Nothing Special   »   [go: up one dir, main page]

WO2019066066A1 - 電極及び蓄電素子 - Google Patents

電極及び蓄電素子 Download PDF

Info

Publication number
WO2019066066A1
WO2019066066A1 PCT/JP2018/036559 JP2018036559W WO2019066066A1 WO 2019066066 A1 WO2019066066 A1 WO 2019066066A1 JP 2018036559 W JP2018036559 W JP 2018036559W WO 2019066066 A1 WO2019066066 A1 WO 2019066066A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
positive electrode
mass
inorganic oxide
content
Prior art date
Application number
PCT/JP2018/036559
Other languages
English (en)
French (fr)
Inventor
幸平 辻田
勇太 大杉
森人 田邊
向井 寛
亘 幸洋
田渕 徹
Original Assignee
株式会社Gsユアサ
ローベルト ボッシュ ゲセルシャフト ミット ベシュレンクテル ハフッング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ, ローベルト ボッシュ ゲセルシャフト ミット ベシュレンクテル ハフッング filed Critical 株式会社Gsユアサ
Priority to US16/646,115 priority Critical patent/US20200274149A1/en
Priority to JP2019545195A priority patent/JP7262394B2/ja
Priority to EP18862607.1A priority patent/EP3690990A4/en
Priority to CN201880063317.6A priority patent/CN111164798A/zh
Publication of WO2019066066A1 publication Critical patent/WO2019066066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode and a storage element.
  • Secondary batteries represented by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. because of their high energy density.
  • abnormalities such as heat generation and ignition may occur due to use that is not usually foreseen.
  • a short circuit may occur between the electrodes due to an impact such as falling or a foreign substance mixed in at the time of production, and as a result, excessive heat generation may occur.
  • the conductive layer formed on the positive electrode current collector is a technology for ensuring the safety of the battery by reliably interrupting the charging current even if the battery temperature rises rapidly due to an overcharged state.
  • a substance lithium carbonate
  • a high potential for example, 4.5 to 5.5 V
  • Patent Document 1 a lithium ion secondary battery capable of generating a gas and raising the internal resistance of the battery to interrupt the charging current.
  • the battery needs to have a high voltage in the overcharged state, and the heat generation suppressing effect at the time of the short circuit in the non-overcharged state is not sufficient.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide an electrode having high safety by suppressing an increase in short circuit current when a short circuit occurs between the electrodes, and a storage element provided with this electrode. It is to provide.
  • One embodiment of the present invention made to solve the above problems comprises a conductive substrate, an intermediate layer and an active material layer in this order, the intermediate layer containing a conductive agent, an inorganic oxide and a binder, It is an electrode for electrical storage elements whose content of the said inorganic oxide in an intermediate
  • middle layer is 30 to 90 mass%.
  • Another aspect of the present invention made to solve the above problems is a storage element provided with the electrode.
  • an electrode with high safety and a storage element provided with this electrode by suppressing an increase in short circuit current when a short circuit occurs between the electrodes.
  • FIG. 1 is a schematic view showing a power storage device configured by collecting a plurality of non-aqueous electrolyte secondary batteries according to an embodiment of the present invention. It is a graph which shows the change of resistance accompanying heating of an example. It is a graph which shows the change of resistance accompanying heating of an example. It is a graph which shows the heating test result of an Example. It is a graph which shows the nail penetration test result of an Example.
  • An electrode according to an embodiment of the present invention comprises a conductive substrate, an intermediate layer and an active material layer in this order, the intermediate layer containing a conductive agent, an inorganic oxide and a binder, and the inorganic material in the intermediate layer It is an electrode for power storage elements whose content of oxides is 30 mass% or more and 90 mass% or less.
  • Inorganic oxides have excellent stability at high temperatures and positive temperature coefficient (PTC) characteristics such that the electrical resistance value changes by a positive number coefficient when the temperature rises, depending on the type of compound, and excess due to short circuit etc. Exerts a good function as an insulating material at the time of heat generation. Therefore, the conductive agents in the intermediate layer and the electron conduction path between the base material and the active material layer are divided, so that the increase in the short circuit current can be suppressed when the short circuit occurs.
  • PTC positive temperature coefficient
  • a shutdown function of current works in association with excessive heat generation due to a short circuit or the like, and an increase in the short circuit current can be suppressed, so that high safety can be provided.
  • the content of the inorganic oxide in the intermediate layer is 30% by mass or more and 90% by mass or less, suppression of an increase in the short circuit current at the time of excessive heat generation while securing good conductivity at normal times The effect can be enhanced.
  • middle layer 85 mass% or less is preferable.
  • middle layer 5 mass% or more is preferable. By making content of the said binder in the said intermediate
  • middle layer 2 mass% or more and 15 mass% or less are preferable.
  • the electron conduction path between the conductive agents is sufficiently divided at the time of excessive heat generation while securing good conductivity in normal times, and the short circuit current at the time of excessive heat generation The effect of suppressing the increase can be enhanced. Since the magnitude
  • middle layer 3 to 20 times by mass ratio is preferable.
  • the electron conduction path between the conductive agents is sufficiently divided at the time of excessive heat generation while securing good conductivity in normal times, and the short circuit current at the time of excessive heat generation The effect of suppressing the increase can be enhanced.
  • the said binder contains a fluorine resin. Since the binder contains a fluorine resin, the fluorine-containing fluorine resin having a small intermolecular force and a low surface energy swells with heat generation, and has an appropriate binding property as a binder. As a result, by using a fluorine resin, the insulation between the conductive agent and the base material and the active material layer is relatively easily divided by the insulating function of the inorganic oxide at the time of heat generation, and the short circuit current is increased at the time of excessive heat generation. Can be enhanced.
  • the intermediate layer further contains a compound that causes a crosslinking reaction by heat.
  • the intermediate layer contains a compound that causes a crosslinking reaction due to heat
  • the conductive agent and / or the base material and the active material layer are relatively easily separated along with the crosslinking reaction of the crosslinking compound at the time of excessive heat generation. The effect of suppressing the increase of the short circuit current at the time of excessive heat generation can be enhanced.
  • the electrode is preferably a positive electrode. Rather than providing an intermediate layer on a negative electrode that uses an active material layer that has higher conductivity than the positive electrode active material layer and that uses a copper foil with good conductivity, it is better to provide an intermediate layer on the positive electrode that has lower conductivity than the negative electrode. In the event of a short circuit between the electrodes, a higher blocking effect on the conductivity can be obtained.
  • a storage element according to an embodiment of the present invention is a storage element provided with the electrode. Since the storage element includes the electrodes, safety can be enhanced by suppressing an increase in the short circuit current when a short circuit occurs between the electrodes.
  • the positive electrode as one embodiment of the electrode of the present invention and the non-aqueous electrolyte secondary battery (hereinafter sometimes referred to simply as “secondary battery”) as one embodiment of the storage element of the present invention will be described in detail. .
  • the positive electrode according to an embodiment of the present invention includes a positive electrode base, an intermediate layer, and a positive electrode active material layer in this order.
  • the positive electrode substrate is an example of a substrate
  • the positive electrode active material layer is an example of an active material layer.
  • the intermediate layer and the positive electrode active material layer may be laminated only on one side of the positive electrode base material, or may be laminated on both sides.
  • the positive electrode is used as a positive electrode of a storage element.
  • the provision of the intermediate layer is unlikely to cause an influence due to the decrease in conductivity at the normal time. For this reason, the control effect with respect to the increase in the short circuit current at the time of excessive heat_generation
  • the positive electrode substrate is a substrate having conductivity.
  • a material of a positive electrode base material metals, such as aluminum, titanium, a tantalum, stainless steel, or those alloys are used. Among these, aluminum and aluminum alloys are preferable in terms of the balance of potential resistance, conductivity height and cost. Examples of the form of the positive electrode substrate include foil, vapor deposited film and the like, and foil is preferable in terms of cost. That is, an aluminum foil is preferable as the positive electrode substrate.
  • aluminum or an aluminum alloy A1085P, A3003P etc. which are prescribed
  • the intermediate layer is disposed between the positive electrode substrate and the positive electrode active material layer, and covers at least a part of the surface of the positive electrode substrate.
  • the intermediate layer contains a conductive agent, an inorganic oxide, and a binder.
  • the intermediate layer is a layer having a function of reducing the contact resistance between the positive electrode substrate and the positive electrode active material layer. In this intermediate layer, in addition to the above functions, it has a function to shut off the current when excessive heat is generated.
  • the conductive agent contained in the intermediate layer is not particularly limited as long as it has conductivity.
  • the conductive agent include carbon black such as furnace black, acetylene black and ketjen black, natural or artificial graphite, metal, conductive ceramics and the like. Among these, carbon black is preferable as the conductive agent.
  • the shape of the conductive agent is usually in the form of particles. Having “conductivity” means that the volume resistivity measured according to JIS-H-0505 (1975) is 10 7 ⁇ ⁇ cm or less.
  • the primary particle diameter of the conductive agent is preferably, for example, 20 nm or more and 1 ⁇ m or less.
  • the particle diameter means a value (D50) such that the volume-based integrated distribution calculated according to JIS-Z-8819-2 (2001) becomes 50%. The effect of suppressing the increase of the short circuit current at the time of excessive heat generation can be enhanced.
  • the lower limit of the content of the conductive agent in the intermediate layer may be, for example, 1% by mass, but 2% by mass is preferable, and 3% by mass is more preferable.
  • the upper limit of the content of the conductive agent in the intermediate layer may be, for example, 20% by mass, but 15% by mass is preferable, and 13% by mass is more preferable.
  • the upper limit of the content of the conductive agent in the intermediate layer is in the above range, the electron conduction path between the conductive agents is effectively divided along with the insulating action of the inorganic oxide, and the increase of the short circuit current at the time of excessive heat generation The suppression effect can be further enhanced. Since the magnitude
  • the inorganic oxide includes an inorganic compound having a metal oxide such as magnesium oxide and a titanate compound such as titanate. Inorganic oxides are usually insulating.
  • an inorganic oxide a metal oxide, a titanate compound, etc. are mentioned, for example. Since the metal oxide is stable at high temperature, it can function as an insulating layer even when the binder of the intermediate layer is dissolved at the time of excessive heat generation due to a short circuit or the like.
  • the titanate compound exhibits a better insulation action at the time of excessive heat generation due to a short circuit or the like because the resistance also increases when the temperature becomes high. Therefore, when the intermediate layer contains the inorganic oxide, the current shutdown function works and the increase in the short circuit current can be suppressed, so that high safety can be provided.
  • the inorganic oxides can be used alone or in combination of two or more.
  • metal oxide examples include alumina, titanium oxide, magnesium oxide, silica, and aluminosilicate. Among these, alumina is preferred.
