrode current collector (described later), and may be integrated with the negative electrode current collector. The negative electrode tab 6 is a member that pulls out the negative electrode extension member 17 a to the outside, and is connected to the negative electrode extension member 17 a by the negative electrode welding portion 18. That is, the negative electrode extension member 17a is welded to the negative electrode tab 6 by a method such as ultrasonic welding. The laminate film 2 is a film that protects the battery element 1, the positive electrode terminal portion 3, and the negative electrode terminal portion 4, and covers the battery element 1, the positive electrode terminal portion 3, and the negative electrode terminal portion 4 from both side surfaces. However, the illustration of the laminate film on the near side of the drawing is omitted.

図2は、電池素子1の構成例を示す概略部分側面図である。電池素子1は、複数の単セル10が積層された構成を有している。単セル10は、充放電可能なセルであり、正極層11と、負極層12と、正極層11と負極層12との間に配置された電解質層13とを備えている。電解質層13としては、固体電解質、電解液および電解液を含んだゲル状の電解質が例示される。また、電解質層13はセパレータを含んでもよい。正極層11は、正極活物質を含む正極活物質層14と、正極活物質層14の集電を行う正極集電体16とを備えている。正極延長部材16aは、正極集電体16の端部を延長した部分である。負極層12は、負極活物質を含む負極活物質層15と、負極活物質層15の集電を行う負極集電体17とを備えている。負極延長部材17aは、負極集電体17の端部を延長した部分である。隣り合う単セル10は、例えばセパレータを挟んで正極層11同士または負極層12同士が接するように積層されている。   FIG. 2 is a schematic partial side view showing a configuration example of the battery element 1. The battery element 1 has a configuration in which a plurality of single cells 10 are stacked. The unit cell 10 is a chargeable / dischargeable cell, and includes a positive electrode layer 11, a negative electrode layer 12, and an electrolyte layer 13 disposed between the positive electrode layer 11 and the negative electrode layer 12. Examples of the electrolyte layer 13 include a solid electrolyte, an electrolytic solution, and a gel electrolyte containing the electrolytic solution. The electrolyte layer 13 may include a separator. The positive electrode layer 11 includes a positive electrode active material layer 14 containing a positive electrode active material, and a positive electrode current collector 16 that collects current from the positive electrode active material layer 14. The positive electrode extension member 16 a is a portion obtained by extending the end of the positive electrode current collector 16. The negative electrode layer 12 includes a negative electrode active material layer 15 containing a negative electrode active material, and a negative electrode current collector 17 that collects current from the negative electrode active material layer 15. The negative electrode extension member 17 a is a portion obtained by extending the end of the negative electrode current collector 17. Adjacent single cells 10 are stacked such that, for example, the positive electrode layers 11 or the negative electrode layers 12 are in contact with each other with a separator interposed therebetween.

図3は、二次電池Aの構成例を示す概略部分側面図である。この図は、二次電池Aの一部を拡大し、負極タブ6および負極延長部材17aの近傍を側面から見た図である。複数の単セル10から延びる複数の負極延長部材17aが負極タブ6上の負極溶接部19で負極タブ6に接続されている。図示しないが、同様に、複数の単セル10から延びる複数の正極延長部材16aが正極タブ5上の正極溶接部18で正極タブ5に接続されている。二次電池Aは、更に、反応物質層20を備えている。反応物質層20は、各単セル10における正極端子部3または負極端子部4の表面に形成されている。この図の例では、反応物質層20は負極延長部材17aの一部分の表面に形成されている。反応物質層20は正極延長部材16aの一部分の表面に形成されていてもよい。ただし、反応物質層20は、負極延長部材17aおよび正極延長部材16aの両方に形成される必要はなく、いずれか一方のみに形成されていてもよい。また、負極延長部材17aと負極集電体17とは同一の材料で形成されていてもよいし、別々の材料で形成されていてもよく、正極延長部材16aと正極集電体16とは同一の材料で形成されていてもよいし、別々の材料で形成されていてもよい。   FIG. 3 is a schematic partial side view showing a configuration example of the secondary battery A. In this figure, a part of the secondary battery A is enlarged, and the vicinity of the negative electrode tab 6 and the negative electrode extension member 17a is viewed from the side. A plurality of negative electrode extension members 17 a extending from the plurality of single cells 10 are connected to the negative electrode tab 6 by negative electrode welds 19 on the negative electrode tab 6. Although not shown, similarly, a plurality of positive electrode extension members 16 a extending from the plurality of single cells 10 are connected to the positive electrode tab 5 at the positive electrode welds 18 on the positive electrode tab 5. The secondary battery A further includes a reactant layer 20. The reactive substance layer 20 is formed on the surface of the positive electrode terminal portion 3 or the negative electrode terminal portion 4 in each unit cell 10. In the example of this figure, the reactant layer 20 is formed on the surface of a part of the negative electrode extension member 17a. The reactant layer 20 may be formed on a part of the surface of the positive electrode extension member 16a. However, the reactive material layer 20 does not need to be formed on both the negative electrode extending member 17a and the positive electrode extending member 16a, and may be formed on only one of them. The negative electrode extension member 17a and the negative electrode current collector 17 may be formed of the same material, or may be formed of different materials. The positive electrode extension member 16a and the positive electrode current collector 16 are the same. These materials may be used, or may be formed from different materials.

