Nothing Special   »   [go: up one dir, main page]

WO2019069716A1 - 放射線撮影システム及び放射線撮影方法 - Google Patents

放射線撮影システム及び放射線撮影方法 Download PDF

Info

Publication number
WO2019069716A1
WO2019069716A1 PCT/JP2018/035018 JP2018035018W WO2019069716A1 WO 2019069716 A1 WO2019069716 A1 WO 2019069716A1 JP 2018035018 W JP2018035018 W JP 2018035018W WO 2019069716 A1 WO2019069716 A1 WO 2019069716A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiation detection
image
correction
composite image
Prior art date
Application number
PCT/JP2018/035018
Other languages
English (en)
French (fr)
Inventor
高橋 直人
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019069716A1 publication Critical patent/WO2019069716A1/ja
Priority to US16/802,383 priority Critical patent/US11213261B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette

Definitions

  • the present invention relates to a radiation imaging system and a radiation imaging method for performing imaging using radiation.
  • Patent Document 1 In recent years, for example, in the medical field, imaging with a wide observation area (hereinafter, referred to as long-length imaging) is performed such as imaging the entire spine and lower legs of a subject.
  • a long image can be taken by arranging and photographing a plurality of radiation detection devices, and the reflection of the structure of the superimposed radiation detection device in a long image (also referred to as a composite image) It is disclosed to correct the Further, Patent Document 2 discloses a method of reducing the reflection of the structure of the superimposed radiation detection device by devising the structure of the radiation detection device.
  • Patent Literatures 1 and 2 do not mention measures when the radiation detection devices having different internal structures coexist.
  • An object of the present invention is to provide a radiation imaging system and a radiation imaging method capable of appropriately correcting a composite image even in a state in which radiation detection devices having different internal structures are mixed.
  • a radiation having a plurality of radiation detection devices for detecting radiation, and a combination processing unit for combining a plurality of radiation images acquired from the plurality of radiation detection devices to generate a combined image
  • the imaging system includes an image correction unit that corrects an area where the structure of the radiation detection device is reflected in the composite image, and the image correction unit is configured according to the characteristic of the structural shadow of the radiation detection device reflected in the composite image. Set the correction method.
  • the figure which shows schematic structure of the radiography system of this invention The figure which shows the relationship between the radiation detection apparatus of the radiographic imaging system of this invention, and image data. The figure which shows the relationship between the radiation detection apparatus of the radiographic imaging system of this invention, and image data. The figure which shows the structure of the radiation imaging system (mainly image display control part) of this invention. The figure which shows the acquisition method of the structural data of the radiography system of this invention.
  • 5 is a flowchart showing the processing procedure of the image correction unit according to the first embodiment of the present invention.
  • 6 is a flowchart showing the processing procedure of the image correction unit according to the second embodiment of the present invention. The figure explaining division of the lack field of Example 2 of the present invention.
  • FIG. 1 is a view showing a schematic configuration of a radiation imaging system used for long-distance imaging performed by arranging a plurality of radiation detection devices.
  • the radiation imaging system includes a radiation generation unit 112 that generates radiation.
  • the radiation generation unit 112 can irradiate the radiation range 114 with radiation.
  • the radiation generation unit 112 is installed via a support (not shown) installed on a floor or a ceiling.
  • a diaphragm (not shown) for shielding radiation is installed on the irradiation surface of the radiation generation unit 112. The operator can set the irradiation range 114 of the radiation emitted from the radiation generation unit 112 by controlling the diaphragm that shields the radiation.
  • the radiation imaging system includes a plurality of radiation detection devices 120, 122, 124.
  • the plurality of radiation detection devices 120, 122, 124 detect radiation transmitted through the subject 100, and output image data according to the radiation.
  • image data can also be paraphrased as a radiographic image.
  • the plurality of radiation detection devices 120, 122, 124 detect the radiation transmitted through the subject as a charge corresponding to the transmitted radiation dose.
  • a direct conversion sensor that converts radiation such as a-Se directly to charge, radiation that converts radiation to charge, a scintillator such as CsI, a scintillator and a-Si, etc.
  • the plurality of radiation detection devices are housed in the imaging table 110.
  • the imaging stand 110 is a rectangular case, and the inside of the case is hollow.
  • the imaging table 110 has a function of holding the plurality of radiation detection devices 120, 122, 124. As shown in FIG. 1, the imaging stand 110 is erected with respect to the floor surface, and the imaging stand 110 is installed.
  • the subject 100 is installed along the longitudinal direction of the imaging table 110.
  • the imaging stand 110 has a support function to support the subject 100.
  • the imaging stand 110 is installed such that the longitudinal direction of the imaging stand 110 is the vertical direction, that is, the imaging stand 110 is upright with respect to the floor surface.
  • the imaging stand 110 may be installed so that the longitudinal direction of the imaging stand 110 is horizontal, that is, the imaging stand 110 is parallel to the floor surface.
  • a radiation detection apparatus 120, a radiation detection apparatus 122, and a radiation detection apparatus 124 are disposed on the imaging table 110 along the longitudinal direction of the imaging table 110. At this time, a plurality of radiation detection devices are disposed while partially overlapping the radiation detection devices. For example, as shown in FIG. 1, the radiation detection device 120 and the radiation detection device 122 are disposed so as to partially overlap each other. At this time, the imaging possible areas of the radiation detection apparatus 120 and the radiation detection apparatus 122 overlap each other. Similarly, the radiation detection device 122 and the radiation detection device 124 are disposed such that portions thereof spatially overlap each other. At this time, the imaging possible areas of the radiation detection device 122 and the radiation detection device 124 overlap each other. The radiation detection device 122 is disposed on the back side of the radiation detection device 120 and the radiation detection device 124, that is, at a position far from the radiation generation unit 112.
  • the radiation imaging system performs image processing on the image data output from the radiation detection apparatus to generate an image, an image display control unit 130, a display unit 132 for displaying an image, and an instruction from the operator. And an operation unit 134. Further, the image display control unit 130 has a function of controlling each component.
  • the image display control unit 130 is connected to the plurality of radiation detection devices 120, 122, 124. Specifically, the image display control unit 130 is connected to the plurality of radiation detection devices 120, 122, 124 by a wired or wireless network or a dedicated line. The plurality of radiation detection devices 120, 122, and 124 capture the radiation generated by the radiation generation unit 112, and output image data to the image display control unit 130.
  • the image display control unit 130 has an application function that operates on a computer.
  • the image display control unit 130 outputs an image to the display unit 132 or outputs a graphical user interface (not shown) while controlling the operation of the plurality of radiation detection devices 120, 122, 124.
  • the image display control unit 130 controls the timing of radiation generation of the radiation generation unit 112 and the imaging conditions of the radiation. Further, the image display control unit 130 controls the timings at which the image data of the plurality of radiation detection devices 120, 122, 124 are captured and the timings at which the image data are output. The image display control unit 130 can cause the plurality of radiation detection devices 120, 122, 124 to perform imaging simultaneously, and can simultaneously output the image data to the plurality of radiation detection devices 120, 122, 124.
  • the image display control unit 130 has a function of performing image processing such as gradation conversion on the image data output from the plurality of radiation detection devices 120, 122, and 124.
  • the image display control unit 130 can also perform image processing such as trimming and rotation on the images output from the plurality of radiation detection devices 120, 122, 124.
  • the display unit 132 displays the image output from the image display control unit 130.
  • the subject 100 stands on a step placed on the imaging table 110 and is positioned with respect to the plurality of radiation detection devices 120, 122, 124 and the radiation generation unit 112.
  • the radiation is incident at an angle perpendicular to the center of the radiation detection device 122.
  • the radiation emitted from the radiation generation unit 112 to the plurality of radiation detection devices 120, 122, 124 passes through the subject 100, reaches the plurality of radiation detection devices 120, 122, 124, and is detected.
  • the image data obtained by the plurality of radiation detection devices 120, 122, and 124 are combined by the image display control unit 130, and a combined image of the subject 100 is generated.
  • the composite image is a composite image acquired by long image capturing with a wide observation area.
  • the display unit 132 causes the composite image output from the image display control unit 130 to be displayed.
  • Radiation irradiation range 114
  • Radiation range 112 Radiation (irradiation range 114) emitted from the radiation generation unit 112 is simultaneously irradiated to the plurality of radiation detection devices 120, 122, 124.
  • the operator controls a diaphragm that shields radiation, or adjusts the distance between the plurality of radiation detection devices 120, 122, and 124 and the radiation generation unit 112.
  • the plurality of radiation detection devices 120, 122, and 124 may have a detection function of automatically detecting the irradiation of the radiation from the radiation generation unit 112.
  • the detection function for automatic detection is a function in which when the radiation is irradiated from the radiation generation unit 112, the plurality of radiation detection devices 120, 122, 124 detect the radiation and accumulate charge resulting from the radiation.
  • the plurality of radiation detection devices 120, 122, 124 start the main reading operation to acquire image data.
  • the radiation detection devices 122 are disposed to overlap behind the radiation detection devices 120 and 124. For this reason, a region (hereinafter referred to as a defect region) in which the structure of the radiation detection panel, which is an internal component of the radiation detection devices 120 and 124, the substrate, and the casing is reflected in the image data output by the radiation detection device 122 ) Occurs.
  • FIG. 2A shows an example of the internal structure of the radiation detection devices 120 and 122.
  • the radiation detection apparatus 120 includes a radiation detection panel 150 for detecting radiation from the radiation incident surface side, an adhesive material 156 for adhering the radiation detection panel 150 and installing the radiation detection panel 150 on the panel base 158, and a panel base for supporting the radiation detection panel 150.
  • a combination body stacked in the order of a pedestal 158 and a control substrate 154 for outputting an electrical signal from the radiation detection panel 150 is included.
  • the radiation detection panel 150 and the control substrate 154 are connected via a flexible substrate 152.
  • the casing of the radiation detection device 120 is composed of a casing 160 made of metal or carbon and a radiation transmitting portion 162 made of a radiation transmitting member for transmitting radiation.
  • a radiation transmitting unit 162 is installed on the radiation incident surface of the radiation detection panel 150 to suppress the attenuation of the radiation from the radiation generating unit 112.
  • the radiation detection panel 150 has an effective pixel area capable of detecting radiation and an edge on the outer periphery of the effective pixel area.
  • the radiation detection device 122 is disposed such that the effective pixel region thereof partially overlaps the effective pixel region of the radiation detection device 120, and in any line, any one of the effective pixel regions of the radiation detection devices 120 and 122 is surely image information Configured to get
  • the composite image includes image data (radiation image) output from the radiation detection device 120 and image data of an image area not acquired by the radiation detection device 120 among the image data output from the radiation detection device 122 (radiation image Generated from).
  • the structure of the radiation detection device 120 is reflected in the image data 302 acquired from the radiation detection device 122.
  • An area 410 from the end of the effective pixel area of the radiation detection apparatus 122 to the end of the exterior casing of the radiation detection apparatus 122 is an area where the structure of the radiation detection apparatus 120 is reflected in the radiation detection apparatus 122.