  • titanate compound examples include alkaline earth metal titanate compounds and rare earth metal titanate compounds.
  • alkaline earth metal titanates include barium titanate, calcium titanate, strontium titanate, and magnesium titanate.
  • rare earth titanate metal compound examples include yttrium titanate, neodymium titanate, samarium titanate, dysprosium titanate, and lanthanum titanate.
  • barium titanate is preferable from the viewpoint of high dielectric constant.
  • the particle size of the inorganic oxide is preferably larger than the particle size of the conductive agent.
  • the inorganic oxide exists in a state of being higher than the conductive agent. Therefore, it can prevent that a positive electrode base material and a positive electrode active material layer contact via a electrically conductive agent, and can suppress the increase inhibitory effect of a short circuit current.
  • the particle diameter of the inorganic oxide is preferably, for example, 50 nm or more and 10 ⁇ m or less. When the particle diameter of the inorganic oxide is in the above range, the flatness of the intermediate layer can be maintained well.
  • the particle diameter means a value (D50) such that the volume-based integrated distribution calculated according to JIS-Z-8819-2 (2001) becomes 50%.
  • the BET specific surface area of the inorganic oxide is, for example, preferably 4 m 2 / g or more and 100 m 2 / g or less, and more preferably 10 m 2 / g or more and 80 m 2 / g or less.
  • the anchor effect of the inorganic oxide can be increased, and the suppression effect of the increase in the short circuit current can be improved.
  • the lower limit of the content of the inorganic oxide to the content of the conductive agent in the intermediate layer is preferably 3 times by mass, more preferably 4 times, and still more preferably 6 times by mass.
  • the upper limit of the content of the inorganic oxide to the content of the conductive agent in the intermediate layer is preferably 20 times by mass ratio, more preferably 16 times by mass, and still more preferably 12 times by mass.
  • the lower limit of the content of the inorganic oxide in the intermediate layer is 30% by mass, preferably 50% by mass, and more preferably 60% by mass.
  • the upper limit of the content of the inorganic oxide in the intermediate layer is 90% by mass, preferably 85% by mass, and more preferably 82% by mass.
  • thermoplastic resins such as fluorocarbon resin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide, etc .; ethylene-propylene-diene rubber (EPDM), Elastomers such as sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, and polysaccharide polymers.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene rubber
  • Elastomers such as sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, and polysaccharide polymers.
  • a fluorine resin is preferable, and PVDF is more preferable.
  • a binder in a middle class As a minimum of content of a binder in a middle class, 5 mass% is preferred and 10 mass% is more preferred. As a maximum of this content, 30 mass% is preferred and 20 mass% is more preferred.
  • the intermediate layer may further contain other components other than the conductive agent, the inorganic oxide, and the binder, from the viewpoint of improving the suppression effect of the increase in the short circuit current.
  • the compound etc. which a crosslinking reaction produces by heat are mentioned, for example.
  • thermal crosslinking compound examples include epoxy compounds (polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, etc.), polyfunctional (meth) acrylates (trimethylolpropane triacrylate) And dipentaerythritol pentaacrylate etc., polyoxyalkylene compounds (polyethylene glycol, polypropylene glycol etc.), isocyanate compounds (2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate etc.) and the like.
  • the thermally crosslinkable compound also include thermosetting resins described later and monomers of thermosetting resins.
  • the thermally crosslinkable compound can be used in combination with a thermal polymerization initiator.
  • the thermally crosslinkable compound is preferably a polymer having a plurality of branched structures.
  • a crosslinking reaction may occur at a relatively low temperature, and control of the crosslinking reaction may be difficult.
  • the crosslinking reaction can be initiated and progressed at a temperature (for example, more than 100 ° C. or more than 150 ° C.) corresponding to abnormal heat generation.
  • a temperature for example, more than 100 ° C. or more than 150 ° C.
  • the crosslinkable compound is a polymer having a plurality of branched structures, the crosslinking reaction is efficiently caused by the many reactive groups present at the end, and a dense three-dimensional crosslinked structure is formed by the crosslinking, and the effect is obtained. Can increase the electrical resistance.
  • the heat-crosslinkable compound is more preferably an oligomer.
  • the lower limit of the number average molecular weight of the crosslinkable compound is preferably 200, and the upper limit is preferably 3,000.
  • the crosslinking reaction at a temperature corresponding to the abnormal heat generation can be more appropriately generated.
  • the number average molecular weight of the crosslinkable compound equal to or less than the above upper limit, it is possible to more effectively enhance the insulation along with the crosslinking reaction.
  • thermosetting resin As a thermally crosslinkable compound which is a polymer which has several branched structure, what is called a thermosetting resin etc. can be mentioned.
  • thermosetting resin melamine resin, urea resin, urethane resin, epoxy resin, alkyd resin, phthalic acid resin, allyl resin, phenol resin, benzoxazine resin, xylene resin, ketone resin, furan resin, wholly aromatic polyimide, Polyamino bismaleimide resin, a reaction product of bismaleimide and barbituric acid, and the like can be mentioned.
  • a reaction product of bismaleimide and barbituric acid that is, a compound obtained by using bismaleimide and barbituric acid as a reactant is preferable.
  • the crosslinking reaction proceeds at about 100 ° C., preferably at about 150 ° C. Therefore, by using this compound, the crosslinking reaction can be effectively progressed at the time of abnormality such as heat generation, and the insulating property can be enhanced.
  • bismaleimides include N, N'-bismaleimide-4,4'-diphenylmethane, 1,1 '-(methylenedi-4,1-phenylene) bismaleimide, N, N'-(1,1'-biphenyl- 4,4'-Diyl) bismaleimide, N, N '-(4-methyl-1,3-phenylene) bismaleimide, 1,1'-(3,3'-dimethyl-1,1'-biphenyl-4 , 4'-diyl) bismaleimide, N, N'-ethylenedimaleimide, N, N '-(1,2-phenylene) dimaleimide, N, N'-(1,3-phenylene) dimaleimide, N, N ' -Thiodimaleimide, N, N'-dithiodimaleimide, N, N'-ketone dimaleimide, N, N'-methylene-bis-maleinimide, bis-maleimidomethyl
  • Barbituric acids refer to barbituric acid and its derivatives. Barbituric acids function as monomers, polymerization initiators, chain transfer agents, chain terminators, radical scavengers and the like. By reacting barbituric acids having such functions with bismaleimide, an oligomer or polymer having a complex hyperbranched structure is formed.
  • the vinyl and vinylene groups the vinylene group is preferred.
  • the amino group may be any of a primary amino group, a secondary amino group and a tertiary amino group, but among these, a secondary amino group (-NH-) is preferable.
  • the vinyl group or vinylene group and the amino group usually cause a cross-linking reaction at a temperature corresponding to the abnormal heat generation of the secondary battery (for example, more than 100 ° C.). The suppression effect on the increase in current can be further enhanced.
  • crosslinkable compound which has a vinyl group or vinylene group, and an amino group
  • polyamino bis maleimide resin etc. other than resin which uses bis maleimide and barbituric acid mentioned above as a raw material (reactant) can be mentioned.
  • the lower limit of the content of the thermally crosslinkable compound in the intermediate layer is not particularly limited, and may be, for example, 5% by mass, but 15% by mass is preferable, 20% by mass is more preferable, and 25% by mass is more preferable.
  • the upper limit of the content is not particularly limited, and may be, for example, 80% by mass, but 50% by mass is preferable, 45% by mass is more preferable, and 40% by mass is more preferable.
  • the content of the crosslinkable compound is at least the above lower limit, the effect of suppressing the increase of the short circuit current at the time of excessive heat generation can be further enhanced.
  • the content of the crosslinkable compound is less than or equal to the above upper limit, good conductivity can be exhibited during normal use.
  • the average thickness of the intermediate layer is not particularly limited, but the lower limit is preferably 0.5 ⁇ m, more preferably 1 ⁇ m, and still more preferably 2 ⁇ m. As an upper limit of this average thickness, 10 micrometers is preferable and 6 micrometers is more preferable. By setting the average thickness of the intermediate layer to the above lower limit or more, the shutdown function can be further enhanced. By making the average thickness of the intermediate layer equal to or less than the above upper limit, it is possible to make the positive electrode thin.
  • the average thickness of the intermediate layer means a value obtained by measuring and averaging the thickness of the intermediate layer at five or more points in a cross section SEM (Scanning Electron Microscope) of the electrode provided with the conductive base material, the intermediate layer and the active material layer. .
  • Cross-sectional SEM is a method of producing a cut surface of a sample and observing the cross-section with a scanning electron microscope.
  • the positive electrode active material layer is formed of a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode mixture which forms the positive electrode active material layer optionally contains optional components such as a conductive agent, a binder, a thickener, and a filler.
  • Li x MO y (M represents at least one transition metal) (Li x CoO 2 having a layered ⁇ -NaFeO 2 type crystal structure, Li x NiO 2 , Li x MnO 3 , Li x Ni ⁇ Co (1- ⁇ ) O 2 , Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2, etc., Li x Mn 2 O 4 having a spinel type crystal structure , Li x Ni ⁇ Mn (2 - ⁇ ) O 4 , etc.), Li w Me x (XO y) z (Me represents at least one transition metal, X represents for example P, Si, B, and V, etc.) And polyanion compounds (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc
  • Examples of the conductive agent and the binder contained in the positive electrode active material layer can be the same as those of the intermediate layer.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group that reacts with lithium
  • the said filler is not specifically limited.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite and glass.
  • the said electrode When the said electrode is a positive electrode, it is hard to produce the influence with respect to the conductivity by providing an intermediate
  • the manufacturing method of the said positive electrode is not specifically limited.
  • the positive electrode can be obtained by sequentially applying the intermediate layer forming paste and the positive electrode active material layer forming paste to the positive electrode substrate and drying.
  • the secondary battery which concerns on one Embodiment of this invention has the positive electrode which is the said electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode and the negative electrode usually form an electrode body laminated or wound via a separator.
  • the electrode assembly is housed in a case, and the case is filled with the non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • the well-known metal case normally used as a case of a secondary battery, resin case, etc. can be used.
  • the positive electrode provided in the secondary battery includes a positive electrode base material, and a positive electrode active material layer disposed directly or via an intermediate layer on the positive electrode base material. It is preferable that the positive electrode with which the said secondary battery is equipped is a positive electrode which concerns on one Embodiment of this invention mentioned above.
  • the negative electrode has a negative electrode base material, and a negative electrode active material layer disposed directly or via an intermediate layer on the negative electrode base material.
  • the positive electrode is not the positive electrode according to the embodiment of the present invention described above, the negative electrode according to the embodiment of the present invention includes the negative electrode substrate, the intermediate layer, and the negative electrode active material layer in this order.
  • the said negative electrode base material can be made into the structure similar to a positive electrode base material.
  • a material a metal such as copper, nickel, stainless steel, nickel plated steel or an alloy thereof is used, and copper or a copper alloy is preferable.
  • Copper foil is preferred as the negative electrode substrate.
  • a copper foil a rolled copper foil, an electrolytic copper foil, etc. are illustrated.
  • the configuration of the intermediate layer in the negative electrode is not particularly limited, and can be formed of, for example, a composition containing a binder and a conductive agent.