図4は、反応物質層20と負極延長部材17aとの関係を示す概略斜視図である。図4(a)に示すように、反応物質層20は、負極延長部材17aの一部分の表面を覆っている。具体的には、反応物質層20は、負極延長部材17aの幅方向に、一方の端から他方の端へ横断するように負極延長部材17aの表面に形成されている。そして、図4(b)に示すように、負極延長部材17aが過電流に伴うジュール熱で発熱したとき、負極延長部材17aと反応物質層20とが反応して生成物質層21が生成される。このとき、負極延長部材17aを幅方向に一方の端から他方の端へ横断するように反応物質層20が形成されているので、生成物質層21も、負極延長部材17aを幅方向に一方の端から他方の端へ横断するように形成される。また、生成物質層21の体積は、負極延長部材17aにおける反応に寄与した部分30(図4(a))の体積よりも増加するので、生成物質層21の厚みは元の負極延長部材17aの厚みよりも厚くなる。その結果、生成物質層21は、負極延長部材17aを厚み方向に一方の端から他方の端へ横断するように形成される。そして、図4(c)に示すように、生成物質層21は、低密度となり疎な組織になり、強度が低くなる。そのため、負極延長部材17aに生じている応力などにより、生成物質層21そのものが破断するか、または、生成物質層21と隣り合う負極延長部材17aとの間で破断が起こる。このとき、生成物質層21は負極延長部材17aを幅方向および厚み方向に一方の端から他方の端へ横断するように形成されているので、生成物質層21の破断等により、負極延長部材17aが完全に破断されるため、過電流が確実に遮断される。なお、反応物質層20が正極延長部材16aの表面に形成されている場合にも上記と同様であるので、その説明を省略する。   FIG. 4 is a schematic perspective view showing the relationship between the reactant layer 20 and the negative electrode extension member 17a. As shown in FIG. 4A, the reactant layer 20 covers a part of the surface of the negative electrode extension member 17a. Specifically, the reactant layer 20 is formed on the surface of the negative electrode extension member 17a so as to cross from one end to the other end in the width direction of the negative electrode extension member 17a. As shown in FIG. 4B, when the negative electrode extension member 17a generates heat due to Joule heat accompanying overcurrent, the negative electrode extension member 17a and the reactant layer 20 react to generate a product substance layer 21. . At this time, since the reactive substance layer 20 is formed so as to cross the negative electrode extension member 17a from one end to the other end in the width direction, the product substance layer 21 also includes the negative electrode extension member 17a in the width direction. It is formed so as to cross from one end to the other end. Further, since the volume of the product material layer 21 is larger than the volume of the portion 30 (FIG. 4A) that contributes to the reaction in the negative electrode extension member 17a, the thickness of the product material layer 21 is the same as that of the original negative electrode extension member 17a. Thicker than the thickness. As a result, the product material layer 21 is formed so as to cross the negative electrode extension member 17a from one end to the other end in the thickness direction. And as shown in FIG.4 (c), the production | generation substance layer 21 becomes a low density and becomes a sparse structure | tissue, and intensity | strength becomes low. Therefore, the product material layer 21 itself breaks due to stress or the like generated in the negative electrode extension member 17a, or a breakage occurs between the product material layer 21 and the adjacent negative electrode extension member 17a. At this time, the product material layer 21 is formed so as to cross the negative electrode extension member 17a in the width direction and the thickness direction from one end to the other end. Is completely broken, so that the overcurrent is reliably interrupted. In addition, since it is the same as that of the above also when the reactive substance layer 20 is formed in the surface of the positive electrode extension member 16a, the description is abbreviate | omitted.

次に、電池素子1の材料について説明する。
正極層11、負極層12、および電解質層13を構成する材料は、上述された電池素子1を形成可能であれば特に限定されるものではない。以下では、典型例として、全固体リチウム二次電池の正極層11、負極層12および電解質層13について説明する。
Next, the material of the battery element 1 will be described.
The materials constituting the positive electrode layer 11, the negative electrode layer 12, and the electrolyte layer 13 are not particularly limited as long as the battery element 1 described above can be formed. Below, the positive electrode layer 11, the negative electrode layer 12, and the electrolyte layer 13 of an all-solid-state lithium secondary battery are demonstrated as a typical example.

(正極層および負極層)
正極層11は、既述のように正極延長部材16aを含む正極集電体16と正極活物質層14とを備えている。負極層12は、既述のように負極延長部材17aを含む負極集電体17と負極活物質層15とを備えている。
(Positive electrode layer and negative electrode layer)
The positive electrode layer 11 includes the positive electrode current collector 16 including the positive electrode extension member 16a and the positive electrode active material layer 14 as described above. As described above, the negative electrode layer 12 includes the negative electrode current collector 17 including the negative electrode extension member 17a and the negative electrode active material layer 15.

(正極活物質層)
正極活物質層14は、正極活物質と固体電解質とを含んでいる。
正極活物質としては、Liイオン電池に使用できる活物質であれば特に限定されず、層状、オリビン系、スピネル型の化合物が例示される。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、ニッケルマンガンコバルト酸リチウム(LiNi1−y−zCoMn、例えばLiNi1/3Co1/3Mn1/3)、ニッケルコバルト酸リチウム(LiNi1−xCo)、ニッケルマンガン酸リチウム(LiNi1−xMn)、マンガン酸リチウム(LiMn)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、フッ化リン酸金属リチウム(LiMPOF、M=Fe、Mn、Co、Ni)、リン酸金属リチウム(LiMP、M=Fe、Mn、Co、Ni)、チタン酸リチウム(LiTiO)、などが例示される。
(Positive electrode active material layer)
The positive electrode active material layer 14 includes a positive electrode active material and a solid electrolyte.
The positive electrode active material is not particularly limited as long as it is an active material that can be used for a Li ion battery, and examples thereof include layered, olivine-based, and spinel type compounds. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium nickel manganese cobaltate (LiNi 1-yz Co y Mn z O 2 , such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium nickel cobaltate (LiNi 1-x Co x O 2 ), nickel lithium manganate (LiNi 1-x Mn x O 2 ), lithium manganate (LiMn) 2 O 4 ), a lithium manganate compound (Li 1 + x M y Mn 2−xy O 4 ; M = Al, Mg, Fe, Cr, Co, Ni, Zn), lithium metal phosphate (LiMPO 4 , M = Fe, Mn, Co, Ni), lithium metal fluorophosphate (Li 2 MPO 4 F, M = Fe, Mn, Co, Ni ), Lithium metal phosphate (Li 2 MP 2 O 7 , M = Fe, Mn, Co, Ni), lithium titanate (Li x TiO y ), and the like.