  • a defect area 412 due to the reflection of the structure of the radiation detection device 120 is generated. Accordingly, in the combining processing unit 142, the loss area 412 is similarly generated in the combined image generated from the image data 302 acquired from the radiation detection device 122.
  • the defect area 412 of the image data 302 acquired from the radiation detection device 122 the radiation detection panel 150, the flexible substrate 152, the adhesive 156, the panel base 158, and part of the metal casing 160 in the radiation detection device 120 are structurally shaded. Reflect as. Further, the defect area 412 also includes a structural shadow due to a substrate on the flexible substrate 152, a screw, or the like.
  • the defect area is an area where structural shadows generated by the internal structure of the radiation detection device disposed on the front surface are reflected, and in this defect area, structural shadows overlap with the shadows of the subject and interfere with diagnosis.
  • This structural shadow largely differs depending on the internal structure of the radiation detection device.
  • the radiation detection apparatus 120 shown in FIG. 2B realizes simplification and reduction of structural shading as compared with FIG. 2A by devising the internal structure.
  • the radiation detection apparatus 120 shown in FIG. 2B structural shadows are reduced by replacing the outer casing 160 from a metal casing to a radiation transparent casing in which attenuation of radiation is suppressed. Further, by arranging the adhesive 156 and the panel base 158 so as not to overlap the effective pixel area of the radiation detection device 122, the adhesive 156 and the panel base 158 are prevented from being reflected. Furthermore, by arranging the flexible substrate and the screw (not shown) so as not to overlap with the effective pixel area, it is possible to prevent the reflection of complicated structural shading caused by the substrate and the screw.
  • the defect area 414 of the image data 302 acquired from the radiation detection device 122 mainly includes the radiation detection panel 150 and the exterior case 160, and the structural shadow becomes simple.
  • the attenuation of radiation due to the internal structure is small, the contrast of structural shadows is also reduced.
  • the internal structure of the radiation detection apparatus may be various other than that shown in FIG. There also exist radiation detection devices having different internal structures at the upper end portion and the lower end portion of the radiation detection device.
  • the image data 302 may include an area in which a structural shadow is reflected as shown in FIG. 2A. That is, in the image data 302 acquired from the radiation detection device 122, a defect area 412 due to the reflection of the structure of the radiation detection device 120 is generated.
  • the image data 302 may include an area in which a structural shadow is captured as shown in FIG. 2B. That is, in the image data 302 acquired from the radiation detection device 122, a defect area 414 due to the reflection of the structure of the radiation detection device 120 is generated.
  • the image display control unit 130 does not emphasize the defect area generated in the composite image, the storage unit 140 that stores the image data output from the radiation detection apparatus, the composition processing unit 142 that combines the image data to generate a composite image, The image correction unit 146 performs correction as described above, and the tone processing unit 148 performs tone processing on the composite image corrected by the image correction unit 146.
  • the storage unit 140 stores image data (radiographic images) output from the plurality of radiation detection devices 120, 122, 124.
  • the radiation detectors 120, 122, 124 are respectively a radiation detector (D1), a radiation detector (D2), and a radiation detector (D3).
  • the storage unit 140 can store the image data output from the radiation detection devices 120, 122, 124 together with time information. Therefore, the storage unit 140 can distinguish and store whether or not the radiation images output from the radiation detection devices 120, 122, and 124 are simultaneously acquired based on the time information when the radiation image is acquired. The storage unit 140 can distinguish and store the radiation image including the image information of the subject or the radiation image not including the image information of the subject.
  • the storage unit 140 can also store a plurality of radiation images simultaneously captured by the plurality of radiation detection devices 120, 122, 124 in association with positional information (spatial arrangement information) of the radiation detection devices. For example, the storage unit 140 can associate and store that the image data output from the radiation detection apparatus 120 and the image data output from the radiation detection apparatus 122 are adjacent. Similarly, the storage unit 140 can store that the image data output from the radiation detection device 122 and the image data output from the radiation detection device 124 are adjacent to each other. Furthermore, the storage unit 140 can store that the radiation detection device 122 is disposed on the back side of the radiation detection devices 120 and 124 in association with each other. The storage unit 140 can output a plurality of image data and the position information thereof to the combining processing unit 142.
  • the storage unit 140 can store identification information (identification code) for identifying the radiation detection devices 120, 122, and 124.
  • the identification code includes information indicating the type of radiation detection device.
  • the identification code is information indicating the internal structure of the radiation detection apparatus, and includes information corresponding to the structural shadow of the radiation detection apparatus (the reflection of the structure).
  • the identification code may include information based on position information (location information) of the radiation detection device.
  • Position information (arrangement information) of the radiation detection apparatus is, for example, information indicating the position of the radiation detection apparatus on the imaging stand 110, and information indicating the upper end and the lower end of the radiation detection apparatus.
  • the position information (arrangement information) of the radiation detection apparatus may include information of the upper and lower directions of the radiation detection apparatus. In this way, the identification code can identify structural shadows that appear in the image data acquired from the radiation detection device disposed on the back side.
  • the radiation detection apparatus 120 shown in FIG. 2A and the radiation detection apparatus 120 shown in FIG. 2B can be identified by the identification code. It is determined by the identification code whether the image data 302 contains an area where structural shadows appear as shown in FIG. 2A or the image data 302 contains an area where structural shadows appear as shown in FIG. 2B. it can.
  • the combining processing unit 142 combines a plurality of image data stored in the storage unit 140 to generate a combined image. At this time, the combining processing unit 142 combines a plurality of image data including the image information of the subject 100 to generate a combined image.
  • the composition processing unit 142 generates a composite image by combining based on the plurality of image data output from the radiation detection devices 120, 122, 124 and their time information and position information. Specifically, the combination processing unit 142 determines a plurality of image data (radiation images) simultaneously output from the radiation detection devices 120, 122, 124 based on time information as a combination target, and combines the plurality of image data. Do. The combination processing unit 142 determines and combines the positional relationship of the plurality of image data output from the radiation detection devices 120, 122, and 124 based on the position information.
  • an identification code for identifying a structural shade present in the missing area of the composite image is stored as incidental information of the composite image.
  • the image data output from the radiation detection device 120 is upward, the image data output from the radiation detection device 124 is downward, and the image data output from the radiation detection device 122 is in between It is positioned. Furthermore, the synthesis is performed in consideration of the overlapping manner indicated by the position information. For example, in the radiation detection device 122 disposed so as to overlap with another radiation detection device at a position far from the radiation generation unit 112, a defect area is generated in the upper and lower direction. There is no defect area in the radiation detection devices 120 and 124. Therefore, the composition processing unit 142 may minimize the area of the defect area generated in the composite image by generating a composite image using the image data generated by the radiation detection devices 120 and 124 in the overlapping range of the radiation detection devices. it can. As described above, the combining processing unit 142 can generate a combined image by combining a plurality of image data obtained by shooting a plurality of adjacent shooting areas.
  • an identification code for identifying the structural shadow of the defect area generated above and below the image data is stored as supplementary information together with the composite image.
  • the composition processing unit 142 image display control unit 130 stores the identification code together with the composite image.
  • the structural shadow reflected in the defect area present in the composite image is 412 in FIG. 2A. It is shown in. Therefore, a unique ID indicating this structural shadow is stored as incidental information. If the internal structure of the radiation detection device 124 shown in FIG. 1 is the same as that of the radiation detection device 120 shown in FIG. 2B, the structural shadow reflected in the defect area present in the composite image is 414 in FIG. 2B. It is shown in.
  • the image correction unit 146 corrects the missing area present in the composite image output from the composition processing unit 142 based on the structure information.
  • the structural information is information representing a structural shadow to be reflected in the defect area.
  • structural data obtained by superposing and photographing a plurality of radiation detection devices in the absence of a subject is used as structural information.
  • this structure data is data in which the reflection of the internal structure of the radiation detection apparatus is held as an image, and the pixel value of this image is a small value, for example, in the pixel where reflection is generated due to a large thick radiation source weak coefficient.
  • the radiation source weak coefficient is small and the value is large in the pixel in which reflection due to a thin structure occurs.
  • the structural data is acquired in advance and stored in the storage unit 140.
  • the arrangement of the radiation detection devices 120, 122, 124 is the same as in FIG. 1 as shown in FIG. Shoot in the state.
  • the image data 302 acquired from the radiation detection apparatus 122 captured in this manner includes a reflection area 306 of the internal structure at the lower end of the overlapping radiation detection apparatus 120.
  • the image data 302 acquired from the radiation detection device 122 includes the reflection region 308 of the internal structure at the upper end of the overlapping radiation detection device 124.
  • the image data 302 corresponds to structure data representing a structural shadow to be captured in the image, and the image data 302 may be stored in the storage unit 140 as structure data.
  • the reflection area 306 at the upper end and the reflection area 308 at the lower end may be regarded as separate structure data and held.
  • the tone processing unit 148 performs tone processing on a composite image obtained by combining a plurality of image data (radiographic images). Specifically, the gradation processing unit 148 acquires, from the storage unit 140, a plurality of image data acquired from the radiation detection devices 120, 122, and 124. The gradation processing unit 148 analyzes the feature quantities of the plurality of image data acquired from the radiation detection devices 120, 122, 124, and combines them so that the dynamic range of the display unit 132 can be effectively used. Determine the tone conversion characteristics of the image.
  • the gradation processing unit 148 converts the gradation of the combined image using the determined gradation conversion characteristic.
  • the feature amount includes the histogram, maximum pixel value, and minimum pixel value of each image data, and the analysis processing is performed on a plurality of image data acquired from the radiation detection devices 120, 122, and 124. The amount is calculated.
  • the tone processing unit 148 performs tone processing on the composite image corrected by the image correction unit 146.
  • gradation processing is performed on the composite image in which the loss area is reduced, gradation processing of the composite image can be appropriately performed. That is, the gradation processing unit 148 can perform gradation processing of the composite image while suppressing the influence of reflection of the structures of the radiation detection device 120 and the radiation detection device 124.
  • the display unit 132 displays the composite image on which the gradation processing has been performed by the gradation processing unit 148.
  • the combining processing unit 142 determines and combines the positional relationships of the plurality of image data output from the radiation detection devices 120, 122, and 124 based on the position information.