  • the intermediate layer in the negative electrode may be formed to have the same composition as the intermediate layer in the positive electrode described above.
  • the negative electrode active material layer is formed of a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode mixture forming the negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary.
  • Optional components such as a conductive agent, a binder, a thickener, and a filler can be the same as those of the positive electrode active material layer.
  • negative electrode active material usually, a material capable of inserting and extracting lithium ions is used.
  • negative electrode active materials include metals or metalloids such as Si and Sn; metal oxides or metalloid oxides such as Si oxide and Sn oxide; polyphosphate compounds; graphite (graphite), non-graphitic Carbon materials such as carbon (graphitizable carbon or non-graphitizable carbon) can be mentioned.
  • the negative electrode composite material (negative electrode active material layer) is typically non-metallic elements such as B, N, P, F, Cl, Br, I, etc., Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge And other transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and the like.
  • a woven fabric, a nonwoven fabric, a porous resin film etc. are used, for example.
  • porous resin films are preferable.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength. You may use the porous resin film which compounded these resin and resin, such as aramid and a polyimide.
  • Non-aqueous electrolyte As said non-aqueous electrolyte, the well-known electrolyte normally used for a non-aqueous electrolyte secondary battery can be used, and what the electrolyte salt was melt
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • a chain carbonate etc. can be mentioned.
  • the electrolyte salt examples include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, and among these, lithium salt is preferable.
  • the lithium salt inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 4 ) 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, LiC (SO 2 C 2 F 5) 3 fluorinated hydrocarbon group, And lithium salts and the like.
  • non-aqueous electrolyte a normal temperature molten salt (ionic liquid), a polymer solid electrolyte, or the like can also be used.
  • the manufacturing method of the said secondary battery is not specifically limited.
  • the method of manufacturing the secondary battery includes, for example, alternately stacking a positive electrode, a step of manufacturing a negative electrode, a step of preparing a non-aqueous electrolyte, stacking or winding the positive electrode and the negative electrode through a separator. And forming the positive electrode and the negative electrode (electrode body) in a battery case, and injecting the non-aqueous electrolyte into the battery case. After injection, the injection port can be sealed to obtain a non-aqueous electrolyte secondary battery (non-aqueous electrolyte storage element).
  • the details of the components constituting the non-aqueous electrolyte storage element (secondary battery) obtained by the manufacturing method are as described above.
  • the present invention is not limited to the above embodiment, and can be implemented in various modifications and improvements in addition to the above embodiment.
  • the intermediate layer of the positive electrode contains the inorganic oxide
  • the intermediate layer of the positive electrode does not contain the inorganic oxide
  • the intermediate layer of the negative electrode contains the inorganic oxide.
  • Both the positive electrode intermediate layer and the negative electrode intermediate layer may contain an inorganic oxide.
  • the intermediate layer of the positive electrode contains an inorganic oxide
  • the negative electrode may not have the intermediate layer.
  • the positive electrode may not have the intermediate layer.
  • a coating layer or the like that covers the active material layer may be provided.
  • the electrode is used as a positive electrode of a storage element, but may be used as a negative electrode, or may be used as both a positive electrode and a negative electrode.
  • the storage element was a non-aqueous electrolyte secondary battery
  • another storage element may be used.
  • Other storage elements include capacitors (electric double layer capacitors, lithium ion capacitors), secondary batteries in which the electrolyte contains water, and the like.
  • FIG. 1 is a schematic view of a rectangular non-aqueous electrolyte secondary battery 1 (secondary battery 1) which is an embodiment of a storage element according to the present invention.
  • the figure is a perspective view of the inside of the container.
  • the electrode body 2 is accommodated in a battery case 3.
  • the electrode body 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
  • a non-aqueous electrolyte is injected into the battery case 3.
  • the specific configuration of each element such as the positive electrode is as described above.
  • the configuration of the storage element according to the present invention is not particularly limited, and a cylindrical battery, a rectangular battery (rectangular battery), a flat battery and the like can be mentioned as an example.
  • the present invention can also be realized as a power storage device provided with a plurality of the above non-aqueous electrolyte power storage elements.
  • a power storage device is shown in FIG. In FIG. 2, power storage device 30 includes a plurality of power storage units 20. Each storage unit 20 includes a plurality of secondary batteries 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • Example 1 (Production of Positive Electrode) An intermediate layer was formed on the surface of an aluminum foil (average thickness 15 ⁇ m) as a positive electrode substrate in the following manner. Acetylene black (AB), alumina (manufactured by Sumitomo Chemical Co., Ltd., particle diameter about 300 nm, BET specific surface area 4.9 m 2 / g) and polyvinylidene fluoride (PVDF) were weighed at a mass ratio of 8:77:15. These were mixed with N-methyl-2-pyrrolidone (NMP) as a dispersion medium to prepare a paste for forming an intermediate layer. The intermediate layer forming paste was applied to an aluminum foil. Thereafter, drying was performed to obtain an intermediate layer having an average thickness of 8 ⁇ m.
  • NMP N-methyl-2-pyrrolidone
  • N-methyl-2 containing Li (Ni 0.82 Co 0.15 Al 0.03 ) O 2 , AB and PVDF as a positive electrode active material at a mass ratio of 95: 3: 2 (solid content conversion) -A paste for forming a positive electrode active material layer was prepared using pyrrolidone as a dispersion medium.
  • the paste for forming a positive electrode active material layer was applied to the surface of the intermediate layer and dried to remove the dispersion medium. Then, it pressure-molded by the roller press machine, and obtained the positive electrode of Example 1.
  • the average thickness of the intermediate layer after pressing was 4 ⁇ m.
  • the positive electrode was provided with a tab on which the intermediate layer and the positive electrode active material layer were not laminated.
  • Example 2 Acetylene black (AB), alumina (manufactured by Nippon Aerosil Co., Ltd., particle diameter about 70 nm, BET specific surface area 94 m 2 / g) and polyvinylidene fluoride (PVDF) were weighed at a mass ratio of 8:62:30, and these were dispersed.
  • a positive electrode of Example 2 was obtained in the same manner as Example 1, except that a paste for forming an intermediate layer was prepared by mixing with N-methyl-2-pyrrolidone (NMP) as a medium to prepare a paste for forming an intermediate layer.
  • NMP N-methyl-2-pyrrolidone
  • Example 3 Acetylene black (AB), alumina (made by Nippon Aerosil Co., Ltd.), a reaction product of bismaleimide and barbituric acid which is a thermally crosslinkable compound, and polyvinylidene fluoride (PVDF) in a mass ratio of 8: 55: 20: 15
  • PVDF polyvinylidene fluoride
  • Example 4 Acetylene black (AB), barium titanate and polyvinylidene fluoride (PVDF) are weighed in a mass ratio of 8:77:15, mixed with N-methyl-2-pyrrolidone (NMP) as a dispersion medium, and an intermediate layer A positive electrode of Example 4 was obtained in the same manner as in Example 1 except that the forming paste was prepared.
  • NMP N-methyl-2-pyrrolidone
  • Example 5 LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material, AB and PVDF in a mass ratio of 93: 4: 3 (solid content conversion), N-methyl-2-pyrrolidone Example except using the paste for positive electrode active material layer formation used as a dispersion medium, the average thickness after drying (before pressure forming) of the intermediate layer being 6 ⁇ m, and the average thickness after pressure forming being 2.5 ⁇ m. In the same manner as in 1, the positive electrode of Example 5 was obtained.
  • Example 6 A positive electrode of Example 6 was obtained in the same manner as Example 5, except that the mass ratio of AB, alumina, and PVDF contained in the intermediate layer forming paste was 4:81:15.
  • Example 7 A positive electrode of Example 7 was obtained in the same manner as Example 5, except that the mass ratio of AB, alumina, and PVDF contained in the intermediate layer forming paste was 12: 73: 15.
  • Example 8 A positive electrode of Example 8 was obtained in the same manner as Example 5, except that the mass ratio of AB, alumina, and PVDF contained in the intermediate layer forming paste was 20:65:15.
  • Comparative Example 1 A positive electrode of Comparative Example 1 was obtained in the same manner as Example 1 except that the intermediate layer was not provided.
  • Comparative Example 2 A positive electrode of Comparative Example 2 was obtained in the same manner as in Example 1 except that AB and PVDF were used at a mass ratio of 8: 92 as the material of the intermediate layer, and alumina was not included.
  • An electrode body was produced by sandwiching a polyolefin porous resin film separator between the positive electrode obtained in Examples 1 to 3 and Comparative Example 1 and a negative electrode in which the negative electrode active material is graphite.
  • the electrode body was housed and sealed in a metal resin composite film as an exterior body so that the tab of each electrode was exposed. Thereby, a dry cell was obtained. With respect to this dry cell, while applying a voltage of 4.35 V between the positive and negative electrodes, a nail penetration test was performed in which the nail was penetrated in the stacking direction of the electrodes.
  • An electrode body was produced by sandwiching a polyolefin porous resin film separator with the positive electrode of each of Examples 1 to 3 and Comparative Example 1 and a negative electrode of which the negative electrode active material is graphite.
  • the electrode body was housed in a metal resin composite film as an exterior body so that the tab of each electrode was exposed, and the above electrolyte solution was injected and sealed.
  • a non-aqueous electrolyte secondary battery was obtained.
  • charge termination conditions were made until charge current became 1/100 C, and charge termination voltage was charged as 4.35V.
  • the non-aqueous electrolyte secondary battery was fixed, and was heated by a heater to measure a change in voltage.
  • the heating rate was 5 ° C./min. As heating occurred, a short circuit occurred and the voltage decreased.
  • a graph in which the voltage of each non-aqueous electrolyte secondary battery is plotted against the temperature of each non-aqueous electrolyte secondary battery is shown in FIG.
  • Example 3 As shown in FIG. 3, in the positive electrode of Examples 1 to 3 provided with an intermediate layer containing alumina and the positive electrode of Example 4 provided with an intermediate layer containing barium titanate, the electrical resistance is large due to the temperature rise. Is high, it has a good shutdown function against heat, and it is understood that the safety is high. In particular, in Example 3 containing alumina and a thermally crosslinkable compound, the temperature increase significantly increased the electrical resistance, and the shutdown function against heat generation was excellent. Even in the positive electrode of Comparative Example 1 in which the intermediate layer is not provided and in the positive electrode of Comparative Example 2 in which the intermediate layer does not contain alumina, although the increase in resistance is observed to some extent, the shutdown function is inferior to Examples 1 to 4. I understand.
  • the electric resistance largely increases due to the temperature rise, and it has a good shutdown function against heat generation.
  • the electrical resistance increased extremely due to the temperature rise, and the shutdown function against heat was excellent.
  • Example 3 in which alumina and a thermally crosslinkable compound are contained, the intermediate layer is provided. It can be seen that the heat generation after nailing is suppressed as compared with Comparative Example 1 in which there is no.
  • the present invention is applicable to electronic devices such as personal computers and communication terminals, and non-aqueous electrolyte secondary batteries used as power sources for automobiles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一態様は、導電性の基材、中間層及び活物質層をこの順に備え、上記中間層が、導電剤、無機酸化物及びバインダーを含み、上記中間層における上記無機酸化物の含有量が、30質量%以上90質量%以下である蓄電素子用の電極である。