正極活物質層14は、上述の正極活物質と固体電解質、好適には硫化物固体電解質とを含み、他の成分、例えば導電助剤およびバインダーを更に含んでもよい。固体電解質については後述される。導電助剤としては、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)、カーボンブラック、黒鉛などの炭素材、金属材が例示される。バインダーとしてはポリテトラフロオロエチレン、スチレンブタジエンゴム、ポリフッ化ビニリデンなどが例示される。   The positive electrode active material layer 14 includes the positive electrode active material described above and a solid electrolyte, preferably a sulfide solid electrolyte, and may further include other components such as a conductive additive and a binder. The solid electrolyte will be described later. Examples of the conductive assistant include VGCF (vapor grown carbon fiber), carbon black, carbon materials such as graphite, and metal materials. Examples of the binder include polytetrafluoroethylene, styrene butadiene rubber, and polyvinylidene fluoride.

(正極集電体)
正極集電体16の材料としては、アルミニウム、ニッケル、鉄、チタンが例示される。また、正極集電体16の形状としては、箔状、板状、メッシュ状等が例示される。正極延長部材16aが正極集電体16と一体で形成される場合、正極延長部材16aは正極集電体16と同一の上記の材料で形成される。正極延長部材16aが別体で形成され、溶接などで正極集電体16に接合される場合、正極延長部材16aは正極集電体16と同一または異なる材料で形成される。その材料としては、上記の材料のほか、銅が例示される。また、正極延長部材16aの形状としては、箔状等が例示される。
(Positive electrode current collector)
Examples of the material of the positive electrode current collector 16 include aluminum, nickel, iron, and titanium. Examples of the shape of the positive electrode current collector 16 include a foil shape, a plate shape, and a mesh shape. When the positive electrode extension member 16 a is formed integrally with the positive electrode current collector 16, the positive electrode extension member 16 a is formed of the same material as the positive electrode current collector 16. When the positive electrode extension member 16a is formed separately and is joined to the positive electrode current collector 16 by welding or the like, the positive electrode extension member 16a is formed of the same or different material as the positive electrode current collector 16. Examples of the material include copper as well as the above materials. Moreover, foil shape etc. are illustrated as a shape of the positive electrode extension member 16a.

(正極タブ)
正極タブ5の材料としては、正極集電体16または正極延長部材16aの材料として使用可能な材料を用いることができる。ただし、正極タブ5の材料は、正極集電体16または正極延長部材16aの材料と同一であってもよいし、異なってもよい。
(Positive electrode tab)
As a material of the positive electrode tab 5, a material that can be used as a material of the positive electrode current collector 16 or the positive electrode extension member 16 a can be used. However, the material of the positive electrode tab 5 may be the same as or different from the material of the positive electrode current collector 16 or the positive electrode extension member 16a.

(負極活物質)
負極活物質層15は、負極活物質と固体電解質とを含んでいる。
負極活物質としては、Liイオン電池に用い得る活物質であれば特に限定されず、金属、炭素材などが例示される。金属としては、Li、Sn、Si、Al、In、Sbなどの金属、これらのいくつかを組み合わせた合金などが例示される。炭素材としては、少なくとも一部にグラファイト構造(層状構造)を含む炭素材料等、具体的には、天然または人造のグラファイト、ソフトカーボン、ハードカーボン、低温焼成炭素、または、これらのうちのいくつかを組み合わせた材料、が例示される。
(Negative electrode active material)
The negative electrode active material layer 15 includes a negative electrode active material and a solid electrolyte.
The negative electrode active material is not particularly limited as long as it is an active material that can be used for a Li ion battery, and examples thereof include metals and carbon materials. Examples of the metal include metals such as Li, Sn, Si, Al, In, and Sb, alloys that combine some of these, and the like. As the carbon material, a carbon material including a graphite structure (layered structure) at least partially, specifically, natural or artificial graphite, soft carbon, hard carbon, low-temperature calcined carbon, or some of these The material which combined these is illustrated.

負極活物質層15は、負極活物質と固体電解質、好適には硫化物固体電解質とを含み、他の成分、例えば導電助剤およびバインダーを更に含んでもよい。固体電解質、導電助剤およびバインダーについては、上述の正極活物質層14の場合と同様の材料を用いることができる。   The negative electrode active material layer 15 includes a negative electrode active material and a solid electrolyte, preferably a sulfide solid electrolyte, and may further include other components such as a conductive additive and a binder. About a solid electrolyte, a conductive support agent, and a binder, the material similar to the case of the above-mentioned positive electrode active material layer 14 can be used.