  • identification information identification code for identifying a structural shadow present in the missing area of the composite image is stored as incidental information of the composite image.
  • the image correction unit 146 acquires a composite image from the composition processing unit 142 and an identification code related to a structural shadow to be reflected in the defect area as structure information (S501).
  • the identification code in the present embodiment includes information on the type of radiation detection device and position information (position information) of the radiation detection device, so that the form (structural shadow) of the defect area in the composite image can be specified. .
  • the internal structures of the radiation detection apparatus 120 and the radiation detection apparatus 124 in this embodiment are different.
  • the radiation detection apparatus 120 has an internal structure similar to that of the radiation detection apparatus 120 shown in FIG. 2B.
  • the radiation detection device 124 has an internal structure similar to that of the radiation detection device 120 shown in FIG. 2A.
  • FIG. 6C a simple structure with less radiation attenuation as shown in FIG. 6C appears in the defect area 601 present at the top of the composite image.
  • a defect area 603 existing at the lower part of the composite image shows a complex structure as shown in FIG.
  • the identification code of the structural shadow shown in FIG. 6C is 0x00
  • the identification code of the structural shadow shown in FIG. 6D is 0x01.
  • the image correction unit 146 acquires information on the defect area to be corrected in the composite image (S502). Specifically, as shown in FIG. 7, the image correction unit 146 acquires the start row Y0 and the end row Y1 of the defect area on the composite image as position information of the defect area.
  • Fig.6 (a) when multiple defect area
  • the image correction unit 146 combines and acquires the start line Y2 and the end line Y3 of the defect area on the structure data and the identification code of the structure shadow as information on the defect area. For example, when acquiring information of the defective area 601 in FIG. 6, the start line Y0 and the end line Y1 of the defective area 601 are acquired, and the start line Y2 and the end line Y3 of the defective area 602 on the corresponding structure data are acquired. Do. The image correction unit 146 also acquires 0x00 as the identification code of the structural shadow.
  • a composite image before correction is represented by I
  • structural data is represented by P.
  • the coordinates of the start row Y0, Y2 are 1
  • the coordinates of the end rows Y1, Y3 are H
  • the x-th (1 ⁇ x ⁇ W) coordinate of the y-th (1 ⁇ y ⁇ H) defective row is (x , Y)
  • the pixel value before correction at the coordinates is I (x, y)
  • the pixel value of the structure data is P (x, y).
  • the image correction unit 146 checks the acquired identification code of the structural shadow (S503), and executes correction processing according to the identification code. In other words, the image correction unit 146 sets the correction method according to the identification code. When the identification code is 0x00 and the identification code is 0x01, the correction method by the image correction unit 146 is different. When the identification code is 0x00, the image correction unit 146 performs low-order correction on the composite image, whereas when the identification code is 0x01, the image correction unit 146 performs high-order correction on the composite image.
  • the low-order correction is a correction suitable for correcting an image having a simple structural shadow
  • the high-order correction is a correction suitable for correcting an image having a complex structural shadow.
  • the correction method is distinguished because, if an image with a simple structural shadow is subjected to high-order correction, unnecessary correction may be performed and the image quality may be degraded.
  • the low-order correction includes at least one of linear correction, one-step correction, and the like
  • the high-order correction includes at least one of polynomial correction, multiple-step correction, and the like. That is, the image correction unit 146 performs one of correction suitable for correcting a composite image having a simple structural shadow and correction suitable for correcting a composite image having a complicated structural shadow.
  • a and b are model parameters, and it is assumed that the structural shadow represented by the linear expression of the structural data P is additively superimposed on the image I.
  • the model parameters a and b are unknown, and it is necessary to estimate an optimal model parameter. Therefore, in the present embodiment, optimal model parameters are estimated by solving the least-squares-based optimization problem. Specifically, a model parameter that minimizes the error J represented by the following equation is calculated.
  • the above equation estimates model parameters for each row from W pixel samples in each row. Also, in the above equation, the image O without structural shadow is unknown. Therefore, using the fact that the correlation between adjacent lines is high, data of adjacent lines without structural shading is used as an estimate of O.
  • the image correction unit 146 corrects the estimation and correction of the model parameters one by one from the start line or the end line, and sequentially corrects the corrected line as an adjacent line without the structural shadow of the next line. Go.
  • the correction result of one direction may be used among the above-mentioned correction
  • the correction result of two upper and lower sides can also be blended.
  • the correction result from the upper direction is O1 and the correction result from the lower direction is O2
  • the correction results may be blended in consideration of the weight based on the distance from the start line of correction as in the following equation. In this case, an error that propagates from the start line of the correction to the next line can be suppressed, and correction can be performed with higher accuracy than using only the correction result in one direction.
  • the structural shadow shown in FIG. 6C is a simple structure that is uniform in the x direction, sufficient correction accuracy can be realized with a low-order model such as a linear expression.
  • a low-order model such as a linear expression.
  • the structure is uniform in the x direction, it is better to estimate only one model parameter on a row basis, which is also advantageous in terms of processing speed.
  • a high-order model is applied to a simple structure, or in the case where a model parameter is estimated on a pixel basis, since a shadow degradation of a subject due to overfitting easily occurs, a low-order model is preferable.
  • the image correction unit 146 executes the correction process suitable for the complex and structural shadow shown in FIG. 6D that has a large amount of attenuation of radiation (S505). Specifically, the image correction unit 146 assumes that the relationship between the image O having no structural shadow (that is, the image after ideal correction) and the image I before correction and the structure data P can be modeled by the following equation. Make corrections.
  • a i , j , b are model parameters, and the number of model parameters is increased in order to adapt to complicated structural shadows as compared with the case of identification code 0x00, and the degree of freedom of the model is increased. Further, in this model, by considering the peripheral pixels of the structure data P, it is possible to suppress a correction error due to a slight geometrical deviation between the image I and the structure data P. As a result, it is possible to suppress the remaining correction caused by the slight positional deviation of the many edges present in the structural shadow.
  • the image correction unit 146 estimates the model parameters a i , j , b by solving the least-squares-based optimization problem. Specifically, a model parameter that minimizes the error J represented by the following equation is calculated.
  • the image correction unit 146 may use only the correction result in one direction among the above-described corrections, but may also blend the correction results in the upper and lower two directions. Since this correction is the same as the identification code 0x00, the description will be omitted.
  • the image correction unit 146 calculates the only model parameter in units of lines in the above description
  • the line may be divided into sections, model parameters may be estimated for each section, and correction may be performed.
  • the line is divided into sections A to K, and the above-described model parameter correction and estimation are performed on each section.
  • model parameters may be determined for each pixel. For example, in the case of estimating a model parameter at coordinates (x, y), a model parameter which minimizes the error J in samples of several pixels in the same row as shown in the following equation is estimated and corrected.
  • N is a parameter that defines the number of samples at the time of estimating a model parameter, and may be set arbitrarily according to the degree of fitness of the model.
  • model parameters may be estimated using a robust estimation method such as M estimation or LMedS estimation.
  • the image correction unit 146 performs further image correction on the defect area.
  • the image correction unit 146 performs correction to improve the graininess in the missing area. That is, the image correction unit 146 can set whether to perform the correction of the noise according to the structural shadow of the radiation detection apparatus reflected in the composite image.
  • filter processing using a smoothing filter such as moving average or Gaussian, or a non-linear filter that preserves an edge such as an ⁇ filter or a bilateral filter may be used. Is omitted because it is known.
  • the image correction unit 146 checks whether the correction of all the missing areas is completed (S506), and ends the process when the correction is completed. If the correction is not completed, the process returns to step S502, and the image correction unit 146 executes the correction for the newly set defect area.
  • a radiation imaging system including a plurality of radiation detection devices that detect radiation, and a combination processing unit 142 that combines a plurality of radiation images acquired from the plurality of radiation detection devices to generate a composite image.
  • the image correction unit 146 corrects the region where the structure of the radiation detection apparatus in the composite image is reflected in the image, and the image correction unit 146 corrects the method according to the characteristic (identification code) of the structural shadow of the radiation detection apparatus reflected.
  • composition processing unit 142 and the image correction unit 146 are shown in different configurations in this embodiment, the area where the structure of the radiation detection apparatus is reflected may be corrected simultaneously with the composition of the radiation image.
  • a second embodiment will now be described with reference to FIGS. 8 and 9.
  • the point different from the first embodiment is that the defect area where the structural shadow of the radiation detection apparatus appears in the composite image is subdivided, and the correction method is switched for each area.
  • the image correction unit 146 divides the area in the composite image in which the structure is reflected according to the difference in the structural shadow, and sets the correction method for each of the divided areas.
  • the operation of S505 in FIG. 5 is set as the operation according to the flowchart in FIG. The following description will be made using the flowchart of FIG.
  • the image correction unit 146 performs division in accordance with the structural shadow in which the defective area is captured (S801). In the present embodiment, the image correction unit 146 performs division according to, for example, the complexity of the shape of the structural shadow and the attenuation of the radiation due to the structure of the radiation detection apparatus. Specifically, as shown in FIG. 9, the image correction unit 146 has an area A with a simple structure and little attenuation of radiation, an area B with a complicated structure and a large attenuation of radiation, a simple structure with a radiation It divides into the area
  • the image correction unit 146 selects an area in which the correction is not performed among the divided areas (S802).
  • the image correction unit 146 determines a region A having a simple structure and little radiation attenuation, a region B having a complicated structure and a lot of radiation attenuation, and a region C having a simple structure and having a lot of radiation attenuation (S803) .
  • correction processing is performed in accordance with the determined characteristics of the area (S804 to S805).
  • the image correction unit 146 performs the same correction as the correction described in S504 of the first embodiment (S804). Further, in the region B where the structure is complicated and radiation attenuation is large, the image correction unit 146 performs the same correction as the correction described in S505 of the first embodiment (S805). That is, the image correction unit 146 further corrects noise after performing correction using a model with a large degree of freedom. The noise correction is the correction for improving the graininess described in the first embodiment. Next, in the area C where the structure is simple and radiation attenuation is large, the image correction unit 146 further performs noise correction in addition to the correction described in S504 of the first embodiment (S806).
  • the image correction unit 146 checks whether the correction of all the areas is completed (S807). If the correction is completed, the process ends. If the correction is not completed, the process returns to step S802, and the image correction unit 146 selects an unprocessed area and executes the correction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