Description

電極及び蓄電素子
 本発明は、電極及び蓄電素子に関する。
 リチウムイオン二次電池に代表される二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車などに多用されている。このような二次電池やキャパシタ等の蓄電素子には、通常予見されない使用などにより発熱、発火等の異常が生じる場合がある。例えば、落下等の衝撃や、製造時に混入した異物などを原因として電極間で短絡が生じ、その結果、過剰に発熱が起きることがある。
 従来技術においては、過充電状態となって電池温度が急激に上昇しても、確実に充電電流を遮断して電池の安全性を確保する技術として、正極集電体上に形成された導電層が過充電状態での高電位で分解する物質(炭酸リチウム)を備え、過充電により高電位(例えば4.5~5.5V)となった場合には、高電位で分解する物質が分解されてガスを発生し、電池の内部抵抗が上昇して充電電流を遮断することができるリチウムイオン二次電池が開示されている(特許文献1参照)。
特開2000-77061号公報
 しかしながら、このような導電層が高抵抗となるためには、電池が過充電状態の高電圧である必要があり、過充電状態でない場合の短絡時における発熱抑制効果は十分ではない。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、電極間における短絡発生時に短絡電流の増大を抑制することにより安全性が高い電極及びこの電極を備える蓄電素子を提供することである。
 上記課題を解決するためになされた本発明の一態様は、導電性の基材、中間層及び活物質層をこの順に備え、上記中間層が、導電剤、無機酸化物及びバインダーを含み、上記中間層における上記無機酸化物の含有量が、30質量%以上90質量%以下である蓄電素子用の電極である。
 上記課題を解決するためになされた本発明の他の一態様は、当該電極を備える蓄電素子である。
 本発明によれば、電極間における短絡発生時に短絡電流の増大を抑制することにより安全性が高い電極及びこの電極を備える蓄電素子を提供することができる。
本発明の一実施形態に係る非水電解質二次電池を示す外観斜視図である。 本発明の一実施形態に係る非水電解質二次電池を複数個集合して構成した蓄電装置を示す概略図である。 実施例の加熱に伴う抵抗の変化を示すグラフである。 実施例の加熱に伴う抵抗の変化を示すグラフである。 実施例の加熱試験結果を示すグラフである。 実施例の釘刺し試験結果を示すグラフである。
 本発明の一実施形態に係る電極は、導電性の基材、中間層及び活物質層をこの順に備え、上記中間層が、導電剤、無機酸化物及びバインダーを含み、上記中間層における上記無機酸化物の含有量が、30質量%以上90質量%以下である蓄電素子用の電極である。
 当該電極によれば、電極間における短絡発生時に短絡電流の増大を抑制することにより高い安全性を備えることができる。このような効果が生じる理由は定かでは無いが、次のように考えられる。無機酸化物は、化合物の種類により、高温下における優れた安定性、温度が高くなると電気抵抗値が正の数の係数だけ変化するPTC(Positive Temperature Coefficient)特性等を有し、短絡等による過剰な発熱時において絶縁材としての良好な機能を発揮する。このため中間層中の導電剤同士や、基材と活物質層との間の電子伝導経路が分断されるため、短絡発生時に短絡電流の増大を抑制できる。このように、当該電極においては、短絡等による過剰な発熱に伴って、電流のシャットダウン機能が働き、短絡電流の増大を抑制することができるため、高い安全性を備えることができる。特に、上記中間層における上記無機酸化物の含有量が、30質量%以上90質量%以下であることで、通常時には良好な導電性を確保しつつ、過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。
 上記中間層における上記無機酸化物の含有量としては、85質量%以下が好ましい。上記中間層における無機酸化物の含有量を上記上限以下とすることで、通常使用時に良好な導電性と、過剰な発熱時における短絡電流の増大に対する抑制効果とをバランス良く発現することができる。
 上記中間層における上記バインダーの含有量としては、5質量%以上が好ましい。上記中間層における上記バインダーの含有量を上記下限以上とすることで、十分な結着性を有する。
 上記中間層における上記導電剤の含有量としては、2質量%以上15質量%以下が好ましい。上記導電剤の含有量を上記範囲とすることで、通常時には良好な導電性を確保しつつ、過剰な発熱時に導電剤間の電子伝導経路が十分に分断され、過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。上記導電剤の含有量の上限が上記範囲であることで、短絡電流の大きさが抑制されるので、より安全性を向上できる。
 上記中間層における上記導電剤の含有量に対する上記無機酸化物の含有量としては、質量比で3倍以上20倍以下が好ましい。無機酸化物の含有量を上記範囲とすることで、通常時には良好な導電性を確保しつつ、過剰な発熱時に導電剤間の電子伝導経路が十分に分断され、過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。
 上記バインダーが、フッ素樹脂を含むことが好ましい。上記バインダーが、フッ素樹脂を含むことで、分子間力が小さく、表面エネルギーが低いフッ素を含有するフッ素樹脂は発熱に伴って膨潤し、バインダーとして適度な結着性を有する。その結果、フッ素樹脂を用いることで、発熱時の無機酸化物の絶縁作用により導電剤間や基材と活物質層との間が比較的容易に分断され、過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。
 上記中間層が、さらに熱により架橋反応が生じる化合物を含むことが好ましい。上記中間層が、熱により架橋反応が生じる化合物を含むことで、過剰な発熱時に架橋性化合物の架橋反応に伴って導電剤間や基材と活物質層との間が比較的容易に分断され、過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。
 当該電極は、正極であることが好ましい。正極活物質層よりも導電性が高い活物質層を備え、基材も導電性の良い銅箔を使用する負極に中間層を設けるよりも、負極より導電性が低い正極に中間層を設けるほうが、電極間における短絡発生時において、導電性に対するより高い遮断効果を得ることができる。
 本発明の一実施形態に係る蓄電素子は、当該電極を備える蓄電素子である。当該蓄電素子は、当該電極を備えるため、電極間における短絡発生時に短絡電流の増大を抑制することにより安全性を高めることができる。
 以下、本発明の電極の一実施形態としての正極、及び本発明の蓄電素子の一実施形態としての非水電解質二次電池(以下、単に「二次電池」と称することもある)について詳説する。
<正極(電極)>
 本発明の一実施形態に係る正極は、正極基材と中間層と正極活物質層とをこの順に備える。正極基材は、基材の一例であり、正極活物質層は、活物質層の一例である。中間層及び正極活物質層は、正極基材の一方の面側にのみ積層されていてもよいし、両面に積層されていてもよい。本実施形態においては、当該正極は、蓄電素子の正極として用いられる。当該電極が正極である場合、中間層を設けることで起こりうる通常時の導電性の低下による影響が生じ難い。このため、通常時には良好な導電性を確保しつつ、過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。
[正極基材]
 正極基材は、導電性を有する基材である。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。正極基材の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。
[中間層]
 中間層は、正極基材及び正極活物質層の間に配置され、正極基材の表面の少なくとも一部を被覆している。中間層は、導電剤、無機酸化物、及びバインダーを含む。一般的に、中間層は正極基材と正極活物質層との接触抵抗を低減する機能を有する層である。この中間層においては、上記機能に加えて、過剰な発熱時に電流を遮断する機能を有する。
(導電剤)
 中間層に含有される導電剤としては、導電性を有する限り、特に限定されない。導電剤としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然又は人造の黒鉛、金属、導電性セラミックスなどが挙げられる。導電剤としては、これらの中でも、カーボンブラックが好ましい。導電剤の形状は、通常、粒子状である。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味する。
 導電剤の一次粒子径としては、例えば20nm以上1μm以下であることが好ましい。このような粒子径の導電剤を用いることで、無機酸化物の絶縁作用によって導電剤間の電子伝導経路の分断が生じやすく、過剰な発熱時における短絡電流の増大に対する抑制効果をより高めることができる。粒子径は、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値(D50)を意味する。過剰な発熱時における短絡電流の増大に対する抑制効果を高めることができる。
 中間層における導電剤の含有量の下限としては、例えば1質量%であってもよいが、2質量%が好ましく、3質量%がより好ましい。中間層における導電剤の含有量が上記下限以上であることにより、通常使用時に良好な導電性を発現することができる。中間層における導電剤の含有量の上限としては、例えば20質量%であってもよいが、15質量%が好ましく、13質量%がより好ましい。中間層における導電剤の含有量の上限が上記範囲であることで、無機酸化物の絶縁作用に伴い導電剤間の電子伝導経路が効果的に分断され、過剰な発熱時における短絡電流の増大に対する抑制効果をより高めることができる。中間層における導電剤の含有量が15質量%以下であることで、短絡電流の大きさが抑制されるので、より安全性を向上できる。
(無機酸化物)
 無機酸化物は、酸化マグネシウムのような金属酸化物、チタン酸塩のようなチタン酸化合物を構成要素とする無機化合物を含む。無機酸化物は、通常、絶縁性である。
 無機酸化物としては、例えば金属酸化物、チタン酸化合物等が挙げられる。金属酸化物は、高温下で安定であることから、短絡等による過剰な発熱時において中間層のバインダーが溶解した場合においても絶縁層として機能することができる。チタン酸化合物は、温度が高温になると抵抗も増加することから、短絡等による過剰な発熱時において、より良好な絶縁作用を発揮する。従って、中間層が無機酸化物を含有することにより、電流のシャットダウン機能が働き、短絡電流の増大を抑制することができるため、高い安全性を備えることができる。無機酸化物は、1種又は2種以上を混合して用いることができる。
 金属酸化物としては、例えばアルミナ、酸化チタン、酸化マグネシウム、シリカ、アルミノシリケート等が挙げられる。これらの中では、アルミナが好ましい。
 チタン酸化合物としては、例えばチタン酸アルカリ土類金属化合物、チタン酸希土類金属化合物等が挙げられる。チタン酸アルカリ土類金属化合物としては、例えばチタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム等が挙げられる。チタン酸希土類金属化合物としては、例えばチタン酸イットリウム、チタン酸ネオジム、チタン酸サマリウム、チタン酸ジスプロシウム、チタン酸ランタン等が挙げられる。これらの中では、誘電率が高い観点から、チタン酸バリウムが好ましい。
 無機酸化物の粒子径は、導電剤の粒子径より大きいことが好ましい。このような粒子径の無機酸化物を用いることで、無機酸化物が導電剤よりも高さがある状態で存在する。そのため、導電剤を介して正極基材と正極活物質層とが接触することを阻止することができ、短絡電流の増大の抑制効果を向上できる。無機酸化物の粒子径としては例えば50nm以上10μm以下であることが好ましい。無機酸化物の粒子径が上記範囲であることで、中間層の平坦性を良好に保つことができる。粒子径は、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値(D50)を意味する。
 無機酸化物のBET比表面積としては、例えば4m/g以上100m/g以下であることが好ましく、10m/g以上80m/g以下がより好ましい。BET比表面積がこのような範囲であることで、無機酸化物のアンカー効果を増すことができ、短絡電流増大の抑制効果を向上できる。