(負極集電体)
負極集電体17の材料としては、上記の正極集電体16の材料に加え、銅を用いることができる。負極集電体17の形状としては、上記の正極集電体16の形状と同様の形状を採用することができる。負極延長部材17aが負極集電体17と一体で形成される場合、負極延長部材17aは負極集電体17と同一の上記の材料で形成される。負極延長部材17aが別体で形成され、溶接などで負極集電体17に接合される場合、負極延長部材17aは負極集電体17と同一または異なる上記の材料で形成される。また、負極延長部材17aの形状としては、箔状等が例示される。
(Negative electrode current collector)
As a material for the negative electrode current collector 17, copper can be used in addition to the material for the positive electrode current collector 16 described above. As the shape of the negative electrode current collector 17, the same shape as that of the positive electrode current collector 16 can be adopted. When the negative electrode extension member 17 a is formed integrally with the negative electrode current collector 17, the negative electrode extension member 17 a is formed of the same material as the negative electrode current collector 17. When the negative electrode extension member 17a is formed as a separate body and joined to the negative electrode current collector 17 by welding or the like, the negative electrode extension member 17a is formed of the same material as or different from the negative electrode current collector 17. Moreover, foil shape etc. are illustrated as a shape of the negative electrode extension member 17a.

(負極タブ)
負極タブ6の材料としては、負極集電体17または負極延長部材17aの材料として使用可能な材料を用いることができる。ただし、負極タブ6の材料は、負極集電体17または負極延長部材17aの材料と同一であってもよいし、異なってもよい。
(Negative electrode tab)
As a material of the negative electrode tab 6, a material that can be used as a material of the negative electrode current collector 17 or the negative electrode extension member 17a can be used. However, the material of the negative electrode tab 6 may be the same as or different from the material of the negative electrode current collector 17 or the negative electrode extension member 17a.

(固体電解質層)
電解質層13の固体電解質としては、特に限定されるものではなく、硫化物や酸化物や窒化物やハロゲン化物のような無機系固体電解質が例示される。また、固体電解質は結晶、非結晶あるいはガラスセラミックのいずれでであってよい。無機系固体電解質としては、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、Li11、LiPS、LiS−Pなどの固体硫化物系非晶質電解質粉末が例示される。無機系固体電解質としては、LiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの固体酸化物系非晶質電解質粉末が例示される。無機系固体電解質としては、LiI、LiI−Al、LiN、LiN−LiI−LiOH、Li1.3Al0.3Ti0.7(PO、Li1+x+yTi2−xSi3−y12(A=AlまたはGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=SrまたはBa、0≦x≦0.5)、LiLaTa12、LiLaZr12、LiPON、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4の結晶質の酸化物粉末やハロゲン化物粉末や窒化物粉末や酸窒化物粉末が例示される。
(Solid electrolyte layer)
The solid electrolyte of the electrolyte layer 13 is not particularly limited, and examples thereof include inorganic solid electrolytes such as sulfides, oxides, nitrides, and halides. The solid electrolyte may be crystalline, amorphous or glass ceramic. Examples of inorganic solid electrolytes include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —. Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5 , solid sulfide-based amorphous electrolyte powders such as Li 7 P 3 S 11 , Li 3 PS 4 , and Li 2 S—P 2 S 5 are exemplified. Examples of the inorganic solid electrolyte include solids such as Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3 , Li 2 O—B 2 O 3 —ZnO. An oxide-based amorphous electrolyte powder is exemplified. The inorganic solid electrolyte, LiI, LiI-Al 2 O 3, Li 3 N, Li 3 N-LiI-LiOH, Li 1.3 Al 0.3 Ti 0.7 (PO 4) 3, Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A = Al or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1-z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = Sr or Ba, 0 ≦ x ≦ 0.5), Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , LiPON Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w <1), Li 3.6 Si 0.6 P 0.4 O 4 crystalline oxide powder, Examples thereof include halide powder, nitride powder, and oxynitride powder.

(その他の構成要素)
その他の構成要素として、セパレータ(図示されず)を全固体リチウム二次電池に用いてもよい。セパレータは、上述した正極集電体16と負極集電体17との間に配置される。セパレータの材料としては、ポリエチレンおよびポリプロピレンに例示される。上記セパレータは、単層構造であっても良く、複層構造であっても良い。
(Other components)
As another component, a separator (not shown) may be used for the all-solid lithium secondary battery. The separator is disposed between the positive electrode current collector 16 and the negative electrode current collector 17 described above. Examples of the material for the separator include polyethylene and polypropylene. The separator may have a single layer structure or a multilayer structure.

なお、本実施の形態に係る電池素子1は、上述した全固体リチウム二次電池に必ずしも限定されない。少なくとも正極層と、負極層と、当該正極層と当該負極層との間に介在した固体電解質層とを備える電池素子であれば、本実施の形態に係る電池素子1に含まれる。   Battery element 1 according to the present embodiment is not necessarily limited to the above-described all solid lithium secondary battery. Any battery element including at least a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer is included in battery element 1 according to the present embodiment.

本実施の形態の二次電池Aは、過電流発生のときには、過電流によるジュール熱で正極端子部3または負極端子部6が加熱され、それにより正極端子部3または負極端子部6の一部分とその表面に形成された反応物質層20とが反応して、生成物質層21が生成される。そのとき、生成物質層21は体積膨張により疎な構造を有しているので、生成物質層21内またはそれと隣接する部材との境界で破断が起こる。それにより、正極端子部3または負極端子部6を流れる電流を遮断することができる。このように、二次電池Aは、過電流発生のときに正極端子部3または負極端子部6を切断して電流を停止するというシャットダウン機構を実現できる。このとき、反応物質層20は正極端子部3または負極端子部6上に付着しているだけであり、正極端子部3または負極端子部6の断面積を小さくする必要もないため、シャットダウン機構を設けているにもかかわらず、通常動作のときでの二次電池Aの内部抵抗の増加を回避できる。更に、反応物質層20は薄く軽い物質であるので、シャットダウン機構を設けているにもかかわらず、二次電池Aのエネルギー密度の低下を防止できる。   In the secondary battery A of the present embodiment, when an overcurrent is generated, the positive electrode terminal portion 3 or the negative electrode terminal portion 6 is heated by Joule heat due to the overcurrent, whereby a portion of the positive electrode terminal portion 3 or the negative electrode terminal portion 6 is The reaction material layer 20 formed on the surface reacts to generate a product material layer 21. At that time, since the product material layer 21 has a sparse structure due to volume expansion, the fracture occurs in the product material layer 21 or at the boundary between the product material layer 21 and an adjacent member. Thereby, the electric current which flows through the positive electrode terminal part 3 or the negative electrode terminal part 6 can be interrupted | blocked. Thus, the secondary battery A can realize a shutdown mechanism in which the positive electrode terminal portion 3 or the negative electrode terminal portion 6 is cut to stop the current when an overcurrent is generated. At this time, the reactive material layer 20 is only attached on the positive electrode terminal portion 3 or the negative electrode terminal portion 6, and it is not necessary to reduce the cross-sectional area of the positive electrode terminal portion 3 or the negative electrode terminal portion 6. Despite being provided, an increase in the internal resistance of the secondary battery A during normal operation can be avoided. Furthermore, since the reactive substance layer 20 is a thin and light substance, the energy density of the secondary battery A can be prevented from being lowered despite the provision of a shutdown mechanism.