異なる内部構造を持つ放射線検出装置が混在した状態においても構造が写り込んだ領域を適切に補正して合成画像の画質を向上させる放射線撮影システム及び放射線撮影方法を提供する。本発明に係る放射線撮影システムは、合成画像における放射線検出装置の構造が写り込んだ領域を補正する画像補正部を備え、画像補正部は合成画像に写り込んだ放射線検出装置の構造陰影の特性に応じて補正方法を設定する。

Description

放射線撮影システム及び放射線撮影方法
 本発明は、放射線を用いて撮影を行う放射線撮影システム及び放射線撮影方法に関するものである。
 近年、例えば医療分野では被検者の脊椎や下肢の全体を撮影するといった、観察領域が広い撮影(以下、長尺撮影と呼ぶ)が行われている。特許文献1には、複数の放射線検出装置を並べて撮影することで長尺撮影を行うことができ、長尺画像(合成画像とも呼ぶ)における、該重ね合せられた放射線検出装置の構造の写り込みを補正することが開示されている。また、特許文献2では放射線検出装置の構造を工夫することで、該重ね合せられた放射線検出装置の構造の写り込みを軽減する方法が開示されている。
特開2016-140515号公報 特開2017-94131号公報
 長尺撮影で用いられる放射線検出装置の内部構造は様々であり、特許文献2のように構造が単純化された放射線検出装置や複雑な構造を有する放射線検出装置がある。そのため、長尺画像に写り込む構造陰影に応じて合成画像の補正の種類も異なる。しかしながら、特許文献1、2には内部構造が異なる放射線検出装置が混在する場合の対策については言及されていない。
 本発明は、内部構造が異なる放射線検出装置が混在した状態においても適切に合成画像を補正することができる放射線撮影システム及び放射線撮影方法を提供することを目的とする。
 本発明の目的を達成するために、放射線を検出する複数の放射線検出装置と、複数の放射線検出装置から取得される複数の放射線画像を合成して合成画像を生成する合成処理部を有した放射線撮影システムにおいて、前記合成画像における前記放射線検出装置の構造が写り込んだ領域を補正する画像補正部を備え、前記画像補正部は前記合成画像に写り込んだ放射線検出装置の構造陰影の特性に応じて補正方法を設定する。
 本発明によれば、内部構造が異なる放射線検出装置が混在した状態においても適切に合成画像を補正することができる。
本発明の放射線撮影システムの概略構成を示す図。 本発明の放射線撮影システムの放射線検出装置と画像データの関係を示す図。 本発明の放射線撮影システムの放射線検出装置と画像データの関係を示す図。 本発明の放射線撮影システム(主に画像表示制御部)の構成を示す図。 本発明の放射線撮影システムの構造データの取得方法を示す図。 本発明の実施例1の画像補正部の処理手順を示すフローチャート。 本発明の実施例1の合成画像と構造情報を示す図。 本発明の実施例1の欠損領域の位置を説明する図。 本発明の実施例2の画像補正部の処理手順を示すフローチャート。 本発明の実施例2の欠損領域の分割を説明する図。
 以下、添付図面を参照して本発明の好適な実施形態について説明する。
 図1は、複数の放射線検出装置を並べて行われる長尺撮影に用いられる放射線撮影システムの概略構成を示す図である。
 放射線撮影システムは、放射線を発生させる放射線発生部112を備えている。放射線発生部112は、照射範囲114に放射線を照射することができる。放射線発生部112は、床面又は天井に設置された支持部(図示しない。)を介して設置されている。放射線発生部112の照射面には、放射線を遮蔽する絞り(図示しない。)が設置されている。操作者は、放射線を遮蔽する絞りを制御することにより、放射線発生部112から照射される放射線の照射範囲114を設定することができる。
 放射線撮影システムは、複数の放射線検出装置120、122、124を備えている。ここでは、3つの放射線検出装置120、122、124を備えた形態を示すが、2つの放射線検出装置、4つ以上の放射線検出装置であってもよい。複数の放射線検出装置120、122、124は、被検者100を透過した放射線を検出し、放射線に応じた画像データを出力するものである。なお、画像データを放射線画像と言い換えることもできる。
 具体的には、複数の放射線検出装置120、122、124は、被検者を透過した放射線を、透過放射線量に相当する電荷として検出する。例えば、複数の放射線検出装置120、122、124には、放射線を電荷に変換するa-Seなどの放射線を直接的に電荷に変換する直接変換型センサや、CsIなどのシンチレータとa-Siなどの光電変換素子を用いた間接型センサが用いられる。さらに、複数の放射線検出装置120、122、124は、検出された電荷をA/D変換することにより、画像データを生成し、画像表示制御部130へ出力する。
 複数の放射線検出装置は、撮影台110内に収納されている。撮影台110は、矩形の筐体であり、筐体内は中空である。また、撮影台110は、複数の放射線検出装置120、122、124を保持する機能を有している。図1に示すように、撮影台110を床面に対して直立させ、撮影台110が設置される。被検者100は、撮影台110の長手方向に沿って設置される。撮影台110は、被検者100を支える支持機能を有している。
 図1では、撮影台110の長手方向が鉛直方向となるように、すなわち、撮影台110が床面に対して直立するように撮影台110が設置される。なお、撮影台110の長手方向が水平方向となるように、すなわち、撮影台110が床面に対して平行となるように撮影台110が設置されてもよい。
 撮影台110には、放射線検出装置120、放射線検出装置122、放射線検出装置124が撮影台110の長手方向に沿ってそれぞれ配置される。このとき、放射線検出装置の一部を重ねながら複数の放射線検出装置が配置される。例えば、図1に示すように、放射線検出装置120と放射線検出装置122は、一部が空間的に互いに重なるように配置される。このとき、放射線検出装置120と放射線検出装置122の撮影可能領域は互いに重なっている。同様にして、放射線検出装置122と放射線検出装置124は、一部が空間的に互いに重なるように配置される。このとき、放射線検出装置122と放射線検出装置124の撮影可能領域は互いに重なっている。また、放射線検出装置122は、放射線検出装置120と放射線検出装置124の背面側、つまり放射線発生部112から遠い位置に配置されている。
 また、放射線撮影システムは、放射線検出装置から出力された画像データに対して画像処理を行ない、画像を生成する画像表示制御部130と、画像を表示する表示部132と、操作者から指示を行うための操作部134とを備えている。また、画像表示制御部130は、各構成要素を制御する機能を有している。
 画像表示制御部130は、複数の放射線検出装置120、122、124に接続されている。具体的には、画像表示制御部130は、複数の放射線検出装置120、122、124と有線または無線のネットワークもしくは専用線で接続されている。複数の放射線検出装置120、122、124は、放射線発生部112で発生した放射線を撮像し、画像データを画像表示制御部130に出力する。画像表示制御部130は、コンピュータ上で動作するアプリケーション機能を有している。画像表示制御部130は、複数の放射線検出装置120、122、124の動作を制御しつつ、表示部132へ画像を出力したり、グラフィカルユーザーインターフェース(図示しない。)を出力したりする。
 画像表示制御部130は、放射線発生部112の放射線を発生するタイミングと放射線の撮影条件を制御する。また、画像表示制御部130は、複数の放射線検出装置120、122、124の画像データを撮影するタイミング及び出力するタイミングを制御する。画像表示制御部130は、複数の放射線検出装置120、122、124に対して同時に撮影を行わせ、複数の放射線検出装置120、122、124に対して同時に画像データを出力させることができる。
 画像表示制御部130は、複数の放射線検出装置120、122、124から出力された画像データに対して、階調変換などの画像処理を行う機能を有している。また、画像表示制御部130は、複数の放射線検出装置120、122、124から出力された画像に対してトリミングや回転といった画像処理を行なうこともできる。表示部132は、画像表示制御部130から出力される当該画像を表示させる。
 被検者100は、撮影台110に置かれた踏み台上に立ち、複数の放射線検出装置120、122、124および放射線発生部112に対して位置決めされる。本実施例では、放射線検出装置122の中心に垂直に放射線が入射する角度となっている。放射線発生部112から複数の放射線検出装置120、122、124に向け照射された放射線は、被検者100を透過して複数の放射線検出装置120、122、124に到達して検出される。複数の放射線検出装置120、122、124で得られた画像データは、画像表示制御部130で合成処理され、被検者100の合成画像が生成される。合成画像は、観察領域が広い長尺撮影によって取得される合成画像である。表示部132は、画像表示制御部130から出力される合成画像を表示させる。
 本発明の放射線撮影システムでは、1回の放射線の照射によって、被検者100の脊椎や下肢の全体を撮影する長尺撮影を行うことができる。放射線発生部112から照射される放射線(照射範囲114)が複数の放射線検出装置120、122、124に同時に照射される。例えば、操作者は、放射線を遮蔽する絞りを制御したり、複数の放射線検出装置120、122、124と放射線発生部112との距離を調整したりする。
 なお、複数の放射線検出装置120、122、124は、放射線発生部112からの放射線の照射を自動検知する検知機能を有していてもよい。自動検知する検知機能は、放射線発生部112から放射線が照射された際、複数の放射線検出装置120、122、124が放射線を検知して放射線に起因する電荷を蓄積する機能である。複数の放射線検出装置120、122、124のいずれかに1つより放射線の照射を検知した際、複数の放射線検出装置120、122、124は、本読み動作を開始させて画像データを取得する。
 上述した放射線撮影システムでは、放射線検出装置120、124の背後に放射線検出装置122が重なり合うように配置されている。このため、放射線検出装置122が出力する画像データには、放射線検出装置120、124の内部構成要素である放射線検出パネル、基板、筐体などの構造が写り込んだ領域(以下、欠損領域と呼ぶ)が生じる。
 この欠損領域の発生メカニズムについて図2を用いて説明する。図2Aは放射線検出装置120、122の内部構造の一例を示したものである。放射線検出装置120は、放射線入射面側から、放射線を検出する放射線検出パネル150、放射線検出パネル150を粘着してパネル基台158に設置させる粘着材156と、放射線検出パネル150を支持するパネル基台158、放射線検出パネル150から電気信号を出力させる制御基板154の順に積層された結合体が内包される。放射線検出パネル150と制御基板154は、フレキシブル基板152を介して接続されている。
 また、放射線検出装置120の外装筺体は、金属若しくはカーボンからなる外装筺体160と、放射線を透過させる放射線透過部材から成る放射線透過部162とから構成される。放射線検出パネル150の放射線入射面には、放射線透過部162が設置され、放射線発生部112からの放射線の減衰を抑える。放射線検出パネル150は、放射線を検出可能な有効画素領域と、該有効画素領域の外周に辺縁部を有する。
 放射線検出装置122は、その有効画素領域が放射線検出装置120の有効画素領域と一部重なるように配置され、どのラインにおいても放射線検出装置120、122のいずれかの有効画素領域が確実に画像情報を取得するように構成される。合成画像は、放射線検出装置120から出力される画像データ(放射線画像)と、放射線検出装置122から出力される画像データのうちの放射線検出装置120が取得していない画像領域の画像データ(放射線画像)から生成される。
 ここで、放射線検出装置122から取得される画像データ302には、放射線検出装置120の構造が写り込んでいる。放射線検出装置122の有効画素領域の端部から放射線検出装置122の外装筺体の端部までの領域410は、放射線検出装置120の構造が放射線検出装置122に写り込んでしまう領域である。放射線検出装置122から取得される画像データ302には、放射線検出装置120の構造の写り込みによる欠損領域412が生じる。よって、合成処理部142において、放射線検出装置122から取得される画像データ302から生成される合成画像にも同様に欠損領域412が生じる。
 放射線検出装置122から取得される画像データ302の欠損領域412には、放射線検出装置120における放射線検出パネル150、フレキシブル基板152、粘着材156、パネル基台158、金属筺体160の一部が構造陰影として写り込む。また、欠損領域412には、フレキシブル基板152上の基板や、ネジなどに起因する構造陰影も含まれる。
 以上説明した通り、欠損領域は前面に配置された放射線検出装置の内部構造によって生じる構造陰影が写り込む領域であり、この欠損領域では被検者の陰影に構造陰影が重畳し診断時の妨げとなる可能性がある。
 この構造陰影は、放射線検出装置の内部構造に応じて大きく異なる。例えば、図2Bに示す放射線検出装置120は内部構造を工夫することで図2Aに比べ構造陰影を単純化および軽減を実現している。