 中間層における導電剤の含有量に対する無機酸化物の含有量の下限は、質量比で3倍が好ましく、4倍がより好ましく、6倍がさらにより好ましい。導電剤に対する無機酸化物の含有量を上記下限以上とすることで、上記分断が生じるために十分な量の無機酸化物による絶縁作用が導電剤に対して得られることから、短絡電流の増大に対する抑制効果を高めることができる。中間層における導電剤の含有量に対する無機酸化物の含有量の上限は、質量比で20倍が好ましく、16倍がより好ましく、12倍がさらに好ましい。導電剤に対する無機酸化物の含有量を上記上限以下とすることで、中間層中に十分な量の導電剤を存在させることができ、通常時における良好な導電性を確保することができる。
 中間層における無機酸化物の含有量の下限としては、30質量%であり、50質量%が好ましく、60質量%がより好ましい。中間層における無機酸化物の含有量が上記下限以上であることにより、上記分断が生じるために十分な量の無機酸化物による絶縁作用が導電剤に対して得られることから、導電剤同士あるいは正極基材と正極活物質層との間の電子伝導経路が効果的に分断され、より優れたシャットダウン機能を発現させることができる。中間層における無機酸化物の含有量の上限としては、90質量%であり、85質量%が好ましく、82質量%がより好ましい。中間層における無機酸化物の含有量を上記上限以下とすることで、通常使用時に良好な導電性と、過剰な発熱時における短絡電流の増大に対する抑制効果とをバランス良く発現することができる。
(バインダー)
 上記バインダー(結着剤)としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。これらの中でも、フッ素樹脂が好ましく、PVDFがより好ましい。分子間力が小さく、表面エネルギーが低いフッ素を含有するフッ素樹脂は発熱に伴って膨潤し、バインダーとして適度な結着性を有する。その結果、フッ素樹脂を用いることで、発熱時の無機酸化物の絶縁作用により導電剤間や基材と活物質層との間が比較的容易に分断され、シャットダウン機能をより効果的に発現できる。
 中間層におけるバインダーの含有量の下限としては、5質量%が好ましく、10質量%がより好ましい。この含有量の上限としては、30質量%が好ましく、20質量%がより好ましい。中間層におけるバインダーの含有量を上記範囲とすることで、十分な結着性と、過剰な発熱時の導電剤同士あるいは正極基材と正極活物質層との間の電子伝導経路の分断性とをバランス良く発現することができる。
(他の成分)
 中間層には、短絡電流の増大の抑制効果を向上する観点から、導電剤、無機酸化物及びバインダー以外の他の成分がさらに含有されていてもよい。上記他の成分としては、例えば熱により架橋反応が生じる化合物等が挙げられる。
 熱により架橋反応が生じる化合物(以下、熱架橋性化合物ともいう。)としては、例えばエポキシ化合物(ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等)、多官能(メタ)アクリレート(トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタアクリレート等)、ポリオキシアルキレン化合物(ポリエチレングリコール、ポリプロピレングリコール等)、イソシアネート化合物(2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等)等を挙げることができる。熱架橋性化合物としては、後述する熱硬化性樹脂や、熱硬化性樹脂のモノマーも挙げられる。熱架橋性化合物は、熱重合開始剤と併用して用いることができる。
 上記熱架橋性化合物としては、複数の分岐構造を有する重合体であることが好ましい。架橋性化合物が、単量体である場合、比較的低温で架橋反応が生じる場合があり、架橋反応の制御が難しくなるおそれがある。これに対し、重合体である架橋性化合物の場合、異常時の発熱に対応した温度(例えば、100℃超や150℃超)で架橋反応を開始及び進行させることができる。このため、重合体である架橋性化合物を用いることで、通常使用時においては架橋反応が進行することなく良好な充放電を行うことができ、異常時においてシャットダウン機能をより効果的に発現させることができる。架橋性化合物が、複数の分岐構造を有する重合体であることにより、末端に存在する多数の反応性基によって効率的に架橋反応が生じると共に、架橋により密な三次元架橋構造が形成され、効果的に電気抵抗を上昇させることができる。
 上記熱架橋性化合物としては、オリゴマーであることがより好ましい。具体的に、架橋性化合物の数平均分子量の下限としては200が好ましく、上限としては3,000が好ましい。架橋性化合物の数平均分子量を上記下限以上とすることで、異常時の発熱に対応した温度での架橋反応をより適切に生じさせることができる。架橋性化合物の数平均分子量を上記上限以下とすることで、架橋反応に伴ってより効果的に絶縁性を高めることができる。
 複数の分岐構造を有する重合体である熱架橋性化合物としては、いわゆる熱硬化性樹脂等を挙げることができる。熱硬化性樹脂としては、メラミン樹脂、ユリア樹脂、ウレタン樹脂、エポキシ樹脂、アルキド樹脂、フタル酸樹脂、アリル樹脂、フェノール樹脂、ベンゾオキサジン樹脂、キシレン樹脂、ケトン樹脂、フラン樹脂、全芳香族ポリイミド、ポリアミノビスマレイミド樹脂、ビスマレイミドとバルビツール酸類との反応生成物等を挙げることができる。
 これらの中でも、ビスマレイミドとバルビツール酸類との反応生成物、すなわちビスマレイミドとバルビツール酸類とを反応物として得られる化合物が好ましい。この化合物は、多数の分岐を有し、ビスマレイミドに由来するビニレン基(-CH=CH-)及びバルビツール酸類に由来するアミノ基を末端の反応性基として有する構造を有する。これらの基は、100℃超で、良好には150℃程度で架橋反応が進行する。従って、この化合物を用いることで、発熱等の異常時に、効果的に架橋反応が進行し、絶縁性を高めることができる。
 ビスマレイミドとしては、N,N’-ビスマレイミド-4,4’-ジフェニルメタン、1,1’-(メチレンジ-4,1-フェニレン)ビスマレイミド、N,N’-(1,1’-ビフェニル-4,4’-ジイル)ビスマレイミド、N,N’-(4-メチル-1,3-フェニレン)ビスマレイミド、1,1’-(3,3’-ジメチル-1,1’-ビフェニル-4,4’-ジイル)ビスマレイミド、N,N’-エチレンジマレイミド、N,N’-(1,2-フェニレン)ジマレイミド、N,N’-(1,3-フェニレン)ジマレイミド、N,N’-チオジマレイミド、N,N’-ジチオジマレイミド、N,N’-ケトンジマレイミド、N,N’-メチレン-ビス-マレインイミド、ビス-マレインイミドメチル-エーテル、1,2-ビス-(マレイミド)-1,2-エタンジオール、N,N’-4,4’-ジフェニルエーテル-ビス-マレイミド、4,4’-ビス(マレイミド)-ジフェニルスルホン等を挙げることができる。
 バルビツール酸類とは、バルビツール酸及びその誘導体をいう。バルビツール酸類は、モノマー、重合開始剤、連鎖移動剤、連鎖停止剤、ラジカル捕捉剤等として機能するものである。このような機能を有するバルビツール酸類をビスマレイミドと反応させることで、複雑な多分岐構造を有するオリゴマー又はポリマーが形成される。
 上記熱架橋性化合物は、ビニル基(CH=CH-)又はビニレン基(-CH=CH-)と、アミノ基とを有することが好ましい。ビニル基及びビニレン基のうちでは、ビニレン基が好ましい。上記アミノ基は、第1級アミノ基、第2級アミノ基及び第3級アミノ基のいずれでもよいが、これらの中では第2級アミノ基(-NH-)が好ましい。ビニル基又はビニレン基とアミノ基とは、上述のように、通常、二次電池の異常時の発熱に対応した温度(例えば、100℃超)で架橋反応が生じるため、過剰な発熱時における短絡電流の増大に対する抑制効果をより高めることができる。ビニル基又はビニレン基とアミノ基とを有する架橋性化合物としては、上述したビスマレイミドとバルビツール酸類とを原料(反応物)とする樹脂の他、ポリアミノビスマレイミド樹脂などを挙げることができる。
 中間層における熱架橋性化合物の含有量の下限としては特に限定されず、例えば5質量%であってもよいが、15質量%が好ましく、20質量%がより好ましく、25質量%がさらに好ましい。上記含有量の上限としては特に限定されず、例えば80質量%であってもよいが、50質量%が好ましく、45質量%がより好ましく、40質量%がさらに好ましい。架橋性化合物の含有量が上記下限以上であることにより、過剰な発熱時における短絡電流の増大に対する抑制効果をより高めることができる。架橋性化合物の含有量が上記上限以下であることにより、通常使用時に良好な導電性を発現することができる。
 中間層の平均厚みとしては、特に限定されないが、下限としては、0.5μmが好ましく、1μmがより好ましく、2μmがさらに好ましい。この平均厚みの上限としては、10μmが好ましく、6μmがより好ましい。中間層の平均厚みを上記下限以上とすることで、シャットダウン機能をより高めることができる。中間層の平均厚みを上記上限以下とすることで、正極の薄膜化を図ることなどができる。中間層の平均厚みとは、導電性の基材、中間層及び活物質層を備えた電極の断面SEM(Scanning Electron Microscope)において、上記中間層の厚みを5点以上測定し平均した値をいう。断面SEMとは、サンプルの切断面を作製し、その断面を走査電子顕微鏡で観察する方法である。
(正極活物質層)
 正極活物質層は、正極活物質を含むいわゆる正極合材から形成される。正極活物質層を形成する正極合材は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。
 上記正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα―NaFeO型結晶構造を有するLiCoO、LiNiO、LiMnO、LiNiαCo(1-α)、LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn、LiNiαMn(2-α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 正極活物質層に含有される導電剤及びバインダーは、中間層と同様のものを挙げることができる。
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 上記フィラーは、特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラスなどが挙げられる。
 当該電極が正極である場合、通常時は中間層を設けることによる導電性に対する影響が生じ難い。このため、通常時には良好な導電性を確保しつつ、発熱時に効果的に絶縁性を高めることができる。
(製造方法)
 当該正極の製造方法は特に限定されるものではない。例えば、正極基材に中間層形成用ペースト、及び正極活物質層形成用ペーストを順に塗工し、乾燥することにより当該正極を得ることができる。
<二次電池(非水電解質蓄電素子)>
 本発明の一実施形態に係る二次電池は、当該電極である正極、負極及び非水電解質を有する。上記正極及び負極は、通常、セパレータを介して積層又は巻回された電極体を形成する。この電極体はケースに収納され、このケース内に上記非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。上記ケースとしては、二次電池のケースとして通常用いられる公知の金属ケース、樹脂ケース等を用いることができる。
(正極)
 当該二次電池に備わる正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極活物質層を有する。当該二次電池に備わる正極は、上述した本発明の一実施形態に係る正極であることが好ましい。
(負極)
 上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極活物質層を有する。正極が上述した本発明の一実施形態に係る正極ではない場合は、負極基材と中間層と負極活物質層とをこの順に備える、本発明の一実施形態に係る負極である。
 上記負極基材は、正極基材と同様の構成とすることができる。材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 上記負極における中間層の構成は特に限定されず、例えばバインダー及び導電剤を含有する組成物により形成することができる。負極における中間層は、上述した正極における中間層と同様の組成で形成してもよい。
 上記負極活物質層は、負極活物質を含むいわゆる負極合材から形成される。負極活物質層を形成する負極合材は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。