(第2の実施の形態)
本実施の形態に係る二次電池Aは、反応物質層20を形成する位置が第1の実施の形態に係る二次電池Aと相違する。以下、主に相違点について主に説明する。
(Second Embodiment)
The secondary battery A according to the present embodiment is different from the secondary battery A according to the first embodiment in the position where the reactant layer 20 is formed. Hereinafter, mainly the differences will be mainly described.

図5は、二次電池Aの構成例を示す概略部分上面図である。この図は、二次電池Aの一部を拡大し、負極タブ6および負極延長部材17aの近傍を上から見た図である。複数の単セル10から延びる複数の負極延長部材17aが負極タブ6上の負極溶接部19で負極タブ6に接続されている。図示しないが、同様に、複数の単セル10から延びる複数の正極延長部材16aが正極タブ5上の正極溶接部18で正極タブ5に接続されている。二次電池Aは、更に、反応物質層20を備えている。反応物質層20は、各単セル10における正極端子部または負極端子部の全部または一部分の表面に形成されている。この図の例では、反応物質層20は負極タブ6の表面であって負極溶接部19の周辺部に形成されている。反応物質層20は正極タブ5の表面であって正極溶接部18の周辺部に形成されていてもよい。ただし、反応物質層20は、負極タブ6および正極タブ5の両方に形成される必要はなく、いずれか一方のみに形成されていてもよい。   FIG. 5 is a schematic partial top view illustrating a configuration example of the secondary battery A. In this figure, a part of the secondary battery A is enlarged, and the vicinity of the negative electrode tab 6 and the negative electrode extension member 17a is viewed from above. A plurality of negative electrode extension members 17 a extending from the plurality of single cells 10 are connected to the negative electrode tab 6 by negative electrode welds 19 on the negative electrode tab 6. Although not shown, similarly, a plurality of positive electrode extension members 16 a extending from the plurality of single cells 10 are connected to the positive electrode tab 5 at the positive electrode welds 18 on the positive electrode tab 5. The secondary battery A further includes a reactant layer 20. The reactive substance layer 20 is formed on the surface of all or part of the positive electrode terminal portion or the negative electrode terminal portion in each single cell 10. In the example of this figure, the reactant layer 20 is formed on the surface of the negative electrode tab 6 and around the negative electrode welded portion 19. The reactive material layer 20 may be formed on the surface of the positive electrode tab 5 and around the positive electrode welded portion 18. However, the reactive material layer 20 does not need to be formed on both the negative electrode tab 6 and the positive electrode tab 5, and may be formed on only one of them.

図6は、反応物質層20と負極溶接部19との関係を示す概略側面図である。図6(a)に示すように、反応物質層20は、負極タブ6の一部分の表面を覆っている。具体的には、反応物質層20は、負極タブ6の表面であって負極溶接部19の周辺部に形成されている。すなわち、反応物質層20は、負極溶接部19を部分的に囲むように負極タブ6の表面に形成されている。好ましくは、負極溶接部19を完全に囲むように形成されている。そして、図6(b)に示すように、負極タブ6が過電流に伴うジュール熱で発熱したとき、負極タブ6と反応物質層20とが反応して生成物質層21が生成される。このとき、負極溶接部19を部分的または完全に囲むように反応物質層20が形成されているので、生成物質層21は負極溶接部19の下側に入り込むように形成される。また、生成物質層21の体積は、負極タブ6における反応に寄与した部分30(図6(a))の体積よりも増加するので、生成物質層21の厚みは元の負極タブ6の反応に寄与した部分30の厚みよりも厚くなる。そして、生成物質層21は、低密度となり疎な組織になり、強度が低くなる。そのため、負極タブ6や負極溶接部19に生じている応力などにより、生成物質層21そのものが破断するか、または、生成物質層21と負極溶接部19との間で破断が起こる。このとき、生成物質層21は負極溶接部19の下側に入り込むように形成されるので、生成物質層21の破断等により、負極溶接部19が負極タブ6から完全に剥離されるため、過電流が確実に遮断される。なお、反応物質層20が正極タブ5の一部分(正極溶接部18の周辺部)の表面に形成されている場合にも上記と同様であるので、その説明を省略する。   FIG. 6 is a schematic side view showing the relationship between the reactant layer 20 and the negative electrode weld 19. As shown in FIG. 6A, the reactant layer 20 covers a part of the surface of the negative electrode tab 6. Specifically, the reactant layer 20 is formed on the surface of the negative electrode tab 6 and around the negative electrode welded portion 19. That is, the reactant layer 20 is formed on the surface of the negative electrode tab 6 so as to partially surround the negative electrode welded portion 19. Preferably, it is formed so as to completely surround the negative electrode welded portion 19. As shown in FIG. 6B, when the negative electrode tab 6 generates heat due to Joule heat accompanying overcurrent, the negative electrode tab 6 and the reactive material layer 20 react to generate a product material layer 21. At this time, since the reactive material layer 20 is formed so as to partially or completely surround the negative electrode welded portion 19, the product material layer 21 is formed so as to enter the lower side of the negative electrode welded portion 19. Further, since the volume of the product material layer 21 is larger than the volume of the portion 30 (FIG. 6A) that contributes to the reaction in the negative electrode tab 6, the thickness of the product material layer 21 depends on the reaction of the original negative electrode tab 6. It becomes thicker than the thickness of the contributed portion 30. The product material layer 21 has a low density and a sparse structure, and has a low strength. Therefore, the product material layer 21 itself breaks due to the stress generated in the negative electrode tab 6 and the negative electrode welded portion 19 or the product material layer 21 and the negative electrode welded portion 19 break. At this time, since the product material layer 21 is formed so as to enter the lower side of the negative electrode welded portion 19, the negative electrode welded portion 19 is completely peeled off from the negative electrode tab 6 due to the breakage of the product material layer 21. The current is reliably cut off. In addition, since it is the same as that of the above also when the reactive substance layer 20 is formed in the surface of a part of positive electrode tab 5 (peripheral part of the positive electrode welding part 18), the description is abbreviate | omitted.