 具体的には、図2Bに示した放射線検出装置120では、外装筺体160を金属筐体から放射線の減衰を抑えた放射線透過筐体に置き換えることで構造陰影の軽減を図っている。また、粘着材156、パネル基台158が放射線検出装置122の有効画素領域と重ならないように内側配置することで粘着材156、パネル基台158の写り込みを防いでいる。さらに、フレキシブル基板やネジについても有効画素領域と重ならない位置に配置(図示しない。)することで基板やネジに起因する複雑な構造陰影の写り込みを防いでいる。
 これにより、放射線検出装置122から取得される画像データ302の欠損領域414は、主に放射線検出パネル150、外装筺体160から構成され、その構造陰影は単純なものとなる。また、内部構造による放射線の減衰も少ないため構造陰影のコントラストも軽減される。
 なお、放射線検出装置の内部構造は図2に示した以外にも様々なものがある。放射線検出装置の上端部と下端部で内部構造が異なる放射線検出装置も存在する。例えば、放射線検出装置の上端部によって、図2Aに示すような構造陰影が写り込む領域が画像データ302に含まれる場合がある。つまり、放射線検出装置122から取得される画像データ302には、放射線検出装置120の構造の写り込みによる欠損領域412が生じる。また、放射線検出装置の下端部によって、図2Bに示すような構造陰影が写り込む領域が画像データ302に含まれる場合がある。つまり、放射線検出装置122から取得される画像データ302には、放射線検出装置120の構造の写り込みによる欠損領域414が生じる。
 次に、図3に示す本発明の放射線撮影システムの構成図を用いて、上述した放射線検出装置の重ね合わせに起因する合成画像の欠損領域を補正し、画質を向上させる形態を説明する。
 画像表示制御部130は、放射線検出装置から出力された画像データを記憶する記憶部140と、画像データを合成して合成画像を生成する合成処理部142と、合成画像に生じる欠損領域を目立たないように補正する画像補正部146と、画像補正部146によって補正された合成画像に対して階調処理を行う階調処理部148とを備えている。
 記憶部140は、複数の放射線検出装置120、122、124から出力される画像データ(放射線画像)を記憶する。図3に示すように、放射線検出装置120、122、124は、それぞれ、放射線検出装置(D1)、放射線検出装置(D2)、放射線検出装置(D3)としている。
 記憶部140は、放射線検出装置120、122、124から出力される画像データを時間情報とともに記憶することができる。よって、記憶部140は、放射線画像が取得された時間情報によって、放射線検出装置120、122、124から出力された放射線画像が同時に取得されたものであるかどうかを区別して記憶することができる。記憶部140は、被検者の画像情報が含まれた放射線画像であるのか、被検者の画像情報が含まれていない放射線画像であるのか区別して記憶することができる。
 また記憶部140は、複数の放射線検出装置120、122、124によって同時に撮影された複数の放射線画像を、放射線検出装置の位置情報(空間的配置情報)と関連付けて記憶することができる。例えば、記憶部140は、放射線検出装置120から出力される画像データと放射線検出装置122から出力される画像データとが隣接していることを関連付けて記憶することができる。同様にして、記憶部140は、放射線検出装置122から出力される画像データと放射線検出装置124から出力される画像データとが隣接していることを関連付けて記憶することができる。さらに記憶部140は、放射線検出装置122が放射線検出装置120、124の背面側に配置されていることを関連付けて記憶することができる。記憶部140は、合成処理部142に対して、複数の画像データとその位置情報を出力することができる。
 また、記憶部140は、放射線検出装置120、122、124を識別する識別情報(識別コード)を記憶することができる。識別コードは、放射線検出装置の種類を示す情報を含んでいる。言い換えれば、識別コードは、放射線検出装置の内部構造を示す情報であり、放射線検出装置の構造陰影(構造の写り込み)に対応する情報を含んでいる。また、識別コードは、放射線検出装置の種類に加えて、放射線検出装置の位置情報(配置情報)による情報を含んでいてもよい。放射線検出装置の位置情報(配置情報)は、例えば、放射線検出装置が撮影台110における位置を示す情報、放射線検出装置の上端部及び下端部を示す情報である。放射線検出装置の位置情報(配置情報)は、放射線検出装置の上下の向きの情報を含んでいてもよい。このように、識別コードによって、背面側に配置されている放射線検出装置から取得される画像データに写り込む構造陰影を識別することができる。
 このように、識別コードによって、例えば、図2Aに示す放射線検出装置120と、図2Bに示す放射線検出装置120とを識別することができる。識別コードによって、図2Aに示すような構造陰影が写り込む領域が画像データ302に含まれるか、図2Bに示すような構造陰影が写り込む領域が画像データ302に含まれるかを識別することができる。
 合成処理部142は、記憶部140に記憶された複数の画像データを合成して、合成画像を生成する。このとき、合成処理部142は、被検者100の画像情報が含まれた複数の画像データについて合成して、合成画像を生成する。
 合成処理部142は、放射線検出装置120、122、124から出力された複数の画像データとその時間情報及び位置情報に基づいて合成することにより、合成画像を生成する。具体的には、合成処理部142は、放射線検出装置120、122、124から時間情報に基づいて同時に出力された複数の画像データ(放射線画像)を合成対象と判別し、複数の画像データを合成する。合成処理部142は、位置情報に基づいて放射線検出装置120、122、124から出力された複数の画像データの位置関係を決定して合成する。ここでは、合成画像の欠損領域に存在する構造陰影を識別する識別コードが合成画像の付帯情報として記憶される。
 例えば、図1に示す例では、放射線検出装置120から出力された画像データが上方に、放射線検出装置124から出力された画像データが下方に、放射線検出装置122から出力された画像データがその間に位置決めされる。さらに位置情報が示す重なり方も考慮して合成が行われる。例えば、放射線発生部112から遠い位置に他の放射線検出装置に重なり合うように配置された放射線検出装置122には、上下に欠損領域が生じる。放射線検出装置120、124には欠損領域は生じない。そこで、合成処理部142は、放射線検出装置が重なり合う範囲では放射線検出装置120、124が生成する画像データを用いて合成画像を生成することで合成画像に生じる欠損領域の面積を最小化することができる。このように、合成処理部142は、隣接する複数の撮影領域を撮影して得た複数の画像データを合成することにより、合成画像を生成することができる。
 また、画像データの上下に生じた欠損領域の構造陰影を識別する識別コードが付帯情報として合成画像とともに記憶される。例えば、合成処理部142(画像表示制御部130)は、識別コードを合成画像とともに記憶する。例えば、図1に示した放射線検出装置120の内部構造が図2Aで示した放射線検出装置120と同様のものであるならば、合成画像に存在する欠損領域に写り込む構造陰影は図2Aの412に示したものとなる。そこで、この構造陰影を示すユニークなIDが付帯情報として記憶される。また、図1に示した放射線検出装置124の内部構造が図2Bで示した放射線検出装置120と同様のものであるならば、合成画像に存在する欠損領域に写り込む構造陰影は図2Bの414に示したものとなる。
 画像補正部146は、合成処理部142から出力された合成画像に存在する欠損領域を構造情報に基づき補正する。ここで、構造情報とは、欠損領域に写り込む構造陰影を表す情報である。また、本実施例ではさらに構造情報として被検者が無い状態で複数の放射線検出装置を重ね合わせて撮影した構造データを利用する。なお、この構造データは放射線検出装置の内部構造の写り込みを画像として保持したデータであり、この画像の画素値は例えば放射線源弱係数が大きく厚い構造による写り込みが生じている画素では小さな値を、放射線源弱係数が小さく薄い構造による写り込みが生じている画素では大きな値となる。
 なお、構造データは事前に取得され、記憶部140に記憶しておく。例えば、図1に示す放射線検出装置の配置で被検者を撮影する場合は、図4で示すように放射線検出装置120、122、124の配置を図1と同じようにし、被検者が無い状態で撮影を行う。このように撮影された放射線検出装置122から取得される画像データ302には、重複する放射線検出装置120の下端部おける内部構造の写り込み領域306が含まれている。また、放射線検出装置122から取得される画像データ302には、重複する放射線検出装置124の上端部における内部構造の写り込み領域308が含まれている。
 ここで、放射線検出装置120から取得される画像データ(放射線画像)300には、他の放射線検出装置の構造情報の写り込みは生じない。また、放射線検出装置124から取得される画像データ(放射線画像)304には、他の放射線検出装置の構造情報の写り込みは生じない。よって、画像データ302が、画像に写り込む構造陰影を表す構造データに相当し、この画像データ302を構造データとして記憶部140に保持しておけばよい。なお、上端部の写り込み領域306及び下端部の写り込み領域308を別々の構造データと見なし保持してもよい。
 階調処理部148は、複数の画像データ(放射線画像)を合成して得られた合成画像に対して、階調処理を行なう。具体的には、階調処理部148は、放射線検出装置120、122、124から取得された複数の画像データを記憶部140から取得する。階調処理部148は、放射線検出装置120、122、124から取得された複数の画像データの特徴量をそれぞれ解析して、表示部132のダイナミックレンジを有効に利用することができるように、合成画像の階調変換特性を決定する。
 そして、階調処理部148は、決定された階調変換特性を用いて合成画像の階調を変換する。特徴量には、各画像データのヒストグラム、最大画素値、最小画素値が含まれ、放射線検出装置120、122、124から取得された複数の画像データに対して解析処理を実行することにより、特徴量を算出している。
 階調処理部148は、画像補正部146によって補正が行われた合成画像に対して、階調処理を行う。ここでは、欠損領域が低減された合成画像に対して階調処理を行うため、合成画像の階調処理を適切に行うことができる。つまり、階調処理部148は、放射線検出装置120及び放射線検出装置124の構造物の写り込みの影響を抑えて、合成画像の階調処理を行うことができる。表示部132は、階調処理部148によって階調処理がなされた合成画像を表示する。
 次に、本実施の放射線撮影システムの特徴である画像補正部146の動作手順について図5のフローチャートを用いて詳細に説明する。
 上述の如く、合成処理部142は、位置情報に基づいて放射線検出装置120、122、124から出力された複数の画像データの位置関係を決定して合成する。また、合成画像の欠損領域に存在する構造陰影を識別する識別情報(識別コード)が合成画像の付帯情報として記憶される。
 画像補正部146は、合成処理部142から合成画像、および構造情報として欠損領域に写り込む構造陰影に関する識別コードを取得する(S501)。本実施例における識別コードは、放射線検出装置の種類と、放射線検出装置の位置情報(配置情報)による情報を含んでいるため、合成画像における欠損領域の形態(構造陰影)を特定することができる。
 ここでは、本実施例における放射線検出装置120と放射線検出装置124の内部構造が異なるものとする。具体的には、放射線検出装置120は図2Bで示した放射線検出装置120と同様の内部構造を持つものとする。また、放射線検出装置124は図2Aで示した放射線検出装置120と同様の内部構造とする。
 よって、本実施例における合成画像には2つの異なる構造陰影が存在することとなる。具体的には、合成画像の上部に存在する欠損領域601には図6(c)に示したような単純でかつ放射線の減衰が少ない構造が写り込む。また、合成画像の下部に存在する欠損領域603は図6(d)に示したような複雑でかつ放射線の減衰が多い構造が写り込む。なお、以降の説明では図6(c)に示した構造陰影の識別コードを0x00とし、図6(d)に示した構造陰影の識別コードを0x01とし説明を行う。
 次に、画像補正部146は、合成画像における補正対象である欠損領域の情報を取得する(S502)。具体的には、画像補正部146は、図7に示すように合成画像上の欠損領域の開始行Y0と終了行Y1を欠損領域の位置情報として取得する。なお、図6(a)に示すように合成画像上に欠損領域が複数存在する場合は、補正が実行されていない欠損領域のうち、何れか1つの情報を任意に取得する。例えば、欠損領域601と欠損領域603の何れも補正が実行されていない場合は、どちらか一方の欠損領域の情報を任意に取得する。欠損領域601の補正が実行されており、欠損領域603の補正が実行されていない場合は、欠損領域603の情報を取得する。
 さらに、画像補正部146は、欠損領域の情報として構造データ上の欠損領域の開始行Y2と終了行Y3および構造陰影の識別コードを合わせて取得する。例えば、図6の欠損領域601の情報を取得する場合は欠損領域601の開始行Y0と終了行Y1を取得するとともに、対応する構造データ上の欠損領域602の開始行Y2および終了行Y3を取得する。また、画像補正部146は、構造陰影の識別コードとして0x00を取得する。