 上記負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素または難黒鉛化性炭素)等の炭素材料などが挙げられる。
 さらに、負極合材(負極活物質層)は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。
(セパレータ)
 上記セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも多孔質樹脂フィルムが好ましい。多孔質樹脂フィルムの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。これらの樹脂とアラミドやポリイミド等の樹脂とを複合した多孔質樹脂フィルムを用いてもよい。
(非水電解質)
 上記非水電解質としては、非水電解質二次電池に通常用いられる公知の電解質が使用でき、非水溶媒に電解質塩が溶解されたものを用いることができる。
 上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状カーボネート、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートなどを挙げることができる。
 上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、これらの中ではリチウム塩が好ましい。上記リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ化炭化水素基を有するリチウム塩などを挙げることができる。
 非水電解質として、常温溶融塩(イオン液体)、ポリマー固体電解質などを用いることもできる。
(製造方法)
 当該二次電池の製造方法は特に限定されるものではない。当該二次電池の製造方法は、例えば、正極を作製する工程、負極を作製する工程、非水電解質を調製する工程、正極及び負極を、セパレータを介して積層又は巻回することにより交互に重畳された電極体を形成する工程、正極及び負極(電極体)を電池容器に収容する工程、並びに上記電池容器に上記非水電解質を注入する工程を備える。注入後、注入口を封止することにより非水電解質二次電池(非水電解質蓄電素子)を得ることができる。当該製造方法によって得られる非水電解質蓄電素子(二次電池)を構成する各要素についての詳細は上述したとおりである。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、上記実施形態においては、正極の中間層が無機酸化物を含有しているが、正極の中間層が無機酸化物を含有せず、負極の中間層が無機酸化物を含有していてもよい。正極の中間層及び負極の中間層の双方が無機酸化物を含有していてもよい。正極の中間層が無機酸化物を含有している場合、負極は中間層を有していなくてよい。逆に、負極の中間層が無機酸化物を含有している場合、正極は中間層を有していなくてもよい。正極又は負極において、活物質層を被覆する被覆層等が設けられていてもよい。
 本実施形態において、当該電極は、蓄電素子の正極として用いられていたが、負極として用いられてもよく、正極及び負極の双方に用いられてもよい。
 上記実施の形態においては、蓄電素子が非水電解質二次電池である形態を説明したが、その他の蓄電素子であってもよい。その他の蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)や、電解質が水を含む二次電池などが挙げられる。
 図1に、本発明に係る蓄電素子の一実施形態である矩形状の非水電解質二次電池1(二次電池1)の概略図を示す。同図は、容器内部を透視した図としている。図1に示す二次電池1は、電極体2が電池容器3に収納されている。電極体2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して巻回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。電池容器3内に、非水電解質が注入されている。正極等の各要素の具体的構成等は、上述したとおりである。
 本発明に係る蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解質蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の二次電池1を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1](正極の作製)
 正極基材としてのアルミニウム箔(平均厚さ15μm)の表面に、以下の要領で中間層を形成した。アセチレンブラック(AB)、アルミナ(住友化学社製、粒子径約300nm、BET比表面積4.9m/g)及びポリフッ化ビニリデン(PVDF)を8:77:15の質量比で秤量した。これらを分散媒としてのN-メチル-2-ピロリドン(NMP)に混ぜ、中間層形成用ペーストを調製した。この中間層形成用ペーストをアルミニウム箔に塗布した。その後、乾燥を行い、平均厚さ8μmの中間層を得た。
 正極活物質としてのLi(Ni0.82Co0.15Al0.03)O、AB及びPVDFを質量比95:3:2の割合(固形分換算)で含有し、N-メチル-2-ピロリドンを分散媒とする正極活物質層形成用ペーストを調製した。この正極活物質層形成用ペーストを中間層の表面に塗布し、乾燥することで分散媒を除去した。その後、ローラープレス機により加圧成形し、実施例1の正極を得た。加圧成形後の中間層の平均厚さは4μmだった。正極には、中間層及び正極活物質層を積層していないタブを設けた。
[実施例2]
 アセチレンブラック(AB)、アルミナ(日本アエロジル株式会社製、粒子径約70nm、BET比表面積94m/g)及びポリフッ化ビニリデン(PVDF)を8:62:30の質量比で秤量し、これらを分散媒としてのN-メチル-2-ピロリドン(NMP)に混ぜ、中間層形成用ペーストを調製したこと以外は、実施例1と同様にして実施例2の正極を得た。
[実施例3]
 アセチレンブラック(AB)、アルミナ(日本アエロジル株式会社製)、熱架橋性化合物であるビスマレイミドとバルビツール酸との反応物及びポリフッ化ビニリデン(PVDF)を8:55:20:15の質量比で秤量し、これらを分散媒としてのN-メチル-2-ピロリドン(NMP)に混ぜ、中間層形成用ペーストを調製したこと以外は、実施例1と同様にして実施例3の正極を得た。
[実施例4]
 アセチレンブラック(AB)、チタン酸バリウム及びポリフッ化ビニリデン(PVDF)を8:77:15の質量比で秤量し、これらを分散媒としてのN-メチル-2-ピロリドン(NMP)に混ぜ、中間層形成用ペーストを調製したこと以外は、実施例1と同様にして実施例4の正極を得た。
[実施例5]
 正極活物質としてのLiNi0.5Co0.2Mn0.3、AB及びPVDFを質量比93:4:3の割合(固形分換算)で含有し、N-メチル-2-ピロリドンを分散媒とする正極活物質層形成用ペーストを用い、中間層の乾燥後(加圧成形前)の平均厚みを6μm、加圧成形後の平均厚みを2.5μmとしたこと以外は、実施例1と同様にして実施例5の正極を得た。
[実施例6]
 中間層形成用ペーストに含まれるAB、アルミナ及びPVDFの質量比を4:81:15としたこと以外は、実施例5と同様にして実施例6の正極を得た。
[実施例7]
 中間層形成用ペーストに含まれるAB、アルミナ及びPVDFの質量比を12:73:15としたこと以外は、実施例5と同様にして実施例7の正極を得た。
[実施例8]
 中間層形成用ペーストに含まれるAB、アルミナ及びPVDFの質量比を20:65:15としたこと以外は、実施例5と同様にして実施例8の正極を得た。
[比較例1]
 中間層を設けなかったこと以外は実施例1と同様にして、比較例1の正極を得た。
[比較例2]
 中間層の材料として、AB及びPVDFを8:92の質量比で用い、アルミナを含めなかったこと以外は実施例1と同様にして、比較例2の正極を得た。
[評価]
(加熱に伴う抵抗の変化)
 実施例1~実施例8及び比較例1で得られた正極について、温度を上昇させながら交流インピーダンス(ACR)を測定した。具体的には、まず、同一種類の2枚の正極を正極活物質同士が対向するようにセパレータを介して積層させ、LiPFを1M含有したEC:EMC=20:80(体積比)の電解液に含浸させた。この積層体に対し、交流抵抗計を用いて、5℃ずつ又は10℃ずつ160℃まで段階的に昇温しながら、正極基材間のACRを測定した。測定結果を図3及び図4に示す。
(釘刺し試験)
 実施例1~実施例3及び比較例1で得られた正極と、負極活物質が黒鉛である負極とで、ポリオレフィン製多孔質樹脂フィルムセパレータを挟むことにより、電極体を作製した。この電極体を、各電極のタブが露出するように、外装体としての金属樹脂複合フィルムに収納し、封止した。これにより、ドライセルを得た。このドライセルに対して、正負極間に4.35Vの電圧を印加しつつ、釘を電極の積層方向に貫通させる釘刺し試験を行った。釘を刺して短絡が生じてから5秒後までの抵抗値Rdzの変化の値を元に、0~0.5秒、0.5~2.0秒及び2.0~5.0秒の範囲における熱発生量を解析した。0~0.5秒で発生し始める熱は、釘刺しの短絡によって生じるもの、0.5~2.0秒で発生し始める熱は、セパレータの溶融現象によるもの、2.0~5.0秒で発生し始める熱は、大電流の放電によるものと推測される。上記解析結果を図5に示す。
(非水電解質二次電池の加熱試験)
 実施例1~実施例3及び比較例1の正極と、負極活物質が黒鉛である負極とで、ポリオレフィン製多孔質樹脂フィルムセパレータを挟むことにより、電極体を作製した。この電極体を、各電極のタブが露出するように、外装体としての金属樹脂複合フィルムに収納し、上記電解液を注入後、封止した。これにより、非水電解質二次電池を得た。
 得られた各非水電解質二次電池について、充電終止条件を充電電流が1/100Cとなるまでし、充電終止電圧を4.35Vとして充電した。この後、非水電解質二次電池を固定した状態で、加熱器により加熱して、電圧の変化を測定した。加熱速度は、5℃/分とした。加熱に伴い、短絡が生じ、電圧が低下していった。各非水電解質二次電池の電圧を、各非水電解質二次電池の温度に対してプロットしたグラフを図6に示す。
 図3に示されるように、アルミナを含有する中間層を備える実施例1~実施例3の正極及びチタン酸バリウムを含有する中間層を備える実施例4の正極においては、温度上昇により大きく電気抵抗が上昇し、発熱に対する良好なシャットダウン機能を有し、安全性が高いことがわかる。特に、アルミナ及び熱架橋性化合物を含有する実施例3においては、温度上昇により非常に電気抵抗が上昇し、発熱に対するシャットダウン機能が優れていた。中間層を設けていない比較例1及びアルミナを含有しない中間層を有する比較例2の正極においても、ある程度の抵抗上昇は見られるものの、実施例1~実施例4に比べてシャットダウン機能が劣ることがわかる。
 図4に示されるように、正極活物質としてLiNi0.5Co0.2Mn0.3を含有する正極活物質層と、65質量%~81質量%のアルミナ及び4質量%~20質量%の導電剤ABを含有する中間層とを備える実施例5~実施例8においても、温度上昇により大きく電気抵抗が上昇し、発熱に対する良好なシャットダウン機能を有することがわかる。これらの中でも、中間層におけるABの含有量が4質量%の実施例6及び上記含有量が12質量%の実施例7が温度上昇による電気抵抗の上昇度が高かった。特に、実施例6は温度上昇により非常に電気抵抗が上昇し、発熱に対するシャットダウン機能が優れていた。
 図5に示されるように、中間層がアルミナを含有する実施例1及び実施例2、並びにアルミナ及び熱架橋性化合物を含有する実施例3の正極を用いたドライセルにおいては、中間層を設けていない比較例1と比べて釘刺し後の発熱が抑制されていることがわかる。
 図6(a)~(c)に示されるように、中間層がアルミナを含有する実施例1~実施例3の正極を用いた非水電解質二次電池は、中間層を設けていない比較例1の正極を用いた非水電解質二次電池と比べて、高温下においても高い電圧が保たれていることがわかる。これは、短絡が生じた際、良好なシャットダウン機能が発現していることを意味する。すなわち、実施例1~実施例3の非水電解質二次電池は、比較例1の非水電解質二次電池に比べて安全性が高いことがわかる。特に、アルミナ及び熱架橋性化合物を含有する実施例3においては、電圧低下が非常に少なかった。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質二次電池などに適用できる。
1  非水電解質二次電池
2  電極体
3  電池容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (9)