本実施の形態においても、第1の実施の形態と同様の効果を奏することができる。加えて、二次電池Aが複数の単セル10を積層した構造を有する場合、正極溶接部18または正極タブ5の一部分またはその周辺部の表面に反応物質層20を形成することで、複数の正極延長部材16aと正極タブ5との接続を一括して切断することができる。同様に、負極溶接部19または負極タブ6の一部分またはその周辺部の表面に反応物質層20を形成することで、複数の負極延長部材17aと負極タブ6との接続を一括して切断することができる。その結果、切断されていない正極延長部材16aや負極延長部材17aが残り、その正極延長部材16aや負極延長部材17aに電流が集中して発熱がより増加するという現象を確実に防止できる。   Also in this embodiment, the same effects as those of the first embodiment can be obtained. In addition, when the secondary battery A has a structure in which a plurality of single cells 10 are laminated, a plurality of reactant layers 20 are formed on the surface of the positive electrode welded portion 18 or a part of the positive electrode tab 5 or its peripheral portion, thereby The connection between the positive electrode extension member 16a and the positive electrode tab 5 can be cut at once. Similarly, by forming the reactive substance layer 20 on the surface of a part of the negative electrode welded part 19 or the negative electrode tab 6 or its peripheral part, the connection between the plurality of negative electrode extension members 17a and the negative electrode tab 6 can be cut at once. Can do. As a result, the positive electrode extension member 16a and the negative electrode extension member 17a that are not cut remain, and the phenomenon that current is concentrated on the positive electrode extension member 16a and the negative electrode extension member 17a and heat generation further increases can be reliably prevented.

以下、本発明の実施例を示す。以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
実施例では、二次電池を作製し、過電流を供給したときの二次電池の挙動について評価した。ただし、二次電池への電流の供給および電圧の測定を以下の装置で行った。
電流の供給および電圧の測定装置:東洋システム製TOSCAT−3200
Examples of the present invention will be described below. The following examples are for illustrative purposes only and are not intended to limit the invention.
In the example, a secondary battery was produced, and the behavior of the secondary battery when an overcurrent was supplied was evaluated. However, supply of current to the secondary battery and measurement of voltage were performed with the following devices.
Current supply and voltage measurement device: TOSCAT-3200 manufactured by Toyo System