 なお、以降の説明では補正前の合成画像をI、構造データをPで表す。また、開始行Y0、Y2の座標を1、終了行Y1、Y3の座標をHとし、y番目(1≦y≦H)の欠損行におけるx番目(1≦x≦W)の座標を(x,y)、その座標における補正前の画素値をI(x,y)、構造データの画素値をP(x,y)と表すこととする。
 次に、画像補正部146は、取得した構造陰影の識別コードをチェックし(S503)、識別コードに応じて補正処理を実行する。言い換えれば、画像補正部146は、識別コードに応じて補正方法を設定する。識別コードが0x00と識別コードが0x01の場合では、画像補正部146による補正方法が異なる。画像補正部146は、識別コードが0x00の場合、合成画像に対して低次の補正を行うのに対し、識別コードが0x01の場合、合成画像に対して高次の補正を行う。低次の補正とは、構造陰影が単純な画像の補正に適した補正であり、高次の補正とは、構造陰影が複雑な画像の補正に適した補正である。補正方法を区別するのは、構造陰影が単純な画像に対して、高次の補正をかけてしまうと、不必要な補正をかけてしまい、画質が劣化する可能性があるからである。例えば、低次の補正は、1次式による補正、1段階の補正などの少なくとも1つが含まれ、高次の補正は、多項式による補正、複数段階の補正などの少なくとも1つが含まれる。つまり、画像補正部146は、構造陰影が単純な合成画像の補正に適した補正、構造陰影が複雑な合成画像の補正に適した補正の一方を行う。
 具体的には、識別コードが0x00の場合、画像補正部146は、図6(c)に示した単純でかつ放射線の減衰が少ない構造陰影に適した補正処理を実行する(S504)。具体的には、画像補正部146は、構造陰影が無い画像O(すなわち、理想的な補正後の画像)と補正前の画像Iおよび構造データPの関係が下記式でモデル化できると仮定し補正を行う。
0(x,y)=I(x,y)-(a・P(x,y)+b)  (数1)
 上式において、a、bはモデルパラメータであり、画像Iには構造データPの一次式で表される構造陰影が加法的に重畳していると仮定したモデルとなっている。なお、このモデルパラメータa、bは未知であり、最適なモデルパラメータを推定する必要がある。そこで、本実施例では最小二乗基準の最適化問題を解くことで最適なモデルパラメータを推定する。具体的には下記式で表される誤差Jが最小となるモデルパラメータを算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、上式は各行のW個の画素サンプルから行毎にモデルパラメータを推定するものである。また、上式において構造陰影の無い画像Oは未知である。そこで、隣接する行同士の相関が高いことを利用し、構造陰影の無い隣接行のデータをOの推定値として用いる。
 なお、構造陰影の無い隣接行は欠損領域の開始行または終了行のみに存在する。そこで、画像補正部146は、モデルパラメータの推定および補正は開始行または終了行から1行ずつ補正し、補正後の行を次の行の構造陰影の無い隣接行として逐次的に補正を行っていく。
 具体的には、画像補正部146は、開始行から逐次的に補正を行う場合は開始行(y=1)から、次式によるモデルパラメータの推定と補正を下の行に向かって1行ずつ順番に終了行(y=H)まで繰り返す。
Figure JPOXMLDOC01-appb-M000002
 また、画像補正部146は、終了行から逐次的に補正を行う場合は終了行(y=H)から、次式によるモデルパラメータの推定と補正を上の行に向かって1行ずつ順番に開始行(y=1)まで繰り返す。
Figure JPOXMLDOC01-appb-M000003
 なお、上述の補正のうち1方向の補正結果のみを用いてもよいが、上下2方向の補正結果をブレンドすることもできる。例えば、上方向から補正した結果をO1、下方向から補正した結果をO2とすれば、次式のように補正の開始行から距離に基づく重みを考慮して補正結果をブレンドすればよい。なお、この場合では補正の開始行から次の行に伝搬する誤差を抑えることができ、1方向の補正結果のみを用いるよりも高精度な補正が行える。
Figure JPOXMLDOC01-appb-M000004
 以上、識別コードが0x00の場合、すなわち図6(c)に示した構造陰影に対する補正について説明した。図6(c)に示した構造陰影は単純でかつx方向に均一な構造であるため、一次式のような低次のモデルで十分な補正精度を実現できる。また、x方向に均一な構造であるため行単位で唯一のモデルパラメータを推定すれば良く処理速度の面においても有利である。なお、単純な構造に対し高次のモデルを適用した場合や、画素単位でモデルパラメータを推定した場合ではオーバーフィッティングによる被検者の陰影劣化が起きやすいため、低次のモデルが好適である。
 次に、識別コードが0x01の場合は、画像補正部146は、図6(d)に示した複雑でかつ放射線の減衰が多い構造陰影に適した補正処理を実行する(S505)。具体的には、画像補正部146は、構造陰影が無い画像O(すなわち、理想的な補正後の画像)と補正前の画像Iおよび構造データPの関係が下記式でモデル化できると仮定し補正を行う。
Figure JPOXMLDOC01-appb-M000005
 上式において、a、bはモデルパラメータであり、複雑な構造陰影に適合させるために識別コード0x00の場合に比べモデルパラメータの数を増やし、モデルの自由度を大きくしている。また、このモデルでは構造データPの周辺画素を考慮することで画像Iと構造データPの僅かな幾何学的ずれによる補正誤差を抑制することができる。これにより構造陰影内に多数存在するエッジの僅かな位置ずれにより生じる補正残りを抑えることができる。
 なお、画像補正部146は、このモデルパラメータa、bは最小二乗基準の最適化問題を解くことで推定する。具体的には下記式で表される誤差Jが最小となるモデルパラメータを算出する。
Figure JPOXMLDOC01-appb-M000006
 ここで、上式においてOの推定値として、識別コード0x00と同様に補正後の隣接行データを用いるが、放射線の減衰が多い構造陰影の場合、補正後データに重畳するノイズの影響で推定精度が悪くなる可能性がある。そこで、補正後の隣接行データを平均したものを推定値として用いる。
 具体的には、画像補正部146は、開始行から逐次的に補正を行う場合は開始行(y=1)から、次式によるモデルパラメータの推定と補正を下の行に向かって1行ずつ順番に終了行(y=H)まで繰り返す。
Figure JPOXMLDOC01-appb-M000007
 ここで、Nは平均する補正後の隣接行データの数を表し、例えばN=5を用いる。
 また、画像補正部146は、終了行から逐次的に補正を行う場合は終了行(y=H)から、次式によるモデルパラメータの推定と補正を上の行に向かって1行ずつ順番に開始行(y=1)まで繰り返す。
Figure JPOXMLDOC01-appb-M000008
 ここで、Nは平均する補正後の隣接行データの数を表し、例えばN=5を用いる。
 なお、画像補正部146は、上述の補正のうち1方向の補正結果のみを用いてもよいが、上下2方向の補正結果をブレンドすることもできる。この補正については、識別コード0x00と同様であるため、説明は省略する。
 また、画像補正部146は、上述では行単位で唯一のモデルパラメータを求めたが、行を区間に分けて区間毎にモデルパラメータを推定し、補正を行ってもよい。例えば図7に示すように行を区間A~Kに分けて各区間に対し上述したモデルパラメータの補正および推定を行う。また、画素毎にモデルパラメータを求めてもよい。例えば、座標(x,y)におけるモデルパラメータを推定する場合は、次式のように同じ行の近傍の数画素のサンプルにおける誤差Jが最小となるモデルパラメータを推定し、補正を行う。
Figure JPOXMLDOC01-appb-M000009
 ここで、Nはモデルパラメータを推定する際のサンプル数を規定するパラメータであり、モデルの適合度に応じて任意に設定すればよい。
 なお、サンプル数が少ない場合は異常値の影響を受けやすい。そこで、M推定やLMedS推定などのロバストな推定方法を用いてモデルパラメータを推定してもよい。
 以上、区間または画素毎にモデルパラメータを推定する場合を説明したが、この場合では、場所依存で起こりうる誤差の影響を低減できる。そのため、場所依存で構造が大きく変化するような構造でもモデルを適合しやすく、特に複雑な構造陰影に対して好適な補正方法である。
 次に、識別コードが0x01の場合は、画像補正部146は、欠損領域に対してさらなる画像補正を行う。上述の通り図6(d)に示した複雑な構造陰影では放射線の減衰が多いため、ノイズによる粒状性悪化が起きる。そこで、画像補正部146は、欠損領域に対し粒状性を改善する補正を行う。つまり、画像補正部146は、合成画像に写り込んだ放射線検出装置の構造陰影に応じてノイズの補正を実行するか否かを設定することができる。具体的には特に限定するものではないが、例えば移動平均やガウシアン等の平滑化フィルタや、εフィルタやバイラテラルフィルタ等のエッジを保存する非線形なフィルタを用いたフィルタ処理を用いれば良く、詳細は公知であるため省略する。
 次に、画像補正部146は、すべての欠損領域の補正が完了したかをチェックし(S506)、補正が完了した場合は終了する。補正が完了していない場合S502に戻り、画像補正部146は、新たに設定した欠損領域に対する補正を実行する。
 以上、実施例1では、放射線を検出する複数の放射線検出装置と、複数の放射線検出装置から取得される複数の放射線画像を合成して合成画像を生成する合成処理部142を有した放射線撮影システムにおいて、合成画像における放射線検出装置の構造が写り込んだ領域を補正する画像補正部146を備え、画像補正部146は写り込んだ放射線検出装置の構造陰影の特性(識別コード)に応じて補正方法を設定する。このように、放射線検出装置の構造陰影に応じて補正方法を切り替えることで、構造陰影に応じた好適な補正を行うことができる。
 なお、本実施例では、合成処理部142と画像補正部146を別の構成で示しているが、放射線画像の合成と同時に放射線検出装置の構造が写り込んだ領域の補正を行ってもよい。
 次に実施例2について、図8、図9を用いて説明する。実施例1と異なる点は、合成画像において放射線検出装置の構造陰影が写る欠損領域を細分化し、領域毎に補正方法を切り替える点である。ここでは、画像補正部146は、合成画像における構造が写り込んだ領域を構造陰影の違いに応じて分割し、分割された領域毎に補正方法を設定する。具体的には、例えば図5のS505の動作を図8のフローチャートに従った動作とする。以下より図8のフローチャートを用いて説明する。
 画像補正部146は、実施例1で説明した識別コード0x01に対する補正処理において、欠損領域が写り込む構造陰影に応じて分割を行う(S801)。本実施例では、画像補正部146は、例えば構造陰影の形状の複雑さと放射線検出装置の構造による放射線の減衰に応じた分割を行う。具体的には、画像補正部146は、図9に示したように構造が単純でかつ放射線の減衰が少ない領域A、構造が複雑でかつ放射線の減衰が多い領域B、構造が単純でかつ放射線の減衰が多い領域Cに分割する。なお、どのように領域を分割するかは放射線検出装置の内部構造に応じて識別コードとともに予め設定することもできる。
 次に、画像補正部146は、分割した領域のうち補正が実行されていない領域を選択する(S802)。画像補正部146は、構造が単純でかつ放射線の減衰が少ない領域A、構造が複雑でかつ放射線の減衰が多い領域B、構造が単純でかつ放射線の減衰が多い領域Cを判断する(S803)。そして、判断された領域の特性に応じた補正処理を実行する(S804~S805)。
 構造が単純でかつ放射線の減衰が少ない領域Aでは、画像補正部146は、実施例1のS504で説明した補正と同じ補正を行う(S804)。また、構造が複雑でかつ放射線の減衰が多い領域Bでは、画像補正部146は、実施例1のS505で説明した補正と同じ補正を行う(S805)。すなわち、画像補正部146は、自由度の大きいモデルを用いた補正を行った後、さらにノイズの補正を行う。ノイズの補正とは、実施例1で説明した粒状性を改善する補正等である。次に構造が単純でかつ放射線の減衰が多い領域Cでは、画像補正部146は、実施例1のS504で説明した補正と同じ補正に加え、さらにノイズの補正を行う(S806)。
 次に、画像補正部146は、すべての領域の補正が完了したかをチェックする(S807)。補正が完了した場合は終了する。補正が完了していない場合S802に戻り、画像補正部146は、未処理の領域を選択し補正を実行する。
 以上、実施例2では構造陰影を細分化し補正方法を切り替えることで、構造陰影の変化が大きい場合であっても好適な補正を行うことができる。
 以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
 この出願は2017年10月6日に出願された日本国特許出願第2017-196056からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2017年10月6日提出の日本国特許出願特願2017-196056を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (13)