  1.  導電性の基材、中間層及び活物質層をこの順に備え、
     上記中間層が、導電剤、無機酸化物及びバインダーを含み、
     上記中間層における上記無機酸化物の含有量が、30質量%以上90質量%以下である蓄電素子用の電極。
  2.  上記中間層における上記無機酸化物の含有量が、85質量%以下である請求項1の電極。
  3.  上記中間層における上記バインダーの含有量が、5質量%以上である請求項1又は請求項2の電極。
  4.  上記中間層における上記導電剤の含有量が、2質量%以上15質量%以下である請求項1、請求項2又は請求項3の電極。
  5.  上記中間層における上記導電剤の含有量に対する上記無機酸化物の含有量が、質量比で3倍以上20倍以下である請求項1から請求項4のいずれか1項の電極。
  6.  上記バインダーが、フッ素樹脂を含む請求項1から請求項5のいずれか1項の電極。
  7.  上記中間層が、さらに熱により架橋反応が生じる化合物を含む請求項1から請求項6のいずれか1項の電極。
  8.  正極である請求項1から請求項7のいずれか1項の電極。
  9.  請求項1から請求項8のいずれか1項の電極を備える蓄電素子。
PCT/JP2018/036559 2017-09-29 2018-09-28 電極及び蓄電素子 WO2019066066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/646,115 US20200274149A1 (en) 2017-09-29 2018-09-28 Electrode and energy storage device
JP2019545195A JP7262394B2 (ja) 2017-09-29 2018-09-28 電極及び蓄電素子
EP18862607.1A EP3690990A4 (en) 2017-09-29 2018-09-28 ELECTRODE AND ELECTRICITY STORAGE ELEMENT
CN201880063317.6A CN111164798A (zh) 2017-09-29 2018-09-28 电极和蓄电元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-191551 2017-09-29
JP2017191551 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066066A1 true WO2019066066A1 (ja) 2019-04-04