(実施例1)
(1)二次電池の作製
(1−1)固体電解質の合成
LiSとPとを秤量し、メノウ乳鉢で5分間混合し、その後ヘプタンを入れ、遊星型ボールミルを用いて40時間メカニカルミリングすることにより硫化物固体電解質を得た。
(1−2)正極層の作製
正極活物質としてのLiNi1/3Co1/3Mn1/3、導電助材としてのVGCFおよび上記の硫化物固体電解質材料を秤量し、バインダーとしてのPVDFおよび溶剤としてのヘプタンと共に混合してのスラリーを得た。そして、得られたスラリーを、正極集電体としてのアルミニウム箔上に塗布して、正極層を得た。正極集電体からはアルミニウム箔の正極延長部材が延びている。
(1−3)負極層の作製
負極活物質としての負極活物質としてのグラファイト、上記の硫化物固体電解質材料を秤量し、バインダーとしてのPVDFおよび溶剤としてのヘプタンと共に混合してスラリーを得た。そして、得られたスラリーを、負極集電体としての銅箔上に塗布して負極層を得た。負極集電体からは銅箔の負極延長部材が延びている。
(1−4)電極体の作製
上記の正極層、セパレータおよび上記の負極層を4ton/cmでプレスして電極体を形成した。電極体は、セパレータの一方の側には正極層が配置され、他方の側には負極層が配置され、正極層からは正極集電体の正極延長部材が延び、負極層からは負極集電体の負極延長部材が延びている。
(1−5)反応物質層の作製
反応物質層の材料としての硫黄を秤量し、バインダーとしてのPVDFと混合して反応物質層のスラリーを得た。そして、図3および図4に示すように、負極集電体の負極延長部材にスラリーを塗布して、反応物質層とした。
(1−6)固体電解質層の作製
上記の硫化物固体電解質材料を秤量し、バインダーとしてのPVDFおよび溶剤としてのヘプタンと共に混合してスラリーを得た。そして、得られたスラリーを、補強材であるポリプロピレンのメッシュ材に含浸し乾燥して固体電解質層を得た。
(1−7)電池素子の作製
上記の電極体と上記の固体電解質層とを交互に複数層(最上部は電極体)積層し、4ton/cmでプレスして、電池素子を得た。
(1−8)タブの作製
上記の積層体の複数の正極集電体の正極延長部材と正極タブとを超音波で溶接した。同様に、上記の積層体の複数の負極集電体の負極延長部材と負極タブとを超音波で溶接した。
(1−9)ラミネート
上記の電極タブおよび反応物質層を含む電池素子をラミネートフィルムで覆い、封止して二次電池を得た。
(2)過電流の評価
得られた二次電池について、規定の電流を超える過電流を供給し、過電流が遮断するか否かを調べた。
(3)評価結果
負極集電体の負極延長部材は、複数あるにもかかわらず、ほぼ同時にすべての負極延長部材が切断され、過電流が遮断された。これは、複数の負極延長部材は、いずれも熱伝導性の高い材料でもある金属でできているので、複数の負極延長部材の間で温度のばらつきが極めて少なく、ほぼ同時にすべての反応物質層が生成物質層に変化したためと考えられる。ただし、より詳細にみると、非常に短い時間間隔で、個々の負極延長部材が別々に切断され、最終的にすべての負極延長部材が切断されて、過電流が遮断されたことが分った。その過程の中で、極めて短時間ではあるが、延長部が切れていない箇所では、流れる電流が集中して発熱が大きくなる懸念があることが分った。
(Example 1)
(1) Production of Secondary Battery (1-1) Synthesis of Solid Electrolyte Li 2 S and P 2 S 5 are weighed and mixed for 5 minutes in an agate mortar, and then heptane is put in, and 40 using a planetary ball mill. A sulfide solid electrolyte was obtained by mechanical milling for a period of time.
(1-2) Preparation of positive electrode layer LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, VGCF as a conductive additive, and the above sulfide solid electrolyte material were weighed and used as a binder. A slurry was obtained by mixing with PVDF and heptane as a solvent. And the obtained slurry was apply | coated on the aluminum foil as a positive electrode electrical power collector, and the positive electrode layer was obtained. An aluminum foil positive electrode extension member extends from the positive electrode current collector.
(1-3) Production of Negative Electrode Layer Graphite as a negative electrode active material as a negative electrode active material and the above sulfide solid electrolyte material were weighed and mixed with PVDF as a binder and heptane as a solvent to obtain a slurry. And the obtained slurry was apply | coated on the copper foil as a negative electrode collector, and the negative electrode layer was obtained. A negative electrode extending member of copper foil extends from the negative electrode current collector.
(1-4) Production of electrode body The positive electrode layer, the separator, and the negative electrode layer were pressed at 4 ton / cm 2 to form an electrode body. The electrode body has a positive electrode layer disposed on one side of the separator, a negative electrode layer disposed on the other side, a positive electrode extension member of the positive electrode current collector extends from the positive electrode layer, and a negative electrode current collector extends from the negative electrode layer. The body's negative electrode extension member extends.
(1-5) Production of Reactive Material Layer Sulfur as a material of the reactive material layer was weighed and mixed with PVDF as a binder to obtain a slurry of the reactive material layer. Then, as shown in FIGS. 3 and 4, slurry was applied to the negative electrode extension member of the negative electrode current collector to form a reactant layer.
(1-6) Production of Solid Electrolyte Layer The above-mentioned sulfide solid electrolyte material was weighed and mixed with PVDF as a binder and heptane as a solvent to obtain a slurry. The obtained slurry was impregnated into a polypropylene mesh material as a reinforcing material and dried to obtain a solid electrolyte layer.
(1-7) Production of Battery Element A plurality of the above-mentioned electrode bodies and the above-mentioned solid electrolyte layers (the uppermost part is an electrode body) were laminated and pressed at 4 ton / cm 2 to obtain a battery element.
(1-8) Preparation of Tabs The positive electrode extension members and the positive electrode tabs of the plurality of positive electrode current collectors of the above laminate were welded with ultrasonic waves. Similarly, the negative electrode extension members and negative electrode tabs of the plurality of negative electrode current collectors of the laminate were welded with ultrasonic waves.
(1-9) Laminate The battery element including the electrode tab and the reactant layer was covered with a laminate film and sealed to obtain a secondary battery.
(2) Evaluation of overcurrent About the obtained secondary battery, the overcurrent exceeding a regulation current was supplied and it was investigated whether overcurrent interrupted.
(3) Evaluation results Although there were a plurality of negative electrode extension members of the negative electrode current collector, all the negative electrode extension members were cut almost simultaneously, and the overcurrent was cut off. This is because the plurality of negative electrode extension members are all made of metal, which is also a material having high thermal conductivity, so there is very little temperature variation among the plurality of negative electrode extension members, and all the reactant layers are almost simultaneously This is thought to be due to the change to the product material layer. However, in more detail, it was found that, in a very short time interval, the individual negative electrode extension members were cut separately, and finally, all the negative electrode extension members were cut and the overcurrent was cut off. . In the process, it was found that there is a concern that the flowing current concentrates and heat generation increases at a portion where the extension portion is not cut, although it is an extremely short time.