  1.  放射線を検出する複数の放射線検出装置と、複数の放射線検出装置から取得される複数の放射線画像を合成して合成画像を生成する合成処理部を有した放射線撮影システムにおいて、前記合成画像における前記放射線検出装置の構造が写り込んだ領域を補正する画像補正部を備え、前記画像補正部は前記合成画像に写り込んだ放射線検出装置の構造陰影の特性に応じて補正方法を設定することを特徴とする放射線撮影システム。
  2.  前記合成画像に写り込む前記放射線検出装置の構造陰影を識別する識別コードを記憶する記憶部を備え、前記画像補正部は識別コードに応じて前記補正方法を設定することを特徴とする請求項1に記載の放射線撮影システム。
  3.  前記識別コードは、前記放射線検出装置の種類を示す情報を含んでいることを特徴とする請求項2に記載の放射線撮影システム。
  4.  前記識別コードは、前記放射線検出装置の位置情報を含んでいることを特徴とする請求項2に記載の放射線撮影システム。
  5.  前記画像補正部は、前記構造陰影が単純な合成画像の補正に適した補正、前記構造陰影が複雑な合成画像の補正に適した補正の一方を行うことを特徴とする請求項1に記載の放射線撮影システム。
  6.  前記構造陰影が複雑な合成画像の補正に適した補正が行われた場合、前記画像補正部は、前記放射線検出装置の構造が写り込んだ領域に対して粒状性を改善する補正を行うことを特徴とする請求項5に記載の放射線撮影システム。
  7.  前記画像補正部は、前記構造が写り込んだ領域を前記構造陰影の違いに応じて分割し、分割された領域毎に補正方法を設定することを特徴とする請求項1に記載の放射線撮影システム。
  8.  前記画像補正部は、前記合成画像における少なくとも1つ以上の画素において定めたモデルにおけるモデルパラメータを推定し、推定したモデルパラメータを用いて前記画素の画素値を補正することを特徴とする請求項1に記載の放射線撮影システム。
  9.  前記画像補正部は、前記合成画像に写り込んだ放射線検出装置の構造陰影に応じて前記モデルまたはモデルパラメータの推定方法の少なくとも何れか1つを変更することを特徴とする請求項8に記載の放射線撮影システム。
  10.  前記画像補正部は、前記合成画像に写り込んだ放射線検出装置の構造陰影に応じてノイズの補正を実行するか否かを設定することを特徴とする請求項1に記載の放射線撮影システム。
  11.  放射線を検出する複数の放射線検出装置と、複数の放射線検出装置から取得される複数の放射線画像を合成して合成画像を生成する合成処理部を有した放射線撮影システムにおいて、前記放射線検出装置の種類と位置情報を識別する識別コードを記憶する記憶部と、前記識別コードに応じて、前記合成画像における前記放射線検出装置の構造が写り込んだ領域を補正する画像補正部とを備えることを特徴とする放射線撮影システム。
  12.  放射線を検出する複数の放射線検出装置と、複数の放射線検出装置から取得される複数の放射線画像を合成して合成画像を生成する放射線撮影方法において、前記合成画像における前記放射線検出装置の構造が写り込んだ領域を補正する補正ステップを有し、前記補正ステップは前記合成画像に写り込んだ放射線検出装置の構造陰影の特性に応じて補正方法を設定することを特徴とする放射線撮影方法。
  13.  放射線を検出する複数の放射線検出装置と、複数の放射線検出装置から取得される複数の放射線画像を合成して合成画像を生成する放射線撮影方法において、前記放射線検出装置の種類と位置情報を識別する識別コードを記憶するステップと、前記識別コードに応じて、前記合成画像における前記放射線検出装置の構造が写り込んだ領域を補正するステップを有していることを特徴とする放射線撮影方法。
PCT/JP2018/035018 2017-10-06 2018-09-21 放射線撮影システム及び放射線撮影方法 WO2019069716A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/802,383 US11213261B2 (en) 2017-10-06 2020-02-26 Radiographic system and radiographic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196056 2017-10-06
JP2017196056A JP7091047B2 (ja) 2017-10-06 2017-10-06 放射線撮影システム及び放射線撮影方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/802,383 Continuation US11213261B2 (en) 2017-10-06 2020-02-26 Radiographic system and radiographic method