Family

ID=65903618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036559 WO2019066066A1 (ja) 2017-09-29 2018-09-28 電極及び蓄電素子

Country Status (5)

Country Link
US (1) US20200274149A1 (ja)
EP (1) EP3690990A4 (ja)
JP (1) JP7262394B2 (ja)
CN (1) CN111164798A (ja)
WO (1) WO2019066066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089889A (ja) * 2019-11-12 2021-06-10 財團法人工業技術研究院Industrial Technology Research Institute リチウム電池構造

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077061A (ja) 1998-08-31 2000-03-14 Sanyo Electric Co Ltd リチウムイオン電池
JP2004288520A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2010157512A (ja) * 2008-12-31 2010-07-15 Ind Technol Res Inst リチウム電池およびその製造方法
WO2012005301A1 (ja) * 2010-07-06 2012-01-12 株式会社Gsユアサ 蓄電素子用の電極体、及び蓄電素子
WO2012057031A1 (ja) * 2010-10-27 2012-05-03 協立化学産業株式会社 導電性アンダーコート剤組成物
JP2012134149A (ja) * 2010-12-23 2012-07-12 Ind Technol Res Inst リチウム電池および電極板構造
WO2013073012A1 (ja) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 非水電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164206A (ja) 1998-11-25 2000-06-16 At Battery:Kk 組電池用非水電解液二次電池
JP5444781B2 (ja) 2009-03-25 2014-03-19 Tdk株式会社 リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2012053087A1 (ja) 2010-10-21 2012-04-26 トヨタ自動車株式会社 電池用電極およびその利用
JP5578370B2 (ja) * 2011-09-28 2014-08-27 トヨタ自動車株式会社 二次電池用電極及びその製造方法
CN103194161B (zh) * 2012-01-10 2015-07-15 万向电动汽车有限公司 用于锂离子电池热安全保护的正温度系数材料及其应用
US9627722B1 (en) * 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
JP6542031B2 (ja) * 2014-09-29 2019-07-10 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP6658533B2 (ja) 2014-10-21 2020-03-04 日本電気株式会社 保存安定性に優れるマレイミド樹脂化合物
JP6840507B2 (ja) * 2015-12-25 2021-03-10 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2017130283A (ja) 2016-01-18 2017-07-27 トヨタ自動車株式会社 全固体電池
JP2018148707A (ja) * 2017-03-06 2018-09-20 株式会社明電舎 計測配線の支持構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077061A (ja) 1998-08-31 2000-03-14 Sanyo Electric Co Ltd リチウムイオン電池
JP2004288520A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池
JP2010157512A (ja) * 2008-12-31 2010-07-15 Ind Technol Res Inst リチウム電池およびその製造方法
WO2012005301A1 (ja) * 2010-07-06 2012-01-12 株式会社Gsユアサ 蓄電素子用の電極体、及び蓄電素子
WO2012057031A1 (ja) * 2010-10-27 2012-05-03 協立化学産業株式会社 導電性アンダーコート剤組成物
JP2012134149A (ja) * 2010-12-23 2012-07-12 Ind Technol Res Inst リチウム電池および電極板構造
WO2013073012A1 (ja) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690990A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089889A (ja) * 2019-11-12 2021-06-10 財團法人工業技術研究院Industrial Technology Research Institute リチウム電池構造
JP7263304B2 (ja) 2019-11-12 2023-04-24 財團法人工業技術研究院 リチウム電池構造
US12034158B2 (en) 2019-11-12 2024-07-09 Industrial Technology Research Institute Lithium battery structure

Also Published As

Publication number Publication date
JPWO2019066066A1 (ja) 2020-12-03
EP3690990A4 (en) 2021-06-23
US20200274149A1 (en) 2020-08-27
CN111164798A (zh) 2020-05-15
JP7262394B2 (ja) 2023-04-21
EP3690990A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
EP3633768B1 (en) Lithium secondary battery
EP3637526B1 (en) Lithium secondary battery
KR102367610B1 (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
KR101917265B1 (ko) 비수 전해질 이차 전지
US20180040881A1 (en) Non-aqueous electrolyte secondary battery
CN108808098B (zh) 锂离子二次电池的制造方法
JP6305263B2 (ja) 非水電解質電池、組電池、電池パック及び車
CN108123096B (zh) 正极板的制造方法和非水电解质二次电池的制造方法、以及非水电解质二次电池
KR20150021580A (ko) 밀폐형 비수성 전해질 2차 전지 및 그 제조 방법
KR20160134808A (ko) 비수 전해액 이차 전지
US12087937B2 (en) Non-aqueous electrolyte secondary battery
US20180166738A1 (en) Lithium Ion Secondary Battery
JP5636623B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
US11843088B2 (en) Graphite foil as an active heating and passive cooling material in a battery pack
JP6287186B2 (ja) 非水電解質二次電池
JP2018006289A (ja) 非水電解質二次電池
JP2018147752A (ja) 蓄電素子及びその製造方法
JP6812827B2 (ja) 非水電解液およびそれを用いた非水電解液電池
US20230028401A1 (en) Nonaqueous electrolyte energy storage device and method for manufacturing the same
JP7262394B2 (ja) 電極及び蓄電素子
US20170222213A1 (en) Method for producing negative electrode for lithium ion battery and method for producing lithium ion battery
JP5748972B2 (ja) 非水電解液二次電池パック
WO2018162325A1 (en) Energy storage device and method for producing the same
EP3671906B1 (en) Electrode and energy storage device
US20230033180A1 (en) Nonaqueous electrolyte energy storage device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018862607

Country of ref document: EP

Effective date: 20200429