(実施例2)
(1)二次電池の作製
反応物質層の作製方法が異なる他は、上記実施例1の場合と同様に二次電池の作製を作製した。
反応物質層の作製方法は、以下のとおりである。負極タブの表面であって複数の負極集電体の負極延長部材と負極タブとを溶接した負極溶接部の周辺部に反応物質層のスラリーを塗布して、反応物質層とした。
(2)過電流の評価
上記実施例1の場合と同様に過電流を評価した。
(3)評価結果
負極集電体の負極延長部材の負極溶接部が負極タブから剥離されることで、過電流が遮一気に遮断された。反応物質層が負極溶接部と負極タブとの間(負極溶接部の周辺部における負極タブの表面)に形成されているため、反応物質層が生成物質層に変化して体積膨張するときに生成物質層が負極溶接部の下側に回り込んだためと考えられる。この場合、複数の負極延長部材が一まとめに負極タブから剥離され、負極タブに接続したままの負極延長部材がないので、流れる電流が集中して発熱が増加することを防止できる。すなわち、実施例1の場合と比較して、より安全に過電流を遮断することができる。
(Example 2)
(1) Production of Secondary Battery A secondary battery was produced in the same manner as in Example 1 except that the production method of the reactant layer was different.
The method for producing the reactant layer is as follows. The reactant layer slurry was applied to the periphery of the negative electrode welded portion where the negative electrode extension members of the plurality of negative electrode current collectors and the negative electrode tab were welded on the surface of the negative electrode tab.
(2) Evaluation of overcurrent Overcurrent was evaluated in the same manner as in Example 1 above.
(3) Evaluation results The negative electrode welded portion of the negative electrode extension member of the negative electrode current collector was peeled off from the negative electrode tab, so that the overcurrent was interrupted. Since the reactive material layer is formed between the negative electrode weld and the negative electrode tab (the surface of the negative electrode tab in the periphery of the negative electrode weld), it is generated when the reactive material layer changes into a product material layer and expands in volume. This is probably because the material layer wraps around the negative electrode weld. In this case, since the plurality of negative electrode extension members are peeled together from the negative electrode tab and there is no negative electrode extension member that remains connected to the negative electrode tab, it is possible to prevent the flowing current from concentrating and increasing heat generation. That is, the overcurrent can be more safely interrupted than in the first embodiment.

1 電池素子
2 ラミネートフィルム
3 正極端子部
4 負極端子部
5 正極タブ
6 負極タブ
11 正極層
12 負極層
13 固体電解質層
14 正極活物質層
15 負極活物質層
16 正極集電体
16a 延長部
17 負極集電体
17a 延長部
18 溶接部
19 溶接部
20 反応物質層
21 生成物質層
30 反応に寄与した部分
A 二次電池
DESCRIPTION OF SYMBOLS 1 Battery element 2 Laminate film 3 Positive electrode terminal part 4 Negative electrode terminal part 5 Positive electrode tab 6 Negative electrode tab 11 Positive electrode layer 12 Negative electrode layer 13 Solid electrolyte layer 14 Positive electrode active material layer 15 Negative electrode active material layer 16 Positive electrode collector 16a Extension part 17 Negative electrode Current collector 17a Extension part 18 Welding part 19 Welding part 20 Reactive substance layer 21 Generating substance layer 30 Part which contributed to reaction A Secondary battery

Claims (1)

充放電可能な電池素子と、
前記電池素子に接続された正極端子部と、
前記電池素子に接続された負極端子部と、
前記正極端子部または前記負極端子部の表面に形成される反応物質層と、
を備え、
前記反応物質層に含まれる硫黄は温度上昇により前記正極端子部または前記負極端子部に含まれる銅と反応して、前記正極端子部または前記負極端子部における反応に寄与した部分よりも体積が増大した硫化銅を含む生成物質層を生成する
二次電池。
A chargeable / dischargeable battery element;
A positive terminal portion connected to the battery element;
A negative electrode terminal connected to the battery element;
A reactant layer formed on a surface of the positive electrode terminal portion or the negative electrode terminal portion;
With
The sulfur contained in the reactant layer reacts with the copper contained in the positive electrode terminal portion or the negative electrode terminal portion due to a temperature rise, and the volume increases compared to the portion contributing to the reaction in the positive electrode terminal portion or the negative electrode terminal portion. A secondary battery that produces a product layer containing copper sulfide.
JP2014185410A 2014-09-11 2014-09-11 Secondary battery Pending JP2016058314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014185410A JP2016058314A (en) 2014-09-11 2014-09-11 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185410A JP2016058314A (en) 2014-09-11 2014-09-11 Secondary battery

Publications (1)

Publication Number Publication Date
JP2016058314A true JP2016058314A (en) 2016-04-21

Family

ID=55758680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185410A Pending JP2016058314A (en) 2014-09-11 2014-09-11 Secondary battery

Country Status (1)

Country Link
JP (1) JP2016058314A (en)

Similar Documents

Publication Publication Date Title
JP7070052B2 (en) All solid state battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
KR101529408B1 (en) Non-aqueous electrolyte secondary battery
JP7069612B2 (en) Manufacturing method of laminated electrode body, power storage element and laminated electrode body
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP2010086812A (en) Secondary battery
WO2013005329A1 (en) Secondary battery
JP2006318892A (en) Square lithium secondary battery
JP5590381B2 (en) Lithium ion secondary battery
KR20140085337A (en) Lithium secondary battery
JP6726584B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016018704A (en) All-solid battery
JP7096979B2 (en) Lithium ion secondary battery
JP2008243672A (en) Winding electrode for secondary battery, lithium-ion secondary battery, and secondary battery pack
JP6885353B2 (en) Power storage device
JP2010086813A (en) Nonaqueous electrolyte secondary battery
JP7536382B2 (en) Electrodes and electrode assemblies
JP2014154446A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6209844B2 (en) Nonaqueous battery electrode and manufacturing method thereof
JP2020102311A (en) Wound type battery and manufacturing method of wound type battery
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2014120214A (en) Nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP5692605B2 (en) Non-aqueous electrolyte secondary battery
CN111435729B (en) Lithium ion secondary battery