Publications (1)

Publication Number Publication Date
WO2019069716A1 true WO2019069716A1 (ja) 2019-04-11

Family

ID=65994226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035018 WO2019069716A1 (ja) 2017-10-06 2018-09-21 放射線撮影システム及び放射線撮影方法

Country Status (3)

Country Link
US (1) US11213261B2 (ja)
JP (1) JP7091047B2 (ja)
WO (1) WO2019069716A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271209B2 (ja) * 2019-02-06 2023-05-11 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法
WO2022222122A1 (en) * 2021-04-23 2022-10-27 Shenzhen Xpectvision Technology Co., Ltd. Imaging methods using an image sensor with multiple radiation detectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039267A (ja) * 2008-08-06 2010-02-18 Konica Minolta Medical & Graphic Inc 医療用カセッテ及び画像形成方法
JP2011188972A (ja) * 2010-03-15 2011-09-29 Fujifilm Corp 放射線撮影装置
JP2016189982A (ja) * 2015-03-31 2016-11-10 キヤノン株式会社 放射線撮影システム、制御方法およびプログラム
JP2016198424A (ja) * 2015-04-14 2016-12-01 コニカミノルタ株式会社 放射線画像撮影システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888046B2 (ja) 2000-07-26 2007-02-28 コニカミノルタホールディングス株式会社 放射線画像処理方法および放射線画像処理装置
US6459094B1 (en) * 2000-12-20 2002-10-01 Eastman Kodak Company Method for stitching partial radiation images to reconstruct a full image
JP6071986B2 (ja) 2014-12-04 2017-02-01 キヤノン株式会社 放射線撮像システム
JP6072096B2 (ja) 2015-01-30 2017-02-01 キヤノン株式会社 放射線撮影システム、制御方法、制御方法、及びプログラム
JP6072102B2 (ja) 2015-01-30 2017-02-01 キヤノン株式会社 放射線撮影システム及び放射線撮影方法
JP6472432B2 (ja) 2016-12-27 2019-02-20 キヤノン株式会社 放射線撮像システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039267A (ja) * 2008-08-06 2010-02-18 Konica Minolta Medical & Graphic Inc 医療用カセッテ及び画像形成方法
JP2011188972A (ja) * 2010-03-15 2011-09-29 Fujifilm Corp 放射線撮影装置
JP2016189982A (ja) * 2015-03-31 2016-11-10 キヤノン株式会社 放射線撮影システム、制御方法およびプログラム
JP2016198424A (ja) * 2015-04-14 2016-12-01 コニカミノルタ株式会社 放射線画像撮影システム

Also Published As

Publication number Publication date
US11213261B2 (en) 2022-01-04
JP2019068915A (ja) 2019-05-09
JP7091047B2 (ja) 2022-06-27
US20200187883A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6072102B2 (ja) 放射線撮影システム及び放射線撮影方法
JP6815818B2 (ja) 放射線撮影システム及び放射線撮影方法
KR101367747B1 (ko) 방사선 촬영장치 및 그 제어 방법
US8040406B2 (en) Method of processing images from an imaging device
JP2017189393A (ja) 放射線撮影システム及び放射線撮影方法
JP2011072538A (ja) X線画像撮影装置、撮影方法および撮影プログラム
WO2019069716A1 (ja) 放射線撮影システム及び放射線撮影方法
JP6440750B2 (ja) 放射線撮影システム及び放射線撮影方法
JP2009201586A (ja) 放射線画像撮影装置
JP2005204810A (ja) X線画像撮影装置
JP6548628B2 (ja) 放射線撮影システム及び放射線撮影方法
US20150279066A1 (en) Method for Processing Images to Remove Bright-Burn Artifacts and X-Ray Device
JP6676345B2 (ja) 放射線撮影システム及び放射線撮影方法
JP6643038B2 (ja) 放射線撮影システム、画像処理装置及び画像処理方法
JP6780065B2 (ja) 放射線撮影システム及び放射線撮影方法
JP4029337B2 (ja) 放射線画像撮像装置
JP5907659B2 (ja) 検査方法
WO2020066231A1 (ja) 放射線撮影装置、放射線撮影方法及びプログラム
JP5456404B2 (ja) 欠陥画素検出方法および画像処理装置
JP2005066144A (ja) X線画像撮影装置
WO2020012520A1 (ja) 医用x線画像処理装置およびx線画像撮影装置
JP2011092558A (ja) X線画像撮影装置、x線画像処理方法およびx線画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865293

Country of ref document: EP

Kind code of ref document: A1